Datasets:
Add dataloader for full SourceData (including entity links)
#4
by
davidkartchner
- opened
- SourceData.py +217 -46
SourceData.py
CHANGED
@@ -19,10 +19,12 @@
|
|
19 |
from __future__ import absolute_import, division, print_function
|
20 |
|
21 |
import json
|
|
|
22 |
import datasets
|
23 |
|
24 |
_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"
|
25 |
|
|
|
26 |
class SourceData(datasets.GeneratorBasedBuilder):
|
27 |
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
|
28 |
|
@@ -45,19 +47,26 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
45 |
"B-DISEASE",
|
46 |
"I-DISEASE",
|
47 |
"B-CELL_LINE",
|
48 |
-
"I-CELL_LINE"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
]
|
50 |
-
_SEMANTIC_ROLES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
|
51 |
_PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
|
52 |
_ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]
|
53 |
|
54 |
_CITATION = """\
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
"""
|
62 |
|
63 |
_DESCRIPTION = """\
|
@@ -70,32 +79,73 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
70 |
|
71 |
DEFAULT_CONFIG_NAME = "NER"
|
72 |
|
73 |
-
_LATEST_VERSION = "
|
74 |
|
75 |
def _info(self):
|
76 |
-
VERSION =
|
|
|
|
|
|
|
|
|
77 |
self._URLS = {
|
78 |
"NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
|
79 |
"PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
|
80 |
"ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
|
81 |
"ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
|
82 |
"ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
|
|
|
|
|
|
|
|
|
|
|
83 |
}
|
84 |
self.BUILDER_CONFIGS = [
|
85 |
-
datasets.BuilderConfig(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
]
|
91 |
-
|
92 |
if self.config.name in ["NER", "default"]:
|
93 |
features = datasets.Features(
|
94 |
{
|
95 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
96 |
"labels": datasets.Sequence(
|
97 |
-
feature=datasets.ClassLabel(
|
98 |
-
|
|
|
|
|
99 |
),
|
100 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
101 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
@@ -109,7 +159,7 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
109 |
"labels": datasets.Sequence(
|
110 |
feature=datasets.ClassLabel(
|
111 |
num_classes=len(self._SEMANTIC_ROLES),
|
112 |
-
names=self._SEMANTIC_ROLES
|
113 |
)
|
114 |
),
|
115 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
@@ -124,7 +174,7 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
124 |
"labels": datasets.Sequence(
|
125 |
feature=datasets.ClassLabel(
|
126 |
num_classes=len(self._SEMANTIC_ROLES),
|
127 |
-
names=self._SEMANTIC_ROLES
|
128 |
)
|
129 |
),
|
130 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
@@ -139,13 +189,12 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
139 |
"labels": datasets.Sequence(
|
140 |
feature=datasets.ClassLabel(
|
141 |
num_classes=len(self._SEMANTIC_ROLES),
|
142 |
-
names=self._SEMANTIC_ROLES
|
143 |
)
|
144 |
),
|
145 |
"is_category": datasets.Sequence(
|
146 |
feature=datasets.ClassLabel(
|
147 |
-
num_classes=len(self._ROLES_MULTI),
|
148 |
-
names=self._ROLES_MULTI
|
149 |
)
|
150 |
),
|
151 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
@@ -157,13 +206,57 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
157 |
{
|
158 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
159 |
"labels": datasets.Sequence(
|
160 |
-
feature=datasets.ClassLabel(
|
161 |
-
|
|
|
|
|
162 |
),
|
163 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
164 |
}
|
165 |
)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
return datasets.DatasetInfo(
|
168 |
description=self._DESCRIPTION,
|
169 |
features=features,
|
@@ -172,38 +265,49 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
172 |
license=self._LICENSE,
|
173 |
citation=self._CITATION,
|
174 |
)
|
175 |
-
|
176 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
177 |
"""Returns SplitGenerators.
|
178 |
-
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.
|
|
|
179 |
|
180 |
try:
|
181 |
config_name = self.config.name if self.config.name != "default" else "NER"
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
except:
|
189 |
raise ValueError(f"unkonwn config name: {self.config.name}")
|
190 |
-
|
191 |
return [
|
192 |
datasets.SplitGenerator(
|
193 |
name=datasets.Split.TRAIN,
|
194 |
# These kwargs will be passed to _generate_examples
|
195 |
-
gen_kwargs={
|
196 |
-
"filepath": data_files[0]},
|
197 |
),
|
198 |
datasets.SplitGenerator(
|
199 |
name=datasets.Split.TEST,
|
200 |
-
gen_kwargs={
|
201 |
-
"filepath": data_files[1]},
|
202 |
),
|
203 |
datasets.SplitGenerator(
|
204 |
name=datasets.Split.VALIDATION,
|
205 |
-
gen_kwargs={
|
206 |
-
"filepath": data_files[2]},
|
207 |
),
|
208 |
]
|
209 |
|
@@ -212,40 +316,45 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
212 |
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
213 |
The key is not important, it's more here for legacy reason (legacy from tfds)"""
|
214 |
|
|
|
|
|
|
|
|
|
|
|
215 |
with open(filepath, encoding="utf-8") as f:
|
216 |
# logger.info("⏳ Generating examples from = %s", filepath)
|
217 |
for id_, row in enumerate(f):
|
218 |
-
data = json.loads(row)
|
219 |
if self.config.name in ["NER", "default"]:
|
220 |
yield id_, {
|
221 |
"words": data["words"],
|
222 |
"labels": data["labels"],
|
223 |
"tag_mask": data["is_category"],
|
224 |
-
"text": data["text"]
|
225 |
}
|
226 |
elif self.config.name == "ROLES_GP":
|
227 |
yield id_, {
|
228 |
"words": data["words"],
|
229 |
"labels": data["labels"],
|
230 |
"tag_mask": data["is_category"],
|
231 |
-
"text": data["text"]
|
232 |
}
|
233 |
elif self.config.name == "ROLES_MULTI":
|
234 |
labels = data["labels"]
|
235 |
-
tag_mask = [1 if t!=0 else 0 for t in labels]
|
236 |
yield id_, {
|
237 |
"words": data["words"],
|
238 |
"labels": data["labels"],
|
239 |
"tag_mask": tag_mask,
|
240 |
"is_category": data["is_category"],
|
241 |
-
"text": data["text"]
|
242 |
}
|
243 |
elif self.config.name == "ROLES_SM":
|
244 |
yield id_, {
|
245 |
"words": data["words"],
|
246 |
"labels": data["labels"],
|
247 |
"tag_mask": data["is_category"],
|
248 |
-
"text": data["text"]
|
249 |
}
|
250 |
elif self.config.name == "PANELIZATION":
|
251 |
labels = data["labels"]
|
@@ -256,4 +365,66 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
256 |
"tag_mask": tag_mask,
|
257 |
}
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
|
|
19 |
from __future__ import absolute_import, division, print_function
|
20 |
|
21 |
import json
|
22 |
+
import os
|
23 |
import datasets
|
24 |
|
25 |
_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"
|
26 |
|
27 |
+
|
28 |
class SourceData(datasets.GeneratorBasedBuilder):
|
29 |
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
|
30 |
|
|
|
47 |
"B-DISEASE",
|
48 |
"I-DISEASE",
|
49 |
"B-CELL_LINE",
|
50 |
+
"I-CELL_LINE",
|
51 |
+
]
|
52 |
+
_SEMANTIC_ROLES = [
|
53 |
+
"O",
|
54 |
+
"B-CONTROLLED_VAR",
|
55 |
+
"I-CONTROLLED_VAR",
|
56 |
+
"B-MEASURED_VAR",
|
57 |
+
"I-MEASURED_VAR",
|
58 |
]
|
|
|
59 |
_PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
|
60 |
_ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]
|
61 |
|
62 |
_CITATION = """\
|
63 |
+
@article{abreu2023sourcedata,
|
64 |
+
title={The SourceData-NLP dataset: integrating curation into scientific publishing
|
65 |
+
for training large language models},
|
66 |
+
author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
|
67 |
+
journal={arXiv preprint arXiv:2310.20440},
|
68 |
+
year={2023}
|
69 |
+
}
|
70 |
"""
|
71 |
|
72 |
_DESCRIPTION = """\
|
|
|
79 |
|
80 |
DEFAULT_CONFIG_NAME = "NER"
|
81 |
|
82 |
+
_LATEST_VERSION = "2.0.3" # Should this be updated to 2.0.3
|
83 |
|
84 |
def _info(self):
|
85 |
+
VERSION = (
|
86 |
+
self.config.version
|
87 |
+
if self.config.version not in ["0.0.0", "latest"]
|
88 |
+
else self._LATEST_VERSION
|
89 |
+
)
|
90 |
self._URLS = {
|
91 |
"NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
|
92 |
"PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
|
93 |
"ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
|
94 |
"ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
|
95 |
"ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
|
96 |
+
"FULL": os.path.join(
|
97 |
+
_BASE_URL,
|
98 |
+
"bigbio",
|
99 |
+
# f"v_{VERSION}",
|
100 |
+
),
|
101 |
}
|
102 |
self.BUILDER_CONFIGS = [
|
103 |
+
datasets.BuilderConfig(
|
104 |
+
name="NER",
|
105 |
+
version=VERSION,
|
106 |
+
description="Dataset for named-entity recognition.",
|
107 |
+
),
|
108 |
+
datasets.BuilderConfig(
|
109 |
+
name="PANELIZATION",
|
110 |
+
version=VERSION,
|
111 |
+
description="Dataset to separate figure captions into panels.",
|
112 |
+
),
|
113 |
+
datasets.BuilderConfig(
|
114 |
+
name="ROLES_GP",
|
115 |
+
version=VERSION,
|
116 |
+
description="Dataset for semantic roles of gene products.",
|
117 |
+
),
|
118 |
+
datasets.BuilderConfig(
|
119 |
+
name="ROLES_SM",
|
120 |
+
version=VERSION,
|
121 |
+
description="Dataset for semantic roles of small molecules.",
|
122 |
+
),
|
123 |
+
datasets.BuilderConfig(
|
124 |
+
name="ROLES_MULTI",
|
125 |
+
version=VERSION,
|
126 |
+
description="Dataset to train roles. ROLES_GP and ROLES_SM at once.",
|
127 |
+
),
|
128 |
+
datasets.BuilderConfig(
|
129 |
+
name="FULL",
|
130 |
+
version=VERSION,
|
131 |
+
description="Full dataset including all NER + entity linking annotations, links to figure images, etc.",
|
132 |
+
),
|
133 |
+
# datasets.BuilderConfig(
|
134 |
+
# name="BIGBIO_KB",
|
135 |
+
# version=VERSION,
|
136 |
+
# description="Full dataset formatted according to BigBio KB schema (see https://huggingface.co/bigbio). Includes all NER + entity linking annotations.",
|
137 |
+
# ),
|
138 |
]
|
139 |
+
|
140 |
if self.config.name in ["NER", "default"]:
|
141 |
features = datasets.Features(
|
142 |
{
|
143 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
144 |
"labels": datasets.Sequence(
|
145 |
+
feature=datasets.ClassLabel(
|
146 |
+
num_classes=len(self._NER_LABEL_NAMES),
|
147 |
+
names=self._NER_LABEL_NAMES,
|
148 |
+
)
|
149 |
),
|
150 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
151 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
159 |
"labels": datasets.Sequence(
|
160 |
feature=datasets.ClassLabel(
|
161 |
num_classes=len(self._SEMANTIC_ROLES),
|
162 |
+
names=self._SEMANTIC_ROLES,
|
163 |
)
|
164 |
),
|
165 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
174 |
"labels": datasets.Sequence(
|
175 |
feature=datasets.ClassLabel(
|
176 |
num_classes=len(self._SEMANTIC_ROLES),
|
177 |
+
names=self._SEMANTIC_ROLES,
|
178 |
)
|
179 |
),
|
180 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
189 |
"labels": datasets.Sequence(
|
190 |
feature=datasets.ClassLabel(
|
191 |
num_classes=len(self._SEMANTIC_ROLES),
|
192 |
+
names=self._SEMANTIC_ROLES,
|
193 |
)
|
194 |
),
|
195 |
"is_category": datasets.Sequence(
|
196 |
feature=datasets.ClassLabel(
|
197 |
+
num_classes=len(self._ROLES_MULTI), names=self._ROLES_MULTI
|
|
|
198 |
)
|
199 |
),
|
200 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
206 |
{
|
207 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
208 |
"labels": datasets.Sequence(
|
209 |
+
feature=datasets.ClassLabel(
|
210 |
+
num_classes=len(self._PANEL_START_NAMES),
|
211 |
+
names=self._PANEL_START_NAMES,
|
212 |
+
)
|
213 |
),
|
214 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
215 |
}
|
216 |
)
|
217 |
|
218 |
+
elif self.config.name == "FULL":
|
219 |
+
features = datasets.Features(
|
220 |
+
{
|
221 |
+
"doi": datasets.Value("string"),
|
222 |
+
"abstract": datasets.Value("string"),
|
223 |
+
# "split": datasets.Value("string"),
|
224 |
+
"figures": [
|
225 |
+
{
|
226 |
+
"fig_id": datasets.Value("string"),
|
227 |
+
"label": datasets.Value("string"),
|
228 |
+
"fig_graphic_url": datasets.Value("string"),
|
229 |
+
"panels": [
|
230 |
+
{
|
231 |
+
"panel_id": datasets.Value("string"),
|
232 |
+
"text": datasets.Value("string"),
|
233 |
+
"panel_graphic_url": datasets.Value("string"),
|
234 |
+
"entities": [
|
235 |
+
{
|
236 |
+
"annotation_id": datasets.Value("string"),
|
237 |
+
"source": datasets.Value("string"),
|
238 |
+
"category": datasets.Value("string"),
|
239 |
+
"entity_type": datasets.Value("string"),
|
240 |
+
"role": datasets.Value("string"),
|
241 |
+
"text": datasets.Value("string"),
|
242 |
+
"ext_ids": datasets.Value("string"),
|
243 |
+
"norm_text": datasets.Value("string"),
|
244 |
+
"ext_dbs": datasets.Value("string"),
|
245 |
+
"in_caption": datasets.Value("bool"),
|
246 |
+
"ext_names": datasets.Value("string"),
|
247 |
+
"ext_tax_ids": datasets.Value("string"),
|
248 |
+
"ext_tax_names": datasets.Value("string"),
|
249 |
+
"ext_urls": datasets.Value("string"),
|
250 |
+
"offsets": [datasets.Value("int64")],
|
251 |
+
}
|
252 |
+
],
|
253 |
+
}
|
254 |
+
],
|
255 |
+
}
|
256 |
+
],
|
257 |
+
}
|
258 |
+
)
|
259 |
+
|
260 |
return datasets.DatasetInfo(
|
261 |
description=self._DESCRIPTION,
|
262 |
features=features,
|
|
|
265 |
license=self._LICENSE,
|
266 |
citation=self._CITATION,
|
267 |
)
|
268 |
+
|
269 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
270 |
"""Returns SplitGenerators.
|
271 |
+
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.
|
272 |
+
"""
|
273 |
|
274 |
try:
|
275 |
config_name = self.config.name if self.config.name != "default" else "NER"
|
276 |
+
|
277 |
+
if config_name == "FULL":
|
278 |
+
url = os.path.join(
|
279 |
+
self._URLS[config_name],
|
280 |
+
# "source_data_full.zip"
|
281 |
+
"source_data_json_splits_2.0.2.zip",
|
282 |
+
)
|
283 |
+
data_dir = dl_manager.download_and_extract(url)
|
284 |
+
data_files = [
|
285 |
+
os.path.join(data_dir, filename)
|
286 |
+
for filename in ["train.jsonl", "test.jsonl", "validation.jsonl"]
|
287 |
+
]
|
288 |
+
else:
|
289 |
+
urls = [
|
290 |
+
os.path.join(self._URLS[config_name], "train.jsonl"),
|
291 |
+
os.path.join(self._URLS[config_name], "test.jsonl"),
|
292 |
+
os.path.join(self._URLS[config_name], "validation.jsonl"),
|
293 |
+
]
|
294 |
+
data_files = dl_manager.download(urls)
|
295 |
except:
|
296 |
raise ValueError(f"unkonwn config name: {self.config.name}")
|
297 |
+
|
298 |
return [
|
299 |
datasets.SplitGenerator(
|
300 |
name=datasets.Split.TRAIN,
|
301 |
# These kwargs will be passed to _generate_examples
|
302 |
+
gen_kwargs={"filepath": data_files[0]},
|
|
|
303 |
),
|
304 |
datasets.SplitGenerator(
|
305 |
name=datasets.Split.TEST,
|
306 |
+
gen_kwargs={"filepath": data_files[1]},
|
|
|
307 |
),
|
308 |
datasets.SplitGenerator(
|
309 |
name=datasets.Split.VALIDATION,
|
310 |
+
gen_kwargs={"filepath": data_files[2]},
|
|
|
311 |
),
|
312 |
]
|
313 |
|
|
|
316 |
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
317 |
The key is not important, it's more here for legacy reason (legacy from tfds)"""
|
318 |
|
319 |
+
no_panels = 0
|
320 |
+
no_entities = 0
|
321 |
+
has_panels = 0
|
322 |
+
has_entities = 0
|
323 |
+
|
324 |
with open(filepath, encoding="utf-8") as f:
|
325 |
# logger.info("⏳ Generating examples from = %s", filepath)
|
326 |
for id_, row in enumerate(f):
|
327 |
+
data = json.loads(row.strip())
|
328 |
if self.config.name in ["NER", "default"]:
|
329 |
yield id_, {
|
330 |
"words": data["words"],
|
331 |
"labels": data["labels"],
|
332 |
"tag_mask": data["is_category"],
|
333 |
+
"text": data["text"],
|
334 |
}
|
335 |
elif self.config.name == "ROLES_GP":
|
336 |
yield id_, {
|
337 |
"words": data["words"],
|
338 |
"labels": data["labels"],
|
339 |
"tag_mask": data["is_category"],
|
340 |
+
"text": data["text"],
|
341 |
}
|
342 |
elif self.config.name == "ROLES_MULTI":
|
343 |
labels = data["labels"]
|
344 |
+
tag_mask = [1 if t != 0 else 0 for t in labels]
|
345 |
yield id_, {
|
346 |
"words": data["words"],
|
347 |
"labels": data["labels"],
|
348 |
"tag_mask": tag_mask,
|
349 |
"is_category": data["is_category"],
|
350 |
+
"text": data["text"],
|
351 |
}
|
352 |
elif self.config.name == "ROLES_SM":
|
353 |
yield id_, {
|
354 |
"words": data["words"],
|
355 |
"labels": data["labels"],
|
356 |
"tag_mask": data["is_category"],
|
357 |
+
"text": data["text"],
|
358 |
}
|
359 |
elif self.config.name == "PANELIZATION":
|
360 |
labels = data["labels"]
|
|
|
365 |
"tag_mask": tag_mask,
|
366 |
}
|
367 |
|
368 |
+
elif self.config.name == "FULL":
|
369 |
+
doc_figs = data["figures"]
|
370 |
+
all_figures = []
|
371 |
+
for fig in doc_figs:
|
372 |
+
all_panels = []
|
373 |
+
figure = {
|
374 |
+
"fig_id": fig["fig_id"],
|
375 |
+
"label": fig["label"],
|
376 |
+
"fig_graphic_url": fig["fig_graphic_url"],
|
377 |
+
}
|
378 |
+
|
379 |
+
for p in fig["panels"]:
|
380 |
+
panel = {
|
381 |
+
"panel_id": p["panel_id"],
|
382 |
+
"text": p["text"].strip(),
|
383 |
+
"panel_graphic_url": p["panel_graphic_url"],
|
384 |
+
"entities": [
|
385 |
+
{
|
386 |
+
"annotation_id": t["tag_id"],
|
387 |
+
"source": t["source"],
|
388 |
+
"category": t["category"],
|
389 |
+
"entity_type": t["entity_type"],
|
390 |
+
"role": t["role"],
|
391 |
+
"text": t["text"],
|
392 |
+
"ext_ids": t["ext_ids"],
|
393 |
+
"norm_text": t["norm_text"],
|
394 |
+
"ext_dbs": t["ext_dbs"],
|
395 |
+
"in_caption": bool(t["in_caption"]),
|
396 |
+
"ext_names": t["ext_names"],
|
397 |
+
"ext_tax_ids": t["ext_tax_ids"],
|
398 |
+
"ext_tax_names": t["ext_tax_names"],
|
399 |
+
"ext_urls": t["ext_urls"],
|
400 |
+
"offsets": t["local_offsets"],
|
401 |
+
}
|
402 |
+
for t in p["tags"]
|
403 |
+
],
|
404 |
+
}
|
405 |
+
for e in panel["entities"]:
|
406 |
+
assert type(e["offsets"]) == list
|
407 |
+
if len(panel["entities"]) == 0:
|
408 |
+
no_entities += 1
|
409 |
+
continue
|
410 |
+
else:
|
411 |
+
has_entities += 1
|
412 |
+
all_panels.append(panel)
|
413 |
+
|
414 |
+
figure["panels"] = all_panels
|
415 |
+
|
416 |
+
# Pass on all figures that aren't split into panels
|
417 |
+
if len(all_panels) == 0:
|
418 |
+
no_panels += 1
|
419 |
+
continue
|
420 |
+
else:
|
421 |
+
has_panels += 1
|
422 |
+
all_figures.append(figure)
|
423 |
+
|
424 |
+
output = {
|
425 |
+
"doi": data["doi"],
|
426 |
+
"abstract": data["abstract"],
|
427 |
+
"figures": all_figures,
|
428 |
+
}
|
429 |
+
yield id_, output
|
430 |
|