text
stringlengths
0
4.99k
def get_data(wavs, id_to_text, maxlen=50):
\"\"\" returns mapping of audio paths and transcription texts \"\"\"
data = []
for w in wavs:
id = w.split(\"/\")[-1].split(\".\")[0]
if len(id_to_text[id]) < maxlen:
data.append({\"audio\": w, \"text\": id_to_text[id]})
return data
Downloading data from https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
2748579840/2748572632 [==============================] - 57s 0us/step
Preprocess the dataset
class VectorizeChar:
def __init__(self, max_len=50):
self.vocab = (
[\"-\", \"#\", \"<\", \">\"]
+ [chr(i + 96) for i in range(1, 27)]
+ [\" \", \".\", \",\", \"?\"]
)
self.max_len = max_len
self.char_to_idx = {}
for i, ch in enumerate(self.vocab):
self.char_to_idx[ch] = i
def __call__(self, text):
text = text.lower()
text = text[: self.max_len - 2]
text = \"<\" + text + \">\"
pad_len = self.max_len - len(text)
return [self.char_to_idx.get(ch, 1) for ch in text] + [0] * pad_len
def get_vocabulary(self):
return self.vocab
max_target_len = 200 # all transcripts in out data are < 200 characters
data = get_data(wavs, id_to_text, max_target_len)
vectorizer = VectorizeChar(max_target_len)
print(\"vocab size\", len(vectorizer.get_vocabulary()))
def create_text_ds(data):
texts = [_[\"text\"] for _ in data]
text_ds = [vectorizer(t) for t in texts]
text_ds = tf.data.Dataset.from_tensor_slices(text_ds)
return text_ds
def path_to_audio(path):
# spectrogram using stft
audio = tf.io.read_file(path)
audio, _ = tf.audio.decode_wav(audio, 1)
audio = tf.squeeze(audio, axis=-1)
stfts = tf.signal.stft(audio, frame_length=200, frame_step=80, fft_length=256)
x = tf.math.pow(tf.abs(stfts), 0.5)
# normalisation
means = tf.math.reduce_mean(x, 1, keepdims=True)
stddevs = tf.math.reduce_std(x, 1, keepdims=True)
x = (x - means) / stddevs
audio_len = tf.shape(x)[0]
# padding to 10 seconds
pad_len = 2754
paddings = tf.constant([[0, pad_len], [0, 0]])
x = tf.pad(x, paddings, \"CONSTANT\")[:pad_len, :]
return x
def create_audio_ds(data):
flist = [_[\"audio\"] for _ in data]
audio_ds = tf.data.Dataset.from_tensor_slices(flist)
audio_ds = audio_ds.map(
path_to_audio, num_parallel_calls=tf.data.AUTOTUNE
)
return audio_ds
def create_tf_dataset(data, bs=4):
audio_ds = create_audio_ds(data)
text_ds = create_text_ds(data)
ds = tf.data.Dataset.zip((audio_ds, text_ds))
ds = ds.map(lambda x, y: {\"source\": x, \"target\": y})
ds = ds.batch(bs)
ds = ds.prefetch(tf.data.AUTOTUNE)
return ds
split = int(len(data) * 0.99)
train_data = data[:split]
test_data = data[split:]
ds = create_tf_dataset(train_data, bs=64)
val_ds = create_tf_dataset(test_data, bs=4)
vocab size 34
Callbacks to display predictions
class DisplayOutputs(keras.callbacks.Callback):
def __init__(
self, batch, idx_to_token, target_start_token_idx=27, target_end_token_idx=28
):
\"\"\"Displays a batch of outputs after every epoch
Args: