blob_id
stringlengths 40
40
| repo_name
stringlengths 5
127
| path
stringlengths 2
523
| length_bytes
int64 22
3.06M
| score
float64 3.5
5.34
| int_score
int64 4
5
| text
stringlengths 22
3.06M
|
---|---|---|---|---|---|---|
5dc0ca50f55cc6967821f52336deffda5530ad04 | airuchen/python_practice | /raise_error.py | 444 | 3.8125 | 4 | import sys
def displaySalary(salary):
if salary<0:
raise ValueError('positive')
print('Salary = '+str(salary))
while True:
try:
Salary = float(input('enter Salary:'))
displaySalary(Salary)
break
except OSError as err:
print('OS Error: {0}'.format(err))
except ValueError:
print('Error: Enter positive value')
except:
print('Unexpected error:', sys.exc_info()[0])
|
feefbfb35b341b204fddcbe7dbd8d31acbc13b89 | adpoe/CupAndChaucerSim | /INITIAL_EXPERIMENT/time_advance_mechanisms.py | 28,390 | 3.8125 | 4 | import Queue as q
import cupAndChaucArrivs as cc
"""
Discrete time advance mechanisms for airport simulation project.
This class will generate 6 hours worth of passenger arrivals, and store the data in two arrays:
- One for commuters passengers
- One for international passengers
For each passenger, also need to generate their wait times for each queue. Or is that done when a passenger queues up?
"""
"""
Goals
------
Generalize this code so it can be used for ANY queuing system.
Need to account for:
- How many steps?
:: Spawn a Server-Queue System for each of these.... link these all together
o How many servers at each step?
o How many queues at each step?
-- Make a class that holds each of these "single step" systems
-- interface between these classes
-- glue them all together with a start and end point
-- make them each a member of the overall system and use the same time advance
mechanisms I've already got in place.
"""
###########################
### ARRIVAL GENERATION ####
###########################
class CupChaucArrivals():
""" Class used to generate one hour of arrivals at a time
"""
def __init__(self):
self.cashier_arrivals = []
self.barista_arrivals = []
def get_arrivals(self):
""" Get all the arrivals to the system in the next six hours. Store the values in instance vars.
"""
hourly_arrivals = cc.generate_hourly_arrivals()
arrivals_by_type = cc.gen_customer_type_distribution(hourly_arrivals)
self.cashier_arrivals = cc.create_array_of_cashier_arrivals(arrivals_by_type)
self.barista_arrivals = cc.create_array_of_barista_arrivals(arrivals_by_type)
##########################
#### CHECK-IN QUEUES #####
##########################
#------------------#
# C&C Queues #
#------------------#
class RegisterQueue:
""" Class used to model a register line Queue
"""
def __init__(self):
self.queue = q.Queue()
self.customers_added = 0
def add_customer(self, new_customer):
self.queue.put_nowait(new_customer)
self.customers_added += 1
def get_next_customer_in_line(self):
if not self.queue.empty():
next_customer = self.queue.get_nowait()
self.queue.task_done()
else:
next_customer = None
return next_customer
class BaristaQueue:
""" Class used to model a register line Queue
"""
def __init__(self):
self.queue = q.Queue()
self.customers_added = 0
def add_customer(self, new_customer):
self.queue.put_nowait(new_customer)
self.customers_added += 1
def get_next_customer_in_line(self):
if not self.queue.empty():
next_customer = self.queue.get_nowait()
self.queue.task_done()
else:
next_customer = None
return next_customer
# #
# End C&C Queues #
# #
###########################
###### C&C SERVERS ######
###########################
class CashierServer:
""" Class used to model a server at the Check-in terminal
"""
def __init__(self):
""" Initialize the class variables
"""
self.service_time = 0.0
self.busy = False
self.customer_being_served = q.Queue()
self.customers_added = 0
self.customers_served = 0
self.idle_time = 0.00
def set_service_time(self):
""" Sets the service time for a new passenger
:param passenger_type: either "commuter" or "international"
"""
self.service_time = cc.gen_cashier_service_time()
self.busy = True
def update_service_time(self):
""" Updates the service time and tells us if the server is busy or not
"""
self.service_time -= 0.01
if self.service_time <= 0:
self.service_time = 0
self.busy = False
if not self.is_busy():
self.idle_time += 0.01
def is_busy(self):
""" Call this after updating the service time at each change in system time (delta). Tells us if server is busy.
:return: True if server is busy. False if server is NOT busy.
"""
return self.busy
def add_customer(self, new_passenger):
""" Adds a customer to the sever and sets his service time
:param new_passenger: the passenger we are adding
"""
# get the type of flight his passenger is on
# add the passenger to our service queue
self.customer_being_served.put_nowait(new_passenger)
# set the service time, depending on what type of flight the customer is on
self.set_service_time()
# update the count of customers added
self.customers_added += 1
def complete_service(self):
""" Models completion of our service
:return: the customer who has just finished at this station
"""
if not self.is_busy() and not self.customer_being_served.empty():
next_customer = self.customer_being_served.get_nowait()
self.customer_being_served.task_done()
self.customers_served += 1
else:
next_customer = None
return next_customer
class BaristaServer:
""" Class used to model a server at the Security terminal
"""
def __init__(self):
""" Initialize the class variables
"""
self.service_time = 0.0
self.busy = None
# self.customer = None
self.customer_being_served = q.Queue()
self.is_barista_class = False
self.customers_added = 0
self.customers_served = 0
self.idle_time = 0.0
def set_service_time(self):
""" Sets the service time for a new passenger
:param passenger_type: either "commuter" or "international"
"""
self.service_time = cc.gen_barista_service_time()
self.busy = True
def update_service_time(self):
""" Updates the service time and tells us if the server is busy or not
"""
self.service_time -= 0.01
if self.service_time <= 0:
self.service_time = 0
self.busy = False
if not self.is_busy():
self.idle_time += 0.01
def is_busy(self):
""" Call this after updating the service time at each change in system time (delta). Tells us if server is busy.
:return: True if server is busy. False if server is NOT busy.
"""
return self.busy
def add_customer(self, new_customer):
""" Adds a customer to the sever and sets his service time
:param new_passenger: the passenger we are adding
"""
# add the passenger to our service queue
self.customer_being_served.put_nowait(new_customer)
# set the service time, depending on what type of flight the customer is on
self.set_service_time()
# update the count of customers added
self.customers_added += 1
def complete_service(self):
""" Models completion of our service
:return: the customer who has just finished at this station
"""
next_customer = None
# only try to pull a customer from the queue if we are NOT busy
# AND the queue isn't empty
# else we just return a None
if not self.is_busy() and not self.customer_being_served.empty():
next_customer = self.customer_being_served.get_nowait()
self.customer_being_served.task_done()
self.customers_served += 1
else:
next_customer = None
return next_customer
#############################
###### C&C CUSTOMERS ######
#############################
class Customer:
""" Class used to model a passenger in our simulation
"""
def __init__(self, system_time, customer_class, system_iteration, relative_time):
self.system_time_entered = system_time
self.customer_class = customer_class
self.system_iteration = system_iteration
self.relative_time = relative_time
#--------DEBUGGING-------
#if flight_type == "international" and system_time > 1490:
# print "here"
#
#confirm_system_time = (system_time / system_iteration)
#confirm_relative_time = str(relative_time)
#relative_system_time = system_time / (system_iteration * 360.0)
#if not str(math.floor((system_time / system_iteration))) == str(math.floor(relative_time)):
# print "something's off."
#------------------------
def __eq__(self, other):
"""Override the default Equals behavior"""
if isinstance(other, self.__class__):
return self.__dict__ == other.__dict__
return NotImplemented
def __ne__(self, other):
"""Define a non-equality test"""
if isinstance(other, self.__class__):
return not self.__eq__(other)
return NotImplemented
def __hash__(self):
"""Override the default hash behavior (that returns the id or the object)"""
return hash(tuple(sorted(self.__dict__.items())))
##########################
#### SIMULATION CLASS ####
##########################
class Simulation:
""" Class used to house our whole simulation
"""
def __init__(self):
""" Sets up all the variables we need for the simulation
"""
#----TIME----
# Time variables
self.system_time = 0.00
self.delta = 0.01
self.hours_passed = 0 # = number of system iterations
self.system_iteration = 0
self.relative_global_time = 0.00
self.time_until_next_arrival_generation = 60.0
#-----ARRIVALS-----
# Arrival list
self.barista_ARRIVALS = []
self.cashier_ARRIVALS = []
# All arrivals
self.arrivals = [self.barista_ARRIVALS,
self.cashier_ARRIVALS]
#----QUEUES-----
# Check-in Queues - separate for first and coach
self.register_QUEUE = RegisterQueue()
# Security Queues - also separate for first and coach
self.barista_QUEUE = BaristaQueue()
# All Queues
self.queues = [self.register_QUEUE,
self.barista_QUEUE]
#------SERVERS-------
# Register Servers
self.CASHIER_server01 = CashierServer()
self.check_in_servers = [self.CASHIER_server01]
# Barista Servers
self.BARISTA_server01 = BaristaServer()
# self.BARISTA_server02 = BaristaServer()
self.barista_servers = [self.BARISTA_server01]
# All servers
self.servers = [self.CASHIER_server01,
self.BARISTA_server01]
#----INTERNAL_DATA COLLECTION-----
self.total_cashier_customers_arrived = 0
self.total_cashier_customers_serviced = 0
self.total_barista_customers_arrived = 0
self.total_barista_customers_serviced = 0
self.customers_combined = 0
# Then counters to see how far people are making it in the system....
# Averaged data
self.time_in_system = []
self.time_in_system_CASHIER = []
self.avg_time_in_system = 0
self.avg_time_in_system_CASHIER = []
self.time_in_system_BARISTA = []
#-----INTERNAL MECHANISMS------
self.data_users_added_to_REGISTER_QUEUE = 0
self.data_users_added_to_BARISTA_QUEUE = 0
self.data_users_added_to_FIRSTCLASS_SECURITY_QUEUE = 0
self.data_CASHIER_customers_moved_to_EXIT = 0
self.data_BARISTA_customers_moved_to_EXIT = 0
self.data_users_currently_in_system = 0
self.total_server_idle_time = 0.0
self.data_num_customers_wait_over_one_min = 0
def generate_ONE_HOUR_of_arrivals(self):
""" Generates six hours of arrivals and stores in our ARRIVAL LIST instance variables.
"""
# Create instance of arrival class
new_arrivals = CupChaucArrivals()
# Generate new arrivals
new_arrivals.get_arrivals()
# Add one to the system iteration (denoted by international flight number)
self.hours_passed += 1
# Transfer those values into our simulation, as arrivals for next six hours
self.barista_ARRIVALS = new_arrivals.barista_arrivals
self.cashier_ARRIVALS = new_arrivals.cashier_arrivals
# clean up arrivals, so nothing greater 60, because we'll never reach it
for arrival in new_arrivals.cashier_arrivals:
if arrival > 59.99999999:
new_arrivals.cashier_arrivals.remove(arrival)
for arrival in new_arrivals.barista_arrivals:
if arrival > 59.99999999:
new_arrivals.barista_arrivals.remove(arrival)
# Count our arrivals for data collection
self.total_cashier_customers_arrived += len(new_arrivals.cashier_arrivals)
self.total_barista_customers_arrived += len(new_arrivals.barista_arrivals)
print "arrivals generated for hour: " + str(self.hours_passed)
def update_servers(self):
""" Updates servers after a change of DELTA in system time
"""
for server in self.servers:
server.update_service_time()
def collect_and_create_passengers_from_arrivals(self):
""" Looks at all arrival lists, and if there is new arrival at the current system time,
creates a passenger object for use in the system, and places it in the check-in queue
"""
relative_time = self.relative_global_time
# make sure we're not checking an array that's empty
if not len(self.barista_ARRIVALS) == 0:
# Then get next available item from INTL FIRST CLASS ARRIVALS
if self.barista_ARRIVALS[0] <= relative_time:
# create passenger, put it in first class check in queue
new_customer = Customer(self.system_time, "barista", self.hours_passed,
self.barista_ARRIVALS[0])
self.register_QUEUE.add_customer(new_customer)
# pop from the list
self.barista_ARRIVALS.pop(0)
# make sure we're not checking an array that's empty
if not len(self.cashier_ARRIVALS) == 0:
# Then get next available item from COMMUTER COACH CLASS ARRIVALS
if self.cashier_ARRIVALS[0] <= relative_time:
# create passenger, put it in coach class check in queue
new_customer = Customer(self.system_time, "cashier", self.hours_passed,
self.cashier_ARRIVALS[0])
self.register_QUEUE.add_customer(new_customer)
# pop from the list
self.cashier_ARRIVALS.pop(0)
def move_to_CASHIER_server(self):
""" Look at check in servers, and if they are not busy, advance the first item in the correct queue
to the correct (and open) check in server
"""
#>>>>>> Later, change this go through all checkin servers in a loop and do same action.
# This code can be very much condensed
# If first class check-in server is NOT busy
if not self.CASHIER_server01.is_busy():
# de-queue from the FIRST class check-in queue
if not self.register_QUEUE.queue.empty():
next_passenger = self.register_QUEUE.queue.get()
self.register_QUEUE.queue.task_done()
# and move next passenger to server, since it isn't busy
self.CASHIER_server01.add_customer(next_passenger)
def update_register_queues(self):
""" Updates queues after a change of DELTA in system time
"""
# then check the servers, and if they're free move from queue to server
self.move_to_CASHIER_server()
# Check all arrivals and if the arrival time matches system time...
# Create a passenger and ADD the correct queue
self.collect_and_create_passengers_from_arrivals()
def update_barista_queues(self):
""" Updates queues after a change of DELTA in system time
"""
# Check all check-in servers... and if they are NOT busy, take their passenger...
# Take the passenger, add the correct security queue
# First, look at all servers
for server in self.check_in_servers:
# and if the server is NOT busy
# if not server.is_busy():
#if not server.last_customer_served.empty():
# Take the passenger, who must have just finished being served
my_customer = server.complete_service()
# and move them to the correct security queue
if not my_customer == None:
# but first make sure that the passenger does not == None
if my_customer.customer_class == "cashier":
# add to end of simulation
self.data_CASHIER_customers_moved_to_EXIT += 1
# data collection for coach
time_in_system = self.system_time - my_customer.system_time_entered
self.time_in_system.append(time_in_system)
self.time_in_system_CASHIER.append(time_in_system)
# data collection for commuters
self.time_in_system_CASHIER.append(time_in_system)
self.total_cashier_customers_serviced += 1
# else, add to barista queue
else:
# because if they are NOT cashier customers, they must be barista customers
self.barista_QUEUE.add_customer(my_customer)
def move_to_BARISTA_server(self):
""" If servers are not busy, advance next passenger in the security queue to to security server
"""
# step through all the security servers and check if they are busy
for server in self.barista_servers:
# if the server isn't busy, we can take the next passenger from security queue
# and put him in the server
if not server.is_busy():
# first make sure it's not empty
if not self.barista_QUEUE.queue.empty():
# and if it's not, grab the next passenger out of it
next_customer = self.barista_QUEUE.queue.get()
self.barista_QUEUE.queue.task_done()
# And move that passenger into the available security server
server.add_customer(next_customer)
def move_to_EXIT(self):
""" Look at Security servers, and if they are NOT busy, someone just finished security screening.
This means they've completed the queuing process.
---
Once through queuing, go to GATE.
Commuters --> Go straight to gate waiting area
International --> First check if they missed their flight.
- If yes: They leave
- If no: They go to international gate
"""
# step through all the security servers
for server in self.barista_servers:
# if the server is NOT busy
#if not server.is_busy():
#if not server.last_customer_served.empty():
# passenger has completed queuing phase, and can move to gate.
# but first, we need to check if they are commuters or international flyers
# and in each case, need to handle that accordingly
next_customer = server.complete_service()
# first make sure that the passenger isn't a NONE
if not next_customer == None:
# if the passenger is a commuter, they just go to gate
if next_customer.customer_class == "barista":
self.data_BARISTA_customers_moved_to_EXIT += 1
# data collection for coach
time_in_system = self.system_time - next_customer.system_time_entered
self.time_in_system.append(time_in_system)
self.time_in_system_BARISTA.append(time_in_system)
# data collection for commuters
self.time_in_system_BARISTA.append(time_in_system)
self.total_barista_customers_serviced += 1
def advance_system_time(self):
""" Advances the system time by delta --> .01 of a minute
- Looks for arrivals at current time
- If an arrival is valid, create a passenger object and place it in the proper Queue
- Needs to update EVERY QUEUE and SERVER, advance wherever needed
"""
# every six hours, generate new arrivals,
# and perform accounting procedures on ticket
# for those arrivals
#if self.time_until_international_flight <= 0.0:
# self.generate_SIX_HOURS_of_arrivals()
# self.collect_revenue()
# self.every_six_hours_deduct_operating_costs()
# increment the system time by delta
self.system_time += self.delta
self.time_until_next_arrival_generation -= self.delta
# keep track of relative global time
self.relative_global_time += self.delta
if self.relative_global_time >= 60.0:
self.relative_global_time = 0.0
#print "gets system time update"
# skip these on the first iteration because we don't have data yet
if not self.hours_passed == 0:
#DO IT IN REVERSE ORDER
# start by updating the servers
self.update_servers()
# then, if we can pull someone FROM a sever, while not busy, do it
self.move_to_EXIT()
self.update_barista_queues()
# then get passengers from arrivals, and fill the queues
self.collect_and_create_passengers_from_arrivals()
# then move people into any empty spots in the servers
self.move_to_BARISTA_server()
self.move_to_CASHIER_server()
# every six hours, generate new arrivals,
# and perform accounting procedures on ticket
# for those arrivals
if self.time_until_next_arrival_generation <= 0:
self.generate_ONE_HOUR_of_arrivals()
self.time_until_next_arrival_generation = 60.0
#print "checks if planes depart"
# print self.system_time
def run_simulation(self, simulation_time_in_days):
""" Use this to run simulation for as long as user has specified, in days
While the counter < # of days, keep generating the arrivals every 6 hours
and stepping through the simulation
"""
simulation_time_in_minutes = simulation_time_in_days * 24.0 * 60.0 + 60.0
# = days * 24 hours in a day * 60 minutes in an hour
while self.system_time < simulation_time_in_minutes:
# then, advance system time by delta: 0.01
self.advance_system_time()
print "SIMULATION COMPLETE:"
#############################################
####### DATA REPORTING AND ANALYSIS #########
#############################################
def print_simulation_results(self):
""" prints the results of our simulation to the command line/console
"""
print "###################################"
print "####### SIMULATION RESULTS ########"
print "###################################"
print "#-----System Info-----"
print "Total CASHIER customers ARRIVED="+str(self.total_cashier_customers_arrived)
print "Total CASHIER customers SERVICED="+str(self.total_cashier_customers_serviced)
print "Total BARISTA customers ARRIVED="+str(self.total_barista_customers_arrived)
print "Total BARISTA customers SERVICED="+str(self.total_barista_customers_serviced)
total_customers_serviced = self.total_barista_customers_serviced + self.total_cashier_customers_serviced
print "Total CUSTOMERS (all types) SERVICED="+str(total_customers_serviced)
print "-------Averages-------"
#sum_time_in_system = sum(self.time_in_system)
length_of_time_in_system_list = len(self.time_in_system)
#length_of_time_in_system_list = float(length_of_time_in_system_list)
#print "SUM OF TIME IN SYSTEM: "+str(sum_time_in_system)
#print "LENGTH OF TIME IN SYSTEM: "+str(length_of_time_in_system_list)
self.avg_time_in_system = sum(self.time_in_system)/len(self.time_in_system)
print "AVG Time In System for ALL CUSTOMERS (who make make it to EXIT)="+str(self.avg_time_in_system)
self.time_in_system.sort(reverse=True)
longest_time_in_system = self.time_in_system.pop(0)
print "Longest time in system="+str(longest_time_in_system)
average_time_in_system_cashier = sum(self.time_in_system_CASHIER) / len(self.time_in_system_CASHIER)
print "AVG Time in system CASHIER="+str(average_time_in_system_cashier)
average_time_in_system_barista = sum(self.time_in_system_BARISTA) / len(self.time_in_system_BARISTA)
print "AVG Time in system all BARISTA="+str(average_time_in_system_barista)
print "------Internal Mechanisms-------"
print ".......Stage 1......"
print "Customers added to RegisterQueue="+str(self.register_QUEUE.customers_added)
print "......Stage 2......."
print "Customers added to BaristaQueue="+str(self.barista_QUEUE.customers_added)
print "......Stage 3......."
print "CASHIER customers who make it to EXIT="+str(self.data_CASHIER_customers_moved_to_EXIT)
print "BARISTA customers who make it to EXIT="+str(self.data_BARISTA_customers_moved_to_EXIT)
print ". . . . didn't make it . . . . ."
still_in_system = 0
for queue in self.queues:
still_in_system += queue.queue.qsize()
print "Users STILL in SYSTEM="+str(still_in_system)
print "======= GOALS ========"
self.total_server_idle_time = 0.0
for server in self.check_in_servers:
self.total_server_idle_time += server.idle_time
print "AGENTS' Total Idle Time="+str(self.total_server_idle_time)
server_count = len(self.servers)
print "AGENTS AVG IDLE TIME="+str(self.total_server_idle_time/server_count)
print "TIMES GREATER THAN 1 MIN:"
wait_times_longer_than_min = []
wait_times_longer_than_2mins = []
wait_times_longer_than_3mins = []
wait_times_longer_than_5mins = []
for time in self.time_in_system:
if time > 1.0:
# print time
wait_times_longer_than_min.append(time)
if time > 2.0:
wait_times_longer_than_2mins.append(time)
if time > 3.0:
wait_times_longer_than_3mins.append(time)
if time > 5.0:
wait_times_longer_than_5mins.append(time)
print "TOTAL WAIT TIMES LONGER THAN 1 MINUTE: " + str(len(wait_times_longer_than_min))
print "TOTAL WAIT TIMES LONGER THAN 2 MINUTES: " + str(len(wait_times_longer_than_2mins))
print "TOTAL WAIT TIMES LONGER THAN 3 MINUTES: " + str(len(wait_times_longer_than_3mins))
print "TOTAL WAIT TIMES LONGER THAN 5 MINUTES: " + str(len(wait_times_longer_than_5mins))
print "Percentage of Barista Customers who waited longer than 1 minute: " + str(float(float(len(wait_times_longer_than_min))/self.total_barista_customers_serviced))
print "Percentage of Barista Customers who waited longer than 2 minutes: " + str(float(float(len(wait_times_longer_than_2mins))/self.total_barista_customers_serviced))
print "Percentage of Barista Customers who waited longer than 3 minutes: " + str(float(float(len(wait_times_longer_than_3mins))/self.total_barista_customers_serviced))
print "Percentage of Barista Customers who waited longer than 5 minutes: " + str(float(float(len(wait_times_longer_than_5mins))/self.total_barista_customers_serviced))
print ""
|
261a80f5080e6ad40aacc3f4921d7e140d19fedd | imran436/Projects-Portfolio-master | /Tech Academy/python projects/#13.py | 555 | 3.9375 | 4 | import time
X = 5
print(X)
X = X**5
print(X)
if X<10:
print("our number X is a small value")
elif X<100:
print("The number is an average value")
else:
print("the number holds a big value")
counter = 0
for counter in range(0, 100,5):
print(counter)
time.sleep(.25)
counter = 0
while counter < X:
print(counter*5)
time.sleep(.25)
if(counter<1):
counter = 1;
counter = counter *5
dictionary={'orange':'Fruit','milk':'dairy','carrots':'vegitable'}
print(dictionary)
dictionary['chicken']='Poltry'
print(dictionary)
|
70c66c6ddb26d1ddad9409d84c4932e7dfd718af | Sasithorn04/Python | /ตารางหมากฮอส.py | 604 | 3.9375 | 4 | #โปรแกรมจำลองตารางหมากฮอส
#ปรับจากสร้างภาพวาด4เหลี่ยมจตุรัส
number = int(input("ป้อนขนาด :"))
for row in range(1,number+1) :
for column in range(1,number+1) :
if (column%2 == 0) & (row%2 == 0) :
print("o",end='')
elif (column%2 != 0) & (row%2 != 0):
print("o",end='')
else :
print("x",end='')
print(" ")
'''
oxoxoxox
xoxoxoxo
oxoxoxox
xoxoxoxo
oxoxoxox
xoxoxoxo
oxoxoxox
xoxoxoxo
''' |
ebcd50508c0690db480ba215a31c764c84db3988 | harshit-tiwari/Python-Codes | /Simple Calculator/addition.py | 689 | 4.09375 | 4 | import calculate
def addFunc():
print("You have chosen Addition")
operands = []
number = 0
while True:
try:
number = int(input("How many numbers do you want to add? : "))
break
except ValueError:
print("Please enter a number as your input")
for i in range(0, number):
while True:
try:
value = int(input("Enter the number %s here : "%(i+1)))
break
except ValueError:
print("Please enter a number as your input")
operands.append(value)
total = calculate.add(*operands)
print("The sum of these numbers is : ", total)
|
e978a7977ddfd0f0e7559618d3aa1f5282f8ab91 | chrissowden14/bank | /FileStore.py | 1,592 | 3.90625 | 4 | class FileStore:
def __init__(self):
# This creates an open list everytime the program is opened
self.cusnames = []
self.cusspaswords = []
self.cusbalance = []
# opening the stored file that collects the old data from customer
self.namefile = open("cusnamesfile.txt", "r")
self.passfile = open("cuspassfile.txt", "r")
self.balancefile = open("cusbalancefile.txt", "r")
# this will input the date into the empty list from the stored FileExistsError
for line in self.namefile:
self.cusnames.append(line[:-1])
self.namefile.close()
# check the list of customers passwords
for line in self.passfile:
self.cusspaswords.append(line[:-1])
self.passfile.close()
# checks customer balance
for line in self.balancefile:
self.cusbalance.append(line[:-1])
self.balancefile.close()
# this function will write new date into stored files when its called up
def filewrite(self, item):
if item == self.cusnames:
text = open("cusnamesfile.txt", "w")
for i in item:
text.write(i + "\n")
text.close()
elif item == self.cusspaswords:
text = open("cuspassfile.txt", "w")
for i in item:
text.write(i + "\n")
text.close()
elif item == self.cusbalance:
text = open("cusbalancefile.txt", "w")
for i in item:
text.write(str(i) + "\n")
text.close()
|
b58ef87371085284143fbb0d28d9251d8d97b01f | Subhashriy/python | /11-07-19/substitute.py | 200 | 3.5 | 4 | import re
n=int(input("Enter no. of lines:"))
a=[]
for i in range(n):
a.append(input())
str1=re.sub(r'&&','and',a[i])
str1=re.sub(r'\|\|','or',a[i])
|
0de46d21ae522160a24e89e11919f60365b32288 | Subhashriy/python | /17-07-19/tcpclient.py | 752 | 3.5625 | 4 | import socket
def main():
host='127.0.0.1'
port=5000
#Creting a socket
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
print("Socket Created.")
#connect to the server
s.connect((host,port))
print('Connected to server.')
#send msg to the server
data=input('Enter the number to find the factorial: ')
print('Enter q to terminate connection.')
while data!='q':
print(data)
#s.send(str.encode(data,'utf-8'))
s.send(str.encode(data,'utf-8'))
data=s.recv(1024).decode('utf-8')
print(data)
data=input('Enter the number to find the factorial: ')
s.close()
if __name__=='__main__':
main()
|
07617bf9783632e43ce3e5e585bc5d844e29f8e1 | Subhashriy/python | /17-07-19/avg.py | 128 | 3.90625 | 4 | lst=[int(x) for x in input('Enter the list: ').split(' ')]
print('The average of the list is : {}'.format((sum(lst)/len(lst)))) |
1687e6c73055cb78bb5399468addc38065edfc4f | Subhashriy/python | /17-07-19/random.py | 199 | 3.75 | 4 | import random
def randomnum(i,n):
print(random.randint(i,n+1))
#print(random.randint(1,100))
i=int(input('Enter the start range:'))
n=int(input('Enter the end range:'))
randomnum(i,n) |
70b744b963b558041e7e60fb910eaa3260c619e9 | zacharymollenhour/Fitness_Tracker | /test.py | 2,323 | 3.984375 | 4 | import numpy as np
import pandas as pd
import csv
from datetime import date
#Get User Name
class Person:
"This is a persons data class"
def __init__(self):
self.userData = []
self.name = ''
self.age = 0
self.weight = 0
#Greet User for data about the individual
def greet(self):
#User Data
self.name = input("Enter in your name: ")
print(self.name)
self.age = input("Enter in your age: ")
print(self.age)
self.weight = input("Enter in your weight: ")
print(self.weight)
#Write Inital Data of individual being tracked
def updateCSV(self):
with open('user_statistics.csv', mode='w') as csv_file:
csv_reader = csv.writer(csv_file)
csv_reader.writerow(self.name)
csv_reader.writerow(self.age)
csv_reader.writerow(self.weight)
#Class for tracking workout data
class Workout:
"This is a class to track workout data"
def __init__(self):
self.date = ''
self.workoutType = ''
self.weight = 0
self.duration = 0
#Function to get workout information
def workoutData(self):
today = date.today()
self.date = today.strftime("%m/%d/%y")
self.workoutType = input("Please enter the workout type:")
print(self.workoutType)
self.updateWorkoutData()
#Class that writes workout data to a csv
def updateWorkoutData(self):
with open('workout_data.csv', mode='a+',newline='') as csv_file:
csv_reader = csv.writer(csv_file)
csv_reader.writerow([self.date])
csv_reader.writerow([self.workoutType])
#Menu
def menu(self):
ans = True
while ans:
print("""
1.Add a Workout
2.Delete a Workout
""")
ans=input("What would you like to do?")
if ans == "1":
self.workoutData()
if ans == "2":
"comeback"
#Main Function
def main():
#Declare a object
person1 = Person()
workoutObject = Workout()
#Call object functions
""" person1.greet()
person1.updateCSV() """
workoutObject.menu()
#workoutObject.workoutData()
#workoutObject.updateWorkoutData()
main() |
ce0dada2eadce554808ced1d97e1c8b88e2a9b7e | devsben/Neopets-Multi-Tool | /classes/__init__.py | 288 | 3.5 | 4 | import sys
if sys.version_info[0] < 3:
"""
If a Python version less than 3 is detected prevent the user from running this program.
This will be removed once the final tweaking is completed for Python 2.
"""
raise Exception("Python 3 is required to run this program.") |
39c5729b31befc2a988a0b3ac2672454ae99ea9a | krsatyam20/PythonRishabh | /cunstructor.py | 1,644 | 4.625 | 5 | '''
Constructors can be of two types.
Parameterized/arguments Constructor
Non-parameterized/no any arguments Constructor
__init__
Constructors:self calling function
when we will call class function auto call
'''
#create class and define function
class aClass:
# Constructor with arguments
def __init__(self,name,id):
self.name=name
self.id=id
#print(self.id)
#print(self.name)
#simple function
def show(self):
print("name=%s id= %d "%(self.name,self.id))
#call a class and passing arguments
obj=aClass("kumar",101)
obj2=aClass("rishave",102)
obj.show()
obj2.show()
#second ExAMPLE
class Student:
def __init__(self,name,id,age):
self.name = name;
self.id = id;
self.age = age
#creates the object of the class Student
s = Student("John",101,22)
#s = Student() TypeError: __init__() missing 3 required positional arguments: 'name', 'id', and 'age'
print("*************befoer set print***********")
print(getattr(s,'name'))
print(getattr(s,'id'))
print(getattr(s,'age'))
print("**********After set print***********")
setattr(s,'age',23)
print(getattr(s,'age'))
setattr(s,'name','kumar')
print(getattr(s,'name'))
# Constructor - non parameterized
print("************ Non parameters ***********")
class Student:
def __init__(self):
print("This is non parametrized constructor")
def show(self,name):
print("Hello",name)
student = Student()
#student.show("Kuldeep")
|
bcde27b2f96aff6d73cf8cb2836416b57c3e0e56 | krsatyam20/PythonRishabh | /filehandling.py | 1,001 | 3.734375 | 4 | '''
open(mode,path)
mode
r :read
read() => read all file at a time
readline() => line by line read
readlines() => line by line read, but line convert into list
w :write
write()
a :append
open(path,'a')
write()
path(file location with file name)
'''
x=open(r"C:\Users\User\Desktop\Java.advance.txt")
print(x)
#print(x.read())
'''print(x.readline())
print(x.readline())
print(x.readline())
print(x.readline())
'''
#print(x.readlines())
readFileandconvertIntoList=x.readlines()
'''for rf in readFileandconvertIntoList:
print(rf)'''
#count line
print(len(readFileandconvertIntoList))
wf=open(r"C:\Users\User\Desktop\output.txt",'w')
wf.write('Hello\n')
wf.write('Hello\n')
wf.write('Hello\n')
wf.write('Hello\n')
wf.write('Hello\n')
wf.write('Hello\n')
wf.write('Hello\n')
wf.close()
'''
count word and char in any file'''
|
5be464d262f21413b369dc140cae381540470ef0 | krsatyam20/PythonRishabh | /forloop.py | 590 | 4.09375 | 4 | ''' loop : loop is a reserved keyword it`s used for repetaion of any task
types of loop
1. For loop
2.while loop
'''
for i in range(0,10):
print("Rishab %d " %(i))
for i in range(1,21):
print(i)
#use break keyword
print("===========break keyword=================")
for i in range(1,21):
if(i==8):
break;
print(i)
#continue
print("===========continue keyword=================")
for d in range(1,21):
if(d==12):
continue;
print(d)
|
fa517e9e021b1d701a23211c569e6fd201bdb42c | gsingh84/Adventure-Game | /Adventure-game.py | 10,666 | 4.25 | 4 | #All functions call at the end of this program
import random
treasure = ['pieces of gold!', 'bars of silver!', 'Diamonds!', 'bottles of aged Rum!']
bag = ['Provisions']
#yorn function allow user to enter yes or no.
def yorn():
yinput = ""
while True:
yinput = input("Please Enter Yes or No (Y/N): ")
if yinput == 'Y' or yinput == 'y' or yinput == 'n' or yinput == 'N':
return yinput
#find_treasure function find the random treasure from given list.
def find_treasure(ref):
new = random.sample(set(treasure),1)
from random import randint
qty_tr = (randint(1,50), new[0], '%s.'%ref)
print()
print ('You Found', ' '.join(str(x) for x in qty_tr))
print('---------------------------------')
bag.append(qty_tr)
show_treasure()
print('---------------------------------')
#show_treasure function shows the items that available in the bag.
def show_treasure():
print('your bag of holding contains:')
for list in bag:
print (' '.join(str(x) for x in list))
#This is strating point of program, this function gives the intro.
def intro():
print("Time for a little adventure!")
print()
print("You're for a hike, you have a walking stick, backpack, and some provisions")
print()
print("You have been following a stream bed through a forest, when you see a")
print("small stone building. Around you is a forest. A small stream flows out of the")
print("building and down a gully.")
print()
print("Just outside of the small building, by a warm, inviting fire, is an old,")
print("possibly ancient man, with long rather mangy beard. He sees you and says:")
print()
print("\t 'Hello my friend, stay a while and listen...'")
print()
print("You're not sure why, but you decide to stay and listen as he tells you stories")
print("of strange and magical lands of adventure and Treasure!")
print()
print("After what seems like hours, the old man admits to being a bit hungry. He asks,")
print("pointing at your backpack, if you have food in your 'bag of Holding', that")
print("you might be willing to share.")
print()
print("Do you share your provisions?")
print("-------------------------------------------------------------------------------")
fun_input = yorn() #call the yorn function here to get input from user.
if fun_input == "y" or fun_input == "Y":
print("The old man hungrily devours all of your provisions with barely a crumb in sight")
print()
print("He leans close to you and whispers 'Besides gold, silver, and diamonds, if you")
print("chosse wisely, there could also be other valuable GEMS!'")
print()
print('He slips you something of great value...')
treasure.insert(0, 'bags of GEMS!') #if user Enter 'y' then it will add (bags of GEMS!) into the treasure list other wise not.
print()
print("your possible treasures are:")
bag.remove(bag[0]) #after sharing provison with old man, this statement will remove provisions from bag other wise provisions remain in the bag.
for list in treasure:
ge = list.strip()
print(ge)
find_treasure("from old man") #call the find_treasure function here and pass the argument for where the item found from and also show the items in the bag.
elif fun_input == 'N' or fun_input == "n":
print("He looks at you wistfully ... for a moment,")
print(" then eats the last few crumbs.")
print()
print('your possible treasures are:')
for list in treasure:
ge = list.strip()
print(ge)
#potion function allow user to choose between two potions.
def potion():
print("-------------------------------------------------------------------------------")
print("The old man stands up and waves his hand towards a rather ornate table close to")
print("the building. you didn't notice the table before, but it's really quite out of")
print("place in this forest.")
print()
print("On the ornate table is two bottles of potion, one is blue, and the other is red.")
print()
print("There is also a note, the note says,")
print()
print("\t Drink the BLUE potion and believe whatever you want to believe.")
print()
print("The rest of the note is destroyed and can't be read.")
print()
print("You turn to the old man, he seems to look much taller and a bit forbidding ...")
print()
print("\t He points at the table and says 'CHOOSE' ")
print()
red = ('RED')
blue = ('BLUE')
pinput = input('Do you choose the RED potion or the BLUE potion (R/B)? ')
if pinput == "r" or pinput == "R":
print()
print('you guzzle the contents of the bottle with the red potion.')
print()
print("you feel like you're on fire! smoke is pouring out of your nose and ears!")
print("when the thick red billowy smoke subsides, the old man is gone and there is a")
print("narrow cobblestone trail leading from the small building.")
print()
print("you follow the cobblestone trail.")
return (red)
elif pinput == "b" or pinput == "B":
print()
print("you drink the BLUE potion. Nothing seems to happen ... at first. Then")
print("strangely your body tingles , an old man bids you farewell as he leaves the park.")
print("you wonder vaguely about something regarding a hike or a forest ...")
return (blue)
else:
print()
print("you fail to drink a potion, the old man leaves and you wonder aimlessly though")
print("the forest, hopelessly lost!")
def dwarf():
max = 6
for counter in range(max):
from random import randint
dwarfappear = (randint(1,2))
dwarf_r = (randint(1,2))
if dwarfappear == 1: #Here you can see if dwarfappear variable or random number = 1 then dwarf will appear
print("-------------------------------------------------------------------------------")
print("As you procees along the trail, you encounter a wicked looking")
print("dwarf with a long black beard.")
print()
print("He has a large rusty knife in his hand!")
print()
print("He seems to be laughing at you as you're trying to decide to attack or to just")
print("run away ...")
print()
print("Do you attack?")
print("-------------------------------------------------------------------------------")
dwarfinput = yorn() #Here I call the yorn function for asking "do you want to attack" on dwarf
if dwarfinput == 'y' or dwarfinput == 'Y' and dwarf_r == 2: #Here I used another random number, you can see above with the name dwarf_r which is for mighty swing
print("You take a mighty swing at the dwarf with your stick")
print()
print("C R A C K ! ! ... you hit the dwarf, it's dead")
print()
print("Do you want to loot the body?")
loot = yorn() #call yorn() function to get input from user.
if loot == 'y' or loot == 'Y':
find_treasure("from Dwarf")
elif dwarfinput == 'y' or dwarfinput == 'Y' and dwarf_r == 1: #If dwarf_r variable or random number = 1 then you will miss the target other wise you hit the dwarf
print()
print("You take a mighty swing at the dwarf with your stick")
print("Whoosh! ... you miss the dwarf, but he runs away")
elif dwarfinput == 'n' or dwarfinput == 'N':
print("You let out a blood curdling scream, and run very fast!")
elif dwarfappear == 2: #Here you can see if dwarfappear variable = 2 then dwarf will not appear
print("-------------------------------------------------------------------------------")
print("You continue to follow the cobblestone trail.")
print()
def elves():
from random import randint
elves_r = (randint(1,2))# Here again I used randint for elf.
print()
print("You come to what looks like the end of the 'road'. The trail splits and")
print("there appears to be two strange looking houses here.")
print()
print("The first one, the left, is a very large and elaborate house. There")
print("is a very 'fancy' elf standing in front!")
print()
print("The second house is very small and looks like it's about to fall over. There")
print("is a very short elf standing in front!")
print()
print("Both seem to be beckoning you closer. which elf do you approach? The one by")
print("the first house or the one by the second house?")
print()
while True:
try:
elves_input = int(input("Choose an elf to approach (1 or 2)? "))
print()
if elves_r == 1 and elves_input == 1 or elves_r == 2 and elves_input == 2: #if user enter 1 and random number also 1 or user enter 2 and random number also 2 then elf invites you in.
print("you have chosen wisely!")
print("... The elf invites you in for a cup of tea (and a gift) ")
print()
find_treasure('from elf')
print("You have had a great adventure and found some amazing treasure")
elif elves_r == 1 and elves_input == 2 or elves_input == 1 and elves_r == 2: # other then that if you input value not matched with random number then you choosed the bad elf.
print()
print("The elf starts to cackle, and begins to incant a spell")
print()
print("P O O F ! ! he turns you into a giant TOAD!!")
print()
print("You have had a great adventure and found some amazing treasure")
print("... if you're not a giant toad!")
if elves_input == 1 or elves_input == 2: break
except ValueError:
print('Please Enter 1 or 2')
intro()
print()
input('Press Enter to continue..')
potion = potion()
print(potion)
print()
input('Press Enter to continue..')
dwarf()
print()
input('Press Enter to continue..')
elves()
print()
print('Thanks for playing')
|
34f5750734878b8d0d100a5882e2b4a70fbb13f9 | nicklip/Google_Python_Developers_Course | /copyspecial.py | 4,485 | 3.828125 | 4 | #!/usr/bin/python
# Copyright 2010 Google Inc.
# Licensed under the Apache License, Version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
# Google's Python Class
# http://code.google.com/edu/languages/google-python-class/
import sys
import re
import os
import shutil
import commands
"""Copy Special exercise
The copyspecial.py program takes one or more directories as its arguments. We'll say that a "special"
file is one where the name contains the pattern __w__ somewhere, where the w is one or more word chars.
The provided main() includes code to parse the command line arguments, but the rest is up to you. Write
functions to implement the features below and modify main() to call your functions.
Suggested functions for your solution(details below):
get_special_paths(dir) -- returns a list of the absolute paths of the special files in the given directory
copy_to(paths, dir) given a list of paths, copies those files into the given directory
zip_to(paths, zippath) given a list of paths, zip those files up into the given zipfile
"""
def get_special_paths(the_dir):
'''
returns a list of the absolute paths of the special files
in the given directory
'''
the_paths = []
# Getting the filenames from the directory
filenames = os.listdir(the_dir)
for filename in filenames:
# Finding all of the "special" files
special = re.findall(r'__\w+__', filename)
if special:
# Putting all special files in a list
abs_path = os.path.abspath(os.path.join(the_dir, filename))
the_paths.append(abs_path)
# Returning list of special files
return the_paths
def copy_to(paths, to_dir):
'''
given a list of paths, copies those files into the given directory
'''
# If the directory to copy the files to doesn't exist, create it
if not os.path.exists(to_dir):
os.mkdir(to_dir)
for path in paths:
# Getting the files to be copied from each path
filenames = os.listdir(path)
for filename in filenames:
# Getting the full path of each file
abs_path = os.path.abspath(os.path.join(path, filename))
# Copying each file to the desired directory
if os.path.isfile(abs_path):
shutil.copy(abs_path, to_dir)
def zip_to(paths, to_zip):
'''
given a list of paths, zip those files up into the given zipfile
'''
files = []
for path in paths:
# Getting the filenames from each path
filenames = os.listdir(path)
for filename in filenames:
# Putting each joined path + filename into a list
files.append(os.path.join(path,filename))
# Command to zip the files into a zipfile with the desired name/path
cmd = 'zip -j' + ' ' + to_zip + ' ' + ' '.join(files)
# A warning to the user of what command is about to run
print 'Command to run:', cmd
# Running the zip command
(status, output) = commands.getstatusoutput(cmd)
# If an error happens, print it to the terminal
if status:
sys.stderr.write(output)
sys.exit(1)
def main():
# This basic command line argument parsing code is provided. Add code to call your functions below.
# Make a list of command line arguments, omitting the [0] element which is the script itself.
args = sys.argv[1:]
if not args:
print "usage: [--todir dir][--tozip zipfile] dir [dir ...]";
sys.exit(1)
# todir and tozip are either set from command line or left as the empty string.
# The args array is left just containing the directories (paths)
todir = ''
if args[0] == '--todir':
todir = args[1]
del args[0:2]
tozip = ''
if args[0] == '--tozip':
tozip = args[1]
del args[0:2]
# If no arguments, print an error
if len(args) == 0:
print "error: must specify one or more dirs"
sys.exit(1)
# +++your code here+++
## Call your functions
# If '--todir' command is called in the args, run the function to copy all of the
# files from all the paths to the desired directory.
if todir:
copy_to(args[0:len(args)], todir)
# If '--tozip' command is called in the args, run the function to create a zip file,
# with the desired name, of all of the files from all the paths.
elif tozip:
zip_to(args[0:len(args)], tozip)
# Run the function to print all special files from all paths, if no '--todir' or
# '--to zipfile' command is included in the args
else:
paths = []
for dirname in args:
paths.extend(get_special_paths(dirname))
print '\n'.join(paths)
if __name__ == "__main__":
main()
|
5bd5df1910a6c6765dfeff536eba03ca4878dc6e | TiwariSimona/Hacktoberfest-2021 | /g-animesh02/cartoon3.py | 2,243 | 4.0625 | 4 | import cv2
class Cartoonizer:
"""Cartoonizer effect
A class that applies a cartoon effect to an image.
The class uses a bilateral filter and adaptive thresholding to create
a cartoon effect.
"""
def __init__(self):
pass
def render(self, img_rgb):
img_rgb = cv2.imread(img_rgb)
img_rgb = cv2.resize(img_rgb, (1366, 768))
numDownSamples = 2 # number of downscaling steps
numBilateralFilters = 50 # number of bilateral filtering steps
# -- STEP 1 --
# downsample image using Gaussian pyramid
img_color = img_rgb
for _ in range(numDownSamples):
img_color = cv2.pyrDown(img_color)
# cv2.waitKey(0)
# repeatedly apply small bilateral filter instead of applying
# one large filter
for _ in range(numBilateralFilters):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
# cv2.waitKey(0)
# upsample image to original size
for _ in range(numDownSamples):
img_color = cv2.pyrUp(img_color)
# cv2.waitKey(0)
# -- STEPS 2 and 3 --
# convert to grayscale and apply median blur
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
img_blur = cv2.medianBlur(img_gray, 3)
# cv2.waitKey(0)
# -- STEP 4 --
# detect and enhance edges
img_edge = cv2.adaptiveThreshold(img_blur, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11,11)
# cv2.waitKey(0)
# -- STEP 5 --
# convert back to color so that it can be bit-ANDed with color image
(x, y, z) = img_color.shape
img_edge = cv2.resize(img_edge, (y, x))
img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
cv2.waitKey(0)
(x, y, z) = img_color.shape
img_edge = cv2.resize(img_edge, (y, x))
return cv2.bitwise_and(img_color, img_edge)
tmp_canvas = Cartoonizer()
file_name = input() # File_name will come here
res = tmp_canvas.render(file_name)
cv2.imwrite("Cartoon version.jpg", res)
cv2.imshow("Cartoon version", res)
cv2.waitKey(0)
cv2.destroyAllWindows() |
5152927f8f259d1d78645fdec94330753225833a | TiwariSimona/Hacktoberfest-2021 | /Aryan810/new_search_algorithm.py | 1,268 | 3.71875 | 4 | from threading import Thread
import time
class SearchAlgorithm1:
def __init__(self, list_data: list, element):
self.element = element
self.list = list_data
self.searching = True
self.index = None
def search(self):
Thread(self.forward())
self.reverse()
return self.index
def reverse(self):
len_all = len(self.list)
for i in range(len(self.list) - 1):
try:
if not self.searching:
break
i = len_all - i
if self.list[i] == self.element:
self.searching = False
self.index = i
break
except Exception:
pass
def forward(self):
for i in range(len(self.list) - 1):
try:
if not self.searching:
break
if self.list[i] == self.element:
self.searching = False
self.index = i
break
except Exception:
pass
list_i = [i for i in range(800, 9800)]
print("Searching by my algorithm...")
index_element = SearchAlgorithm1(list_i, 8999).search()
print(index_element)
|
f2744631653064a83857180583c831b187a8f53c | TiwariSimona/Hacktoberfest-2021 | /ajaydhoble/euler_1.py | 209 | 4.125 | 4 | # List for storing multiplies
multiplies = []
for i in range(10):
if i % 3 == 0 or i % 5 == 0:
multiplies.append(i)
print("The sum of all the multiples of 3 or 5 below 1000 is", sum(multiplies))
|
bbfe214cd8be2137032f9f2fa056302865a9ada2 | TiwariSimona/Hacktoberfest-2021 | /akashrajput25/Some_py_prog/count_alphabet.py | 178 | 3.671875 | 4 | name=input("Enter your name\n")
x=len(name)
i=0
temp=""
for i in range(x) :
if name[i] not in temp:
temp+=name[i]
print(f"{name[i]}:{name.count(name[i])}")
|
16ad6fbbb5ab3f9a0e638a1d8fd7c4469d349c11 | TiwariSimona/Hacktoberfest-2021 | /parisheelan/bmi.py | 957 | 4.15625 | 4 | while True:
print("1. Metric")
print("2. Imperial")
print("3. Exit")
x=int(input("Enter Choice (1/2/3): "))
if x==1:
h=float(input("Enter height(m) : "))
w=float(input("Enter weight(kg) : "))
bmi=w/h**2
print("BMI= ",bmi)
if bmi<=18.5:
print("Underweight")
elif bmi>=25:
if bmi>=30:
print("Obese")
else:
print("Overweight")
else:
print("Normal")
elif x==2:
h=float(input("Enter height(in) : "))
w=float(input("Enter weight(lbs) : "))
bmi=(w*703)/h**2
print("BMI= ",bmi)
if bmi<=18.5:
print("Underweight")
elif bmi>=25:
if bmi>=30:
print("Obese")
else:
print("Overweight")
else:
print("Normal")
elif x==3:
break
else:
print("wrong input") |
c5a68da4e7ffdc1ddc86d247e3092c5eb7d09699 | TiwariSimona/Hacktoberfest-2021 | /CharalambosIoannou/doubly_linked_list_helper.py | 2,632 | 4 | 4 | class DListNode:
"""
A node in a doubly-linked list.
"""
def __init__(self, data=None, prev=None, next=None):
self.data = data
self.prev = prev
self.next = next
def __repr__(self):
return repr(self.data)
class DoublyLinkedList:
def __init__(self):
"""
Create a new doubly linked list.
Takes O(1) time.
"""
self.head = None
def __repr__(self):
"""
Return a string representation of the list.
Takes O(n) time.
"""
nodes = []
curr = self.head
while curr:
nodes.append(repr(curr))
curr = curr.next
return '[' + ', '.join(nodes) + ']'
def prepend(self, data):
"""
Insert a new element at the beginning of the list.
Takes O(1) time.
"""
new_head = DListNode(data=data, next=self.head)
if self.head:
self.head.prev = new_head
self.head = new_head
def append(self, data):
"""
Insert a new element at the end of the list.
Takes O(n) time.
"""
if not self.head:
self.head = DListNode(data=data)
return
curr = self.head
while curr.next:
curr = curr.next
curr.next = DListNode(data=data, prev=curr)
def find(self, key):
"""
Search for the first element with `data` matching
`key`. Return the element or `None` if not found.
Takes O(n) time.
"""
curr = self.head
while curr and curr.data != key:
curr = curr.next
return curr # Will be None if not found
def remove_elem(self, node):
"""
Unlink an element from the list.
Takes O(1) time.
"""
if node.prev:
node.prev.next = node.next
if node.next:
node.next.prev = node.prev
if node is self.head:
self.head = node.next
node.prev = None
node.next = None
def remove(self, key):
"""
Remove the first occurrence of `key` in the list.
Takes O(n) time.
"""
elem = self.find(key)
if not elem:
return
self.remove_elem(elem)
def reverse(self):
"""
Reverse the list in-place.
Takes O(n) time.
"""
curr = self.head
prev_node = None
while curr:
prev_node = curr.prev
curr.prev = curr.next
curr.next = prev_node
curr = curr.prev
self.head = prev_node.prev
|
1c7ecdea2b8d027f39b67355f76a7b6e9c7fce47 | SiyandzaD/analysehackathon | /tests/test.py | 494 | 3.875 | 4 | from analysehackathon.recursion import sum_array
from analysehackathon.recursion import fibonacci
def test_sum_array():
"""
make sure sum_aray works correctly
"""
assert sum_array([1,2,3]) == 6, 'incorrect'
print(sum_array([1,2,3]))
assert sum_array([1,2,3,4]) == 10, 'incorrect'
def test_fibonacci():
"""
make sure sum_aray works correctly
"""
assert fibonacci(7) == 13, 'incorrect'
assert fibonacci(12) == 144, 'incorrect'
|
932042d87adfba2bdb8d437b2c20d98d2afd7c22 | VinayagamD/PythonBatch3 | /hello.py | 74 | 3.5 | 4 | a = 10
b = 20
sum = a +b
print(sum)
print('Hello to python programming')
|
b6d05ea933a068a2a1716aee977af795764eeaa7 | quirosnv/PROYECTO | /Proyecto Buscador en proceso/Buscador.py | 5,085 | 3.890625 | 4 | data = int(input("ingrese 1 si quiere buscar por cantante, 2 por cancion, 3 por album, 4 por año, -1 SALIR: "))
cantante = ['KALEO', 'kaleo', 'Coldplay', 'COLDPLAY', 'The Beatles', 'beatles']
contador = 0
while data != -1:
if data == 1:
print("Eligio buscar por cantante:")
cant= input("Ingrese el nombre de un cantante o banda, para ser buscado: ")
if cant == 'kaleo':
print("Cancion: Way Down we go")
if cant == 'beatles':
print("Cancion: Let It Be\n","Cancion: Love Me Do")
if cant == 'lp':
print("Cancion: Lost On You")
if cant == 'status quo':
print("Cancion: In the Army Now")
if cant == 'coldplay':
print("Cancion: Yellow")
if cant == 'depeche mode':
print("Enjoy The Silence")
if cant == 'the cure':
print("Cancion: LoveSong\n","Cancion: Friday im in love")
contador = contador +1
data = int(input("ingrese 1 si quiere buscar por cantante, 2 por cancion, 3 por album, 4 por año, -1 SALIR: "))
#else:
# print("ARTISTA NO ENCONTRADO")
if data == 2:
print("\n***Eligio buscar por cancion***\n")
music = input("\nIngrese el nombre de la cancion para ver su informacion:\n")
if music == 'in the army now':
print("Artista: Status Quo\n", "Album: In the Army Now\n", "Fecha de lanzamineto: 1986")
if music == 'army':
print("Cacion relacionada")
print("Artista: Status Quo\n", "Album: In the Army Now\n", "Fecha de lanzamineto: 1986")
if music == 'lovesong':
print("Artist: The Cure\n", "Album: Japanese Whispers\n", "Year: 1989")
if music== 'friday im in love' and 'friday':
print("Artist: The Cure\n", "Album: Wish\n", "Year: 1992")
if music == 'love me do' and 'love':
print("Artist: The Beatles\n", "Album: Please Please Me\n" "Year: 1963")
if music == 'let it be':
print("Artist: The Beatles\n" "Format: MP3\n" "Album: Parachutes\n", "Year: 1970")
if music == 'yellow':
print("Artist: Coldplay\n" "Title: Yellow\n" "Album: Parachutes\n" "Year: 2000")
if music == 'way down we go':
print("Artist: KALEO\n", "Album: A/B\n", "Year: 2017")
if music == 'lost on you':
print("Artist: LP\n", "Album: Lost On You\n", "Year: 2016")
contador = contador + 1
data = int(input("ingrese 1 si quiere buscar por cantante, 2 por cancion, 3 por album, 4 por año, -1 SALIR: "))
#else:
# print("\nCANCION NO ENCONTRADA\n")
if data == 3:
print("***Eligio buscar por album***")
albu = input("\nIngrese el nombre del album\n")
if albu == 'ab':
print("Artist: KALEO\n", "Year: 2017")
if albu == 'lost on you':
print("Artist: LP\n", "Year: 2016")
if albu == 'in the army now':
print("Artist; Status Quo\n", "Year: 1986")
if albu == 'parachutes':
print("Artist: Coldplay\n", "Year: 2000")
if albu == 'the singles':
print("Artist: The Peche Mode\n", "Year: 1990")
if albu == 'japanese whisper':
print("Artist: The Cure\n", "Year: 1989")
if albu == 'wish':
print("Artist: The Cure\n", "Year: 1992")
if albu == 'please please me':
print("Artist: The Beatles\n", "Year: 1970")
contador = contador + 1
data = int(input("ingrese 1 si quiere buscar por cantante, 2 por cancion, 3 por album, 4 por año, -1 SALIR: "))
#else:
# print("ALBUM NO ENCONTRADO")
if data == 4:
print("***ELIGIO BUSCAR POR AÑO")
year = int(input("Ingrese un año para buscar informacion\n"))
if year == 2017:
print("Artist: KALEO\n", "Title: Way Down We Go\n", "Album: A/B")
if year == 2016:
print("Artist: LP\n", "Title: Lost On You\n", "Album: Lost On You")
if year == 1986:
print("Artist: Status Quo\n", "Title: In The Army Now\n", "Album: In The Army Now")
if year == 2000:
print("Artist: Coldplay\n", "Title: Yellow\n", "Format: MP3\n","Album: Parachutes")
if year == 1990:
print("Artist: Depeche Mode\n", "Title: Emjoy the Silence\n", "Album: The Singles")
if year == 1989:
print("Artist: The Cure\n" "Title: LoveSong\n","Album: Japanese Whispers")
if year == 1992:
print("Artist: The Cure\n", "Title: Friday Im In Love\n","Album: Wish")
if year == 1963:
print("Artist: The Beatles\n", "Title: Love Me Do\n", "Album: Please Please Me")
if year == 1970:
print("Artist: The Beatles\n", "Title: Let It Be\n", "Album: Parachutes")
#else:
# print("NO SE ENCONTRO INFORMACION POR AÑO")
contador = contador +1
data = int(input("ingrese 1 si quiere buscar por cantante, 2 por cancion, 3 por album, 4 por año, -1 SALIR: "))
|
169e431b852089fcda8a72114582cba0f847afbe | whyalwaysmeee/Machine-Learning-Sklearn-Linear-Model | /Linear Model(Least Square Mothod).py | 1,274 | 4.03125 | 4 | import matplotlib.pyplot as plt
from sklearn import datasets, linear_model
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
# Load the diabetes dataset
price = datasets.load_boston()
# Use only one feature
price_x = price.data[:,np.newaxis,5]
# Split the data into training/testing sets
price_x_train = price_x[:-20]
price_x_test = price_x[-20:]
# Split the targets into training/testing sets
price_y_train = price.target[:-20]
price_y_test = price.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(price_x_train, price_y_train)
# Make predictions using the testing set
price_y_pred = regr.predict(price_x_test)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
% mean_squared_error(price_y_test, price_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(price_y_test, price_y_pred))
# Plot outputs
plt.scatter(price_x_test, price_y_test, color='black')
plt.plot(price_x_test, price_y_pred, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
#display the plot graph
plt.show()
|
08947ee21f916756c6edf64e0f1d1ad5730b59bd | LiangChen204/pythonApi_Test | /runoob/baseException.py | 1,868 | 3.921875 | 4 | #!//usr/local/bin python
# -*- coding:utf-8 -*-
# 走try
try:
fh = open("testfile", "w")
fh.write("这是一个测试文件,用于测试异常!")
except IOError:
print("Error: 没有找到文件或读取文件失败")
else:
print("内容写入文件成功")
fh.close()
# 捕获异常
try:
fh = open("testfile", "r")
fh.write("这是一个测试文件,用于测试异常!")
except IOError:
print("Error1: 没有找到文件或读取文件失败")
else:
print("内容写入文件成功")
fh.close()
# finally
try:
fh = open("testfile", "w")
fh.write("这是一个测试文件,用于测试异常!")
finally:
print("Error2: 没有找到文件或读取文件失败")
try:
fh = open("testfile", "w")
try:
fh.write("这是一个测试文件,用于测试异常!!")
finally:
print("关闭文件")
fh.close()
except IOError:
print("Error3: 没有找到文件或读取文件失败")
# 定义函数
def temp_convert(var):
try:
return int(var)
except (ValueError) as Argument:
print("参数没有包含数字\n", Argument)
# 调用函数
temp_convert('oo')
# 定义异常:使用 raise 语句抛出一个指定的异常
class MyError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
try:
raise MyError(2*2)
except MyError as e:
print("My exception occurred, value:", e.value)
# raise MyError('oops!!')
# 稍复杂的抛出异常例子
def divide(x, y):
try:
result = x / y
except ZeroDivisionError:
print("division by zero!")
except TypeError:
print("division unsupported!")
else:
print("result is", result)
finally:
print("executing finally clause")
divide(2, 1)
divide(2, 0)
divide("2", "1") |
5f285c43fbeb0489a57c0c703201abfb2df3a575 | andfanilo/streamlit-sandbox | /archives/app_styling.py | 567 | 3.734375 | 4 | import pandas as pd
import streamlit as st
# https://stackoverflow.com/questions/43596579/how-to-use-python-pandas-stylers-for-coloring-an-entire-row-based-on-a-given-col
df = pd.read_csv("data/titanic.csv")
def highlight_survived(s):
return ['background-color: green']*len(s) if s.Survived else ['background-color: red']*len(s)
def color_survived(val):
color = 'green' if val else 'red'
return f'background-color: {color}'
st.dataframe(df.style.apply(highlight_survived, axis=1))
st.dataframe(df.style.applymap(color_survived, subset=['Survived'])) |
00eb68cef452b9026f89936170f6c21e7ef09e2c | TeenaThmz/List | /list2.py | 64 | 3.5 | 4 | list2=[12,14,-95,3]
list=[i for i in list2 if i>=0]
print(list)
|
18785e22dbae3eed4affb39e74eaf9aaffadf949 | kooose38/pytools_table | /xai/eli5.py | 1,384 | 3.578125 | 4 | from typing import Any, Dict, Union, Tuple
import eli5
from eli5.sklearn import PermutationImportance
import numpy as np
import pandas as pd
class VizPermitaionImportance:
def __doc__(self):
"""
package: eli5 (pip install eli5)
support: sckit-learn xgboost lightboost catboost lighting
purpose: Visualize the importance of each feature quantity by giving a big picture explanation using a model
"""
def __init__(self):
pass
def show_weights(self, model: Any, importance_type: str="gain"):
return eli5.show_weights(model, importance_type=importance_type)
def show_feature_importance(self, model: Any, x_train: pd.DataFrame, y_train: Union[pd.DataFrame, pd.Series, np.ndarray],
x_val: pd.DataFrame, y_val: Union[pd.DataFrame, pd.Series]) -> Tuple[object, object]:
'''
warnings: support sklearn model only!
By trying both the training data and the validation data, you can lyric whether there is a difference in the distribution of the data.
x_train, y_train -> x_val, y_val
'''
perm_train = PermutationImportance(model).fit(x_train, y_train)
fig1 = eli5.show_weights(perm_train, feature_names=x_train.columns.tolist())
perm_val = PermutationImportance(model).fit(x_val, y_val)
fig2 = eli5.show_weights(perm_val, feature_names=x_val.columns.tolist())
return fig1, fig2
|
c6ea76ace41ca74098a6562ee75c1e6216cb6fe2 | plukis/merge_sort | /controllers/merge_sort.py | 1,177 | 3.84375 | 4 | # -*- coding: utf-8 -*-
class MergeSort:
a_list = []
def _merge_work(self, alist):
print("delimito ", alist)
if len(alist) > 1:
mid = len(alist) // 2
lefthalf = alist[:mid]
righthalf = alist[mid:]
self._merge_work(lefthalf)
self._merge_work(righthalf)
i = 0
j = 0
k = 0
while i < len(lefthalf) and j < len(righthalf):
if lefthalf[i] < righthalf[j]:
alist[k] = lefthalf[i]
i = i + 1
else:
alist[k] = righthalf[j]
j = j + 1
k = k + 1
while i < len(lefthalf):
alist[k] = lefthalf[i]
i = i + 1
k = k + 1
while j < len(righthalf):
alist[k] = righthalf[j]
j = j + 1
k = k + 1
print("Mezclando ", alist)
return (alist)
def run_merge(self):
list_new = self._merge_work(self.a_list)
return list_new
def __init__(self, a_list):
self.a_list = a_list
|
42a76e11702d791ddbff3b132710144b3d684323 | qqinxl2015/leetcode | /112. Path Sum.py | 1,036 | 3.859375 | 4 | #https://leetcode.com/problems/path-sum/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def hasPathSum(self, root, sum):
"""
:type root: TreeNode
:type sum: int
:rtype: bool
"""
if not root:
return False
queue = {}
queue[root] = root.val
while not len(queue) == 0:
queueOneLevel = {}
for q, v in queue.items():
if q.left == None and q.right == None:
if v == sum:
return True
if not q.left == None:
queueOneLevel[q.left] = v + q.left.val
if not q.right == None:
queueOneLevel[q.right] = v + q.right.val
queue = queueOneLevel
return False |
91ac4bcae6d6e1ba52e2145bdc158800e31d5d6e | qqinxl2015/leetcode | /009. Palindrome Number.py | 470 | 3.796875 | 4 | #https://leetcode.com/problems/palindrome-number/
class Solution:
def isPalindrome(self, x):
"""
:type x: int
:rtype: bool
"""
if x ==0:
return True
if x < 0:
return False
if int(x%10) == 0 and x !=0:
return False
ret = 0
while x > ret:
ret = ret*10 + int(x%10)
x = int(x/10)
return x == ret or x== int(ret/10) |
0e5abd4e1435664f4b626bc96a4d57fd2b5f2374 | susanpinch/Read-and-Process-Data-Python | /pinchiaroli_susan_assign9_fileioio.py | 1,952 | 3.96875 | 4 | """
file_io_nested.py
Write data from a set of nested lists to a file,
then read it back in.
By: Susan Pinchiaroli
Date: 28 Nov 2018
"""
data = []#empty list
# This is our data
data.append(['Susan','Davis',23,7])#append data
data.append(['Harold','Humperdink',76,9])
data.append(['Lysistrata','Jones',40,12])
data.append(['Stan','Laurel',60])
data.append(['Rose','Harris',56,9,'Ambassador'])
# filename is a string
fname = "people.txt"#create file name
ffirstobj=open(fname,'w')#open file name to write, so that once we complete the file it will be rewritten each time we code
ffirstobj.write('')#write nothing
ffirstobj.close()3close file
# open file for actual writing
fobj = open(fname, "w")
line_text=''
# write the data file
# iterate through the list of people
for i in range(len(data)):
line = ""
# iterate through each datum for the person
for j in range(len(data[i])):
# convert this datum to a string and append it to our line
# NOTE: change this so it doesn't add ',' if this is last datum
if j==(len(data[i])-1):#this separates so we know when to add comma and when not to
line += str(data[i][j])
else:
line += str(data[i][j]) + ","
# NOTE: now, write this line to the data file
line_text += line +'\n'#write linebreak after each line
fobj.write(line_text)#write line_text into code
# Don't forget to close the file!
fobj.close()
print("Done writing the file.")
# Now, read the data back
# Open the file for reading
fobj = open("people.txt","r")
# read the whole file into a string
raw_dat = fobj.read()
print("Read:",raw_dat)
# break the string into a list of lines
data_list = raw_dat.split("\n")
# NOW: process your list of lines, so that you can put the
# data back into a new list of lists, called data2
# this should have the exact same format as your original data structure
data2 = []
# process data here
print("Final data list:")
print(data2)
|
0211584a0d5087701ee07b79328d4eb6c101e962 | pintugorai/python_programming | /Basic/type_conversion.py | 438 | 4.1875 | 4 | '''
Type Conversion:
int(x [,base])
Converts x to an integer. base specifies the base if x is a string.
str(x)
Converts object x to a string representation.
eval(str)
Evaluates a string and returns an object.
tuple(s)
Converts s to a tuple.
list(s)
Converts s to a list.
set(s)
Converts s to a set.
dict(d)
Creates a dictionary. d must be a sequence of (key,value) tuples.
and So on
'''
x="5"
xint = int(x);
print("xint = ",xint)
|
ac7016757e19991066147e75b923b1ef734beb6d | zags4life/tableformatters | /tableformatters/tabledataprovider.py | 776 | 3.75 | 4 | # table_formatters/data_provider.py
from abc import ABC, abstractproperty
class TableFormatterDataProvider(ABC):
'''An ABC that defines the interface for objects to display by a table
formatter. Any object displayed by a TableFormatters must implement this
ABC.
Classes that implement this ABC can using this interface to
define what data contained in its class to display
'''
@abstractproperty
def header_values(self):
'''Must return a list of strings, containing the table header values.
Note: order of this list is the order that headers will appear'''
pass
@abstractproperty
def row_values(self):
'''Must return a list of data to be output by a table formatter.'''
pass |
22c30808220f095b21eca67c444dc2b46b4026b0 | gmayock/kaggle_titanic_competition | /gs-titanic-7-final-submission-code.py | 11,102 | 3.515625 | 4 | # # Load data
# Ignore warnings to clean up output after all the code was written
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
import os
print(os.listdir("../input"))
['train.csv', 'gender_submission.csv', 'test.csv']
# Step 1 is to import both data sets
training_data = pd.read_csv("../input/train.csv")
testing_data = pd.read_csv("../input/test.csv")
# Step two is to create columns which I will add to the respective datasets, in order to know which row came from which dataset when I combine the datasets
training_column = pd.Series([1] * len(training_data))
testing_column = pd.Series([0] * len(testing_data))
# Now we append them by creating new columns in the original data. We use the same column name
training_data['is_training_data'] = training_column
testing_data['is_training_data'] = testing_column
# # Combine and process
# Now we can merge the datasets while retaining the key to split them later
combined_data = training_data.append(testing_data, ignore_index=True, sort=False)
# Encode gender (if == female, True)
combined_data['female'] = combined_data.Sex == 'female'
# Split out Title
title = []
for i in combined_data['Name']:
period = i.find(".")
comma = i.find(",")
title_value = i[comma+2:period]
title.append(title_value)
combined_data['title'] = title
# Replace the title values with an aliased dictionary
title_arr = pd.Series(title)
title_dict = {
'Mr' : 'Mr',
'Mrs' : 'Mrs',
'Miss' : 'Miss',
'Master' : 'Master',
'Don' : 'Formal',
'Dona' : 'Formal',
'Rev' : 'Religious',
'Dr' : 'Academic',
'Mme' : 'Mrs',
'Ms' : 'Miss',
'Major' : 'Formal',
'Lady' : 'Formal',
'Sir' : 'Formal',
'Mlle' : 'Miss',
'Col' : 'Formal',
'Capt' : 'Formal',
'the Countess' : 'Formal',
'Jonkheer' : 'Formal',
}
cleaned_title = title_arr.map(title_dict)
combined_data['cleaned_title'] = cleaned_title
# Fill NaN of Age - first create groups to find better medians than just the overall median and fill NaN with the grouped medians
grouped = combined_data.groupby(['female','Pclass', 'cleaned_title'])
combined_data['Age'] = grouped.Age.apply(lambda x: x.fillna(x.median()))
#add an age bin
age_bin_conditions = [
combined_data['Age'] == 0,
(combined_data['Age'] > 0) & (combined_data['Age'] <= 16),
(combined_data['Age'] > 16) & (combined_data['Age'] <= 32),
(combined_data['Age'] > 32) & (combined_data['Age'] <= 48),
(combined_data['Age'] > 48) & (combined_data['Age'] <= 64),
combined_data['Age'] > 64
]
age_bin_outputs = [0, 1, 2, 3, 4, 5]
combined_data['age_bin'] = np.select(age_bin_conditions, age_bin_outputs, 'Other').astype(int)
# Fill NaN of Embarked
combined_data['Embarked'] = combined_data['Embarked'].fillna("S")
# Fill NaN of Fare, adding flag for boarded free, binning other fares
combined_data['Fare'] = combined_data['Fare'].fillna(combined_data['Fare'].mode()[0])
combined_data['boarded_free'] = combined_data['Fare'] == 0
fare_bin_conditions = [
combined_data['Fare'] == 0,
(combined_data['Fare'] > 0) & (combined_data['Fare'] <= 7.9),
(combined_data['Fare'] > 7.9) & (combined_data['Fare'] <= 14.4),
(combined_data['Fare'] > 14.4) & (combined_data['Fare'] <= 31),
combined_data['Fare'] > 31
]
fare_bin_outputs = [0, 1, 2, 3, 4]
combined_data['fare_bin'] = np.select(fare_bin_conditions, fare_bin_outputs, 'Other').astype(int)
# Fill NaN of Cabin with a U for unknown. Not sure cabin will help.
combined_data['Cabin'] = combined_data['Cabin'].fillna("U")
# Counting how many people are riding on a ticket
from collections import Counter
tickets_count = pd.DataFrame([Counter(combined_data['Ticket']).keys(), Counter(combined_data['Ticket']).values()]).T
tickets_count.rename(columns={0:'Ticket', 1:'ticket_riders'}, inplace=True)
tickets_count['ticket_riders'] = tickets_count['ticket_riders'].astype(int)
combined_data = combined_data.merge(tickets_count, on='Ticket')
# Finding survival rate for people sharing a ticket
# Note that looking at the mean automatically drops NaNs, so we don't have an issue with using the combined data to calculate survival rate as opposed to just the training data
combined_data['ticket_rider_survival'] = combined_data['Survived'].mean()
# # Finding survival rate for people sharing a ticket (cont'd)
# This groups the data by ticket
# And then if the ticket group is greater than length 1 (aka more than 1 person rode on the ticket)
# it looks at the max and min of the _other_ rows in the group (by taking the max/min after dropping the current row)
# and if the max is 1, it replaces the default survival rate of .3838383 (the mean) with 1. This represents there being
# at least one known member of the ticket group which survived. If there is no known survivor on that ticket, but there
# is a known fatality, the value is replaced with 0, representing there was at least one known death in that group. If
# neither, then the value remains the mean.
for ticket_group, ticket_group_df in combined_data[['Survived', 'Ticket', 'PassengerId']].groupby(['Ticket']):
if (len(ticket_group_df) != 1):
for index, row in ticket_group_df.iterrows():
smax = ticket_group_df.drop(index)['Survived'].max()
smin = ticket_group_df.drop(index)['Survived'].min()
if (smax == 1.0):
combined_data.loc[combined_data['PassengerId'] == row['PassengerId'], 'ticket_rider_survival'] = 1
elif (smin==0.0):
combined_data.loc[combined_data['PassengerId'] == row['PassengerId'], 'ticket_rider_survival'] = 0
# Finding survival rate for people with a shared last name (same method as above basically)
combined_data['last_name'] = combined_data['Name'].apply(lambda x: str.split(x, ",")[0])
combined_data['last_name_group_survival'] = combined_data['Survived'].mean()
for last_name_group, last_name_group_df in combined_data[['Survived', 'last_name', 'PassengerId']].groupby(['last_name']):
if (len(last_name_group_df) != 1):
for index, row in last_name_group_df.iterrows():
smax = last_name_group_df.drop(index)['Survived'].max()
smin = last_name_group_df.drop(index)['Survived'].min()
if (smax == 1.0):
combined_data.loc[combined_data['PassengerId'] == row['PassengerId'], 'last_name_group_survival'] = 1
elif (smin==0.0):
combined_data.loc[combined_data['PassengerId'] == row['PassengerId'], 'last_name_group_survival'] = 0
# Finding survival rate for people with a shared last name _and_ fare
combined_data['last_name_fare_group_survival'] = combined_data['Survived'].mean()
for last_name_fare_group, last_name_fare_group_df in combined_data[['Survived', 'last_name', 'Fare', 'PassengerId']].groupby(['last_name', 'Fare']):
if (len(last_name_fare_group_df) != 1):
for index, row in last_name_fare_group_df.iterrows():
smax = last_name_fare_group_df.drop(index)['Survived'].max()
smin = last_name_fare_group_df.drop(index)['Survived'].min()
if (smax == 1.0):
combined_data.loc[combined_data['PassengerId'] == row['PassengerId'], 'last_name_fare_group_survival'] = 1
elif (smin==0.0):
combined_data.loc[combined_data['PassengerId'] == row['PassengerId'], 'last_name_fare_group_survival'] = 0
# Finding cabin group
cabin_group = []
for i in combined_data['Cabin']:
cabin_group.append(i[0])
combined_data['cabin_group'] = cabin_group
# Adding a family_size feature as it may have an inverse relationship to either of its parts
combined_data['family_size'] = combined_data.Parch + combined_data.SibSp + 1
# Mapping ports to passenger pickup order
port = {
'S' : 1,
'C' : 2,
'Q' : 3
}
combined_data['pickup_order'] = combined_data['Embarked'].map(port)
# Encode childhood
combined_data['child'] = combined_data.Age < 16
# One-Hot Encoding the titles
combined_data = pd.concat([combined_data, pd.get_dummies(combined_data['cleaned_title'], prefix="C_T")], axis = 1)
# One-Hot Encoding the Pclass
combined_data = pd.concat([combined_data, pd.get_dummies(combined_data['Pclass'], prefix="PClass")], axis = 1)
# One-Hot Encoding the cabin group
combined_data = pd.concat([combined_data, pd.get_dummies(combined_data['cabin_group'], prefix="C_G")], axis = 1)
# One-Hot Encoding the ports
combined_data = pd.concat([combined_data, pd.get_dummies(combined_data['Embarked'], prefix="Embarked")], axis = 1)
# # Import Classifier (only KNN in the end, see previous notebooks for exploration)
new_train_data=combined_data.loc[combined_data['is_training_data']==1]
new_test_data=combined_data.loc[combined_data['is_training_data']==0]
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
k_fold = KFold(n_splits = 10, shuffle=True, random_state=0)
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
# # Define features
# Here are the features
features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'female', 'child', 'C_T_Master', 'C_T_Miss', 'C_T_Mr', 'C_T_Mrs',
'C_T_Formal','C_T_Academic', 'C_T_Religious','C_G_A', 'C_G_B', 'C_G_C', 'C_G_D', 'C_G_E', 'C_G_F', 'C_G_G',
'C_G_T', 'C_G_U', 'family_size', 'ticket_riders', 'ticket_rider_survival', 'last_name_group_survival', 'last_name_fare_group_survival']
target = 'Survived'
cvs_train_data = new_train_data[features]
cvs_test_data = new_test_data[features]
cvs_target = new_train_data['Survived']
# # Scale them
from sklearn.preprocessing import MinMaxScaler
mm_scaler = MinMaxScaler()
mms_train_data = mm_scaler.fit_transform(cvs_train_data)
mms_test_data = mm_scaler.transform(cvs_test_data)
mms_target = new_train_data['Survived']
mms_train_data.shape, mms_test_data.shape, mms_target.shape
# # GridSearchCV for KNN
from sklearn.model_selection import GridSearchCV
# on all features
n_neighbors = [14, 16, 17, 18, 19, 20, 22]
algorithm = ['auto']
weights = ['uniform', 'distance']
leaf_size = list(range(10,30,1))
hyperparams = {'algorithm': algorithm, 'weights': weights, 'leaf_size': leaf_size,
'n_neighbors': n_neighbors}
gd=GridSearchCV(estimator = KNeighborsClassifier(), param_grid = hyperparams, verbose=True,
cv=k_fold, scoring = "accuracy")
gd.fit(mms_train_data, mms_target)
print(gd.best_score_)
print(gd.best_estimator_)
gd.best_estimator_.fit(mms_train_data, mms_target)
prediction = gd.best_estimator_.predict(mms_test_data)
submission = pd.DataFrame({
"PassengerId" : new_test_data['PassengerId'],
"Survived" : prediction.astype(int)
})
submission_name = 'knn_all_feat.csv'
submission.to_csv(submission_name, index=False) |
f172ed025705f196ebe0c394595dee382a415ccf | jaaaaaaaaack/zalgo | /zalgo.py | 1,428 | 3.96875 | 4 | # zalgo.py
# Jack Beal, June 2020
# A small module to give any text a flavor of ancient doom
from random import random
def validCharacter(char, stoplist):
""" Helps to prevent unwanted manipulation of certain characters."""
if char in stoplist:
return False
else:
return True
def uniformMangle(s, additives, n=1, p=1, stoplist=[]):
""" Convenience function for uniformly mangling longer strings."""
mangled = ""
for c in s:
mangled += mangle(c, additives, n, p, stoplist)
return mangled
def mangle(char, additives, n=1, p=1, stoplist=[]):
""" Accumulate additive characters from the list of possible additives, up to a maximum n and with average density p, and join them to the input character."""
mangled = ""
if validCharacter(char, stoplist):
joiners = ""
for i in range(int(n)):
if random() <= p:
joiners += additives[int(random()*len(additives))]
mangled += char+joiners
return mangled
else:
return char
def main():
testString = "ZALGO.py"
additives = ["\u0300","\u0301","\u0302","\u0315","\u031b","\u0327","\u0316","\u0317","\u0318"]
stoplist = ["."]
greeting = uniformMangle(testString, additives, n=3, p=1, stoplist=stoplist)
print(greeting, "- a salt shaker for your text, filled with anxiety and foreboding!")
if __name__ == "__main__":
main()
|
cf37344075ac3ebcd091fcfe24de0444742a01be | elliotgreenlee/advent-of-code-2019 | /day10/day10_puzzle1.py | 2,365 | 3.734375 | 4 | import math
def read_puzzle_file(filename):
with open(filename, 'r') as f:
points = set()
for y, line in enumerate(f):
for x, point in enumerate(line):
if point is '#':
points.add((x, y))
return points
def number_slopes(starting_point, other_points):
slopes = set()
for point in other_points:
try:
slope = str((point[1] - starting_point[1]) / (point[0] - starting_point[0]))
except ZeroDivisionError:
slope = str(math.inf)
if point[0] > starting_point[0]:
slope = 'right' + slope
elif point[0] < starting_point[0]:
slope = 'left' + slope
if point[1] > starting_point[1]:
slope = 'above' + slope
elif point[1] < starting_point[1]:
slope = 'below' + slope
slopes.add(slope)
if len(slopes) == 278:
print(starting_point)
return len(slopes)
def find_best_station(asteroids):
# whichever starting point has the maximum number of slopes is the best
all_slope_counts = []
for station_asteroid in asteroids:
working_copy_asteroids = asteroids.copy()
working_copy_asteroids.remove(station_asteroid)
all_slope_counts.append(number_slopes(station_asteroid, working_copy_asteroids))
return max(all_slope_counts)
def solve_day10puzzle1():
asteroids = read_puzzle_file("day10_data.txt")
return find_best_station(asteroids)
def tests_day10puzzle1():
asteroids = read_puzzle_file("day10_test1.txt")
if find_best_station(asteroids) != 8:
return False
asteroids = read_puzzle_file("day10_test2.txt")
if find_best_station(asteroids) != 33:
return False
asteroids = read_puzzle_file("day10_test3.txt")
if find_best_station(asteroids) != 35:
return False
asteroids = read_puzzle_file("day10_test4.txt")
if find_best_station(asteroids) != 41:
return False
asteroids = read_puzzle_file("day10_test5.txt")
if find_best_station(asteroids) != 210:
return False
return True
def main():
if tests_day10puzzle1():
print("Day 10 Puzzle 1 answer: ", solve_day10puzzle1())
if __name__ == "__main__":
main()
|
5976699fa85e8eb7237467f8732bdca6df5d350d | jasoncwells/Test_2 | /scraper.py | 230 | 3.578125 | 4 | myvar = 'What is happening today'
myage = 46
mylist = ['how','now','brown','cow']
mynumlist = [1,2,3,4,5]
print myvar
print myage
print mylist
listlength = len(mylist)
print listlength
stringlength = len(myvar)
print stringlength
|
dd793f5d7f0d88d1a6446c8ce2025904144c2136 | cybera/data-science-for-entrepreneurs-workshops | /helpers/color.py | 820 | 3.640625 | 4 | def hex2rgb(color):
return tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2 ,4))
# Decimal number to HEX str
def dec2hex(n):
n = int(n)
if (n > 16):
return str(hex(n).split('x')[-1])
else:
return "0" + str(hex(n).split('x')[-1])
# Gradient starting at color "start" to color "stop" with "steps" colors
# Not include start and stop colors to result
def gradient(start, stop, steps):
out = []
r = hex2rgb(start)[0]
g = hex2rgb(start)[1]
b = hex2rgb(start)[2]
r_step = (hex2rgb(stop)[0] - r) / steps
g_step = (hex2rgb(stop)[1] - g) / steps
b_step = (hex2rgb(stop)[2] - b) / steps
for i in range(steps):
r = r + r_step
g = g + g_step
b = b + b_step
out.append("#" + dec2hex(r) + dec2hex(g) + dec2hex(b))
return out |
ca8162f61acd25fc40f57615225c78c2d1ad0623 | sambapython/batch53 | /modules/file1.py | 199 | 3.546875 | 4 | print("name:",__name__)
a=100
b=200
c=a+b
d=a-b
def fun():
print("this is fun in file1")
if __name__=="__main__":
def fun1():
print("this is fun1")
print("this is file1")
fun()
print(a,b,c,d)
|
38da743b5276b4924cc7e40aa237daef479aaed8 | sambapython/batch53 | /app.py | 89 | 3.515625 | 4 | a=raw_input("Enter a value:")
b=raw_input("Enter b value:")
a=int(a)
b=int(b)
print (a+b) |
b483de5c6c42f4c9234be3dacd50c8828437b260 | aishraj/slow-learner | /python/pythonchallenge/001.py | 614 | 3.53125 | 4 | import string
import collections
def decrypt(cyphertext):
values = ''
keys = ''
for i in range(ord('a'),ord('z')+1):
keys += chr(i)
j = i - ord('a')
values += chr(ord('a') + (j + 2) % 26)
transtable = string.maketrans(keys,values)
return string.translate(cyphertext,transtable)
if __name__ == "__main__":
mycyphertext = "g fmnc wms bgblr rpylqjyrc gr zw fylb. rfyrq ufyr amknsrcpq ypc dmp. bmgle gr gl zw fylb gq glcddgagclr ylb rfyr\'q ufw rfgq rcvr gq qm jmle. sqgle qrpgle.kyicrpylq() gq pcamkkclbcb. lmu ynnjw ml rfc spj."
print decrypt(mycyphertext)
|
cdb57be6cb1e664d937ecc44efcd00095bdb7407 | azbrainiac/PyStudy | /third.py | 702 | 3.953125 | 4 | for item in [1, 3, 7, 4, "qwerty", [1, 2, 4, 6]]:
print(item)
for item in range(5):
print(item ** 2)
wordlist = ["hello", "ass", "new", "year"]
letterlist = []
for aword in wordlist:
for aletter in aword:
if aletter not in letterlist:
letterlist.append(aletter)
print(letterlist)
sqlist = []
for x in range(4, 20):
sqlist.append(x**2)
print(sqlist)
sqlist = [x**2 for x in range(1, 9)]
print(sqlist)
sqlist = [x**2 for x in range(1, 10) if x % 3 == 0]
print(sqlist)
letterlist = [ch.upper() for ch in "asshole" if ch not in "eloh"]
print(letterlist)
print(list(set([ch for ch in "".join(wordlist)])))
print(list(set(s[i] for s in wordlist for i in range(len(s)))))
#input("Press Enter") |
ad94bc21b8b6a213a11e455e666325fdcf95d890 | patpalmerston/Algorithms-1 | /making_change/making_change.py | 2,323 | 4.0625 | 4 | #!/usr/bin/python
import sys
def making_change(amount, denominations=[1, 5, 10, 25, 50]):
# base case
if amount <= 2:
return 1
# starting a cache equal to the size of the amount, plus an initial default of 1 for index of zero
cache = [1] + [0] * amount
# loop through the coins in our list
for coin in denominations:
# loop through the range of the outer loop coin and our amount + 1
# first outer loop iteration starts at index of 1, then 5, then 10, then 25, then 50, as our index starts in the range dictated by the value of our denominations outer loop.
for i in range(coin, amount + 1):
# print('coin:', coin, f'amount: {amount} + 1 = ', amount +1)
# print("i: ", i, "i - coin = ", i-coin)
# inner loop index starts from the index equal to the value of coin and will iterate however many times that that index can be subtracted from 'amount + 1'. Our Cache indexes will be given a value every time the current index(1-11) minus the coin value from the denominations list, is less than our original amount of '10'. Each iteration of the outer loop will start our inner loop at the index equal to the value of the the outer loop coin.
cache[i] += cache[i - coin]
# default value of cache[0] = 1
# then we cycle through cache[1]-cache[11] subtracting the coin value of "1 cent", from the current loop index
# giving each loop that is able complete this task a value of 1 in the cache index
# when we hit cache[11] and minus the coin of '1', we return the value of amount and restart the loop
# print(cache, cache[amount])
# print('cache amount', cache[amount])
# this counts how many times the loop was able to generate the value of amount
return cache[amount]
if __name__ == "__main__":
# Test our your implementation from the command line
# with `python making_change.py [amount]` with different amounts
if len(sys.argv) > 1:
denominations = [1, 5, 10, 25, 50]
amount = int(sys.argv[1])
print("There are {ways} ways to make {amount} cents.".format(
ways=making_change(amount, denominations), amount=amount))
else:
print("Usage: making_change.py [amount]")
|
5f89f65fa211fff9288edd96e534a90baaca6919 | hklgit/PythonStudy | /pythonCodes/com/coocaa/study/类/Student.py | 885 | 3.9375 | 4 | class Student(object):
# 把一些我们认为必须绑定的属性强制填写进去。
# 通过定义一个特殊的__init__方法,在创建实例的时候,就把name,score等属性绑上去:
# 特殊方法“__init__”前后分别有两个下划线!!!
# 注意到__init__方法的第一个参数永远是self,表示创建的实例本身,因此,在__init__方法内部,就可以把各种属性绑定到self,因为self就指向创建的实例本身。
# 这个跟构造器很类似
def __init__(self, name, age):
self.name = name
self.age = age
# Student的一个对象
# stu = Student()
# 注意: 我竟然犯了一个错误,__int__ 然后就是报错:
# TypeError: object() takes no parameters
stu = Student('kerven',20)
print(stu.age)
# print(stu)
# <__main__.Student object at 0x00000000026A8128>
|
becc6a966f455b1d32d7633c9f7cfb53e110b033 | kelvinng2017/chat1 | /test2.py | 225 | 3.890625 | 4 |
while True:
print("請輸入密碼:", end='')
password = input()
if int(password) == 1234567:
print("歡迎光臨!敬請指教")
break
else:
print("密碼錯誤!請在重新輸入") |
c538c8864abefaab9f3e97af43283c2bc0efc63f | randeeppr/fun | /desired_days.py | 1,188 | 4.0625 | 4 | #!/usr/bin/python
#
# This program prints the desired day(s) in between start date and end date
#
import datetime,sys,getopts
def getDesiredDay(start_date,end_date,desired_day):
v1 = value_of_start_day = weekdays[start_date.strftime("%a")]
v2 = value_of_desired_day = weekdays[desired_day]
#print(v1)
#print(v2)
if v1 == v2:
return start_date
else:
start_date = start_date + datetime.timedelta(days=(abs(v2-v1)))
return start_date
weekdays = { "Mon" : 1, "Tue" : 2, "Wed" : 3, "Thu" : 4, "Fri" : 5, "Sat" : 6, "Sun" : 7 }
start_date = datetime.datetime(2019, 04, 8, 00, 00)
end_date = datetime.datetime(2019, 04, 30, 00, 00)
desired_day = sys.argv[1]
#print(start_date.strftime("%Y-%m-%d"))
#print(start_date.strftime("%a"))
start_date = getDesiredDay(start_date,end_date,desired_day)
print("Next {0} is {1}".format(desired_day,start_date.strftime("%Y-%m-%d")))
while start_date <= end_date:
print(start_date.strftime("%Y-%m-%d"))
start_date= start_date + datetime.timedelta(days=7)
sys.exit(0)
#output example
'''
[root@4a178e708f64 fun]# ./desired_days.py Thu
Next Thu is 2019-04-11
2019-04-11
2019-04-18
2019-04-25
'''
[root@4a178e708f64 fun]#
|
0d261b64fc0fee1629ebb3e24483ea4ecd89ad07 | Jav10/Matplotlib-Plotting | /UNO/backToBackBarCharts.py | 488 | 3.59375 | 4 | #Matplotlib Plotting
#Autor: Javier Arturo Hernández Sosa
#Fecha: 30/Sep/2017
#Descripcion: Ejecicios Matplotlib Plotting - Alexandre Devert - (18)
#Gráficas de barras espalda con espalda
import numpy as np
import matplotlib.pyplot as plt
women_pop=np.array([5., 30., 45., 22.])
men_pop=np.array([5., 25., 50., 20.])
X=np.arange(4)
plt.barh(X, women_pop, color='r')
#Hacemos negativos los valores de la población de hombres para que
#se vea el efecto
plt.barh(X, -men_pop, color='b')
plt.show()
|
1e618d71d615ae0f419c6d78f9684f028d8f4aa6 | jip174/cs362--Software-Eng-2 | /week4/test/teststring_testme.py | 480 | 3.765625 | 4 | import testme
from unittest import TestCase
import string
class teststring(TestCase):
def test_input_string(self):
ts = testme.inputString()
count = 0
for x in ts:
if x.isalpha() == True or x == '\0':
count += 1
print(x)
else:
print("Invalid input")
break
self.assertEqual(count, 6)
#self.assertTrue(ts.isalpha() == True)
|
b74c84a5554423d4fcb488945748ebbe64bdd716 | jip174/cs362--Software-Eng-2 | /week4/test/tester_testme.py | 864 | 3.8125 | 4 | import testme
from unittest import TestCase
import string
class testchar(TestCase):
def test_input_char(self):
tc = testme.inputChar()
letters = string.ascii_letters
if (tc.isalpha() == True):
#print(tc)
self.assertTrue(tc.isalpha() == True)
else:
temp = " "
for temp in tc:
if tc in string.punctuation:
temp = tc
self.assertEqual(tc, temp)
class teststring(TestCase):
def test_input_string(self):
ts = testme.inputString()
count = 0
for x in ts:
if x.isalpha() == True or x == '\0':
count += 1
print(x)
else:
print("Invalid input")
break
self.assertEqual(count, 6) |
4891587a4606af3b4d6e284ac033185117abbf14 | peluche/mooc_algo2 | /graphs/dfs_topological_search.py | 1,058 | 3.875 | 4 | #!/usr/bin/env python3
explored = {}
current_label = 0
def is_explored(vertex):
return explored.get(vertex) != None
def explore(vertex):
explored[vertex] = True
def tag(vertex):
global current_label
explored[vertex] = current_label
current_label -= 1
def dfs(graph, vertex):
explore(vertex)
for node in graph[vertex]:
if not is_explored(node):
dfs(graph, node)
tag(vertex)
def dfs_loop(graph):
"""
generate a topological order of the directed graph
/!\ graph must be directed, graph shouldn't have any cycle
"""
for vertex, _ in graph.items():
if not is_explored(vertex):
dfs(graph, vertex)
def main():
"""
A--->B--->D
`-->C--´
E--´
"""
graph = {
'A': ['B', 'C'],
'B': ['D'],
'C': ['D'],
'D': [],
'E': ['C'],
}
global current_label
global explored
explored = {}
current_label = len(graph)
dfs_loop(graph)
print(explored)
if __name__ == '__main__':
main()
|
d902702bc0e0c3168d745fdf7dfda52fbff1c3d0 | Jeniffersc/Curso-Introducao-a-Ciencia-da-Computacao-com-Python-Parte-1 | /Programas da 3a week/Tarefa de programação/Exercícios 2 - FizzBuzz parcial, parte 1.py | 100 | 4.1875 | 4 | num = int(input("Digite um número inteiro: "))
if num % 3 == 0:
print ("Fizz")
else:
print (num) |
29781302370b185924aca0e0384ab49f4af4764c | Jeniffersc/Curso-Introducao-a-Ciencia-da-Computacao-com-Python-Parte-1 | /Programas da 7a week/Tarefa de programação Lista de exercícios - 6/Exercício 2 - Retângulos 2.py | 456 | 4 | 4 | larg = int(input("Digite o número da largura do retângulo: "))
alt = int(input("Digite o número da altura do retângulo: "))
x=larg
y=alt
cont=larg
while y > 0:
while x > 0 and x <= larg:
if y==1 or y==alt:
print ("#", end="")
else:
if x==1 or x==cont:
print ("#", end="")
else:
print(" ", end="")
x = x - 1
print ()
y = y - 1
x = larg
|
1d326577cedbfe93c61026649efd049a720ded66 | Jeniffersc/Curso-Introducao-a-Ciencia-da-Computacao-com-Python-Parte-1 | /Programas da 3a week/Praticar tarefa de programação Exercícios adicionais (opcionais)/Exercício 1 - Distância entre dois pontos.py | 277 | 3.828125 | 4 | import math
x1 = int(input("Digite o primeiro x: "))
y1 = int(input("Digite o primeiro y: "))
x2 = int(input("Digite o segundo x: "))
y2 = int(input("Digite o segundo y: "))
dis = math.sqrt ((x1 - x2)**2 + (y1 - y2)**2)
if dis > 10:
print("longe")
else:
print ("perto")
|
2c6eb6b2fbcc6a1cd440d3c0fff85fdb58e0d72f | maimoonmaimu/codeketa | /set1-5.py | 104 | 3.546875 | 4 | m,a,i=input().split()
if(m>a):
if(m>i):
print(m)
elif(a>i):
print(a)
else:
print(i)
|
91cbaa9c8b92230b76a14a687875b71358fe260f | lx36301766/AtlanLeetCode | /src/pl/atlantischi/leetcode/medium/Medium486.py | 2,964 | 3.78125 | 4 |
"""
给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。
每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。
给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。
示例 1:
输入: [1, 5, 2]
输出: False
解释: 一开始,玩家1可以从1和2中进行选择。
如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。
所以,玩家1的最终分数为 1 + 2 = 3,而玩家2为 5。
因此,玩家1永远不会成为赢家,返回 False。
示例 2:
输入: [1, 5, 233, 7]
输出: True
解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。
最终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。
注意:
1 <= 给定的数组长度 <= 20.
数组里所有分数都为非负数且不会大于10000000。
如果最终两个玩家的分数相等,那么玩家1仍为赢家。
"""
import numpy as np
class Solution:
# 递归
def PredictTheWinner(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
return self.winnter(nums, 0, len(nums) - 1) >= 0
def winnter(self, nums, start, end):
if start == end:
return nums[start]
else:
pick_first = nums[start] - self.winnter(nums, start + 1, end)
pick_last = nums[end] - self.winnter(nums, start, end - 1)
return max(pick_first, pick_last)
# 二阶动态规划
def PredictTheWinner2(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
n = len(nums)
dp = np.zeros([n, n])
# dp = [[0] * n for i in range(n)]
for i in range(0, n - 1)[::-1]:
for j in range(i + 1, n):
a = nums[i] - dp[i + 1][j]
b = nums[j] - dp[i][j - 1]
dp[i][j] = max(a, b)
# print("%s %s" % (i, j))
print(dp)
return dp[0][n - 1] >= 0
# 一阶动态规划
def PredictTheWinner3(self, nums):
"""
print("%s %s" % (i, j))
:type nums: List[int]
:rtype: bool
"""
def main():
nums = [1, 5, 2, 4, 6]
# nums = [2, 4, 3, 4, 55, 1, 2, 3, 1, 2, 4, 3, 4, 5, 1]
solution = Solution()
ret = solution.PredictTheWinner2(nums)
print(ret)
if __name__ == '__main__':
main()
# print(__name__)
|
0b241bfd9a912c87ef304cb43ace9ffb90cce82c | cyro809/trabalho-tesi | /sentimusic/distance_utils.py | 1,284 | 4 | 4 | #! /usr/bin/env python
# -*- coding: utf-8 -*-
import math
# ---------------------------------------------------------------------------
# Função calculate_distance(): Calcula a distancia euclidiana entre dois pontos
# - vec1: Vetor 1
# - vec2: Vetor 2
# - num: Número de dimensões espaciais
# ---------------------------------------------------------------------------
def calculate_distance(p1,p2, num):
result = 0
for i in range(0,num):
result += (p1[i] - p2[i])**2
return math.sqrt(result)
# ---------------------------------------------------------------------------
# Função get_minimum_distance_label(): Calcula a menor distancia entre a
# musica e os centroides retornando o
# grupo a qual ela pertence
# - centers: Centroides de cada grupo
# - music: Coordenadas da musica no espaço
# ---------------------------------------------------------------------------
def get_minimum_distance_label(centers, music):
min_distance = 1000
label = 0
for i in range(0, len(centers)):
distance = calculate_distance(music, centers[i], len(centers[i]))
if distance < min_distance:
min_distance = distance
label = i
return label |
7faefdd7192a19669f3b7a0e73e08b2b769ed15c | chulhee23/today_ps | /hanbit/dfs_bfs/ice_frame.py | 810 | 3.640625 | 4 | # 얼음 틀 모양 주어졌을 때
# 생성되는 최대 아이스크림 수
# 2차원 배열
# 1은 막힘 -> 방문.
# 0은 열림 -> 아직 방문X.
# 0 인접한 0들 묶음 갯수를 파악
def dfs(x, y):
# 범위 벗어나면 종료
if x <= -1 or x >= n or \
y <= -1 or y >= m:
return False
# 방문 전
if graph[x][y] == 0:
# 방문 처리
graph[x][y] = 1
# 상하좌우 재귀 호출
dfs(x-1, y)
dfs(x, y-1)
dfs(x+1, y)
dfs(x, y+1)
return True
return False
n, m = map(int, input())
graph = []
for i in range(n):
graph.append(list(map(int, input().split())))
result = 0
for i in range(n):
for j in range(m):
if dfs(i, j) == True:
result += 1
print(result)
|
3b05df07dcddc639466ba683231cfeff56ba44d8 | chulhee23/today_ps | /data_structure/stack/stack.py | 547 | 3.921875 | 4 | class Stack:
def __init__(self):
self.top = []
def __len__(self):
return len(self.top)
def __str__(self):
return str(self.top[::1])
def push(self, item):
self.top.append(item)
def pop(self):
if not self.isEmpty():
return self.top.pop(-1)
else:
print("stack underflow")
exit()
def isEmpty(self):
return len(self.top) == 0
stack = Stack()
stack.push(2)
stack.push(1)
stack.push(3)
print(stack)
stack.pop()
print(stack)
|
101eea3d60903038cf55472c0ef04b5591e0190e | chulhee23/today_ps | /BOJ/15000-19999/17413.py | 1,793 | 3.515625 | 4 | from collections import deque
import sys
word = list(sys.stdin.readline().rstrip())
i = 0
start = 0
while i < len(word):
if word[i] == "<": # 열린 괄호를 만나면
i += 1
while word[i] != ">": # 닫힌 괄호를 만날 때 까지
i += 1
i += 1 # 닫힌 괄호를 만난 후 인덱스를 하나 증가시킨다
elif word[i].isalnum(): # 숫자나 알파벳을 만나면
start = i
while i < len(word) and word[i].isalnum():
i += 1
tmp = word[start:i] # 숫자,알파벳 범위에 있는 것들을
tmp.reverse() # 뒤집는다
word[start:i] = tmp
else: # 괄호도 아니고 알파,숫자도 아닌것 = 공백
i += 1 # 그냥 증가시킨다
print("".join(word))
# nums = list(str(i) for i in range(10))
# stacking = False
# queueing = False
# for c in s:
# if c.isalpha() or c in nums:
# if queueing:
# queue.append(c)
# else:
# stacking = True
# stack.append(c)
# elif c == '<':
# stacking = False
# queueing = True
# while stack:
# tmp = stack.pop()
# ans += tmp
# queue.append(c)
# elif c == '>':
# queueing = False
# queue.append(c)
# while queue:
# ans += queue.popleft()
# else:
# # 공백
# if stacking:
# stacking = False
# while stack:
# ans += stack.pop()
# ans += c
# elif queueing:
# queue.append(c)
# else:
# ans += c
# if stacking:
# while stack:
# tmp = stack.pop()
# ans += tmp
# print(ans)
|
3597f00172708154780a6e83227a7930e034d166 | csu100/LeetCode | /python/leetcoding/LeetCode_225.py | 1,792 | 4.5 | 4 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/1/31 10:37
# @Author : Zheng guoliang
# @Version : 1.0
# @File : {NAME}.py
# @Software: PyCharm
"""
1.需求功能:
https://leetcode-cn.com/problems/implement-stack-using-queues/
使用队列实现栈的下列操作:
push(x) -- 元素 x 入栈
pop() -- 移除栈顶元素
top() -- 获取栈顶元素
empty() -- 返回栈是否为空
2.实现过程:
"""
from queue import Queue
class MyStack:
def __init__(self):
"""
Initialize your data structure here.
"""
self.stack = Queue()
def push(self, x):
"""
Push element x onto stack.
"""
if self.stack.empty():
self.stack.put(x)
else:
temp = Queue()
temp.put(x)
while not self.stack.empty():
temp.put(self.stack.get())
while not temp.empty():
self.stack.put(temp.get())
def pop(self):
"""
Removes the element on top of the stack and returns that element.
"""
if self.stack.empty():
raise AttributeError("stack is empty!")
return self.stack.get()
def top(self):
"""
Get the top element.
"""
if self.stack.empty():
raise AttributeError("stack is empty!")
a=self.stack.get()
self.push(a)
return a
def empty(self):
"""
Returns whether the stack is empty.
"""
return True if self.stack.empty() else False
if __name__ == '__main__':
mystack = MyStack()
print(mystack.empty())
for i in range(4):
mystack.push(i * i)
print(mystack.empty())
while not mystack.empty():
print(mystack.pop())
|
0efc9e2b00e3c6ad7251b21c0dbdda5fe5a748ff | csu100/LeetCode | /python/leetcoding/LeetCode_206.py | 994 | 3.984375 | 4 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/1/24 14:42
# @Author : Zheng guoliang
# @Site :
# @File : LeetCode_206.py
# @Software: PyCharm
"""
1.需求功能:
https://leetcode.com/problems/reverse-linked-list/description/
2.实现过程:
"""
from leetcoding.ListNode import ListNode
class Solution:
def reverseList(self, head):
if head is None or head.next is None:
return head
head_node = None
while head:
node = head.next
head.next = head_node
head_node = head
head = node
return head_node
def printList(head):
while head:
print(head.val)
head = head.next
if __name__ == '__main__':
a1 = ListNode(1)
a2 = ListNode(2)
a3 = ListNode(3)
a4 = ListNode(4)
a5 = ListNode(5)
a1.next = a2
a2.next = a3
a3.next = a4
a4.next = a5
solution = Solution()
result = solution.reverseList(a1)
printList(result)
|
0768a12697cd31a72c3d61ecfa4eda9a1aa0751e | csu100/LeetCode | /python/leetcoding/LeetCode_232.py | 1,528 | 4.46875 | 4 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/1/31 17:28
# @Author : Zheng guoliang
# @Version : 1.0
# @File : {NAME}.py
# @Software: PyCharm
"""
1.需求功能:
https://leetcode-cn.com/problems/implement-queue-using-stacks/submissions/
使用栈实现队列的下列操作:
push(x) -- 将一个元素放入队列的尾部。
pop() -- 从队列首部移除元素。
peek() -- 返回队列首部的元素。
empty() -- 返回队列是否为空。
2.实现过程:
"""
class MyQueue:
def __init__(self):
"""
Initialize your data structure here.
"""
self._myqueue = []
def push(self, x):
"""
Push element x to the back of queue.
"""
if len(self._myqueue) < 1:
self._myqueue.append(x)
else:
temp = self._myqueue[::-1]
temp.append(x)
self._myqueue = temp[::-1]
def pop(self):
"""
Removes the element from in front of queue and returns that element.
"""
if len(self._myqueue) < 1:
raise AttributeError("queue is empty!")
return self._myqueue.pop()
def peek(self) -> int:
"""
Get the front element.
"""
if len(self._myqueue) < 1:
raise AttributeError("queue is empty!")
return self._myqueue[-1]
def empty(self) -> bool:
"""
Returns whether the queue is empty.
"""
return True if len(self._myqueue) < 1 else False
|
0341229309f1cf0e9add85b69c248e2f13e9f819 | ZhouYzzz/TF-CT-ResCNN | /test/test_decorator.py | 328 | 3.734375 | 4 | def print_args(func):
def wrapped_func(*args, **kwargs):
print(func.__name__, func.__doc__)
for a in args:
print(a)
for k, v in kwargs:
print(k, v)
return func(*args, **kwargs)
return wrapped_func
@print_args
def add(x: int, y: int):
""":Add two integers"""
return x + y
print(add(1, 2))
|
71a23a3ac6f35438be6d943dad386d2f33c01c84 | DenisoDias/python-password-generator | /password_gen.py | 1,181 | 3.734375 | 4 | from random import choice
import argparse
import string
arg = argparse.ArgumentParser(add_help=True)
arg.add_argument('-s', '--size', default=20, nargs="?", type=int, help='Parameter to set size of password you will generate')
arg.add_argument('-q', '--quantity', default=10, nargs="?", type=int, help="Parameter to set how much passwords you want to generate each time you run the script")
arg.add_argument('-n', '--numbers', nargs="?", const=True, default=False, help='Parameter to set just numbers in the password')
arg.add_argument('-l', '--letters', nargs="?", const=True, default=False, help='Parameter to set just letters in the password')
arguments = arg.parse_args()
def password_generator(args):
if args.numbers:
password_chars = (list(string.digits))
elif args.letters:
password_chars = (list(string.ascii_letters))
else:
password_chars = (list(string.digits) * 3) + (list(string.ascii_letters) * 3) + list(string.punctuation)
password = ""
for char in range(args.size):
password += choice(password_chars)
return password
for passwd_number in range(arguments.quantity):
print(password_generator(arguments))
|
ef0de30520dcecfae1031318a469f4202c02091c | jeanjoubert10/Atwood-machine | /atwood machine1.py | 3,357 | 3.5 | 4 |
# Simple atwood machine in python on osX
import turtle
from math import *
import time
win = turtle.Screen()
win.bgcolor('white')
win.setup(500,900)
win.tracer(0)
win.title("Atwood machine simulation")
discA = turtle.Turtle()
discA.shape('circle')
discA.color('red')
discA.shapesize(3,3)
discA.up()
discA.goto(0,300)
pen1 = turtle.Turtle()
pen1.ht()
pen1.color('black')
pen1.up()
pen1.goto(-200,380) # Ceiling
pen1.down()
pen1.pensize(10)
pen1.goto(200,380)
pen1.up()
pen1.goto(-200,-300) #Floor
pen1.down()
pen1.goto(200,-300)
pen1.pensize(1)
pen1.up()
pen1.goto(0,380)
pen1.down()
pen1.color('blue') # Rope to pulley
pen1.goto(0,300)
pen = turtle.Turtle()
pen.ht()
pen.up()
starty = 0
massA = 2 # CHANGE MASS OF BOXES
massB = 1
boxA = turtle.Turtle()
boxA.shape('square')
boxA.color('green')
boxA.shapesize(massA,massA)
boxA.up()
boxA.goto(-100,starty)
boxA.down()
boxA.goto(100,starty)
boxA.goto(-30,starty)
boxA.up()
boxB = turtle.Turtle()
boxB.shape('square')
boxB.color('green')
boxB.shapesize(massB,massB)
boxB.up()
boxB.goto(30,starty)
top_rope = 300
start_time = time.time()
g = -9.8
vA = 0
uA = 0
vB = 0
uB = 0
net_force = massA*g - massB*g # if positive A will drop
print("Net force: ",net_force)
aA = net_force/(massA+massB)
print("a for box A = ",aA)
aB = -aA
pen2 = turtle.Pen()
pen2.ht()
pen2.up()
Game_over = False
count = 0
while not Game_over:
t = time.time() - start_time
count+=1
vA = aA*t
vB = aB*t
yA = (uA*t + 1/2*aA*t*t + starty)*5 # start height or s0
yB = (uB*t + 1/2*aB*t*t + starty)*5
boxA.goto(boxA.xcor(),yA)
boxB.goto(boxB.xcor(),yB)
# Draw rope
pen.clear()
pen.up()
pen.goto(boxA.xcor(),boxA.ycor())
pen.down()
pen.goto(boxA.xcor(),top_rope)
pen.lt(90)
pen.goto(boxB.xcor(),top_rope)
pen.goto(boxB.xcor(),boxB.ycor())
#Write Data:
if count%40==0:
pen2.clear()
pen2.goto(0,400)
pen2.write("time: {:.2f}s".format(t),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-330)
pen2.write("mass A: {}kg\tmass B: {}kg".format(massA,massB),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-360)
pen2.write("Va: {:.2f}m/s\tVb: {:.2f}m/s".format(vA,vB),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-390)
pen2.write("Aa: {:.2f}m/s^2\tAb: {:.2f}m/s^2".format(aA,aB),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-420)
pen2.write("distance: {:.2f}m".format((yA-starty)/5),align='center',font = ('Courier',15, 'normal'))
win.update()
if boxA.ycor()<=-250 or boxB.ycor()<=-250:
print('done')
Game_over = True
#Final figures:
pen2.clear()
pen2.goto(0,400)
pen2.write("time: {:.2f}s".format(t),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-330)
pen2.write("mass A: {}kg\tmass B: {}kg".format(massA,massB),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-360)
pen2.write("Va: {:.2f}m/s\tVb: {:.2f}m/s".format(vA,vB),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-390)
pen2.write("Aa: {:.2f}m/s^2\tAb: {:.2f}m/s^2".format(aA,aB),align='center',font = ('Courier',15, 'normal'))
pen2.goto(0,-420)
pen2.write("distance: {:.2f}m".format((yA-starty)/5),align='center',font = ('Courier',15, 'normal'))
|
708e40f6392f05d6e0b04e32c600328e052d153e | IracemaLopes/Data_Visualiazation_with_Matplotlib | /annotating_a_plot_of_time_series_data.py | 444 | 3.984375 | 4 | import pandas as pd
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# Read the data from file using read_csv
climate_change = pd.read_csv("climate_change.csv", parse_dates=["date"], index_col=["date"])
# Plot the relative temperature data
ax.plot(climate_change.index, climate_change["relative_temp"])
# Annotate the date at which temperatures exceeded 1 degree
ax.annotate(">1 degree", xy=[pd.Timestamp('2015-10-06'), 1])
plt.show() |
995c55f01fcece72677e88b3518bcce98e8f4522 | yassir-23/Algebre-application | /Systemes.py | 1,765 | 3.703125 | 4 | from os import *
from Fonctions import *
def Systemes():
while True:
system('cls')
print(" #-----------------------------# Menu #-----------------------------#")
print(" 1 ==> Système de n équations et n inconnus.")
print(" 0 ==> Quitter.")
print(" #------------------------------------------------------------------#")
choix = input(" Entrer votre choix : ")
if choix == '1':
n = int(input(" Entrer le nombre n : "))
print(" Entrer les coefficients : ")
A = Matrice(n, n)
print(" Entrer les nombres de la partie à droite : ")
b = Matrice(n, 1)
if n > 0:
resultat(Multiplication_Matrice(Matrice_Inv(A, n), b, n, 1, n), n)
else:
print(" Le système n'est pas un système de Cramer")
system('PAUSE')
elif choix == '0':
break
#------------------------------------------------------------------------------#
'''def Elimination_gauss(X, n):
det = 1
pivot = 0
for i in range(n):
if X[i][i] == 0:
for j in range(n):
if X[j][i] != 0:
X[i], X[j] = X[j], X[i]
pivot = X[i][i]
break
if pivot != 0:
for ligne in range(i, n):
a = X[ligne][i]
for j in range(i, n+1):
X[ligne][j] -= (a * X[i][j] / pivot)
else:
break
Xn = []
for i in range(n, 0, i-1):
for j in range(n-1):
if j = 0:
x = X[n-1][n]
x -= X[i][j]
x /= X[i][n-1]
X.append(x)'''
|
3a9a3220f024406f7120421cb00e17427810bb09 | devdw98/TIL | /Language/Python/파이썬으로 배우는 알고리즘 트레이딩/lesson05.py | 913 | 3.546875 | 4 | #5-1
def myaverage(a,b):
return (a+b)/2
#5-2
def get_max_min(data_list):
return (max(data_list), min(data_list))
#5-3
def get_txt_list(path):
import os
org_list = os.listdir(path)
ret_list = []
for x in org_list:
if x.endswith("txt"):
ret_list.append(x)
return ret_list
#5-4
def BMI(kg, cm):
m = cm * 0.01
result = kg / (m*m)
if result < 18.5 :
print('마른 체형')
elif (18.5 <= result) and (result < 25.0):
print('표준')
elif (25.0 <= result) and (result < 30.0):
print('비만')
else:
print('고도비만')
#5-5
while 1:
height = input("Height (cm): ")
weight = input("Weight (kg): ")
BMI(float(height), float(weight))
#5-6
def get_triangle_area(width, height):
return width * height / 2
#5-7
def add_start_to_end(start, end):
result = 0
for i in range(start,end+1,1):
result += i
return result
|
6e42680389e94466abc769aec4e8eba49d9a853d | hexavi42/eye-see-u | /proofOfConcept/grayscale.py | 782 | 3.546875 | 4 | import argparse
from os import path
from PIL import Image
def main():
parser = argparse.ArgumentParser(description='Grayscale an Image')
parser.add_argument('-p', '--path', type=str, default=None, help='filepath of image file to be analyzed')
parser.add_argument('-o', '--outFile', type=str, default=None, help='filepath to save new image at')
args = parser.parse_args()
filename, file_extension = path.splitext(args.path)
img = Image.open(args.path)
newImg = img.convert("L")
if args.outFile is not None:
filename, file_extension = path.splitext(args.outFile)
else:
filename, file_extension = path.splitext(args.path)
filename+="_Gray"
newImg.save(filename,"PNG")
return
if __name__ == "__main__":
main() |
0be7bc8211b56c825d410b76816af2d89eb19f6d | Alb4tr02/holbertonschool-higher_level_programming | /0x03-python-data_structures/10-divisible_by_2.py | 318 | 3.984375 | 4 | #!/usr/bin/python3
def divisible_by_2(my_list=[]):
new_list = []
if my_list is None or len(my_list) == 0:
return (None)
else:
for i in my_list:
if (i % 2) == 0:
new_list.append(True)
else:
new_list.append(False)
return (new_list)
|
c537a01c9337f80af03e9209217d1a7dd25fbad9 | Alb4tr02/holbertonschool-higher_level_programming | /0x04-python-more_data_structures/0-square_matrix_simple.py | 221 | 3.625 | 4 | #!/usr/bin/python3
def square_matrix_simple(matrix=[]):
if matrix is None:
return
newm = matrix.copy()
for i in range(0, len(newm)):
newm[i] = list(map(lambda x: x*x, newm[i]))
return newm
|
2003141f132187e8281b81d69561fe78131a948a | Alb4tr02/holbertonschool-higher_level_programming | /0x04-python-more_data_structures/6-print_sorted_dictionary.py | 216 | 4.03125 | 4 | #!/usr/bin/python3
def print_sorted_dictionary(a_dictionary):
if a_dictionary is None:
return
list = (sorted(a_dictionary.items()))
for i in list:
print("{}{} {}".format(i[0], ":", i[1]))
|
cc43bddce55b547f89fb76b6636a278204121d0f | Alb4tr02/holbertonschool-higher_level_programming | /0x01-python-if_else_loops_functions/8-uppercase.py | 194 | 4.09375 | 4 | #!/usr/bin/python3
def uppercase(str):
for a in str:
c = ord(a)
if c >= ord('a') and c <= ord('z'):
c -= 32
print("{:c}".format(c), end="")
print("")
|
74c99c3b0c9b9bd9adc3d84ec71d466169be8a1f | PuchatekwSzortach/convolutional_network | /examples/mnist.py | 2,112 | 3.546875 | 4 | """
A simple MNIST network with two hidden layers
"""
import tqdm
import numpy as np
import sklearn.utils
import sklearn.datasets
import sklearn.preprocessing
import net.layers
import net.models
def main():
print("Loading data...")
mnist = sklearn.datasets.fetch_mldata('MNIST original')
X_train, y_train = mnist.data[:60000].reshape(-1, 28, 28).astype(np.float32), mnist.target[:60000].reshape(-1, 1)
X_test, y_test = mnist.data[60000:].reshape(-1, 28, 28).astype(np.float32), mnist.target[60000:].reshape(-1, 1)
encoder = sklearn.preprocessing.OneHotEncoder(sparse=False).fit(y_train)
y_train = encoder.transform(y_train)
y_test = encoder.transform(y_test)
# Stack images so they are 3D, scale them to <0, 1> range
X_train = np.stack([X_train], axis=-1)
X_test = np.stack([X_test], axis=-1)
layers = [
net.layers.Input(sample_shape=(28, 28, 1)),
net.layers.Convolution2D(filters=20, rows=14, columns=14),
net.layers.Convolution2D(filters=10, rows=15, columns=15),
net.layers.Flatten(),
net.layers.Softmax()
]
model = net.models.Model(layers)
batch_size = 128
epochs = 2
X_test, y_test = sklearn.utils.shuffle(X_test, y_test)
print("Initial accuracy: {}".format(model.get_accuracy(X_test, y_test)))
for epoch in range(epochs):
print("Epoch {}".format(epoch))
X_train, y_train = sklearn.utils.shuffle(X_train, y_train)
batches_count = len(X_train) // batch_size
for batch_index in tqdm.tqdm(range(batches_count)):
x_batch = X_train[batch_index * batch_size: (batch_index + 1) * batch_size]
y_batch = y_train[batch_index * batch_size: (batch_index + 1) * batch_size]
model.train(x_batch, y_batch, learning_rate=0.01)
print("Accuracy: {}".format(model.get_accuracy(X_test, y_test)))
model.save("/tmp/model.p")
loaded_model = net.models.Model.load("/tmp/model.p")
print("Loaded model's accuracy: {}".format(loaded_model.get_accuracy(X_test, y_test)))
if __name__ == "__main__":
main()
|
9003c2fc01c18745533b9995186de30fc99f4fc4 | KulaevaNazima/files | /files4.py | 1,348 | 3.859375 | 4 | #Cоздайте текстовый файл python.txt и запишите в него текст #1 из Classroom:
#Затем, считайте его. Пробежитесь по всем его словам, и если слово содержит
#букву “t” или “T”, то запишите его в список t_words = [ ]. После окончания списка,
#выведите на экран все полученные слова. Подсказка: используйте for.
python = open ('/home/nazima/python.txt', 'w')
python.writelines ("""PyThon is a widely used high-level programming language for general-purpose
programming, created by Guido van Rossum and first released in 1991. An interpreted
language, PyThon has a design philosophy that emphasizes code readability (notably
using whitespace indentation to delimit code blocks rather than curly brackets or
keywords), and a syntax that allows programmers to express concepts in fewer lines of
code than might be used in languages such as C++ or Java.""")
python.close ()
python = open ('/home/nazima/python.txt', 'r')
letter1= "t"
letter2= "T"
for line in python.readlines ():
for words in line.split ():
t_words= []
if letter1 in words:
t_words.append (words)
print (t_words)
if letter2 in words:
t_words.append (words)
print (t_words) |
5cb813598d9e52af2c1f514da781de4d22285190 | singediguess/my-python-note | /using_str/using_str.py | 495 | 4.0625 | 4 | str1 = 'I am {}, I love {}'
str2 = str1.format('k1vin', 'coding')
print (str2)
print('---')
#using index
str3 = '{0:10} : {1:3d}'
table = {'c++':16, 'html':15, 'python':17}
for name, nmb in table.items():
print (str3.format(name, nmb))
print('---')
#using '%'
import math
print ('pi = %6.4f' % math.pi)
print('---')
#dictionary problems
print (table.items())
print (table['c++'])
print (table['html'])
print('---')
#input
name= input('Give me your name: ')
print ('Welcome,', name, '!!')
|
d57b48fe6ebac8c1770886f836ef17f3cadf16c7 | alma-frankenstein/Grad-school-assignments | /montyHall.py | 1,697 | 4.125 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
#to illustrate that switching, counterintuitively, increases the odds of winning.
#contestant CHOICES are automated to allow for a large number of test runs, but could be
#changed to get user input
import random
DOORS = ['A', 'B', 'C']
CHOICES = ["stay", "switch"]
def main():
num_runs = 100
monty(num_runs)
def monty(num_runs):
switchAndWin = 0 #times winning if you switch
stayAndWin = 0 #times winning if you stay
runs = 0
while runs <= num_runs:
prize = random.choice(DOORS)
picked_door = random.choice(DOORS)
#Monty open a door that was neither chosen nor containing the prize
for door in DOORS:
if door != prize and door != picked_door:
openedDoor = door
break
#the contestant can either stay with picked_door or switch to the other unopened one
stayOrSwitch = random.choice(CHOICES )
if stayOrSwitch == "stay":
final = picked_door
if final == prize:
stayAndWin += 1
else: #switch
for door in DOORS:
if door != openedDoor and door != picked_door:
final = door
if final == prize:
switchAndWin += 1
break
runs += 1
percentSwitchWin = (switchAndWin/num_runs) * 100
percentStayWin = (stayAndWin/num_runs) * 100
print("Odds of winning if you stay: " + str(percentStayWin))
print("Odds of winning if you switch: " + str(percentSwitchWin))
if __name__ == '__main__':
main()
|
050b97bea9846acccb6ec7abafbab7505c6fd462 | ColinSidberry/Learning-to-Code | /KS2.py | 1,208 | 3.6875 | 4 | import csv
with open('Santee-Surrounding-Cities.csv','w',newline = '') as f:
thewriter = csv.writer(f)
file = input('Please enter raw.csv: ')
opened = open(file)
file2 = input('Please enter new.txt: ')
opened2 = open(file2)
s = str()
old = ['san diego','santee','del mar','carlsbad','san marcos','encinitas','pendleton']
new = list()
x = list()
#Creating List of New Cities that will replace old cities
for line in opened2:
new.append(line.rstrip())
#Creating File where completed date will be printed to
with open('Santee-Surrounding-Cities.csv','w',newline = '') as f:
thewriter = csv.writer(f)
thewriter.writerow(['Keyword','Ad Group'])
for line in opened:
x = line.split(',')
s = x[1]
count = 0
for old_city in old:
count = count + 1
if old_city in s:
for new_city in new:
thewriter.writerow([s.replace(old_city, new_city),x[2]])
count = count + 1
#if old_city is old[0] or old[1]:
# thewriter.writerow([s,x[2]])
elif count is 7:
thewriter.writerow([s,x[2]])
else:
continue
|
141011f37de069a56eb23f0aa5cf9b1c18fa6c72 | JMR96/Ciclo2LP | /PalavraContraria.py | 263 | 4.0625 | 4 | # -*- coding: latin1 -*-
def fraseInvert(frase):
invert = frase.split()
for i in xrange(len(invert)):
invert[i] = invert[i][::-1]
return ' '.join(invert)
frase = 'Estou no ciclo 2 fazendo Linguagem de Programacao'
print fraseInvert(frase)
|
b36cc808695e667d53ed0d274ee5faec1dd139ba | skluzada/school_projects | /Image Editor/image_editor/image_editor.py | 8,324 | 3.84375 | 4 | import numpy as np
from PIL import Image
MIRROR_VERTICAL = 0
MIRROR_HORIZONTAL = 1
# coefficients by which the corresponding channels are multiplied when converting image from rgb to gray
TO_GRAY_COEFFICIENTS = {
'RED': 0.2989,
'GREEN': 0.5870,
'BLUE': 0.1140
}
class ImageEditor:
"""
A class used to perform some basic operations on images
Attributes:
image_data (np.array):
Current state of the image, without brightness and contrast applied
brightness and contrast are not applied, because information could be lost
and we want to be able to keep all the information after for example setting brightness to maximum
image_data_og (np.array):
Serves as a backup to get to the original image
brightness (int):
Amount of brightness added to the image, default = 0, should be between -255 and 255
contrast (float):
Amount of contrast added to the image, default = 1, should be higher than 0
"""
def __init__(self):
self.image_data = None
self.image_data_og = None
self.brightness = 0
self.contrast = 1
def load_data(self, image_path):
"""
Method used to load the image data
:param image_path: (str) Absolute path of an image file
:return: (bool) True for success, False otherwise
"""
try:
self.image_data = np.asarray(Image.open(image_path).convert('RGB'))
except (OSError, AttributeError):
return False
self.image_data.setflags(write=True)
self.image_data_og = self.image_data.copy()
self.brightness = 0
self.contrast = 1
return True
def get_data(self):
"""
Method used to get the image data, with brightness and contrast applied
:return: (np.array) Image data
"""
return self.apply_contrast(self.apply_brightness(self.image_data.copy()))
def save_image(self, image_path):
"""
Method used to save the image data
:param image_path: (string) Absolute path to which the image will be saved
:return: (bool) True for success, False otherwise
"""
try:
Image.fromarray(self.get_data()).save(image_path)
except ValueError:
return False
return True
def reset(self):
"""
Method used to set the image data back to the original
"""
self.image_data = self.image_data_og.copy()
self.brightness = 0
self.contrast = 1
def rotate(self, angle):
"""
Method used to rotate the image by multiples of 90
:param angle: (int) Angle to rotate the image by - has to be a multiple of 90
"""
assert angle % 90 == 0 # GUI shouldn't let this happen
self.image_data = np.rot90(self.image_data, k=angle / 90)
def mirror(self, axis=MIRROR_HORIZONTAL):
"""
Method used to mirror the image either vertically or horizontally
:param axis: (int) Specify the axis around which the mirroring will be performed
has to be either MIRROR_HORIZONTAL (=1) or MIRROR_VERTICAL (=0)
"""
self.image_data = np.flip(self.image_data, axis=axis)
def negative(self):
"""
Method used to transform the image data to negative
"""
self.image_data = 255 - self.image_data
def rgb_to_gray(self):
"""
Method used to transform the image data from rgb to gray
"""
if self.image_data.ndim != 3:
# the image contains only one channel
return
if self.image_data.shape[2] < 3:
# the image contains less than three channels
return
self.image_data = TO_GRAY_COEFFICIENTS['RED'] * self.image_data[:, :, 0] \
+ TO_GRAY_COEFFICIENTS['GREEN'] * self.image_data[:, :, 1] \
+ TO_GRAY_COEFFICIENTS['BLUE'] * self.image_data[:, :, 2]
def set_brightness(self, new_brightness):
"""
Method use to set the brightness attribute
:param new_brightness: (int) New brightness value, should be between -255 and 255
"""
self.brightness = new_brightness
def apply_brightness(self, image_data):
"""
Method to apply brightness to the passed image data (not the class's image_data attribute!)
:param image_data: (np.array) Image data on which the brightness will be applied
:return: (np.array) Image data with brightness applied
"""
# convert to int16 as uint8 values could overflow
image_data = np.clip(np.int16(image_data) + self.brightness, 0, 255)
# convert back to uint8
image_data = np.uint8(image_data)
return image_data
def set_contrast(self, new_contrast):
self.contrast = new_contrast
def apply_contrast(self, image_data):
"""
Method to apply contrast to the passed image data (not the class's image_data attribute!)
:param image_data: (np.array) Image data on which the contrast will be applied
:return: (np.array) Image data with contrast applied
"""
# convert to int16 as uint8 values could overflow
image_data = np.clip(np.int16(image_data) * self.contrast, 0, 255)
# convert back to uint8
image_data = np.uint8(image_data)
return image_data
@staticmethod
def convolve2d(channel, kernel):
"""
Static method used to perform 2D convolution using Convolution theorem
source: BI-SVZ, Lecture 7
proof: https://en.wikipedia.org/wiki/Convolution_theorem
:param channel: (np.array) 2D channel of an image
:param kernel: (np.array) 2D filter to be applied
:return: (np.array) result of convolution of params channel and kernel, with same size as param channel
"""
assert channel.ndim == 2
assert kernel.ndim == 2
# we need to transform channel and kernel to same size, otherwise we wouldn't be able to get a dot product
# size includes padding (np.fft.fft2 function will insert zero padding)
size = np.array(channel.shape) + np.array(kernel.shape) - 1
dtft_channel = np.fft.fft2(channel, size)
dtft_kernel = np.fft.fft2(kernel, size)
new_channel = np.fft.ifft2(dtft_channel * dtft_kernel) # get convolution
new_channel = np.real(new_channel) # get back to the real world
new_channel = np.clip(new_channel, 0, 255) # there might be some overflows
new_channel = np.uint8(new_channel) # np.real returned float type values
# we used padding, so we won't return the first and last row and column
return new_channel[1:-1, 1:-1]
def highlight_edges(self):
"""
Method used to highlight edges using either laplacian filter or sharpen filter
"""
# laplacian filter
# sharpen_filter = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
# this looks a lot better, than laplacian filter
sharpen_filter = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
if self.image_data.ndim == 2:
# gray image
self.image_data = self.convolve2d(self.image_data, sharpen_filter)
elif self.image_data.shape[2] == 3:
# rgb image
# for each channel:
for i in range(3):
self.image_data[:, :, i] = self.convolve2d(self.image_data[:, :, i], sharpen_filter)
def blur(self):
"""
Method used to blur the image using either box blur filter or gaussian blur filter
"""
# box blur filter
# blur_filter = 1/9 * np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
# gaussian blur filter
blur_filter = 1 / 16 * np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]])
if self.image_data.ndim == 2:
# gray image
self.image_data = self.convolve2d(self.image_data, blur_filter)
elif self.image_data.shape[2] == 3:
# rgb image
# for each channel:
for i in range(3):
self.image_data[:, :, i] = self.convolve2d(self.image_data[:, :, i], blur_filter)
|
31188f137dc8be0688b2a3042f04226bca65e202 | mamorales10/Python-Guide-for-Beginners | /SortingAlgorithms/merge_sort.py | 674 | 4.03125 | 4 |
def mergeSort(listToSort):
if(len(listToSort) > 1):
mid = len(listToSort)//2
lower = listToSort[:mid]
upper = listToSort[mid:]
mergeSort(lower)
mergeSort(upper)
i = 0
j = 0
k = 0
while(i < len(lower) and j < len(upper)):
if(lower[i] < upper[j]):
listToSort[k] = lower[i]
i = i + 1
else:
listToSort[k] = upper[j]
j = j + 1
k = k + 1
while(i < len(lower)):
listToSort[k] = lower[i]
i = i + 1
k = k + 1
while(j < len(upper)):
listToSort[k] = upper[j]
j = j + 1
k = k + 1
print "Enter numbers to be sorted (separated by space)"
userList = map(int, raw_input().split())
mergeSort(userList)
print userList
|
f8096a50065547373b754f7c3c3ea43367434d88 | psykid/computational-physics | /romberg.py | 664 | 3.5 | 4 | import math
import numpy as np
fun="1.0/x"
lb, ub=1, 2
def f(x):
return eval(fun)
def T(m,k):
if k==0:
return T_0(m)
return
def T_0(m):
N=2**m
step=(ub-lb)*1.0/N
i, summ=lb+step,0
while i<ub:
summ+=f(i)
i+=step
summ+=0.5*(f(lb)+f(ub))
return summ*step
#0.69314718055994529
def main():
#_n=int(raw_input("enter k, for degree of accuracy h^2k: "))
#_m=int(raw_input("enter initial m, for 2^m starting points: "))
_k=5
_m=3
T=np.zeros((_k+1,_k+1))
for m in range(_k+1):
for k in range(m+1):
print m,k
if k==0:
T[m][k]=T_0(_m+m)
continue
T[m][k]=((2**(2*k))*T[m,k-1]-T[m-1,k-1])/(2**(2*k)-1)
print T
main()
|
ffdba064734aa4cb7193f7121fa5c28cd06a32cc | Shio3001/koneta | /99.py | 619 | 3.6875 | 4 | import random
print("九九計算して")
def loop():
i1 = random.randint(0, 9)
i2 = random.randint(0, 9)
m = random.randint(0, 2)
correct = 0
if m == 0:
correct = i1 * i2
print("{0} x {1}".format(i1, i2))
if m == 1:
correct = i1 + i2
print("{0} + {1}".format(i1, i2))
if m == 2:
correct = i1 - i2
print("{0} - {1}".format(i1, i2))
correct_str = str(correct)
ans_str = input().rstrip()
correct_f = correct_str[-1]
ans_f = ans_str[-1]
if correct_f != ans_f:
return
loop()
loop()
print("おわり")
|
8b8644a5fbc3a44baff3a5ad1156c5a644b60f56 | drod1392/IntroProgramming | /Lesson1/exercise1_Strings.py | 1,026 | 4.53125 | 5 | ## exercise1_Strings.py - Using Strings
#
# In this exercise we will be working with strings
# 1) We will be reading input from the console (similar to example2_ReadConsole.py)
# 2) We will concatenate our input strings
# 3) We will convert them to upper and lowercase strings
# 4) Print just the last name from the "name" variable
# 5) EXTRA - Use proper capitalization on first and last name
print("Section 1 - Read input\n")
# Prompt the user to enter first and last name seperately
# Use two input() commands to read first and last name seperately.
# Use variable names "first" and "last" to store your strings
print("\nSection 2 - Concatenate")
# Concatenate first and last name together in variable "name"
# Print out the result
print("\nSection 3 - Upper and Lower")
# Print "name" in all uppercase
# Print "name" in all lowercase
print("\nSection 4 - Only Last Name")
# Print just the last name from "name"
print("\nSection 5 - Capitalization")
# Extra - use proper capitalization on first and last name
|
df9cea82395dfc4c540ffe7623a0120d2483ea9e | imyogeshgaur/important_concepts | /Python/Exercise/ex4.py | 377 | 4.125 | 4 | def divideNumber(a,b):
try:
a=int(a)
b=int(b)
if a > b:
print(a/b)
else:
print(b/a)
except ZeroDivisionError:
print("Infinite")
except ValueError:
print("Please Enter an Integer to continue !!!")
num1 = input('Enter first number')
num2 = input('Enter second number ')
divideNumber(num1,num2)
|
abcb2f242d5b48cae08848eba99bec9249cd7f98 | servemoseslake/serve | /sml/sml/serve/utils.py | 873 | 3.5 | 4 |
from datetime import datetime, date
def date_from_string(value, format='%Y-%m-%d'):
if type(value) == date:
return value
return datetime.strptime(value, format).date()
def datetime_from_string(value, format='%Y-%m-%dT%H:%M'):
alternate_formats = (
'%Y-%m-%dT%H:%M:%S',
)
all_formats = set((format,) + alternate_formats)
for fmt in all_formats:
try:
return datetime.strptime(value, fmt)
except ValueError:
pass
raise ValueError
def date_to_age(value, now=None):
now = now if now else datetime.now()
if value > now.date().replace(year = value.year):
return now.date().year - value.year - 1
else:
return now.date().year - value.year
def datetime_round(value):
return datetime(value.year, value.month, value.day, value.hour, tzinfo=value.tzinfo)
|
c9586c078a3bd35ebab6a145de6b6a0a934f501f | zmadil/Random_snippets_2019 | /bubblesort.py | 242 | 4.0625 | 4 | list1=[5,3,7,22,5,9,1]
def bubblesort(list1):
for i in range(len(list1)):
for j in range(i+1,len(list1)):
if list1[j] < list1[i]:
temp=list1[j]
list1[j]=list1[i]
list1[i]=temp
return list1
bubblesort(list1)
print(list1)
|
4b8332d14517a5e339ea61207ed710d8e7cd7e78 | zmadil/Random_snippets_2019 | /fibonacci.py | 214 | 3.8125 | 4 | #0,1,1,2,3,5,8,13,21
print('Please enter how many numbers you want ')
user=int(input())
print('----------------------------')
a=0
b=1
print(a)
print(b)
for i in range(2,user):
c=a+b
a=b
b=c
print(c)
|
0953e7600c11fb8059e602fb948107fbc801065b | makstar1/low | /pro4.py | 329 | 3.8125 | 4 | from random import randint as ri
a = int(input( "введите длину списка: "))
b = int(input("введите максимальное значение элемента списка: "))
def listFunc (x,y):
list = []
for i in range(x):
list.append(ri(0,y+1))
return list
print(listFunc(a,b))
|
e822856efebb234650fa9d22e4e233757ec01acb | liweiwei1419/Algorithms-Learning-Python | /binary-search/binary-search-4.py | 549 | 3.890625 | 4 | # 查找最后一个小于等于给定值的元素
def binary_search_4(nums, target):
size = len(nums)
# 注意,right 向左边减了 1 位,因为 target 可能比 nums[0] 还要小
left = -1
right = size - 1
while left < right:
mid = left + (right - left + 1) // 2
if nums[mid] <= target:
left = mid
else:
right = mid - 1
return left
if __name__ == '__main__':
nums = [1, 3, 3, 3, 3, 4, 5]
target = 9
result = binary_search_4(nums, target)
print(result)
|
8c83a11c95c69da1e3d09e44130af2457d4bf91b | liweiwei1419/Algorithms-Learning-Python | /unweighted-graph/DenseGraph.py | 1,211 | 3.578125 | 4 | from iterator import DenseGraphIterator
class DenseGraph:
def __init__(self, n, directed):
assert n > 0
# 结点数
self.n = n
# 边数
self.m = 0
# 是否是有向图
self.directed = directed
# 图的具体数据
self.g = [[False for _ in range(n)] for _ in range(n)]
def add_edge(self, v, w):
assert 0 <= v < self.n
assert 0 <= w < self.n
# 如果已经有了结点 v 到结点 w 的边
# 就直接返回,不再添加邻边,和 m + 1
if self.has_edge(v, w):
return
self.g[v][w] = True
# 如果是无向图,维护无向图的对称性
if not self.directed:
self.g[w][v] = True
self.m += 1
def has_edge(self, v, w):
assert 0 <= v < self.n
assert 0 <= w < self.n
return self.g[v][w]
def show(self):
for i in range(self.n):
for j in range(self.n):
if self.g[i][j]:
print('1', end=' ')
else:
print('0', end=' ')
print()
def iterator(self, v):
return DenseGraphIterator(self, v)
|
7a6ce3a681aeabe5b7758972546666d6be3ef641 | 2KNG/old_freshman | /python_source/수업/문제1.py | 518 | 4 | 4 | def calc(a, op, b):
x = a
y = b
if op == "+":
print("{:.2f}{}{:.2f}={:.2f}".format(a, op, b, a+b))
elif op == "-":
print("{:.2f}{}{:.2f}={:.2f}".format(a, op, b, a-b))
elif op == "*":
print("{:.2f}{}{:.2f}={:.2f}".format(a, op, b, a*b))
elif op == "/":
print("{:.2f}{}{:.2f}={:.2f}".format(a, op, b, a/b))
else :
print('올바른 정수 및 연산자를 입력하세요')
calc(10,'+',2)
calc(10.5,'-',2.1)
calc(10,'*',5)
calc(12,'/',5)
calc(12,12,2)
|
f092c8017f618eb44d2c6c5a48248909b067eb68 | 2KNG/old_freshman | /python_source/수업/엑셀입출력.py | 835 | 3.71875 | 4 | import csv
# in_file = open("excel_data.csv", "r")
# data = csv.reader(in_file)
# for i in data :
# print(i)
# in_file.close()
# with open("aa/excel_data2.csv", "w", encoding="utf-8-sig", newline="") as out_file: # newlinee 을 안박으면 개손해
# data = csv.writer(out_file, delimiter=",")
# data.writerow([i for i in range(1,3)])
# data.writerow([i*10 for i in range(1,3)])
with open("aa/excel_data3.csv", "w", encoding="utf-8", newline="") as out_file :
data = csv.DictWriter(out_file, fieldnames = ['name', 'age'])
data.writeheader()
data.writerow({"name":"hong", "age":10})
data.writerow({"name":"kim", "age":18})
# # 읽기
# with open("aa/excel_data3.csv", "r", encoding="utf-8-sig") as in_file:
# data = csv.DictReader(in_file)
# for line in data:
# print(line)
|
6885e4e26929aae57d69b5db41ca2971aacbf0fd | 2KNG/old_freshman | /python_source/수업/문제3.py | 198 | 3.828125 | 4 | def plus(f, t): # from 으로 함수를 작성할 수 없어 f, t로 변경
sum = 0
for i in range(f, t+1):
sum += i
return sum
print(plus(1,10))
print(plus(1, 3) + plus(5, 7))
|
094c36fab0d52ecac6cdee01896f54c1ec414c10 | 2KNG/old_freshman | /python_source/딥러닝/문제 210630.py | 1,320 | 3.5 | 4 | import random
i = random.randint(1,15)
print(i)
while x != i :
x = int(input('줘요'))
k = x
if x == i :
print('정답띠')
elif i < 7 :
if 7 < x:
print("i는 7보다 작다")
elif x < i < 7 :
print("i는 7보다 작고 {}보다 커욤".format(x))
elif i < x < 7 :
print("i는 {}보다 작습니당".format(x))
elif 7 <= i :
if x < 7 :
print("i는 7보다 크다")
elif 7 < i < x :
print("i는 7보다 크고 {}보다 작아욤".format(x))
elif 7 <= x < i :
print("i는 {}보다 큽니당".format(x))
else :
print('이게머선129')
print('i는 {}가 맞다'.format(i))
# 7보다 큰지 작은지
# 2진분류
# 랜덤값을 물어보면서 찾을 수 있게
#
#
# elif i < 7:
# if 7 < x:
# print("i는 7보다 작다")
# elif x < i < 7:
# print("i는 7보다 작고 {}보다 커욤".format(x))
# elif i < x < 7:
# print("i는 {}보다 작습니당".format(x))
# elif 7 <= i:
# if x < 7:
# print("i는 7보다 크다")
# elif 7 < i < x:
# print("i는 7보다 크고 {}보다 작아욤".format(x))
# elif 7 <= x < i:
# print("i는 {}보다 큽니당".format(x))
# else:
# print('이게머선129')
|
f2e6ca8c1e4b7f263d07c18e437f7b376498d4c3 | jky007/py_learn | /test3-12.py | 274 | 3.78125 | 4 | a = 'hello,world' # hello,world
b = 1.414 # 1.414
c = (1 != 2) # True
d = (True and False) # False
e = (True or False) # True
#1
print(a,b,c,d,e)
#2
print("a:%s; b:%.2f; c:%s; d:%s; e:%s" % (a,b,c,d,e))
#3
s="\'hello,world\'\n\\\"hello,world\""
print(s)
|
Subsets and Splits