text
stringlengths 0
4.99k
|
---|
# Call model on inputs to create the variables of the dense layer. |
_ = model(tf.ones((1, 784))) |
# Create a Checkpoint with the same structure as before, and load the weights. |
tf.train.Checkpoint( |
dense=model.first_dense, kernel=model.kernel, bias=model.bias |
).restore(ckpt_path).assert_consumed() |
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x151ed1110> |
HDF5 format |
The HDF5 format contains weights grouped by layer names. The weights are lists ordered by concatenating the list of trainable weights to the list of non-trainable weights (same as layer.weights). Thus, a model can use a hdf5 checkpoint if it has the same layers and trainable statuses as saved in the checkpoint. |
Example: |
# Runnable example |
sequential_model = keras.Sequential( |
[ |
keras.Input(shape=(784,), name="digits"), |
keras.layers.Dense(64, activation="relu", name="dense_1"), |
keras.layers.Dense(64, activation="relu", name="dense_2"), |
keras.layers.Dense(10, name="predictions"), |
] |
) |
sequential_model.save_weights("weights.h5") |
sequential_model.load_weights("weights.h5") |
Note that changing layer.trainable may result in a different layer.weights ordering when the model contains nested layers. |
class NestedDenseLayer(keras.layers.Layer): |
def __init__(self, units, name=None): |
super(NestedDenseLayer, self).__init__(name=name) |
self.dense_1 = keras.layers.Dense(units, name="dense_1") |
self.dense_2 = keras.layers.Dense(units, name="dense_2") |
def call(self, inputs): |
return self.dense_2(self.dense_1(inputs)) |
nested_model = keras.Sequential([keras.Input((784,)), NestedDenseLayer(10, "nested")]) |
variable_names = [v.name for v in nested_model.weights] |
print("variables: {}".format(variable_names)) |
print("\nChanging trainable status of one of the nested layers...") |
nested_model.get_layer("nested").dense_1.trainable = False |
variable_names_2 = [v.name for v in nested_model.weights] |
print("\nvariables: {}".format(variable_names_2)) |
print("variable ordering changed:", variable_names != variable_names_2) |
variables: ['nested/dense_1/kernel:0', 'nested/dense_1/bias:0', 'nested/dense_2/kernel:0', 'nested/dense_2/bias:0'] |
Changing trainable status of one of the nested layers... |
variables: ['nested/dense_2/kernel:0', 'nested/dense_2/bias:0', 'nested/dense_1/kernel:0', 'nested/dense_1/bias:0'] |
variable ordering changed: True |
Transfer learning example |
When loading pretrained weights from HDF5, it is recommended to load the weights into the original checkpointed model, and then extract the desired weights/layers into a new model. |
Example: |
def create_functional_model(): |
inputs = keras.Input(shape=(784,), name="digits") |
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs) |
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x) |
outputs = keras.layers.Dense(10, name="predictions")(x) |
return keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp") |
functional_model = create_functional_model() |
functional_model.save_weights("pretrained_weights.h5") |
# In a separate program: |
pretrained_model = create_functional_model() |
pretrained_model.load_weights("pretrained_weights.h5") |
# Create a new model by extracting layers from the original model: |
extracted_layers = pretrained_model.layers[:-1] |
extracted_layers.append(keras.layers.Dense(5, name="dense_3")) |
model = keras.Sequential(extracted_layers) |
model.summary() |
Model: "sequential_6" |
_________________________________________________________________ |
Layer (type) Output Shape Param # |
================================================================= |
dense_1 (Dense) (None, 64) 50240 |
_________________________________________________________________ |
dense_2 (Dense) (None, 64) 4160 |
_________________________________________________________________ |
dense_3 (Dense) (None, 5) 325 |
================================================================= |
Total params: 54,725 |
Trainable params: 54,725 |
Non-trainable params: 0 |
_________________________________________________________________ |