Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
1,300
Neural Activation Patterns (NAPs): Visual Explainability of Learned Concepts
A key to deciphering the inner workings of neural networks is understanding what a model has learned. Promising methods for discovering learned features are based on analyzing activation values, whereby current techniques focus on analyzing high activation values to reveal interesting features on a neuron level. However, analyzing high activation values limits layer-level concept discovery. We present a method that instead takes into account the entire activation distribution. By extracting similar activation profiles within the high-dimensional activation space of a neural network layer, we find groups of inputs that are treated similarly. These input groups represent neural activation patterns (NAPs) and can be used to visualize and interpret learned layer concepts. We release a framework with which NAPs can be extracted from pre-trained models and provide a visual introspection tool that can be used to analyze NAPs. We tested our method with a variety of networks and show how it complements existing methods for analyzing neural network activation values.
1,301
Performance Prediction in Major League Baseball by Long Short-Term Memory Networks
Player performance prediction is a serious problem in every sport since it brings valuable future information for managers to make important decisions. In baseball industries, there already existed variable prediction systems and many types of researches that attempt to provide accurate predictions and help domain users. However, it is a lack of studies about the predicting method or systems based on deep learning. Deep learning models had proven to be the greatest solutions in different fields nowadays, so we believe they could be tried and applied to the prediction problem in baseball. Hence, the predicting abilities of deep learning models are set to be our research problem in this paper. As a beginning, we select numbers of home runs as the target because it is one of the most critical indexes to understand the power and the talent of baseball hitters. Moreover, we use the sequential model Long Short-Term Memory as our main method to solve the home run prediction problem in Major League Baseball. We compare models' ability with several machine learning models and a widely used baseball projection system, sZymborski Projection System. Our results show that Long Short-Term Memory has better performance than others and has the ability to make more exact predictions. We conclude that Long Short-Term Memory is a feasible way for performance prediction problems in baseball and could bring valuable information to fit users' needs.
1,302
A Machine Learning Data Fusion Model for Soil Moisture Retrieval
We develop a deep learning based convolutional-regression model that estimates the volumetric soil moisture content in the top ~5 cm of soil. Input predictors include Sentinel-1 (active radar), Sentinel-2 (optical imagery), and SMAP (passive radar) as well as geophysical variables from SoilGrids and modelled soil moisture fields from GLDAS. The model was trained and evaluated on data from ~1300 in-situ sensors globally over the period 2015 - 2021 and obtained an average per-sensor correlation of 0.727 and ubRMSE of 0.054, and can be used to produce a soil moisture map at a nominal 320m resolution. These results are benchmarked against 13 other soil moisture works at different locations, and an ablation study was used to identify important predictors.
1,303
Beyond IID: data-driven decision-making in heterogeneous environments
In this work, we study data-driven decision-making and depart from the classical identically and independently distributed (i.i.d.) assumption. We present a new framework in which historical samples are generated from unknown and different distributions, which we dub heterogeneous environments. These distributions are assumed to lie in a heterogeneity ball with known radius and centered around the (also) unknown future (out-of-sample) distribution on which the performance of a decision will be evaluated. We quantify the asymptotic worst-case regret that is achievable by central data-driven policies such as Sample Average Approximation, but also by rate-optimal ones, as a function of the radius of the heterogeneity ball. Our work shows that the type of achievable performance varies considerably across different combinations of problem classes and notions of heterogeneity. We demonstrate the versatility of our framework by comparing achievable guarantees for the heterogeneous version of widely studied data-driven problems such as pricing, ski-rental, and newsvendor. En route, we establish a new connection between data-driven decision-making and distributionally robust optimization.
1,304
Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability
Machine learning algorithms enable advanced decision making in contemporary intelligent systems. Research indicates that there is a tradeoff between their model performance and explainability. Machine learning models with higher performance are often based on more complex algorithms and therefore lack explainability and vice versa. However, there is little to no empirical evidence of this tradeoff from an end user perspective. We aim to provide empirical evidence by conducting two user experiments. Using two distinct datasets, we first measure the tradeoff for five common classes of machine learning algorithms. Second, we address the problem of end user perceptions of explainable artificial intelligence augmentations aimed at increasing the understanding of the decision logic of high-performing complex models. Our results diverge from the widespread assumption of a tradeoff curve and indicate that the tradeoff between model performance and explainability is much less gradual in the end user's perception. This is a stark contrast to assumed inherent model interpretability. Further, we found the tradeoff to be situational for example due to data complexity. Results of our second experiment show that while explainable artificial intelligence augmentations can be used to increase explainability, the type of explanation plays an essential role in end user perception.
1,305
Diversified Adversarial Attacks based on Conjugate Gradient Method
Deep learning models are vulnerable to adversarial examples, and adversarial attacks used to generate such examples have attracted considerable research interest. Although existing methods based on the steepest descent have achieved high attack success rates, ill-conditioned problems occasionally reduce their performance. To address this limitation, we utilize the conjugate gradient (CG) method, which is effective for this type of problem, and propose a novel attack algorithm inspired by the CG method, named the Auto Conjugate Gradient (ACG) attack. The results of large-scale evaluation experiments conducted on the latest robust models show that, for most models, ACG was able to find more adversarial examples with fewer iterations than the existing SOTA algorithm Auto-PGD (APGD). We investigated the difference in search performance between ACG and APGD in terms of diversification and intensification, and define a measure called Diversity Index (DI) to quantify the degree of diversity. From the analysis of the diversity using this index, we show that the more diverse search of the proposed method remarkably improves its attack success rate.
1,306
Sampling Efficient Deep Reinforcement Learning through Preference-Guided Stochastic Exploration
Massive practical works addressed by Deep Q-network (DQN) algorithm have indicated that stochastic policy, despite its simplicity, is the most frequently used exploration approach. However, most existing stochastic exploration approaches either explore new actions heuristically regardless of Q-values or inevitably introduce bias into the learning process to couple the sampling with Q-values. In this paper, we propose a novel preference-guided $\epsilon$-greedy exploration algorithm that can efficiently learn the action distribution in line with the landscape of Q-values for DQN without introducing additional bias. Specifically, we design a dual architecture consisting of two branches, one of which is a copy of DQN, namely the Q-branch. The other branch, which we call the preference branch, learns the action preference that the DQN implicit follows. We theoretically prove that the policy improvement theorem holds for the preference-guided $\epsilon$-greedy policy and experimentally show that the inferred action preference distribution aligns with the landscape of corresponding Q-values. Consequently, preference-guided $\epsilon$-greedy exploration motivates the DQN agent to take diverse actions, i.e., actions with larger Q-values can be sampled more frequently whereas actions with smaller Q-values still have a chance to be explored, thus encouraging the exploration. We assess the proposed method with four well-known DQN variants in nine different environments. Extensive results confirm the superiority of our proposed method in terms of performance and convergence speed. Index Terms- Preference-guided exploration, stochastic policy, data efficiency, deep reinforcement learning, deep Q-learning.
1,307
Autoencoder-based Attribute Noise Handling Method for Medical Data
Medical datasets are particularly subject to attribute noise, that is, missing and erroneous values. Attribute noise is known to be largely detrimental to learning performances. To maximize future learning performances it is primordial to deal with attribute noise before any inference. We propose a simple autoencoder-based preprocessing method that can correct mixed-type tabular data corrupted by attribute noise. No other method currently exists to handle attribute noise in tabular data. We experimentally demonstrate that our method outperforms both state-of-the-art imputation methods and noise correction methods on several real-world medical datasets.
1,308
Generating Diverse Indoor Furniture Arrangements
We present a method for generating arrangements of indoor furniture from human-designed furniture layout data. Our method creates arrangements that target specified diversity, such as the total price of all furniture in the room and the number of pieces placed. To generate realistic furniture arrangement, we train a generative adversarial network (GAN) on human-designed layouts. To target specific diversity in the arrangements, we optimize the latent space of the GAN via a quality diversity algorithm to generate a diverse arrangement collection. Experiments show our approach discovers a set of arrangements that are similar to human-designed layouts but varies in price and number of furniture pieces.
1,309
MASER: Multi-Agent Reinforcement Learning with Subgoals Generated from Experience Replay Buffer
In this paper, we consider cooperative multi-agent reinforcement learning (MARL) with sparse reward. To tackle this problem, we propose a novel method named MASER: MARL with subgoals generated from experience replay buffer. Under the widely-used assumption of centralized training with decentralized execution and consistent Q-value decomposition for MARL, MASER automatically generates proper subgoals for multiple agents from the experience replay buffer by considering both individual Q-value and total Q-value. Then, MASER designs individual intrinsic reward for each agent based on actionable representation relevant to Q-learning so that the agents reach their subgoals while maximizing the joint action value. Numerical results show that MASER significantly outperforms StarCraft II micromanagement benchmark compared to other state-of-the-art MARL algorithms.
1,310
Analyzing Büchi Automata with Graph Neural Networks
B\"uchi Automata on infinite words present many interesting problems and are used frequently in program verification and model checking. A lot of these problems on B\"uchi automata are computationally hard, raising the question if a learning-based data-driven analysis might be more efficient than using traditional algorithms. Since B\"uchi automata can be represented by graphs, graph neural networks are a natural choice for such a learning-based analysis. In this paper, we demonstrate how graph neural networks can be used to reliably predict basic properties of B\"uchi automata when trained on automatically generated random automata datasets.
1,311
Revisiting lp-constrained Softmax Loss: A Comprehensive Study
Normalization is a vital process for any machine learning task as it controls the properties of data and affects model performance at large. The impact of particular forms of normalization, however, has so far been investigated in limited domain-specific classification tasks and not in a general fashion. Motivated by the lack of such a comprehensive study, in this paper we investigate the performance of lp-constrained softmax loss classifiers across different norm orders, magnitudes, and data dimensions in both proof-of-concept classification problems and real-world popular image classification tasks. Experimental results suggest collectively that lp-constrained softmax loss classifiers not only can achieve more accurate classification results but, at the same time, appear to be less prone to overfitting. The core findings hold across the three popular deep learning architectures tested and eight datasets examined, and suggest that lp normalization is a recommended data representation practice for image classification in terms of performance and convergence, and against overfitting.
1,312
S2RL: Do We Really Need to Perceive All States in Deep Multi-Agent Reinforcement Learning?
Collaborative multi-agent reinforcement learning (MARL) has been widely used in many practical applications, where each agent makes a decision based on its own observation. Most mainstream methods treat each local observation as an entirety when modeling the decentralized local utility functions. However, they ignore the fact that local observation information can be further divided into several entities, and only part of the entities is helpful to model inference. Moreover, the importance of different entities may change over time. To improve the performance of decentralized policies, the attention mechanism is used to capture features of local information. Nevertheless, existing attention models rely on dense fully connected graphs and cannot better perceive important states. To this end, we propose a sparse state based MARL (S2RL) framework, which utilizes a sparse attention mechanism to discard irrelevant information in local observations. The local utility functions are estimated through the self-attention and sparse attention mechanisms separately, then are combined into a standard joint value function and auxiliary joint value function in the central critic. We design the S2RL framework as a plug-and-play module, making it general enough to be applied to various methods. Extensive experiments on StarCraft II show that S2RL can significantly improve the performance of many state-of-the-art methods.
1,313
Interpretable machine learning optimization (InterOpt) for operational parameters: a case study of highly-efficient shale gas development
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning, and is demonstrated via optimization of shale gas development. InterOpt consists of three parts: a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space (i.e., virtual environment); the Sharpley value method in interpretable machine learning is applied to analyzing the impact of geological and operational parameters in each well (i.e., single well feature impact analysis); and ensemble randomized maximum likelihood (EnRML) is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost. In the experiment, InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions, and finally achieved an average cost reduction of 9.7% for a case study with 104 wells.
1,314
A Comprehensive Survey on Video Saliency Detection with Auditory Information: the Audio-visual Consistency Perceptual is the Key!
Video saliency detection (VSD) aims at fast locating the most attractive objects/things/patterns in a given video clip. Existing VSD-related works have mainly relied on the visual system but paid less attention to the audio aspect, while, actually, our audio system is the most vital complementary part to our visual system. Also, audio-visual saliency detection (AVSD), one of the most representative research topics for mimicking human perceptual mechanisms, is currently in its infancy, and none of the existing survey papers have touched on it, especially from the perspective of saliency detection. Thus, the ultimate goal of this paper is to provide an extensive review to bridge the gap between audio-visual fusion and saliency detection. In addition, as another highlight of this review, we have provided a deep insight into key factors which could directly determine the performances of AVSD deep models, and we claim that the audio-visual consistency degree (AVC) -- a long-overlooked issue, can directly influence the effectiveness of using audio to benefit its visual counterpart when performing saliency detection. Moreover, in order to make the AVC issue more practical and valuable for future followers, we have newly equipped almost all existing publicly available AVSD datasets with additional frame-wise AVC labels. Based on these upgraded datasets, we have conducted extensive quantitative evaluations to ground our claim on the importance of AVC in the AVSD task. In a word, both our ideas and new sets serve as a convenient platform with preliminaries and guidelines, all of which are very potential to facilitate future works in promoting state-of-the-art (SOTA) performance further.
1,315
Constrained Reinforcement Learning for Robotics via Scenario-Based Programming
Deep reinforcement learning (DRL) has achieved groundbreaking successes in a wide variety of robotic applications. A natural consequence is the adoption of this paradigm for safety-critical tasks, where human safety and expensive hardware can be involved. In this context, it is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior. This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop. Our technique exploits the scenario-based programming paradigm, which is designed to allow specifying such knowledge in a simple and intuitive way. We validated our method on the popular robotic mapless navigation problem, in simulation, and on the actual platform. Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
1,316
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
In this work, we propose FedSSO, a server-side second-order optimization method for federated learning (FL). In contrast to previous works in this direction, we employ a server-side approximation for the Quasi-Newton method without requiring any training data from the clients. In this way, we not only shift the computation burden from clients to server, but also eliminate the additional communication for second-order updates between clients and server entirely. We provide theoretical guarantee for convergence of our novel method, and empirically demonstrate our fast convergence and communication savings in both convex and non-convex settings.
1,317
C-SENN: Contrastive Self-Explaining Neural Network
In this study, we use a self-explaining neural network (SENN), which learns unsupervised concepts, to acquire concepts that are easy for people to understand automatically. In concept learning, the hidden layer retains verbalizable features relevant to the output, which is crucial when adapting to real-world environments where explanations are required. However, it is known that the interpretability of concepts output by SENN is reduced in general settings, such as autonomous driving scenarios. Thus, this study combines contrastive learning with concept learning to improve the readability of concepts and the accuracy of tasks. We call this model Contrastive Self-Explaining Neural Network (C-SENN).
1,318
Deep Random Vortex Method for Simulation and Inference of Navier-Stokes Equations
Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air. Due to the importance of Navier-Stokes equations, the development on efficient numerical schemes is important for both science and engineer. Recently, with the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations, which can accelerate the simulation or inferring process in a mesh-free and differentiable way. In this paper, we point out that the capability of existing deep Navier-Stokes informed methods is limited to handle non-smooth or fractional equations, which are two critical situations in reality. To this end, we propose the \emph{Deep Random Vortex Method} (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation. Specifically, the random vortex dynamics motivates a Monte Carlo based loss function for training the neural network, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVM not only can efficiently solve Navier-Stokes equations involving rough path, non-differentiable initial conditions and fractional operators, but also inherits the mesh-free and differentiable benefits of the deep-learning-based solver. We conduct experiments on the Cauchy problem, parametric solver learning, and the inverse problem of both 2-d and 3-d incompressible Navier-Stokes equations. The proposed method achieves accurate results for simulation and inference of Navier-Stokes equations. Especially for the cases that include singular initial conditions, DRVM significantly outperforms existing PINN method.
1,319
Shuffle Gaussian Mechanism for Differential Privacy
We study Gaussian mechanism in the shuffle model of differential privacy (DP). Particularly, we characterize the mechanism's R\'enyi differential privacy (RDP), showing that it is of the form: $$ \epsilon(\lambda) \leq \frac{1}{\lambda-1}\log\left(\frac{e^{-\lambda/2\sigma^2}}{n^\lambda}\sum_{\substack{k_1+\dotsc+k_n=\lambda;\\k_1,\dotsc,k_n\geq 0}}\binom{\lambda}{k_1,\dotsc,k_n}e^{\sum_{i=1}^nk_i^2/2\sigma^2}\right) $$ We further prove that the RDP is strictly upper-bounded by the Gaussian RDP without shuffling. The shuffle Gaussian RDP is advantageous in composing multiple DP mechanisms, where we demonstrate its improvement over the state-of-the-art approximate DP composition theorems in privacy guarantees of the shuffle model. Moreover, we extend our study to the subsampled shuffle mechanism and the recently proposed shuffled check-in mechanism, which are protocols geared towards distributed/federated learning. Finally, an empirical study of these mechanisms is given to demonstrate the efficacy of employing shuffle Gaussian mechanism under the distributed learning framework to guarantee rigorous user privacy.
1,320
Two-Dimensional Weisfeiler-Lehman Graph Neural Networks for Link Prediction
Link prediction is one important application of graph neural networks (GNNs). Most existing GNNs for link prediction are based on one-dimensional Weisfeiler-Lehman (1-WL) test. 1-WL-GNNs first compute node representations by iteratively passing neighboring node features to the center, and then obtain link representations by aggregating the pairwise node representations. As pointed out by previous works, this two-step procedure results in low discriminating power, as 1-WL-GNNs by nature learn node-level representations instead of link-level. In this paper, we study a completely different approach which can directly obtain node pair (link) representations based on \textit{two-dimensional Weisfeiler-Lehman (2-WL) tests}. 2-WL tests directly use links (2-tuples) as message passing units instead of nodes, and thus can directly obtain link representations. We theoretically analyze the expressive power of 2-WL tests to discriminate non-isomorphic links, and prove their superior link discriminating power than 1-WL. Based on different 2-WL variants, we propose a series of novel 2-WL-GNN models for link prediction. Experiments on a wide range of real-world datasets demonstrate their competitive performance to state-of-the-art baselines and superiority over plain 1-WL-GNNs.
1,321
A Novel Long-term Iterative Mining Scheme for Video Salient Object Detection
The existing state-of-the-art (SOTA) video salient object detection (VSOD) models have widely followed short-term methodology, which dynamically determines the balance between spatial and temporal saliency fusion by solely considering the current consecutive limited frames. However, the short-term methodology has one critical limitation, which conflicts with the real mechanism of our visual system -- a typical long-term methodology. As a result, failure cases keep showing up in the results of the current SOTA models, and the short-term methodology becomes the major technical bottleneck. To solve this problem, this paper proposes a novel VSOD approach, which performs VSOD in a complete long-term way. Our approach converts the sequential VSOD, a sequential task, to a data mining problem, i.e., decomposing the input video sequence to object proposals in advance and then mining salient object proposals as much as possible in an easy-to-hard way. Since all object proposals are simultaneously available, the proposed approach is a complete long-term approach, which can alleviate some difficulties rooted in conventional short-term approaches. In addition, we devised an online updating scheme that can grasp the most representative and trustworthy pattern profile of the salient objects, outputting framewise saliency maps with rich details and smoothing both spatially and temporally. The proposed approach outperforms almost all SOTA models on five widely used benchmark datasets.
1,322
DASH: Distributed Adaptive Sequencing Heuristic for Submodular Maximization
The development of parallelizable algorithms for monotone, submodular maximization subject to cardinality constraint (SMCC) has resulted in two separate research directions: centralized algorithms with low adaptive complexity, which require random access to the entire dataset; and distributed MapReduce (MR) model algorithms, that use a small number of MR rounds of computation. Currently, no MR model algorithm is known to use sublinear number of adaptive rounds which limits their practical performance. We study the SMCC problem in a distributed setting and present three separate MR model algorithms that introduce sublinear adaptivity in a distributed setup. Our primary algorithm, DASH achieves an approximation of $\frac{1}{2}(1-1/e-\varepsilon)$ using one MR round, while its multi-round variant METADASH enables MR model algorithms to be run on large cardinality constraints that were previously not possible. The two additional algorithms, T-DASH and G-DASH provide an improved ratio of ($\frac{3}{8}-\varepsilon$) and ($1-1/e-\varepsilon$) respectively using one and $(1/\varepsilon)$ MR rounds . All our proposed algorithms have sublinear adaptive complexity and we provide extensive empirical evidence to establish: DASH is orders of magnitude faster than the state-of-the-art distributed algorithms while producing nearly identical solution values; and validate the versatility of DASH in obtaining feasible solutions on both centralized and distributed data.
1,323
An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models
End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning.
1,324
Good Time to Ask: A Learning Framework for Asking for Help in Embodied Visual Navigation
In reality, it is often more efficient to ask for help than to search the entire space to find an object with an unknown location. We present a learning framework that enables an agent to actively ask for help in such embodied visual navigation tasks, where the feedback informs the agent of where the goal is in its view. To emulate the real-world scenario that a teacher may not always be present, we propose a training curriculum where feedback is not always available. We formulate an uncertainty measure of where the goal is and use empirical results to show that through this approach, the agent learns to ask for help effectively while remaining robust when feedback is not available.
1,325
Eliminating The Impossible, Whatever Remains Must Be True
The rise of AI methods to make predictions and decisions has led to a pressing need for more explainable artificial intelligence (XAI) methods. One common approach for XAI is to produce a post-hoc explanation, explaining why a black box ML model made a certain prediction. Formal approaches to post-hoc explanations provide succinct reasons for why a prediction was made, as well as why not another prediction was made. But these approaches assume that features are independent and uniformly distributed. While this means that "why" explanations are correct, they may be longer than required. It also means the "why not" explanations may be suspect as the counterexamples they rely on may not be meaningful. In this paper, we show how one can apply background knowledge to give more succinct "why" formal explanations, that are presumably easier to interpret by humans, and give more accurate "why not" explanations. Furthermore, we also show how to use existing rule induction techniques to efficiently extract background information from a dataset, and also how to report which background information was used to make an explanation, allowing a human to examine it if they doubt the correctness of the explanation.
1,326
Policy Optimization with Linear Temporal Logic Constraints
We study the problem of policy optimization (PO) with linear temporal logic (LTL) constraints. The language of LTL allows flexible description of tasks that may be unnatural to encode as a scalar cost function. We consider LTL-constrained PO as a systematic framework, decoupling task specification from policy selection, and an alternative to the standard of cost shaping. With access to a generative model, we develop a model-based approach that enjoys a sample complexity analysis for guaranteeing both task satisfaction and cost optimality (through a reduction to a reachability problem). Empirically, our algorithm can achieve strong performance even in low sample regimes.
1,327
Meta-learning for Out-of-Distribution Detection via Density Estimation in Latent Space
Many neural network-based out-of-distribution (OoD) detection methods have been proposed. However, they require many training data for each target task. We propose a simple yet effective meta-learning method to detect OoD with small in-distribution data in a target task. With the proposed method, the OoD detection is performed by density estimation in a latent space. A neural network shared among all tasks is used to flexibly map instances in the original space to the latent space. The neural network is meta-learned such that the expected OoD detection performance is improved by using various tasks that are different from the target tasks. This meta-learning procedure enables us to obtain appropriate representations in the latent space for OoD detection. For density estimation, we use a Gaussian mixture model (GMM) with full covariance for each class. We can adapt the GMM parameters to in-distribution data in each task in a closed form by maximizing the likelihood. Since the closed form solution is differentiable, we can meta-learn the neural network efficiently with a stochastic gradient descent method by incorporating the solution into the meta-learning objective function. In experiments using six datasets, we demonstrate that the proposed method achieves better performance than existing meta-learning and OoD detection methods.
1,328
Robust One Round Federated Learning with Predictive Space Bayesian Inference
Making predictions robust is an important challenge. A separate challenge in federated learning (FL) is to reduce the number of communication rounds, particularly since doing so reduces performance in heterogeneous data settings. To tackle both issues, we take a Bayesian perspective on the problem of learning a global model. We show how the global predictive posterior can be approximated using client predictive posteriors. This is unlike other works which aggregate the local model space posteriors into the global model space posterior, and are susceptible to high approximation errors due to the posterior's high dimensional multimodal nature. In contrast, our method performs the aggregation on the predictive posteriors, which are typically easier to approximate owing to the low-dimensionality of the output space. We present an algorithm based on this idea, which performs MCMC sampling at each client to obtain an estimate of the local posterior, and then aggregates these in one round to obtain a global ensemble model. Through empirical evaluation on several classification and regression tasks, we show that despite using one round of communication, the method is competitive with other FL techniques, and outperforms them on heterogeneous settings. The code is publicly available at https://github.com/hasanmohsin/FedPredSpace_1Round.
1,329
Multiple Testing Framework for Out-of-Distribution Detection
We study the problem of Out-of-Distribution (OOD) detection, that is, detecting whether a learning algorithm's output can be trusted at inference time. While a number of tests for OOD detection have been proposed in prior work, a formal framework for studying this problem is lacking. We propose a definition for the notion of OOD that includes both the input distribution and the learning algorithm, which provides insights for the construction of powerful tests for OOD detection. We propose a multiple hypothesis testing inspired procedure to systematically combine any number of different statistics from the learning algorithm using conformal p-values. We further provide strong guarantees on the probability of incorrectly classifying an in-distribution sample as OOD. In our experiments, we find that threshold-based tests proposed in prior work perform well in specific settings, but not uniformly well across different types of OOD instances. In contrast, our proposed method that combines multiple statistics performs uniformly well across different datasets and neural networks.
1,330
$C^*$-algebra Net: A New Approach Generalizing Neural Network Parameters to $C^*$-algebra
We propose a new framework that generalizes the parameters of neural network models to $C^*$-algebra-valued ones. $C^*$-algebra is a generalization of the space of complex numbers. A typical example is the space of continuous functions on a compact space. This generalization enables us to combine multiple models continuously and use tools for functions such as regression and integration. Consequently, we can learn features of data efficiently and adapt the models to problems continuously. We apply our framework to practical problems such as density estimation and few-shot learning and show that our framework enables us to learn features of data even with a limited number of samples. Our new framework highlights the potential possibility of applying the theory of $C^*$-algebra to general neural network models.
1,331
The Fallacy of AI Functionality
Deployed AI systems often do not work. They can be constructed haphazardly, deployed indiscriminately, and promoted deceptively. However, despite this reality, scholars, the press, and policymakers pay too little attention to functionality. This leads to technical and policy solutions focused on "ethical" or value-aligned deployments, often skipping over the prior question of whether a given system functions, or provides any benefits at all. To describe the harms of various types of functionality failures, we analyze a set of case studies to create a taxonomy of known AI functionality issues. We then point to policy and organizational responses that are often overlooked and become more readily available once functionality is drawn into focus. We argue that functionality is a meaningful AI policy challenge, operating as a necessary first step towards protecting affected communities from algorithmic harm.
1,332
Resource-Efficient Separation Transformer
Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally-demanding and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer and RNN-based architectures in terms of memory and inference-time, making it more suitable for processing long mixtures.
1,333
Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors
With the recent development of Semi-Supervised Object Detection (SS-OD) techniques, object detectors can be improved by using a limited amount of labeled data and abundant unlabeled data. However, there are still two challenges that are not addressed: (1) there is no prior SS-OD work on anchor-free detectors, and (2) prior works are ineffective when pseudo-labeling bounding box regression. In this paper, we present Unbiased Teacher v2, which shows the generalization of SS-OD method to anchor-free detectors and also introduces Listen2Student mechanism for the unsupervised regression loss. Specifically, we first present a study examining the effectiveness of existing SS-OD methods on anchor-free detectors and find that they achieve much lower performance improvements under the semi-supervised setting. We also observe that box selection with centerness and the localization-based labeling used in anchor-free detectors cannot work well under the semi-supervised setting. On the other hand, our Listen2Student mechanism explicitly prevents misleading pseudo-labels in the training of bounding box regression; we specifically develop a novel pseudo-labeling selection mechanism based on the Teacher and Student's relative uncertainties. This idea contributes to favorable improvement in the regression branch in the semi-supervised setting. Our method, which works for both anchor-free and anchor-based methods, consistently performs favorably against the state-of-the-art methods in VOC, COCO-standard, and COCO-additional.
1,334
Learning Multi-Task Transferable Rewards via Variational Inverse Reinforcement Learning
Many robotic tasks are composed of a lot of temporally correlated sub-tasks in a highly complex environment. It is important to discover situational intentions and proper actions by deliberating on temporal abstractions to solve problems effectively. To understand the intention separated from changing task dynamics, we extend an empowerment-based regularization technique to situations with multiple tasks based on the framework of a generative adversarial network. Under the multitask environments with unknown dynamics, we focus on learning a reward and policy from the unlabeled expert examples. In this study, we define situational empowerment as the maximum of mutual information representing how an action conditioned on both a certain state and sub-task affects the future. Our proposed method derives the variational lower bound of the situational mutual information to optimize it. We simultaneously learn the transferable multi-task reward function and policy by adding an induced term to the objective function. By doing so, the multi-task reward function helps to learn a robust policy for environmental change. We validate the advantages of our approach on multi-task learning and multi-task transfer learning. We demonstrate our proposed method has the robustness of both randomness and changing task dynamics. Finally, we prove that our method has significantly better performance and data efficiency than existing imitation learning methods on various benchmarks.
1,335
Integrated Weak Learning
We introduce Integrated Weak Learning, a principled framework that integrates weak supervision into the training process of machine learning models. Our approach jointly trains the end-model and a label model that aggregates multiple sources of weak supervision. We introduce a label model that can learn to aggregate weak supervision sources differently for different datapoints and takes into consideration the performance of the end-model during training. We show that our approach outperforms existing weak learning techniques across a set of 6 benchmark classification datasets. When both a small amount of labeled data and weak supervision are present the increase in performance is both consistent and large, reliably getting a 2-5 point test F1 score gain over non-integrated methods.
1,336
The Power of Regularization in Solving Extensive-Form Games
In this paper, we investigate the power of regularization, a common technique in reinforcement learning and optimization, in solving extensive-form games (EFGs). We propose a series of new algorithms based on regularizing the payoff functions of the game, and establish a set of convergence results that strictly improve over the existing ones, with either weaker assumptions or stronger convergence guarantees. In particular, we first show that dilated optimistic mirror descent (DOMD), an efficient variant of OMD for solving EFGs, with adaptive regularization can achieve a fast $\tilde O(1/T)$ last-iterate convergence in terms of duality gap without the uniqueness assumption of the Nash equilibrium (NE). Moreover, regularized dilated optimistic multiplicative weights update (Reg-DOMWU), an instance of Reg-DOMD, further enjoys the $\tilde O(1/T)$ last-iterate convergence rate of the distance to the set of NE. This addresses an open question on whether iterate convergence can be obtained for OMWU algorithms without the uniqueness assumption in both the EFG and normal-form game literature. Second, we show that regularized counterfactual regret minimization (Reg-CFR), with a variant of optimistic mirror descent algorithm as regret-minimizer, can achieve $O(1/T^{1/4})$ best-iterate, and $O(1/T^{3/4})$ average-iterate convergence rate for finding NE in EFGs. Finally, we show that Reg-CFR can achieve asymptotic last-iterate convergence, and optimal $O(1/T)$ average-iterate convergence rate, for finding the NE of perturbed EFGs, which is useful for finding approximate extensive-form perfect equilibria (EFPE). To the best of our knowledge, they constitute the first last-iterate convergence results for CFR-type algorithms, while matching the SOTA average-iterate convergence rate in finding NE for non-perturbed EFGs. We also provide numerical results to corroborate the advantages of our algorithms.
1,337
On the Limitations of Stochastic Pre-processing Defenses
Defending against adversarial examples remains an open problem. A common belief is that randomness at inference increases the cost of finding adversarial inputs. An example of such a defense is to apply a random transformation to inputs prior to feeding them to the model. In this paper, we empirically and theoretically investigate such stochastic pre-processing defenses and demonstrate that they are flawed. First, we show that most stochastic defenses are weaker than previously thought; they lack sufficient randomness to withstand even standard attacks like projected gradient descent. This casts doubt on a long-held assumption that stochastic defenses invalidate attacks designed to evade deterministic defenses and force attackers to integrate the Expectation over Transformation (EOT) concept. Second, we show that stochastic defenses confront a trade-off between adversarial robustness and model invariance; they become less effective as the defended model acquires more invariance to their randomization. Future work will need to decouple these two effects. Our code is available in the supplementary material.
1,338
Artificial intelligence system based on multi-value classification of fully connected neural network for construction management
This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems.It is proposed Fully Connected Feed-Forward Neural Network architecture and performed empirical modeling to create a Data Set. Model of artificial intelligence system allows evaluating the processes in an Fully Connected Feed-Forward Neural Network during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to learn from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization.
1,339
An Analysis of the Admissibility of the Objective Functions Applied in Evolutionary Multi-objective Clustering
A variety of clustering criteria has been applied as an objective function in Evolutionary Multi-Objective Clustering approaches (EMOCs). However, most EMOCs do not provide detailed analysis regarding the choice and usage of the objective functions. Aiming to support a better choice and definition of the objectives in the EMOCs, this paper proposes an analysis of the admissibility of the clustering criteria in evolutionary optimization by examining the search direction and its potential in finding optimal results. As a result, we demonstrate how the admissibility of the objective functions can influence the optimization. Furthermore, we provide insights regarding the combinations and usage of the clustering criteria in the EMOCs.
1,340
Traffic-Twitter Transformer: A Nature Language Processing-joined Framework For Network-wide Traffic Forecasting
With accurate and timely traffic forecasting, the impacted traffic conditions can be predicted in advance to guide agencies and residents to respond to changes in traffic patterns appropriately. However, existing works on traffic forecasting mainly relied on historical traffic patterns confining to short-term prediction, under 1 hour, for instance. To better manage future roadway capacity and accommodate social and human impacts, it is crucial to propose a flexible and comprehensive framework to predict physical-aware long-term traffic conditions for public users and transportation agencies. In this paper, the gap of robust long-term traffic forecasting was bridged by taking social media features into consideration. A correlation study and a linear regression model were first implemented to evaluate the significance of the correlation between two time-series data, traffic intensity and Twitter data intensity. Two time-series data were then fed into our proposed social-aware framework, Traffic-Twitter Transformer, which integrated Nature Language representations into time-series records for long-term traffic prediction. Experimental results in the Great Seattle Area showed that our proposed model outperformed baseline models in all evaluation matrices. This NLP-joined social-aware framework can become a valuable implement of network-wide traffic prediction and management for traffic agencies.
1,341
Predicting Human Performance in Vertical Hierarchical Menu Selection in Immersive AR Using Hand-gesture and Head-gaze
There are currently limited guidelines on designing user interfaces (UI) for immersive augmented reality (AR) applications. Designers must reflect on their experience designing UI for desktop and mobile applications and conjecture how a UI will influence AR users' performance. In this work, we introduce a predictive model for determining users' performance for a target UI without the subsequent involvement of participants in user studies. The model is trained on participants' responses to objective performance measures such as consumed endurance (CE) and pointing time (PT) using hierarchical drop-down menus. Large variability in the depth and context of the menus is ensured by randomly and dynamically creating the hierarchical drop-down menus and associated user tasks from words contained in the lexical database WordNet. Subjective performance bias is reduced by incorporating the users' non-verbal standard performance WAIS-IV during the model training. The semantic information of the menu is encoded using the Universal Sentence Encoder. We present the results of a user study that demonstrates that the proposed predictive model achieves high accuracy in predicting the CE on hierarchical menus of users with various cognitive abilities. To the best of our knowledge, this is the first work on predicting CE in designing UI for immersive AR applications.
1,342
StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis
Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
1,343
Geometric Matrix Completion via Sylvester Multi-Graph Neural Network
Despite the success of the Sylvester equation empowered methods on various graph mining applications, such as semi-supervised label learning and network alignment, there also exists several limitations. The Sylvester equation's inability of modeling non-linear relations and the inflexibility of tuning towards different tasks restrict its performance. In this paper, we propose an end-to-end neural framework, SYMGNN, which consists of a multi-network neural aggregation module and a prior multi-network association incorporation learning module. The proposed framework inherits the key ideas of the Sylvester equation, and meanwhile generalizes it to overcome aforementioned limitations. Empirical evaluations on real-world datasets show that the instantiations of SYMGNN overall outperform the baselines in geometric matrix completion task, and its low-rank instantiation could further reduce the memory consumption by 16.98\% on average.
1,344
A Universal Adversarial Policy for Text Classifiers
Discovering the existence of universal adversarial perturbations had large theoretical and practical impacts on the field of adversarial learning. In the text domain, most universal studies focused on adversarial prefixes which are added to all texts. However, unlike the vision domain, adding the same perturbation to different inputs results in noticeably unnatural inputs. Therefore, we introduce a new universal adversarial setup - a universal adversarial policy, which has many advantages of other universal attacks but also results in valid texts - thus making it relevant in practice. We achieve this by learning a single search policy over a predefined set of semantics preserving text alterations, on many texts. This formulation is universal in that the policy is successful in finding adversarial examples on new texts efficiently. Our approach uses text perturbations which were extensively shown to produce natural attacks in the non-universal setup (specific synonym replacements). We suggest a strong baseline approach for this formulation which uses reinforcement learning. It's ability to generalise (from as few as 500 training texts) shows that universal adversarial patterns exist in the text domain as well.
1,345
All you need is feedback: Communication with block attention feedback codes
Deep learning based channel code designs have recently gained interest as an alternative to conventional coding algorithms, particularly for channels for which existing codes do not provide effective solutions. Communication over a feedback channel is one such problem, for which promising results have recently been obtained by employing various deep learning architectures. In this paper, we introduce a novel learning-aided code design for feedback channels, called generalized block attention feedback (GBAF) codes, which i) employs a modular architecture that can be implemented using different neural network architectures; ii) provides order-of-magnitude improvements in the probability of error compared to existing designs; and iii) can transmit at desired code rates.
1,346
Bounding Evidence and Estimating Log-Likelihood in VAE
Many crucial problems in deep learning and statistics are caused by a variational gap, i.e., a difference between evidence and evidence lower bound (ELBO). As a consequence, in the classical VAE model, we obtain only the lower bound on the log-likelihood since ELBO is used as a cost function, and therefore we cannot compare log-likelihood between models. In this paper, we present a general and effective upper bound of the variational gap, which allows us to efficiently estimate the true evidence. We provide an extensive theoretical study of the proposed approach. Moreover, we show that by applying our estimation, we can easily obtain lower and upper bounds for the log-likelihood of VAE models.
1,347
Data Augmentation vs. Equivariant Networks: A Theory of Generalization on Dynamics Forecasting
Exploiting symmetry in dynamical systems is a powerful way to improve the generalization of deep learning. The model learns to be invariant to transformation and hence is more robust to distribution shift. Data augmentation and equivariant networks are two major approaches to injecting symmetry into learning. However, their exact role in improving generalization is not well understood. In this work, we derive the generalization bounds for data augmentation and equivariant networks, characterizing their effect on learning in a unified framework. Unlike most prior theories for the i.i.d. setting, we focus on non-stationary dynamics forecasting with complex temporal dependencies.
1,348
SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking Neural Networks
Spiking neural networks are efficient computation models for low-power environments. Spike-based BP algorithms and ANN-to-SNN (ANN2SNN) conversions are successful techniques for SNN training. Nevertheless, the spike-base BP training is slow and requires large memory costs. Though ANN2NN provides a low-cost way to train SNNs, it requires many inference steps to mimic the well-trained ANN for good performance. In this paper, we propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way. The SNN2ANN consists of 2 components: a) a weight sharing architecture between ANN and SNN and b) spiking mapping units. Firstly, the architecture trains the weight-sharing parameters on the ANN branch, resulting in fast training and low memory costs for SNN. Secondly, the spiking mapping units ensure that the activation values of the ANN are the spiking features. As a result, the classification error of the SNN can be optimized by training the ANN branch. Besides, we design an adaptive threshold adjustment (ATA) algorithm to address the noisy spike problem. Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets (CIFAR10, CIFAR100, and Tiny-ImageNet). Moreover, the SNN2ANN can achieve comparable accuracy under 0.625x time steps, 0.377x training time, 0.27x GPU memory costs, and 0.33x spike activities of the Spike-based BP model.
1,349
Compression and Data Similarity: Combination of Two Techniques for Communication-Efficient Solving of Distributed Variational Inequalities
Variational inequalities are an important tool, which includes minimization, saddles, games, fixed-point problems. Modern large-scale and computationally expensive practical applications make distributed methods for solving these problems popular. Meanwhile, most distributed systems have a basic problem - a communication bottleneck. There are various techniques to deal with it. In particular, in this paper we consider a combination of two popular approaches: compression and data similarity. We show that this synergy can be more effective than each of the approaches separately in solving distributed smooth strongly monotonic variational inequalities. Experiments confirm the theoretical conclusions.
1,350
Prevent Car Accidents by Using AI
Transportation facilities are becoming more developed as society develops, and people's travel demand is increasing, but so are the traffic safety issues that arise as a result. And car accidents are a major issue all over the world. The cost of traffic fatalities and driver injuries has a significant impact on society. The use of machine learning techniques in the field of traffic accidents is becoming increasingly popular. Machine learning classifiers are used instead of traditional data mining techniques to produce better results and accuracy. As a result, this project conducts research on existing work related to accident prediction using machine learning. We will use crash data and weather data to train machine learning models to predict crash severity and reduce crashes.
1,351
A generalized regionalization framework for geographical modelling and its application in spatial regression
In presence of spatial heterogeneity, models applied to geographic data face a trade-off between producing general results and capturing local variations. Modelling at a regional scale may allow the identification of solutions that optimize both accuracy and generality. However, most current regionalization algorithms assume homogeneity in the attributes to delineate regions without considering the processes that generate the attributes. In this paper, we propose a generalized regionalization framework based on a two-item objective function which favors solutions with the highest overall accuracy while minimizing the number of regions. We introduce three regionalization algorithms, which extend previous methods that account for spatially constrained clustering. The effectiveness of the proposed framework is examined in regression experiments on both simulated and real data. The results show that a spatially implicit algorithm extended with an automatic post-processing procedure outperforms spatially explicit approaches. Our suggested framework contributes to better capturing the processes associated with spatial heterogeneity with potential applications in a wide range of geographical models.
1,352
ADBench: Anomaly Detection Benchmark
Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data? In this work, we answer these key questions by conducting (to our best knowledge) the most comprehensive anomaly detection benchmark with 30 algorithms on 55 benchmark datasets, named ADBench. Our extensive experiments (93,654 in total) identify meaningful insights into the role of supervision and anomaly types, and unlock future directions for researchers in algorithm selection and design. With ADBench, researchers can easily conduct comprehensive and fair evaluations for newly proposed methods on the datasets (including our contributed ones from natural language and computer vision domains) against the existing baselines. To foster accessibility and reproducibility, we fully open-source ADBench and the corresponding results.
1,353
Efficient End-to-End AutoML via Scalable Search Space Decomposition
End-to-end AutoML has attracted intensive interests from both academia and industry which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML introduces and implements basic building blocks that decompose a large search space into smaller ones, and allows users to utilize these building blocks to compose an execution plan for the AutoML problem at hand. VolcanoML further supports a Volcano-style execution model -- akin to the one supported by modern database systems -- to execute the plan constructed. Our evaluation demonstrates that, not only does VolcanoML raise the level of expressiveness for search space decomposition in AutoML, it also leads to actual findings of decomposition strategies that are significantly more efficient than the ones employed by state-of-the-art AutoML systems such as auto-sklearn. This paper is the extended version of the initial VolcanoML paper appeared in VLDB 2021.
1,354
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation
Myopic exploration policies such as epsilon-greedy, softmax, or Gaussian noise fail to explore efficiently in some reinforcement learning tasks and yet, they perform well in many others. In fact, in practice, they are often selected as the top choices, due to their simplicity. But, for what tasks do such policies succeed? Can we give theoretical guarantees for their favorable performance? These crucial questions have been scarcely investigated, despite the prominent practical importance of these policies. This paper presents a theoretical analysis of such policies and provides the first regret and sample-complexity bounds for reinforcement learning with myopic exploration. Our results apply to value-function-based algorithms in episodic MDPs with bounded Bellman Eluder dimension. We propose a new complexity measure called myopic exploration gap, denoted by alpha, that captures a structural property of the MDP, the exploration policy and the given value function class. We show that the sample-complexity of myopic exploration scales quadratically with the inverse of this quantity, 1 / alpha^2. We further demonstrate through concrete examples that myopic exploration gap is indeed favorable in several tasks where myopic exploration succeeds, due to the corresponding dynamics and reward structure.
1,355
Agricultural Plantation Classification using Transfer Learning Approach based on CNN
Hyper-spectral images are images captured from a satellite that gives spatial and spectral information of specific region.A Hyper-spectral image contains much more number of channels as compared to a RGB image, hence containing more information about entities within the image. It makes them well suited for the classification of objects in a snap. In the past years, the efficiency of hyper-spectral image recognition has increased significantly with deep learning. The Convolution Neural Network(CNN) and Multi-Layer Perceptron(MLP) has demonstrated to be an excellent process of classifying images. However, they suffer from the issues of long training time and requirement of large amounts of the labeled data, to achieve the expected outcome. These issues become more complex while dealing with hyper-spectral images. To decrease the training time and reduce the dependence on large labeled data-set, we propose using the method of transfer learning.The features learned by CNN and MLP models are then used by the transfer learning model to solve a new classification problem on an unseen dataset. A detailed comparison of CNN and multiple MLP architectural models is performed, to determine an optimum architecture that suits best the objective. The results show that the scaling of layers not always leads to increase in accuracy but often leads to over-fitting, and also an increase in the training time.The training time is reduced to greater extent by applying the transfer learning approach rather than just approaching the problem by directly training a new model on large data-sets, without much affecting the accuracy.
1,356
LordNet: Learning to Solve Parametric Partial Differential Equations without Simulated Data
Neural operators, as a powerful approximation to the non-linear operators between infinite-dimensional function spaces, have proved to be promising in accelerating the solution of partial differential equations (PDE). However, it requires a large amount of simulated data which can be costly to collect, resulting in a chicken-egg dilemma and limiting its usage in solving PDEs. To jump out of the dilemma, we propose a general data-free paradigm where the neural network directly learns physics from the mean squared residual (MSR) loss constructed by the discretized PDE. We investigate the physical information in the MSR loss and identify the challenge that the neural network must have the capacity to model the long range entanglements in the spatial domain of the PDE, whose patterns vary in different PDEs. Therefore, we propose the low-rank decomposition network (LordNet) which is tunable and also efficient to model various entanglements. Specifically, LordNet learns a low-rank approximation to the global entanglements with simple fully connected layers, which extracts the dominant pattern with reduced computational cost. The experiments on solving Poisson's equation and Navier-Stokes equation demonstrate that the physical constraints by the MSR loss can lead to better accuracy and generalization ability of the neural network. In addition, LordNet outperforms other modern neural network architectures in both PDEs with the fewest parameters and the fastest inference speed. For Navier-Stokes equation, the learned operator is over 50 times faster than the finite difference solution with the same computational resources.
1,357
Terrain Classification using Transfer Learning on Hyperspectral Images: A Comparative study
A Hyperspectral image contains much more number of channels as compared to a RGB image, hence containing more information about entities within the image. The convolutional neural network (CNN) and the Multi-Layer Perceptron (MLP) have been proven to be an effective method of image classification. However, they suffer from the issues of long training time and requirement of large amounts of the labeled data, to achieve the expected outcome. These issues become more complex while dealing with hyperspectral images. To decrease the training time and reduce the dependence on large labeled dataset, we propose using the method of transfer learning. The hyperspectral dataset is preprocessed to a lower dimension using PCA, then deep learning models are applied to it for the purpose of classification. The features learned by this model are then used by the transfer learning model to solve a new classification problem on an unseen dataset. A detailed comparison of CNN and multiple MLP architectural models is performed, to determine an optimum architecture that suits best the objective. The results show that the scaling of layers not always leads to increase in accuracy but often leads to overfitting, and also an increase in the training time.The training time is reduced to greater extent by applying the transfer learning approach rather than just approaching the problem by directly training a new model on large datasets, without much affecting the accuracy.
1,358
Towards Adversarial Attack on Vision-Language Pre-training Models
While vision-language pre-training model (VLP) has shown revolutionary improvements on various vision-language (V+L) tasks, the studies regarding its adversarial robustness remain largely unexplored. This paper studied the adversarial attack on popular VLP models and V+L tasks. First, we analyzed the performance of adversarial attacks under different settings. By examining the influence of different perturbed objects and attack targets, we concluded some key observations as guidance on both designing strong multimodal adversarial attack and constructing robust VLP models. Second, we proposed a novel multimodal attack method on the VLP models called Collaborative Multimodal Adversarial Attack (Co-Attack), which collectively carries out the attacks on the image modality and the text modality. Experimental results demonstrated that the proposed method achieves improved attack performances on different V+L downstream tasks and VLP models. The analysis observations and novel attack method hopefully provide new understanding into the adversarial robustness of VLP models, so as to contribute their safe and reliable deployment in more real-world scenarios.
1,359
Label and Distribution-discriminative Dual Representation Learning for Out-of-Distribution Detection
To classify in-distribution samples, deep neural networks learn label-discriminative representations, which, however, are not necessarily distribution-discriminative according to the information bottleneck. Therefore, trained networks could assign unexpected high-confidence predictions to out-of-distribution samples drawn from distributions differing from that of in-distribution samples. Specifically, networks extract the strongly label-related information from in-distribution samples to learn the label-discriminative representations but discard the weakly label-related information. Accordingly, networks treat out-of-distribution samples with minimum label-sensitive information as in-distribution samples. According to the different informativeness properties of in- and out-of-distribution samples, a Dual Representation Learning (DRL) method learns distribution-discriminative representations that are weakly related to the labeling of in-distribution samples and combines label- and distribution-discriminative representations to detect out-of-distribution samples. For a label-discriminative representation, DRL constructs the complementary distribution-discriminative representation by an implicit constraint, i.e., integrating diverse intermediate representations where an intermediate representation less similar to the label-discriminative representation owns a higher weight. Experiments show that DRL outperforms the state-of-the-art methods for out-of-distribution detection.
1,360
Scalable Neural Data Server: A Data Recommender for Transfer Learning
Absence of large-scale labeled data in the practitioner's target domain can be a bottleneck to applying machine learning algorithms in practice. Transfer learning is a popular strategy for leveraging additional data to improve the downstream performance, but finding the most relevant data to transfer from can be challenging. Neural Data Server (NDS), a search engine that recommends relevant data for a given downstream task, has been previously proposed to address this problem. NDS uses a mixture of experts trained on data sources to estimate similarity between each source and the downstream task. Thus, the computational cost to each user grows with the number of sources. To address these issues, we propose Scalable Neural Data Server (SNDS), a large-scale search engine that can theoretically index thousands of datasets to serve relevant ML data to end users. SNDS trains the mixture of experts on intermediary datasets during initialization, and represents both data sources and downstream tasks by their proximity to the intermediary datasets. As such, computational cost incurred by SNDS users remains fixed as new datasets are added to the server. We validate SNDS on a plethora of real world tasks and find that data recommended by SNDS improves downstream task performance over baselines. We also demonstrate the scalability of SNDS by showing its ability to select relevant data for transfer outside of the natural image setting.
1,361
Out-of-distribution Detection by Cross-class Vicinity Distribution of In-distribution Data
Deep neural networks only learn to map in-distribution inputs to their corresponding ground truth labels in the training phase without differentiating out-of-distribution samples from in-distribution ones. This results from the assumption that all samples are independent and identically distributed without distributional distinction. Therefore, a pretrained network learned from the in-distribution samples treats out-of-distribution samples as in-distribution and makes high-confidence predictions on them in the test phase. To address this issue, we draw out-of-distribution samples from the vicinity distribution of training in-distribution samples for learning to reject the prediction on out-of-distribution inputs. A \textit{Cross-class Vicinity Distribution} is introduced by assuming that an out-of-distribution sample generated by mixing multiple in-distribution samples does not share the same classes of its constituents. We thus improve the discriminability of a pretrained network by finetuning it with out-of-distribution samples drawn from the cross-class vicinity distribution, where each out-of-distribution input corresponds to a complementary label. Experiments on various in-/out-of-distribution datasets show that the proposed method significantly outperforms existing methods in improving the capacity of discriminating between in- and out-of-distribution samples.
1,362
Faster Sampling from Log-Concave Distributions over Polytopes via a Soft-Threshold Dikin Walk
We consider the problem of sampling from a $d$-dimensional log-concave distribution $\pi(\theta) \propto e^{-f(\theta)}$ constrained to a polytope $K$ defined by $m$ inequalities. Our main result is a "soft-threshold'' variant of the Dikin walk Markov chain that requires at most $O((md + d L^2 R^2) \times md^{\omega-1}) \log(\frac{w}{\delta}))$ arithmetic operations to sample from $\pi$ within error $\delta>0$ in the total variation distance from a $w$-warm start, where $L$ is the Lipschitz-constant of $f$, $K$ is contained in a ball of radius $R$ and contains a ball of smaller radius $r$, and $\omega$ is the matrix-multiplication constant. When a warm start is not available, it implies an improvement of $\tilde{O}(d^{3.5-\omega})$ arithmetic operations on the previous best bound for sampling from $\pi$ within total variation error $\delta$, which was obtained with the hit-and-run algorithm, in the setting where $K$ is a polytope given by $m=O(d)$ inequalities and $LR = O(\sqrt{d})$. When a warm start is available, our algorithm improves by a factor of $d^2$ arithmetic operations on the best previous bound in this setting, which was obtained for a different version of the Dikin walk algorithm. Plugging our Dikin walk Markov chain into the post-processing algorithm of Mangoubi and Vishnoi (2021), we achieve further improvements in the dependence of the running time for the problem of generating samples from $\pi$ with infinity distance bounds in the special case when $K$ is a polytope.
1,363
Supervision Adaptation Balances In-Distribution Generalization and Out-of-Distribution Detection
When there is a discrepancy between in-distribution (ID) samples and out-of-distribution (OOD) samples, deep neural networks trained on ID samples suffer from high-confidence prediction on OOD samples. This is primarily caused by unavailable OOD samples to constrain the networks in the training process. To improve the OOD sensitivity of deep networks, several state-of-the-art methods introduce samples from other real-world datasets as OOD samples to the training process and assign manually-determined labels to these OOD samples. However, they sacrifice the classification accuracy because the unreliable labeling of OOD samples would disrupt ID classification. To balance ID generalization and OOD detection, a major challenge to tackle is to make OOD samples compatible with ID ones, which is addressed by our proposed \textit{supervision adaptation} method in this paper to define adaptive supervision information for OOD samples. First, by measuring the dependency between ID samples and their labels through mutual information, we reveal the form of the supervision information in terms of the negative probabilities of all classes. Second, after exploring the data correlations between ID and OOD samples by solving multiple binary regression problems, we estimate the supervision information to make ID classes more separable. We perform experiments on four advanced network architectures with two ID datasets and eleven OOD datasets to demonstrate the balancing effect of our supervision adaptation method in achieving both the ID classification ability and the OOD detection capacity.
1,364
0/1 Deep Neural Networks via Block Coordinate Descent
The step function is one of the simplest and most natural activation functions for deep neural networks (DNNs). As it counts 1 for positive variables and 0 for others, its intrinsic characteristics (e.g., discontinuity and no viable information of subgradients) impede its development for several decades. Even if there is an impressive body of work on designing DNNs with continuous activation functions that can be deemed as surrogates of the step function, it is still in the possession of some advantageous properties, such as complete robustness to outliers and being capable of attaining the best learning-theoretic guarantee of predictive accuracy. Hence, in this paper, we aim to train DNNs with the step function used as an activation function (dubbed as 0/1 DNNs). We first reformulate 0/1 DNNs as an unconstrained optimization problem and then solve it by a block coordinate descend (BCD) method. Moreover, we acquire closed-form solutions for sub-problems of BCD as well as its convergence properties. Furthermore, we also integrate $\ell_{2,0}$-regularization into 0/1 DNN to accelerate the training process and compress the network scale. As a result, the proposed algorithm has a high performance on classifying MNIST and Fashion-MNIST datasets.
1,365
Gray Learning from Non-IID Data with Out-of-distribution Samples
The quality of the training data annotated by experts cannot be guaranteed, even more so for non-IID data consisting of both in- and out-of-distribution samples (i.e., in-distribution and out-of-distribution samples hold different distributions). Experts may mistakenly annotate out-of-distribution samples the same as in-distribution samples, incurring untrustworthy ground-truth labels. Learning such non-IID data mixing in- and out-of-distribution samples with untrustworthy labels significantly challenges both shallow and deep learning, with no relevant work reported. It would be possible to identify trustworthy complementary labels of a sample indicating which classes it does not belong to, because both in- and out-of-distribution samples do not belong to the classes except those corresponding to the ground-truth label. With this insight, we propose a novel \textit{gray learning} approach to robustly learn from non-IID data with both in- and out-of-distribution samples. Due to the uncertain distributions of training samples, we reject the complementary labels for low-confidence inputs while mapping high-confidence inputs to the ground-truth labels in training. Building on the statistical learning theory, we derive the generalization error which shows that gray learning achieves a tight bound on the non-IID data. Extensive experiments show that our method provides significant improvement over alternative methods from robust statistics.
1,366
Frank-Wolfe-based Algorithms for Approximating Tyler's M-estimator
Tyler's M-estimator is a well known procedure for robust and heavy-tailed covariance estimation. Tyler himself suggested an iterative fixed-point algorithm for computing his estimator however, it requires super-linear (in the size of the data) runtime per iteration, which may be prohibitive in large scale. In this work we propose, to the best of our knowledge, the first Frank-Wolfe-based algorithms for computing Tyler's estimator. One variant uses standard Frank-Wolfe steps, the second also considers \textit{away-steps} (AFW), and the third is a \textit{geodesic} version of AFW (GAFW). AFW provably requires, up to a log factor, only linear time per iteration, while GAFW runs in linear time (up to a log factor) in a large $n$ (number of data-points) regime. All three variants are shown to provably converge to the optimal solution with sublinear rate, under standard assumptions, despite the fact that the underlying optimization problem is not convex nor smooth. Under an additional fairly mild assumption, that holds with probability 1 when the (normalized) data-points are i.i.d. samples from a continuous distribution supported on the entire unit sphere, AFW and GAFW are proved to converge with linear rates. Importantly, all three variants are parameter-free and use adaptive step-sizes.
1,367
Productive Reproducible Workflows for DNNs: A Case Study for Industrial Defect Detection
As Deep Neural Networks (DNNs) have become an increasingly ubiquitous workload, the range of libraries and tooling available to aid in their development and deployment has grown significantly. Scalable, production quality tools are freely available under permissive licenses, and are accessible enough to enable even small teams to be very productive. However within the research community, awareness and usage of said tools is not necessarily widespread, and researchers may be missing out on potential productivity gains from exploiting the latest tools and workflows. This paper presents a case study where we discuss our recent experience producing an end-to-end artificial intelligence application for industrial defect detection. We detail the high level deep learning libraries, containerized workflows, continuous integration/deployment pipelines, and open source code templates we leveraged to produce a competitive result, matching the performance of other ranked solutions to our three target datasets. We highlight the value that exploiting such systems can bring, even for research, and detail our solution and present our best results in terms of accuracy and inference time on a server class GPU, as well as inference times on a server class CPU, and a Raspberry Pi 4.
1,368
A Unified Understanding of Deep NLP Models for Text Classification
The rapid development of deep natural language processing (NLP) models for text classification has led to an urgent need for a unified understanding of these models proposed individually. Existing methods cannot meet the need for understanding different models in one framework due to the lack of a unified measure for explaining both low-level (e.g., words) and high-level (e.g., phrases) features. We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification. The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample. We model the intra- and inter-word information at each layer measuring the importance of a word to the final prediction as well as the relationships between words, such as the formation of phrases. A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples. Two case studies on classification tasks and comparison between models demonstrate that DeepNLPVis can help users effectively identify potential problems caused by samples and model architectures and then make informed improvements.
1,369
Quantifying Uncertainty In Traffic State Estimation Using Generative Adversarial Networks
This paper aims to quantify uncertainty in traffic state estimation (TSE) using the generative adversarial network based physics-informed deep learning (PIDL). The uncertainty of the focus arises from fundamental diagrams, in other words, the mapping from traffic density to velocity. To quantify uncertainty for the TSE problem is to characterize the robustness of predicted traffic states. Since its inception, generative adversarial networks (GAN) have become a popular probabilistic machine learning framework. In this paper, we will inform the GAN based predictions using stochastic traffic flow models and develop a GAN based PIDL framework for TSE, named ``PhysGAN-TSE". By conducting experiments on a real-world dataset, the Next Generation SIMulation (NGSIM) dataset, this method is shown to be more robust for uncertainty quantification than the pure GAN model or pure traffic flow models. Two physics models, the Lighthill-Whitham-Richards (LWR) and the Aw-Rascle-Zhang (ARZ) models, are compared as the physics components for the PhysGAN, and results show that the ARZ-based PhysGAN achieves a better performance than the LWR-based one.
1,370
Nested bandits
In many online decision processes, the optimizing agent is called to choose between large numbers of alternatives with many inherent similarities; in turn, these similarities imply closely correlated losses that may confound standard discrete choice models and bandit algorithms. We study this question in the context of nested bandits, a class of adversarial multi-armed bandit problems where the learner seeks to minimize their regret in the presence of a large number of distinct alternatives with a hierarchy of embedded (non-combinatorial) similarities. In this setting, optimal algorithms based on the exponential weights blueprint (like Hedge, EXP3, and their variants) may incur significant regret because they tend to spend excessive amounts of time exploring irrelevant alternatives with similar, suboptimal costs. To account for this, we propose a nested exponential weights (NEW) algorithm that performs a layered exploration of the learner's set of alternatives based on a nested, step-by-step selection method. In so doing, we obtain a series of tight bounds for the learner's regret showing that online learning problems with a high degree of similarity between alternatives can be resolved efficiently, without a red bus / blue bus paradox occurring.
1,371
Fairness-aware Model-agnostic Positive and Unlabeled Learning
With the increasing application of machine learning in high-stake decision-making problems, potential algorithmic bias towards people from certain social groups poses negative impacts on individuals and our society at large. In the real-world scenario, many such problems involve positive and unlabeled data such as medical diagnosis, criminal risk assessment and recommender systems. For instance, in medical diagnosis, only the diagnosed diseases will be recorded (positive) while others will not (unlabeled). Despite the large amount of existing work on fairness-aware machine learning in the (semi-)supervised and unsupervised settings, the fairness issue is largely under-explored in the aforementioned Positive and Unlabeled Learning (PUL) context, where it is usually more severe. In this paper, to alleviate this tension, we propose a fairness-aware PUL method named FairPUL. In particular, for binary classification over individuals from two populations, we aim to achieve similar true positive rates and false positive rates in both populations as our fairness metric. Based on the analysis of the optimal fair classifier for PUL, we design a model-agnostic post-processing framework, leveraging both the positive examples and unlabeled ones. Our framework is proven to be statistically consistent in terms of both the classification error and the fairness metric. Experiments on the synthetic and real-world data sets demonstrate that our framework outperforms state-of-the-art in both PUL and fair classification.
1,372
Finding Diverse and Predictable Subgraphs for Graph Domain Generalization
This paper focuses on out-of-distribution generalization on graphs where performance drops due to the unseen distribution shift. Previous graph domain generalization works always resort to learning an invariant predictor among different source domains. However, they assume sufficient source domains are available during training, posing huge challenges for realistic applications. By contrast, we propose a new graph domain generalization framework, dubbed as DPS, by constructing multiple populations from the source domains. Specifically, DPS aims to discover multiple \textbf{D}iverse and \textbf{P}redictable \textbf{S}ubgraphs with a set of generators, namely, subgraphs are different from each other but all the them share the same semantics with the input graph. These generated source domains are exploited to learn an \textit{equi-predictive} graph neural network (GNN) across domains, which is expected to generalize well to unseen target domains. Generally, DPS is model-agnostic that can be incorporated with various GNN backbones. Extensive experiments on both node-level and graph-level benchmarks shows that the proposed DPS achieves impressive performance for various graph domain generalization tasks.
1,373
Bayesian Optimization under Stochastic Delayed Feedback
Bayesian optimization (BO) is a widely-used sequential method for zeroth-order optimization of complex and expensive-to-compute black-box functions. The existing BO methods assume that the function evaluation (feedback) is available to the learner immediately or after a fixed delay. Such assumptions may not be practical in many real-life problems like online recommendations, clinical trials, and hyperparameter tuning where feedback is available after a random delay. To benefit from the experimental parallelization in these problems, the learner needs to start new function evaluations without waiting for delayed feedback. In this paper, we consider the BO under stochastic delayed feedback problem. We propose algorithms with sub-linear regret guarantees that efficiently address the dilemma of selecting new function queries while waiting for randomly delayed feedback. Building on our results, we also make novel contributions to batch BO and contextual Gaussian process bandits. Experiments on synthetic and real-life datasets verify the performance of our algorithms.
1,374
An Embedded Feature Selection Framework for Control
Reducing sensor requirements while keeping optimal control performance is crucial to many industrial control applications to achieve robust, low-cost, and computation-efficient controllers. However, existing feature selection solutions for the typical machine learning domain can hardly be applied in the domain of control with changing dynamics. In this paper, a novel framework, namely the Dual-world embedded Attentive Feature Selection (D-AFS), can efficiently select the most relevant sensors for the system under dynamic control. Rather than the one world used in most Deep Reinforcement Learning (DRL) algorithms, D-AFS has both the real world and its virtual peer with twisted features. By analyzing the DRL's response in two worlds, D-AFS can quantitatively identify respective features' importance towards control. A well-known active flow control problem, cylinder drag reduction, is used for evaluation. Results show that D-AFS successfully finds an optimized five-probes layout with 18.7\% drag reduction than the state-of-the-art solution with 151 probes and 49.2\% reduction than five-probes layout by human experts. We also apply this solution to four OpenAI classical control cases. In all cases, D-AFS achieves the same or better sensor configurations than originally provided solutions. Results highlight, we argued, a new way to achieve efficient and optimal sensor designs for experimental or industrial systems. Our source codes are made publicly available at https://github.com/G-AILab/DAFSFluid.
1,375
Generational Differences in Automobility: Comparing America's Millennials and Gen Xers Using Gradient Boosting Decision Trees
Whether the Millennials are less auto-centric than the previous generations has been widely discussed in the literature. Most existing studies use regression models and assume that all factors are linear-additive in contributing to the young adults' driving behaviors. This study relaxes this assumption by applying a non-parametric statistical learning method, namely the gradient boosting decision trees (GBDT). Using U.S. nationwide travel surveys for 2001 and 2017, this study examines the non-linear dose-response effects of lifecycle, socio-demographic and residential factors on daily driving distances of Millennial and Gen-X young adults. Holding all other factors constant, Millennial young adults had shorter predicted daily driving distances than their Gen-X counterparts. Besides, residential and economic factors explain around 50% of young adults' daily driving distances, while the collective contributions for life course events and demographics are about 33%. This study also identifies the density ranges for formulating effective land use policies aiming at reducing automobile travel demand.
1,376
LogGENE: A smooth alternative to check loss for Deep Healthcare Inference Tasks
High-throughput Genomics is ushering a new era in personalized health care, and targeted drug design and delivery. Mining these large datasets, and obtaining calibrated predictions is of immediate relevance and utility. In our work, we develop methods for Gene Expression Inference based on Deep neural networks. However, unlike typical Deep learning methods, our inferential technique, while achieving state-of-the-art performance in terms of accuracy, can also provide explanations, and report uncertainty estimates. We adopt the Quantile Regression framework to predict full conditional quantiles for a given set of house keeping gene expressions. Conditional quantiles, in addition to being useful in providing rich interpretations of the predictions, are also robust to measurement noise. However, check loss, used in quantile regression to drive the estimation process is not differentiable. We propose log-cosh as a smooth-alternative to the check loss. We apply our methods on GEO microarray dataset. We also extend the method to binary classification setting. Furthermore, we investigate other consequences of the smoothness of the loss in faster convergence.
1,377
A Survey on Model-based Reinforcement Learning
Reinforcement learning (RL) solves sequential decision-making problems via a trial-and-error process interacting with the environment. While RL achieves outstanding success in playing complex video games that allow huge trial-and-error, making errors is always undesired in the real world. To improve the sample efficiency and thus reduce the errors, model-based reinforcement learning (MBRL) is believed to be a promising direction, which builds environment models in which the trial-and-errors can take place without real costs. In this survey, we take a review of MBRL with a focus on the recent progress in deep RL. For non-tabular environments, there is always a generalization error between the learned environment model and the real environment. As such, it is of great importance to analyze the discrepancy between policy training in the environment model and that in the real environment, which in turn guides the algorithm design for better model learning, model usage, and policy training. Besides, we also discuss the recent advances of model-based techniques in other forms of RL, including offline RL, goal-conditioned RL, multi-agent RL, and meta-RL. Moreover, we discuss the applicability and advantages of MBRL in real-world tasks. Finally, we end this survey by discussing the promising prospects for the future development of MBRL. We think that MBRL has great potential and advantages in real-world applications that were overlooked, and we hope this survey could attract more research on MBRL.
1,378
Adversarially trained neural representations may already be as robust as corresponding biological neural representations
Visual systems of primates are the gold standard of robust perception. There is thus a general belief that mimicking the neural representations that underlie those systems will yield artificial visual systems that are adversarially robust. In this work, we develop a method for performing adversarial visual attacks directly on primate brain activity. We then leverage this method to demonstrate that the above-mentioned belief might not be well founded. Specifically, we report that the biological neurons that make up visual systems of primates exhibit susceptibility to adversarial perturbations that is comparable in magnitude to existing (robustly trained) artificial neural networks.
1,379
Characterizing and Mitigating the Difficulty in Training Physics-informed Artificial Neural Networks under Pointwise Constraints
Neural networks can be used to learn the solution of partial differential equations (PDEs) on arbitrary domains without requiring a computational mesh. Common approaches integrate differential operators in training neural networks using a structured loss function. The most common training algorithm for neural networks is backpropagation which relies on the gradient of the loss function with respect to the parameters of the network. In this work, we characterize the difficulty of training neural networks on physics by investigating the impact of differential operators in corrupting the back propagated gradients. Particularly, we show that perturbations present in the output of a neural network model during early stages of training lead to higher levels of noise in a structured loss function that is composed of high-order differential operators. These perturbations consequently corrupt the back-propagated gradients and impede convergence. We mitigate this issue by introducing auxiliary flux parameters to obtain a system of first-order differential equations. We formulate a non-linear unconstrained optimization problem using the augmented Lagrangian method that properly constrains the boundary conditions and adaptively focus on regions of higher gradients that are difficult to learn. We apply our approach to learn the solution of various benchmark PDE problems and demonstrate orders of magnitude improvement over existing approaches.
1,380
TrafficFlowGAN: Physics-informed Flow based Generative Adversarial Network for Uncertainty Quantification
This paper proposes the TrafficFlowGAN, a physics-informed flow based generative adversarial network (GAN), for uncertainty quantification (UQ) of dynamical systems. TrafficFlowGAN adopts a normalizing flow model as the generator to explicitly estimate the data likelihood. This flow model is trained to maximize the data likelihood and to generate synthetic data that can fool a convolutional discriminator. We further regularize this training process using prior physics information, so-called physics-informed deep learning (PIDL). To the best of our knowledge, we are the first to propose an integration of flow, GAN and PIDL for the UQ problems. We take the traffic state estimation (TSE), which aims to estimate the traffic variables (e.g. traffic density and velocity) using partially observed data, as an example to demonstrate the performance of our proposed model. We conduct numerical experiments where the proposed model is applied to learn the solutions of stochastic differential equations. The results demonstrate the robustness and accuracy of the proposed model, together with the ability to learn a machine learning surrogate model. We also test it on a real-world dataset, the Next Generation SIMulation (NGSIM), to show that the proposed TrafficFlowGAN can outperform the baselines, including the pure flow model, the physics-informed flow model, and the flow based GAN model.
1,381
FRAPPE: $\underline{\text{F}}$ast $\underline{\text{Ra}}$nk $\underline{\text{App}}$roximation with $\underline{\text{E}}$xplainable Features for Tensors
Tensor decompositions have proven to be effective in analyzing the structure of multidimensional data. However, most of these methods require a key parameter: the number of desired components. In the case of the CANDECOMP/PARAFAC decomposition (CPD), this value is known as the canonical rank and greatly affects the quality of the results. Existing methods use heuristics or Bayesian methods to estimate this value by repeatedly calculating the CPD, making them extremely computationally expensive. In this work, we propose FRAPPE and Self-FRAPPE: a cheaply supervised and a self-supervised method to estimate the canonical rank of a tensor without ever having to compute the CPD. We call FRAPPE cheaply supervised because it uses a fully synthetic training set without requiring real-world examples. We evaluate these methods on synthetic tensors, real tensors of known rank, and the weight tensor of a convolutional neural network. We show that FRAPPE and Self-FRAPPE offer large improvements in both effectiveness and speed, with a respective $15\%$ and $10\%$ improvement in MAPE and an $4000\times$ and $13\times$ improvement in evaluation speed over the best-performing baseline.
1,382
Knowledge Learning with Crowdsourcing: A Brief Review and Systematic Perspective
Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity, and uncertainty, which lead the knowledge learning from them full of challenges. With the emergence of crowdsourcing, versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process. During the past thirteen years, researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds. This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data, models, and learning processes. In addition to reviewing existing important work, the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work, which will light up the way for new researchers and encourage them to pursue new contributions.
1,383
Robust Imitation Learning against Variations in Environment Dynamics
In this paper, we propose a robust imitation learning (IL) framework that improves the robustness of IL when environment dynamics are perturbed. The existing IL framework trained in a single environment can catastrophically fail with perturbations in environment dynamics because it does not capture the situation that underlying environment dynamics can be changed. Our framework effectively deals with environments with varying dynamics by imitating multiple experts in sampled environment dynamics to enhance the robustness in general variations in environment dynamics. In order to robustly imitate the multiple sample experts, we minimize the risk with respect to the Jensen-Shannon divergence between the agent's policy and each of the sample experts. Numerical results show that our algorithm significantly improves robustness against dynamics perturbations compared to conventional IL baselines.
1,384
Laziness, Barren Plateau, and Noise in Machine Learning
We define \emph{laziness} to describe a large suppression of variational parameter updates for neural networks, classical or quantum. In the quantum case, the suppression is exponential in the number of qubits for randomized variational quantum circuits. We discuss the difference between laziness and \emph{barren plateau} in quantum machine learning created by quantum physicists in \cite{mcclean2018barren} for the flatness of the loss function landscape during gradient descent. We address a novel theoretical understanding of those two phenomena in light of the theory of neural tangent kernels. For noiseless quantum circuits, without the measurement noise, the loss function landscape is complicated in the overparametrized regime with a large number of trainable variational angles. Instead, around a random starting point in optimization, there are large numbers of local minima that are good enough and could minimize the mean square loss function, where we still have quantum laziness, but we do not have barren plateaus. However, the complicated landscape is not visible within a limited number of iterations, and low precision in quantum control and quantum sensing. Moreover, we look at the effect of noises during optimization by assuming intuitive noise models, and show that variational quantum algorithms are noise-resilient in the overparametrization regime. Our work precisely reformulates the quantum barren plateau statement towards a precision statement and justifies the statement in certain noise models, injects new hope toward near-term variational quantum algorithms, and provides theoretical connections toward classical machine learning. Our paper provides conceptual perspectives about quantum barren plateaus, together with discussions about the gradient descent dynamics in \cite{together}.
1,385
Primal Estimated Subgradient Solver for SVM for Imbalanced Classification
We aim to demonstrate in experiments that our cost sensitive PEGASOS SVM balances achieve good performance on imbalanced data sets with a Majority to Minority Ratio ranging from 8.6 to one through 130 to one. We evaluate the performance by examining the learning curves. We will also examine the effect of varying the hyperparameters via validation curves. We compare our PEGASOS Cost-Sensitive SVM's results on three of the datasets Ding analyzed using his LINEAR SVM DECIDL method. We will use Python rather than MATLAB as python has dictionaries for storing mixed data types during multi-parameter cross-validation.
1,386
Adversarial Scrutiny of Evidentiary Statistical Software
The U.S. criminal legal system increasingly relies on software output to convict and incarcerate people. In a large number of cases each year, the government makes these consequential decisions based on evidence from statistical software -- such as probabilistic genotyping, environmental audio detection, and toolmark analysis tools -- that defense counsel cannot fully cross-examine or scrutinize. This undermines the commitments of the adversarial criminal legal system, which relies on the defense's ability to probe and test the prosecution's case to safeguard individual rights. Responding to this need to adversarially scrutinize output from such software, we propose robust adversarial testing as an audit framework to examine the validity of evidentiary statistical software. We define and operationalize this notion of robust adversarial testing for defense use by drawing on a large body of recent work in robust machine learning and algorithmic fairness. We demonstrate how this framework both standardizes the process for scrutinizing such tools and empowers defense lawyers to examine their validity for instances most relevant to the case at hand. We further discuss existing structural and institutional challenges within the U.S. criminal legal system that may create barriers for implementing this and other such audit frameworks and close with a discussion on policy changes that could help address these concerns.
1,387
Enforcing Continuous Physical Symmetries in Deep Learning Network for Solving Partial Differential Equations
As a typical {application} of deep learning, physics-informed neural network (PINN) {has been} successfully used to find numerical solutions of partial differential equations (PDEs), but how to improve the limited accuracy is still a great challenge for PINN. In this work, we introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN, for improving the accuracy of PINN. We test the effectiveness of SPINN via two groups of ten independent numerical experiments for the heat equation, Korteweg-de Vries (KdV) equation and potential Burgers {equations} respectively, which shows that SPINN performs better than PINN with fewer training points and simpler architecture of neural network. Furthermore, we discuss the computational overhead of SPINN in terms of the relative computational cost to PINN and show that the training time of SPINN has no obvious increases, even less than PINN for some cases.
1,388
AutoGML: Fast Automatic Model Selection for Graph Machine Learning
Given a graph learning task, such as link prediction, on a new graph dataset, how can we automatically select the best method as well as its hyperparameters (collectively called a model)? Model selection for graph learning has been largely ad hoc. A typical approach has been to apply popular methods to new datasets, but this is often suboptimal. On the other hand, systematically comparing models on the new graph quickly becomes too costly, or even impractical. In this work, we develop the first meta-learning approach for automatic graph machine learning, called AutoGML, which capitalizes on the prior performances of a large body of existing methods on benchmark graph datasets, and carries over this prior experience to automatically select an effective model to use for the new graph, without any model training or evaluations. To capture the similarity across graphs from different domains, we introduce specialized meta-graph features that quantify the structural characteristics of a graph. Then we design a meta-graph that represents the relations among models and graphs, and develop a graph meta-learner operating on the meta-graph, which estimates the relevance of each model to different graphs. Through extensive experiments, we show that using AutoGML to select a method for the new graph significantly outperforms consistently applying popular methods as well as several existing meta-learners, while being extremely fast at test time.
1,389
Scalable Classifier-Agnostic Channel Selection for MTSC
Accuracy is a key focus of current work in time series classification. However, speed and data reduction in many applications is equally important, especially when the data scale and storage requirements increase rapidly. Current MTSC algorithms need hundreds of compute hours to complete training and prediction. This is due to the nature of multivariate time series data, which grows with the number of time series, their length and the number of channels. In many applications, not all the channels are useful for the classification task; hence we require methods that can efficiently select useful channels and thus save computational resources. We propose and evaluate two methods for channel selection. Our techniques work by representing each class by a prototype time series and performing channel selection based on the prototype distance between classes. The main hypothesis is that useful channels enable better separation between classes; hence, channels with the higher distance between class prototypes are more useful. On the UEA Multivariate Time Series Classification (MTSC) benchmark, we show that these techniques achieve significant data reduction and classifier speedup for similar levels of classification accuracy. Channel selection is applied as a pre-processing step before training state-of-the-art MTSC algorithms and saves about 70\% of computation time and data storage, with preserved accuracy. Furthermore, our methods enable even efficient classifiers, such as ROCKET, to achieve better accuracy than using no channel selection or forward channel selection. To further study the impact of our techniques, we present experiments on classifying synthetic multivariate time series datasets with more than 100 channels, as well as a real-world case study on a dataset with 50 channels. Our channel selection methods lead to significant data reduction with preserved or improved accuracy.
1,390
DECK: Model Hardening for Defending Pervasive Backdoors
Pervasive backdoors are triggered by dynamic and pervasive input perturbations. They can be intentionally injected by attackers or naturally exist in normally trained models. They have a different nature from the traditional static and localized backdoors that can be triggered by perturbing a small input area with some fixed pattern, e.g., a patch with solid color. Existing defense techniques are highly effective for traditional backdoors. However, they may not work well for pervasive backdoors, especially regarding backdoor removal and model hardening. In this paper, we propose a novel model hardening technique against pervasive backdoors, including both natural and injected backdoors. We develop a general pervasive attack based on an encoder-decoder architecture enhanced with a special transformation layer. The attack can model a wide range of existing pervasive backdoor attacks and quantify them by class distances. As such, using the samples derived from our attack in adversarial training can harden a model against these backdoor vulnerabilities. Our evaluation on 9 datasets with 15 model structures shows that our technique can enlarge class distances by 59.65% on average with less than 1% accuracy degradation and no robustness loss, outperforming five hardening techniques such as adversarial training, universal adversarial training, MOTH, etc. It can reduce the attack success rate of six pervasive backdoor attacks from 99.06% to 1.94%, surpassing seven state-of-the-art backdoor removal techniques.
1,391
Pisces: Efficient Federated Learning via Guided Asynchronous Training
Federated learning (FL) is typically performed in a synchronous parallel manner, where the involvement of a slow client delays a training iteration. Current FL systems employ a participant selection strategy to select fast clients with quality data in each iteration. However, this is not always possible in practice, and the selection strategy often has to navigate an unpleasant trade-off between the speed and the data quality of clients. In this paper, we present Pisces, an asynchronous FL system with intelligent participant selection and model aggregation for accelerated training. To avoid incurring excessive resource cost and stale training computation, Pisces uses a novel scoring mechanism to identify suitable clients to participate in a training iteration. It also adapts the pace of model aggregation to dynamically bound the progress gap between the selected clients and the server, with a provable convergence guarantee in a smooth non-convex setting. We have implemented Pisces in an open-source FL platform called Plato, and evaluated its performance in large-scale experiments with popular vision and language models. Pisces outperforms the state-of-the-art synchronous and asynchronous schemes, accelerating the time-to-accuracy by up to 2.0x and 1.9x, respectively.
1,392
Motley: Benchmarking Heterogeneity and Personalization in Federated Learning
Personalized federated learning considers learning models unique to each client in a heterogeneous network. The resulting client-specific models have been purported to improve metrics such as accuracy, fairness, and robustness in federated networks. However, despite a plethora of work in this area, it remains unclear: (1) which personalization techniques are most effective in various settings, and (2) how important personalization truly is for realistic federated applications. To better answer these questions, we propose Motley, a benchmark for personalized federated learning. Motley consists of a suite of cross-device and cross-silo federated datasets from varied problem domains, as well as thorough evaluation metrics for better understanding the possible impacts of personalization. We establish baselines on the benchmark by comparing a number of representative personalized federated learning methods. These initial results highlight strengths and weaknesses of existing approaches, and raise several open questions for the community. Motley aims to provide a reproducible means with which to advance developments in personalized and heterogeneity-aware federated learning, as well as the related areas of transfer learning, meta-learning, and multi-task learning.
1,393
Machine Learning in Sports: A Case Study on Using Explainable Models for Predicting Outcomes of Volleyball Matches
Machine Learning has become an integral part of engineering design and decision making in several domains, including sports. Deep Neural Networks (DNNs) have been the state-of-the-art methods for predicting outcomes of professional sports events. However, apart from getting highly accurate predictions on these sports events outcomes, it is necessary to answer questions such as "Why did the model predict that Team A would win Match X against Team B?" DNNs are inherently black-box in nature. Therefore, it is required to provide high-quality interpretable, and understandable explanations for a model's prediction in sports. This paper explores a two-phased Explainable Artificial Intelligence(XAI) approach to predict outcomes of matches in the Brazilian volleyball League (SuperLiga). In the first phase, we directly use the interpretable rule-based ML models that provide a global understanding of the model's behaviors based on Boolean Rule Column Generation (BRCG; extracts simple AND-OR classification rules) and Logistic Regression (LogReg; allows to estimate the feature importance scores). In the second phase, we construct non-linear models such as Support Vector Machine (SVM) and Deep Neural Network (DNN) to obtain predictive performance on the volleyball matches' outcomes. We construct the "post-hoc" explanations for each data instance using ProtoDash, a method that finds prototypes in the training dataset that are most similar to the test instance, and SHAP, a method that estimates the contribution of each feature on the model's prediction. We evaluate the SHAP explanations using the faithfulness metric. Our results demonstrate the effectiveness of the explanations for the model's predictions.
1,394
Optimal Dynamic Regret in LQR Control
We consider the problem of nonstochastic control with a sequence of quadratic losses, i.e., LQR control. We provide an efficient online algorithm that achieves an optimal dynamic (policy) regret of $\tilde{O}(\text{max}\{n^{1/3} \mathcal{TV}(M_{1:n})^{2/3}, 1\})$, where $\mathcal{TV}(M_{1:n})$ is the total variation of any oracle sequence of Disturbance Action policies parameterized by $M_1,...,M_n$ -- chosen in hindsight to cater to unknown nonstationarity. The rate improves the best known rate of $\tilde{O}(\sqrt{n (\mathcal{TV}(M_{1:n})+1)} )$ for general convex losses and we prove that it is information-theoretically optimal for LQR. Main technical components include the reduction of LQR to online linear regression with delayed feedback due to Foster and Simchowitz (2020), as well as a new proper learning algorithm with an optimal $\tilde{O}(n^{1/3})$ dynamic regret on a family of ``minibatched'' quadratic losses, which could be of independent interest.
1,395
Multistream Gaze Estimation with Anatomical Eye Region Isolation by Synthetic to Real Transfer Learning
We propose a novel neural pipeline, MSGazeNet, that learns gaze representations by taking advantage of the eye anatomy information through a multistream framework. Our proposed solution comprises two components, first a network for isolating anatomical eye regions, and a second network for multistream gaze estimation. The eye region isolation is performed with a U-Net style network which we train using a synthetic dataset that contains eye region masks for the visible eyeball and the iris region. The synthetic dataset used in this stage is a new dataset consisting of 60,000 eye images, which we create using an eye-gaze simulator, UnityEyes. Successive to training, the eye region isolation network is then transferred to the real domain for generating masks for the real-world eye images. In order to successfully make the transfer, we exploit domain randomization in the training process, which allows for the synthetic images to benefit from a larger variance with the help of augmentations that resemble artifacts. The generated eye region masks along with the raw eye images are then used together as a multistream input to our gaze estimation network. We evaluate our framework on three benchmark gaze estimation datasets, MPIIGaze, Eyediap, and UTMultiview, where we set a new state-of-the-art on Eyediap and UTMultiview datasets by obtaining a performance gain of 7.57% and 1.85% respectively, while achieving competitive performance on MPIIGaze. We also study the robustness of our method with respect to the noise in the data and demonstrate that our model is less sensitive to noisy data. Lastly, we perform a variety of experiments including ablation studies to evaluate the contribution of different components and design choices in our solution.
1,396
Mutation-Driven Follow the Regularized Leader for Last-Iterate Convergence in Zero-Sum Games
In this study, we consider a variant of the Follow the Regularized Leader (FTRL) dynamics in two-player zero-sum games. FTRL is guaranteed to converge to a Nash equilibrium when time-averaging the strategies, while a lot of variants suffer from the issue of limit cycling behavior, i.e., lack the last-iterate convergence guarantee. To this end, we propose mutant FTRL (M-FTRL), an algorithm that introduces mutation for the perturbation of action probabilities. We then investigate the continuous-time dynamics of M-FTRL and provide the strong convergence guarantees toward stationary points that approximate Nash equilibria under full-information feedback. Furthermore, our simulation demonstrates that M-FTRL can enjoy faster convergence rates than FTRL and optimistic FTRL under full-information feedback and surprisingly exhibits clear convergence under bandit feedback.
1,397
Reduced Robust Random Cut Forest for Out-Of-Distribution detection in machine learning models
Most machine learning-based regressors extract information from data collected via past observations of limited length to make predictions in the future. Consequently, when input to these trained models is data with significantly different statistical properties from data used for training, there is no guarantee of accurate prediction. Consequently, using these models on out-of-distribution input data may result in a completely different predicted outcome from the desired one, which is not only erroneous but can also be hazardous in some cases. Successful deployment of these machine learning models in any system requires a detection system, which should be able to distinguish between out-of-distribution and in-distribution data (i.e. similar to training data). In this paper, we introduce a novel approach for this detection process using a Reduced Robust Random Cut Forest (RRRCF) data structure, which can be used on both small and large data sets. Similar to the Robust Random Cut Forest (RRCF), RRRCF is a structured, but a reduced representation of the training data sub-space in form of cut trees. Empirical results of this method on both low and high-dimensional data showed that inference about data being in/out of training distribution can be made efficiently and the model is easy to train with no difficult hyper-parameter tuning. The paper discusses two different use-cases for testing and validating results.
1,398
GaLeNet: Multimodal Learning for Disaster Prediction, Management and Relief
After a natural disaster, such as a hurricane, millions are left in need of emergency assistance. To allocate resources optimally, human planners need to accurately analyze data that can flow in large volumes from several sources. This motivates the development of multimodal machine learning frameworks that can integrate multiple data sources and leverage them efficiently. To date, the research community has mainly focused on unimodal reasoning to provide granular assessments of the damage. Moreover, previous studies mostly rely on post-disaster images, which may take several days to become available. In this work, we propose a multimodal framework (GaLeNet) for assessing the severity of damage by complementing pre-disaster images with weather data and the trajectory of the hurricane. Through extensive experiments on data from two hurricanes, we demonstrate (i) the merits of multimodal approaches compared to unimodal methods, and (ii) the effectiveness of GaLeNet at fusing various modalities. Furthermore, we show that GaLeNet can leverage pre-disaster images in the absence of post-disaster images, preventing substantial delays in decision making.
1,399
An Empirical Study of Quantum Dynamics as a Ground State Problem with Neural Quantum States
Neural quantum states are variational wave functions parameterised by artificial neural networks, a mathematical model studied for decades in the machine learning community. In the context of many-body physics, methods such as variational Monte Carlo with neural quantum states as variational wave functions are successful in approximating, with great accuracy, the ground-state of a quantum Hamiltonian. However, all the difficulties of proposing neural network architectures, along with exploring their expressivity and trainability, permeate their application as neural quantum states. In this paper, we consider the Feynman-Kitaev Hamiltonian for the transverse field Ising model, whose ground state encodes the time evolution of a spin chain at discrete time steps. We show how this ground state problem specifically challenges the neural quantum state trainability as the time steps increase because the true ground state becomes more entangled, and the probability distribution starts to spread across the Hilbert space. Our results indicate that the considered neural quantum states are capable of accurately approximating the true ground state of the system, i.e., they are expressive enough. However, extensive hyper-parameter tuning experiments point towards the empirical fact that it is poor trainability--in the variational Monte Carlo setup--that prevents a faithful approximation of the true ground state.