id
stringlengths
14
16
text
stringlengths
31
2.73k
metadata
dict
5f851c4d5d1a-1
"""Generate a hypothetical document and embedded it.""" var_name = self.llm_chain.input_keys[0] result = self.llm_chain.generate([{var_name: text}]) documents = [generation.text for generation in result.generations[0]] embeddings = self.embed_documents(documents) return self.combine_embeddings(embeddings) def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: """Call the internal llm chain.""" return self.llm_chain._call(inputs) [docs] @classmethod def from_llm( cls, llm: BaseLLM, base_embeddings: Embeddings, prompt_key: str ) -> HypotheticalDocumentEmbedder: """Load and use LLMChain for a specific prompt key.""" prompt = PROMPT_MAP[prompt_key] llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(base_embeddings=base_embeddings, llm_chain=llm_chain) @property def _chain_type(self) -> str: return "hyde_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html" }
5c071541d7d8-0
Source code for langchain.chains.retrieval_qa.base """Chain for question-answering against a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR from langchain.prompts import PromptTemplate from langchain.schema import BaseLanguageModel, BaseRetriever, Document from langchain.vectorstores.base import VectorStore class BaseRetrievalQA(Chain): combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html" }
5c071541d7d8-1
_output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Initialize from LLM.""" _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain(llm=llm, prompt=_prompt) document_prompt = PromptTemplate( input_variables=["page_content"], template="Context:\n{page_content}" ) combine_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_variable_name="context", document_prompt=document_prompt, ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Load chain from chain type.""" _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @abstractmethod def _get_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html" }
5c071541d7d8-2
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ question = inputs[self.input_key] docs = self._get_docs(question) answer, _ = self.combine_documents_chain.combine_docs(docs, question=question) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" async def _acall(self, inputs: Dict[str, str]) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ question = inputs[self.input_key] docs = await self._aget_docs(question) answer, _ = await self.combine_documents_chain.acombine_docs( docs, question=question ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html" }
5c071541d7d8-3
return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} [docs]class RetrievalQA(BaseRetrievalQA): """Chain for question-answering against an index. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS vectordb = FAISS(...) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=vectordb) """ retriever: BaseRetriever = Field(exclude=True) def _get_docs(self, question: str) -> List[Document]: return self.retriever.get_relevant_documents(question) async def _aget_docs(self, question: str) -> List[Document]: return await self.retriever.aget_relevant_documents(question) [docs]class VectorDBQA(BaseRetrievalQA): """Chain for question-answering against a vector database.""" vectorstore: VectorStore = Field(exclude=True, alias="vectorstore") """Vector Database to connect to.""" k: int = 4 """Number of documents to query for.""" search_type: str = "similarity" """Search type to use over vectorstore. `similarity` or `mmr`.""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" )
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html" }
5c071541d7d8-4
"please use `from langchain.chains import RetrievalQA`" ) return values @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def _get_docs(self, question: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( question, k=self.k, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_docs(self, question: str) -> List[Document]: raise NotImplementedError("VectorDBQA does not support async") @property def _chain_type(self) -> str: """Return the chain type.""" return "vector_db_qa" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html" }
eaa20849e70a-0
Source code for langchain.chains.graph_qa.base """Question answering over a graph.""" from __future__ import annotations from typing import Any, Dict, List from pydantic import Field from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import ENTITY_EXTRACTION_PROMPT, PROMPT from langchain.chains.llm import LLMChain from langchain.graphs.networkx_graph import NetworkxEntityGraph, get_entities from langchain.llms.base import BaseLLM from langchain.prompts.base import BasePromptTemplate [docs]class GraphQAChain(Chain): """Chain for question-answering against a graph.""" graph: NetworkxEntityGraph = Field(exclude=True) entity_extraction_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys [docs] @classmethod def from_llm( cls, llm: BaseLLM, qa_prompt: BasePromptTemplate = PROMPT, entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT, **kwargs: Any, ) -> GraphQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html" }
eaa20849e70a-1
qa_chain = LLMChain(llm=llm, prompt=qa_prompt) entity_chain = LLMChain(llm=llm, prompt=entity_prompt) return cls(qa_chain=qa_chain, entity_extraction_chain=entity_chain, **kwargs) def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]: """Extract entities, look up info and answer question.""" question = inputs[self.input_key] entity_string = self.entity_extraction_chain.run(question) self.callback_manager.on_text( "Entities Extracted:", end="\n", verbose=self.verbose ) self.callback_manager.on_text( entity_string, color="green", end="\n", verbose=self.verbose ) entities = get_entities(entity_string) context = "" for entity in entities: triplets = self.graph.get_entity_knowledge(entity) context += "\n".join(triplets) self.callback_manager.on_text("Full Context:", end="\n", verbose=self.verbose) self.callback_manager.on_text( context, color="green", end="\n", verbose=self.verbose ) result = self.qa_chain({"question": question, "context": context}) return {self.output_key: result[self.qa_chain.output_key]} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html" }
d582afdad6f8-0
Source code for langchain.chains.llm_summarization_checker.base """Chain for summarization with self-verification.""" from pathlib import Path from typing import Dict, List from pydantic import Extra from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sequential import SequentialChain from langchain.llms.base import BaseLLM from langchain.prompts.prompt import PromptTemplate PROMPTS_DIR = Path(__file__).parent / "prompts" CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "create_facts.txt", ["summary"] ) CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "check_facts.txt", ["assertions"] ) REVISED_SUMMARY_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"] ) ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"] ) [docs]class LLMSummarizationCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain(llm=llm) """ llm: BaseLLM """LLM wrapper to use.""" create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html" }
d582afdad6f8-1
revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: max_checks: int = 2 """Maximum number of times to check the assertions. Default to double-checking.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: all_true = False count = 0 output = None original_input = inputs[self.input_key] chain_input = original_input while not all_true and count < self.max_checks: chain = SequentialChain( chains=[ LLMChain( llm=self.llm, prompt=self.create_assertions_prompt, output_key="assertions", verbose=self.verbose, ), LLMChain( llm=self.llm, prompt=self.check_assertions_prompt, output_key="checked_assertions", verbose=self.verbose, ), LLMChain( llm=self.llm, prompt=self.revised_summary_prompt, output_key="revised_summary", verbose=self.verbose, ),
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html" }
d582afdad6f8-2
output_key="revised_summary", verbose=self.verbose, ), LLMChain( llm=self.llm, output_key="all_true", prompt=self.are_all_true_prompt, verbose=self.verbose, ), ], input_variables=["summary"], output_variables=["all_true", "revised_summary"], verbose=self.verbose, ) output = chain({"summary": chain_input}) count += 1 if output["all_true"].strip() == "True": break if self.verbose: print(output["revised_summary"]) chain_input = output["revised_summary"] if not output: raise ValueError("No output from chain") return {self.output_key: output["revised_summary"].strip()} @property def _chain_type(self) -> str: return "llm_summarization_checker_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html" }
273bd827f067-0
Source code for langchain.chains.conversation.base """Chain that carries on a conversation and calls an LLM.""" from typing import Dict, List from pydantic import Extra, Field, root_validator from langchain.chains.conversation.prompt import PROMPT from langchain.chains.llm import LLMChain from langchain.memory.buffer import ConversationBufferMemory from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMemory [docs]class ConversationChain(LLMChain): """Chain to have a conversation and load context from memory. Example: .. code-block:: python from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) """ memory: BaseMemory = Field(default_factory=ConversationBufferMemory) """Default memory store.""" prompt: BasePromptTemplate = PROMPT """Default conversation prompt to use.""" input_key: str = "input" #: :meta private: output_key: str = "response" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Use this since so some prompt vars come from history.""" return [self.input_key] @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables input_key = values["input_key"] if input_key in memory_keys: raise ValueError( f"The input key {input_key} was also found in the memory keys "
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html" }
273bd827f067-1
f"The input key {input_key} was also found in the memory keys " f"({memory_keys}) - please provide keys that don't overlap." ) prompt_variables = values["prompt"].input_variables expected_keys = memory_keys + [input_key] if set(expected_keys) != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but got {memory_keys} as inputs from " f"memory, and {input_key} as the normal input key." ) return values By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html" }
5a0d5710ca0c-0
Source code for langchain.vectorstores.elastic_vector_search """Wrapper around Elasticsearch vector database.""" from __future__ import annotations import uuid from abc import ABC from typing import Any, Dict, Iterable, List, Optional from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore def _default_text_mapping(dim: int) -> Dict: return { "properties": { "text": {"type": "text"}, "vector": {"type": "dense_vector", "dims": dim}, } } def _default_script_query(query_vector: List[float]) -> Dict: return { "script_score": { "query": {"match_all": {}}, "script": { "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0", "params": {"query_vector": query_vector}, }, } } # ElasticVectorSearch is a concrete implementation of the abstract base class # VectorStore, which defines a common interface for all vector database # implementations. By inheriting from the ABC class, ElasticVectorSearch can be # defined as an abstract base class itself, allowing the creation of subclasses with # their own specific implementations. If you plan to subclass ElasticVectorSearch, # you can inherit from it and define your own implementation of the necessary methods # and attributes. [docs]class ElasticVectorSearch(VectorStore, ABC): """Wrapper around Elasticsearch as a vector database. To connect to an Elasticsearch instance that does not require login credentials, pass the Elasticsearch URL and index name along with the embedding object to the constructor. Example: .. code-block:: python
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
5a0d5710ca0c-1
embedding object to the constructor. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch( elasticsearch_url="http://localhost:9200", index_name="test_index", embedding=embedding ) To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the "Deployments" page. To obtain your Elastic Cloud password for the default "elastic" user: 1. Log in to the Elastic Cloud console at https://cloud.elastic.co 2. Go to "Security" > "Users" 3. Locate the "elastic" user and click "Edit" 4. Click "Reset password" 5. Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_host = "cluster_id.region_id.gcp.cloud.es.io"
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
5a0d5710ca0c-2
elastic_host = "cluster_id.region_id.gcp.cloud.es.io" elasticsearch_url = f"https://username:password@{elastic_host}:9243" elastic_vector_search = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, index_name="test_index", embedding=embedding ) Args: elasticsearch_url (str): The URL for the Elasticsearch instance. index_name (str): The name of the Elasticsearch index for the embeddings. embedding (Embeddings): An object that provides the ability to embed text. It should be an instance of a class that subclasses the Embeddings abstract base class, such as OpenAIEmbeddings() Raises: ValueError: If the elasticsearch python package is not installed. """ def __init__(self, elasticsearch_url: str, index_name: str, embedding: Embeddings): """Initialize with necessary components.""" try: import elasticsearch except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) self.embedding = embedding self.index_name = index_name try: es_client = elasticsearch.Elasticsearch(elasticsearch_url) # noqa except ValueError as e: raise ValueError( f"Your elasticsearch client string is misformatted. Got error: {e} " ) self.client = es_client [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, refresh_indices: bool = True, **kwargs: Any, ) -> List[str]:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
5a0d5710ca0c-3
**kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. refresh_indices: bool to refresh ElasticSearch indices Returns: List of ids from adding the texts into the vectorstore. """ try: from elasticsearch.exceptions import NotFoundError from elasticsearch.helpers import bulk except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) requests = [] ids = [] embeddings = self.embedding.embed_documents(list(texts)) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # check to see if the index already exists try: self.client.indices.get(index=self.index_name) except NotFoundError: # TODO would be nice to create index before embedding, # just to save expensive steps for last self.client.indices.create(index=self.index_name, mappings=mapping) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} _id = str(uuid.uuid4()) request = { "_op_type": "index", "_index": self.index_name, "vector": embeddings[i], "text": text, "metadata": metadata, "_id": _id, } ids.append(_id) requests.append(request) bulk(self.client, requests) if refresh_indices: self.client.indices.refresh(index=self.index_name)
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
5a0d5710ca0c-4
if refresh_indices: self.client.indices.refresh(index=self.index_name) return ids [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(query) script_query = _default_script_query(embedding) response = self.client.search(index=self.index_name, query=script_query) hits = [hit["_source"] for hit in response["hits"]["hits"][:k]] documents = [ Document(page_content=hit["text"], metadata=hit["metadata"]) for hit in hits ] return documents [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> ElasticVectorSearch: """Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Elasticsearch instance. 3. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts(
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
5a0d5710ca0c-5
embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) """ elasticsearch_url = get_from_dict_or_env( kwargs, "elasticsearch_url", "ELASTICSEARCH_URL" ) try: import elasticsearch from elasticsearch.exceptions import NotFoundError from elasticsearch.helpers import bulk except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) try: client = elasticsearch.Elasticsearch(elasticsearch_url) except ValueError as e: raise ValueError( "Your elasticsearch client string is misformatted. " f"Got error: {e} " ) index_name = kwargs.get("index_name", uuid.uuid4().hex) embeddings = embedding.embed_documents(texts) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # check to see if the index already exists try: client.indices.get(index=index_name) except NotFoundError: # TODO would be nice to create index before embedding, # just to save expensive steps for last client.indices.create(index=index_name, mappings=mapping) requests = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} request = { "_op_type": "index", "_index": index_name, "vector": embeddings[i], "text": text, "metadata": metadata, } requests.append(request)
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
5a0d5710ca0c-6
"metadata": metadata, } requests.append(request) bulk(client, requests) client.indices.refresh(index=index_name) return cls(elasticsearch_url, index_name, embedding) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html" }
41f9827bd390-0
Source code for langchain.vectorstores.faiss """Wrapper around FAISS vector database.""" from __future__ import annotations import pickle import uuid from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance def dependable_faiss_import() -> Any: """Import faiss if available, otherwise raise error.""" try: import faiss except ImportError: raise ValueError( "Could not import faiss python package. " "Please install it with `pip install faiss` " "or `pip install faiss-cpu` (depending on Python version)." ) return faiss [docs]class FAISS(VectorStore): """Wrapper around FAISS vector database. To use, you should have the ``faiss`` python package installed. Example: .. code-block:: python from langchain import FAISS faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id) """ def __init__( self, embedding_function: Callable, index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], ): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index = index self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id def __add(
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-1
self.index_to_docstore_id = index_to_docstore_id def __add( self, texts: Iterable[str], embeddings: Iterable[List[float]], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) # Add to the index, the index_to_id mapping, and the docstore. starting_len = len(self.index_to_docstore_id) self.index.add(np.array(embeddings, dtype=np.float32)) # Get list of index, id, and docs. full_info = [ (starting_len + i, str(uuid.uuid4()), doc) for i, doc in enumerate(documents) ] # Add information to docstore and index. self.docstore.add({_id: doc for _, _id, doc in full_info}) index_to_id = {index: _id for index, _id, _ in full_info} self.index_to_docstore_id.update(index_to_id) return [_id for _, _id, _ in full_info] [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-2
**kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) # Embed and create the documents. embeddings = [self.embedding_function(text) for text in texts] return self.__add(texts, embeddings, metadatas, **kwargs) [docs] def add_embeddings( self, text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: text_embeddings: Iterable pairs of string and embedding to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) # Embed and create the documents. texts = [te[0] for te in text_embeddings]
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-3
texts = [te[0] for te in text_embeddings] embeddings = [te[1] for te in text_embeddings] return self.__add(texts, embeddings, metadatas, **kwargs) [docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k) docs = [] for j, i in enumerate(indices[0]): if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append((doc, scores[0][j])) return docs [docs] def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function(query)
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-4
""" embedding = self.embedding_function(query) docs = self.similarity_search_with_score_by_vector(embedding, k) return docs [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_vector(embedding, k) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k) return [doc for doc, _ in docs_and_scores] [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-5
Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ _, indices = self.index.search(np.array([embedding], dtype=np.float32), fetch_k) # -1 happens when not enough docs are returned. embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1] mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), embeddings, k=k ) selected_indices = [indices[0][i] for i in mmr_selected] docs = [] for i in selected_indices: if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append(doc) return docs [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-6
fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self.embedding_function(query) docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k) return docs [docs] def merge_from(self, target: FAISS) -> None: """Merge another FAISS object with the current one. Add the target FAISS to the current one. Args: target: FAISS object you wish to merge into the current one Returns: None. """ if not isinstance(self.docstore, AddableMixin): raise ValueError("Cannot merge with this type of docstore") # Numerical index for target docs are incremental on existing ones starting_len = len(self.index_to_docstore_id) # Merge two IndexFlatL2 self.index.merge_from(target.index) # Create new id for docs from target FAISS object full_info = [] for i in target.index_to_docstore_id: doc = target.docstore.search(target.index_to_docstore_id[i]) if not isinstance(doc, Document): raise ValueError("Document should be returned") full_info.append((starting_len + i, str(uuid.uuid4()), doc)) # Add information to docstore and index_to_docstore_id. self.docstore.add({_id: doc for _, _id, doc in full_info}) index_to_id = {index: _id for index, _id, _ in full_info} self.index_to_docstore_id.update(index_to_id) @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]],
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-7
cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> FAISS: faiss = dependable_faiss_import() index = faiss.IndexFlatL2(len(embeddings[0])) index.add(np.array(embeddings, dtype=np.float32)) documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) index_to_id = {i: str(uuid.uuid4()) for i in range(len(documents))} docstore = InMemoryDocstore( {index_to_id[i]: doc for i, doc in enumerate(documents)} ) return cls(embedding.embed_query, index, docstore, index_to_id) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) """ embeddings = embedding.embed_documents(texts)
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-8
""" embeddings = embedding.embed_documents(texts) return cls.__from(texts, embeddings, embedding, metadatas, **kwargs) [docs] @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from(texts, embeddings, embedding, metadatas, **kwargs) [docs] def save_local(self, folder_path: str) -> None: """Save FAISS index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to save index, docstore, and index_to_docstore_id to. """ path = Path(folder_path) path.mkdir(exist_ok=True, parents=True) # save index separately since it is not picklable faiss = dependable_faiss_import() faiss.write_index(self.index, str(path / "index.faiss"))
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
41f9827bd390-9
faiss.write_index(self.index, str(path / "index.faiss")) # save docstore and index_to_docstore_id with open(path / "index.pkl", "wb") as f: pickle.dump((self.docstore, self.index_to_docstore_id), f) [docs] @classmethod def load_local(cls, folder_path: str, embeddings: Embeddings) -> FAISS: """Load FAISS index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to load index, docstore, and index_to_docstore_id from. embeddings: Embeddings to use when generating queries """ path = Path(folder_path) # load index separately since it is not picklable faiss = dependable_faiss_import() index = faiss.read_index(str(path / "index.faiss")) # load docstore and index_to_docstore_id with open(path / "index.pkl", "rb") as f: docstore, index_to_docstore_id = pickle.load(f) return cls(embeddings.embed_query, index, docstore, index_to_docstore_id) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html" }
b67d7850f89a-0
Source code for langchain.vectorstores.milvus """Wrapper around the Milvus vector database.""" from __future__ import annotations import uuid from typing import Any, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance [docs]class Milvus(VectorStore): """Wrapper around the Milvus vector database.""" def __init__( self, embedding_function: Embeddings, connection_args: dict, collection_name: str, text_field: str, ): """Initialize wrapper around the milvus vector database. In order to use this you need to have `pymilvus` installed and a running Milvus instance. See the following documentation for how to run a Milvus instance: https://milvus.io/docs/install_standalone-docker.md Args: embedding_function (Embeddings): Function used to embed the text connection_args (dict): Arguments for pymilvus connections.connect() collection_name (str): The name of the collection to search. text_field (str): The field in Milvus schema where the original text is stored. """ try: from pymilvus import Collection, DataType, connections except ImportError: raise ValueError( "Could not import pymilvus python package. " "Please install it with `pip install pymilvus`." ) # Connecting to Milvus instance if not connections.has_connection("default"): connections.connect(**connection_args)
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-1
if not connections.has_connection("default"): connections.connect(**connection_args) self.embedding_func = embedding_function self.collection_name = collection_name self.text_field = text_field self.auto_id = False self.primary_field = None self.vector_field = None self.fields = [] self.col = Collection(self.collection_name) schema = self.col.schema # Grabbing the fields for the existing collection. for x in schema.fields: self.fields.append(x.name) if x.auto_id: self.fields.remove(x.name) if x.is_primary: self.primary_field = x.name if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR: self.vector_field = x.name # Default search params when one is not provided. self.index_params = { "IVF_FLAT": {"params": {"nprobe": 10}}, "IVF_SQ8": {"params": {"nprobe": 10}}, "IVF_PQ": {"params": {"nprobe": 10}}, "HNSW": {"params": {"ef": 10}}, "RHNSW_FLAT": {"params": {"ef": 10}}, "RHNSW_SQ": {"params": {"ef": 10}}, "RHNSW_PQ": {"params": {"ef": 10}}, "IVF_HNSW": {"params": {"nprobe": 10, "ef": 10}}, "ANNOY": {"params": {"search_k": 10}}, } [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-2
texts: Iterable[str], metadatas: Optional[List[dict]] = None, partition_name: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Insert text data into Milvus. When using add_texts() it is assumed that a collecton has already been made and indexed. If metadata is included, it is assumed that it is ordered correctly to match the schema provided to the Collection and that the embedding vector is the first schema field. Args: texts (Iterable[str]): The text being embedded and inserted. metadatas (Optional[List[dict]], optional): The metadata that corresponds to each insert. Defaults to None. partition_name (str, optional): The partition of the collection to insert data into. Defaults to None. timeout: specified timeout. Returns: List[str]: The resulting keys for each inserted element. """ insert_dict: Any = {self.text_field: list(texts)} try: insert_dict[self.vector_field] = self.embedding_func.embed_documents( list(texts) ) except NotImplementedError: insert_dict[self.vector_field] = [ self.embedding_func.embed_query(x) for x in texts ] # Collect the metadata into the insert dict. if len(self.fields) > 2 and metadatas is not None: for d in metadatas: for key, value in d.items(): if key in self.fields: insert_dict.setdefault(key, []).append(value) # Convert dict to list of lists for insertion insert_list = [insert_dict[x] for x in self.fields] # Insert into the collection.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-3
# Insert into the collection. res = self.col.insert( insert_list, partition_name=partition_name, timeout=timeout ) # Flush to make sure newly inserted is immediately searchable. self.col.flush() return res.primary_keys def _worker_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> Tuple[List[float], List[Tuple[Document, Any, Any]]]: # Load the collection into memory for searching. self.col.load() # Decide to use default params if not passed in. if param is None: index_type = self.col.indexes[0].params["index_type"] param = self.index_params[index_type] # Embed the query text. data = [self.embedding_func.embed_query(query)] # Determine result metadata fields. output_fields = self.fields[:] output_fields.remove(self.vector_field) # Perform the search. res = self.col.search( data, self.vector_field, param, k, expr=expr, output_fields=output_fields, partition_names=partition_names, round_decimal=round_decimal, timeout=timeout, **kwargs, ) # Organize results. ret = [] for result in res[0]: meta = {x: result.entity.get(x) for x in output_fields} ret.append( (
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-4
ret.append( ( Document(page_content=meta.pop(self.text_field), metadata=meta), result.distance, result.id, ) ) return data[0], ret [docs] def similarity_search_with_score( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform a search on a query string and return results. Args: query (str): The text being searched. k (int, optional): The amount of results ot return. Defaults to 4. param (dict, optional): The search params for the specified index. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): Partitions to search through. Defaults to None. round_decimal (int, optional): Round the resulting distance. Defaults to -1. timeout (int, optional): Amount to wait before timeout error. Defaults to None. kwargs: Collection.search() keyword arguments. Returns: List[float], List[Tuple[Document, any, any]]: search_embedding, (Document, distance, primary_field) results. """ _, result = self._worker_search( query, k, param, expr, partition_names, round_decimal, timeout, **kwargs ) return [(x, y) for x, y, _ in result]
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-5
) return [(x, y) for x, y, _ in result] [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a search and return results that are reordered by MMR. Args: query (str): The text being searched. k (int, optional): How many results to give. Defaults to 4. fetch_k (int, optional): Total results to select k from. Defaults to 20. param (dict, optional): The search params for the specified index. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): What partitions to search. Defaults to None. round_decimal (int, optional): Round the resulting distance. Defaults to -1. timeout (int, optional): Amount to wait before timeout error. Defaults to None. Returns: List[Document]: Document results for search. """ data, res = self._worker_search( query, fetch_k, param, expr, partition_names, round_decimal, timeout, **kwargs, ) # Extract result IDs. ids = [x for _, _, x in res]
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-6
# Extract result IDs. ids = [x for _, _, x in res] # Get the raw vectors from Milvus. vectors = self.col.query( expr=f"{self.primary_field} in {ids}", output_fields=[self.primary_field, self.vector_field], ) # Reorganize the results from query to match result order. vectors = {x[self.primary_field]: x[self.vector_field] for x in vectors} search_embedding = data ordered_result_embeddings = [vectors[x] for x in ids] # Get the new order of results. new_ordering = maximal_marginal_relevance( np.array(search_embedding), ordered_result_embeddings, k=k ) # Reorder the values and return. ret = [] for x in new_ordering: if x == -1: break else: ret.append(res[x][0]) return ret [docs] def similarity_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search against the query string. Args: query (str): The text to search. k (int, optional): How many results to return. Defaults to 4. param (dict, optional): The search params for the index type. Defaults to None. expr (str, optional): Filtering expression. Defaults to None.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-7
Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): What partitions to search. Defaults to None. round_decimal (int, optional): What decimal point to round to. Defaults to -1. timeout (int, optional): How long to wait before timeout error. Defaults to None. Returns: List[Document]: Document results for search. """ _, docs_and_scores = self._worker_search( query, k, param, expr, partition_names, round_decimal, timeout, **kwargs ) return [doc for doc, _, _ in docs_and_scores] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Milvus: """Create a Milvus collection, indexes it with HNSW, and insert data. Args: texts (List[str]): Text to insert. embedding (Embeddings): Embedding function to use. metadatas (Optional[List[dict]], optional): Dict metatadata. Defaults to None. Returns: VectorStore: The Milvus vector store. """ try: from pymilvus import ( Collection, CollectionSchema, DataType, FieldSchema, connections, ) from pymilvus.orm.types import infer_dtype_bydata except ImportError: raise ValueError( "Could not import pymilvus python package. " "Please install it with `pip install pymilvus`."
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-8
"Please install it with `pip install pymilvus`." ) # Connect to Milvus instance if not connections.has_connection("default"): connections.connect(**kwargs.get("connection_args", {"port": 19530})) # Determine embedding dim embeddings = embedding.embed_query(texts[0]) dim = len(embeddings) # Generate unique names primary_field = "c" + str(uuid.uuid4().hex) vector_field = "c" + str(uuid.uuid4().hex) text_field = "c" + str(uuid.uuid4().hex) collection_name = "c" + str(uuid.uuid4().hex) fields = [] # Determine metadata schema if metadatas: # Check if all metadata keys line up key = metadatas[0].keys() for x in metadatas: if key != x.keys(): raise ValueError( "Mismatched metadata. " "Make sure all metadata has the same keys and datatype." ) # Create FieldSchema for each entry in singular metadata. for key, value in metadatas[0].items(): # Infer the corresponding datatype of the metadata dtype = infer_dtype_bydata(value) if dtype == DataType.UNKNOWN: raise ValueError(f"Unrecognized datatype for {key}.") elif dtype == DataType.VARCHAR: # Find out max length text based metadata max_length = 0 for subvalues in metadatas: max_length = max(max_length, len(subvalues[key])) fields.append( FieldSchema(key, DataType.VARCHAR, max_length=max_length + 1) ) else: fields.append(FieldSchema(key, dtype))
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
b67d7850f89a-9
) else: fields.append(FieldSchema(key, dtype)) # Find out max length of texts max_length = 0 for y in texts: max_length = max(max_length, len(y)) # Create the text field fields.append( FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1) ) # Create the primary key field fields.append( FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True) ) # Create the vector field fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim)) # Create the schema for the collection schema = CollectionSchema(fields) # Create the collection collection = Collection(collection_name, schema) # Index parameters for the collection index = { "index_type": "HNSW", "metric_type": "L2", "params": {"M": 8, "efConstruction": 64}, } # Create the index collection.create_index(vector_field, index) # Create the VectorStore milvus = cls( embedding, kwargs.get("connection_args", {"port": 19530}), collection_name, text_field, ) # Add the texts. milvus.add_texts(texts, metadatas) return milvus By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/milvus.html" }
bd51beb32529-0
Source code for langchain.vectorstores.qdrant """Wrapper around Qdrant vector database.""" import uuid from operator import itemgetter from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance MetadataFilter = Dict[str, Union[str, int, bool]] [docs]class Qdrant(VectorStore): """Wrapper around Qdrant vector database. To use you should have the ``qdrant-client`` package installed. Example: .. code-block:: python from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) """ CONTENT_KEY = "page_content" METADATA_KEY = "metadata" def __init__( self, client: Any, collection_name: str, embedding_function: Callable, content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, ): """Initialize with necessary components.""" try: import qdrant_client except ImportError: raise ValueError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) if not isinstance(client, qdrant_client.QdrantClient): raise ValueError( f"client should be an instance of qdrant_client.QdrantClient, " f"got {type(client)}" )
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-1
f"got {type(client)}" ) self.client: qdrant_client.QdrantClient = client self.collection_name = collection_name self.embedding_function = embedding_function self.content_payload_key = content_payload_key or self.CONTENT_KEY self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ from qdrant_client.http import models as rest ids = [uuid.uuid4().hex for _ in texts] self.client.upsert( collection_name=self.collection_name, points=rest.Batch( ids=ids, vectors=[self.embedding_function(text) for text in texts], payloads=self._build_payloads( texts, metadatas, self.content_payload_key, self.metadata_payload_key, ), ), ) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-2
Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ results = self.similarity_search_with_score(query, k, filter) return list(map(itemgetter(0), results)) [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function(query) results = self.client.search( collection_name=self.collection_name, query_vector=embedding, query_filter=self._qdrant_filter_from_dict(filter), with_payload=True, limit=k, ) return [ ( self._document_from_scored_point( result, self.content_payload_key, self.metadata_payload_key ), result.score, ) for result in results ] [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-3
among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self.embedding_function(query) results = self.client.search( collection_name=self.collection_name, query_vector=embedding, with_payload=True, with_vectors=True, limit=fetch_k, ) embeddings = [result.vector for result in results] mmr_selected = maximal_marginal_relevance(embedding, embeddings, k=k) return [ self._document_from_scored_point( results[i], self.content_payload_key, self.metadata_payload_key ) for i in mmr_selected ] [docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = "Cosine", content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, **kwargs: Any,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-4
metadata_payload_key: str = METADATA_KEY, **kwargs: Any, ) -> "Qdrant": return cast( Qdrant, super().from_documents( documents, embedding, location=location, url=url, port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https, api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path, collection_name=collection_name, distance_func=distance_func, content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, **kwargs, ), ) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = "Cosine", content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, **kwargs: Any, ) -> "Qdrant":
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-5
**kwargs: Any, ) -> "Qdrant": """Construct Qdrant wrapper from raw documents. Args: texts: A list of texts to be indexed in Qdrant. embedding: A subclass of `Embeddings`, responsible for text vectorization. metadatas: An optional list of metadata. If provided it has to be of the same length as a list of texts. location: If `:memory:` - use in-memory Qdrant instance. If `str` - use it as a `url` parameter. If `None` - use default values for `host` and `port`. url: either host or str of "Optional[scheme], host, Optional[port], Optional[prefix]". Default: `None` port: Port of the REST API interface. Default: 6333 grpc_port: Port of the gRPC interface. Default: 6334 prefer_grpc: If `true` - use gPRC interface whenever possible in custom methods. https: If `true` - use HTTPS(SSL) protocol. Default: `None` api_key: API key for authentication in Qdrant Cloud. Default: `None` prefix: If not `None` - add `prefix` to the REST URL path. Example: `service/v1` will result in `http://localhost:6333/service/v1/{qdrant-endpoint}` for REST API. Default: `None` timeout: Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host: Host name of Qdrant service. If url and host are None, set to
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-6
Host name of Qdrant service. If url and host are None, set to 'localhost'. Default: `None` path: Path in which the vectors will be stored while using local mode. Default: `None` collection_name: Name of the Qdrant collection to be used. If not provided, will be created randomly. distance_func: Distance function. One of the: "Cosine" / "Euclid" / "Dot". content_payload_key: A payload key used to store the content of the document. metadata_payload_key: A payload key used to store the metadata of the document. **kwargs: Additional arguments passed directly into REST client initialization This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the Qdrant database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") """ try: import qdrant_client except ImportError: raise ValueError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) from qdrant_client.http import models as rest # Just do a single quick embedding to get vector size partial_embeddings = embedding.embed_documents(texts[:1]) vector_size = len(partial_embeddings[0]) collection_name = collection_name or uuid.uuid4().hex
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-7
collection_name = collection_name or uuid.uuid4().hex distance_func = distance_func.upper() client = qdrant_client.QdrantClient( location=location, url=url, port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https, api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path, **kwargs, ) client.recreate_collection( collection_name=collection_name, vectors_config=rest.VectorParams( size=vector_size, distance=rest.Distance[distance_func], ), ) # Now generate the embeddings for all the texts embeddings = embedding.embed_documents(texts) client.upsert( collection_name=collection_name, points=rest.Batch( ids=[uuid.uuid4().hex for _ in texts], vectors=embeddings, payloads=cls._build_payloads( texts, metadatas, content_payload_key, metadata_payload_key ), ), ) return cls( client=client, collection_name=collection_name, embedding_function=embedding.embed_query, content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, ) @classmethod def _build_payloads( cls, texts: Iterable[str], metadatas: Optional[List[dict]], content_payload_key: str, metadata_payload_key: str, ) -> List[dict]: payloads = [] for i, text in enumerate(texts): if text is None: raise ValueError(
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
bd51beb32529-8
if text is None: raise ValueError( "At least one of the texts is None. Please remove it before " "calling .from_texts or .add_texts on Qdrant instance." ) metadata = metadatas[i] if metadatas is not None else None payloads.append( { content_payload_key: text, metadata_payload_key: metadata, } ) return payloads @classmethod def _document_from_scored_point( cls, scored_point: Any, content_payload_key: str, metadata_payload_key: str, ) -> Document: return Document( page_content=scored_point.payload.get(content_payload_key), metadata=scored_point.payload.get(metadata_payload_key) or {}, ) def _qdrant_filter_from_dict(self, filter: Optional[MetadataFilter]) -> Any: if filter is None or 0 == len(filter): return None from qdrant_client.http import models as rest return rest.Filter( must=[ rest.FieldCondition( key=f"{self.metadata_payload_key}.{key}", match=rest.MatchValue(value=value), ) for key, value in filter.items() ] ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html" }
c1b3ee955bd5-0
Source code for langchain.vectorstores.weaviate """Wrapper around weaviate vector database.""" from __future__ import annotations from typing import Any, Dict, Iterable, List, Optional from uuid import uuid4 from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore [docs]class Weaviate(VectorStore): """Wrapper around Weaviate vector database. To use, you should have the ``weaviate-client`` python package installed. Example: .. code-block:: python import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) """ def __init__( self, client: Any, index_name: str, text_key: str, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) [docs] def add_texts( self,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html" }
c1b3ee955bd5-1
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents in weaviate.""" content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) result = query_obj.with_near_text(content).with_limit(k).do() docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html" }
c1b3ee955bd5-2
self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents by embedding vector in Weaviate.""" vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) result = query_obj.with_near_vector(vector).with_limit(k).do() docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VectorStore: """Not implemented for Weaviate yet.""" raise NotImplementedError("weaviate does not currently support `from_texts`.") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html" }
20621c92b9a0-0
Source code for langchain.vectorstores.atlas """Wrapper around Atlas by Nomic.""" from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger() [docs]class AtlasDB(VectorStore): """Wrapper around Atlas: Nomic's neural database and rhizomatic instrument. To use, you should have the ``nomic`` python package installed. Example: .. code-block:: python from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) """ _ATLAS_DEFAULT_ID_FIELD = "atlas_id" def __init__( self, name: str, embedding_function: Optional[Embeddings] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, ) -> None: """ Initialize the Atlas Client Args: name (str): The name of your project. If the project already exists, it will be loaded. embedding_function (Optional[Callable]): An optional function used for embedding your data. If None, data will be embedded with Nomic's embed model. api_key (str): Your nomic API key description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-1
is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. """ try: import nomic from nomic import AtlasProject except ImportError: raise ValueError( "Could not import nomic python package. " "Please install it with `pip install nomic`." ) if api_key is None: raise ValueError("No API key provided. Sign up at atlas.nomic.ai!") nomic.login(api_key) self._embedding_function = embedding_function modality = "text" if self._embedding_function is not None: modality = "embedding" # Check if the project exists, create it if not self.project = AtlasProject( name=name, description=description, modality=modality, is_public=is_public, reset_project_if_exists=reset_project_if_exists, unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, ) self.project._latest_project_state() [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-2
metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]]): An optional list of ids. refresh(bool): Whether or not to refresh indices with the updated data. Default True. Returns: List[str]: List of IDs of the added texts. """ if ( metadatas is not None and len(metadatas) > 0 and "text" in metadatas[0].keys() ): raise ValueError("Cannot accept key text in metadata!") texts = list(texts) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] # Embedding upload case if self._embedding_function is not None: _embeddings = self._embedding_function.embed_documents(texts) embeddings = np.stack(_embeddings) if metadatas is None: data = [ {AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]} for i, _ in enumerate(texts) ] else: for i in range(len(metadatas)): metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] metadatas[i]["text"] = texts[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_embeddings(embeddings=embeddings, data=data) # Text upload case else: if metadatas is None: data = [
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-3
else: if metadatas is None: data = [ {"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]} for i, text in enumerate(texts) ] else: for i, text in enumerate(texts): metadatas[i]["text"] = texts metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_text(data) if refresh: if len(self.project.indices) > 0: with self.project.wait_for_project_lock(): self.project.rebuild_maps() return ids [docs] def create_index(self, **kwargs: Any) -> Any: """Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. """ with self.project.wait_for_project_lock(): return self.project.create_index(**kwargs) [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with AtlasDB Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. Returns: List[Document]: List of documents most similar to the query text. """ if self._embedding_function is None: raise NotImplementedError(
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-4
""" if self._embedding_function is None: raise NotImplementedError( "AtlasDB requires an embedding_function for text similarity search!" ) _embedding = self._embedding_function.embed_documents([query])[0] embedding = np.array(_embedding).reshape(1, -1) with self.project.wait_for_project_lock(): neighbors, _ = self.project.projections[0].vector_search( queries=embedding, k=k ) datas = self.project.get_data(ids=neighbors[0]) docs = [ Document(page_content=datas[i]["text"], metadata=datas[i]) for i, neighbor in enumerate(neighbors) ] return docs [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a raw documents. Args: texts (List[str]): The list of texts to ingest. name (str): Name of the project to create. api_key (str): Your nomic API key, embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-5
ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") # Inject relevant kwargs all_index_kwargs = {"name": name + "_index", "indexed_field": "text"} if index_kwargs is not None: for k, v in index_kwargs.items(): all_index_kwargs[k] = v # Build project atlasDB = cls( name, embedding_function=embedding, api_key=api_key, description="A description for your project", is_public=is_public, reset_project_if_exists=reset_project_if_exists, ) with atlasDB.project.wait_for_project_lock(): atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids) atlasDB.create_index(**all_index_kwargs) return atlasDB [docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, name: Optional[str] = None,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-6
ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a list of documents. Args: name (str): Name of the collection to create. api_key (str): Your nomic API key, documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( name=name, api_key=api_key,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
20621c92b9a0-7
return cls.from_texts( name=name, api_key=api_key, texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, description=description, is_public=is_public, reset_project_if_exists=reset_project_if_exists, index_kwargs=index_kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html" }
c3742fd45745-0
Source code for langchain.vectorstores.chroma """Wrapper around ChromaDB embeddings platform.""" from __future__ import annotations import logging import uuid from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config logger = logging.getLogger() def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] [docs]class Chroma(VectorStore): """Wrapper around ChromaDB embeddings platform. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__( self,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-1
def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, ) -> None: """Initialize with Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client_settings: self._client_settings = client_settings else: self._client_settings = chromadb.config.Settings() if persist_directory is not None: self._client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory ) self._client = chromadb.Client(self._client_settings) self._embedding_function = embedding_function self._persist_directory = persist_directory self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=self._embedding_function.embed_documents if self._embedding_function is not None else None, ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-2
metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(texts)) self._collection.add( metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids ) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-3
**kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ results = self._collection.query( query_embeddings=embedding, n_results=k, where=filter ) return _results_to_docs(results) [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ if self._embedding_function is None: results = self._collection.query( query_texts=[query], n_results=k, where=filter ) else: query_embedding = self._embedding_function.embed_query(query) results = self._collection.query( query_embeddings=[query_embedding], n_results=k, where=filter ) return _results_to_docs_and_scores(results) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float],
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-4
self, embedding: List[float], k: int = 4, fetch_k: int = 20, filter: Optional[Dict[str, str]] = None, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, filter: Optional[Dict[str, str]] = None, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-5
among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, filter ) return docs [docs] def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) [docs] def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) self._client.persist() [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-6
client_settings: Optional[chromadb.config.Settings] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, ) chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection [docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
c3742fd45745-7
"""Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html" }
f1f1a3734692-0
Source code for langchain.vectorstores.base """Interface for vector stores.""" from __future__ import annotations from abc import ABC, abstractmethod from typing import Any, Dict, Iterable, List, Optional from pydantic import BaseModel, Field, root_validator from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever [docs]class VectorStore(ABC): """Interface for vector stores.""" [docs] @abstractmethod def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ [docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore.""" raise NotImplementedError [docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html" }
f1f1a3734692-1
Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts(texts, metadatas, **kwargs) [docs] async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return await self.aadd_texts(texts, metadatas, **kwargs) [docs] @abstractmethod def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" [docs] async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" raise NotImplementedError [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html" }
f1f1a3734692-2
k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ raise NotImplementedError [docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector.""" raise NotImplementedError [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" raise NotImplementedError [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html" }
f1f1a3734692-3
Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" raise NotImplementedError [docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VectorStore: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod async def afrom_documents( cls, documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VectorStore: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod @abstractmethod def from_texts( cls, texts: List[str], embedding: Embeddings,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html" }
f1f1a3734692-4
cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VectorStore: """Return VectorStore initialized from texts and embeddings.""" [docs] @classmethod async def afrom_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VectorStore: """Return VectorStore initialized from texts and embeddings.""" raise NotImplementedError [docs] def as_retriever(self, **kwargs: Any) -> BaseRetriever: return VectorStoreRetriever(vectorstore=self, **kwargs) class VectorStoreRetriever(BaseRetriever, BaseModel): vectorstore: VectorStore search_type: str = "similarity" search_kwargs: dict = Field(default_factory=dict) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search(
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html" }
f1f1a3734692-5
docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) elif self.search_type == "mmr": docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html" }
54f49abe637b-0
Source code for langchain.vectorstores.deeplake """Wrapper around Activeloop Deep Lake.""" from __future__ import annotations import logging import uuid from functools import partial from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger() distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_embedding: np.ndarray, data_vectors: np.ndarray, distance_metric: str = "L2", k: Optional[int] = 4, ) -> Tuple[List, List]: """Naive search for nearest neighbors args: query_embedding: np.ndarray data_vectors: np.ndarray k (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distnace, 'cos' for cosine similarity, 'dot' for dot product returns: nearest_indices: List, indices of nearest neighbors
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-1
returns: nearest_indices: List, indices of nearest neighbors """ # Calculate the distance between the query_vector and all data_vectors distances = distance_metric_map[distance_metric](query_embedding, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:k] if distance_metric in ["cos"] else nearest_indices[:k] ) return nearest_indices.tolist(), distances[nearest_indices].tolist() def dp_filter(x: dict, filter: Dict[str, str]) -> bool: """Filter helper function for Deep Lake""" metadata = x["metadata"].data()["value"] return all(k in metadata and v == metadata[k] for k, v in filter.items()) [docs]class DeepLake(VectorStore): """Wrapper around Deep Lake, a data lake for deep learning applications. We implement naive similarity search and filtering for fast prototyping, but it can be extended with Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? - Not only stores embeddings, but also the original data with version control. - Serverless, doesn't require another service and can be used with major cloud providers (S3, GCS, etc.) - More than just a multi-modal vector store. You can use the dataset to fine-tune your own LLM models. To use, you should have the ``deeplake`` python package installed. Example: .. code-block:: python from langchain.vectorstores import DeepLake from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) """
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-2
vectorstore = DeepLake("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_DEEPLAKE_PATH = "mem://langchain" def __init__( self, dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH, token: Optional[str] = None, embedding_function: Optional[Embeddings] = None, read_only: Optional[bool] = None, ) -> None: """Initialize with Deep Lake client.""" try: import deeplake except ImportError: raise ValueError( "Could not import deeplake python package. " "Please install it with `pip install deeplake`." ) self._deeplake = deeplake if deeplake.exists(dataset_path, token=token): self.ds = deeplake.load(dataset_path, token=token, read_only=read_only) logger.warning( f"Deep Lake Dataset in {dataset_path} already exists, " f"loading from the storage" ) self.ds.summary() else: self.ds = deeplake.empty(dataset_path, token=token, overwrite=True) with self.ds: self.ds.create_tensor( "text", htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, ) self.ds.create_tensor( "metadata", htype="json", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, ) self.ds.create_tensor( "embedding", htype="generic", create_id_tensor=False, create_sample_info_tensor=False,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-3
create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, ) self.ds.create_tensor( "ids", htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, ) self._embedding_function = embedding_function [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] text_list = list(texts) if self._embedding_function is None: embeddings: Sequence[Optional[List[float]]] = [None] * len(text_list) else: embeddings = self._embedding_function.embed_documents(text_list) if metadatas is None: metadatas = [{}] * len(text_list) elements = zip(text_list, embeddings, metadatas, ids) @self._deeplake.compute def ingest(sample_in: list, sample_out: list) -> None: s = { "text": sample_in[0], "embedding": sample_in[1],
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-4
"text": sample_in[0], "embedding": sample_in[1], "metadata": sample_in[2], "ids": sample_in[3], } sample_out.append(s) ingest().eval(list(elements), self.ds) self.ds.commit(allow_empty=True) return ids [docs] def search( self, query: Any[str, None] = None, embedding: Any[float, None] = None, k: int = 4, distance_metric: str = "L2", use_maximal_marginal_relevance: Optional[bool] = False, fetch_k: Optional[int] = 20, filter: Optional[Dict[str, str]] = None, return_score: Optional[bool] = False, **kwargs: Any, ) -> Any[List[Document], List[Tuple[Document, float]]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. embedding: Embedding function to use. Defaults to None. k: Number of Documents to return. Defaults to 4. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. filter: Attribute filter by metadata example {'key': 'value'}. Defaults to None. maximal_marginal_relevance: Whether to use maximal marginal relevance. Defaults to False. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-5
Defaults to 20. return_score: Whether to return the score. Defaults to False. Returns: List of Documents selected by the specified distance metric, if return_score True, return a tuple of (Document, score) """ view = self.ds # attribute based filtering if filter is not None: view = view.filter(partial(dp_filter, filter=filter)) if len(view) == 0: return [] if self._embedding_function is None: view = view.filter(lambda x: query in x["text"].data()["value"]) scores = [1.0] * len(view) if use_maximal_marginal_relevance: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) else: emb = embedding or self._embedding_function.embed_query( query ) # type: ignore query_emb = np.array(emb, dtype=np.float32) embeddings = view.embedding.numpy() k_search = fetch_k if use_maximal_marginal_relevance else k indices, scores = vector_search( query_emb, embeddings, k=k_search, distance_metric=distance_metric.lower(), ) view = view[indices] if use_maximal_marginal_relevance: indices = maximal_marginal_relevance( query_emb, embeddings[indices], k=min(k, len(indices)) ) view = view[indices] scores = [scores[i] for i in indices] docs = [ Document( page_content=el["text"].data()["value"], metadata=el["metadata"].data()["value"],
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-6
metadata=el["metadata"].data()["value"], ) for el in view ] if return_score: return [(doc, score) for doc, score in zip(docs, scores)] return docs [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: text to embed and run the query on. k: Number of Documents to return. Defaults to 4. query: Text to look up documents similar to. embedding: Embedding function to use. Defaults to None. k: Number of Documents to return. Defaults to 4. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product Defaults to `L2`. filter: Attribute filter by metadata example {'key': 'value'}. Defaults to None. maximal_marginal_relevance: Whether to use maximal marginal relevance. Defaults to False. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score: Whether to return the score. Defaults to False. Returns: List of Documents most similar to the query vector. """ return self.search(query=query, k=k, **kwargs) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-7
"""Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ return self.search(embedding=embedding, k=k, **kwargs) [docs] def similarity_search_with_score( self, query: str, distance_metric: str = "L2", k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float]]: """Run similarity search with Deep Lake with distance returned. Args: query (str): Query text to search for. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ return self.search( query=query, k=k, filter=filter, return_score=True, distance_metric=distance_metric, ) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-8
) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ return self.search( embedding=embedding, k=k, fetch_k=fetch_k, use_maximal_marginal_relevance=True, ) [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) return self.search( query=query, k=k, fetch_k=fetch_k, use_maximal_marginal_relevance=True ) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-9
texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH, **kwargs: Any, ) -> DeepLake: """Create a Deep Lake dataset from a raw documents. If a dataset_path is specified, the dataset will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: path (str, pathlib.Path): - The full path to the dataset. Can be: - Deep Lake cloud path of the form ``hub://username/dataset_name``. To write to Deep Lake cloud datasets, ensure that you are logged in to Deep Lake (use 'activeloop login' from command line) - AWS S3 path of the form ``s3://bucketname/path/to/dataset``. Credentials are required in either the environment - Google Cloud Storage path of the form ``gcs://bucketname/path/to/dataset``Credentials are required in either the environment - Local file system path of the form ``./path/to/dataset`` or ``~/path/to/dataset`` or ``path/to/dataset``. - In-memory path of the form ``mem://path/to/dataset`` which doesn't save the dataset, but keeps it in memory instead. Should be used only for testing as it does not persist. documents (List[Document]): List of documents to add. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-10
ids (Optional[List[str]]): List of document IDs. Defaults to None. Returns: DeepLake: Deep Lake dataset. """ deeplake_dataset = cls( dataset_path=dataset_path, embedding_function=embedding, ) deeplake_dataset.add_texts(texts=texts, metadatas=metadatas, ids=ids) return deeplake_dataset [docs] def delete( self, ids: Any[List[str], None] = None, filter: Any[Dict[str, str], None] = None, delete_all: Any[bool, None] = None, ) -> bool: """Delete the entities in the dataset Args: ids (Optional[List[str]], optional): The document_ids to delete. Defaults to None. filter (Optional[Dict[str, str]], optional): The filter to delete by. Defaults to None. delete_all (Optional[bool], optional): Whether to drop the dataset. Defaults to None. """ if delete_all: self.ds.delete() return True view = None if ids: view = self.ds.filter(lambda x: x["ids"].data()["value"] in ids) ids = list(view.sample_indices) if filter: if view is None: view = self.ds view = view.filter(partial(dp_filter, filter=filter)) ids = list(view.sample_indices) with self.ds: for id in sorted(ids)[::-1]: self.ds.pop(id) self.ds.commit(f"deleted {len(ids)} samples", allow_empty=True) return True [docs] def delete_dataset(self) -> None:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
54f49abe637b-11
return True [docs] def delete_dataset(self) -> None: """Delete the collection.""" self.delete(delete_all=True) [docs] def persist(self) -> None: """Persist the collection.""" self.ds.flush() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html" }
1a534ba83768-0
Source code for langchain.vectorstores.opensearch_vector_search """Wrapper around OpenSearch vector database.""" from __future__ import annotations import uuid from typing import Any, Dict, Iterable, List, Optional from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore IMPORT_OPENSEARCH_PY_ERROR = ( "Could not import OpenSearch. Please install it with `pip install opensearch-py`." ) SCRIPT_SCORING_SEARCH = "script_scoring" PAINLESS_SCRIPTING_SEARCH = "painless_scripting" MATCH_ALL_QUERY = {"match_all": {}} # type: Dict def _import_opensearch() -> Any: """Import OpenSearch if available, otherwise raise error.""" try: from opensearchpy import OpenSearch except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return OpenSearch def _import_bulk() -> Any: """Import bulk if available, otherwise raise error.""" try: from opensearchpy.helpers import bulk except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return bulk def _get_opensearch_client(opensearch_url: str, **kwargs: Any) -> Any: """Get OpenSearch client from the opensearch_url, otherwise raise error.""" try: opensearch = _import_opensearch() client = opensearch(opensearch_url, **kwargs) except ValueError as e: raise ValueError( f"OpenSearch client string provided is not in proper format. " f"Got error: {e} " ) return client
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-1
f"Got error: {e} " ) return client def _validate_embeddings_and_bulk_size(embeddings_length: int, bulk_size: int) -> None: """Validate Embeddings Length and Bulk Size.""" if embeddings_length == 0: raise RuntimeError("Embeddings size is zero") if bulk_size < embeddings_length: raise RuntimeError( f"The embeddings count, {embeddings_length} is more than the " f"[bulk_size], {bulk_size}. Increase the value of [bulk_size]." ) def _bulk_ingest_embeddings( client: Any, index_name: str, embeddings: List[List[float]], texts: Iterable[str], metadatas: Optional[List[dict]] = None, ) -> List[str]: """Bulk Ingest Embeddings into given index.""" bulk = _import_bulk() requests = [] ids = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} _id = str(uuid.uuid4()) request = { "_op_type": "index", "_index": index_name, "vector_field": embeddings[i], "text": text, "metadata": metadata, "_id": _id, } requests.append(request) ids.append(_id) bulk(client, requests) client.indices.refresh(index=index_name) return ids def _default_scripting_text_mapping(dim: int) -> Dict: """For Painless Scripting or Script Scoring,the default mapping to create index.""" return { "mappings": { "properties": {
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-2
return { "mappings": { "properties": { "vector_field": {"type": "knn_vector", "dimension": dim}, } } } def _default_text_mapping( dim: int, engine: str = "nmslib", space_type: str = "l2", ef_search: int = 512, ef_construction: int = 512, m: int = 16, ) -> Dict: """For Approximate k-NN Search, this is the default mapping to create index.""" return { "settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}}, "mappings": { "properties": { "vector_field": { "type": "knn_vector", "dimension": dim, "method": { "name": "hnsw", "space_type": space_type, "engine": engine, "parameters": {"ef_construction": ef_construction, "m": m}, }, } } }, } def _default_approximate_search_query( query_vector: List[float], size: int = 4, k: int = 4, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, this is the default query.""" return { "size": size, "query": {"knn": {vector_field: {"vector": query_vector, "k": k}}}, } def _default_script_query( query_vector: List[float], space_type: str = "l2",
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-3
query_vector: List[float], space_type: str = "l2", pre_filter: Dict = MATCH_ALL_QUERY, vector_field: str = "vector_field", ) -> Dict: """For Script Scoring Search, this is the default query.""" return { "query": { "script_score": { "query": pre_filter, "script": { "source": "knn_score", "lang": "knn", "params": { "field": vector_field, "query_value": query_vector, "space_type": space_type, }, }, } } } def __get_painless_scripting_source(space_type: str, query_vector: List[float]) -> str: """For Painless Scripting, it returns the script source based on space type.""" source_value = ( "(1.0 + " + space_type + "(" + str(query_vector) + ", doc['vector_field']))" ) if space_type == "cosineSimilarity": return source_value else: return "1/" + source_value def _default_painless_scripting_query( query_vector: List[float], space_type: str = "l2Squared", pre_filter: Dict = MATCH_ALL_QUERY, vector_field: str = "vector_field", ) -> Dict: """For Painless Scripting Search, this is the default query.""" source = __get_painless_scripting_source(space_type, query_vector) return { "query": { "script_score": { "query": pre_filter, "script": { "source": source, "params": {
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-4
"script": { "source": source, "params": { "field": vector_field, "query_value": query_vector, }, }, } } } def _get_kwargs_value(kwargs: Any, key: str, default_value: Any) -> Any: """Get the value of the key if present. Else get the default_value.""" if key in kwargs: return kwargs.get(key) return default_value [docs]class OpenSearchVectorSearch(VectorStore): """Wrapper around OpenSearch as a vector database. Example: .. code-block:: python from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) """ def __init__( self, opensearch_url: str, index_name: str, embedding_function: Embeddings, **kwargs: Any, ): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index_name = index_name self.client = _get_opensearch_client(opensearch_url, **kwargs) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-5
metadatas: Optional list of metadatas associated with the texts. bulk_size: Bulk API request count; Default: 500 Returns: List of ids from adding the texts into the vectorstore. """ embeddings = [ self.embedding_function.embed_documents([text])[0] for text in texts ] _validate_embeddings_and_bulk_size(len(embeddings), bulk_size) return _bulk_ingest_embeddings( self.client, self.index_name, embeddings, texts, metadatas ) [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". metadata_field: Document field that metadata is stored in. Defaults to "metadata". Can be set to a special value "*" to include the entire document. Optional Args for Approximate Search: search_type: "approximate_search"; default: "approximate_search" size: number of results the query actually returns; default: 4 Optional Args for Script Scoring Search: search_type: "script_scoring"; default: "approximate_search"
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-6
search_type: "script_scoring"; default: "approximate_search" space_type: "l2", "l1", "linf", "cosinesimil", "innerproduct", "hammingbit"; default: "l2" pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {"match_all": {}} Optional Args for Painless Scripting Search: search_type: "painless_scripting"; default: "approximate_search" space_type: "l2Squared", "l1Norm", "cosineSimilarity"; default: "l2Squared" pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {"match_all": {}} """ embedding = self.embedding_function.embed_query(query) search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search") text_field = _get_kwargs_value(kwargs, "text_field", "text") metadata_field = _get_kwargs_value(kwargs, "metadata_field", "metadata") if search_type == "approximate_search": size = _get_kwargs_value(kwargs, "size", 4) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") search_query = _default_approximate_search_query( embedding, size, k, vector_field ) elif search_type == SCRIPT_SCORING_SEARCH: space_type = _get_kwargs_value(kwargs, "space_type", "l2") pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") search_query = _default_script_query( embedding, space_type, pre_filter, vector_field
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-7
embedding, space_type, pre_filter, vector_field ) elif search_type == PAINLESS_SCRIPTING_SEARCH: space_type = _get_kwargs_value(kwargs, "space_type", "l2Squared") pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") search_query = _default_painless_scripting_query( embedding, space_type, pre_filter, vector_field ) else: raise ValueError("Invalid `search_type` provided as an argument") response = self.client.search(index=self.index_name, body=search_query) hits = [hit["_source"] for hit in response["hits"]["hits"][:k]] documents = [ Document( page_content=hit[text_field], metadata=hit if metadata_field == "*" or metadata_field not in hit else hit[metadata_field], ) for hit in hits ] return documents [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any, ) -> OpenSearchVectorSearch: """Construct OpenSearchVectorSearch wrapper from raw documents. Example: .. code-block:: python from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" )
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-8
embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Keyword Args for Approximate Search: engine: "nmslib", "faiss", "hnsw"; default: "nmslib" space_type: "l2", "l1", "cosinesimil", "linf", "innerproduct"; default: "l2" ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting: is_appx_search: False """ opensearch_url = get_from_dict_or_env( kwargs, "opensearch_url", "OPENSEARCH_URL" ) client = _get_opensearch_client(opensearch_url) embeddings = embedding.embed_documents(texts) _validate_embeddings_and_bulk_size(len(embeddings), bulk_size) dim = len(embeddings[0]) # Get the index name from either from kwargs or ENV Variable # before falling back to random generation index_name = get_from_dict_or_env(
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
1a534ba83768-9
# before falling back to random generation index_name = get_from_dict_or_env( kwargs, "index_name", "OPENSEARCH_INDEX_NAME", default=uuid.uuid4().hex ) is_appx_search = _get_kwargs_value(kwargs, "is_appx_search", True) if is_appx_search: engine = _get_kwargs_value(kwargs, "engine", "nmslib") space_type = _get_kwargs_value(kwargs, "space_type", "l2") ef_search = _get_kwargs_value(kwargs, "ef_search", 512) ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512) m = _get_kwargs_value(kwargs, "m", 16) mapping = _default_text_mapping( dim, engine, space_type, ef_search, ef_construction, m ) else: mapping = _default_scripting_text_mapping(dim) client.indices.create(index=index_name, body=mapping) _bulk_ingest_embeddings(client, index_name, embeddings, texts, metadatas) return cls(opensearch_url, index_name, embedding) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 08, 2023.
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html" }
7311d85e6e79-0
Source code for langchain.vectorstores.pinecone """Wrapper around Pinecone vector database.""" from __future__ import annotations import uuid from typing import Any, Callable, Iterable, List, Optional, Tuple from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore [docs]class Pinecone(VectorStore): """Wrapper around Pinecone vector database. To use, you should have the ``pinecone-client`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") """ def __init__( self, index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None, ): """Initialize with Pinecone client.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) if not isinstance(index, pinecone.index.Index): raise ValueError( f"client should be an instance of pinecone.index.Index, " f"got {type(index)}" ) self._index = index self._embedding_function = embedding_function self._text_key = text_key
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html" }
7311d85e6e79-1
self._embedding_function = embedding_function self._text_key = text_key self._namespace = namespace [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. namespace: Optional pinecone namespace to add the texts to. Returns: List of ids from adding the texts into the vectorstore. """ if namespace is None: namespace = self._namespace # Embed and create the documents docs = [] ids = ids or [str(uuid.uuid4()) for _ in texts] for i, text in enumerate(texts): embedding = self._embedding_function(text) metadata = metadatas[i] if metadatas else {} metadata[self._text_key] = text docs.append((ids[i], embedding, metadata)) # upsert to Pinecone self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size) return ids [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None,
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html" }
7311d85e6e79-2
filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ if namespace is None: namespace = self._namespace query_obj = self._embedding_function(query) docs = [] results = self._index.query( [query_obj], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: metadata = res["metadata"] text = metadata.pop(self._text_key) docs.append((Document(page_content=text, metadata=metadata), res["score"])) return docs [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return pinecone documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns:
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html" }
7311d85e6e79-3
namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ if namespace is None: namespace = self._namespace query_obj = self._embedding_function(query) docs = [] results = self._index.query( [query_obj], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: metadata = res["metadata"] text = metadata.pop(self._text_key) docs.append(Document(page_content=text, metadata=metadata)) return docs [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = "text", index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> Pinecone: """Construct Pinecone wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...")
{ "url": "https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html" }