text
stringlengths
0
4.99k
model.load_weights("pretrained_ckpt")
# Check that all of the pretrained weights have been loaded.
for a, b in zip(pretrained.weights, model.weights):
np.testing.assert_allclose(a.numpy(), b.numpy())
print("\n", "-" * 50)
model.summary()
# Example 2: Sequential model
# Recreate the pretrained model, and load the saved weights.
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
pretrained_model = keras.Model(inputs=inputs, outputs=x, name="pretrained")
# Sequential example:
model = keras.Sequential([pretrained_model, keras.layers.Dense(5, name="predictions")])
model.summary()
pretrained_model.load_weights("pretrained_ckpt")
# Warning! Calling `model.load_weights('pretrained_ckpt')` won't throw an error,
# but will *not* work as expected. If you inspect the weights, you'll see that
# none of the weights will have loaded. `pretrained_model.load_weights()` is the
# correct method to call.
Model: "pretrained_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
digits (InputLayer) [(None, 784)] 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 50240
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
=================================================================
Total params: 54,400
Trainable params: 54,400
Non-trainable params: 0
_________________________________________________________________
--------------------------------------------------
Model: "new_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
digits (InputLayer) [(None, 784)] 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 50240
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
_________________________________________________________________
predictions (Dense) (None, 5) 325
=================================================================
Total params: 54,725
Trainable params: 54,725
Non-trainable params: 0
_________________________________________________________________
Model: "sequential_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
pretrained (Functional) (None, 64) 54400
_________________________________________________________________
predictions (Dense) (None, 5) 325
=================================================================
Total params: 54,725
Trainable params: 54,725
Non-trainable params: 0
_________________________________________________________________
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x10e58f3d0>
It is generally recommended to stick to the same API for building models. If you switch between Sequential and Functional, or Functional and subclassed, etc., then always rebuild the pre-trained model and load the pre-trained weights to that model.
The next question is, how can weights be saved and loaded to different models if the model architectures are quite different? The solution is to use tf.train.Checkpoint to save and restore the exact layers/variables.
Example:
# Create a subclassed model that essentially uses functional_model's first
# and last layers.
# First, save the weights of functional_model's first and last dense layers.
first_dense = functional_model.layers[1]
last_dense = functional_model.layers[-1]
ckpt_path = tf.train.Checkpoint(
dense=first_dense, kernel=last_dense.kernel, bias=last_dense.bias
).save("ckpt")
# Define the subclassed model.
class ContrivedModel(keras.Model):
def __init__(self):
super(ContrivedModel, self).__init__()
self.first_dense = keras.layers.Dense(64)
self.kernel = self.add_variable("kernel", shape=(64, 10))
self.bias = self.add_variable("bias", shape=(10,))
def call(self, inputs):
x = self.first_dense(inputs)
return tf.matmul(x, self.kernel) + self.bias
model = ContrivedModel()