id
stringlengths 14
16
| text
stringlengths 31
2.73k
| metadata
dict |
---|---|---|
1e9de6ff3e6a-3 | values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
)
try:
import aleph_alpha_client
values["client"] = aleph_alpha_client.Client(token=aleph_alpha_api_key)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please it install it with `pip install aleph_alpha_client`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the Aleph Alpha API."""
return {
"maximum_tokens": self.maximum_tokens,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"n": self.n,
"repetition_penalties_include_prompt": self.repetition_penalties_include_prompt, # noqa: E501
"use_multiplicative_presence_penalty": self.use_multiplicative_presence_penalty, # noqa: E501
"penalty_bias": self.penalty_bias,
"penalty_exceptions": self.penalty_exceptions,
"penalty_exceptions_include_stop_sequences": self.penalty_exceptions_include_stop_sequences, # noqa: E501
"best_of": self.best_of,
"logit_bias": self.logit_bias,
"log_probs": self.log_probs,
"tokens": self.tokens,
"disable_optimizations": self.disable_optimizations,
"minimum_tokens": self.minimum_tokens,
"echo": self.echo,
"use_multiplicative_frequency_penalty": self.use_multiplicative_frequency_penalty, # noqa: E501 | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/aleph_alpha.html"
} |
1e9de6ff3e6a-4 | "sequence_penalty": self.sequence_penalty,
"sequence_penalty_min_length": self.sequence_penalty_min_length,
"use_multiplicative_sequence_penalty": self.use_multiplicative_sequence_penalty, # noqa: E501
"completion_bias_inclusion": self.completion_bias_inclusion,
"completion_bias_inclusion_first_token_only": self.completion_bias_inclusion_first_token_only, # noqa: E501
"completion_bias_exclusion": self.completion_bias_exclusion,
"completion_bias_exclusion_first_token_only": self.completion_bias_exclusion_first_token_only, # noqa: E501
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
"repetition_penalties_include_completion": self.repetition_penalties_include_completion, # noqa: E501
"raw_completion": self.raw_completion,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "alpeh_alpha"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call out to Aleph Alpha's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = alpeh_alpha("Tell me a joke.")
"""
from aleph_alpha_client import CompletionRequest, Prompt
params = self._default_params | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/aleph_alpha.html"
} |
1e9de6ff3e6a-5 | from aleph_alpha_client import CompletionRequest, Prompt
params = self._default_params
if self.stop_sequences is not None and stop is not None:
raise ValueError(
"stop sequences found in both the input and default params."
)
elif self.stop_sequences is not None:
params["stop_sequences"] = self.stop_sequences
else:
params["stop_sequences"] = stop
request = CompletionRequest(prompt=Prompt.from_text(prompt), **params)
response = self.client.complete(model=self.model, request=request)
text = response.completions[0].completion
# If stop tokens are provided, Aleph Alpha's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stop is not None or self.stop_sequences is not None:
text = enforce_stop_tokens(text, params["stop_sequences"])
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/aleph_alpha.html"
} |
d93016bc1749-0 | Source code for langchain.llms.gooseai
"""Wrapper around GooseAI API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class GooseAI(LLM):
"""Wrapper around OpenAI large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``GOOSEAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import GooseAI
gooseai = GooseAI(model_name="gpt-neo-20b")
"""
client: Any
model_name: str = "gpt-neo-20b"
"""Model name to use"""
temperature: float = 0.7
"""What sampling temperature to use"""
max_tokens: int = 256
"""The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size."""
top_p: float = 1
"""Total probability mass of tokens to consider at each step."""
min_tokens: int = 1
"""The minimum number of tokens to generate in the completion."""
frequency_penalty: float = 0
"""Penalizes repeated tokens according to frequency."""
presence_penalty: float = 0
"""Penalizes repeated tokens."""
n: int = 1 | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gooseai.html"
} |
d93016bc1749-1 | """Penalizes repeated tokens."""
n: int = 1
"""How many completions to generate for each prompt."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
"""Adjust the probability of specific tokens being generated."""
gooseai_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.ignore
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
gooseai_api_key = get_from_dict_or_env(
values, "gooseai_api_key", "GOOSEAI_API_KEY"
)
try:
import openai | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gooseai.html"
} |
d93016bc1749-2 | )
try:
import openai
openai.api_key = gooseai_api_key
openai.api_base = "https://api.goose.ai/v1"
values["client"] = openai.Completion
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling GooseAI API."""
normal_params = {
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"min_tokens": self.min_tokens,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"logit_bias": self.logit_bias,
}
return {**normal_params, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "gooseai"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call the GooseAI API."""
params = self._default_params
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gooseai.html"
} |
d93016bc1749-3 | params["stop"] = stop
response = self.client.create(engine=self.model_name, prompt=prompt, **params)
text = response.choices[0].text
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gooseai.html"
} |
4b8cedc88add-0 | Source code for langchain.llms.self_hosted
"""Run model inference on self-hosted remote hardware."""
import importlib.util
import logging
import pickle
from typing import Any, Callable, List, Mapping, Optional
from pydantic import Extra
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
logger = logging.getLogger()
def _generate_text(
pipeline: Any,
prompt: str,
*args: Any,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> str:
"""Inference function to send to the remote hardware.
Accepts a pipeline callable (or, more likely,
a key pointing to the model on the cluster's object store)
and returns text predictions for each document
in the batch.
"""
text = pipeline(prompt, *args, **kwargs)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
def _send_pipeline_to_device(pipeline: Any, device: int) -> Any:
"""Send a pipeline to a device on the cluster."""
if isinstance(pipeline, str):
with open(pipeline, "rb") as f:
pipeline = pickle.load(f)
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. " | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted.html"
} |
4b8cedc88add-1 | logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
pipeline.device = torch.device(device)
pipeline.model = pipeline.model.to(pipeline.device)
return pipeline
[docs]class SelfHostedPipeline(LLM):
"""Run model inference on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example for custom pipeline and inference functions:
.. code-block:: python
from langchain.llms import SelfHostedPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
def load_pipeline():
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
return pipeline(
"text-generation", model=model, tokenizer=tokenizer,
max_new_tokens=10
)
def inference_fn(pipeline, prompt, stop = None):
return pipeline(prompt)[0]["generated_text"]
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
llm = SelfHostedPipeline(
model_load_fn=load_pipeline,
hardware=gpu,
model_reqs=model_reqs, inference_fn=inference_fn | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted.html"
} |
4b8cedc88add-2 | hardware=gpu,
model_reqs=model_reqs, inference_fn=inference_fn
)
Example for <2GB model (can be serialized and sent directly to the server):
.. code-block:: python
from langchain.llms import SelfHostedPipeline
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
my_model = ...
llm = SelfHostedPipeline.from_pipeline(
pipeline=my_model,
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
Example passing model path for larger models:
.. code-block:: python
from langchain.llms import SelfHostedPipeline
import runhouse as rh
import pickle
from transformers import pipeline
generator = pipeline(model="gpt2")
rh.blob(pickle.dumps(generator), path="models/pipeline.pkl"
).save().to(gpu, path="models")
llm = SelfHostedPipeline.from_pipeline(
pipeline="models/pipeline.pkl",
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
"""
pipeline_ref: Any #: :meta private:
client: Any #: :meta private:
inference_fn: Callable = _generate_text #: :meta private:
"""Inference function to send to the remote hardware."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_load_fn: Callable
"""Function to load the model remotely on the server."""
load_fn_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model load function.""" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted.html"
} |
4b8cedc88add-3 | """Key word arguments to pass to the model load function."""
model_reqs: List[str] = ["./", "torch"]
"""Requirements to install on hardware to inference the model."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def __init__(self, **kwargs: Any):
"""Init the pipeline with an auxiliary function.
The load function must be in global scope to be imported
and run on the server, i.e. in a module and not a REPL or closure.
Then, initialize the remote inference function.
"""
super().__init__(**kwargs)
try:
import runhouse as rh
except ImportError:
raise ValueError(
"Could not import runhouse python package. "
"Please install it with `pip install runhouse`."
)
remote_load_fn = rh.function(fn=self.model_load_fn).to(
self.hardware, reqs=self.model_reqs
)
_load_fn_kwargs = self.load_fn_kwargs or {}
self.pipeline_ref = remote_load_fn.remote(**_load_fn_kwargs)
self.client = rh.function(fn=self.inference_fn).to(
self.hardware, reqs=self.model_reqs
)
[docs] @classmethod
def from_pipeline(
cls,
pipeline: Any,
hardware: Any,
model_reqs: Optional[List[str]] = None,
device: int = 0,
**kwargs: Any,
) -> LLM:
"""Init the SelfHostedPipeline from a pipeline object or string."""
if not isinstance(pipeline, str):
logger.warning(
"Serializing pipeline to send to remote hardware. " | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted.html"
} |
4b8cedc88add-4 | logger.warning(
"Serializing pipeline to send to remote hardware. "
"Note, it can be quite slow"
"to serialize and send large models with each execution. "
"Consider sending the pipeline"
"to the cluster and passing the path to the pipeline instead."
)
load_fn_kwargs = {"pipeline": pipeline, "device": device}
return cls(
load_fn_kwargs=load_fn_kwargs,
model_load_fn=_send_pipeline_to_device,
hardware=hardware,
model_reqs=["transformers", "torch"] + (model_reqs or []),
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"hardware": self.hardware},
}
@property
def _llm_type(self) -> str:
return "self_hosted_llm"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
return self.client(pipeline=self.pipeline_ref, prompt=prompt, stop=stop)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted.html"
} |
9589c8461e20-0 | Source code for langchain.llms.self_hosted_hugging_face
"""Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware."""
import importlib.util
import logging
from typing import Any, Callable, List, Mapping, Optional
from pydantic import Extra
from langchain.llms.self_hosted import SelfHostedPipeline
from langchain.llms.utils import enforce_stop_tokens
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation")
logger = logging.getLogger()
def _generate_text(
pipeline: Any,
prompt: str,
*args: Any,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> str:
"""Inference function to send to the remote hardware.
Accepts a Hugging Face pipeline (or more likely,
a key pointing to such a pipeline on the cluster's object store)
and returns generated text.
"""
response = pipeline(prompt, *args, **kwargs)
if pipeline.task == "text-generation":
# Text generation return includes the starter text.
text = response[0]["generated_text"][len(prompt) :]
elif pipeline.task == "text2text-generation":
text = response[0]["generated_text"]
else:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
def _load_transformer(
model_id: str = DEFAULT_MODEL_ID,
task: str = DEFAULT_TASK,
device: int = 0, | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html"
} |
9589c8461e20-1 | task: str = DEFAULT_TASK,
device: int = 0,
model_kwargs: Optional[dict] = None,
) -> Any:
"""Inference function to send to the remote hardware.
Accepts a huggingface model_id and returns a pipeline for the task.
"""
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import pipeline as hf_pipeline
_model_kwargs = model_kwargs or {}
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
if task == "text-generation":
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
elif task == "text2text-generation":
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
else:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
except ImportError as e:
raise ValueError(
f"Could not load the {task} model due to missing dependencies."
) from e
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html"
} |
9589c8461e20-2 | "Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
model_kwargs=_model_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return pipeline
[docs]class SelfHostedHuggingFaceLLM(SelfHostedPipeline):
"""Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Only supports `text-generation` and `text2text-generation` for now.
Example using from_model_id:
.. code-block:: python
from langchain.llms import SelfHostedHuggingFaceLLM
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceLLM(
model_id="google/flan-t5-large", task="text2text-generation",
hardware=gpu
)
Example passing fn that generates a pipeline (bc the pipeline is not serializable):
.. code-block:: python | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html"
} |
9589c8461e20-3 | .. code-block:: python
from langchain.llms import SelfHostedHuggingFaceLLM
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
def get_pipeline():
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer
)
return pipe
hf = SelfHostedHuggingFaceLLM(
model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu)
"""
model_id: str = DEFAULT_MODEL_ID
"""Hugging Face model_id to load the model."""
task: str = DEFAULT_TASK
"""Hugging Face task (either "text-generation" or "text2text-generation")."""
device: int = 0
"""Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_reqs: List[str] = ["./", "transformers", "torch"]
"""Requirements to install on hardware to inference the model."""
model_load_fn: Callable = _load_transformer
"""Function to load the model remotely on the server."""
inference_fn: Callable = _generate_text #: :meta private:
"""Inference function to send to the remote hardware."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def __init__(self, **kwargs: Any): | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html"
} |
9589c8461e20-4 | extra = Extra.forbid
def __init__(self, **kwargs: Any):
"""Construct the pipeline remotely using an auxiliary function.
The load function needs to be importable to be imported
and run on the server, i.e. in a module and not a REPL or closure.
Then, initialize the remote inference function.
"""
load_fn_kwargs = {
"model_id": kwargs.get("model_id", DEFAULT_MODEL_ID),
"task": kwargs.get("task", DEFAULT_TASK),
"device": kwargs.get("device", 0),
"model_kwargs": kwargs.get("model_kwargs", None),
}
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_id": self.model_id},
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
return "selfhosted_huggingface_pipeline"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
return self.client(pipeline=self.pipeline_ref, prompt=prompt, stop=stop)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html"
} |
a07c77ed0734-0 | Source code for langchain.llms.huggingface_pipeline
"""Wrapper around HuggingFace Pipeline APIs."""
import importlib.util
import logging
from typing import Any, List, Mapping, Optional
from pydantic import Extra
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation")
logger = logging.getLogger()
[docs]class HuggingFacePipeline(LLM):
"""Wrapper around HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation` and `text2text-generation` for now.
Example using from_model_id:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2", task="text-generation"
)
Example passing pipeline in directly:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any #: :meta private:
model_id: str = DEFAULT_MODEL_ID
"""Model name to use."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model.""" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html"
} |
a07c77ed0734-1 | """Key word arguments to pass to the model."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] @classmethod
def from_model_id(
cls,
model_id: str,
task: str,
device: int = -1,
model_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
_model_kwargs = model_kwargs or {}
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
if task == "text-generation":
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
elif task == "text2text-generation":
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
else:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
except ImportError as e:
raise ValueError(
f"Could not load the {task} model due to missing dependencies."
) from e
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count() | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html"
} |
a07c77ed0734-2 | import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
model_kwargs=_model_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_id": self.model_id},
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
response = self.pipeline(prompt)
if self.pipeline.task == "text-generation": | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html"
} |
a07c77ed0734-3 | response = self.pipeline(prompt)
if self.pipeline.task == "text-generation":
# Text generation return includes the starter text.
text = response[0]["generated_text"][len(prompt) :]
elif self.pipeline.task == "text2text-generation":
text = response[0]["generated_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html"
} |
1b9a225a109c-0 | Source code for langchain.llms.rwkv
"""Wrapper for the RWKV model.
Based on https://github.com/saharNooby/rwkv.cpp/blob/master/rwkv/chat_with_bot.py
https://github.com/BlinkDL/ChatRWKV/blob/main/v2/chat.py
"""
from typing import Any, Dict, List, Mapping, Optional, Set, SupportsIndex
from pydantic import BaseModel, Extra, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
[docs]class RWKV(LLM, BaseModel):
r"""Wrapper around RWKV language models.
To use, you should have the ``rwkv`` python package installed, the
pre-trained model file, and the model's config information.
Example:
.. code-block:: python
from langchain.llms import RWKV
model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32")
# Simplest invocation
response = model("Once upon a time, ")
"""
model: str
"""Path to the pre-trained RWKV model file."""
tokens_path: str
"""Path to the RWKV tokens file."""
strategy: str = "cpu fp32"
"""Token context window."""
rwkv_verbose: bool = True
"""Print debug information."""
temperature: float = 1.0
"""The temperature to use for sampling."""
top_p: float = 0.5
"""The top-p value to use for sampling."""
penalty_alpha_frequency: float = 0.4
"""Positive values penalize new tokens based on their existing frequency
in the text so far, decreasing the model's likelihood to repeat the same | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html"
} |
1b9a225a109c-1 | in the text so far, decreasing the model's likelihood to repeat the same
line verbatim.."""
penalty_alpha_presence: float = 0.4
"""Positive values penalize new tokens based on whether they appear
in the text so far, increasing the model's likelihood to talk about
new topics.."""
CHUNK_LEN: int = 256
"""Batch size for prompt processing."""
max_tokens_per_generation: SupportsIndex = 256
"""Maximum number of tokens to generate."""
client: Any = None #: :meta private:
tokenizer: Any = None #: :meta private:
pipeline: Any = None #: :meta private:
model_state: Any = None #: :meta private:
model_tokens: Any = None #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"verbose": self.verbose,
"top_p": self.top_p,
"temperature": self.temperature,
"penalty_alpha_frequency": self.penalty_alpha_frequency,
"penalty_alpha_presence": self.penalty_alpha_presence,
"CHUNK_LEN": self.CHUNK_LEN,
"max_tokens_per_generation": self.max_tokens_per_generation,
}
@staticmethod
def _rwkv_param_names() -> Set[str]:
"""Get the identifying parameters."""
return {
"verbose",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
import tokenizers
except ImportError: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html"
} |
1b9a225a109c-2 | try:
import tokenizers
except ImportError:
raise ValueError(
"Could not import tokenizers python package. "
"Please install it with `pip install tokenizers`."
)
try:
from rwkv.model import RWKV as RWKVMODEL
from rwkv.utils import PIPELINE
values["tokenizer"] = tokenizers.Tokenizer.from_file(values["tokens_path"])
rwkv_keys = cls._rwkv_param_names()
model_kwargs = {k: v for k, v in values.items() if k in rwkv_keys}
model_kwargs["verbose"] = values["rwkv_verbose"]
values["client"] = RWKVMODEL(
values["model"], strategy=values["strategy"], **model_kwargs
)
values["pipeline"] = PIPELINE(values["client"], values["tokens_path"])
except ImportError:
raise ValueError(
"Could not import rwkv python package. "
"Please install it with `pip install rwkv`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
**self._default_params,
**{k: v for k, v in self.__dict__.items() if k in RWKV._rwkv_param_names()},
}
@property
def _llm_type(self) -> str:
"""Return the type of llm."""
return "rwkv-4"
def rwkv_generate(self, prompt: str) -> str:
tokens = self.tokenizer.encode(prompt).ids
logits = None
state = self.model_state
occurrence = {} | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html"
} |
1b9a225a109c-3 | logits = None
state = self.model_state
occurrence = {}
# Feed in the input string
while len(tokens) > 0:
logits, state = self.client.forward(tokens[: self.CHUNK_LEN], state)
tokens = tokens[self.CHUNK_LEN :]
decoded = ""
for i in range(self.max_tokens_per_generation):
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
decoded += self.tokenizer.decode([token])
if "\n" in decoded:
break
# feed back in
logits, state = self.client.forward([token], state)
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
# Update state for future invocations
self.model_state = state
return decoded
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
r"""RWKV generation
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text = self.rwkv_generate(prompt)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html"
} |
1b9a225a109c-4 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html"
} |
fe3fb455bb79-0 | Source code for langchain.llms.gpt4all
"""Wrapper for the GPT4All model."""
from typing import Any, Dict, List, Mapping, Optional, Set
from pydantic import Extra, Field, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
[docs]class GPT4All(LLM):
r"""Wrapper around GPT4All language models.
To use, you should have the ``pyllamacpp`` python package installed, the
pre-trained model file, and the model's config information.
Example:
.. code-block:: python
from langchain.llms import GPT4All
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Simplest invocation
response = model("Once upon a time, ")
"""
model: str
"""Path to the pre-trained GPT4All model file."""
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(0, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only") | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html"
} |
fe3fb455bb79-1 | vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
embedding: bool = Field(False, alias="embedding")
"""Use embedding mode only."""
n_threads: Optional[int] = Field(4, alias="n_threads")
"""Number of threads to use."""
n_predict: Optional[int] = 256
"""The maximum number of tokens to generate."""
temp: Optional[float] = 0.8
"""The temperature to use for sampling."""
top_p: Optional[float] = 0.95
"""The top-p value to use for sampling."""
top_k: Optional[int] = 40
"""The top-k value to use for sampling."""
echo: Optional[bool] = False
"""Whether to echo the prompt."""
stop: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
repeat_last_n: Optional[int] = 64
"Last n tokens to penalize"
repeat_penalty: Optional[float] = 1.3
"""The penalty to apply to repeated tokens."""
n_batch: int = Field(1, alias="n_batch")
"""Batch size for prompt processing."""
streaming: bool = False
"""Whether to stream the results or not."""
client: Any = None #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"seed": self.seed, | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html"
} |
fe3fb455bb79-2 | """Get the identifying parameters."""
return {
"seed": self.seed,
"n_predict": self.n_predict,
"n_threads": self.n_threads,
"n_batch": self.n_batch,
"repeat_last_n": self.repeat_last_n,
"repeat_penalty": self.repeat_penalty,
"top_k": self.top_k,
"top_p": self.top_p,
"temp": self.temp,
}
@staticmethod
def _llama_param_names() -> Set[str]:
"""Get the identifying parameters."""
return {
"seed",
"n_ctx",
"n_parts",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"embedding",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
from pyllamacpp.model import Model as GPT4AllModel
llama_keys = cls._llama_param_names()
model_kwargs = {k: v for k, v in values.items() if k in llama_keys}
values["client"] = GPT4AllModel(
ggml_model=values["model"],
**model_kwargs,
)
except ImportError:
raise ValueError(
"Could not import pyllamacpp python package. "
"Please install it with `pip install pyllamacpp`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
**self._default_params, | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html"
} |
fe3fb455bb79-3 | return {
"model": self.model,
**self._default_params,
**{
k: v
for k, v in self.__dict__.items()
if k in GPT4All._llama_param_names()
},
}
@property
def _llm_type(self) -> str:
"""Return the type of llm."""
return "gpt4all"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
r"""Call out to GPT4All's generate method.
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text = self.client.generate(
prompt,
**self._default_params,
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html"
} |
9dec2608e770-0 | Source code for langchain.llms.anthropic
"""Wrapper around Anthropic APIs."""
import re
from typing import Any, Dict, Generator, List, Mapping, Optional
from pydantic import Extra, root_validator
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
[docs]class Anthropic(LLM):
r"""Wrapper around Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
client: Any #: :meta private:
model: str = "claude-v1"
"""Model name to use."""
max_tokens_to_sample: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 1.0
"""A non-negative float that tunes the degree of randomness in generation.""" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html"
} |
9dec2608e770-1 | """A non-negative float that tunes the degree of randomness in generation."""
top_k: int = 0
"""Number of most likely tokens to consider at each step."""
top_p: float = 1
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
anthropic_api_key: Optional[str] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
anthropic_api_key = get_from_dict_or_env(
values, "anthropic_api_key", "ANTHROPIC_API_KEY"
)
try:
import anthropic
values["client"] = anthropic.Client(anthropic_api_key)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
except ImportError:
raise ValueError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
return {
"max_tokens_to_sample": self.max_tokens_to_sample,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
}
@property | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html"
} |
9dec2608e770-2 | "top_p": self.top_p,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT, self.AI_PROMPT])
return stop
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
r"""Call out to Anthropic's completion endpoint.
Args: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html"
} |
9dec2608e770-3 | r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
stop = self._get_anthropic_stop(stop)
if self.streaming:
stream_resp = self.client.completion_stream(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**self._default_params,
)
current_completion = ""
for data in stream_resp:
delta = data["completion"][len(current_completion) :]
current_completion = data["completion"]
self.callback_manager.on_llm_new_token(
delta, verbose=self.verbose, **data
)
return current_completion
response = self.client.completion(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**self._default_params,
)
return response["completion"]
async def _acall(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
stop = self._get_anthropic_stop(stop)
if self.streaming:
stream_resp = await self.client.acompletion_stream(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**self._default_params,
) | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html"
} |
9dec2608e770-4 | stream=True,
**self._default_params,
)
current_completion = ""
async for data in stream_resp:
delta = data["completion"][len(current_completion) :]
current_completion = data["completion"]
if self.callback_manager.is_async:
await self.callback_manager.on_llm_new_token(
delta, verbose=self.verbose, **data
)
else:
self.callback_manager.on_llm_new_token(
delta, verbose=self.verbose, **data
)
return current_completion
response = await self.client.acompletion(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**self._default_params,
)
return response["completion"]
[docs] def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
r"""Call Anthropic completion_stream and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
return self.client.completion_stream(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop, | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html"
} |
9dec2608e770-5 | prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**self._default_params,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html"
} |
d14b63ed7d4f-0 | Source code for langchain.embeddings.cohere
"""Wrapper around Cohere embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class CohereEmbeddings(BaseModel, Embeddings):
"""Wrapper around Cohere embedding models.
To use, you should have the ``cohere`` python package installed, and the
environment variable ``COHERE_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import CohereEmbeddings
cohere = CohereEmbeddings(model="medium", cohere_api_key="my-api-key")
"""
client: Any #: :meta private:
model: str = "large"
"""Model name to use."""
truncate: Optional[str] = None
"""Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
cohere_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
cohere_api_key = get_from_dict_or_env(
values, "cohere_api_key", "COHERE_API_KEY"
)
try:
import cohere
values["client"] = cohere.Client(cohere_api_key)
except ImportError:
raise ValueError(
"Could not import cohere python package. " | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html"
} |
d14b63ed7d4f-1 | raise ValueError(
"Could not import cohere python package. "
"Please it install it with `pip install cohere`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Cohere's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = self.client.embed(
model=self.model, texts=texts, truncate=self.truncate
).embeddings
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Cohere's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(
model=self.model, texts=[text], truncate=self.truncate
).embeddings[0]
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html"
} |
ebbcb153052f-0 | Source code for langchain.embeddings.fake
from typing import List
import numpy as np
from pydantic import BaseModel
from langchain.embeddings.base import Embeddings
[docs]class FakeEmbeddings(Embeddings, BaseModel):
size: int
def _get_embedding(self) -> List[float]:
return list(np.random.normal(size=self.size))
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding() for _ in texts]
[docs] def embed_query(self, text: str) -> List[float]:
return self._get_embedding()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/fake.html"
} |
73eaf1cc12d2-0 | Source code for langchain.embeddings.huggingface_hub
"""Wrapper around HuggingFace Hub embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
[docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceHubEmbeddings
repo_id = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
"""
client: Any #: :meta private:
repo_id: str = DEFAULT_REPO_ID
"""Model name to use."""
task: Optional[str] = "feature-extraction"
"""Task to call the model with."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html"
} |
73eaf1cc12d2-1 | @root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub.inference_api import InferenceApi
repo_id = values["repo_id"]
if not repo_id.startswith("sentence-transformers"):
raise ValueError(
"Currently only 'sentence-transformers' embedding models "
f"are supported. Got invalid 'repo_id' {repo_id}."
)
client = InferenceApi(
repo_id=repo_id,
token=huggingfacehub_api_token,
task=values.get("task"),
)
if client.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {client.task}, "
f"currently only {VALID_TASKS} are supported"
)
values["client"] = client
except ImportError:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please it install it with `pip install huggingface_hub`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts] | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html"
} |
73eaf1cc12d2-2 | texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = self.client(inputs=texts, params=_model_kwargs)
return responses
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = self.embed_documents([text])[0]
return response
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html"
} |
3b65e3f56c7c-0 | Source code for langchain.embeddings.sagemaker_endpoint
"""Wrapper around Sagemaker InvokeEndpoint API."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.llms.sagemaker_endpoint import ContentHandlerBase
[docs]class SagemakerEndpointEmbeddings(BaseModel, Embeddings):
"""Wrapper around custom Sagemaker Inference Endpoints.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
"""
"""
Example:
.. code-block:: python
from langchain.embeddings import SagemakerEndpointEmbeddings
endpoint_name = (
"my-endpoint-name"
)
region_name = (
"us-west-2"
)
credentials_profile_name = (
"default"
)
se = SagemakerEndpointEmbeddings(
endpoint_name=endpoint_name,
region_name=region_name,
credentials_profile_name=credentials_profile_name
)
"""
client: Any #: :meta private:
endpoint_name: str = ""
"""The name of the endpoint from the deployed Sagemaker model. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html"
} |
3b65e3f56c7c-1 | """The name of the endpoint from the deployed Sagemaker model.
Must be unique within an AWS Region."""
region_name: str = ""
"""The aws region where the Sagemaker model is deployed, eg. `us-west-2`."""
credentials_profile_name: Optional[str] = None
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
"""
content_handler: ContentHandlerBase
"""The content handler class that provides an input and
output transform functions to handle formats between LLM
and the endpoint.
"""
"""
Example:
.. code-block:: python
from langchain.llms.sagemaker_endpoint import ContentHandlerBase
class ContentHandler(ContentHandlerBase):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:
input_str = json.dumps({prompt: prompt, **model_kwargs})
return input_str.encode('utf-8')
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
return response_json[0]["generated_text"]
"""
model_kwargs: Optional[Dict] = None
"""Key word arguments to pass to the model."""
endpoint_kwargs: Optional[Dict] = None
"""Optional attributes passed to the invoke_endpoint | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html"
} |
3b65e3f56c7c-2 | endpoint_kwargs: Optional[Dict] = None
"""Optional attributes passed to the invoke_endpoint
function. See `boto3`_. docs for more info.
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that AWS credentials to and python package exists in environment."""
try:
import boto3
try:
if values["credentials_profile_name"] is not None:
session = boto3.Session(
profile_name=values["credentials_profile_name"]
)
else:
# use default credentials
session = boto3.Session()
values["client"] = session.client(
"sagemaker-runtime", region_name=values["region_name"]
)
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e
except ImportError:
raise ValueError(
"Could not import boto3 python package. "
"Please it install it with `pip install boto3`."
)
return values
def _embedding_func(self, texts: List[str]) -> List[float]:
"""Call out to SageMaker Inference embedding endpoint."""
# replace newlines, which can negatively affect performance.
texts = list(map(lambda x: x.replace("\n", " "), texts))
_model_kwargs = self.model_kwargs or {}
_endpoint_kwargs = self.endpoint_kwargs or {} | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html"
} |
3b65e3f56c7c-3 | _endpoint_kwargs = self.endpoint_kwargs or {}
body = self.content_handler.transform_input(texts, _model_kwargs)
content_type = self.content_handler.content_type
accepts = self.content_handler.accepts
# send request
try:
response = self.client.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=body,
ContentType=content_type,
Accept=accepts,
**_endpoint_kwargs,
)
except Exception as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
return self.content_handler.transform_output(response["Body"])
[docs] def embed_documents(
self, texts: List[str], chunk_size: int = 64
) -> List[List[float]]:
"""Compute doc embeddings using a SageMaker Inference Endpoint.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size defines how many input texts will
be grouped together as request. If None, will use the
chunk size specified by the class.
Returns:
List of embeddings, one for each text.
"""
results = []
_chunk_size = len(texts) if chunk_size > len(texts) else chunk_size
for i in range(0, len(texts), _chunk_size):
response = self._embedding_func(texts[i : i + _chunk_size])
results.append(response)
return results
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a SageMaker inference endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embedding_func([text])
By Harrison Chase | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html"
} |
3b65e3f56c7c-4 | """
return self._embedding_func([text])
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html"
} |
2d2425fa4352-0 | Source code for langchain.embeddings.tensorflow_hub
"""Wrapper around TensorflowHub embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
[docs]class TensorflowHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around tensorflow_hub embedding models.
To use, you should have the ``tensorflow_text`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import TensorflowHubEmbeddings
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
tf = TensorflowHubEmbeddings(model_url=url)
"""
embed: Any #: :meta private:
model_url: str = DEFAULT_MODEL_URL
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the tensorflow_hub and tensorflow_text."""
super().__init__(**kwargs)
try:
import tensorflow_hub
import tensorflow_text # noqa
self.embed = tensorflow_hub.load(self.model_url)
except ImportError as e:
raise ValueError(
"Could not import some python packages." "Please install them."
) from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a TensorflowHub embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
""" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html"
} |
2d2425fa4352-1 | Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.embed(texts).numpy()
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a TensorflowHub embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.embed(text).numpy()[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html"
} |
98e292a3aef9-0 | Source code for langchain.embeddings.openai
"""Wrapper around OpenAI embedding models."""
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
import numpy as np
from pydantic import BaseModel, Extra, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
98e292a3aef9-1 | retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return embeddings.client.create(**kwargs)
return _completion_with_retry(**kwargs)
[docs]class OpenAIEmbeddings(BaseModel, Embeddings):
"""Wrapper around OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and optionally and
API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="your-embeddings-deployment-name")
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any #: :meta private:
model: str = "text-embedding-ada-002" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
98e292a3aef9-2 | model: str = "text-embedding-ada-002"
# TODO: deprecate these two in favor of model
# https://community.openai.com/t/api-update-engines-models/18597
# https://github.com/openai/openai-python/issues/132
document_model_name: str = "text-embedding-ada-002"
query_model_name: str = "text-embedding-ada-002"
embedding_ctx_length: int = 8191
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
# TODO: deprecate this
@root_validator(pre=True)
def get_model_names(cls, values: Dict) -> Dict:
# model_name is for first generation, and model is for second generation.
# Both are not allowed together.
if "model_name" in values and "model" in values:
raise ValueError(
"Both `model_name` and `model` were provided, "
"but only one should be."
)
"""Get model names from just old model name."""
if "model_name" in values:
if "document_model_name" in values:
raise ValueError(
"Both `model_name` and `document_model_name` were provided, "
"but only one should be."
)
if "query_model_name" in values:
raise ValueError( | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
98e292a3aef9-3 | )
if "query_model_name" in values:
raise ValueError(
"Both `model_name` and `query_model_name` were provided, "
"but only one should be."
)
model_name = values.pop("model_name")
values["document_model_name"] = f"text-search-{model_name}-doc-001"
values["query_model_name"] = f"text-search-{model_name}-query-001"
# Set document/query model names from model parameter.
if "model" in values:
if "document_model_name" in values:
raise ValueError(
"Both `model` and `document_model_name` were provided, "
"but only one should be."
)
if "query_model_name" in values:
raise ValueError(
"Both `model` and `query_model_name` were provided, "
"but only one should be."
)
model = values.get("model")
values["document_model_name"] = model
values["query_model_name"] = model
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_organization = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
openai.api_key = openai_api_key
if openai_organization:
openai.organization = openai_organization
values["client"] = openai.Embedding
except ImportError: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
98e292a3aef9-4 | values["client"] = openai.Embedding
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please it install it with `pip install openai`."
)
return values
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for i in range(len(texts))]
try:
import tiktoken
tokens = []
indices = []
encoding = tiktoken.model.encoding_for_model(self.document_model_name)
for i, text in enumerate(texts):
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(text)
for j in range(0, len(token), self.embedding_ctx_length):
tokens += [token[j : j + self.embedding_ctx_length]]
indices += [i]
batched_embeddings = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
engine=self.document_model_name,
)
batched_embeddings += [r["embedding"] for r in response["data"]]
results: List[List[List[float]]] = [[] for i in range(len(texts))]
lens: List[List[int]] = [[] for i in range(len(texts))]
for i in range(len(indices)): | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
98e292a3aef9-5 | for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
lens[indices[i]].append(len(batched_embeddings[i]))
for i in range(len(texts)):
average = np.average(results[i], axis=0, weights=lens[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please it install it with `pip install tiktoken`."
)
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint."""
# replace newlines, which can negatively affect performance.
if self.embedding_ctx_length > 0:
return self._get_len_safe_embeddings([text], engine=engine)[0]
else:
text = text.replace("\n", " ")
return embed_with_retry(self, input=[text], engine=engine)["data"][0][
"embedding"
]
[docs] def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# handle large batches of texts
if self.embedding_ctx_length > 0: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
98e292a3aef9-6 | # handle large batches of texts
if self.embedding_ctx_length > 0:
return self._get_len_safe_embeddings(texts, engine=self.document_model_name)
else:
results = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(texts), _chunk_size):
response = embed_with_retry(
self,
input=texts[i : i + _chunk_size],
engine=self.document_model_name,
)
results += [r["embedding"] for r in response["data"]]
return results
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self._embedding_func(text, engine=self.query_model_name)
return embedding
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html"
} |
f8d56027ab0e-0 | Source code for langchain.embeddings.huggingface
"""Wrapper around HuggingFace embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
[docs]class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceEmbeddings(model_name=model_name)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
self.client = sentence_transformers.SentenceTransformer(self.model_name)
except ImportError:
raise ValueError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html"
} |
f8d56027ab0e-1 | """Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client.encode(texts)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(text)
return embedding.tolist()
[docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
hf = HuggingFaceInstructEmbeddings(model_name=model_name)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html"
} |
f8d56027ab0e-2 | try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(self.model_name)
except ImportError as e:
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair])[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html"
} |
a65ba2bdb9ef-0 | Source code for langchain.embeddings.llamacpp
"""Wrapper around llama.cpp embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.embeddings.base import Embeddings
[docs]class LlamaCppEmbeddings(BaseModel, Embeddings):
"""Wrapper around llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example:
.. code-block:: python
from langchain.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
"""
client: Any #: :meta private:
model_path: str
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(-1, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock") | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html"
} |
a65ba2bdb9ef-1 | use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
n_threads: Optional[int] = Field(None, alias="n_threads")
"""Number of threads to use. If None, the number
of threads is automatically determined."""
n_batch: Optional[int] = Field(8, alias="n_batch")
"""Number of tokens to process in parallel.
Should be a number between 1 and n_ctx."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
model_path = values["model_path"]
n_ctx = values["n_ctx"]
n_parts = values["n_parts"]
seed = values["seed"]
f16_kv = values["f16_kv"]
logits_all = values["logits_all"]
vocab_only = values["vocab_only"]
use_mlock = values["use_mlock"]
n_threads = values["n_threads"]
n_batch = values["n_batch"]
try:
from llama_cpp import Llama
values["client"] = Llama(
model_path=model_path,
n_ctx=n_ctx,
n_parts=n_parts,
seed=seed,
f16_kv=f16_kv,
logits_all=logits_all,
vocab_only=vocab_only,
use_mlock=use_mlock,
n_threads=n_threads,
n_batch=n_batch,
embedding=True,
)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. " | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html"
} |
a65ba2bdb9ef-2 | raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception:
raise NameError(f"Could not load Llama model from path: {model_path}")
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using the Llama model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts]
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed a query using the Llama model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(text)
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html"
} |
185d134c3a3d-0 | Source code for langchain.embeddings.aleph_alpha
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
"""
Wrapper for Aleph Alpha's Asymmetric Embeddings
AA provides you with an endpoint to embed a document and a query.
The models were optimized to make the embeddings of documents and
the query for a document as similar as possible.
To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
embeddings = AlephAlphaSymmetricSemanticEmbedding()
document = "This is a content of the document"
query = "What is the content of the document?"
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
"""
client: Any #: :meta private:
model: Optional[str] = "luminous-base"
"""Model name to use."""
hosting: Optional[str] = "https://api.aleph-alpha.com"
"""Optional parameter that specifies which datacenters may process the request."""
normalize: Optional[bool] = True
"""Should returned embeddings be normalized"""
compress_to_size: Optional[int] = 128
"""Should the returned embeddings come back as an original 5120-dim vector,
or should it be compressed to 128-dim."""
contextual_control_threshold: Optional[int] = None
"""Attention control parameters only apply to those tokens that have | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html"
} |
185d134c3a3d-1 | """Attention control parameters only apply to those tokens that have
explicitly been set in the request."""
control_log_additive: Optional[bool] = True
"""Apply controls on prompt items by adding the log(control_factor)
to attention scores."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
aleph_alpha_api_key = get_from_dict_or_env(
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
)
try:
from aleph_alpha_client import Client
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please it install it with `pip install aleph_alpha_client`."
)
values["client"] = Client(token=aleph_alpha_api_key)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's asymmetric Document endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please it install it with `pip install aleph_alpha_client`."
)
document_embeddings = []
for text in texts:
document_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Document,
"compress_to_size": self.compress_to_size, | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html"
} |
185d134c3a3d-2 | "representation": SemanticRepresentation.Document,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
document_request = SemanticEmbeddingRequest(**document_params)
document_response = self.client.semantic_embed(
request=document_request, model=self.model
)
document_embeddings.append(document_response.embedding)
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please it install it with `pip install aleph_alpha_client`."
)
symmetric_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Query,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
symmetric_request = SemanticEmbeddingRequest(**symmetric_params)
symmetric_response = self.client.semantic_embed(
request=symmetric_request, model=self.model
)
return symmetric_response.embedding
[docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding): | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html"
} |
185d134c3a3d-3 | """The symmetric version of the Aleph Alpha's semantic embeddings.
The main difference is that here, both the documents and
queries are embedded with a SemanticRepresentation.Symmetric
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
text = "This is a test text"
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)
"""
def _embed(self, text: str) -> List[float]:
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please it install it with `pip install aleph_alpha_client`."
)
query_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Symmetric,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
query_request = SemanticEmbeddingRequest(**query_params)
query_response = self.client.semantic_embed(
request=query_request, model=self.model
)
return query_response.embedding
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's Document endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
document_embeddings = [] | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html"
} |
185d134c3a3d-4 | List of embeddings, one for each text.
"""
document_embeddings = []
for text in texts:
document_embeddings.append(self._embed(text))
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embed(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html"
} |
dad036d46ad1-0 | Source code for langchain.embeddings.self_hosted
"""Running custom embedding models on self-hosted remote hardware."""
from typing import Any, Callable, List
from pydantic import Extra
from langchain.embeddings.base import Embeddings
from langchain.llms import SelfHostedPipeline
def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return pipeline(*args, **kwargs)
[docs]class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings):
"""Runs custom embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example using a model load function:
.. code-block:: python
from langchain.embeddings import SelfHostedEmbeddings
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
def get_pipeline():
model_id = "facebook/bart-large"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
embeddings = SelfHostedEmbeddings(
model_load_fn=get_pipeline,
hardware=gpu | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html"
} |
dad036d46ad1-1 | model_load_fn=get_pipeline,
hardware=gpu
model_reqs=["./", "torch", "transformers"],
)
Example passing in a pipeline path:
.. code-block:: python
from langchain.embeddings import SelfHostedHFEmbeddings
import runhouse as rh
from transformers import pipeline
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
pipeline = pipeline(model="bert-base-uncased", task="feature-extraction")
rh.blob(pickle.dumps(pipeline),
path="models/pipeline.pkl").save().to(gpu, path="models")
embeddings = SelfHostedHFEmbeddings.from_pipeline(
pipeline="models/pipeline.pkl",
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
"""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings on the remote hardware."""
inference_kwargs: Any = None
"""Any kwargs to pass to the model's inference function."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.s
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client(self.pipeline_ref, texts)
if not isinstance(embeddings, list):
return embeddings.tolist()
return embeddings
[docs] def embed_query(self, text: str) -> List[float]: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html"
} |
dad036d46ad1-2 | [docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embeddings = self.client(self.pipeline_ref, text)
if not isinstance(embeddings, list):
return embeddings.tolist()
return embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html"
} |
6afc09438080-0 | Source code for langchain.embeddings.self_hosted_hugging_face
"""Wrapper around HuggingFace embedding models for self-hosted remote hardware."""
import importlib
import logging
from typing import Any, Callable, List, Optional
from langchain.embeddings.self_hosted import SelfHostedEmbeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
logger = logging.getLogger(__name__)
def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return client.encode(*args, **kwargs)
def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any:
"""Load the embedding model."""
if not instruct:
import sentence_transformers
client = sentence_transformers.SentenceTransformer(model_id)
else:
from InstructorEmbedding import INSTRUCTOR
client = INSTRUCTOR(model_id)
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning( | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html"
} |
6afc09438080-1 | if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
client = client.to(device)
return client
[docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
"""Runs sentence_transformers embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_name = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu)
"""
client: Any #: :meta private:
model_id: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_reqs: List[str] = ["./", "sentence_transformers", "torch"]
"""Requirements to install on hardware to inference the model."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_load_fn: Callable = load_embedding_model | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html"
} |
6afc09438080-2 | model_load_fn: Callable = load_embedding_model
"""Function to load the model remotely on the server."""
load_fn_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model load function."""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
[docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings):
"""Runs InstructorEmbedding embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings
import runhouse as rh
model_name = "hkunlp/instructor-large"
gpu = rh.cluster(name='rh-a10x', instance_type='A100:1')
hf = SelfHostedHuggingFaceInstructEmbeddings(
model_name=model_name, hardware=gpu)
""" | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html"
} |
6afc09438080-3 | model_name=model_name, hardware=gpu)
"""
model_id: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"]
"""Requirements to install on hardware to inference the model."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get(
"model_id", DEFAULT_INSTRUCT_MODEL
)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = []
for text in texts:
instruction_pairs.append([self.embed_instruction, text])
embeddings = self.client(self.pipeline_ref, instruction_pairs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html"
} |
6afc09438080-4 | text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client(self.pipeline_ref, [instruction_pair])[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html"
} |
367e515ed808-0 | Source code for langchain.agents.tools
"""Interface for tools."""
from inspect import signature
from typing import Any, Awaitable, Callable, Optional, Union
from langchain.tools.base import BaseTool
[docs]class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Callable[[str], str]
coroutine: Optional[Callable[[str], Awaitable[str]]] = None
def _run(self, tool_input: str) -> str:
"""Use the tool."""
return self.func(tool_input)
async def _arun(self, tool_input: str) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
return await self.coroutine(tool_input)
raise NotImplementedError("Tool does not support async")
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Callable[[str], str], description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
class InvalidTool(BaseTool):
"""Tool that is run when invalid tool name is encountered by agent."""
name = "invalid_tool"
description = "Called when tool name is invalid."
def _run(self, tool_name: str) -> str:
"""Use the tool."""
return f"{tool_name} is not a valid tool, try another one."
async def _arun(self, tool_name: str) -> str:
"""Use the tool asynchronously."""
return f"{tool_name} is not a valid tool, try another one." | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html"
} |
367e515ed808-1 | return f"{tool_name} is not a valid tool, try another one."
[docs]def tool(*args: Union[str, Callable], return_direct: bool = False) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(func: Callable[[str], str]) -> Tool:
assert func.__doc__, "Function must have a docstring"
# Description example:
# search_api(query: str) - Searches the API for the query.
description = f"{tool_name}{signature(func)} - {func.__doc__.strip()}"
tool_ = Tool(
name=tool_name,
func=func,
description=description,
return_direct=return_direct,
)
return tool_
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html"
} |
367e515ed808-2 | # if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html"
} |
7fb9e07bc9ed-0 | Source code for langchain.agents.initialize
"""Load agent."""
from typing import Any, Optional, Sequence
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.loading import AGENT_TO_CLASS, load_agent
from langchain.callbacks.base import BaseCallbackManager
from langchain.schema import BaseLanguageModel
from langchain.tools.base import BaseTool
[docs]def initialize_agent(
tools: Sequence[BaseTool],
llm: BaseLanguageModel,
agent: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
agent_path: Optional[str] = None,
agent_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Load an agent executor given tools and LLM.
Args:
tools: List of tools this agent has access to.
llm: Language model to use as the agent.
agent: Agent type to use. If None and agent_path is also None, will default to
AgentType.ZERO_SHOT_REACT_DESCRIPTION.
callback_manager: CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path: Path to serialized agent to use.
agent_kwargs: Additional key word arguments to pass to the underlying agent
**kwargs: Additional key word arguments passed to the agent executor
Returns:
An agent executor
"""
if agent is None and agent_path is None:
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION
if agent is not None and agent_path is not None:
raise ValueError(
"Both `agent` and `agent_path` are specified, "
"but at most only one should be."
) | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html"
} |
7fb9e07bc9ed-1 | "but at most only one should be."
)
if agent is not None:
if agent not in AGENT_TO_CLASS:
raise ValueError(
f"Got unknown agent type: {agent}. "
f"Valid types are: {AGENT_TO_CLASS.keys()}."
)
agent_cls = AGENT_TO_CLASS[agent]
agent_kwargs = agent_kwargs or {}
agent_obj = agent_cls.from_llm_and_tools(
llm, tools, callback_manager=callback_manager, **agent_kwargs
)
elif agent_path is not None:
agent_obj = load_agent(
agent_path, llm=llm, tools=tools, callback_manager=callback_manager
)
else:
raise ValueError(
"Somehow both `agent` and `agent_path` are None, "
"this should never happen."
)
return AgentExecutor.from_agent_and_tools(
agent=agent_obj,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html"
} |
71e9f3b9d989-0 | Source code for langchain.agents.agent_types
from enum import Enum
[docs]class AgentType(str, Enum):
ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description"
REACT_DOCSTORE = "react-docstore"
SELF_ASK_WITH_SEARCH = "self-ask-with-search"
CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description"
CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description"
CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent_types.html"
} |
a52b9bd0a17e-0 | Source code for langchain.agents.loading
"""Functionality for loading agents."""
import json
from pathlib import Path
from typing import Any, List, Optional, Union
import yaml
from langchain.agents.agent import Agent
from langchain.agents.agent_types import AgentType
from langchain.agents.chat.base import ChatAgent
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.react.base import ReActDocstoreAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent
from langchain.agents.tools import Tool
from langchain.chains.loading import load_chain, load_chain_from_config
from langchain.llms.base import BaseLLM
from langchain.utilities.loading import try_load_from_hub
AGENT_TO_CLASS = {
AgentType.ZERO_SHOT_REACT_DESCRIPTION: ZeroShotAgent,
AgentType.REACT_DOCSTORE: ReActDocstoreAgent,
AgentType.SELF_ASK_WITH_SEARCH: SelfAskWithSearchAgent,
AgentType.CONVERSATIONAL_REACT_DESCRIPTION: ConversationalAgent,
AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION: ChatAgent,
AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION: ConversationalChatAgent,
}
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/"
def _load_agent_from_tools(
config: dict, llm: BaseLLM, tools: List[Tool], **kwargs: Any
) -> Agent:
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported") | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html"
} |
a52b9bd0a17e-1 | raise ValueError(f"Loading {config_type} agent not supported")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
combined_config = {**config, **kwargs}
return agent_cls.from_llm_and_tools(llm, tools, **combined_config)
def load_agent_from_config(
config: dict,
llm: Optional[BaseLLM] = None,
tools: Optional[List[Tool]] = None,
**kwargs: Any,
) -> Agent:
"""Load agent from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify an agent Type in config")
load_from_tools = config.pop("load_from_llm_and_tools", False)
if load_from_tools:
if llm is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then LLM must be provided"
)
if tools is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then tools must be provided"
)
return _load_agent_from_tools(config, llm, tools, **kwargs)
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
if "llm_chain" in config:
config["llm_chain"] = load_chain_from_config(config.pop("llm_chain"))
elif "llm_chain_path" in config: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html"
} |
a52b9bd0a17e-2 | elif "llm_chain_path" in config:
config["llm_chain"] = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.")
combined_config = {**config, **kwargs}
return agent_cls(**combined_config) # type: ignore
[docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> Agent:
"""Unified method for loading a agent from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_agent_from_file, "agents", {"json", "yaml"}
):
return hub_result
else:
return _load_agent_from_file(path, **kwargs)
def _load_agent_from_file(file: Union[str, Path], **kwargs: Any) -> Agent:
"""Load agent from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Load the agent from the config now.
return load_agent_from_config(config, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html"
} |
eb070272db6e-0 | Source code for langchain.agents.load_tools
# flake8: noqa
"""Load tools."""
import warnings
from typing import Any, List, Optional
from langchain.agents.tools import Tool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs
from langchain.chains.api.base import APIChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.pal.base import PALChain
from langchain.llms.base import BaseLLM
from langchain.requests import TextRequestsWrapper
from langchain.tools.base import BaseTool
from langchain.tools.bing_search.tool import BingSearchRun
from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun
from langchain.tools.human.tool import HumanInputRun
from langchain.tools.python.tool import PythonREPLTool
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun
from langchain.tools.wikipedia.tool import WikipediaQueryRun
from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun
from langchain.utilities.apify import ApifyWrapper
from langchain.utilities.bash import BashProcess
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-1 | from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
def _get_python_repl() -> BaseTool:
return PythonREPLTool()
def _get_tools_requests_get() -> BaseTool:
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_post() -> BaseTool:
return RequestsPostTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_patch() -> BaseTool:
return RequestsPatchTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_put() -> BaseTool:
return RequestsPutTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_delete() -> BaseTool:
return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper())
def _get_terminal() -> BaseTool:
return Tool(
name="Terminal",
description="Executes commands in a terminal. Input should be valid commands, and the output will be any output from running that command.",
func=BashProcess().run,
)
_BASE_TOOLS = {
"python_repl": _get_python_repl,
"requests": _get_tools_requests_get, # preserved for backwards compatability
"requests_get": _get_tools_requests_get,
"requests_post": _get_tools_requests_post,
"requests_patch": _get_tools_requests_patch,
"requests_put": _get_tools_requests_put,
"requests_delete": _get_tools_requests_delete,
"terminal": _get_terminal,
}
def _get_pal_math(llm: BaseLLM) -> BaseTool:
return Tool(
name="PAL-MATH",
description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.", | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-2 | func=PALChain.from_math_prompt(llm).run,
)
def _get_pal_colored_objects(llm: BaseLLM) -> BaseTool:
return Tool(
name="PAL-COLOR-OBJ",
description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.",
func=PALChain.from_colored_object_prompt(llm).run,
)
def _get_llm_math(llm: BaseLLM) -> BaseTool:
return Tool(
name="Calculator",
description="Useful for when you need to answer questions about math.",
func=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).run,
coroutine=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).arun,
)
def _get_open_meteo_api(llm: BaseLLM) -> BaseTool:
chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS)
return Tool(
name="Open Meteo API",
description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
_LLM_TOOLS = {
"pal-math": _get_pal_math,
"pal-colored-objects": _get_pal_colored_objects,
"llm-math": _get_llm_math,
"open-meteo-api": _get_open_meteo_api,
} | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-3 | "open-meteo-api": _get_open_meteo_api,
}
def _get_news_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
news_api_key = kwargs["news_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}
)
return Tool(
name="News API",
description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_tmdb_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
tmdb_bearer_token = kwargs["tmdb_bearer_token"]
chain = APIChain.from_llm_and_api_docs(
llm,
tmdb_docs.TMDB_DOCS,
headers={"Authorization": f"Bearer {tmdb_bearer_token}"},
)
return Tool(
name="TMDB API",
description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_podcast_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
listen_api_key = kwargs["listen_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm,
podcast_docs.PODCAST_DOCS,
headers={"X-ListenAPI-Key": listen_api_key},
)
return Tool(
name="Podcast API", | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-4 | )
return Tool(
name="Podcast API",
description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_wolfram_alpha(**kwargs: Any) -> BaseTool:
return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs))
def _get_google_search(**kwargs: Any) -> BaseTool:
return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_wikipedia(**kwargs: Any) -> BaseTool:
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
def _get_google_serper(**kwargs: Any) -> BaseTool:
return Tool(
name="Serper Search",
func=GoogleSerperAPIWrapper(**kwargs).run,
description="A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.",
)
def _get_google_search_results_json(**kwargs: Any) -> BaseTool:
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_serpapi(**kwargs: Any) -> BaseTool:
return Tool(
name="Search",
description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.",
func=SerpAPIWrapper(**kwargs).run,
coroutine=SerpAPIWrapper(**kwargs).arun,
)
def _get_searx_search(**kwargs: Any) -> BaseTool:
return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs))
def _get_searx_search_results_json(**kwargs: Any) -> BaseTool: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-5 | def _get_searx_search_results_json(**kwargs: Any) -> BaseTool:
wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"}
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
def _get_bing_search(**kwargs: Any) -> BaseTool:
return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs))
def _get_human_tool(**kwargs: Any) -> BaseTool:
return HumanInputRun(**kwargs)
_EXTRA_LLM_TOOLS = {
"news-api": (_get_news_api, ["news_api_key"]),
"tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]),
"podcast-api": (_get_podcast_api, ["listen_api_key"]),
}
_EXTRA_OPTIONAL_TOOLS = {
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]),
"google-search": (_get_google_search, ["google_api_key", "google_cse_id"]),
"google-search-results-json": (
_get_google_search_results_json,
["google_api_key", "google_cse_id", "num_results"],
),
"searx-search-results-json": (
_get_searx_search_results_json,
["searx_host", "engines", "num_results", "aiosession"],
),
"bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]),
"google-serper": (_get_google_serper, ["serper_api_key"]),
"serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-6 | "searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]),
"wikipedia": (_get_wikipedia, ["top_k_results"]),
"human": (_get_human_tool, ["prompt_func", "input_func"]),
}
[docs]def load_tools(
tool_names: List[str],
llm: Optional[BaseLLM] = None,
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> List[BaseTool]:
"""Load tools based on their name.
Args:
tool_names: name of tools to load.
llm: Optional language model, may be needed to initialize certain tools.
callback_manager: Optional callback manager. If not provided, default global callback manager will be used.
Returns:
List of tools.
"""
tools = []
for name in tool_names:
if name == "requests":
warnings.warn(
"tool name `requests` is deprecated - "
"please use `requests_all` or specify the requests method"
)
if name == "requests_all":
# expand requests into various methods
requests_method_tools = [
_tool for _tool in _BASE_TOOLS if _tool.startswith("requests_")
]
tool_names.extend(requests_method_tools)
elif name in _BASE_TOOLS:
tools.append(_BASE_TOOLS[name]())
elif name in _LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
tool = _LLM_TOOLS[name](llm)
if callback_manager is not None: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-7 | if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
elif name in _EXTRA_LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
_get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name]
missing_keys = set(extra_keys).difference(kwargs)
if missing_keys:
raise ValueError(
f"Tool {name} requires some parameters that were not "
f"provided: {missing_keys}"
)
sub_kwargs = {k: kwargs[k] for k in extra_keys}
tool = _get_llm_tool_func(llm=llm, **sub_kwargs)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
elif name in _EXTRA_OPTIONAL_TOOLS:
_get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name]
sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs}
tool = _get_tool_func(**sub_kwargs)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
else:
raise ValueError(f"Got unknown tool {name}")
return tools
[docs]def get_all_tool_names() -> List[str]:
"""Get a list of all possible tool names."""
return (
list(_BASE_TOOLS)
+ list(_EXTRA_OPTIONAL_TOOLS)
+ list(_EXTRA_LLM_TOOLS)
+ list(_LLM_TOOLS)
)
By Harrison Chase
© Copyright 2023, Harrison Chase. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
eb070272db6e-8 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 08, 2023. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html"
} |
48d642a15044-0 | Source code for langchain.agents.agent
"""Chain that takes in an input and produces an action and action input."""
from __future__ import annotations
import asyncio
import json
import logging
import time
from abc import abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import yaml
from pydantic import BaseModel, root_validator
from langchain.agents.tools import InvalidTool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.input import get_color_mapping
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
BaseLanguageModel,
BaseMessage,
BaseOutputParser,
)
from langchain.tools.base import BaseTool
from langchain.utilities.asyncio import asyncio_timeout
logger = logging.getLogger()
[docs]class BaseSingleActionAgent(BaseModel):
"""Base Agent class."""
@property
def return_values(self) -> List[str]:
"""Return values of the agent."""
return ["output"]
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return None
[docs] @abstractmethod
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use. | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
48d642a15044-1 | **kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
[docs] @abstractmethod
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish(
{"output": "Agent stopped due to iteration limit or time limit."}, ""
)
else:
raise ValueError(
f"Got unsupported early_stopping_method `{early_stopping_method}`"
)
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of agent."""
_dict = super().dict()
_dict["_type"] = self._agent_type
return _dict | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
48d642a15044-2 | _dict["_type"] = self._agent_type
return _dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the agent.
Args:
file_path: Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path="path/agent.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
agent_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(agent_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(agent_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {}
[docs]class BaseMultiActionAgent(BaseModel):
"""Base Agent class."""
@property
def return_values(self) -> List[str]:
"""Return values of the agent."""
return ["output"]
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return None
[docs] @abstractmethod
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
48d642a15044-3 | ) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Actions specifying what tool to use.
"""
[docs] @abstractmethod
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Actions specifying what tool to use.
"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
else:
raise ValueError(
f"Got unsupported early_stopping_method `{early_stopping_method}`"
)
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict: | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
48d642a15044-4 | raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of agent."""
_dict = super().dict()
_dict["_type"] = self._agent_type
return _dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the agent.
Args:
file_path: Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path="path/agent.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
agent_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(agent_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(agent_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {}
[docs]class AgentOutputParser(BaseOutputParser):
[docs] @abstractmethod
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
"""Parse text into agent action/finish."""
[docs]class LLMSingleActionAgent(BaseSingleActionAgent):
llm_chain: LLMChain | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
48d642a15044-5 | llm_chain: LLMChain
output_parser: AgentOutputParser
stop: List[str]
@property
def input_keys(self) -> List[str]:
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})
[docs] def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
output = self.llm_chain.run(
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
)
return self.output_parser.parse(output)
[docs] async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
output = await self.llm_chain.arun(
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
)
return self.output_parser.parse(output)
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {
"llm_prefix": "",
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
}
[docs]class Agent(BaseSingleActionAgent): | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
48d642a15044-6 | }
[docs]class Agent(BaseSingleActionAgent):
"""Class responsible for calling the language model and deciding the action.
This is driven by an LLMChain. The prompt in the LLMChain MUST include
a variable called "agent_scratchpad" where the agent can put its
intermediary work.
"""
llm_chain: LLMChain
allowed_tools: Optional[List[str]] = None
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return self.allowed_tools
@property
def return_values(self) -> List[str]:
return ["output"]
@abstractmethod
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
"""Extract tool and tool input from llm output."""
def _fix_text(self, text: str) -> str:
"""Fix the text."""
raise ValueError("fix_text not implemented for this agent.")
@property
def _stop(self) -> List[str]:
return [
f"\n{self.observation_prefix.rstrip()}",
f"\n\t{self.observation_prefix.rstrip()}",
]
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> Union[str, List[BaseMessage]]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
return thoughts
def _get_next_action(self, full_inputs: Dict[str, str]) -> AgentAction:
full_output = self.llm_chain.predict(**full_inputs) | {
"url": "https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html"
} |
Subsets and Splits