text
stringlengths 0
4.99k
|
---|
def get_data(wavs, id_to_text, maxlen=50): |
\"\"\" returns mapping of audio paths and transcription texts \"\"\" |
data = [] |
for w in wavs: |
id = w.split(\"/\")[-1].split(\".\")[0] |
if len(id_to_text[id]) < maxlen: |
data.append({\"audio\": w, \"text\": id_to_text[id]}) |
return data |
Downloading data from https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 |
2748579840/2748572632 [==============================] - 57s 0us/step |
Preprocess the dataset |
class VectorizeChar: |
def __init__(self, max_len=50): |
self.vocab = ( |
[\"-\", \"#\", \"<\", \">\"] |
+ [chr(i + 96) for i in range(1, 27)] |
+ [\" \", \".\", \",\", \"?\"] |
) |
self.max_len = max_len |
self.char_to_idx = {} |
for i, ch in enumerate(self.vocab): |
self.char_to_idx[ch] = i |
def __call__(self, text): |
text = text.lower() |
text = text[: self.max_len - 2] |
text = \"<\" + text + \">\" |
pad_len = self.max_len - len(text) |
return [self.char_to_idx.get(ch, 1) for ch in text] + [0] * pad_len |
def get_vocabulary(self): |
return self.vocab |
max_target_len = 200 # all transcripts in out data are < 200 characters |
data = get_data(wavs, id_to_text, max_target_len) |
vectorizer = VectorizeChar(max_target_len) |
print(\"vocab size\", len(vectorizer.get_vocabulary())) |
def create_text_ds(data): |
texts = [_[\"text\"] for _ in data] |
text_ds = [vectorizer(t) for t in texts] |
text_ds = tf.data.Dataset.from_tensor_slices(text_ds) |
return text_ds |
def path_to_audio(path): |
# spectrogram using stft |
audio = tf.io.read_file(path) |
audio, _ = tf.audio.decode_wav(audio, 1) |
audio = tf.squeeze(audio, axis=-1) |
stfts = tf.signal.stft(audio, frame_length=200, frame_step=80, fft_length=256) |
x = tf.math.pow(tf.abs(stfts), 0.5) |
# normalisation |
means = tf.math.reduce_mean(x, 1, keepdims=True) |
stddevs = tf.math.reduce_std(x, 1, keepdims=True) |
x = (x - means) / stddevs |
audio_len = tf.shape(x)[0] |
# padding to 10 seconds |
pad_len = 2754 |
paddings = tf.constant([[0, pad_len], [0, 0]]) |
x = tf.pad(x, paddings, \"CONSTANT\")[:pad_len, :] |
return x |
def create_audio_ds(data): |
flist = [_[\"audio\"] for _ in data] |
audio_ds = tf.data.Dataset.from_tensor_slices(flist) |
audio_ds = audio_ds.map( |
path_to_audio, num_parallel_calls=tf.data.AUTOTUNE |
) |
return audio_ds |
def create_tf_dataset(data, bs=4): |
audio_ds = create_audio_ds(data) |
text_ds = create_text_ds(data) |
ds = tf.data.Dataset.zip((audio_ds, text_ds)) |
ds = ds.map(lambda x, y: {\"source\": x, \"target\": y}) |
ds = ds.batch(bs) |
ds = ds.prefetch(tf.data.AUTOTUNE) |
return ds |
split = int(len(data) * 0.99) |
train_data = data[:split] |
test_data = data[split:] |
ds = create_tf_dataset(train_data, bs=64) |
val_ds = create_tf_dataset(test_data, bs=4) |
vocab size 34 |
Callbacks to display predictions |
class DisplayOutputs(keras.callbacks.Callback): |
def __init__( |
self, batch, idx_to_token, target_start_token_idx=27, target_end_token_idx=28 |
): |
\"\"\"Displays a batch of outputs after every epoch |
Args: |