human
stringlengths
301
5k
Here is how we should go: first, to make known the genus force, we must show one after the other all the species of this genus; they are very numerous and very different; there is the pressure of fluids on the insides of the vases wherein they are contained; the tension of threads; the elasticity of a spring; the gravity working on all the molecules of a body; friction; the normal mutual action and reaction of two solids in contact.
Is this enough? Not yet. We now know how to compare the intensity of two forces which have the same direction and same point of application; we must learn to do it when the directions are different. For that, imagine a string stretched by a weight and passing over a pulley; we shall say that the tensor of the two legs of the string is the same and equal to the tension weight.
This definition of ours enables us to compare the tensions of the two pieces of our string, and, using the preceding definitions, to compare any two forces having the same direction as these two pieces. It should be justified by showing that the tension of the last piece of the string remains the same for the same tensor weight, whatever be the number and the disposition of the reflecting pulleys. It has still to be completed by showing this is only true if the pulleys are frictionless.
It is after having passed through all these meanders that one may represent forces by arrows, and I should even wish that in the development of the reasonings return were made from time to time from the symbol to the reality. For instance it would not be difficult to illustrate the parallelogram of forces by aid of an apparatus formed of three strings, passing over pulleys, stretched by weights and in equilibrium while pulling on the same point.
Knowing force, it is easy to define mass; this time the definition should be borrowed from dynamics; there is no way of doing otherwise, since the end to be attained is to give understanding of the distinction between mass and weight. Here again, the definition should be led up to by experiments; there is in fact a machine which seems made expressly to show what mass is, Atwood's machine; recall also the laws of the fall of bodies, that the acceleration of gravity is the same for heavy as for light bodies, and that it varies with the latitude, etc.
Can mathematics be reduced to logic without having to appeal to principles peculiar to mathematics? There is a whole school, abounding in ardor and full of faith, striving to prove it. They have their own special language, which is without words, using only signs. This language is understood only by the initiates, so that commoners are disposed to bow to the trenchant affirmations of the adepts. It is perhaps not unprofitable to examine these affirmations somewhat closely, to see if they justify the peremptory tone with which they are presented.
Many mathematicians followed his lead and set a series of questions of the sort. They so familiarized themselves with transfinite numbers that they have come to make the theory of finite numbers depend upon that of Cantor's cardinal numbers. In their eyes, to teach arithmetic in a way truly logical, one should begin by establishing the general properties of transfinite cardinal numbers, then distinguish among them a very small class, that of the ordinary whole numbers. Thanks to this détour, one might succeed in proving all the propositions relative to this little class (that is to say all our arithmetic and our algebra) without using any principle foreign to logic. This method is evidently contrary to all sane psychology; it is certainly not in this way that the human mind proceeded in constructing mathematics; so its authors do not dream, I think, of introducing it into secondary teaching. But is it at least logic, or, better, is it correct? It may be doubted.
The geometers who have employed it are however very numerous. They have accumulated formulas and they have thought to free themselves from what was not pure logic by writing memoirs where the formulas no longer alternate with explanatory discourse as in the books of ordinary mathematics, but where this discourse has completely disappeared.
For M. Couturat, the new works, and in particular those of Russell and Peano, have finally settled the controversy, so long pending between Leibnitz and Kant. They have shown that there are no synthetic judgments a priori (Kant's phrase to designate judgments which can neither be demonstrated analytically, nor reduced to identities, nor established experimentally), they have shown that mathematics is entirely reducible to logic and that intuition here plays no rôle.
I do not make this formal character of his geometry a reproach to Hilbert. This is the way he should go, given the problem he set himself. He wished to reduce to a minimum the number of the fundamental assumptions of geometry and completely enumerate them; now, in reasonings where our mind remains active, in those where intuition still plays a part, in living reasonings, so to speak, it is difficult not to introduce an assumption or a postulate which passes unperceived. It is therefore only after having carried back all the geometric reasonings to a form purely mechanical that he could be sure of having accomplished his design and finished his work.
Even admitting it were established that all the theorems could be deduced by procedures purely analytic, by simple logical combinations of a finite number of assumptions, and that these assumptions are only conventions; the philosopher would still have the right to investigate the origins of these conventions, to see why they have been judged preferable to the contrary conventions.
To seek the origin of this instinct, to study the laws of this deep geometry, felt, not stated, would also be a fine employment for the philosophers who do not want logic to be all. But it is not at this point of view I wish to put myself, it is not thus I wish to consider the question. The instinct mentioned is necessary for the inventor, but it would seem at first we might do without it in studying the science once created. Well, what I wish to investigate is if it be true that, the principles of logic once admitted, one can, I do not say discover, but demonstrate, all the mathematical verities without making a new appeal to intuition.
If previously have been defined all these notions but one, then this last will be by definition the thing which verifies these postulates. Thus certain indemonstrable assumptions of mathematics would be only disguised definitions. This point of view is often legitimate; and I have myself admitted it in regard for instance to Euclid's postulate.
Under this form, his opinion is inadmissible. Mathematics is independent of the existence of material objects; in mathematics the word exist can have only one meaning, it means free from contradiction. Thus rectified, Stuart Mill's thought becomes exact; in defining a thing, we affirm that the definition implies no contradiction.
If therefore we have a system of postulates, and if we can demonstrate that these postulates imply no contradiction, we shall have the right to consider them as representing the definition of one of the notions entering therein. If we can not demonstrate that, it must be admitted without proof, and that then will be an assumption; so that, seeking the definition under the postulate, we should find the assumption under the definition.
We therefore shall find in the sequel of the exposition the word defined; have we the right to affirm, of the thing represented by this word, the postulate which has served for definition? Yes, evidently, if the word has retained its meaning, if we do not attribute to it implicitly a different meaning. Now this is what sometimes happens and it is usually difficult to perceive it; it is needful to see how this word comes into our discourse, and if the gate by which it has entered does not imply in reality a definition other than that stated.
This difficulty presents itself in all the applications of mathematics. The mathematical notion has been given a definition very refined and very rigorous; and for the pure mathematician all doubt has disappeared; but if one wishes to apply it to the physical sciences for instance, it is no longer a question of this pure notion, but of a concrete object which is often only a rough image of it. To say that this object satisfies, at least approximately, the definition, is to state a new truth, which experience alone can put beyond doubt, and which no longer has the character of a conventional postulate.
The definitions of number are very numerous and very different; I forego the enumeration even of the names of their authors. We should not be astonished that there are so many. If one among them was satisfactory, no new one would be given. If each new philosopher occupying himself with this question has thought he must invent another one, this was because he was not satisfied with those of his predecessors, and he was not satisfied with them because he thought he saw a petitio principii.
This is because it is impossible to give a definition without using a sentence, and difficult to make a sentence without using a number word, or at least the word several, or at least a word in the plural. And then the declivity is slippery and at each instant there is risk of a fall into petitio principii.
To justify its pretensions, logic had to change. We have seen new logics arise of which the most interesting is that of Russell. It seems he has nothing new to write about formal logic, as if Aristotle there had touched bottom. But the domain Russell attributes to logic is infinitely more extended than that of the classic logic, and he has put forth on the subject views which are original and at times well warranted.
A great number of new notions have been introduced, and these are not simply combinations of the old. Russell knows this, and not only at the beginning of the first chapter, 'The Logic of Propositions,' but at the beginning of the second and third, 'The Logic of Classes' and 'The Logic of Relations,' he introduces new words that he declares indefinable.
If I take the series 0, 1, 2, I see it fulfils the assumptions 1, 2, 4 and 5; but to satisfy assumption 3 it still is necessary that 3 be an integer, and consequently that the series 0, 1, 2, 3, fulfil the assumptions; we might prove that it satisfies assumptions 1, 2, 4, 5, but assumption 3 requires besides that 4 be an integer and that the series 0, 1, 2, 3, 4 fulfil the assumptions, and so on.
"Let us take as the basis of our consideration first of all a thought-thing 1 (one)" (p. 341). Notice that in so doing we in no wise imply the notion of number, because it is understood that 1 is here only a symbol and that we do not at all seek to know its meaning. "The taking of this thing together with itself respectively two, three or more times...." Ah! this time it is no longer the same; if we introduce the words 'two,' 'three,' and above all 'more,' 'several,' we introduce the notion of number; and then the definition of finite whole number which we shall presently find, will come too late. Our author was too circumspect not to perceive this begging of the question. So at the end of his work he tries to proceed to a truly patching-up process.
Afterwards he separates these combinations into two classes, the class of the existent and the class of the non-existent, and till further orders this separation is entirely arbitrary. Every affirmative statement tells us that a certain combination belongs to the class of the existent; every negative statement tells us that a certain combination belongs to the class of the non-existent.
Russell is faithful to his point of view, which is that of comprehension. He starts from the general idea of being, and enriches it more and more while restricting it, by adding new qualities. Hilbert on the contrary recognizes as possible beings only combinations of objects already known; so that (looking at only one side of his thought) we might say he takes the view-point of extension.
Let us continue with the exposition of Hilbert's ideas. He introduces two assumptions which he states in his symbolic language but which signify, in the language of the uninitiated, that every quality is equal to itself and that every operation performed upon two identical quantities gives identical results.
So stated, they are evident, but thus to present them would be to misrepresent Hilbert's thought. For him mathematics has to combine only pure symbols, and a true mathematician should reason upon them without preconceptions as to their meaning. So his assumptions are not for him what they are for the common people.
He considers them as representing the definition by postulates of the symbol (=) heretofore void of all signification. But to justify this definition we must show that these two assumptions lead to no contradiction. For this Hilbert used the reasoning of our number III, without appearing to perceive that he is using complete induction.
As to the third, evidently it implies no contradiction. Does this mean that the definition guarantees, as it should, the existence of the object defined? We are here no longer in the mathematical sciences, but in the physical, and the word existence has no longer the same meaning. It no longer signifies absence of contradiction; it means objective existence.
And since I am on this subject, still another word. Of the phosphorus example I said: "This proposition is a real verifiable physical law, because it means that all bodies having all the other properties of phosphorus, save its point of fusion, melt like it at 44°." And it was answered: "No, this law is not verifiable, because if it were shown that two bodies resembling phosphorus melt one at 44° and the other at 50°, it might always be said that doubtless, besides the point of fusion, there is some other unknown property by which they differ."
And the better to make evident the difference between the case of the straight and that of phosphorus, one more remark. The straight has in nature many images more or less imperfect, of which the chief are the light rays and the rotation axis of the solid. Suppose we find the ray of light does not satisfy Euclid's postulate (for example by showing that a star has a negative parallax), what shall we do? Shall we conclude that the straight being by definition the trajectory of light does not satisfy the postulate, or, on the other hand, that the straight by definition satisfying the postulate, the ray of light is not straight?
Suppose now we find that phosphorus does not melt at 44°, but at 43.9°. Shall we conclude that phosphorus being by definition that which melts at 44°, this body that we did call phosphorus is not true phosphorus, or, on the other hand, that phosphorous melts at 43.9°? Here again we are free to adopt the one or the other definition and consequently the one or the other conclusion; but to adopt the first would be stupid because we can not be changing the name of a substance every time we determine a new decimal of its fusion-point.
To sum up, Russell and Hilbert have each made a vigorous effort; they have each written a work full of original views, profound and often well warranted. These two works give us much to think about and we have much to learn from them. Among their results, some, many even, are solid and destined to live.
The logicians have attempted to answer the preceding considerations. For that, a transformation of logistic was necessary, and Russell in particular has modified on certain points his original views. Without entering into the details of the debate, I should like to return to the two questions to my mind most important: Have the rules of logistic demonstrated their fruitfulness and infallibility? Is it true they afford means of proving the principle of complete induction without any appeal to intuition?
Russell seeks to reconcile these contradictions, which can only be done, according to him, "by restricting or even sacrificing the notion of class." And M. Couturat, discovering the success of his attempt, adds: "If the logicians succeed where others have failed, M. Poincaré will remember this phrase, and give the honor of the solution to logistic."
To demonstrate that a system of postulates implies no contradiction, it is necessary to apply the principle of complete induction; this mode of reasoning not only has nothing 'bizarre' about it, but it is the only correct one. It is not 'unlikely' that it has ever been employed; and it is not hard to find 'examples and precedents' of it. I have cited two such instances borrowed from Hilbert's article. He is not the only one to have used it, and those who have not done so have been wrong. What I have blamed Hilbert for is not his having recourse to it (a born mathematician such as he could not fail to see a demonstration was necessary and this the only one possible), but his having recourse without recognizing the reasoning by recurrence.
I pointed out a second error of logistic in Hilbert's article. To-day Hilbert is excommunicated and M. Couturat no longer regards him as of the logistic cult; so he asks if I have found the same fault among the orthodox. No, I have not seen it in the pages I have read; I know not whether I should find it in the three hundred pages they have written which I have no desire to read.
Only, they must commit it the day they wish to make any application of mathematics. This science has not as sole object the eternal contemplation of its own navel; it has to do with nature and some day it will touch it. Then it will be necessary to shake off purely verbal definitions and to stop paying oneself with words.
To go back to the example of Hilbert: always the point at issue is reasoning by recurrence and the question of knowing whether a system of postulates is not contradictory. M. Couturat will doubtless say that then this does not touch him, but it perhaps will interest those who do not claim, as he does, the liberty of contradiction.
Now to examine Russell's new memoir. This memoir was written with the view to conquer the difficulties raised by those Cantor antinomies to which frequent allusion has already been made. Cantor thought he could construct a science of the infinite; others went on in the way he opened, but they soon ran foul of strange contradictions. These antinomies are already numerous, but the most celebrated are:
This number exists; and in fact the numbers capable of being defined by a like phrase are evidently finite in number since the words of the English language are not infinite in number. Therefore among them will be one less than all the others. And, on the other hand, this number does not exist, because its definition implies contradiction. This number, in fact, is defined by the phrase in italics which is composed of less than a hundred English words; and by definition this number should not be capable of definition by a like phrase.
According to the zigzag theory "definitions (propositional functions) determine a class when they are very simple and cease to do so only when they are complicated and obscure." Who, now, is to decide whether a definition may be regarded as simple enough to be acceptable? To this question there is no answer, if it be not the loyal avowal of a complete inability: "The rules which enable us to recognize whether these definitions are predicative would be extremely complicated and can not commend themselves by any plausible reason. This is a fault which might be remedied by greater ingenuity or by using distinctions not yet pointed out. But hitherto in seeking these rules, I have not been able to find any other directing principle than the absence of contradiction."
It is toward the no-classes theory that Russell finally inclines. Be that as it may, logistic is to be remade and it is not clear how much of it can be saved. Needless to add that Cantorism and logistic are alone under consideration; real mathematics, that which is good for something, may continue to develop in accordance with its own principles without bothering about the storms which rage outside it, and go on step by step with its usual conquests which are final and which it never has to abandon.
The first postulate is not more evident than the principle to be proved. The second not only is not evident, but it is false, as Whitehead has shown; as moreover any recruit would see at the first glance, if the axiom had been stated in intelligible language, since it means that the number of combinations which can be formed with several objects is less than the number of these objects.
A demonstration truly founded upon the principles of analytic logic will be composed of a series of propositions. Some, serving as premises, will be identities or definitions; the others will be deduced from the premises step by step. But though the bond between each proposition and the following is immediately evident, it will not at first sight appear how we get from the first to the last, which we may be tempted to regard as a new truth. But if we replace successively the different expressions therein by their definition and if this operation be carried as far as possible, there will finally remain only identities, so that all will reduce to an immense tautology. Logic therefore remains sterile unless made fruitful by intuition.
But that is ancient history. Russell has perceived the peril and takes counsel. He is about to change everything, and, what is easily understood, he is preparing not only to introduce new principles which shall allow of operations formerly forbidden, but he is preparing to forbid operations he formerly thought legitimate. Not content to adore what he burned, he is about to burn what he adored, which is more serious. He does not add a new wing to the building, he saps its foundation.
The general principles of Dynamics, which have, since Newton, served as foundation for physical science, and which appeared immovable, are they on the point of being abandoned or at least profoundly modified? This is what many people have been asking themselves for some years. According to them, the discovery of radium has overturned the scientific dogmas we believed the most solid: on the one hand, the impossibility of the transmutation of metals; on the other hand, the fundamental postulates of mechanics.
Perhaps one is too hasty in considering these novelties as finally established, and breaking our idols of yesterday; perhaps it would be proper, before taking sides, to await experiments more numerous and more convincing. None the less is it necessary, from to-day, to know the new doctrines and the arguments, already very weighty, upon which they rest.
Astronomic observations and the most ordinary physical phenomena seem to have given of these principles a confirmation complete, constant and very precise. This is true, it is now said, but it is because we have never operated with any but very small velocities; Mercury, for example, the fastest of the planets, goes scarcely 100 kilometers a second. Would this planet act the same if it went a thousand times faster? We see there is yet no need to worry; whatever may be the progress of automobilism, it will be long before we must give up applying to our machines the classic principles of dynamics.
After the discovery of the cathode rays two theories appeared. Crookes attributed the phenomena to a veritable molecular bombardment; Hertz, to special undulations of the ether. This was a renewal of the debate which divided physicists a century ago about light; Crookes took up the emission theory, abandoned for light; Hertz held to the undulatory theory. The facts seem to decide in favor of Crookes.
It has been recognized, in the first place, that the cathode rays carry with them a negative electric charge; they are deviated by a magnetic field and by an electric field; and these deviations are precisely such as these same fields would produce upon projectiles animated by a very high velocity and strongly charged with electricity. These two deviations depend upon two quantities: one the velocity, the other the relation of the electric charge of the projectile to its mass; we cannot know the absolute value of this mass, nor that of the charge, but only their relation; in fact, it is clear that if we double at the same time the charge and the mass, without changing the velocity, we shall double the force which tends to deviate the projectile, but, as its mass is also doubled, the acceleration and deviation observable will not be changed. The observation of the two deviations will give us therefore two equations to determine these two unknowns. We find a velocity of from 10,000 to 30,000 kilometers a second; as to the ratio of the charge to the mass, it is very great. We may compare it to the corresponding ratio in regard to the hydrogen ion in electrolysis; we then find that a cathodic projectile carries about a thousand times more electricity than an equal mass of hydrogen would carry in an electrolyte.
The same calculations made with reference to the β rays of radium have given velocities still greater: 100,000 or 200,000 kilometers or more yet. These velocities greatly surpass all those we know. It is true that light has long been known to go 300,000 kilometers a second; but it is not a carrying of matter, while, if we adopt the emission theory for the cathode rays, there would be material molecules really impelled at the velocities in question, and it is proper to investigate whether the ordinary laws of mechanics are still applicable to them.
If the velocity of a cathode corpuscle varies, the intensity of the corresponding current will likewise vary; and there will develop effects of self-induction which will tend to oppose this variation. These corpuscles should therefore possess a double inertia: first their own proper inertia, and then the apparent inertia, due to self-induction, which produces the same effects. They will therefore have a total apparent mass, composed of their real mass and of a fictitious mass of electromagnetic origin. Calculation shows that this fictitious mass varies with the velocity, and that the force of inertia of self-induction is not the same when the velocity of the projectile accelerates or slackens, or when it is deviated; therefore so it is with the force of the total apparent inertia.
But the electrons do not merely show us their existence in these rays where they are endowed with enormous velocities. We shall see them in very different rôles, and it is they that account for the principal phenomena of optics and electricity. The brilliant synthesis about to be noticed is due to Lorentz.
In certain bodies, the metals for example, we should have fixed electrons, between which would circulate moving electrons enjoying perfect liberty, save that of going out from the metallic body and breaking the surface which separates it from the exterior void or from the air, or from any other non-metallic body.
In other bodies, the dielectrics and the transparent bodies, the movable electrons enjoy much less freedom. They remain as if attached to fixed electrons which attract them. The farther they go away from them the greater becomes this attraction and tends to pull them back. They therefore can make only small excursions; they can no longer circulate, but only oscillate about their mean position. This is why these bodies would not be conductors; moreover they would most often be transparent, and they would be refractive, since the luminous vibrations would be communicated to the movable electrons, susceptible of oscillation, and thence a perturbation would result.
1º The positive electrons have a real mass, much greater than their fictitious electromagnetic mass; the negative electrons alone lack real mass. We might even suppose that apart from electrons of the two signs, there are neutral atoms which have only their real mass. In this case, mechanics is not affected; there is no need of touching its laws; the real mass is constant; simply, motions are deranged by the effects of self-induction, as has always been known; moreover, these perturbations are almost negligible, except for the negative electrons which, not having real mass, are not true matter.
How shall we decide between these two hypotheses? By operating upon the canal rays as Kaufmann did upon the β rays? This is impossible; the velocity of these rays is much too slight. Should each therefore decide according to his temperament, the conservatives going to one side and the lovers of the new to the other? Perhaps, but, to fully understand the arguments of the innovators, other considerations must come in.
But wait! This result is not exact, it is only approximate; let us push the approximation a little farther. The dimensions of the ellipse will depend then upon the absolute velocity of the earth. Let us compare the major axes of the ellipse for the different stars: we shall have, theoretically at least, the means of determining this absolute velocity.
Besides, this method is purely theoretical. In fact, the aberration is very small; the possible variations of the ellipse of aberration are much smaller yet, and, if we consider the aberration as of the first order, they should therefore be regarded as of the second order: about a millionth of a second; they are absolutely inappreciable for our instruments. We shall finally see, further on, why the preceding theory should be rejected, and why we could not determine this absolute velocity even if our instruments were ten thousand times more precise!
One might imagine some other means, and in fact, so one has. The velocity of light is not the same in water as in air; could we not compare the two apparent positions of a star seen through a telescope first full of air, then full of water? The results have been negative; the apparent laws of reflection and refraction are not altered by the motion of the earth. This phenomenon is capable of two explanations:
It is true that, if the energy sent out from the discharger or from the lamp meets a material object, this object receives a mechanical push as if it had been hit by a real projectile, and this push will be equal to the recoil of the discharger and of the lamp, if no energy has been lost on the way and if the object absorbs the whole of the energy. Therefore one is tempted to say that there still is compensation between the action and the reaction. But this compensation, even should it be complete, is always belated. It never happens if the light, after leaving its source, wanders through interstellar spaces without ever meeting a material body; it is incomplete, if the body it strikes is not perfectly absorbent.
The same effects of the Maxwell-Bartholi pressure are forecast likewise by the theory of Hertz of which we have before spoken, and by that of Lorentz. But there is a difference. Suppose that the energy, under the form of light, for example, proceeds from a luminous source to any body through a transparent medium. The Maxwell-Bartholi pressure will act, not alone upon the source at the departure, and on the body lit up at the arrival, but upon the matter of the transparent medium which it traverses. At the moment when the luminous wave reaches a new region of this medium, this pressure will push forward the matter there distributed and will put it back when the wave leaves this region. So that the recoil of the source has for counterpart the forward movement of the transparent matter which is in contact with this source; a little later, the recoil of this same matter has for counterpart the forward movement of the transparent matter which lies a little further on, and so on.
Only, is the compensation perfect? Is the action of the Maxwell-Bartholi pressure upon the matter of the transparent medium equal to its reaction upon the source, and that whatever be this matter? Or is this action by so much the less as the medium is less refractive and more rarefied, becoming null in the void?
There would then be perfect compensation, as required by the principle of the equality of action and reaction, even in the least refractive media, even in the air, even in the interplanetary void, where it would suffice to suppose a residue of matter, however subtile. If on the contrary we admit the theory of Lorentz, the compensation, always imperfect, is insensible in the air and becomes null in the void.
First, it obliges us to generalize the hypothesis of Lorentz and Fitzgerald on the contraction of all bodies in the sense of the translation. In particular, we must extend this hypothesis to the electrons themselves. Abraham considered these electrons as spherical and indeformable; it will be necessary for us to admit that these electrons, spherical when in repose, undergo the Lorentz contraction when in motion and take then the form of flattened ellipsoids.
This deformation of the electrons will influence their mechanical properties. In fact I have said that the displacement of these charged electrons is a veritable current of convection and that their apparent inertia is due to the self-induction of this current: exclusively as concerns the negative electrons; exclusively or not, we do not yet know, for the positive electrons. Well, the deformation of the electrons, a deformation which depends upon their velocity, will modify the distribution of the electricity upon their surface, consequently the intensity of the convection current they produce, consequently the laws according to which the self-induction of this current will vary as a function of the velocity.
It still is Lorentz who has made this remarkable synthesis; stop a moment and see what follows therefrom. First, there is no more matter, since the positive electrons no longer have real mass, or at least no constant real mass. The present principles of our mechanics, founded upon the constancy of mass, must therefore be modified. Again, an electromagnetic explanation must be sought of all the known forces, in particular of gravitation, or at least the law of gravitation must be so modified that this force is altered by velocity in the same way as the electromagnetic forces. We shall return to this point.
We have before us, then, two theories: one where the electrons are indeformable, this is that of Abraham; the other where they undergo the Lorentz deformation. In both cases, their mass increases with the velocity, becoming infinite when this velocity becomes equal to that of light; but the law of the variation is not the same. The method employed by Kaufmann to bring to light the law of variation of the mass seems therefore to give us an experimental means of deciding between the two theories.
There is one point however to which I wish to draw attention: that is to the measurement of the electrostatic field, a measurement upon which all depends. This field was produced between the two armatures of a condenser; and, between these armatures, there was to be made an extremely perfect vacuum, in order to obtain a complete isolation. Then the difference of potential of the two armatures was measured, and the field obtained by dividing this difference by the distance apart of the armatures. That supposes the field uniform; is this certain? Might there not be an abrupt fall of potential in the neighborhood of one of the armatures, of the negative armature, for example? There may be a difference of potential at the meeting of the metal and the vacuum, and it may be that this difference is not the same on the positive side and on the negative side; what would lead me to think so is the electric valve effects between mercury and vacuum. However slight the probability that it is so, it seems that it should be considered.
We know that a body submerged in a fluid experiences, when in motion, considerable resistance, but this is because our fluids are viscous; in an ideal fluid, perfectly free from viscosity, the body would stir up behind it a liquid hill, a sort of wake; upon departure, a great effort would be necessary to put it in motion, since it would be necessary to move not only the body itself, but the liquid of its wake. But, the motion once acquired, it would perpetuate itself without resistance, since the body, in advancing, would simply carry with it the perturbation of the liquid, without the total vis viva of the liquid augmenting. Everything would happen therefore as if its inertia was augmented. An electron advancing in the ether would behave in the same way: around it, the ether would be stirred up, but this perturbation would accompany the body in its motion; so that, for an observer carried along with the electron, the electric and magnetic fields accompanying this electron would appear invariable, and would change only if the velocity of the electron varied. An effort would therefore be necessary to put the electron in motion, since it would be necessary to create the energy of these fields; on the contrary, once the movement acquired, no effort would be necessary to maintain it, since the created energy would only have to go along behind the electron as a wake. This energy, therefore, could only augment the inertia of the electron, as the agitation of the liquid augments that of the body submerged in a perfect fluid. And anyhow, the negative electrons at least have no other inertia except that.
A question then suggests itself: let us admit the principle of relativity; an observer in motion would not have any means of perceiving his own motion. If therefore no body in its absolute motion can exceed the velocity of light, but may approach it as nearly as you choose, it should be the same concerning its relative motion with reference to our observer. And then we might be tempted to reason as follows: The observer may attain a velocity of 200,000 kilometers; the body in its relative motion with reference to the observer may attain the same velocity; its absolute velocity will then be 400,000 kilometers, which is impossible, since this is beyond the velocity of light. This is only a seeming, which vanishes when account is taken of how Lorentz evaluates local time.
1º In incandescent gases certain electrons take an oscillatory motion of very high frequency; the displacements are very small, the velocities are finite, and the accelerations very great; energy is then communicated to the ether, and this is why these gases radiate light of the same period as the oscillations of the electron;
4º In an incandescent metal, the electrons enclosed in this metal are impelled with great velocity; upon reaching the surface of the metal, which they can not get through, they are reflected and thus undergo a considerable acceleration. This is why the metal emits light. The details of the laws of the emission of light by dark bodies are perfectly explained by this hypothesis;
2º By the attraction the body exercises upon an exterior body, in virtue of Newton's law. We should therefore distinguish the mass coefficient of inertia and the mass coefficient of attraction. According to Newton's law, there is rigorous proportionality between these two coefficients. But that is demonstrated only for velocities to which the general principles of dynamics are applicable. Now, we have seen that the mass coefficient of inertia increases with the velocity; should we conclude that the mass coefficient of attraction increases likewise with the velocity and remains proportional to the coefficient of inertia, or, on the contrary, that this coefficient of attraction remains constant? This is a question we have no means of deciding.
But experiment shows us that these molecules attract each other in consequence of Newtonian gravitation; and then we may make two hypotheses: we may suppose gravitation has no relation to the electrostatic attractions, that it is due to a cause entirely different, and is simply something additional; or else we may suppose the attractions are not proportional to the charges and that the attraction exercised by a charge +1 upon a charge −1 is greater than the mutual repulsion of two +1 charges, or two −1 charges.
In other words, the electric field produced by the positive electrons and that which the negative electrons produce might be superposed and yet remain distinct. The positive electrons would be more sensitive to the field produced by the negative electrons than to the field produced by the positive electrons; the contrary would be the case for the negative electrons. It is clear that this hypothesis somewhat complicates electrostatics, but that it brings back into it gravitation. This was, in sum, Franklin's hypothesis.
Such is the hypothesis of Lorentz, which reduces to Franklin's hypothesis for slight velocities; it will therefore explain, for these small velocities, Newton's law. Moreover, as gravitation goes back to forces of electrodynamic origin, the general theory of Lorentz will apply, and consequently the principle of relativity will not be violated.
Let us recur to the hypotheses A, B and C, and study first the motion of a planet attracted by a fixed center. The hypotheses B and C are no longer distinguished, since, if the attracting point is fixed, the field it produces is a purely electrostatic field, where the attraction varies inversely as the square of the distance, in conformity with Coulomb's electrostatic law, identical with that of Newton.
We should not be led to results less fantastic if, contrary to Darwin's views, we endowed the corpuscles of Lesage with an elasticity imperfect without being null. In truth, the vis viva of these corpuscles would not be entirely converted into heat, but the attraction produced would likewise be less, so that it would be only the part of this vis viva converted into heat, which would contribute to produce the attraction and that would come to the same thing; a judicious employment of the theorem of the viriel would enable us to account for this.
The theory of Lesage may be transformed; suppress the corpuscles and imagine the ether overrun in all senses by luminous waves coming from all points of space. When a material object receives a luminous wave, this wave exercises upon it a mechanical action due to the Maxwell-Bartholi pressure, just as if it had received the impact of a material projectile. The waves in question could therefore play the rôle of the corpuscles of Lesage. This is what is supposed, for example, by M. Tommasina.
On the other hand, attraction is not absorbed by the body it traverses, or hardly at all; it is not so with the light we know. Light which would produce the Newtonian attraction would have to be considerably different from ordinary light and be, for example, of very short wave length. This does not count that, if our eyes were sensible of this light, the whole heavens should appear to us much more brilliant than the sun, so that the sun would seem to us to stand out in black, otherwise the sun would repel us instead of attracting us. For all these reasons, light which would permit of the explanation of attraction would be much more like Röntgen rays than like ordinary light.
And besides, the X-rays would not suffice; however penetrating they may seem to us, they could not pass through the whole earth; it would be necessary therefore to imagine X´-rays much more penetrating than the ordinary X-rays. Moreover a part of the energy of these X´-rays would have to be destroyed, otherwise there would be no attraction. If you do not wish it transformed into heat, which would lead to an enormous heat production, you must suppose it radiated in every direction under the form of secondary rays, which might be called X´´ and which would have to be much more penetrating still than the X´-rays, otherwise they would in their turn derange the phenomena of attraction.
I have striven to give in few words an idea as complete as possible of these new doctrines; I have sought to explain how they took birth; otherwise the reader would have had ground to be frightened by their boldness. The new theories are not yet demonstrated; far from it; only they rest upon an aggregate of probabilities sufficiently weighty for us not to have the right to treat them with disregard.
Novelties are so attractive, and it is so hard not to seem highly advanced! At least there will be the wish to open vistas to the pupils and, before teaching them the ordinary mechanics, to let them know it has had its day and was at best good enough for that old dolt Laplace. And then they will not form the habit of the ordinary mechanics.
It is with the ordinary mechanics that they must live; this alone will they ever have to apply. Whatever be the progress of automobilism, our vehicles will never attain speeds where it is not true. The other is only a luxury, and we should think of the luxury only when there is no longer any risk of harming the necessary.
Consider now the milky way; there also we see an innumerable dust; only the grains of this dust are not atoms, they are stars; these grains move also with high velocities; they act at a distance one upon another, but this action is so slight at great distance that their trajectories are straight; and yet, from time to time, two of them may approach near enough to be deviated from their path, like a comet which has passed too near Jupiter. In a word, to the eyes of a giant for whom our suns would be as for us our atoms, the milky way would seem only a bubble of gas.
Such was Lord Kelvin's leading idea. What may be drawn from this comparison? In how far is it exact? This is what we are to investigate together; but before reaching a definite conclusion, and without wishing to prejudge it, we foresee that the kinetic theory of gases will be for the astronomer a model he should not follow blindly, but from which he may advantageously draw inspiration. Up to the present, celestial mechanics has attacked only the solar system or certain systems of double stars. Before the assemblage presented by the milky way, or the agglomeration of stars, or the resolvable nebulae it recoils, because it sees therein only chaos. But the milky way is not more complicated than a gas; the statistical methods founded upon the calculus of probabilities applicable to a gas are also applicable to it. Before all, it is important to grasp the resemblance of the two cases, and their difference.
The new theory comes to offer us other resources. In fact, we know the motions of the stars nearest us, and we can form an idea of the rapidity and direction of their velocities. If the ideas above set forth are exact, these velocities should follow Maxwell's law, and their mean value will tell us, so to speak, that which corresponds to the temperature of our fictitious gas. But this temperature depends itself upon the dimensions of our gas bubble. In fact, how will a gaseous mass let loose in the void act, if its elements attract one another according to Newton's law? It will take a spherical form; moreover, because of gravitation, the density will be greater at the center, the pressure also will increase from the surface to the center because of the weight of the outer parts drawn toward the center; finally, the temperature will increase toward the center: the temperature and the pressure being connected by the law called adiabatic, as happens in the successive layers of our atmosphere. At the surface itself, the pressure will be null, and it will be the same with the absolute temperature, that is to say with the velocity of the molecules.
However that may be, the pressure, and consequently the temperature, at the center of the gaseous sphere would be by so much the greater as the sphere was larger since the pressure increases by the weight of all the superposed layers. We may suppose that we are nearly at the center of the milky way, and by observing the mean proper velocity of the stars, we shall know that which corresponds to the central temperature of our gaseous sphere and we shall determine its radius.
But you will say these hypothesis differ greatly from the reality; first, the milky way is not spherical and we shall soon return to this point, and again the kinetic theory of gases is not compatible with the hypothesis of a homogeneous sphere. But in making the exact calculation according to this theory, we should find a different result, doubtless, but of the same order of magnitude; now in such a problem the data are so uncertain that the order of magnitude is the sole end to be aimed at.
But there is another difficulty: the milky way is not spherical, and we have reasoned hitherto as if it were, since this is the form of equilibrium a gas isolated in space would take. To make amends, agglomerations of stars exist whose form is globular and to which would better apply what we have hitherto said. Herschel has already endeavored to explain their remarkable appearances. He supposed the stars of the aggregates uniformly distributed, so that an assemblage is a homogeneous sphere; each star would then describe an ellipse and all these orbits would be passed over in the same time, so that at the end of a period the aggregate would take again its primitive configuration and this configuration would be stable. Unluckily, the aggregates do not appear to be homogeneous; we see a condensation at the center, we should observe it even were the sphere homogeneous, since it is thicker at the center; but it would not be so accentuated. We may therefore rather compare an aggregate to a gas in adiabatic equilibrium, which takes the spherical form because this is the figure of equilibrium of a gaseous mass.
But to return to the milky way; it is not spherical and would rather be represented as a flattened disc. It is clear then that a mass starting without velocity from the surface will reach the center with different velocities, according as it starts from the surface in the neighborhood of the middle of the disc or just on the border of the disc; the velocity would be notably greater in the latter case. Now, up to the present, we have supposed that the proper velocities of the stars, those we observe, must be comparable to those which like masses would attain; this involves a certain difficulty. We have given above a value for the dimensions of the milky way, and we have deduced it from the observed proper velocities which are of the same order of magnitude as that of the earth in its orbit; but which is the dimension we have thus measured? Is it the thickness? Is it the radius of the disc? It is doubtless something intermediate; but what can we say then of the thickness itself, or of the radius of the disc? Data are lacking to make the calculation; I shall confine myself to giving a glimpse of the possibility of basing an evaluation at least approximate upon a deeper discussion of the proper motions.
They will tell us nothing about the rotation itself, since we belong to the turning system. If the spiral nebulæ are other milky ways, foreign to ours, they are not borne along in this rotation, and we might study their proper motions. It is true they are very far away; if a nebula has the dimensions of the milky way and if its apparent radius is for example 20´´, its distance is 10,000 times the radius of the milky way.
I shall not further discuss the relative value of these two hypotheses since there is a third which is perhaps more probable. We know that among the irresolvable nebulæ, several kinds may be distinguished: the irregular nebulæ like that of Orion, the planetary and annular nebulæ, the spiral nebulæ. The spectra of the first two families have been determined, they are discontinuous; these nebulæ are therefore not formed of stars; besides, their distribution on the heavens seems to depend upon the milky way; whether they have a tendency to go away from it, or on the contrary to approach it, they make therefore a part of the system. On the other hand, the spiral nebulæ are generally considered as independent of the milky way; it is supposed that they, like it, are formed of a multitude of stars, that they are, in a word, other milky ways very far away from ours. The recent investigations of Stratonoff tend to make us regard the milky way itself as a spiral nebula, and this is the third hypothesis of which I wish to speak.
From this point of view, there would not be a real permanent motion, the central nucleus would constantly lose matter which would go out of it never to return, and would drain away progressively. But we may modify the hypothesis. In proportion as it goes away, the star loses its velocity and ends by stopping; at this moment attraction regains possession of it and leads it back toward the nucleus; so there will be centripetal currents. We must suppose the centripetal currents are the first rank and the centrifugal currents the second rank, if we adopt the comparison with a troop in battle executing a change of front; and, in fact, it is necessary that the composite centrifugal force be compensated by the attraction exercised by the central layers of the swarm upon the extreme layers.
Besides, at the end of a certain time a permanent régime establishes itself; the swarm being curved, the attraction exercised upon the pivot by the moving wing tends to slow up the pivot and that of the pivot upon the moving wing tends to accelerate the advance of this wing which no longer augments its lag, so that finally all the radii end by turning with a uniform velocity. We may still suppose that the rotation of the nucleus is quicker than that of the radii.
A question remains; why do these centripetal and centrifugal swarms tend to concentrate themselves in radii instead of disseminating themselves a little everywhere? Why do these rays distribute themselves regularly? If the swarms concentrate themselves, it is because of the attraction exercised by the already existing swarms upon the stars which go out from the nucleus in their neighborhood. After an inequality is produced, it tends to accentuate itself in this way.
But, in conclusion, I wish to call your attention to a question, that of the age of the milky way or the nebulæ. If what we think we see is confirmed, we can get an idea of it. That sort of statistical equilibrium of which gases give us the model is established only in consequence of a great number of impacts. If these impacts are rare, it can come about only after a very long time; if really the milky way (or at least the agglomerations which are contained in it), if the nebulæ have attained this equilibrium, this means they are very old, and we shall have an inferior limit of their age. Likewise we should have of it a superior limit; this equilibrium is not final and can not last always. Our spiral nebulæ would be comparable to gases impelled by permanent motions; but gases in motion are viscous and their velocities end by wearing out. What here corresponds to the viscosity (and which depends upon the chances of impact of the molecules) is excessively slight, so that the present régime may persist during an extremely long time, yet not forever, so that our milky ways can not live eternally nor become infinitely old.
Well, it is certain that if we compute in this manner the age of the milky way, we shall get enormous figures. But here a difficulty presents itself. Certain physicists, relying upon other considerations, reckon that suns can have only an ephemeral existence, about fifty million years; our minimum would be much greater than that. Must we believe that the evolution of the milky way began when the matter was still dark? But how have the stars composing it reached all at the same time adult age, an age so briefly to endure? Or must they reach there all successively, and are those we see only a feeble minority compared with those extinguished or which shall one day light up? But how reconcile that with what we have said above on the absence of a noteworthy proportion of dark matter? Should we abandon one of the two hypotheses, and which? I confine myself to pointing out the difficulty without pretending to solve it; I shall end therefore with a big interrogation point.