text
stringlengths 0
1.46k
|
---|
Exposes custom classes/functions to Keras deserialization internals. |
Under a scope with custom_object_scope(objects_dict), Keras methods such as tf.keras.models.load_model or tf.keras.models.model_from_config will be able to deserialize any custom object referenced by a saved config (e.g. a custom layer or metric). |
Example |
Consider a custom regularizer my_regularizer: |
layer = Dense(3, kernel_regularizer=my_regularizer) |
config = layer.get_config() # Config contains a reference to `my_regularizer` |
... |
# Later: |
with custom_object_scope({'my_regularizer': my_regularizer}): |
layer = Dense.from_config(config) |
Arguments |
*args: Dictionary or dictionaries of {name: object} pairs. |
get_custom_objects function |
tf.keras.utils.get_custom_objects() |
Retrieves a live reference to the global dictionary of custom objects. |
Updating and clearing custom objects using custom_object_scope is preferred, but get_custom_objects can be used to directly access the current collection of custom objects. |
Example |
get_custom_objects().clear() |
get_custom_objects()['MyObject'] = MyObject |
Returns |
Global dictionary of names to classes (_GLOBAL_CUSTOM_OBJECTS). |
register_keras_serializable function |
tf.keras.utils.register_keras_serializable(package="Custom", name=None) |
Registers an object with the Keras serialization framework. |
This decorator injects the decorated class or function into the Keras custom object dictionary, so that it can be serialized and deserialized without needing an entry in the user-provided custom object dict. It also injects a function that Keras will call to get the object's serializable string key. |
Note that to be serialized and deserialized, classes must implement the get_config() method. Functions do not have this requirement. |
The object will be registered under the key 'package>name' where name, defaults to the object name if not passed. |
Arguments |
package: The package that this class belongs to. |
name: The name to serialize this class under in this package. If None, the class' name will be used. |
Returns |
A decorator that registers the decorated class with the passed names. |
serialize_keras_object function |
tf.keras.utils.serialize_keras_object(instance) |
Serialize a Keras object into a JSON-compatible representation. |
Calls to serialize_keras_object while underneath the SharedObjectSavingScope context manager will cause any objects re-used across multiple layers to be saved with a special shared object ID. This allows the network to be re-created properly during deserialization. |
Arguments |
instance: The object to serialize. |
Returns |
A dict-like, JSON-compatible representation of the object's config. |
deserialize_keras_object function |
tf.keras.utils.deserialize_keras_object( |
identifier, module_objects=None, custom_objects=None, printable_module_name="object" |
) |
Turns the serialized form of a Keras object back into an actual object. |
This function is for mid-level library implementers rather than end users. |
Importantly, this utility requires you to provide the dict of module_objects to use for looking up the object config; this is not populated by default. If you need a deserialization utility that has preexisting knowledge of built-in Keras objects, use e.g. keras.layers.deserialize(config), keras.metrics.deserialize(config), etc. |
Calling deserialize_keras_object while underneath the SharedObjectLoadingScope context manager will cause any already-seen shared objects to be returned as-is rather than creating a new object. |
Arguments |
identifier: the serialized form of the object. |
module_objects: A dictionary of built-in objects to look the name up in. Generally, module_objects is provided by midlevel library implementers. |
custom_objects: A dictionary of custom objects to look the name up in. Generally, custom_objects is provided by the end user. |
printable_module_name: A human-readable string representing the type of the object. Printed in case of exception. |
Returns |
The deserialized object. |
Example |
A mid-level library implementer might want to implement a utility for retrieving an object from its config, as such: |
def deserialize(config, custom_objects=None): |
return deserialize_keras_object( |
identifier, |
module_objects=globals(), |
custom_objects=custom_objects, |
name="MyObjectType", |
) |
This is how e.g. keras.layers.deserialize() is implemented.Python & NumPy utilities |
to_categorical function |
tf.keras.utils.to_categorical(y, num_classes=None, dtype="float32") |
Converts a class vector (integers) to binary class matrix. |