|
|
|
"""MNIST text dataset with no spaces.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
import math |
|
|
|
import numpy as np |
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
MNIST dataset adapted to a text-based representation. |
|
|
|
This allows testing interpolation quality for Transformer-VAEs. |
|
|
|
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM |
|
|
|
Works by quantising each MNIST pixel into one of 64 characters. |
|
Every sample has an up & down version to encourage the model to learn rotation invarient features. |
|
|
|
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data. |
|
|
|
Removed spaces to get better BPE compression on sequences. |
|
**Should only be used with a trained tokenizer.** |
|
|
|
Data format: |
|
- text: (30 x 28 tokens, 840 tokens total): Textual representation of MNIST digit, for example: |
|
``` |
|
00down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
01down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
02down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
03down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
04down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
05down!!!!!!!!!!!!!%%%@CL'Ja^@!!!! |
|
06down!!!!!!!!(*8GK`````YL`]Q1!!!! |
|
07down!!!!!!!-\\````````_855/*!!!!! |
|
08down!!!!!!!%W`````RN^]!!!!!!!!!! |
|
09down!!!!!!!!5H;``T#!+G!!!!!!!!!! |
|
10down!!!!!!!!!$!G`7!!!!!!!!!!!!!! |
|
11down!!!!!!!!!!!C`P!!!!!!!!!!!!!! |
|
12down!!!!!!!!!!!#P`2!!!!!!!!!!!!! |
|
13down!!!!!!!!!!!!)]YI<!!!!!!!!!!! |
|
14down!!!!!!!!!!!!!5]``>'!!!!!!!!! |
|
15down!!!!!!!!!!!!!!,O``F'!!!!!!!! |
|
16down!!!!!!!!!!!!!!!%8``O!!!!!!!! |
|
17down!!!!!!!!!!!!!!!!!_`_1!!!!!!! |
|
18down!!!!!!!!!!!!!!,AN``T!!!!!!!! |
|
19down!!!!!!!!!!!!*FZ```_N!!!!!!!! |
|
20down!!!!!!!!!!'=X````S4!!!!!!!!! |
|
21down!!!!!!!!&1V````R5!!!!!!!!!!! |
|
22down!!!!!!%KW````Q5#!!!!!!!!!!!! |
|
23down!!!!.LY````^B#!!!!!!!!!!!!!! |
|
24down!!!!C```VBB%!!!!!!!!!!!!!!!! |
|
25down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
26down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
27down!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
``` |
|
- label: Just a number with the texts matching label. |
|
|
|
""" |
|
|
|
_CITATION = """\ |
|
@dataset{dataset, |
|
author = {Fraser Greenlee}, |
|
year = {2021}, |
|
month = {2}, |
|
pages = {}, |
|
title = {MNIST text dataset (no spaces).}, |
|
doi = {} |
|
} |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-no-spaces/train.json.zip" |
|
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-no-spaces/test.json" |
|
|
|
LABELS = list(range(10)) |
|
|
|
|
|
class MnistText(datasets.GeneratorBasedBuilder): |
|
"""MNIST represented by text.""" |
|
def array_to_text(pixels: np.array): |
|
''' |
|
Takes a 2D array of pixel brightness, converts to text using 64 tokens to represent all brightness values. |
|
''' |
|
width = pixels.shape[0] |
|
height = pixels.shape[1] |
|
|
|
lines = [] |
|
|
|
for y in range(height): |
|
split = ['%02d down' % y] |
|
|
|
for x in range(width): |
|
brightness = pixels[y, x] |
|
|
|
mBrightness = math.floor(brightness * 64) |
|
s = chr(mBrightness + 33) |
|
|
|
split.append(s) |
|
|
|
lines.append(' '.join(split)) |
|
|
|
reversed = [] |
|
for line in lines: |
|
reversed.insert(0, (line.replace(' down ', ' up ', 1))) |
|
|
|
return ['\n'.join(lines), '\n'.join(reversed)] |
|
|
|
def text_to_array(text: str): |
|
lines = text.split('\n') |
|
pixels = np.zeros((len(lines), len(lines[0].split(' ')) - 2)) |
|
|
|
for y, line in enumerate(lines): |
|
tokens = line.split(' ') |
|
assert(tokens[1] == 'down') |
|
pixel_tokens = tokens[2:] |
|
for x, token in enumerate(pixel_tokens): |
|
pixels[y, x] = (ord(token) - 33) / 64 |
|
|
|
return pixels |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'label': datasets.features.ClassLabel(names=LABELS), |
|
'text': datasets.Value("string"), |
|
} |
|
), |
|
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(train_path, 'train.json')} |
|
), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as json_lines_file: |
|
data = [] |
|
for line in json_lines_file: |
|
data.append(json.loads(line)) |
|
|
|
for id_, row in enumerate(data): |
|
yield id_, row |
|
|