paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
fe775551-548c-4a24-9b9b-ed0822cbf437
fau-facial-expressions-valence-and-arousal-a
2002.03557
null
https://arxiv.org/abs/2002.03557v2
https://arxiv.org/pdf/2002.03557v2.pdf
Multitask Emotion Recognition with Incomplete Labels
We train a unified model to perform three tasks: facial action unit detection, expression classification, and valence-arousal estimation. We address two main challenges of learning the three tasks. First, most existing datasets are highly imbalanced. Second, most existing datasets do not contain labels for all three tasks. To tackle the first challenge, we apply data balancing techniques to experimental datasets. To tackle the second challenge, we propose an algorithm for the multitask model to learn from missing (incomplete) labels. This algorithm has two steps. We first train a teacher model to perform all three tasks, where each instance is trained by the ground truth label of its corresponding task. Secondly, we refer to the outputs of the teacher model as the soft labels. We use the soft labels and the ground truth to train the student model. We find that most of the student models outperform their teacher model on all the three tasks. Finally, we use model ensembling to boost performance further on the three tasks.
['Zhaokang Chen', 'Didan Deng', 'Bertram E. Shi']
2020-02-10
null
null
null
null
['action-unit-detection', 'facial-action-unit-detection']
['computer-vision', 'computer-vision']
[ 4.13388640e-01 6.33983687e-02 -4.82239783e-01 -6.94727480e-01 -1.11354399e+00 -4.90290552e-01 3.07921588e-01 -7.50832260e-02 -3.62599224e-01 7.61274040e-01 -9.97040793e-02 1.09824039e-01 3.37795258e-01 -2.61176497e-01 -6.23379946e-01 -8.38617086e-01 4.22032237e-01 2.69861788e-01 4.12995592e-02 3.65354754e-02 4.00895476e-02 2.65371315e-02 -1.78305376e+00 7.25791335e-01 8.31063926e-01 1.40238917e+00 -2.28570148e-01 3.78678560e-01 6.79618418e-02 1.01125455e+00 -6.02895498e-01 -4.85475779e-01 4.28300127e-02 -4.38353091e-01 -9.33593452e-01 6.90438077e-02 2.79156476e-01 -3.46760303e-01 2.94302166e-01 9.44802582e-01 5.89222133e-01 8.63560196e-03 7.03225315e-01 -1.81257105e+00 -1.34444311e-01 3.61264497e-01 -9.15938199e-01 -1.95270136e-01 1.36979938e-01 -8.55457261e-02 1.13516057e+00 -9.83783305e-01 3.37647319e-01 1.11942410e+00 3.06710780e-01 8.17233086e-01 -1.14235938e+00 -9.25646126e-01 3.19001347e-01 1.02326751e-01 -1.27818525e+00 -7.19955981e-01 8.33804190e-01 -5.20300746e-01 6.00174546e-01 1.96573466e-01 3.40693325e-01 1.15831590e+00 -2.22559065e-01 1.01891184e+00 1.35413444e+00 -2.82656938e-01 2.00687334e-01 5.58791339e-01 2.00877234e-01 6.28312111e-01 -2.98770756e-01 -2.26197198e-01 -6.95735455e-01 -1.81742549e-01 7.98960105e-02 -3.32171291e-01 -1.42813891e-01 -1.46082073e-01 -9.36782837e-01 7.35127330e-01 9.89278331e-02 6.19637594e-02 -1.48027688e-01 1.22170709e-01 5.28251052e-01 3.72805476e-01 8.37394536e-01 3.57055753e-01 -7.54914880e-01 -5.55021800e-02 -8.60082448e-01 1.86463788e-01 6.86525345e-01 6.20359778e-01 9.50049400e-01 -3.12688798e-01 -2.69725323e-01 1.05005515e+00 3.53886336e-01 1.92717150e-01 5.22507489e-01 -9.00941014e-01 3.23943704e-01 5.42775154e-01 -5.78065142e-02 -6.32578194e-01 -4.89819229e-01 -3.10566992e-01 -7.08660424e-01 1.72545254e-01 4.10180211e-01 -3.45607787e-01 -9.89943326e-01 1.99396610e+00 5.36374986e-01 3.28000426e-01 -1.35208461e-02 7.95795321e-01 1.03792775e+00 6.02151811e-01 1.93624452e-01 -3.25811625e-01 1.28916574e+00 -1.21247435e+00 -8.08739424e-01 -4.25091743e-01 1.01255655e+00 -6.05208635e-01 9.15692866e-01 5.79253137e-01 -9.72928584e-01 -5.80939949e-01 -9.83796477e-01 3.03526577e-02 -1.56649336e-01 5.61588407e-01 5.15871525e-01 3.98453981e-01 -8.70896459e-01 3.16396415e-01 -7.19304740e-01 8.24149176e-02 5.77383757e-01 4.26120400e-01 -1.74983099e-01 9.31190550e-02 -1.12464201e+00 9.00375307e-01 2.13347688e-01 -8.89162272e-02 -1.01481020e+00 -5.74580967e-01 -8.13569963e-01 1.05123566e-02 2.65086114e-01 -3.67027760e-01 1.45750892e+00 -1.54769123e+00 -1.52304709e+00 1.28028679e+00 -2.71468759e-01 1.17581591e-01 2.98486501e-01 4.48187105e-02 -2.95637213e-02 -2.58702606e-01 -4.97325733e-02 8.80203843e-01 9.24294651e-01 -1.35285532e+00 -7.13208616e-01 -3.93613786e-01 -1.01092406e-01 2.01117262e-01 -4.14660484e-01 1.25514939e-01 -2.68022686e-01 -3.58641237e-01 1.16427429e-01 -8.92155588e-01 1.59563139e-01 -7.57147446e-02 -4.73775923e-01 -6.80821955e-01 6.52002215e-01 -3.86811703e-01 1.07580125e+00 -2.35525322e+00 2.64636695e-01 4.40190956e-02 2.34571174e-01 1.20155275e-01 -3.14636290e-01 -1.99097142e-01 -3.23314130e-01 1.85896270e-02 -7.32689211e-03 -8.86095941e-01 1.05812609e-01 2.29763612e-01 -3.35692734e-01 2.81119943e-01 4.26894516e-01 8.08263898e-01 -6.05289519e-01 -4.27393168e-01 -2.41022393e-01 2.58009970e-01 -5.58432519e-01 6.43653512e-01 -2.63974071e-01 6.19114995e-01 -2.06821293e-01 6.42926633e-01 7.15833902e-01 -1.52703926e-01 2.20247909e-01 -3.45926374e-01 2.73528665e-01 4.46693689e-01 -1.25732541e+00 1.57677698e+00 -3.70601773e-01 3.38841289e-01 2.02403113e-01 -1.21648812e+00 8.66028845e-01 4.67064023e-01 5.89495003e-01 -6.91085339e-01 1.70929611e-01 3.09977561e-01 -4.83428985e-02 -6.85836434e-01 5.53909205e-02 -4.10782784e-01 -1.59665152e-01 7.69988835e-01 3.96855831e-01 -8.24767873e-02 -7.78114498e-02 1.64624420e-03 8.16274643e-01 2.90663749e-01 1.54194690e-03 1.79061033e-02 5.10629654e-01 -3.69854480e-01 9.85683262e-01 2.28232756e-01 -4.34359550e-01 4.26362813e-01 9.83814418e-01 -4.98401463e-01 -5.58873892e-01 -6.70784593e-01 -5.63443415e-02 1.91744411e+00 -1.22775428e-01 -4.50787157e-01 -7.53606796e-01 -8.93115342e-01 -7.83862695e-02 3.64306003e-01 -8.25825691e-01 -3.69494349e-01 -1.04707278e-01 -1.04061353e+00 4.05704677e-01 4.72647995e-01 1.08547740e-01 -1.04364288e+00 -5.56815147e-01 -1.21378444e-01 -4.85478222e-01 -9.82668340e-01 -1.81938514e-01 5.13390601e-01 -4.93842393e-01 -9.74686742e-01 -2.97327042e-01 -6.74143016e-01 6.93896592e-01 -1.35702685e-01 1.24104261e+00 2.75582582e-01 -1.12018980e-01 3.28245759e-02 -1.77597657e-01 -7.09591269e-01 -2.84772158e-01 2.67277539e-01 3.09182294e-02 3.93548220e-01 5.92269421e-01 -4.44342941e-01 -2.35385552e-01 3.99365425e-01 -7.32318759e-01 2.93801248e-01 3.97292912e-01 7.53599524e-01 6.80637717e-01 -1.78866923e-01 9.34613466e-01 -8.88866901e-01 4.94089961e-01 -3.82930487e-01 -3.63040179e-01 2.88567513e-01 -4.34176832e-01 -3.73749062e-02 2.08674967e-01 -5.00882268e-01 -9.45101798e-01 4.31431711e-01 -3.26588154e-01 -3.78191829e-01 -2.09667459e-01 4.54559088e-01 -4.54075366e-01 9.42202210e-02 4.89311308e-01 -1.58266127e-01 -3.17870714e-02 -3.31295669e-01 9.91737843e-02 9.30107415e-01 3.50962251e-01 -7.23165929e-01 3.80635262e-01 1.47117674e-01 -2.22358897e-01 -3.00167561e-01 -1.66603982e+00 -2.83349127e-01 -7.46544182e-01 -2.17581585e-01 9.65430975e-01 -1.18094254e+00 -8.33344758e-01 7.67318726e-01 -1.11008656e+00 -6.91550970e-01 -1.21160239e-01 2.71052122e-01 -5.83309054e-01 -1.10074610e-01 -3.75646919e-01 -9.24301207e-01 -3.06881994e-01 -1.34267187e+00 1.33915877e+00 2.01026529e-01 -2.59275943e-01 -9.10414398e-01 2.91005939e-01 5.80333352e-01 1.69387177e-01 2.22386450e-01 8.66583645e-01 -8.27326715e-01 -3.38432416e-02 -5.97513095e-02 -1.62491247e-01 5.34788907e-01 3.50664929e-02 1.12998940e-01 -1.62188530e+00 -3.47122669e-01 2.07737029e-01 -1.35685134e+00 1.03708744e+00 1.57981455e-01 1.47717857e+00 1.83988698e-02 -2.89964348e-01 6.55131042e-01 9.83887196e-01 -4.06444259e-02 3.36526811e-01 1.30854622e-01 6.41945422e-01 7.95768678e-01 6.97945237e-01 5.29515982e-01 7.73091614e-01 6.28122211e-01 5.27589023e-01 -3.42527688e-01 2.64236063e-01 -1.29695356e-01 5.23803174e-01 7.70126939e-01 1.81865022e-01 -8.08370635e-02 -8.70354772e-01 3.93221229e-01 -1.94750702e+00 -5.86372435e-01 2.91243754e-02 2.01892352e+00 1.28241432e+00 2.00935137e-02 2.39508614e-01 1.46897733e-01 3.86951864e-01 1.40908495e-01 -6.64891303e-01 -3.84834528e-01 1.28759429e-01 1.14212945e-01 -1.16008140e-01 2.82047123e-01 -1.33851206e+00 8.08709323e-01 6.13579750e+00 5.10480106e-01 -1.29993999e+00 3.17831516e-01 1.08576846e+00 -3.61220002e-01 -1.57170162e-01 -1.22837164e-01 -8.68720710e-01 4.79300141e-01 9.19721067e-01 4.54368219e-02 3.14256489e-01 7.50811577e-01 -1.66931618e-02 -3.03056568e-01 -1.43730867e+00 1.01760244e+00 4.39932972e-01 -6.20918870e-01 -3.03780347e-01 -2.04177931e-01 8.58299792e-01 -8.88232738e-02 4.21752129e-03 7.11313903e-01 2.85442442e-01 -1.28068185e+00 5.89062989e-01 3.02176744e-01 8.29782069e-01 -7.66153514e-01 7.47616529e-01 7.01430500e-01 -6.97025001e-01 -5.04368134e-02 -2.38831297e-01 -8.72262865e-02 -8.46934244e-02 6.62274599e-01 -3.71725440e-01 2.36678809e-01 5.48732102e-01 6.36120677e-01 -5.24928451e-01 7.63425827e-01 -5.39036870e-01 5.73027074e-01 -2.43922681e-01 2.84226358e-01 -3.56229059e-02 -5.86071461e-02 -1.19690113e-01 8.89650047e-01 -1.17784627e-02 -1.24775700e-01 4.68123436e-01 6.38016760e-01 -4.54821795e-01 1.03780024e-01 -2.05389425e-01 1.25412717e-01 2.19313651e-01 1.75268853e+00 -3.40839922e-01 -3.54952931e-01 -4.47434396e-01 9.20162141e-01 6.94924116e-01 1.75692394e-01 -9.11595047e-01 -2.43221357e-01 6.44632518e-01 -2.36931980e-01 -9.64580625e-02 3.92802775e-01 -3.60176086e-01 -1.25146472e+00 5.36696352e-02 -1.04733086e+00 5.83080351e-01 -7.99301147e-01 -1.20945418e+00 5.32487988e-01 -2.84369439e-01 -8.73164475e-01 -2.58882463e-01 -5.34573317e-01 -6.94687665e-01 8.53719234e-01 -1.81493556e+00 -1.21590924e+00 -4.89178270e-01 4.20165628e-01 3.13392043e-01 8.08892101e-02 9.50062752e-01 5.60572565e-01 -9.90649819e-01 7.71863759e-01 -2.80550689e-01 2.37593800e-01 1.36604714e+00 -1.30173695e+00 -1.31518573e-01 3.93021733e-01 5.42503111e-02 1.60130545e-01 3.42463017e-01 -2.57376999e-01 -9.51389790e-01 -1.08559299e+00 8.84555638e-01 -5.77482283e-01 4.24097896e-01 -6.74080431e-01 -9.19334650e-01 9.25266683e-01 1.19853869e-01 3.04709136e-01 1.13193512e+00 3.56245339e-01 -4.22452360e-01 -2.43195042e-01 -9.59408939e-01 -1.79431677e-01 5.40577352e-01 -4.40326273e-01 -3.73877168e-01 5.44684887e-01 3.35591167e-01 -6.29412949e-01 -7.35818624e-01 5.02384543e-01 6.64099813e-01 -7.07985163e-01 3.93832743e-01 -9.78877664e-01 7.22704709e-01 -9.69193950e-02 -3.35686281e-02 -1.63284707e+00 6.14770055e-02 -2.54088432e-01 -1.28046125e-01 1.57752299e+00 6.19751155e-01 -3.48877728e-01 7.31053889e-01 6.63639367e-01 2.19966874e-01 -1.15159762e+00 -9.00011301e-01 -2.14713767e-01 1.45246819e-01 -2.84296602e-01 5.28366148e-01 1.24126184e+00 -1.09601216e-02 7.69506276e-01 -5.70804417e-01 -2.49980047e-01 4.34023380e-01 3.44584763e-01 8.07356775e-01 -1.39613974e+00 -2.26788357e-01 -8.28718916e-02 1.54544115e-02 -8.08084667e-01 5.51905870e-01 -9.57238257e-01 2.83909202e-01 -1.18409324e+00 6.12681329e-01 -5.17746568e-01 -4.46482450e-01 9.75214541e-01 -4.63891298e-01 4.21427846e-01 5.27684623e-03 4.34901193e-02 -9.17178929e-01 6.91850841e-01 1.03779304e+00 7.48786926e-02 -1.14900008e-01 2.19714418e-01 -8.83982956e-01 7.83200800e-01 7.69602597e-01 -7.08958685e-01 -4.42573845e-01 -5.21493137e-01 4.97554868e-01 -2.24272326e-01 2.27421403e-01 -6.71569526e-01 1.25039577e-01 -3.58750165e-01 4.58870083e-01 -4.96298730e-01 3.02147120e-01 -7.10072994e-01 -3.23600352e-01 5.80522083e-02 -5.37129819e-01 -2.14943722e-01 1.02087930e-01 6.47929385e-02 -2.29920283e-01 -1.93964794e-01 1.15908122e+00 8.23886395e-02 -2.10744590e-01 2.42561460e-01 -1.52024493e-01 2.49663010e-01 1.18510413e+00 3.05519015e-01 -2.88167000e-01 -3.30786705e-01 -8.45659196e-01 7.81217933e-01 1.77177429e-01 5.32951295e-01 2.50647545e-01 -1.37682950e+00 -7.79389977e-01 3.80684912e-01 2.01062024e-01 2.95349807e-01 3.16751301e-02 1.11722517e+00 2.55106121e-01 1.25288084e-01 -3.04564208e-01 -6.86725497e-01 -1.47208285e+00 4.27566767e-01 5.60737312e-01 -3.16428185e-01 2.94503152e-01 1.03900552e+00 3.56686205e-01 -7.91886091e-01 4.42920566e-01 2.42782738e-02 -3.19788307e-01 6.80004239e-01 5.59525728e-01 8.49225372e-02 2.54848361e-01 -5.75567544e-01 -3.33833486e-01 3.56461495e-01 -1.80377632e-01 2.18992326e-02 1.58560240e+00 1.06684215e-01 -3.76758993e-01 6.29141629e-01 1.28251529e+00 -3.22895229e-01 -1.29156160e+00 -2.62157798e-01 2.73122895e-03 -1.92541182e-01 1.08237177e-01 -9.87906456e-01 -1.19118011e+00 1.23510647e+00 5.48869491e-01 -1.20823294e-01 1.40104103e+00 3.82994264e-02 4.30905282e-01 1.44143626e-01 -4.87374589e-02 -1.37921810e+00 2.69249290e-01 4.88483399e-01 5.06061733e-01 -1.40758812e+00 -7.39585012e-02 -3.47149670e-01 -8.89352977e-01 8.50571275e-01 1.19336545e+00 3.81771892e-01 4.60435539e-01 4.93345946e-01 4.49880838e-01 -2.50686944e-01 -1.31228054e+00 -2.48854592e-01 3.93739671e-01 2.52065569e-01 6.10255897e-01 -2.24803731e-01 -1.64831877e-01 9.23321784e-01 1.70627814e-02 1.94834545e-01 1.80586860e-01 6.89665258e-01 -3.56388241e-01 -1.16358745e+00 -1.08399816e-01 5.37329614e-01 -6.33357704e-01 1.97439909e-01 -7.16358364e-01 1.87365040e-01 3.46999347e-01 7.76645184e-01 1.07974730e-01 -5.80031931e-01 3.49336028e-01 5.69187343e-01 2.47565433e-01 -7.41866469e-01 -6.05303347e-01 3.32113802e-02 2.49955580e-02 -5.50904036e-01 -5.71024477e-01 -4.69590575e-01 -1.02781773e+00 4.58462685e-02 -4.25119102e-01 1.55149415e-01 7.23646402e-01 1.08133709e+00 2.07666799e-01 5.10727048e-01 1.02294600e+00 -7.74226785e-01 -8.06351304e-01 -1.06374824e+00 -4.53611434e-01 5.60339868e-01 3.54143322e-01 -7.66170919e-01 -5.70265651e-01 2.02197358e-02]
[13.576349258422852, 1.7806358337402344]
b4afc24a-8384-42d4-8676-91c99e7eee82
actor-identified-spatiotemporal-action
2208.1294
null
https://arxiv.org/abs/2208.12940v2
https://arxiv.org/pdf/2208.12940v2.pdf
Actor-identified Spatiotemporal Action Detection --- Detecting Who Is Doing What in Videos
The success of deep learning on video Action Recognition (AR) has motivated researchers to progressively promote related tasks from the coarse level to the fine-grained level. Compared with conventional AR which only predicts an action label for the entire video, Temporal Action Detection (TAD) has been investigated for estimating the start and end time for each action in videos. Taking TAD a step further, Spatiotemporal Action Detection (SAD) has been studied for localizing the action both spatially and temporally in videos. However, who performs the action, is generally ignored in SAD, while identifying the actor could also be important. To this end, we propose a novel task, Actor-identified Spatiotemporal Action Detection (ASAD), to bridge the gap between SAD and actor identification. In ASAD, we not only detect the spatiotemporal boundary for instance-level action but also assign the unique ID to each actor. To approach ASAD, Multiple Object Tracking (MOT) and Action Classification (AC) are two fundamental elements. By using MOT, the spatiotemporal boundary of each actor is obtained and assigned to a unique actor identity. By using AC, the action class is estimated within the corresponding spatiotemporal boundary. Since ASAD is a new task, it poses many new challenges that cannot be addressed by existing methods: i) no dataset is specifically created for ASAD, ii) no evaluation metrics are designed for ASAD, iii) current MOT performance is the bottleneck to obtain satisfactory ASAD results. To address those problems, we contribute to i) annotate a new ASAD dataset, ii) propose ASAD evaluation metrics by considering multi-label actions and actor identification, iii) improve the data association strategies in MOT to boost the MOT performance, which leads to better ASAD results. The code is available at https://github.com/fandulu/ASAD.
['Satoshi Nakamura', 'Sakriani Sakti', 'Norimichi Ukita', 'Fan Yang']
2022-08-27
null
null
null
null
['action-classification']
['computer-vision']
[ 3.74519885e-01 -3.55370194e-01 -4.18965548e-01 -1.42829835e-01 -6.25635564e-01 -3.91290277e-01 5.78882337e-01 7.43235946e-02 -2.57934868e-01 4.97623950e-01 1.94574222e-01 1.07581779e-01 -5.64546138e-02 -4.48416740e-01 -4.46403861e-01 -7.93466985e-01 6.93796203e-02 3.77889425e-02 6.24726474e-01 3.57039928e-01 1.07848816e-01 6.96082294e-01 -1.53072774e+00 4.11944747e-01 5.45949101e-01 1.19457614e+00 2.40760073e-01 4.66528326e-01 -1.73520744e-01 1.22992027e+00 -6.43857837e-01 1.52160853e-01 2.53558874e-01 -8.19954693e-01 -8.71812940e-01 2.27182806e-01 3.16397816e-01 -5.59544504e-01 -2.84117788e-01 8.74124289e-01 2.97076255e-01 2.62987643e-01 4.63117391e-01 -1.57893157e+00 1.12105235e-02 5.05181432e-01 -7.37996697e-01 4.47234333e-01 3.35907638e-01 8.32919478e-02 8.51340771e-01 -7.66133666e-01 5.51009834e-01 1.08990133e+00 3.92947614e-01 5.89183211e-01 -6.92565620e-01 -7.97547758e-01 4.09602702e-01 4.50290710e-01 -1.45848465e+00 -3.99769455e-01 8.25511277e-01 -4.89176184e-01 5.04518747e-01 2.12118626e-01 7.74082422e-01 1.10607517e+00 -1.42259374e-01 1.26765406e+00 8.00030410e-01 -2.85652429e-01 2.69861013e-01 -1.30338028e-01 -3.15026566e-02 6.15866184e-01 -2.60204256e-01 -2.31547758e-01 -5.24340630e-01 2.17412487e-01 8.87280226e-01 1.56905949e-01 -1.07320510e-01 -1.39871463e-01 -1.42412543e+00 3.74682516e-01 1.17387883e-01 5.33896506e-01 -5.14037013e-01 1.87913746e-01 6.66272581e-01 6.94997562e-03 1.94540098e-01 2.27239043e-01 -3.47755075e-01 -6.29398823e-01 -9.38109517e-01 8.46314654e-02 4.62926447e-01 7.32277453e-01 6.73054814e-01 -4.67443764e-02 -4.50312167e-01 6.29819274e-01 1.68044701e-01 2.10592136e-01 2.23496601e-01 -1.24436235e+00 3.80360365e-01 1.03229570e+00 3.15897673e-01 -1.08139980e+00 -3.76108766e-01 -2.17178270e-01 -7.49463260e-01 1.13480821e-01 5.85918725e-01 1.33890331e-01 -6.63007617e-01 1.68024170e+00 6.27315581e-01 7.29696691e-01 -1.14935473e-01 1.03522050e+00 7.86444247e-01 7.45619893e-01 2.41703093e-01 -4.52545613e-01 1.45693481e+00 -9.83838439e-01 -8.56767774e-01 -7.97542706e-02 8.33387017e-01 -5.95812380e-01 9.04992878e-01 4.33652282e-01 -8.42469215e-01 -8.66577804e-01 -8.74599874e-01 1.72983900e-01 -2.59942800e-01 5.78888714e-01 4.10200328e-01 3.91922116e-01 -7.71724343e-01 1.14543110e-01 -1.09501088e+00 -4.02835548e-01 5.80449343e-01 2.48779580e-01 -4.25873905e-01 -6.61226064e-02 -1.24286318e+00 5.46630323e-01 3.95277262e-01 1.77525610e-01 -1.22335041e+00 -3.28126907e-01 -8.01204443e-01 -1.47568673e-01 8.17022622e-01 -1.72636718e-01 1.09066117e+00 -1.37423360e+00 -1.34463382e+00 6.32671595e-01 -2.84063756e-01 -4.19244200e-01 4.51009959e-01 -1.75818622e-01 -5.58918595e-01 3.10244381e-01 2.45430708e-01 5.92889845e-01 7.46958375e-01 -1.06261504e+00 -1.03681493e+00 -2.18655750e-01 3.08303148e-01 3.10716063e-01 -4.48100209e-01 4.13172066e-01 -7.93217897e-01 -7.67349303e-01 -9.67432000e-03 -8.07999730e-01 1.22685686e-01 -3.97265367e-02 -2.39162058e-01 -7.05531836e-01 1.07306206e+00 -6.22551918e-01 1.62969232e+00 -2.44520974e+00 1.54067397e-01 -2.74866223e-01 2.25001201e-01 5.90152919e-01 1.35118637e-04 2.28377834e-01 5.59700243e-02 -7.97450393e-02 -8.08146596e-02 -2.72422671e-01 -1.80549219e-01 1.80702418e-01 -9.57680121e-02 4.12313193e-01 1.92531317e-01 7.00820327e-01 -9.29570317e-01 -8.00457478e-01 4.79466230e-01 2.52934575e-01 -2.13135466e-01 2.42428318e-01 -7.39013031e-02 7.44178057e-01 -8.66965413e-01 9.77429450e-01 5.16912758e-01 -3.05342078e-01 6.45837039e-02 -4.15809751e-01 -3.37558061e-01 -4.12726700e-02 -1.59798980e+00 1.45091212e+00 -1.99589983e-01 4.44919169e-01 7.95717463e-02 -1.30414128e+00 8.82692695e-01 4.65122908e-01 1.12506986e+00 -6.34328127e-01 6.60725730e-03 2.10234284e-01 -1.25195861e-01 -7.41305351e-01 2.46749341e-01 3.03955853e-01 -9.34898183e-02 4.06934738e-01 -2.77661741e-01 7.26899028e-01 3.09566587e-01 1.06531143e-01 1.30911469e+00 5.74245334e-01 4.75223809e-01 5.50440475e-02 9.20884550e-01 1.53404139e-02 9.78707612e-01 6.12289429e-01 -5.70648789e-01 3.97310883e-01 4.66432363e-01 -6.17207885e-01 -5.40857255e-01 -7.04050899e-01 6.16014190e-02 1.21243906e+00 6.37658894e-01 -3.06891143e-01 -7.84564078e-01 -1.06323600e+00 -2.20705271e-01 2.42116034e-01 -5.59866667e-01 1.24491565e-02 -9.41974521e-01 -4.15774763e-01 5.60928464e-01 7.13243783e-01 8.93096983e-01 -1.27200294e+00 -7.37070680e-01 2.19771326e-01 -4.38581914e-01 -1.27738500e+00 -6.15859032e-01 -1.58481807e-01 -5.44290781e-01 -1.22781157e+00 -6.57909036e-01 -5.36454320e-01 4.22859937e-01 3.55072945e-01 7.23795533e-01 5.13723604e-02 -1.00520179e-01 3.18606913e-01 -7.09469080e-01 -1.62776098e-01 -3.05862278e-01 -1.01891950e-01 1.37497023e-01 5.95501184e-01 5.53417385e-01 -2.54880130e-01 -7.87992895e-01 8.74014735e-01 -8.18778515e-01 1.65606514e-01 7.26330936e-01 2.79050976e-01 6.53726995e-01 1.74086586e-01 5.89418948e-01 -4.92680192e-01 1.58137418e-02 -4.02904809e-01 -5.02269089e-01 3.22644085e-01 -1.49637595e-01 -2.97162682e-01 5.39784908e-01 -4.98824775e-01 -1.00404835e+00 3.11926812e-01 -7.76602849e-02 -6.54856324e-01 -5.04128754e-01 2.96927452e-01 -3.29437524e-01 2.22193882e-01 3.01017195e-01 4.35085386e-01 -5.23232035e-02 -5.12979269e-01 -1.37959361e-01 7.83847153e-01 2.47224778e-01 -4.20880198e-01 2.76885062e-01 6.45517707e-01 2.64961645e-03 -6.19035482e-01 -9.48781073e-01 -6.83635771e-01 -7.48494685e-01 -6.63169324e-01 1.22206211e+00 -9.98094440e-01 -7.70652175e-01 6.30167902e-01 -1.05082893e+00 -3.04315865e-01 -1.50985464e-01 7.64125586e-01 -3.88411492e-01 4.69646752e-01 -3.78090203e-01 -9.63585496e-01 -3.33331116e-02 -1.28652477e+00 1.26734424e+00 2.37227514e-01 -2.31406331e-01 -6.52148902e-01 -1.22853078e-01 6.10091448e-01 4.65977713e-02 3.70664924e-01 4.10367012e-01 -5.70988059e-01 -8.25695097e-01 -2.19099447e-01 -3.02707672e-01 3.76132786e-01 3.04052263e-01 1.42215222e-01 -6.13758206e-01 -1.35344788e-01 -6.62512854e-02 -7.64829293e-02 6.40335679e-01 5.31317174e-01 1.23452270e+00 -2.74868067e-02 -5.55589259e-01 3.79727036e-01 9.81239021e-01 6.38101935e-01 6.17893457e-01 4.30935442e-01 7.98830926e-01 4.00318891e-01 1.32961941e+00 5.52544713e-01 4.03753489e-01 1.15563715e+00 4.73553836e-01 -9.69646964e-03 -3.47231448e-01 -7.98337087e-02 8.63500237e-01 4.96762246e-01 -4.47985291e-01 -4.49589521e-01 -8.15475225e-01 4.99170035e-01 -2.09293199e+00 -9.92649436e-01 -1.85109913e-01 2.09515977e+00 5.20403504e-01 -4.40860689e-02 4.91118759e-01 3.05795014e-01 8.53099465e-01 3.14722270e-01 -6.07955337e-01 1.09199755e-01 1.21597983e-01 -2.64465332e-01 1.95126861e-01 1.63069874e-01 -1.44629586e+00 8.56685042e-01 4.63648319e+00 1.07754958e+00 -1.11448681e+00 2.54653245e-01 4.60662037e-01 -3.78071368e-02 3.99788797e-01 4.33893502e-02 -1.09591031e+00 6.89525425e-01 4.87654507e-01 2.60871738e-01 1.46117836e-01 7.56582737e-01 6.46138072e-01 -2.29779780e-01 -1.10624337e+00 1.01268089e+00 8.86402428e-02 -1.04330432e+00 -7.71694817e-03 1.39017524e-02 4.65011448e-01 -4.09363925e-01 -3.62338156e-01 4.16484237e-01 -1.50647923e-01 -7.10969746e-01 6.40912533e-01 5.43980062e-01 6.37897074e-01 -5.11825383e-01 7.34040797e-01 3.96071821e-01 -1.71024561e+00 -2.64232010e-01 -7.58736804e-02 -2.42892355e-02 2.06051797e-01 2.48127252e-01 -4.60963607e-01 6.84343696e-01 6.91314697e-01 1.18315554e+00 -4.31348592e-01 8.56510699e-01 -2.36496150e-01 6.02641881e-01 -5.48665375e-02 9.11929905e-02 2.73741931e-01 -1.58482641e-01 5.72647572e-01 9.53395963e-01 3.87871087e-01 1.93751678e-01 5.12026072e-01 5.17750442e-01 1.44825578e-01 1.43097073e-01 -2.55454868e-01 -1.24103017e-01 4.97156411e-01 1.22643721e+00 -8.27241123e-01 -3.09828162e-01 -5.51845193e-01 9.00464714e-01 -3.35448459e-02 3.14805508e-01 -1.21224272e+00 -7.92696774e-02 6.52560771e-01 2.75027961e-01 2.58384228e-01 -1.51179060e-01 1.22731775e-01 -9.74155843e-01 1.05291001e-01 -8.62549961e-01 7.45656371e-01 -6.85846329e-01 -7.27631450e-01 3.28352809e-01 3.77640985e-02 -1.80760205e+00 7.50413816e-03 -3.71056587e-01 -4.33929771e-01 4.40117747e-01 -1.24863875e+00 -1.14287210e+00 -6.63225114e-01 6.81262076e-01 8.58466089e-01 -7.91542456e-02 4.01339442e-01 7.39164650e-01 -9.54951704e-01 4.66111630e-01 -2.73481250e-01 3.29044700e-01 5.84677815e-01 -8.68088841e-01 -1.98536187e-01 1.07651079e+00 2.82616764e-01 1.29513711e-01 4.07451332e-01 -6.13956630e-01 -1.19437158e+00 -1.07554340e+00 5.67294419e-01 -5.54852843e-01 5.39977849e-01 -1.65920019e-01 -9.39133942e-01 5.51048219e-01 -2.20310196e-01 2.78555810e-01 3.01439762e-01 -2.48193547e-01 8.42207223e-02 -4.40601110e-01 -8.35178077e-01 2.71006584e-01 1.20819187e+00 -3.71873975e-01 -2.29478315e-01 2.77153224e-01 5.30862391e-01 -2.42021054e-01 -1.02231097e+00 5.69703519e-01 5.60318470e-01 -9.85226989e-01 8.30316365e-01 -3.17587852e-01 3.30160141e-01 -7.75840878e-01 1.73816811e-02 -6.03080988e-01 -1.08540043e-01 -2.94889361e-01 -4.86807853e-01 1.39068949e+00 -7.61590302e-02 -2.73293465e-01 8.19636464e-01 4.31928247e-01 -2.67522931e-01 -8.89150679e-01 -1.02674675e+00 -8.24605525e-01 -6.01568043e-01 -3.91156167e-01 5.41054606e-01 1.02252007e+00 -2.46424869e-01 -1.47505002e-02 -7.06416667e-01 2.48874813e-01 2.72133142e-01 2.41828069e-01 8.82869124e-01 -1.03189671e+00 -1.14424773e-01 -4.15540069e-01 -5.39423704e-01 -1.24769497e+00 2.23039892e-02 -5.52429855e-01 -5.39519154e-02 -1.56216562e+00 2.37565070e-01 -5.38717091e-01 -6.25120282e-01 6.11805618e-01 -1.08817607e-01 2.94311494e-01 7.24400654e-02 4.49781865e-01 -1.06953526e+00 4.16628867e-01 1.24095321e+00 -2.26078648e-02 -2.40173712e-01 2.40547806e-01 -2.05603346e-01 6.62288904e-01 6.90016866e-01 -3.92765880e-01 -4.23556983e-01 -1.53525025e-01 -7.54512101e-02 2.80287892e-01 5.06478429e-01 -1.25000238e+00 3.10271859e-01 -4.82235342e-01 7.88277015e-02 -6.62838399e-01 4.47002232e-01 -8.99612129e-01 2.39497691e-01 4.95921910e-01 -2.46120065e-01 -1.96388900e-01 -4.75857183e-02 6.37631893e-01 -4.92822409e-01 -1.83069602e-01 7.38157570e-01 -1.80452809e-01 -1.26535857e+00 5.08371770e-01 -3.75790268e-01 -1.22508980e-01 1.53957105e+00 -5.29700756e-01 -1.77532986e-01 -1.81740090e-01 -6.74843848e-01 2.60124117e-01 3.26855332e-01 5.27823150e-01 4.12208974e-01 -1.25809860e+00 -5.11282206e-01 -3.21273133e-02 2.22481146e-01 -5.68676852e-02 5.45114219e-01 1.34981835e+00 -3.44964206e-01 2.57615715e-01 -1.08677216e-01 -6.11116767e-01 -1.64266884e+00 6.16464198e-01 2.86218941e-01 -2.60960460e-01 -5.72660327e-01 6.86283767e-01 2.93784320e-01 1.13152951e-01 3.50839466e-01 -1.63388252e-01 -7.39991069e-01 3.62560004e-01 6.35799408e-01 5.27953386e-01 -3.30372334e-01 -9.87596333e-01 -5.74011922e-01 6.25679076e-01 1.90514177e-01 3.11743438e-01 1.09096670e+00 -2.68675417e-01 -1.11264929e-01 4.71928358e-01 1.02306771e+00 -1.19954281e-01 -1.44488347e+00 -1.88231438e-01 -1.03985406e-02 -6.10882044e-01 3.50796035e-03 -5.22547245e-01 -1.16922057e+00 8.42265189e-01 6.71128392e-01 3.04201841e-01 1.37700057e+00 1.04172178e-01 8.50756586e-01 -9.01501328e-02 2.97255188e-01 -1.19602740e+00 4.30245548e-01 2.92950362e-01 5.75015366e-01 -1.25185084e+00 3.33806053e-02 -4.06014591e-01 -8.43702972e-01 9.90309298e-01 8.68301392e-01 2.98015356e-01 4.15327758e-01 1.83177799e-01 -7.58326426e-02 -2.66035914e-01 -3.61513108e-01 -3.08124840e-01 2.03485951e-01 1.45756230e-01 2.01561913e-01 -1.67157724e-01 -3.12231272e-01 3.65669101e-01 6.83391154e-01 3.68628204e-01 1.68442339e-01 9.08481956e-01 -4.48439986e-01 -1.08337128e+00 -2.14970648e-01 3.99061143e-01 -4.19025272e-01 2.96150088e-01 -2.32357576e-01 7.34129548e-01 4.60438013e-01 8.69768620e-01 6.02468997e-02 -5.19377828e-01 2.05821529e-01 -4.61193621e-02 1.59858078e-01 -4.56726938e-01 -3.19696039e-01 3.88801396e-02 1.06140807e-01 -6.99144423e-01 -9.62625504e-01 -9.12333250e-01 -1.34190309e+00 1.01666497e-02 -1.97063953e-01 4.37101163e-02 3.01880777e-01 1.09162009e+00 4.71015126e-01 5.27351916e-01 6.59132063e-01 -5.53194284e-01 -2.33680345e-02 -8.74155283e-01 -4.92794752e-01 4.22256947e-01 1.58920899e-01 -9.87129509e-01 -3.26199591e-01 1.41626880e-01]
[8.497082710266113, 0.48382073640823364]
c7010492-2407-435f-9279-15d97c18b89e
neural-math-word-problem-solver-with
null
null
https://aclanthology.org/C18-1018
https://aclanthology.org/C18-1018.pdf
Neural Math Word Problem Solver with Reinforcement Learning
Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong positions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply reinforcement learning to directly optimize the solution accuracy. It overcomes the {``}train-test discrepancy{''} issue of maximum likelihood estimation, which uses the surrogate objective of maximizing equation likelihood during training while the evaluation metric is solution accuracy (non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model, we use our model output as a feature and incorporate it into the feature-based model. Experimental results show that (1) The copy and alignment mechanism is effective to address the two issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this task; (3) Our neural model is complementary to the feature-based model and their combination significantly outperforms the state-of-the-art results.
['Chin-Yew Lin', 'Jian Yin', 'Danqing Huang', 'Jing Liu']
2018-08-01
neural-math-word-problem-solver-with-1
https://aclanthology.org/C18-1018
https://aclanthology.org/C18-1018.pdf
coling-2018-8
['math-word-problem-solving', 'math-word-problem-solving', 'math-word-problem-solving']
['knowledge-base', 'reasoning', 'time-series']
[ 2.65792519e-01 -2.05396339e-01 9.64079425e-02 -2.59697467e-01 -7.35540926e-01 -6.61067426e-01 1.95677698e-01 -2.33424932e-01 -2.74114788e-01 1.06145656e+00 -1.55413717e-01 -5.55278957e-01 -2.82286465e-01 -9.10413921e-01 -8.71422172e-01 -1.95506200e-01 2.46559501e-01 2.73999125e-01 -1.01645000e-03 -4.72824931e-01 8.98811102e-01 3.85577470e-01 -1.52855182e+00 1.75738320e-01 1.53927732e+00 8.11964273e-01 4.61615831e-01 7.95596600e-01 -6.41975403e-01 9.52258229e-01 -8.67401063e-01 -3.64684373e-01 3.76975387e-01 -7.01258957e-01 -7.87497342e-01 -2.07988560e-01 3.27644438e-01 -4.65505034e-01 8.37231893e-03 1.18436122e+00 5.05768478e-01 1.09404668e-01 8.16288769e-01 -1.35511386e+00 -1.06770277e+00 4.06331956e-01 -4.02432799e-01 1.30727217e-01 7.06924200e-01 3.39882582e-01 8.59071076e-01 -7.37240553e-01 3.30872089e-01 1.11171329e+00 7.62124062e-01 5.21749020e-01 -7.51502514e-01 -7.46822417e-01 4.00675982e-02 2.32582808e-01 -1.54919684e+00 -6.66373819e-02 5.77265859e-01 -5.21812379e-01 1.36169255e+00 2.07176462e-01 6.75200641e-01 6.68783367e-01 2.04506084e-01 8.90284061e-01 1.04927313e+00 -5.86642146e-01 2.25209519e-01 2.34020114e-01 1.93846628e-01 9.31496084e-01 8.46380275e-03 2.12092355e-01 -2.50009269e-01 3.47158015e-02 1.03227592e+00 -3.59824449e-01 -2.00544193e-01 2.50916809e-01 -7.88652539e-01 1.03778434e+00 1.34762526e-01 3.32057208e-01 -2.71529019e-01 2.85147071e-01 -5.10548130e-02 3.92996162e-01 -1.01510458e-01 1.00642335e+00 -6.33893132e-01 -5.71309268e-01 -1.02283525e+00 6.92174256e-01 8.05568576e-01 1.16323245e+00 7.91706324e-01 4.95179176e-01 -1.49378493e-01 7.19195604e-01 2.79075801e-01 2.62217045e-01 9.26771700e-01 -6.89677119e-01 7.32608199e-01 8.87207747e-01 8.53383094e-02 -9.48730946e-01 -1.97921067e-01 -5.95761478e-01 -5.08356452e-01 1.49075672e-01 3.87259245e-01 -2.62508124e-01 -9.89909530e-01 1.73761618e+00 5.10331057e-03 3.38071615e-01 1.27510458e-01 8.13767254e-01 8.61893654e-01 9.72070038e-01 -2.67316669e-01 -1.67791739e-01 9.20573235e-01 -1.13546634e+00 -8.72729421e-01 -1.52490109e-01 8.89733911e-01 -9.30178702e-01 1.24902451e+00 4.61823463e-01 -1.35870790e+00 -7.49986172e-01 -1.27146161e+00 1.65349662e-01 -5.51777482e-01 2.85952836e-01 5.45319974e-01 9.72503781e-01 -1.10777223e+00 8.39524806e-01 -2.39533529e-01 6.62882030e-02 1.90647487e-02 5.23671806e-01 3.42983380e-02 2.16597304e-01 -1.43750274e+00 1.02039313e+00 6.25677884e-01 -7.24170953e-02 -4.02594864e-01 -9.87888575e-01 -9.68887389e-01 2.53355801e-01 3.46294850e-01 -5.74986935e-01 1.18458891e+00 -1.05447149e+00 -1.86809778e+00 1.05458520e-01 -2.12430865e-01 -7.41017088e-02 5.40654361e-01 -2.65810221e-01 -2.41232574e-01 -1.01662531e-01 6.35901652e-03 6.50354207e-01 5.31186938e-01 -1.05943358e+00 -5.25495291e-01 1.65191367e-01 4.63570096e-02 7.52647147e-02 -1.67341977e-01 -1.16100103e-01 -2.13724822e-01 -8.31453204e-01 1.44349322e-01 -6.14976466e-01 -1.68106049e-01 -3.02480191e-01 -3.95858400e-02 -5.47010481e-01 3.45938206e-01 -7.56745696e-01 1.73778987e+00 -1.74885416e+00 1.95904989e-02 2.85928249e-01 -2.48202980e-01 6.66482985e-01 -2.01363638e-01 6.25784636e-01 -2.92566478e-01 5.35493731e-01 -2.81611055e-01 2.27659374e-01 9.08635631e-02 -3.00948005e-02 -2.07497120e-01 6.62344275e-03 6.45937562e-01 1.11760437e+00 -7.28275716e-01 -4.72016215e-01 2.05900595e-01 1.17443502e-03 -9.00030494e-01 4.22864348e-01 -4.07002389e-01 5.46082519e-02 -4.49616879e-01 5.39540648e-01 8.48185897e-01 -2.98891515e-01 -9.50328633e-03 4.84257154e-02 -1.90495729e-01 2.73286670e-01 -1.64224970e+00 1.58334184e+00 -3.80111486e-01 2.26273224e-01 -7.41900265e-01 -1.04306328e+00 1.14097559e+00 2.19987035e-01 2.17836183e-02 -6.54616833e-01 1.75276637e-01 2.78030634e-01 2.02395022e-01 -1.01601768e+00 4.64238435e-01 1.27631389e-02 1.31798789e-01 2.87107587e-01 3.84244323e-02 -2.01132357e-01 5.27390599e-01 1.23697430e-01 1.02780652e+00 5.99039257e-01 3.55133504e-01 -1.05526678e-01 8.65653038e-01 -4.87188064e-02 6.09156430e-01 8.47537696e-01 1.85134232e-01 5.69894671e-01 6.23900175e-01 -2.89424360e-01 -9.44121301e-01 -8.38830292e-01 2.20297396e-01 6.08984530e-01 -9.86143481e-03 -5.08876443e-01 -6.71985328e-01 -5.10965407e-01 -1.17827587e-01 1.08143079e+00 -3.06172460e-01 -7.97005743e-02 -8.43182325e-01 -5.02909541e-01 6.69211447e-01 6.80234671e-01 6.29030585e-01 -9.83436227e-01 -4.53223556e-01 3.26688588e-01 -2.65295953e-01 -8.34586680e-01 -3.96201283e-01 -1.66620642e-01 -7.46203303e-01 -8.80968094e-01 -6.50131166e-01 -8.47371399e-01 7.15879202e-01 -1.18934661e-01 1.00271749e+00 4.47693765e-01 -3.60231966e-01 1.26111314e-01 -4.68485355e-01 -3.56511116e-01 -4.35258985e-01 -2.70298198e-02 -1.79920912e-01 -4.40287381e-01 2.40956038e-01 -4.61686730e-01 -2.50867158e-01 1.54451251e-01 -9.15030897e-01 5.34864515e-02 6.81669354e-01 8.63277316e-01 2.70231571e-02 1.31877050e-01 8.81988049e-01 -6.95974827e-01 1.05705047e+00 -2.96722651e-01 -8.67374480e-01 5.22801816e-01 -8.81070852e-01 2.79884309e-01 8.45054984e-01 -5.39524496e-01 -7.75491476e-01 3.12383641e-02 -3.37368309e-01 -3.80798846e-01 -3.35150100e-02 8.01242352e-01 -4.50399816e-02 -1.09853238e-01 5.40431738e-01 5.82124174e-01 1.10957824e-01 -3.70596021e-01 1.78422462e-02 5.87137997e-01 1.90126747e-01 -8.61082315e-01 9.32074130e-01 -5.49236774e-01 -1.22289956e-02 -5.07028043e-01 -4.49520022e-01 -1.47603065e-01 -3.80899101e-01 -1.51629657e-01 6.13626301e-01 -7.37157345e-01 -1.02894998e+00 2.95324087e-01 -1.48873103e+00 -7.30395615e-02 8.30369964e-02 6.20678484e-01 -5.20842135e-01 5.22606373e-01 -5.77633023e-01 -1.19966877e+00 -2.00724646e-01 -1.32285357e+00 6.28705919e-01 6.37002587e-01 -3.89980763e-01 -8.39620709e-01 -1.39038205e-01 2.48070851e-01 4.88545895e-01 1.26572967e-01 1.34520996e+00 -6.95770025e-01 -7.87964344e-01 -2.12931141e-01 -2.36688748e-01 4.79802102e-01 -1.17947515e-02 2.06947565e-01 -5.54117501e-01 1.12246752e-01 5.35112843e-02 -4.16024566e-01 3.11131328e-01 1.20356925e-01 1.23352134e+00 -5.05815327e-01 2.16284305e-01 4.99703556e-01 1.64257348e+00 4.33219105e-01 9.31791961e-01 3.07719350e-01 4.30025131e-01 4.39680368e-01 6.23868167e-01 3.59257340e-01 2.88484573e-01 5.34295976e-01 7.52038732e-02 1.69803917e-01 -6.16430975e-02 -4.46668506e-01 4.20470119e-01 9.45080101e-01 1.07722953e-01 -2.19370261e-01 -8.59078407e-01 4.22248304e-01 -1.99988556e+00 -7.98528790e-01 -2.65340179e-01 1.97178471e+00 1.19300795e+00 1.58698246e-01 3.55906636e-02 2.26996541e-01 5.29818237e-01 -3.06017429e-01 -2.53808111e-01 -6.90844178e-01 1.85681537e-01 6.58638120e-01 2.67296076e-01 5.69229543e-01 -6.41915262e-01 1.10501575e+00 6.56926155e+00 1.18785465e+00 -1.09472787e+00 -3.93211722e-01 1.74559742e-01 2.04145938e-01 -4.09446687e-01 -1.70631334e-02 -9.78168190e-01 5.99661231e-01 8.12468588e-01 -1.80162892e-01 6.76555455e-01 8.09446931e-01 8.27348307e-02 2.67897919e-02 -1.24301565e+00 9.73922312e-01 1.63902730e-01 -1.51939595e+00 2.52544135e-01 -2.13928670e-01 7.20249295e-01 -9.37142193e-01 -7.67725855e-02 6.78441405e-01 2.03757241e-01 -1.47734654e+00 7.64978409e-01 4.81879503e-01 5.66390216e-01 -9.80464399e-01 7.23403752e-01 6.68002129e-01 -9.97687399e-01 -1.92670636e-02 -4.07598615e-01 -4.78520602e-01 6.76558092e-02 2.63598979e-01 -1.00885701e+00 7.93953836e-01 1.44464508e-01 4.06352311e-01 -6.13890827e-01 1.15089107e+00 -4.09030765e-01 4.75825161e-01 -1.37097225e-01 -6.78340495e-01 4.83331352e-01 -3.67662072e-01 2.28852108e-01 1.07530940e+00 6.29986286e-01 1.68729991e-01 1.75213963e-01 1.44418359e+00 2.31033295e-01 1.49743825e-01 -4.23950136e-01 -2.50058085e-01 5.42795062e-01 8.86484563e-01 -5.34836471e-01 -2.53158331e-01 -2.16095358e-01 7.81011105e-01 2.16874510e-01 3.92995209e-01 -1.14299679e+00 -7.76601076e-01 1.89790219e-01 -2.06487268e-01 4.30111200e-01 -2.81196654e-01 -6.26371324e-01 -8.77579451e-01 1.06032334e-01 -1.16928387e+00 -6.18140958e-02 -8.88719201e-01 -1.11781263e+00 3.55562449e-01 1.03264846e-01 -1.19240534e+00 -5.94619930e-01 -7.48210549e-01 -6.79413915e-01 1.22697508e+00 -1.51807201e+00 -7.70600498e-01 -3.01329717e-02 2.46491089e-01 7.81019390e-01 -4.20028687e-01 7.93650329e-01 4.05194730e-01 -4.91216093e-01 9.22260463e-01 -2.49787018e-01 1.47085086e-01 2.38960430e-01 -1.20218623e+00 3.75416130e-01 7.91607738e-01 -1.88104525e-01 9.38484609e-01 6.47354126e-01 -8.20624948e-01 -1.61063600e+00 -7.27584898e-01 9.68959689e-01 -3.48274887e-01 5.32096446e-01 -6.61762580e-02 -8.80668938e-01 3.23122531e-01 7.28397816e-02 -7.15536952e-01 7.29819477e-01 -2.17406586e-01 -1.21023014e-01 2.40477175e-01 -1.24521148e+00 6.86659575e-01 7.67234027e-01 -6.43884689e-02 -7.62676895e-01 3.02229762e-01 8.61307800e-01 -6.44051969e-01 -7.27599978e-01 4.51686740e-01 4.92334723e-01 -8.34216595e-01 8.20223391e-01 -7.82464743e-01 1.04196608e+00 -3.43899906e-01 -5.09005226e-02 -1.15856802e+00 -3.80593657e-01 -5.80275118e-01 -1.32491842e-01 1.37592757e+00 7.09140301e-01 -6.68494046e-01 7.66089380e-01 6.92708015e-01 -1.12117708e-01 -1.14470446e+00 -6.75416052e-01 -9.89782751e-01 3.62311631e-01 -1.49720639e-01 9.43869472e-01 1.03591681e+00 -1.40492350e-01 2.52033114e-01 -3.70812267e-01 9.16415602e-02 8.22043493e-02 2.33540200e-02 7.40801156e-01 -7.47473836e-01 -6.66381061e-01 -4.43456382e-01 -9.59211588e-02 -1.30508852e+00 1.33863449e-01 -8.32454443e-01 -7.63302948e-03 -1.42416441e+00 -1.28134117e-01 -4.17537689e-01 6.06407085e-03 2.60963768e-01 -4.53375190e-01 -3.25033993e-01 4.13999885e-01 -2.17023268e-01 -1.45149231e-01 5.08048475e-01 1.32438231e+00 1.49467662e-01 -1.26001626e-01 7.83317664e-04 -8.69835734e-01 5.59033990e-01 8.65066528e-01 -4.67113167e-01 -4.23987925e-01 -4.07989323e-01 6.06541574e-01 3.38158071e-01 3.21689108e-03 -9.47867393e-01 2.10975617e-01 -4.96374995e-01 5.91630101e-01 -6.69797003e-01 1.51239872e-01 -7.41717339e-01 -1.02643177e-01 6.59735024e-01 -3.55035007e-01 5.50088942e-01 3.14162701e-01 1.55030385e-01 -2.00310126e-02 -1.14671361e+00 4.98795718e-01 -4.09859836e-01 -5.69822669e-01 -2.39623263e-01 -4.85146552e-01 1.06991589e-01 8.22892964e-01 -4.69832301e-01 -3.42080414e-01 -4.03660983e-01 -1.51234725e-02 4.07013714e-01 1.64943770e-01 3.56318980e-01 7.45978177e-01 -1.36553776e+00 -6.47722721e-01 3.46690476e-01 -3.10643971e-01 -7.96694756e-02 -4.39318493e-02 4.76464361e-01 -9.22415078e-01 4.47107553e-01 -8.47882405e-02 -4.51776594e-01 -9.96005237e-01 3.81965727e-01 1.86740443e-01 -4.99342918e-01 -9.83284041e-02 1.01640475e+00 -1.96569785e-01 -7.72944093e-01 4.04273003e-01 -3.14775974e-01 -2.27596924e-01 -4.27064300e-01 4.43821400e-01 5.02347946e-01 -4.56525087e-02 7.20151588e-02 -2.14968592e-01 6.69230342e-01 -2.18738601e-01 -1.86782494e-01 1.31110513e+00 3.96874219e-01 -2.29917839e-02 2.47960627e-01 1.09434152e+00 -2.11004585e-01 -7.44722128e-01 4.74134460e-02 2.49360465e-02 -6.75466001e-01 -2.37933338e-01 -1.16223681e+00 -6.43444180e-01 9.17456985e-01 4.83073086e-01 7.29022473e-02 9.04644847e-01 -7.64417827e-01 8.60133708e-01 4.51498121e-01 -3.19039561e-02 -1.26730347e+00 4.32149798e-01 9.07107651e-01 7.97124445e-01 -9.83214200e-01 5.69153316e-02 -5.58916450e-01 -6.61568999e-01 1.46367097e+00 1.08002305e+00 -2.76206493e-01 2.04512402e-01 3.33852410e-01 -1.22697756e-01 7.21959919e-02 -7.57122457e-01 -4.33315039e-02 3.10754806e-01 4.26666975e-01 5.85499048e-01 -4.01877910e-01 -7.19723701e-01 7.75735378e-01 -7.09649086e-01 5.29022992e-01 5.31913459e-01 1.16739869e+00 -5.84025741e-01 -1.33748221e+00 -5.35574496e-01 3.72286290e-01 -2.83620745e-01 -3.99835944e-01 -3.74275893e-01 7.49572873e-01 1.47947758e-01 9.30418670e-01 -1.98731929e-01 -3.27444971e-01 2.81413585e-01 3.52907181e-01 7.80531406e-01 -5.02171695e-01 -8.42364907e-01 -9.00039747e-02 -1.70407910e-02 -2.70602196e-01 6.06723838e-02 -2.54427582e-01 -1.34568071e+00 -3.20215106e-01 -5.39113700e-01 1.78051814e-01 7.49441862e-01 1.21649671e+00 1.99068367e-01 9.07309592e-01 6.18678808e-01 -3.60968828e-01 -1.14338815e+00 -9.32334185e-01 -2.06921086e-01 2.13102266e-01 9.54788700e-02 -4.38269198e-01 -2.13617712e-01 -5.97628355e-02]
[9.808761596679688, 7.474664688110352]
dee100f6-fa34-41a0-a8a9-cd8462f122c0
epileptic-seizure-prediction-using-pearson-s
2006.01359
null
https://arxiv.org/abs/2006.01359v1
https://arxiv.org/pdf/2006.01359v1.pdf
Epileptic seizure prediction using Pearson's product-moment correlation coefficient of a linear classifier from generalized Gaussian modeling
To predict an epileptic event means the ability to determine in advance the time of the seizure with the highest possible accuracy. A correct prediction benchmark for epilepsy events in clinical applications is a typical problem in biomedical signal processing that helps to an appropriate diagnosis and treatment of this disease. In this work, we use Pearson's product-moment correlation coefficient from generalized Gaussian distribution parameters coupled with a linear-based classifier to predict between seizure and non-seizure events in epileptic EEG signals. The performance in 36 epileptic events from 9 patients showing good performance with 100% of effectiveness for sensitivity and specificity greater than 83% for seizures events in all brain rhythms. Pearson's test suggests that all brain rhythms are highly correlated in non-seizure events but no during the seizure events. This suggests that our model can be scaled with the Pearson's product-moment correlation coefficient for the detection of epileptic seizures.
["Carlos D'Giano", 'Antonio Quintero-Rincon', 'Marcelo Risk']
2020-06-02
null
null
null
null
['seizure-prediction']
['medical']
[-1.97760344e-01 -1.78719521e-01 3.89770329e-01 -3.83808583e-01 -6.51625097e-01 -2.58764654e-01 2.55088449e-01 2.35397637e-01 -3.64089847e-01 9.31092322e-01 2.92490646e-02 -2.69391894e-01 -7.12457895e-01 -4.10332471e-01 -2.79090311e-02 -7.69280374e-01 -9.80192363e-01 4.01687890e-01 1.86439887e-01 -1.61162333e-03 3.46360505e-01 7.07127929e-01 -1.01698875e+00 4.33412701e-01 6.51107609e-01 1.06731057e+00 3.12681675e-01 7.54567146e-01 3.44488680e-01 6.01953387e-01 -9.76125598e-01 2.52152622e-01 1.38149172e-01 -5.82845330e-01 -2.16149494e-01 -2.63264924e-01 -8.02194715e-01 2.35399023e-01 -5.23560792e-02 9.03058231e-01 8.36320460e-01 -3.88637751e-01 1.16024494e+00 -1.30846345e+00 1.47490785e-01 4.48403686e-01 -5.09105682e-01 6.44280851e-01 5.64590752e-01 -8.39274228e-02 2.52675027e-01 -6.91062152e-01 1.47285953e-01 4.26329195e-01 7.31296062e-01 1.91675603e-01 -1.02114701e+00 -1.07518768e+00 -6.66630089e-01 4.67614591e-01 -1.79209614e+00 -7.37563567e-03 4.85534847e-01 -7.97099292e-01 1.05174339e+00 3.16318929e-01 1.06264055e+00 7.81433046e-01 1.13364601e+00 1.64929941e-01 1.24968469e+00 -2.19318047e-01 2.32902825e-01 4.48824130e-02 -1.29808513e-02 -7.85709545e-02 7.70612136e-02 3.50896001e-01 -6.41334593e-01 -3.56671929e-01 5.05361974e-01 2.02847011e-02 -4.41505611e-01 2.67016381e-01 -1.28033435e+00 6.48182869e-01 -7.10928440e-02 9.34705496e-01 -8.86988997e-01 -2.55801409e-01 3.34178180e-01 4.15198088e-01 2.94274747e-01 6.79549158e-01 -7.11432576e-01 -4.27606732e-01 -1.33044779e+00 6.73417524e-02 8.90170872e-01 4.74213332e-01 2.63670832e-01 9.37564112e-03 -2.13386402e-01 6.11251473e-01 5.25712706e-02 4.77347761e-01 8.60725522e-01 -8.47704709e-02 -2.18585983e-01 5.22951722e-01 -1.53782129e-01 -7.64046252e-01 -9.93342876e-01 -7.08578467e-01 -8.02236438e-01 -1.01208324e-02 2.16096520e-01 -5.14341950e-01 -4.84554499e-01 1.13239217e+00 -2.99148351e-01 5.38076878e-01 3.07740152e-01 5.07024765e-01 4.72313404e-01 4.91535693e-01 9.68025718e-03 -6.57149673e-01 1.47114575e+00 1.37588352e-01 -7.95656562e-01 -2.22246870e-02 4.80369210e-01 -8.75861108e-01 2.67728746e-01 8.89325082e-01 -4.87009346e-01 -3.92406359e-02 -8.78532112e-01 9.69811976e-01 -6.62719384e-02 2.47611463e-01 4.59834993e-01 4.95667011e-01 -8.46845031e-01 5.23483217e-01 -1.02510214e+00 -3.47997934e-01 1.63588062e-01 7.05414414e-01 -5.68896711e-01 4.60035950e-01 -9.86479402e-01 1.18735468e+00 5.02624691e-01 -1.42341226e-01 -6.02529228e-01 -7.74378181e-01 -3.10803801e-01 -3.10137845e-03 -4.10826266e-01 -8.84543061e-02 8.27392995e-01 -5.89017928e-01 -9.69731748e-01 5.92897892e-01 -1.41310200e-01 -7.68548131e-01 3.55627507e-01 1.90695405e-01 -9.28920448e-01 8.54877457e-02 6.83475705e-03 1.74005955e-01 4.65280920e-01 -5.01226246e-01 -7.86675572e-01 -4.67378944e-01 -1.03454268e+00 -1.40460670e-01 2.19324678e-02 2.61524856e-01 3.79020095e-01 -5.10894060e-01 3.90704602e-01 -7.11135626e-01 -9.26560313e-02 -8.45428824e-01 -1.91839591e-01 -3.33818525e-01 6.49258733e-01 -8.77194703e-01 1.30160129e+00 -2.06442451e+00 -4.58538771e-01 5.66414952e-01 1.20336540e-01 -1.80528536e-01 2.19039142e-01 5.51127017e-01 -6.43064916e-01 -3.45568478e-01 -1.14456050e-01 5.08346021e-01 -3.18812191e-01 -1.21888608e-01 -2.03469872e-01 7.13233113e-01 2.69315004e-01 5.64495802e-01 -6.01451814e-01 -9.39361453e-02 1.71961039e-01 7.41890788e-01 -5.44878952e-02 4.20610845e-01 5.85399806e-01 7.04058290e-01 -4.30543989e-01 2.30348125e-01 3.16451281e-01 4.78703864e-02 -1.12095609e-01 -1.28533989e-01 -1.96363181e-02 1.42447680e-01 -9.05127466e-01 1.06479692e+00 -9.41050276e-02 1.09924960e+00 -5.48590839e-01 -1.19105268e+00 1.43265688e+00 9.05622482e-01 8.99457872e-01 -5.98553181e-01 2.93465048e-01 5.09150684e-01 7.63236523e-01 -6.35369062e-01 -3.77416879e-01 -2.57991850e-01 3.28345776e-01 2.21440569e-01 -5.80916554e-02 -3.28961849e-01 1.97848782e-01 -2.19388366e-01 1.31480861e+00 -3.86516035e-01 8.07331502e-01 -8.48508179e-01 4.43575799e-01 -2.61526257e-01 5.16403675e-01 3.66685778e-01 1.45892259e-02 3.70136142e-01 6.36574984e-01 -3.46506149e-01 -5.89016378e-01 -8.99980247e-01 -8.29006195e-01 1.69149965e-01 -3.40098441e-01 -1.45993173e-01 -6.76859260e-01 -1.56947583e-01 -2.99482226e-01 7.38851011e-01 -3.82599056e-01 -1.38034597e-01 -1.13435723e-01 -1.44681084e+00 4.56104308e-01 2.74639428e-01 -3.00451163e-02 -1.07245851e+00 -9.98236716e-01 3.76857907e-01 7.29085431e-02 -8.36666644e-01 -6.23696949e-03 8.81797850e-01 -8.17838311e-01 -1.32525218e+00 -6.66332066e-01 -6.17460668e-01 5.07237852e-01 -7.53979683e-01 8.07993591e-01 -3.53364229e-01 -6.37757301e-01 1.32141516e-01 -3.10534775e-01 -8.19712579e-01 -2.12796286e-01 -4.29010004e-01 1.52637959e-01 -9.44108889e-02 9.81978595e-01 -9.58491504e-01 -7.68791080e-01 3.07473421e-01 -4.81189281e-01 -4.82183069e-01 6.16105855e-01 6.40785635e-01 5.01534700e-01 2.25377053e-01 9.54588354e-01 -2.01310590e-01 9.57781792e-01 -7.31258392e-01 -5.22748947e-01 1.04104713e-01 -6.16620660e-01 -1.68747202e-01 4.42573190e-01 -6.15294397e-01 -8.06588531e-02 1.68589383e-01 -4.07181419e-02 -1.03518084e-01 -3.94953400e-01 3.42794210e-01 1.51928350e-01 1.93576440e-02 8.01030219e-01 5.79538047e-01 -4.66010958e-01 -8.17760974e-02 -6.64674759e-01 8.99472535e-01 5.28448343e-01 3.32684889e-02 8.77366774e-03 -3.38297077e-02 4.26777542e-01 -9.46959436e-01 -7.86951631e-02 -6.92471504e-01 -5.01333356e-01 -1.30205020e-01 8.60121846e-01 -7.59594083e-01 -8.94616604e-01 3.70291620e-01 -1.00857568e+00 -5.40603511e-03 7.13162422e-02 1.47712076e+00 -6.15922749e-01 3.03241820e-03 -3.14376980e-01 -1.06166768e+00 -5.32730103e-01 -1.30336857e+00 6.24122143e-01 1.17013142e-01 -7.68198371e-01 -9.95783389e-01 1.26495421e-01 -4.06781137e-01 2.00920284e-01 4.66759622e-01 5.78140497e-01 -1.66145778e+00 -4.18157019e-02 -5.07215798e-01 -1.24290539e-02 1.04371667e-01 3.92266303e-01 -1.50629684e-01 -8.02380919e-01 -4.96883653e-02 4.24830943e-01 4.59347427e-01 1.65368527e-01 8.62371922e-01 8.02324533e-01 9.66196656e-02 -4.88182634e-01 5.67933440e-01 1.28845763e+00 1.09865487e+00 7.03979909e-01 2.93314457e-01 -1.81015536e-01 3.80101174e-01 3.12044770e-01 7.27783203e-01 -1.74205691e-01 3.00479352e-01 8.36932063e-02 2.72959858e-01 2.85047382e-01 4.03088272e-01 1.85353935e-01 7.39067376e-01 1.27588525e-01 -1.29361987e-01 -1.25296640e+00 6.89748645e-01 -1.36984980e+00 -8.25429797e-01 -5.60274482e-01 2.30886364e+00 7.20388710e-01 5.29874712e-02 -1.35788620e-01 6.05817616e-01 5.81305444e-01 -6.62208617e-01 -2.46223435e-01 -3.01093519e-01 -1.37657374e-01 6.16892099e-01 4.50092375e-01 2.97514349e-01 -6.65003002e-01 3.39181840e-01 7.19613743e+00 7.50608802e-01 -1.36595058e+00 -1.12404957e-01 6.36538744e-01 7.85432607e-02 3.62597764e-01 -3.21501613e-01 -5.83901286e-01 7.51541376e-01 1.35576105e+00 -5.06361008e-01 4.24957007e-01 4.80350733e-01 5.57711065e-01 -5.53046823e-01 -1.15932989e+00 1.48973179e+00 1.08336069e-01 -8.68904948e-01 -4.78237391e-01 5.73943518e-02 5.56718647e-01 6.97726905e-02 -3.89709055e-01 -2.19915062e-01 -1.91601291e-01 -1.22405148e+00 2.59388089e-01 9.23134565e-01 6.17301106e-01 -9.58069682e-01 1.00435591e+00 4.54565614e-01 -1.05321634e+00 4.54588160e-02 2.13478897e-02 -9.64706838e-02 5.50524592e-02 9.30881560e-01 -1.47966719e+00 1.56559363e-01 6.14473701e-01 7.62820661e-01 -3.26419055e-01 1.65499556e+00 -2.74737984e-01 8.12364757e-01 -5.31336486e-01 -9.63281393e-02 -7.96250477e-02 -1.00444190e-01 6.32102549e-01 1.34742987e+00 1.06791449e+00 3.84507507e-01 -2.55502611e-01 5.30609071e-01 7.38198161e-01 3.96644771e-01 -3.45654756e-01 -2.89671402e-02 5.25722980e-01 9.56912220e-01 -1.13257802e+00 -6.88004717e-02 -2.16436878e-01 6.69003844e-01 -3.61557424e-01 4.80859466e-02 -4.29985344e-01 -7.69794881e-01 3.77065957e-01 1.48941323e-01 -1.35266364e-01 1.23769924e-01 -5.87530971e-01 -7.02967644e-01 -1.05411828e-01 -5.14488459e-01 2.56530017e-01 -9.52901006e-01 -1.22521210e+00 1.27411556e+00 1.67611744e-02 -1.40656400e+00 -8.29783142e-01 -8.12564671e-01 -9.23696578e-01 1.19952905e+00 -1.05178559e+00 -4.58034724e-01 2.28610709e-02 9.38138723e-01 1.27653226e-01 -5.35533965e-01 1.10175288e+00 1.33279279e-01 6.81834593e-02 1.40940398e-01 4.69750911e-02 2.39502549e-01 7.96300828e-01 -1.24176395e+00 -3.34014624e-01 6.88274205e-01 3.05820853e-02 1.86410934e-01 1.09469771e+00 -6.69640422e-01 -5.97576499e-01 -6.17199242e-01 1.27836215e+00 -1.43945813e-01 9.58417475e-01 1.91972941e-01 -7.44821846e-01 3.80366683e-01 9.14652944e-02 -1.48671016e-01 1.06749511e+00 -3.17789316e-01 3.63645464e-01 -2.54291892e-01 -1.06162143e+00 1.71131000e-01 1.40874937e-01 -4.15632129e-01 -9.52014625e-01 4.91217047e-01 -2.44502485e-01 -5.84243424e-02 -1.28912914e+00 5.73601663e-01 5.63341737e-01 -1.03294706e+00 5.25378585e-01 -1.74440369e-01 -8.18488002e-02 -2.07807168e-01 2.64190175e-02 -1.59385347e+00 -2.46748123e-02 -6.02364898e-01 4.09988701e-01 6.15912318e-01 4.74676669e-01 -8.24477017e-01 4.58070487e-01 4.06872392e-01 2.38218307e-02 -8.96369874e-01 -1.01286697e+00 -7.54243135e-01 -6.26607612e-02 -8.48864019e-01 5.30161738e-01 7.41548538e-01 6.19873166e-01 -7.18117803e-02 -1.30687416e-01 4.02491689e-01 3.19612563e-01 -2.47597739e-01 1.09684348e-01 -1.49617946e+00 -1.87186785e-02 -4.15450633e-01 -1.22905958e+00 -5.01479730e-02 -9.83033925e-02 -8.46644521e-01 -7.26016536e-02 -1.51799774e+00 1.43885657e-01 -7.54312724e-02 -5.89155316e-01 4.49466586e-01 2.23133370e-01 3.35792512e-01 -3.52932513e-01 8.22757035e-02 2.62688816e-01 -1.35372788e-01 7.30633497e-01 1.90585911e-01 -6.20046735e-01 3.75056028e-01 -2.32738510e-01 7.42103159e-01 8.90985548e-01 -8.56609285e-01 -3.81756544e-01 3.90430182e-01 8.04268196e-02 5.24879396e-01 1.00151248e-01 -1.39583433e+00 3.54835123e-01 1.17177501e-01 7.22404540e-01 -6.57243788e-01 1.75283521e-01 -9.98541892e-01 6.24264777e-01 8.44424665e-01 1.28212767e-02 1.93719998e-01 1.53391063e-01 1.83823630e-01 -3.97921890e-01 -1.50535494e-01 7.42301285e-01 2.70335644e-01 -4.69359666e-01 1.19888134e-01 -8.41553271e-01 -2.47414783e-01 1.44017005e+00 -3.63947719e-01 2.01151878e-01 -4.22740966e-01 -1.34764850e+00 3.57067306e-03 -3.52445781e-01 1.50911063e-01 5.80861211e-01 -9.24237967e-01 -9.18910742e-01 4.19914842e-01 1.33820996e-01 -6.98256075e-01 1.05739638e-01 1.44338095e+00 -5.66224158e-01 6.33765757e-01 -5.88747263e-01 -8.02584291e-01 -1.44635046e+00 1.54483035e-01 6.01656258e-01 -1.92325890e-01 -3.90868962e-01 6.17402315e-01 -5.14960941e-03 4.60289121e-01 6.51591048e-02 -3.84840637e-01 -6.54492974e-01 1.01613007e-01 8.60782087e-01 4.02128100e-01 3.67928147e-01 -5.84725320e-01 -6.63208246e-01 4.49506938e-01 1.95697412e-01 -1.34621531e-01 1.40170252e+00 2.48491019e-01 -3.53572786e-01 5.44366717e-01 1.01602030e+00 -2.93200910e-02 -8.22748721e-01 5.66678047e-01 3.62593651e-01 -1.18687339e-02 1.99342549e-01 -1.27534187e+00 -8.73396873e-01 8.80633056e-01 1.17215991e+00 3.21224570e-01 1.46159911e+00 -3.94036770e-02 1.66918024e-01 2.14537546e-01 5.30554056e-01 -6.64489627e-01 -5.87688029e-01 2.57301271e-01 7.22377956e-01 -7.18279362e-01 -1.28560022e-01 -6.45642579e-02 -6.72861636e-01 1.54556632e+00 -1.46792591e-01 -5.02135754e-01 1.41426718e+00 7.81659484e-01 5.61214276e-02 -1.75645858e-01 -7.39615321e-01 8.79843086e-02 5.88906467e-01 8.68789494e-01 8.26456726e-01 4.31569725e-01 -9.75522161e-01 1.14015496e+00 -6.48947120e-01 2.21645936e-01 3.40696424e-01 4.91888434e-01 -4.71145898e-01 -9.59639907e-01 -5.27545989e-01 9.37248528e-01 -8.98997188e-01 -2.79223800e-01 -1.51477754e-01 6.77373409e-01 2.29302749e-01 1.12078190e+00 3.32934976e-01 -3.66175860e-01 2.11287037e-01 3.08006912e-01 3.04227442e-01 -3.80246699e-01 -6.17039204e-01 5.23625970e-01 -3.58609021e-01 -4.94620025e-01 -2.55768329e-01 -8.43409657e-01 -1.46579719e+00 2.83078074e-01 -1.86252579e-01 6.55722678e-01 9.40969348e-01 1.01934826e+00 2.80529499e-01 5.92781007e-01 4.58645761e-01 -3.40653270e-01 1.07025849e-02 -1.35433340e+00 -1.39152062e+00 -1.42863225e-02 2.59585649e-01 -4.87270713e-01 -6.42271101e-01 2.54964113e-01]
[13.239418983459473, 3.5168986320495605]
69bb31cd-6b0b-4173-9bc4-3caed8b6de82
deep-structured-output-regression-learning
1607.03856
null
http://arxiv.org/abs/1607.03856v2
http://arxiv.org/pdf/1607.03856v2.pdf
Deep Structured-Output Regression Learning for Computational Color Constancy
Computational color constancy that requires esti- mation of illuminant colors of images is a fundamental yet active problem in computer vision, which can be formulated into a regression problem. To learn a robust regressor for color constancy, obtaining meaningful imagery features and capturing latent correlations across output variables play a vital role. In this work, we introduce a novel deep structured-output regression learning framework to achieve both goals simultaneously. By borrowing the power of deep convolutional neural networks (CNN) originally designed for visual recognition, the proposed framework can automatically discover strong features for white balancing over different illumination conditions and learn a multi-output regressor beyond underlying relationships between features and targets to find the complex interdependence of dif- ferent dimensions of target variables. Experiments on two public benchmarks demonstrate that our method achieves competitive performance in comparison with the state-of-the-art approaches.
['Jiri Matas', 'Joni-Kristian Kamarainen', 'Yanlin Qian', 'Ke Chen', 'Jarno Nikkanen']
2016-07-13
null
null
null
null
['color-constancy']
['computer-vision']
[ 2.00160131e-01 -7.08582163e-01 -1.51909485e-01 -4.39518601e-01 -3.70918274e-01 -5.10447264e-01 4.43877608e-01 -5.22441089e-01 -1.42153904e-01 5.57175398e-01 -8.38914141e-02 -2.63464212e-01 1.73829554e-03 -3.97184968e-01 -5.97545326e-01 -9.70043957e-01 8.85461569e-02 -3.20201755e-01 -2.27292225e-01 -2.77430058e-01 3.77642900e-01 4.38740581e-01 -1.52136958e+00 1.08230114e-01 9.60999846e-01 1.37693906e+00 -7.71836415e-02 7.40678906e-01 -1.70333058e-01 9.05026138e-01 -3.55017692e-01 -2.34254524e-01 5.87715626e-01 -6.15930498e-01 -1.00559652e-01 3.78117681e-01 7.76440144e-01 9.42180865e-03 -3.07488322e-01 1.21771514e+00 1.97925717e-01 -6.55621365e-02 8.10197473e-01 -1.55357504e+00 -1.31985366e+00 -1.42407250e-02 -1.00030792e+00 8.38982910e-02 -2.44182587e-01 2.83320963e-01 1.27356672e+00 -8.58456612e-01 -1.64385922e-02 1.19060183e+00 4.23638135e-01 2.68472999e-01 -1.48663187e+00 -8.97301018e-01 3.25280249e-01 2.79980272e-01 -1.01967740e+00 -2.64891326e-01 9.58599687e-01 -4.69859272e-01 4.87467468e-01 6.13895714e-01 5.02190888e-01 1.02521229e+00 3.29615474e-01 7.15212286e-01 1.65961742e+00 -3.34717333e-01 -1.09613776e-01 1.11163244e-01 3.89463380e-02 1.07945096e+00 3.75030160e-01 1.32087752e-01 -6.45638704e-01 2.53502727e-01 1.04875755e+00 1.84599608e-01 -3.82231742e-01 -4.44021434e-01 -9.93590117e-01 6.48039877e-01 8.86820257e-01 -5.32623893e-03 -5.61699122e-02 4.46421504e-01 6.17997302e-03 4.85631973e-01 5.18081903e-01 5.97110868e-01 -6.85558319e-01 2.67273784e-01 -6.81533635e-01 -1.67173341e-01 3.79925311e-01 7.58728921e-01 9.21110868e-01 4.71587360e-01 -4.63463366e-01 8.71947050e-01 1.77344605e-01 7.02052712e-01 4.22983527e-01 -8.23544204e-01 3.12260687e-01 9.31261480e-01 5.47555983e-02 -1.22285557e+00 -5.14406502e-01 -4.77886975e-01 -1.24572682e+00 7.02402651e-01 3.94869119e-01 -1.06402956e-01 -1.11196721e+00 1.65236819e+00 6.24930672e-02 8.96810815e-02 -2.10589662e-01 1.10901093e+00 7.01508224e-01 5.85597813e-01 -1.08511977e-01 -2.46827647e-01 1.20646834e+00 -1.11463237e+00 -5.29597700e-01 -3.83203030e-01 -2.10553676e-01 -8.00443649e-01 1.15577674e+00 5.06318033e-01 -6.68923497e-01 -7.57882059e-01 -1.12989926e+00 -2.65579939e-01 -5.57153165e-01 5.39123058e-01 1.01299739e+00 6.30925119e-01 -1.00478637e+00 2.69329756e-01 -4.57858533e-01 5.98477274e-02 3.81655961e-01 3.82494122e-01 -2.95002431e-01 -1.17096670e-01 -6.84011042e-01 6.32067263e-01 5.46659976e-02 5.31802475e-01 -7.55881011e-01 -5.39211631e-01 -7.21921325e-01 -1.77074019e-02 3.99379283e-01 -4.82182235e-01 7.76052654e-01 -1.75639594e+00 -1.70223892e+00 6.61665797e-01 -1.30050987e-01 5.60464822e-02 5.24485886e-01 -3.67649525e-01 -4.01460320e-01 -2.78419137e-01 -1.15510307e-01 2.38501713e-01 1.32827139e+00 -1.51824796e+00 -5.58632135e-01 -4.49488610e-01 -1.92774132e-01 -3.69010605e-02 -6.23159349e-01 -3.95171717e-03 -7.59082317e-01 -5.85244596e-01 3.49161774e-01 -8.94882798e-01 -2.25267872e-01 3.49305660e-01 -6.54491663e-01 -2.62754895e-02 7.06834853e-01 -5.37017643e-01 8.85626912e-01 -1.97377372e+00 3.39468300e-01 2.16978624e-01 5.11602581e-01 -2.37269327e-02 -3.67821753e-01 -7.77932182e-02 -4.02089328e-01 -9.91618559e-02 -5.14807887e-02 -1.82973593e-01 -1.07758995e-02 9.63534862e-02 -2.88490385e-01 7.93131173e-01 6.75579309e-01 9.53710139e-01 -7.29388773e-01 -2.37460375e-01 2.25685820e-01 4.43777174e-01 -2.24471048e-01 6.36112690e-01 -2.53443569e-01 4.73086208e-01 -2.82192081e-01 8.08615565e-01 9.28619027e-01 -4.40767854e-01 1.10793762e-01 -4.97648895e-01 -3.47624600e-01 -2.76004434e-01 -1.04631579e+00 1.38297570e+00 -4.74517822e-01 1.00006223e+00 -1.34153843e-01 -1.08433163e+00 1.19109321e+00 -2.17278004e-01 5.12237191e-01 -9.40815091e-01 2.50917405e-01 -2.87743751e-02 -1.27142012e-01 -6.42123699e-01 4.59042192e-01 8.73013660e-02 -5.65218367e-02 1.17179565e-01 -1.88573133e-02 3.49460430e-02 -2.00746596e-01 -3.28935474e-01 5.84739745e-01 2.74653405e-01 2.22160071e-01 -1.35300025e-01 4.79856819e-01 -2.37999946e-01 7.26064563e-01 5.79667270e-01 -1.11451261e-01 6.09582961e-01 6.73200071e-01 -6.86607063e-01 -8.54411602e-01 -1.02754736e+00 1.00860400e-02 1.29282379e+00 3.71485859e-01 -4.28591706e-02 -1.36091158e-01 -5.06744981e-01 1.66525438e-01 2.38708794e-01 -1.13203681e+00 -1.60212487e-01 -3.34805071e-01 -1.02469170e+00 1.16210461e-01 6.09909773e-01 6.59369528e-01 -5.83953679e-01 -5.79131901e-01 -2.45888099e-01 6.21332489e-02 -1.02821326e+00 -2.14632988e-01 5.74136496e-01 -5.60693145e-01 -1.28694773e+00 -6.73520744e-01 -6.56201243e-01 7.43802845e-01 6.49544835e-01 1.21040702e+00 9.71802920e-02 -6.92465782e-01 2.71696206e-02 -1.24480136e-01 -3.91366214e-01 2.79294942e-02 -1.39307380e-01 -2.64726520e-01 3.78997922e-01 2.42164105e-01 -3.26979935e-01 -8.06437492e-01 2.70417035e-01 -8.31794262e-01 4.49230701e-01 8.93426776e-01 1.04697025e+00 3.61346275e-01 -1.43619880e-01 4.97749560e-02 -9.38077569e-01 4.94687855e-01 -4.18400526e-01 -9.70640898e-01 6.50682211e-01 -7.48160601e-01 4.83117908e-01 7.04455316e-01 -3.47876787e-01 -1.03256631e+00 2.43802637e-01 4.70894337e-01 -5.98009467e-01 1.61152557e-01 2.65114605e-01 -1.80900276e-01 -2.06314147e-01 6.56250119e-01 3.68481368e-01 -2.45287254e-01 -3.08277577e-01 6.31351769e-01 3.33634675e-01 6.97944522e-01 -4.62434530e-01 1.15084767e+00 4.20070976e-01 3.78840297e-01 -4.09434170e-01 -1.00847411e+00 -3.97739768e-01 -7.43216574e-01 -3.53144079e-01 7.52159059e-01 -1.00302947e+00 -9.10699308e-01 6.36169732e-01 -8.37768137e-01 -2.67817050e-01 2.36456871e-01 3.08740623e-02 -2.88826734e-01 1.25837664e-03 -1.84270963e-01 -9.09517825e-01 -2.00167865e-01 -1.00500047e+00 9.19251263e-01 6.90108061e-01 5.15604436e-01 -8.97264421e-01 9.32560265e-02 1.06316924e-01 5.82921982e-01 7.15179026e-01 9.34417546e-01 1.71191007e-01 -8.42786670e-01 -1.22400135e-01 -8.98579597e-01 3.06932867e-01 6.53060853e-01 4.10286546e-01 -1.11243176e+00 -2.34291464e-01 -2.67331690e-01 -5.93053102e-01 1.39485073e+00 3.34492326e-01 1.53821254e+00 -2.51605541e-01 1.58752948e-01 1.20419765e+00 1.86359859e+00 -1.80416703e-01 5.27364612e-01 5.36611080e-01 9.94253457e-01 2.89445639e-01 3.27031791e-01 6.15436912e-01 3.97234321e-01 4.31004465e-01 7.27599561e-01 -8.03612471e-01 -8.05450305e-02 -8.97283033e-02 2.65438676e-01 4.11394566e-01 -3.86708230e-01 2.52883345e-01 -5.16392291e-01 1.28831089e-01 -1.82794106e+00 -8.00044119e-01 -3.29248101e-01 1.96444261e+00 9.21358526e-01 -9.40617919e-02 2.15095524e-02 -4.27097604e-02 4.96020496e-01 3.50821704e-01 -9.91317153e-01 -2.95655251e-01 -3.86068851e-01 2.00425521e-01 7.27886081e-01 7.34353960e-02 -1.15922964e+00 1.00787973e+00 6.20056343e+00 2.33845279e-01 -1.63712299e+00 -2.20173180e-01 1.06156564e+00 3.87645364e-02 -3.22715104e-01 -2.02590704e-01 -3.81134570e-01 1.85279459e-01 3.48078340e-01 1.93884403e-01 7.68272877e-01 6.40454888e-01 1.39200419e-01 -5.18042445e-02 -9.07168865e-01 1.24953961e+00 3.40580761e-01 -9.59012270e-01 -6.95690885e-02 -1.89003825e-01 1.11496723e+00 -3.84033881e-02 8.08589637e-01 2.68870533e-01 5.63133597e-01 -1.35795188e+00 5.98709941e-01 8.13946903e-01 1.02831662e+00 -4.36657250e-01 2.51762301e-01 -2.09067822e-01 -1.23569560e+00 -4.21388716e-01 -5.84004760e-01 -4.53483984e-02 -6.71244204e-01 5.39563954e-01 -3.58210534e-01 4.73620594e-01 8.39328945e-01 1.00877762e+00 -1.02160299e+00 9.81252611e-01 -3.66535813e-01 3.81973863e-01 2.09362775e-01 -1.12377711e-01 7.91324377e-02 -3.69679987e-01 -7.13434517e-02 1.27291751e+00 1.12525731e-01 -1.18904933e-01 6.12902222e-03 1.17065680e+00 -2.13611409e-01 1.01295430e-02 -2.67297298e-01 2.65580211e-02 -9.62081030e-02 1.64275706e+00 -5.40054560e-01 1.27724111e-01 -6.60160244e-01 1.27192032e+00 6.14675701e-01 7.09419608e-01 -9.12346184e-01 -2.07160726e-01 1.03050447e+00 -5.40361822e-01 3.51560444e-01 -5.04128397e-01 -6.98137760e-01 -1.40982497e+00 -4.48803455e-02 -9.02996719e-01 3.37717444e-01 -9.20482457e-01 -1.51617253e+00 6.18975222e-01 -6.70262277e-01 -1.45107305e+00 1.43178403e-01 -1.23147285e+00 -7.28889585e-01 1.17318416e+00 -2.22286296e+00 -1.48731935e+00 -9.39273357e-01 1.09074974e+00 4.64185178e-01 -1.58915967e-01 7.70980775e-01 -2.36604616e-01 -8.65697563e-01 6.20136559e-01 4.20902193e-01 2.73618042e-01 8.99080396e-01 -1.47109342e+00 1.31527498e-01 1.03935814e+00 3.38520914e-01 4.05512124e-01 6.09836102e-01 -1.05896167e-01 -1.91346157e+00 -1.15729749e+00 1.67905346e-01 -1.72668025e-01 7.73482680e-01 -4.32626694e-01 -6.21692479e-01 3.23811263e-01 2.58270264e-01 4.20354038e-01 7.03072190e-01 3.61602217e-01 -1.03914225e+00 -5.75533986e-01 -5.18814504e-01 5.78623056e-01 7.44837582e-01 -5.01074970e-01 -9.05678496e-02 9.71634462e-02 4.37367976e-01 -3.46237659e-01 -3.56742173e-01 1.21509112e-01 7.48165965e-01 -1.04474247e+00 1.00109518e+00 -7.99163878e-01 8.20070863e-01 -2.34582916e-01 -1.81940094e-01 -1.47598147e+00 -5.38064599e-01 -5.97114563e-01 8.68628398e-02 1.03384542e+00 4.25944269e-01 -4.31185246e-01 5.34329057e-01 8.06929648e-01 2.38845482e-01 -6.36144519e-01 -6.54113710e-01 -3.94702971e-01 -2.15104446e-02 -1.83628455e-01 3.27450573e-01 1.00988567e+00 -5.10506094e-01 3.46372843e-01 -8.53215337e-01 3.44623119e-01 6.86688423e-01 7.02982068e-01 9.16275620e-01 -1.28065050e+00 -2.55850524e-01 -6.71065211e-01 -2.71865845e-01 -8.18108022e-01 2.40693584e-01 -6.28286123e-01 1.12017907e-01 -1.31944323e+00 4.89927113e-01 -4.00411278e-01 -8.53665590e-01 6.25444055e-01 -6.78213298e-01 4.56553519e-01 2.19537839e-01 1.62184387e-01 -5.97888708e-01 7.54233062e-01 1.37422585e+00 -5.10604262e-01 -1.90274462e-01 -3.71276028e-02 -1.16043794e+00 3.29228163e-01 8.36933076e-01 -1.33682296e-01 -2.39327520e-01 -7.19113410e-01 4.32497650e-01 -3.74001473e-01 4.41286802e-01 -7.61818826e-01 1.13954566e-01 -8.87873292e-01 1.01698172e+00 -1.50116131e-01 3.12067181e-01 -9.58503604e-01 -3.00795406e-01 1.61715105e-01 -3.09810430e-01 2.12655142e-01 2.10467532e-01 5.22511423e-01 -6.49477616e-02 4.07841265e-01 8.42445970e-01 -7.60335550e-02 -9.26726103e-01 3.75213087e-01 1.33205518e-01 -3.37707251e-02 8.11287165e-01 -1.08750589e-01 -4.93054897e-01 -2.02938423e-01 -1.05892085e-01 7.37860128e-02 1.57683909e-01 7.23566532e-01 7.61763573e-01 -1.33305717e+00 -7.67831683e-01 3.55226606e-01 3.40243399e-01 -4.50483471e-01 -1.36106759e-01 6.17853642e-01 -3.63041461e-01 1.71101943e-01 -6.03720427e-01 -6.15218997e-01 -1.21314001e+00 4.55673128e-01 5.11681378e-01 1.99989229e-02 -1.69551104e-01 9.75169182e-01 3.56103808e-01 -1.49834096e-01 1.19664982e-01 -4.79039997e-01 -2.14691490e-01 -1.68879792e-01 4.38996971e-01 7.00398237e-02 -1.18936330e-01 -4.65594351e-01 2.22316068e-02 6.59169972e-01 2.09592327e-01 3.31669718e-01 1.73183489e+00 -1.78351358e-01 -4.07404691e-01 6.70793116e-01 1.37483525e+00 -2.14412212e-01 -1.78268445e+00 -3.39183688e-01 -8.49222764e-03 -9.00185823e-01 2.55641073e-01 -1.00469279e+00 -1.59907413e+00 8.45925272e-01 8.89492691e-01 6.89744055e-02 1.58226860e+00 -2.78181762e-01 2.64406294e-01 3.48982751e-01 -5.14661893e-02 -1.09013820e+00 5.92414856e-01 2.96125740e-01 9.80685949e-01 -1.78549051e+00 9.56855118e-02 -2.85343945e-01 -6.91779375e-01 1.61287558e+00 1.03522289e+00 -2.43355453e-01 5.25790513e-01 7.76947364e-02 3.72679651e-01 -2.23058477e-01 -5.94482601e-01 -4.27645743e-01 8.52702975e-01 2.52921611e-01 6.36768281e-01 2.18157828e-01 1.39307931e-01 4.32788342e-01 7.99833331e-03 -3.55141521e-01 1.68122351e-01 3.95080924e-01 -3.68120193e-01 -9.21840668e-01 -4.15079266e-01 3.15061778e-01 -2.21930549e-01 -2.98837721e-01 -5.55376828e-01 7.17557311e-01 1.71137244e-01 9.07799780e-01 1.01958163e-01 -4.79442477e-01 1.95805922e-01 -2.51497030e-01 4.65195715e-01 -1.95828661e-01 -3.53412926e-01 6.52116537e-02 -4.53381449e-01 -8.05421054e-01 -5.68059623e-01 -4.19138700e-01 -6.75857306e-01 -7.56002292e-02 -2.56073296e-01 -4.52991337e-01 8.15575838e-01 7.37745345e-01 -1.15065962e-01 6.64740622e-01 1.36747110e+00 -7.34954119e-01 -4.79438126e-01 -8.56789887e-01 -7.18707442e-01 5.60084224e-01 7.94537008e-01 -6.36011600e-01 -2.51109928e-01 3.08012217e-01]
[10.492703437805176, -2.6026763916015625]
68eeb2d4-7d30-4b8b-aa53-ba75a62498bd
fabric-surface-characterization-assessment-of
2003.07725
null
https://arxiv.org/abs/2003.07725v1
https://arxiv.org/pdf/2003.07725v1.pdf
Fabric Surface Characterization: Assessment of Deep Learning-based Texture Representations Using a Challenging Dataset
Tactile sensing or fabric hand plays a critical role in an individual's decision to buy a certain fabric from the range of available fabrics for a desired application. Therefore, textile and clothing manufacturers have long been in search of an objective method for assessing fabric hand, which can then be used to engineer fabrics with a desired hand. Recognizing textures and materials in real-world images has played an important role in object recognition and scene understanding. In this paper, we explore how to computationally characterize apparent or latent properties (e.g., surface smoothness) of materials, i.e., computational material surface characterization, which moves a step further beyond material recognition. We formulate the problem as a very fine-grained texture classification problem, and study how deep learning-based texture representation techniques can help tackle the task. We introduce a new, large-scale challenging microscopic material surface dataset (CoMMonS), geared towards an automated fabric quality assessment mechanism in an intelligent manufacturing system. We then conduct a comprehensive evaluation of state-of-the-art deep learning-based methods for texture classification using CoMMonS. Additionally, we propose a multi-level texture encoding and representation network (MuLTER), which simultaneously leverages low- and high-level features to maintain both texture details and spatial information in the texture representation. Our results show that, in comparison with the state-of-the-art deep texture descriptors, MuLTER yields higher accuracy not only on our CoMMonS dataset for material characterization, but also on established datasets such as MINC-2500 and GTOS-mobile for material recognition.
['Sundaresan Jayaraman', 'Sungmee Park', 'Ghassan AlRegib', 'Anirudha Sundaresan', 'Yuting Hu', 'Zhiling Long', 'Motaz Alfarraj']
2020-03-16
null
null
null
null
['material-recognition', 'texture-classification']
['computer-vision', 'computer-vision']
[ 6.07674658e-01 -6.05755031e-01 -3.36974151e-02 -3.67405534e-01 -5.40185928e-01 -4.43968683e-01 2.16989681e-01 2.39063561e-01 1.46592394e-01 4.64205176e-01 -2.66774982e-01 -8.74861032e-02 -5.47149539e-01 -1.32008123e+00 -6.59689188e-01 -9.18280363e-01 5.55705316e-02 4.56549823e-01 -1.39406964e-01 -3.88022184e-01 3.82986158e-01 7.20623553e-01 -1.77605212e+00 7.24813342e-01 6.28087103e-01 2.06659412e+00 4.12285060e-01 5.56157589e-01 -1.47778094e-01 4.11001414e-01 -1.13564171e-01 -1.92107663e-01 7.94732720e-02 -6.77200546e-03 -9.68951523e-01 1.71145022e-01 4.41192925e-01 -3.19499016e-01 4.19469886e-02 9.36762035e-01 3.94161165e-01 -7.75209740e-02 8.41559291e-01 -5.44312060e-01 -8.88065338e-01 1.10305309e-01 -2.44667321e-01 -3.94619077e-01 3.43418479e-01 8.20510536e-02 7.50587463e-01 -7.65092969e-01 5.39850235e-01 1.11006629e+00 5.90938926e-01 2.46743739e-01 -1.28666449e+00 -1.53431833e-01 -1.62190214e-01 1.12951748e-01 -1.08812547e+00 -3.06759238e-01 1.30945587e+00 -4.93685156e-01 4.42644924e-01 5.62419891e-01 7.62339294e-01 1.19096971e+00 7.69864917e-01 7.82802761e-01 1.66374910e+00 -3.62857282e-01 3.03020388e-01 -3.18363339e-01 -1.89227730e-01 1.04169333e+00 9.70058739e-02 3.24290991e-02 -4.17159498e-01 2.19109654e-01 1.36533463e+00 -1.11892395e-01 1.13080412e-01 -2.78499216e-01 -1.20222187e+00 5.00100970e-01 4.37868744e-01 1.60793319e-01 -6.46660745e-01 2.61994332e-01 3.13705027e-01 5.47092974e-01 8.08157384e-01 6.04033649e-01 -5.63243866e-01 -4.02657002e-01 -6.86791539e-01 1.89436823e-01 7.54060328e-01 7.16243804e-01 8.69560242e-01 -9.51059386e-02 -4.07096684e-01 1.13852930e+00 9.38412994e-02 8.48011136e-01 -1.53335840e-01 -7.35706210e-01 1.87789753e-01 6.68401301e-01 1.32511601e-01 -1.35936391e+00 -3.02842408e-01 -1.23906359e-01 -1.03127706e+00 4.78105932e-01 3.43004525e-01 4.18272644e-01 -9.79683638e-01 1.19359267e+00 2.26305574e-01 -5.22327960e-01 -5.10597467e-01 1.11934507e+00 7.35610127e-01 2.35402927e-01 -3.57880503e-01 3.37502480e-01 1.42529929e+00 -5.93740046e-01 -3.66142094e-01 2.15542138e-01 -2.71415114e-02 -1.10225666e+00 1.30928230e+00 6.92921102e-01 -9.11048293e-01 -6.67183161e-01 -9.61337090e-01 -9.72224399e-02 -5.76726496e-01 4.68043298e-01 1.13254440e+00 4.92192835e-01 -6.36971533e-01 1.04304314e+00 -9.28949177e-01 -2.73924470e-01 7.89754927e-01 4.39817250e-01 -3.66843730e-01 -3.93337965e-01 -7.65944958e-01 5.81409752e-01 -4.20388207e-02 5.45979261e-01 -7.78634906e-01 -5.16558945e-01 -6.70608938e-01 -1.76202983e-01 3.45768839e-01 -5.13893008e-01 7.54594862e-01 -8.95219386e-01 -2.08137012e+00 9.32482064e-01 5.97556643e-02 1.71538115e-01 5.54355204e-01 -3.28134507e-01 -5.16223550e-01 2.08193660e-02 -5.19652329e-02 2.83712715e-01 1.07648528e+00 -1.46695340e+00 -2.18600407e-01 -3.13039273e-01 2.02430129e-01 -3.28719258e-01 -1.49245322e-01 -2.12149024e-01 -2.61440188e-01 -8.39634776e-01 1.96342796e-01 -8.29370975e-01 7.97406435e-02 4.72784072e-01 -7.49063373e-01 -8.79258811e-02 7.13481188e-01 -7.47801304e-01 8.13772619e-01 -1.94970644e+00 2.01992258e-01 5.82644463e-01 2.57714987e-01 3.46922800e-02 -2.94078112e-01 3.76234710e-01 4.33483481e-01 -1.48815572e-01 -1.70224771e-01 -1.69827536e-01 1.28875345e-01 1.09320901e-01 -2.37945821e-02 4.24245447e-01 4.92234558e-01 9.82512653e-01 -7.61296809e-01 -2.42197156e-01 5.54495871e-01 5.55971086e-01 -3.78009647e-01 1.87786758e-01 -4.15198743e-01 5.14504910e-01 -7.75087059e-01 1.53461158e+00 8.36758912e-01 -3.33303481e-01 1.39067128e-01 -8.08623433e-01 -2.13397726e-01 -7.09690824e-02 -9.55617189e-01 1.70793426e+00 -7.78148234e-01 5.18260837e-01 3.44847083e-01 -9.44724560e-01 1.22800541e+00 -6.70897737e-02 7.27486968e-01 -1.14711869e+00 3.64884198e-01 5.04980862e-01 -1.70961142e-01 -5.62112570e-01 5.40696979e-01 3.61765809e-02 -8.61060545e-02 2.69206047e-01 -1.69674456e-01 -1.55374110e-01 -1.30526751e-01 -7.18861938e-01 8.81876051e-01 3.74691010e-01 -3.39088649e-01 -7.10478902e-01 2.94911355e-01 -1.53703541e-01 1.86222076e-01 7.77163684e-01 2.31250182e-01 6.24116838e-01 2.39244461e-01 -8.45228076e-01 -1.05871832e+00 -1.22144747e+00 -3.30948502e-01 9.99276340e-01 4.25924242e-01 9.89063084e-02 -7.29178727e-01 -3.62704605e-01 4.83410656e-01 -1.86852321e-01 -1.08613873e+00 -1.05293579e-01 -4.28456068e-01 -4.47437942e-01 1.54744968e-01 5.83003223e-01 7.74136066e-01 -1.13187814e+00 -5.94067216e-01 4.09758627e-01 9.06334966e-02 -8.05928171e-01 -1.40014380e-01 2.11703584e-01 -5.80313325e-01 -1.14143002e+00 -6.89391136e-01 -6.75230265e-01 5.92382193e-01 2.11058254e-03 1.21316326e+00 7.63791427e-02 -6.58880472e-01 3.85098755e-01 -4.29654121e-01 -3.25875908e-01 -2.57765919e-01 1.31738290e-01 3.22229452e-02 4.14017260e-01 4.36898097e-02 -3.23421538e-01 -8.60291958e-01 5.15813291e-01 -8.51201355e-01 3.28795522e-01 8.74148369e-01 9.99729037e-01 9.34265256e-01 1.22534826e-01 4.44545567e-01 -7.51763821e-01 7.03216434e-01 -1.12065181e-01 -3.90396446e-01 5.16509056e-01 -3.25601578e-01 3.26044448e-02 5.36289215e-01 -4.05312598e-01 -9.16794419e-01 -4.28478003e-01 -2.46276811e-01 -2.44710043e-01 -1.66672856e-01 7.65290558e-01 -1.91467851e-01 -5.98933220e-01 2.61200011e-01 1.48724213e-01 1.93075776e-01 -7.32438684e-01 -1.20427681e-03 6.48423254e-01 3.56920928e-01 -1.24065530e+00 3.65823627e-01 5.82998991e-01 2.61493981e-01 -1.00143147e+00 -7.22774625e-01 -9.36732292e-02 -7.03475595e-01 -5.78916073e-01 7.29900539e-01 -3.46151799e-01 -1.11946905e+00 1.05405951e+00 -8.74286771e-01 -7.78690875e-01 -2.95181423e-01 6.89732358e-02 -9.16089773e-01 -2.04362459e-02 -7.79970646e-01 -6.59207821e-01 -3.42227936e-01 -1.30158246e+00 1.62625241e+00 -1.79496497e-01 -2.14814723e-01 -1.16235483e+00 -2.78098404e-01 3.98760468e-01 1.00649393e+00 7.22122550e-01 1.20453537e+00 4.04091060e-01 -6.36826873e-01 -6.61365613e-02 -5.81474721e-01 5.23050189e-01 8.54970574e-01 -1.27307370e-01 -9.97745812e-01 -3.49893600e-01 -2.18581632e-01 -4.49601114e-01 9.14907873e-01 4.00363147e-01 1.66304111e+00 -1.03705503e-01 4.00861390e-02 6.46041512e-01 1.56859779e+00 6.42062770e-03 7.68459320e-01 3.27341110e-01 9.95913506e-01 5.58116257e-01 6.50600016e-01 4.54578996e-01 4.69714329e-02 7.37223864e-01 3.30749691e-01 -5.18937349e-01 -3.26139510e-01 1.08621493e-01 -9.41519663e-02 8.83115590e-01 -7.85681427e-01 -8.14879835e-02 -7.76398778e-01 2.55970269e-01 -1.57623255e+00 -5.95242977e-01 1.75625429e-01 1.97182310e+00 8.45199823e-01 7.47417137e-02 -1.17928550e-01 3.09021801e-01 4.85171556e-01 -2.56156269e-02 -7.00627863e-01 -4.12381649e-01 -2.85774350e-01 6.56507373e-01 4.64245558e-01 -9.21700802e-03 -1.26060236e+00 8.92735183e-01 5.64549112e+00 9.50577676e-01 -1.68836927e+00 -2.58698344e-01 8.07681262e-01 3.31156731e-01 -2.44841963e-01 -6.41067803e-01 -1.43786892e-01 5.25008202e-01 3.47371936e-01 6.30668879e-01 9.54445720e-01 6.47574723e-01 7.47365132e-02 -1.02774978e-01 -1.15670800e+00 1.16378081e+00 -2.04963088e-01 -1.75446796e+00 4.66502048e-02 2.24665135e-01 7.29429543e-01 -1.46484345e-01 3.80041480e-01 -2.59183854e-01 -5.28291352e-02 -1.14523077e+00 1.05068576e+00 1.07721746e+00 1.43775880e+00 -4.46440607e-01 8.36372554e-01 -4.98784810e-01 -1.42163062e+00 5.29023595e-02 -2.42767572e-01 -3.55122052e-02 -8.71202797e-02 9.53674614e-01 -8.08318704e-02 8.41203988e-01 7.97149599e-01 7.08125770e-01 -4.52494413e-01 7.26053417e-01 2.90811568e-01 3.45263183e-01 -2.66554803e-01 -3.11319754e-02 4.83935028e-02 -2.44485632e-01 8.81704986e-02 1.12514460e+00 3.94389510e-01 -2.81077892e-01 2.97500014e-01 1.28967941e+00 -9.78158638e-02 -1.42767832e-01 -3.55451316e-01 -4.40049201e-01 1.64162949e-01 1.19049776e+00 -1.08863497e+00 -1.12062640e-01 -1.08718827e-01 1.11782694e+00 2.38995090e-01 2.88745522e-01 -4.60476398e-01 -3.17272156e-01 8.41147244e-01 2.07007572e-01 3.32799941e-01 -4.91218388e-01 -6.51745379e-01 -9.38042462e-01 2.56066948e-01 -7.67472208e-01 -4.51474428e-01 -5.33295155e-01 -1.88064277e+00 3.99793863e-01 -4.57547069e-01 -1.16061604e+00 6.07531190e-01 -1.30481780e+00 -3.56183410e-01 9.01299596e-01 -1.67075503e+00 -1.62262356e+00 -5.99814892e-01 5.00056207e-01 3.26578289e-01 -7.32186716e-03 9.49424088e-01 3.99917424e-01 -2.83409745e-01 3.49413186e-01 3.53286922e-01 1.96729034e-01 4.04942632e-01 -1.11754203e+00 2.61695713e-01 5.47344238e-03 -3.01567614e-01 5.15212417e-01 3.38799328e-01 -5.93071222e-01 -2.27701974e+00 -1.15675569e+00 2.14809388e-01 -2.72939384e-01 4.54058260e-01 -6.35795712e-01 -6.38337433e-01 -2.95425747e-02 -3.81750762e-01 4.13671397e-02 4.40719426e-01 3.87728840e-01 -3.52884941e-02 -3.06084424e-01 -1.26724386e+00 2.90397346e-01 1.15475440e+00 -9.38581169e-01 6.38395082e-04 2.88867593e-01 8.78531113e-02 -5.61592221e-01 -1.34150553e+00 7.45425940e-01 1.21379662e+00 -8.39975536e-01 9.15646017e-01 -3.86290073e-01 8.43095720e-01 -1.43702915e-02 -4.62916344e-01 -1.17353988e+00 -6.19452715e-01 -2.81051069e-01 -5.21651991e-02 1.07166719e+00 -2.61433627e-02 -5.01136303e-01 9.30709243e-01 2.93539196e-01 -2.15686217e-01 -1.26582634e+00 -8.47033560e-01 -8.97321582e-01 -1.46592736e-01 -5.53735673e-01 8.78316522e-01 8.58979344e-01 -6.15617692e-01 -3.33451658e-01 -3.16191226e-01 -1.83831424e-01 6.33098423e-01 7.11437881e-01 4.49968517e-01 -1.59107304e+00 2.93983482e-02 -5.42002082e-01 -5.58930218e-01 -8.59225333e-01 -9.37765464e-02 -5.73829234e-01 2.37905443e-01 -1.69919002e+00 5.79981804e-02 -1.17331147e+00 -6.14099681e-01 3.47063720e-01 2.68289715e-01 3.67221683e-01 -1.89149618e-01 1.93822216e-02 -4.20421988e-01 6.56402946e-01 1.75455713e+00 -6.75944626e-01 9.33679566e-03 -1.20209679e-01 -5.11724949e-01 3.86432737e-01 7.12109625e-01 2.02909648e-01 -2.72155143e-02 -7.20706165e-01 3.70077461e-01 -7.66324326e-02 7.69433677e-01 -1.11336601e+00 -1.78345188e-01 -4.90191221e-01 6.53198361e-01 -1.44894078e-01 3.88814539e-01 -8.88043821e-01 1.40185833e-01 6.27342910e-02 -2.15589628e-01 -2.17610732e-01 1.45794645e-01 3.23567390e-01 -1.86904177e-01 4.58408356e-01 7.17239499e-01 2.67293639e-02 -6.93303168e-01 5.76612413e-01 -1.90266758e-01 -4.48946565e-01 5.11722326e-01 -4.33139652e-01 -3.90968025e-01 1.70878902e-01 -5.68303168e-01 -3.16163778e-01 7.39859581e-01 5.00078619e-01 8.63938391e-01 -1.74085557e+00 -4.35666531e-01 4.91163492e-01 2.04843253e-01 -5.51411882e-02 5.26038170e-01 7.09123909e-01 -8.16881061e-01 1.48894534e-01 -7.80984581e-01 -7.03596115e-01 -7.93559015e-01 1.39537245e-01 1.75757617e-01 -8.90171751e-02 -4.68463838e-01 7.92685330e-01 4.76112170e-03 -3.71397197e-01 -2.53078192e-01 -9.35486615e-01 2.19724849e-01 -2.17337713e-01 1.55012354e-01 3.73242736e-01 5.44638634e-01 -4.04880762e-01 -3.00369471e-01 9.84689236e-01 9.63608250e-02 4.66538608e-01 1.59846020e+00 9.70931575e-02 -4.23401654e-01 6.50868654e-01 1.20204210e+00 -1.31515503e-01 -1.39202905e+00 3.42191309e-02 -1.91375449e-01 -6.37599587e-01 2.47590780e-01 -1.04517817e+00 -1.20062923e+00 8.32926035e-01 8.87230814e-01 3.43646377e-01 1.08628464e+00 1.80313755e-02 1.03459549e+00 4.76311803e-01 1.00221741e+00 -1.48796403e+00 2.25060061e-01 5.36730409e-01 1.17034841e+00 -1.43348563e+00 -2.66401824e-02 -6.81875408e-01 -1.53880686e-01 1.38350081e+00 2.49959543e-01 -1.74527884e-01 7.64528275e-01 2.30555400e-01 -5.69377095e-02 -6.83084011e-01 -2.59836316e-01 4.64155562e-02 6.64097428e-01 3.91614020e-01 4.25802350e-01 6.56215191e-01 4.46627229e-01 4.94836390e-01 -9.59475636e-02 2.12241843e-01 -2.20383182e-01 1.30087304e+00 -3.17220062e-01 -1.10160410e+00 -1.29463643e-01 8.68401170e-01 -1.84145868e-01 6.25763386e-02 -2.66127020e-01 3.77427071e-01 3.89692783e-01 6.72972023e-01 9.55129638e-02 -7.52021730e-01 4.32722330e-01 -3.77311885e-01 1.03110766e+00 -3.64232540e-01 -2.95603693e-01 -2.65937209e-01 2.16149375e-01 -7.91525602e-01 -4.11163479e-01 -4.21074033e-01 -4.99399483e-01 -5.47695339e-01 -1.76821575e-01 -3.74192387e-01 8.65135908e-01 1.03093898e+00 2.75566429e-01 7.89561689e-01 6.90561593e-01 -1.32938027e+00 -8.94054919e-02 -7.05797911e-01 -1.01417315e+00 5.00613034e-01 3.33252698e-01 -1.19976771e+00 2.72666395e-01 1.71926618e-02]
[10.19558334350586, -0.19423720240592957]
b9355416-0678-4a2d-b82e-db89e6b5356e
nlpbk-at-vlsp-2020-shared-task-compose
2101.12672
null
https://arxiv.org/abs/2101.12672v1
https://arxiv.org/pdf/2101.12672v1.pdf
NLPBK at VLSP-2020 shared task: Compose transformer pretrained models for Reliable Intelligence Identification on Social network
This paper describes our method for tuning a transformer-based pretrained model, to adaptation with Reliable Intelligence Identification on Vietnamese SNSs problem. We also proposed a model that combines bert-base pretrained models with some metadata features, such as the number of comments, number of likes, images of SNS documents,... to improved results for VLSP shared task: Reliable Intelligence Identification on Vietnamese SNSs. With appropriate training techniques, our model is able to achieve 0.9392 ROC-AUC on public test set and the final version settles at top 2 ROC-AUC (0.9513) on private test set.
['Van Nha Nguyen', 'Thanh Chinh Nguyen']
2021-01-29
null
null
null
null
['reliable-intelligence-identification']
['natural-language-processing']
[-1.27382323e-01 2.02717572e-01 -3.62126678e-01 -6.95598602e-01 -1.14689100e+00 -7.06762075e-01 6.20020270e-01 -1.50939569e-01 -6.66421413e-01 1.21439791e+00 2.90165450e-02 1.80449225e-02 -4.01346952e-01 -8.31286728e-01 -4.19236600e-01 -4.34728444e-01 -4.75125723e-02 1.30253053e+00 1.75211966e-01 -4.03774500e-01 3.16076845e-01 2.25842535e-01 -1.12670171e+00 3.40842605e-01 9.10918832e-01 1.37365901e+00 -3.62364382e-01 6.17899776e-01 1.54728200e-02 8.25517476e-01 -7.67277837e-01 -1.33768475e+00 2.72478193e-01 4.31334406e-01 -1.05396724e+00 -5.36884546e-01 5.28336406e-01 -4.26150002e-02 -1.99115705e-02 9.89203274e-01 1.92872152e-01 1.75596662e-02 8.70364130e-01 -1.64423811e+00 -7.49616563e-01 1.37105191e+00 -2.96808928e-01 3.13459545e-01 4.33990896e-01 -1.94426343e-01 1.03773487e+00 -5.98467588e-01 1.02399743e+00 9.01092172e-01 1.04270971e+00 5.89512110e-01 -1.01269758e+00 -1.05783725e+00 -4.58824098e-01 4.57352877e-01 -1.57682443e+00 -3.90278727e-01 3.13840300e-01 1.52718082e-01 1.14577341e+00 4.25862521e-01 2.15622157e-01 1.63760066e+00 -5.09257056e-02 7.97795057e-01 1.01250827e+00 2.53323525e-01 -3.26596536e-02 9.30645764e-01 5.10851979e-01 7.12465644e-01 1.68081656e-01 -2.55863518e-01 -5.93588531e-01 -7.37791881e-02 3.21730256e-01 -4.66017693e-01 4.55829471e-01 3.07489395e-01 -1.16678977e+00 9.34226096e-01 3.60791475e-01 6.21813059e-01 -2.08596602e-01 -5.28923452e-01 6.04905367e-01 6.55069351e-01 6.17235184e-01 5.02994359e-01 -9.87094581e-01 -3.72160554e-01 -1.02570796e+00 2.16017067e-01 1.37581277e+00 1.15664113e+00 7.51204193e-01 -1.54410258e-01 -1.26015931e-01 8.68277371e-01 -1.58944294e-01 4.98609006e-01 5.37356138e-01 -9.63655055e-01 9.37073648e-01 6.53262079e-01 -5.12540527e-02 -7.09524274e-01 -5.20092010e-01 -7.65193403e-01 -1.01830673e+00 -5.81224978e-01 7.65468925e-02 -4.27031606e-01 -7.06184924e-01 1.56779790e+00 -1.19178616e-01 3.26164663e-01 5.38151085e-01 4.53288645e-01 1.10930574e+00 5.48493445e-01 1.97507128e-01 -2.84444332e-01 1.04047644e+00 -1.22671294e+00 -5.26680768e-01 1.90713391e-01 5.78649044e-01 -4.04649168e-01 6.96707129e-01 4.96785045e-01 -1.11786842e+00 -3.97156268e-01 -8.10342073e-01 5.32529242e-02 -9.00178015e-01 3.09631657e-02 7.84108341e-01 1.00460136e+00 -1.47825098e+00 5.84798276e-01 -2.72790581e-01 -7.60192037e-01 2.22174361e-01 8.31834376e-01 -6.46068871e-01 2.57396728e-01 -1.37970841e+00 6.80562794e-01 7.63051569e-01 -5.24924099e-01 -6.83088481e-01 -7.61721671e-01 -5.32023609e-01 1.92479923e-01 3.18314523e-01 -7.41189301e-01 1.12621832e+00 -1.16378081e+00 -1.53013134e+00 8.03833604e-01 8.45670328e-02 -9.05159295e-01 3.29282492e-01 4.23058212e-01 -8.75985801e-01 -4.54627536e-03 3.01614940e-01 5.41032791e-01 6.01649642e-01 -9.98621583e-01 -8.51985931e-01 -5.68152010e-01 -1.18957035e-01 6.92842230e-02 -9.11734283e-01 3.39950740e-01 -3.69419664e-01 -1.78013146e-01 -1.19638883e-01 -8.33607256e-01 -1.21778689e-01 -1.08519471e+00 -2.64066249e-01 -6.39603734e-01 8.84066641e-01 -7.44597197e-01 1.03074443e+00 -1.70894086e+00 -9.16790292e-02 6.46999538e-01 -7.99861457e-03 5.05686283e-01 -4.37873483e-01 2.84643501e-01 2.15425923e-01 6.45776153e-01 8.14965367e-02 -6.77753925e-01 1.39436349e-01 3.83022696e-01 -3.11359018e-02 -6.24998547e-02 -3.76309641e-02 9.52823102e-01 -6.13206565e-01 -7.89318264e-01 -2.58196890e-01 4.22485679e-01 -2.43849576e-01 1.93119019e-01 7.69667327e-02 1.89765409e-01 -6.11436069e-01 7.34481692e-01 8.53670239e-01 -2.86364317e-01 2.18128577e-01 -2.14955837e-01 -1.73256263e-01 1.80943117e-01 -8.37498426e-01 1.49205458e+00 -4.22438592e-01 2.43916795e-01 2.48348907e-01 -6.98410153e-01 1.11926365e+00 2.96050131e-01 6.23900712e-01 -6.95729494e-01 1.58025056e-01 1.42349482e-01 -2.29634404e-01 -2.45819211e-01 6.16400361e-01 1.34935156e-01 -3.63892227e-01 4.46984679e-01 6.60214841e-01 7.18579292e-02 3.48044932e-01 6.15900993e-01 1.17089403e+00 -3.66140634e-01 1.03961535e-01 -2.58742809e-01 1.17921746e+00 -3.68257463e-02 4.64508593e-01 6.89706326e-01 -1.55416459e-01 3.66018265e-01 4.71338272e-01 -6.12704337e-01 -1.10511816e+00 -8.52734506e-01 -3.74713749e-01 1.50734174e+00 -4.16687489e-01 -6.40480459e-01 -7.48456538e-01 -1.29051876e+00 -1.62512094e-01 8.25282335e-01 -6.13307297e-01 2.66904771e-01 -2.19477296e-01 -7.83725739e-01 1.10564554e+00 3.87967288e-01 8.94242346e-01 -8.69351327e-01 4.31828976e-01 4.59424518e-02 -5.70732057e-01 -1.52177560e+00 -6.24455884e-02 1.30070016e-01 -5.79565406e-01 -8.83796871e-01 -3.78182918e-01 -7.47610092e-01 5.54999113e-02 -3.29560250e-01 1.24181902e+00 3.53299491e-02 2.98849314e-01 3.20357829e-01 -5.39060831e-01 -1.95314273e-01 -6.80033267e-02 9.39156294e-01 1.95595294e-01 1.59802943e-01 2.91589439e-01 -5.28982818e-01 2.09839538e-01 4.15944874e-01 -5.40136993e-01 -3.45421940e-01 3.79391462e-01 8.22040081e-01 1.59334272e-01 2.16938421e-01 6.60412669e-01 -1.11146462e+00 5.07633746e-01 -8.75799119e-01 -2.65205890e-01 5.47689378e-01 -8.56542766e-01 -5.74285053e-02 8.27541411e-01 -2.43178293e-01 -1.19336140e+00 -1.40148908e-01 -6.26649320e-01 -3.31401139e-01 -7.03302920e-02 4.43681687e-01 -1.13560900e-01 -5.88448107e-01 5.07105410e-01 2.27544844e-01 -3.14030319e-01 -5.56299090e-01 -2.23689586e-01 9.16853130e-01 4.72057968e-01 -4.10579115e-01 8.29913914e-01 -8.20263326e-02 -8.28558356e-02 -7.78531849e-01 -9.93681014e-01 -6.03359222e-01 -8.40503514e-01 1.22167468e-01 5.75926065e-01 -6.54003918e-01 -1.11311781e+00 3.19578320e-01 -8.42528343e-01 -1.38034420e-02 1.58338360e-02 2.76957266e-02 -4.67255503e-01 2.42049158e-01 -7.57172585e-01 -9.48167801e-01 -1.03040946e+00 -5.89890361e-01 8.15434635e-01 1.35623172e-01 -8.21943805e-02 -1.29550493e+00 2.18044415e-01 1.09782553e+00 6.09175146e-01 -2.00723745e-02 5.93059540e-01 -1.60412323e+00 -1.22903489e-01 -2.20609635e-01 -4.25587475e-01 4.10400689e-01 -6.23092890e-01 1.95572704e-01 -9.46041763e-01 -7.75426626e-02 -2.51254410e-01 -5.76581538e-01 7.66014934e-01 -1.39369771e-01 1.13223016e+00 -7.51739025e-01 -2.97538817e-01 9.89637196e-01 1.37052906e+00 2.08248664e-02 5.73502660e-01 4.00880814e-01 5.53072989e-01 4.14971679e-01 6.58189952e-01 4.76480693e-01 8.00734401e-01 7.35358179e-01 3.10647875e-01 2.81604856e-01 3.01921427e-01 -4.53793824e-01 3.53941947e-01 8.77673924e-01 -6.49249852e-01 -4.95151490e-01 -9.98236299e-01 1.67851046e-01 -1.87323546e+00 -1.02740133e+00 -2.79428035e-01 1.96731734e+00 5.03622890e-01 2.00323705e-02 5.53457379e-01 -6.70793653e-03 5.80771983e-01 -7.20446631e-02 -3.97745401e-01 -6.61529541e-01 -4.80755180e-01 3.54647934e-01 8.01890612e-01 2.96660215e-01 -1.26403618e+00 1.16338229e+00 6.94285107e+00 9.97419775e-01 -7.24290669e-01 6.00735009e-01 6.91906452e-01 2.28956267e-01 -4.10596311e-01 -4.28029180e-01 -1.24291456e+00 4.82796013e-01 1.69749022e+00 -4.51173067e-01 5.14787972e-01 7.40226686e-01 -4.18139905e-01 2.34703153e-01 -6.92605555e-01 9.25595522e-01 4.91560787e-01 -1.18188047e+00 1.86695959e-02 7.80435503e-02 9.71263409e-01 3.18047255e-01 4.27853495e-01 8.53183866e-01 4.32611376e-01 -1.00835419e+00 3.26839536e-01 3.41663927e-01 7.29075313e-01 -1.06988692e+00 1.45497882e+00 5.49967647e-01 -9.83625352e-01 -3.30718130e-01 -3.45524907e-01 3.24989498e-01 -3.02067697e-01 1.02351114e-01 -1.42267156e+00 8.41303706e-01 7.83535779e-01 1.08505082e+00 -1.00789070e+00 6.74969375e-01 7.49750510e-02 7.60208845e-01 -4.78739858e-01 -3.76295656e-01 5.74520409e-01 -1.00648634e-01 3.23393971e-01 1.27178073e+00 4.40249473e-01 -2.18470525e-02 -2.12823860e-02 3.86857957e-01 -1.77827626e-01 3.99721563e-01 -5.27938068e-01 6.26647100e-02 1.95642740e-01 1.64498913e+00 -3.44850332e-01 -4.71626252e-01 -6.77326182e-03 8.68335247e-01 5.90224385e-01 2.80962259e-01 -8.81857932e-01 -9.92188230e-03 2.01674879e-01 -5.04158810e-02 1.33668885e-01 7.93782324e-02 -3.23521376e-01 -1.30476141e+00 -6.46919966e-01 -7.17378557e-01 9.79410052e-01 -6.40461922e-01 -1.55594683e+00 8.85728359e-01 -8.66558701e-02 -6.59693241e-01 -5.05315542e-01 -5.68688691e-01 -6.54990494e-01 6.55478776e-01 -1.16493952e+00 -1.94944096e+00 4.85686306e-03 1.04837549e+00 5.24825156e-01 -8.71862352e-01 1.03472781e+00 4.26186234e-01 -7.89020240e-01 1.13810933e+00 6.09745644e-02 2.06071228e-01 6.60898209e-01 -1.20931852e+00 2.34578133e-01 3.26717824e-01 2.07037985e-01 4.28913772e-01 3.70903492e-01 -5.94429791e-01 -1.25023329e+00 -1.09381914e+00 1.48811340e+00 -7.31676817e-01 9.32706594e-01 -1.20324261e-01 -5.81642926e-01 1.03715193e+00 3.88629973e-01 -5.24891078e-01 9.19118881e-01 9.18569446e-01 -6.10385239e-01 -5.01338899e-01 -1.86453342e+00 7.98013806e-03 1.15743399e+00 -2.84328401e-01 -3.39204848e-01 7.51669586e-01 4.88654107e-01 6.86114356e-02 -1.47771633e+00 4.31299269e-01 5.12918174e-01 -9.41084027e-01 9.76121843e-01 -7.49112546e-01 1.25173414e-02 3.81470740e-01 6.28734604e-02 -1.04371512e+00 -5.43450832e-01 -5.36048591e-01 -9.90954414e-02 1.56061125e+00 1.02399492e+00 -8.56457114e-01 1.03887033e+00 7.30329394e-01 1.24427401e-01 -1.97251722e-01 -1.25125062e+00 -7.36343980e-01 -1.36542231e-01 -2.53713965e-01 8.16728532e-01 1.10840607e+00 7.57384822e-02 6.06494129e-01 -3.07363927e-01 -7.46764913e-02 9.28084314e-01 -3.32080811e-01 6.55104518e-01 -1.50629032e+00 1.60510808e-01 -1.49430186e-01 -4.58411068e-01 -7.97559395e-02 8.17314208e-01 -1.02624857e+00 -8.40354145e-01 -1.18683326e+00 5.07551372e-01 -7.49591649e-01 -5.94469845e-01 8.04786921e-01 4.39501584e-01 7.43358135e-01 1.95436582e-01 9.87775549e-02 -1.12115848e+00 6.53988048e-02 9.32896376e-01 -2.62489408e-01 7.35248700e-02 5.13873041e-01 -6.31529391e-01 4.50811237e-01 1.31599069e+00 -3.53326887e-01 -2.90437043e-01 -6.04520962e-02 3.53309661e-01 8.98409411e-02 -1.80712074e-01 -1.20639491e+00 5.28290033e-01 -2.21528262e-02 2.42306784e-01 -7.53185093e-01 5.40550828e-01 -8.99488091e-01 4.14992422e-01 2.92120844e-01 -4.23268974e-01 2.51693934e-01 -1.20861195e-01 -7.01632909e-03 -1.76183715e-01 -5.78439474e-01 4.88483787e-01 -2.07951367e-01 -7.77004242e-01 4.61612135e-01 -1.26988381e-01 -1.65600888e-02 9.69838738e-01 -7.79410750e-02 -3.14354241e-01 -4.46898162e-01 -7.26520121e-01 2.53480881e-01 2.38149494e-01 4.20696825e-01 4.84209329e-01 -1.03428972e+00 -1.01813793e+00 4.47584480e-01 -9.63473395e-02 -9.22444701e-01 1.72911838e-01 7.45468020e-01 -1.29789606e-01 9.05480325e-01 -5.00265539e-01 -1.70635700e-01 -1.68608451e+00 5.36551774e-01 -1.14356674e-01 -7.81024516e-01 2.19295323e-02 9.46412981e-01 -6.54737055e-01 -1.00288570e+00 2.83792287e-01 1.64343745e-01 -7.78635383e-01 2.74226576e-01 6.10395491e-01 7.97962904e-01 2.21120998e-01 -8.75930667e-01 -4.91577893e-01 4.31555092e-01 -2.21349850e-01 -1.22865602e-01 1.35370195e+00 -3.69091183e-02 -1.76198453e-01 1.04114734e-01 1.45128846e+00 -1.48707539e-01 -3.47276121e-01 -9.55928303e-03 -6.04382232e-02 -1.42498821e-01 -1.85898058e-02 -1.48407865e+00 -1.24628150e+00 3.87083143e-01 3.29352379e-01 4.64598536e-01 1.02317870e+00 -8.18531886e-02 8.04154158e-01 7.41455495e-01 8.94830644e-01 -1.18687403e+00 -1.92480713e-01 1.05652905e+00 5.75818598e-01 -1.37279034e+00 -1.25534371e-01 -3.76093209e-01 -1.28600347e+00 1.01924121e+00 6.54342771e-01 1.37368351e-01 5.64720929e-01 4.61542338e-01 -9.86598954e-02 1.09553322e-01 -1.21609592e+00 -9.58332643e-02 3.31576675e-01 9.70934153e-01 3.27626523e-03 3.67469966e-01 -3.30172986e-01 1.02393281e+00 -6.26936972e-01 5.25909960e-02 2.35759869e-01 -3.06306500e-02 -9.80735794e-02 -1.08425426e+00 -8.19755867e-02 6.51628733e-01 -5.69832742e-01 -2.03545555e-01 -7.58150399e-01 7.09418297e-01 3.53732437e-01 1.05139899e+00 5.29778525e-02 -1.06433618e+00 1.43468186e-01 1.75445899e-01 1.49597794e-01 -3.47746938e-01 -1.52172565e+00 -4.69024628e-01 7.74180055e-01 -4.19119507e-01 -4.48012263e-01 -7.81600356e-01 -6.68023348e-01 -8.90063405e-01 -3.22714113e-02 6.54549837e-01 8.99274349e-01 7.58254588e-01 1.61961973e-01 -1.51322260e-01 8.61324549e-01 -4.47571367e-01 -6.22025490e-01 -1.15102756e+00 -7.65469790e-01 3.30590725e-01 -2.81221718e-01 -2.43114501e-01 -4.51885939e-01 -3.55602980e-01]
[10.140763282775879, 10.649721145629883]
aaa64e0b-c267-4758-b088-1308f85f2bbc
pyramid-real-image-denoising-network
1908.00273
null
https://arxiv.org/abs/1908.00273v2
https://arxiv.org/pdf/1908.00273v2.pdf
Pyramid Real Image Denoising Network
While deep Convolutional Neural Networks (CNNs) have shown extraordinary capability of modelling specific noise and denoising, they still perform poorly on real-world noisy images. The main reason is that the real-world noise is more sophisticated and diverse. To tackle the issue of blind denoising, in this paper, we propose a novel pyramid real image denoising network (PRIDNet), which contains three stages. First, the noise estimation stage uses channel attention mechanism to recalibrate the channel importance of input noise. Second, at the multi-scale denoising stage, pyramid pooling is utilized to extract multi-scale features. Third, the stage of feature fusion adopts a kernel selecting operation to adaptively fuse multi-scale features. Experiments on two datasets of real noisy photographs demonstrate that our approach can achieve competitive performance in comparison with state-of-the-art denoisers in terms of both quantitative measure and visual perception quality. Code is available at https://github.com/491506870/PRIDNet.
['Zhuqing Jiang', 'Guodong Ju', 'Yiyun Zhao', 'Aidong Men']
2019-08-01
null
null
null
null
['noise-estimation']
['medical']
[ 1.29105344e-01 -8.03229749e-01 5.46085954e-01 -2.63439357e-01 -8.90110195e-01 -2.40830898e-01 3.07891518e-01 -1.40871495e-01 -5.66360533e-01 5.01704097e-01 4.51054782e-01 -2.85898969e-02 -4.18222062e-02 -8.26604307e-01 -4.98606592e-01 -1.05241930e+00 2.21866041e-01 -4.70995218e-01 2.97501236e-01 -3.84760618e-01 2.80707419e-01 4.50491011e-01 -1.50055552e+00 4.03667063e-01 8.19277465e-01 1.27501738e+00 3.38443071e-01 7.14396954e-01 4.19630483e-02 4.99735057e-01 -6.07846975e-01 -3.57956588e-01 5.81629634e-01 -4.58411425e-01 -1.77747324e-01 -9.09991097e-03 2.61103839e-01 -3.61116856e-01 -6.06975555e-01 1.63303840e+00 1.07447851e+00 1.03554472e-01 2.49278232e-01 -8.67907882e-01 -6.61531508e-01 4.52753544e-01 -6.28989398e-01 5.06908417e-01 8.58654454e-02 3.98120195e-01 5.93858421e-01 -9.07047570e-01 1.50382757e-01 1.30663061e+00 8.29894006e-01 3.60916585e-01 -1.15725911e+00 -8.92705739e-01 -1.87767878e-01 4.42389041e-01 -1.40103602e+00 -6.45849466e-01 8.42760921e-01 -5.14403433e-02 5.31252682e-01 1.84110448e-01 4.42260772e-01 9.48307633e-01 4.25994188e-01 4.15389448e-01 1.44934249e+00 -1.42019257e-01 2.64461488e-01 -4.32617158e-01 -1.08372934e-01 3.13782960e-01 2.03483999e-01 9.74482223e-02 -5.00416636e-01 6.58169314e-02 9.90036368e-01 6.86152428e-02 -6.57035112e-01 1.70259595e-01 -9.67671096e-01 7.17972755e-01 8.13595831e-01 4.39302891e-01 -7.64043450e-01 3.17845583e-01 4.53458101e-01 5.35748303e-01 3.74352723e-01 2.83710286e-02 -3.55545461e-01 -5.27463779e-02 -8.06094646e-01 1.96733028e-01 4.90320444e-01 3.75804812e-01 7.53299713e-01 1.83192641e-01 -1.67345062e-01 1.00480998e+00 1.04246870e-01 3.80470395e-01 6.17386699e-01 -1.11002314e+00 3.74286890e-01 3.13345641e-01 -3.26249115e-02 -9.49358582e-01 -1.88226610e-01 -4.99652207e-01 -1.65617800e+00 6.85299933e-01 1.85058415e-01 -1.67115167e-01 -1.31817305e+00 1.29604805e+00 -2.01094598e-02 3.39560807e-01 5.75638339e-02 1.18134034e+00 1.00488770e+00 7.10878968e-01 1.16684087e-01 -6.28338009e-02 1.44932127e+00 -6.92022741e-01 -7.99246073e-01 -1.71628207e-01 -3.38691980e-01 -1.03452027e+00 6.39252067e-01 6.65925920e-01 -1.04125643e+00 -9.48142588e-01 -1.00142086e+00 -1.02146998e-01 -3.57125610e-01 1.98556527e-01 4.26814288e-01 6.36603475e-01 -1.21051097e+00 5.97870708e-01 -6.85262322e-01 -1.89118132e-01 6.16102040e-01 3.47625524e-01 -4.22097772e-01 -2.76217610e-01 -1.14438975e+00 6.28765523e-01 2.94143647e-01 7.09301591e-01 -9.56527114e-01 -2.75236279e-01 -7.15804040e-01 2.09404022e-01 2.14442745e-01 -7.30269730e-01 1.07507646e+00 -1.06389713e+00 -1.48571527e+00 4.75490689e-01 -8.88430104e-02 -4.25728768e-01 5.62451482e-01 -2.67630577e-01 -5.24314165e-01 1.90094143e-01 1.07579023e-01 4.61201698e-01 1.29085684e+00 -1.36535788e+00 -6.54189825e-01 -3.12229961e-01 -2.87457593e-02 2.63174832e-01 -1.19849771e-01 6.45842999e-02 -5.55528462e-01 -9.27314520e-01 4.78495032e-01 -3.10839862e-01 -4.99300450e-01 -6.62141247e-03 -2.78826386e-01 4.44986532e-03 7.32495606e-01 -8.55049014e-01 1.15675306e+00 -2.47166824e+00 3.05772107e-02 2.74915934e-01 3.93373966e-01 6.27575696e-01 -1.58400789e-01 2.83908278e-01 -2.06786230e-01 1.35927200e-01 -2.91051298e-01 -3.34366143e-01 -2.63110995e-01 1.04058139e-01 -8.93275291e-02 4.90950078e-01 1.82904050e-01 5.72805345e-01 -5.95974922e-01 -1.74370572e-01 3.13950241e-01 7.47289836e-01 -1.77981868e-01 9.74463895e-02 3.61739665e-01 4.80857968e-01 -4.66573596e-01 7.66778469e-01 1.11724257e+00 1.68497950e-01 -1.82939544e-01 -6.99560940e-01 -1.36265621e-01 -2.24099055e-01 -1.49462247e+00 1.60641205e+00 -3.80732536e-01 5.97606421e-01 6.31167889e-01 -8.09215248e-01 8.01267982e-01 4.07139868e-01 5.35008721e-02 -8.48487318e-01 4.39174086e-01 3.24919403e-01 -2.97213886e-02 -6.23290300e-01 3.55494767e-01 -9.46254730e-02 1.40436575e-01 -1.28208324e-01 5.55839129e-02 -1.58432961e-01 8.99692103e-02 -5.26317023e-02 1.32472014e+00 -2.05183461e-01 3.43601555e-01 -2.40093507e-02 6.64967775e-01 -4.13256884e-01 7.05699742e-01 9.14414704e-01 -5.23527384e-01 9.53342438e-01 3.27158809e-01 -3.63480270e-01 -9.23597693e-01 -1.05148578e+00 3.62358503e-02 7.30257928e-01 3.93970728e-01 -1.40567780e-01 -8.33803356e-01 -1.87136069e-01 -9.83034000e-02 1.17556237e-01 -6.10182226e-01 -1.55356601e-02 -4.63742018e-01 -8.55089843e-01 4.93334383e-01 4.97899622e-01 1.07316041e+00 -1.20497680e+00 -5.86430252e-01 2.38280848e-01 -3.03852469e-01 -7.98296452e-01 -3.77671689e-01 2.87970722e-01 -7.72479236e-01 -9.45092380e-01 -7.14559972e-01 -7.89486647e-01 5.50437570e-01 4.98321384e-01 8.77432287e-01 2.55189508e-01 -3.90895456e-01 5.91161475e-02 -4.33476239e-01 -2.46293843e-01 -8.19663256e-02 -4.16842997e-01 -2.18648300e-01 1.65731728e-01 3.53406221e-01 -8.70264292e-01 -1.03350282e+00 1.08323395e-01 -1.27313805e+00 -3.00767064e-01 9.57257569e-01 1.01332736e+00 5.07233858e-01 7.83315599e-01 4.99030292e-01 -4.22347873e-01 1.07005239e+00 -2.93975621e-01 -5.55655241e-01 -1.60669744e-01 -2.24189445e-01 -2.27046058e-01 6.33314669e-01 -3.20653945e-01 -1.18223822e+00 5.46325743e-02 -3.34456176e-01 -1.85455576e-01 -3.75042528e-01 4.12642837e-01 -2.17695266e-01 -1.89594820e-01 6.92187965e-01 3.36844414e-01 -8.05192664e-02 -8.19680929e-01 7.41124153e-02 8.67330372e-01 7.83293784e-01 -2.46249028e-02 9.07829046e-01 5.06814599e-01 -1.86306462e-01 -6.87023342e-01 -4.87200946e-01 -5.85450232e-01 -3.12218338e-01 -1.37292147e-01 9.44909155e-01 -1.22180319e+00 -8.29563498e-01 1.14884710e+00 -1.08594596e+00 -1.38631791e-01 2.96270475e-02 2.84409523e-01 -1.95919752e-01 3.72229248e-01 -9.03959572e-01 -7.30246127e-01 -4.77369666e-01 -1.37159860e+00 8.98448110e-01 5.98237872e-01 4.61936682e-01 -4.57649648e-01 -4.02686417e-01 2.85733968e-01 8.92825484e-01 4.11293283e-02 5.42245269e-01 -1.72708094e-01 -5.64381599e-01 -2.98450559e-01 -5.89972794e-01 9.42492187e-01 1.06691368e-01 -3.89472485e-01 -1.07483983e+00 -2.59753019e-01 3.09158325e-01 -1.33772507e-01 1.41984987e+00 6.64081514e-01 1.38057458e+00 7.16319457e-02 1.40953302e-01 6.85390890e-01 1.79306602e+00 1.84021667e-01 1.16884935e+00 4.49795187e-01 5.04249692e-01 7.80740231e-02 2.31114298e-01 3.89336765e-01 9.04126391e-02 2.23598465e-01 7.13706791e-01 -3.81075472e-01 -5.07544041e-01 1.49686098e-01 2.15774357e-01 5.84063351e-01 -1.71455234e-01 -1.82491139e-01 -5.68475544e-01 5.87332129e-01 -1.64788675e+00 -8.60000551e-01 -8.96747485e-02 1.88044977e+00 8.16359639e-01 2.26666659e-01 -4.29548413e-01 3.40772539e-01 8.62339020e-01 2.25614071e-01 -3.39707851e-01 -1.72503486e-01 -4.17491227e-01 4.25550282e-01 7.21125901e-01 3.60926270e-01 -1.39203238e+00 6.23505056e-01 5.43757153e+00 1.03708375e+00 -1.07679224e+00 1.78598523e-01 7.57913172e-01 3.11230779e-01 2.32075423e-01 -2.16141775e-01 -2.41025507e-01 5.25720596e-01 4.68060046e-01 2.66305298e-01 7.22067714e-01 3.52933735e-01 3.81887466e-01 -4.10970718e-01 -4.02885854e-01 1.18808305e+00 -3.53498012e-02 -1.02738333e+00 -1.10632837e-01 -2.78366506e-01 6.86472774e-01 1.75922647e-01 4.34498265e-02 -5.88049740e-02 3.12873840e-01 -1.09948754e+00 5.76120198e-01 8.26009095e-01 4.63843673e-01 -7.37191319e-01 1.30075276e+00 9.06196460e-02 -1.12050319e+00 -3.16711873e-01 -4.32749867e-01 -9.62171704e-02 6.10535145e-02 8.13243032e-01 -9.72619876e-02 6.36394024e-01 1.31970704e+00 4.80042398e-01 -6.10073090e-01 1.49085402e+00 -4.22793537e-01 5.68306267e-01 -1.97832823e-01 4.13699150e-01 1.19131044e-01 -1.74097478e-01 4.32971567e-01 1.19415677e+00 4.65907872e-01 1.70850664e-01 -1.62819460e-01 3.84387910e-01 -2.05279738e-01 -2.88994312e-01 -2.05089539e-01 4.27897543e-01 3.07324201e-01 1.47876215e+00 -6.83278561e-01 -3.09155405e-01 -3.78011793e-01 1.24829125e+00 -1.98916897e-01 6.41265273e-01 -5.31886935e-01 -7.65253782e-01 7.75139987e-01 -2.48219624e-01 7.08073735e-01 -2.36644074e-01 -5.13901412e-01 -1.04952300e+00 1.07562616e-01 -1.09181106e+00 1.40828062e-02 -1.00618064e+00 -1.54897332e+00 8.10345054e-01 -5.63947439e-01 -1.22209895e+00 4.67424691e-01 -6.52796507e-01 -7.33840525e-01 1.15477645e+00 -1.63470483e+00 -9.85485554e-01 -7.01211989e-01 7.55529284e-01 6.75282657e-01 -4.60396670e-02 6.05625093e-01 5.50874352e-01 -4.20995086e-01 2.47688547e-01 3.23308080e-01 2.72334993e-01 8.21414053e-01 -1.12269270e+00 3.67605835e-01 1.19818318e+00 -3.19493771e-01 3.51669729e-01 8.36304724e-01 -5.67538142e-01 -1.21188962e+00 -9.82392490e-01 4.54124123e-01 2.60251522e-01 5.69388628e-01 -2.49113038e-01 -9.14369285e-01 1.92535773e-01 4.30339783e-01 2.17758790e-01 1.65638685e-01 -4.59797144e-01 -3.28208566e-01 -4.74076420e-01 -1.37911308e+00 5.25108159e-01 7.62839377e-01 -3.58726144e-01 -2.25696012e-01 -1.21454358e-01 3.20627183e-01 -4.23876673e-01 -7.13224113e-01 4.13079381e-01 3.26752752e-01 -1.31583393e+00 1.06010354e+00 1.11988232e-01 4.53944325e-01 -6.88421369e-01 -2.46217921e-01 -1.48421109e+00 -4.80139405e-01 -5.24955511e-01 3.10755998e-01 1.12208414e+00 4.36336435e-02 -6.88941717e-01 2.70023555e-01 2.11750995e-02 -1.86962664e-01 -5.53975701e-01 -1.11916578e+00 -3.15074861e-01 -3.91885430e-01 -3.54538411e-01 4.06575471e-01 5.18768370e-01 -7.12194920e-01 4.91682580e-03 -4.75562632e-01 4.52265203e-01 8.39711964e-01 -3.39623123e-01 4.65549111e-01 -9.76189315e-01 -1.12923868e-01 -4.09906000e-01 -7.06525028e-01 -7.89594889e-01 -3.53535444e-01 -2.51285762e-01 3.02942872e-01 -1.75467813e+00 1.36711393e-02 -2.04998832e-02 -5.19759536e-01 4.57437485e-01 -3.21702510e-01 8.74472797e-01 2.82787532e-02 1.11167714e-01 -4.92132872e-01 5.69151700e-01 1.24397194e+00 -1.45356804e-01 -5.24153188e-03 -5.43452539e-02 -8.77270043e-01 7.16275394e-01 1.00756204e+00 -3.07198703e-01 2.08437839e-03 -7.23987281e-01 -1.50254726e-01 -9.65596810e-02 8.24788272e-01 -1.33426166e+00 5.36049247e-01 2.09346637e-01 8.16281259e-01 -4.04824138e-01 5.01793027e-01 -8.74339163e-01 1.39308721e-01 4.47547495e-01 2.77890675e-02 5.74086495e-02 2.63019532e-01 6.85716569e-01 -6.58369362e-01 -8.54184702e-02 9.22528744e-01 -3.57275546e-01 -9.85542417e-01 1.02413163e-01 -5.49413443e-01 -3.74080241e-01 5.90910316e-01 -2.56698489e-01 -4.23548996e-01 -4.49348450e-01 -6.71283841e-01 -9.30358749e-03 1.95109084e-01 3.30117464e-01 8.74061048e-01 -1.14847338e+00 -8.56181145e-01 3.90671402e-01 -2.65487254e-01 -1.60371959e-01 5.92773080e-01 7.84947932e-01 -7.15181947e-01 -2.03221828e-01 -2.70637721e-01 -2.89039999e-01 -1.22651410e+00 1.67743206e-01 4.99677509e-01 -2.11675819e-02 -5.41123688e-01 1.11870551e+00 -5.18094487e-02 2.94493418e-03 3.88262212e-01 -2.83606023e-01 -1.66201323e-01 -8.62436891e-02 6.69640958e-01 4.47302997e-01 2.64081389e-01 -6.59881175e-01 -1.34625018e-01 5.01743913e-01 9.53303650e-02 8.67937580e-02 1.50188911e+00 -3.56101424e-01 -5.42923808e-01 -1.26200587e-01 1.03985167e+00 -6.66738078e-02 -1.32068610e+00 -3.24592590e-01 -3.04542542e-01 -7.18198836e-01 4.30148840e-01 -1.01337409e+00 -1.44416106e+00 7.21991062e-01 1.23108673e+00 2.61838973e-01 2.04978585e+00 -3.92276853e-01 8.99685621e-01 9.83449966e-02 -6.32173643e-02 -9.99301612e-01 -3.44071649e-02 3.56916338e-01 1.00695157e+00 -1.31066775e+00 -9.70575809e-02 -4.32081729e-01 -3.15961242e-01 1.10683227e+00 5.47304809e-01 -4.49814588e-01 8.85161400e-01 4.05563563e-01 5.53193986e-01 -1.23739198e-01 -3.07078779e-01 -3.19413692e-01 8.64461530e-03 5.55578709e-01 1.96590737e-01 -7.16195703e-02 -3.26516330e-01 5.59546411e-01 -9.60609782e-03 5.92979528e-02 4.62560058e-01 8.05504024e-01 -6.40596867e-01 -9.79110122e-01 -7.58003712e-01 4.60835487e-01 -8.93402457e-01 -4.11566943e-01 7.16740564e-02 2.68859267e-01 5.27769923e-01 1.34716594e+00 -1.62434697e-01 -4.69031364e-01 4.65654314e-01 -3.68317157e-01 1.12145379e-01 -2.36015096e-01 -8.42877328e-01 3.99601519e-01 -1.80300161e-01 -6.20253325e-01 -4.89613771e-01 -2.54406184e-01 -8.06303442e-01 -2.64458656e-01 -1.88200206e-01 7.29968473e-02 8.49564314e-01 6.06889904e-01 2.07435429e-01 8.22266638e-01 5.18552005e-01 -1.22743654e+00 -5.62890887e-01 -1.14561212e+00 -7.57079065e-01 4.49761212e-01 7.39697456e-01 -3.91527653e-01 -5.72529972e-01 1.09010279e-01]
[11.493109703063965, -2.3854479789733887]
1d840c54-aa99-4428-b852-ffee3eea76ba
attentional-feature-pair-relation-networks
1908.06255
null
https://arxiv.org/abs/1908.06255v1
https://arxiv.org/pdf/1908.06255v1.pdf
Attentional Feature-Pair Relation Networks for Accurate Face Recognition
Human face recognition is one of the most important research areas in biometrics. However, the robust face recognition under a drastic change of the facial pose, expression, and illumination is a big challenging problem for its practical application. Such variations make face recognition more difficult. In this paper, we propose a novel face recognition method, called Attentional Feature-pair Relation Network (AFRN), which represents the face by the relevant pairs of local appearance block features with their attention scores. The AFRN represents the face by all possible pairs of the 9x9 local appearance block features, the importance of each pair is considered by the attention map that is obtained from the low-rank bilinear pooling, and each pair is weighted by its corresponding attention score. To increase the accuracy, we select top-K pairs of local appearance block features as relevant facial information and drop the remaining irrelevant. The weighted top-K pairs are propagated to extract the joint feature-pair relation by using bilinear attention network. In experiments, we show the effectiveness of the proposed AFRN and achieve the outstanding performance in the 1:1 face verification and 1:N face identification tasks compared to existing state-of-the-art methods on the challenging LFW, YTF, CALFW, CPLFW, CFP, AgeDB, IJB-A, IJB-B, and IJB-C datasets.
['Bong-Nam Kang', 'Yonghyun Kim', 'Daijin Kim', 'Bongjin Jun']
2019-08-17
attentional-feature-pair-relation-networks-1
http://openaccess.thecvf.com/content_ICCV_2019/html/Kang_Attentional_Feature-Pair_Relation_Networks_for_Accurate_Face_Recognition_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Kang_Attentional_Feature-Pair_Relation_Networks_for_Accurate_Face_Recognition_ICCV_2019_paper.pdf
iccv-2019-10
['robust-face-recognition']
['computer-vision']
[ 1.35242119e-01 -5.71604311e-01 3.41022983e-02 -5.60987234e-01 -4.44038212e-01 5.61810583e-02 4.24488276e-01 -5.83328545e-01 -3.27755153e-01 6.07647896e-01 1.32497832e-01 1.06960513e-01 -5.79562724e-01 -4.68577385e-01 -4.40839410e-01 -1.12072647e+00 -3.23137119e-02 3.23610641e-02 2.69967178e-03 -2.35950440e-01 3.75267774e-01 9.26277876e-01 -1.73625612e+00 4.10000652e-01 3.94876629e-01 1.63432682e+00 -1.82725117e-01 1.25937134e-01 8.48585088e-03 3.58593494e-01 -3.87513727e-01 -5.01995206e-01 2.83099055e-01 -2.62787938e-01 -5.60092628e-01 -9.79562774e-02 6.50823474e-01 -3.96229625e-01 -3.08208823e-01 1.23789620e+00 8.02848101e-01 1.66366965e-01 6.56683505e-01 -1.37350357e+00 -8.49101305e-01 -4.81438003e-02 -1.03519142e+00 4.14049923e-01 2.74215192e-01 1.27289042e-01 5.83888292e-01 -1.50635552e+00 2.09495902e-01 1.73086894e+00 5.13728261e-01 6.90507412e-01 -9.77388144e-01 -1.25834978e+00 1.60138905e-01 7.57878721e-01 -1.83700836e+00 -6.74698532e-01 6.85577393e-01 -2.00933337e-01 7.41440475e-01 3.12606990e-01 3.43384653e-01 7.79106855e-01 1.23158611e-01 5.01239061e-01 1.10803521e+00 -2.84277231e-01 -3.75223726e-01 -2.19029263e-01 2.91703135e-01 7.65832603e-01 1.51151409e-02 -4.96965274e-02 -7.64988303e-01 -1.22570775e-01 6.32499337e-01 3.69722366e-01 -5.95578432e-01 2.14981928e-01 -9.93493736e-01 3.82464677e-01 6.27582014e-01 1.94420144e-01 -5.32345414e-01 -1.26352742e-01 7.42993280e-02 1.83270410e-01 2.38417923e-01 -2.56138653e-01 -3.96257132e-01 2.04329461e-01 -7.21844673e-01 1.42850354e-01 2.62571752e-01 6.56624854e-01 7.89862990e-01 -2.35852033e-01 -5.97069800e-01 1.11794412e+00 6.90557241e-01 6.75199866e-01 4.13998604e-01 -6.43838465e-01 3.44919741e-01 6.50932014e-01 -4.20200527e-02 -1.49590194e+00 -7.87900761e-02 5.32936044e-02 -1.07088459e+00 7.23004341e-02 1.16007486e-02 2.10845068e-01 -9.71023798e-01 1.58114314e+00 3.47053468e-01 2.57892042e-01 -1.00042522e-01 8.53479207e-01 1.09975863e+00 8.34532142e-01 9.13443416e-03 -4.35711086e-01 1.64713335e+00 -7.44749904e-01 -8.38164687e-01 1.18630305e-01 -3.72558206e-01 -9.10329998e-01 6.68224752e-01 3.10050786e-01 -7.80160367e-01 -8.91602516e-01 -8.46957088e-01 2.30224244e-02 -2.72196412e-01 4.60924447e-01 1.98469222e-01 6.35718942e-01 -1.02056360e+00 3.96754712e-01 -2.76536077e-01 -2.15373352e-01 7.58178949e-01 9.17494178e-01 -7.66431928e-01 -5.19869983e-01 -1.17747164e+00 7.59061337e-01 2.93949861e-02 9.40021336e-01 -6.15154266e-01 -3.82301927e-01 -6.12268269e-01 1.26238018e-01 2.55030215e-01 7.40557313e-02 6.39734268e-01 -8.58442843e-01 -1.37301087e+00 6.37672961e-01 -5.12516916e-01 3.72246236e-01 -2.75322353e-03 1.23822168e-01 -6.13783777e-01 -2.47475393e-02 -1.71362028e-01 5.71052909e-01 9.63948011e-01 -8.93424809e-01 -4.31808174e-01 -8.59613955e-01 -3.83657932e-01 1.33655921e-01 -7.07310438e-01 6.08263493e-01 -6.03787184e-01 -4.17149544e-01 1.51900992e-01 -6.16513312e-01 2.83942997e-01 2.84126133e-01 -1.55214846e-01 -5.97913921e-01 1.19344163e+00 -9.15616691e-01 1.10091972e+00 -2.46631575e+00 1.95452824e-01 4.16926116e-01 -1.08613037e-01 5.89765728e-01 -4.55491751e-01 3.73590626e-02 -2.41918549e-01 1.87892020e-01 3.29302587e-02 -2.01339617e-01 -2.11999029e-01 -2.48334259e-02 -1.78188980e-02 4.27243561e-01 4.94175971e-01 7.09965527e-01 -5.14356852e-01 -6.36910081e-01 -5.99137992e-02 7.95898438e-01 -2.74164557e-01 3.09002101e-01 4.30193901e-01 1.85400963e-01 -5.26150227e-01 8.51364672e-01 1.18619144e+00 1.25281483e-01 -8.95362720e-02 -6.87234461e-01 6.60012290e-02 -3.51098090e-01 -1.15101242e+00 1.09215653e+00 -9.51302573e-02 4.17058319e-01 2.49111637e-01 -7.71112144e-01 1.21214998e+00 3.74428749e-01 2.02120796e-01 -7.08259583e-01 2.30684981e-01 2.63343781e-01 2.03779474e-01 -7.48524725e-01 -3.33065391e-02 -3.50863971e-02 2.86811501e-01 1.80343881e-01 2.34886393e-01 5.55515528e-01 -8.59319270e-02 -3.06698084e-01 5.66264391e-01 -1.08106695e-01 2.79962063e-01 -3.15065652e-01 1.16980147e+00 -1.03380227e+00 8.35485578e-01 3.03835422e-01 -4.67376381e-01 5.45787811e-01 3.97815466e-01 -6.81690037e-01 -3.98386627e-01 -7.56447852e-01 -4.14188892e-01 9.21575308e-01 5.15406616e-02 -1.16518185e-01 -6.54701293e-01 -7.84200430e-01 2.60232210e-01 -1.00589365e-01 -8.11243594e-01 -3.57969940e-01 -5.57539880e-01 -9.23237562e-01 3.99712503e-01 3.79019439e-01 1.02980626e+00 -1.62858438e+00 1.17968746e-01 -1.95512131e-01 -1.59416258e-01 -7.27149665e-01 -8.00933123e-01 -4.67952698e-01 -3.89709085e-01 -9.87317502e-01 -8.84052396e-01 -1.00836945e+00 1.03320229e+00 1.76258832e-01 4.68949676e-01 4.00273114e-01 -4.97091442e-01 3.68532613e-02 -2.53272504e-01 -1.23337314e-01 3.65635961e-01 -3.03066492e-01 2.39979371e-01 9.25876081e-01 5.07532656e-01 -2.00531095e-01 -7.54863918e-01 5.78598380e-01 -6.21406853e-01 -4.43159103e-01 6.17905796e-01 1.17769122e+00 5.49819827e-01 4.02237624e-02 5.05232215e-01 -4.14546520e-01 5.41787505e-01 -2.08718985e-01 -3.87374282e-01 5.05782962e-01 -2.28395388e-01 -2.85778850e-01 5.30609488e-01 -3.72760415e-01 -1.03755963e+00 -1.01861574e-01 -1.66962534e-01 -4.83802974e-01 1.79938510e-01 3.60593051e-01 -8.40617776e-01 -5.99254787e-01 2.63707012e-01 3.37807149e-01 4.53625731e-02 -4.97684121e-01 -7.26296380e-02 9.52043712e-01 3.19722712e-01 -5.01469612e-01 7.01390684e-01 1.35971859e-01 1.36025980e-01 -9.13402557e-01 -4.54010040e-01 -1.95352659e-01 -4.41745758e-01 -2.35272691e-01 6.71676099e-01 -4.76283014e-01 -1.21166778e+00 8.81955981e-01 -1.26229227e+00 3.76173496e-01 2.40337566e-01 4.17128265e-01 1.27927348e-01 3.95231992e-01 -5.59537888e-01 -1.08144546e+00 -5.75898230e-01 -1.50133646e+00 1.01898944e+00 6.33912265e-01 3.33055615e-01 -1.31571203e-01 -5.12676954e-01 3.11609626e-01 4.43962932e-01 -7.06226602e-02 8.27852070e-01 -3.29283804e-01 -5.30795753e-01 -2.29877636e-01 -7.32074678e-01 5.94670236e-01 4.79936779e-01 2.04952076e-01 -1.05273998e+00 -4.34186131e-01 -7.86978379e-02 -2.34262779e-01 9.51538086e-01 1.68055549e-01 1.54883444e+00 -4.65143651e-01 -2.27033541e-01 6.65703297e-01 1.14768076e+00 4.96596515e-01 8.38088632e-01 -1.80922255e-01 6.49686158e-01 5.54706275e-01 4.86149848e-01 2.54461288e-01 4.70398553e-02 8.36113393e-01 2.52174079e-01 -7.76058137e-02 -6.94482625e-02 1.68869644e-01 2.73565084e-01 6.93397164e-01 -4.40216303e-01 3.90374660e-02 -5.45132101e-01 3.53334874e-01 -1.68394578e+00 -1.06868136e+00 2.25688681e-01 2.26667428e+00 8.04933846e-01 -2.66787857e-01 -2.18685344e-01 1.45430118e-01 8.84268999e-01 1.21598989e-01 -3.36974651e-01 -2.05675706e-01 -3.55057232e-02 5.73599339e-01 -1.79655626e-02 3.29257011e-01 -8.88796806e-01 6.34406447e-01 4.96083593e+00 1.08222330e+00 -1.08100760e+00 1.62906982e-02 9.97384369e-01 -6.85380697e-02 9.06259865e-02 -3.46953601e-01 -1.13462877e+00 7.51809716e-01 3.67144316e-01 3.38479728e-01 6.65522933e-01 4.26988184e-01 -4.48950864e-02 1.78971127e-01 -8.53247881e-01 1.27534425e+00 4.75217640e-01 -7.74388611e-01 3.50251079e-01 8.15421157e-03 4.94558424e-01 -4.80373561e-01 3.99545670e-01 2.12952971e-01 -3.23931634e-01 -1.37202144e+00 2.26489559e-01 9.07502890e-01 9.79587674e-01 -7.99445152e-01 9.60566044e-01 -8.04860517e-02 -1.42312872e+00 -3.21957827e-01 -5.26708663e-01 3.17804694e-01 -3.38253975e-01 4.01673734e-01 -2.42781192e-01 5.23962379e-01 1.13044357e+00 6.09551847e-01 -4.58542019e-01 9.28511560e-01 -2.44355071e-02 3.99644703e-01 -3.04289997e-01 -2.03001454e-01 -1.35402709e-01 -1.44038752e-01 2.11426601e-01 9.02101994e-01 5.33220351e-01 4.90484118e-01 -3.53551544e-02 5.89157581e-01 -4.72663552e-01 2.91984499e-01 -1.73882186e-01 2.51682252e-01 5.01702487e-01 1.48128855e+00 -3.96303207e-01 -1.03827775e-01 -2.93650866e-01 8.94861221e-01 2.64480859e-01 4.29348886e-01 -5.71311653e-01 -5.97177565e-01 7.30613232e-01 -1.38462320e-01 4.87244099e-01 2.74564177e-01 3.06819022e-01 -7.81672060e-01 3.44978303e-01 -1.06972003e+00 3.76586765e-01 -6.98579729e-01 -1.45526040e+00 8.49031389e-01 -2.53425151e-01 -9.02609110e-01 3.29978764e-01 -9.26326811e-01 -6.41277313e-01 1.49795842e+00 -1.63855445e+00 -1.24082077e+00 -6.16285920e-01 7.88340807e-01 1.43937156e-01 -5.34941494e-01 8.44991803e-01 5.57244599e-01 -8.80148828e-01 9.50382948e-01 -9.79381204e-02 3.54187757e-01 7.36892343e-01 -4.67400759e-01 1.38298526e-01 5.68672776e-01 -2.28978440e-01 9.21377063e-01 4.58942540e-03 -4.32523876e-01 -1.23460197e+00 -9.40028131e-01 9.74441171e-01 -2.24878676e-02 -2.71649938e-02 -1.91414312e-01 -9.44528162e-01 3.36845398e-01 9.40512959e-03 7.61759162e-01 6.03756011e-01 -8.57296959e-02 -4.77735668e-01 -9.24249351e-01 -1.39495361e+00 4.39682454e-01 1.01868773e+00 -5.22709012e-01 -1.72859579e-01 9.39086229e-02 2.20909312e-01 6.71972483e-02 -8.41820359e-01 6.89294040e-01 9.59893525e-01 -8.18593025e-01 1.04190695e+00 -5.38867235e-01 1.57188490e-01 -6.25372350e-01 -2.48109058e-01 -9.01217520e-01 -6.67761266e-01 -3.69840831e-01 2.26028934e-01 1.44460809e+00 1.56366602e-01 -8.60010147e-01 4.92900699e-01 3.75554681e-01 3.08084100e-01 -1.05617559e+00 -1.34223378e+00 -3.57968897e-01 -3.92558903e-01 3.13156068e-01 9.47259903e-01 6.94192350e-01 -2.95941949e-01 -9.13587883e-02 -5.27914941e-01 8.02960843e-02 5.62455893e-01 1.50103509e-01 3.67529690e-01 -1.36307013e+00 8.63995329e-02 -3.72877091e-01 -7.26851404e-01 -7.44777441e-01 2.23888636e-01 -6.65221095e-01 3.14557254e-02 -1.08787513e+00 5.58380902e-01 -2.32168183e-01 -8.66747499e-01 7.79951036e-01 -3.94417197e-01 7.19665229e-01 2.16572389e-01 1.54108673e-01 -2.92919904e-01 6.67461038e-01 1.35300720e+00 -3.65608275e-01 1.07200459e-01 -1.57685921e-01 -5.71082056e-01 3.15832287e-01 4.30905193e-01 -5.72342053e-02 -9.74454880e-02 -3.54936451e-01 -3.89065236e-01 -7.68809095e-02 2.57499874e-01 -8.49479318e-01 4.04794008e-01 -1.30980760e-01 1.02210784e+00 -3.78349841e-01 6.75195277e-01 -8.86404932e-01 -2.79950406e-02 4.25587088e-01 -1.38525605e-01 6.03112951e-02 2.61822969e-01 2.44668230e-01 -2.74466813e-01 -5.34389056e-02 8.29018712e-01 1.02813430e-01 -6.10699534e-01 9.71374393e-01 1.70182481e-01 -3.90523553e-01 8.68516445e-01 -3.39942276e-01 -2.91038126e-01 -8.48498568e-02 -5.39614260e-01 1.76105186e-01 -2.02612698e-01 5.32259226e-01 1.02617395e+00 -1.79818380e+00 -9.17157590e-01 8.82331789e-01 1.46790504e-01 -2.62388974e-01 6.48729086e-01 7.49176264e-01 -4.95142564e-02 1.40863165e-01 -7.29490995e-01 -3.66341919e-01 -1.75170219e+00 3.39410275e-01 5.33442318e-01 -7.79040754e-02 6.42907619e-03 1.29004872e+00 4.15839136e-01 -1.48550659e-01 1.64200127e-01 1.98257580e-01 -6.50651813e-01 1.11798130e-01 8.50141466e-01 2.16081262e-01 1.86328113e-01 -1.14134240e+00 -7.56166220e-01 1.13873291e+00 -3.96181792e-01 1.74595475e-01 1.15393019e+00 2.45973185e-01 -7.15728343e-01 -1.51662886e-01 1.42503405e+00 -1.07625574e-01 -1.11680663e+00 -2.79020131e-01 -4.81860608e-01 -8.68428946e-01 -1.09083928e-01 -7.26974130e-01 -1.51634836e+00 1.03320467e+00 9.21648979e-01 -2.76281863e-01 1.46950912e+00 -3.08458060e-01 5.47333658e-01 2.35189483e-01 2.94550151e-01 -7.28560925e-01 9.40119922e-02 3.76340806e-01 1.32646036e+00 -1.07634878e+00 1.28851131e-01 -3.46207261e-01 -1.18678086e-01 1.16946614e+00 8.33871543e-01 4.58367653e-02 1.00605190e+00 -3.79239023e-02 -6.11211807e-02 -2.17169169e-02 -3.99619460e-01 1.97380453e-01 6.66968346e-01 4.90722865e-01 3.25841755e-01 -1.31462961e-01 -2.82864094e-01 7.54412889e-01 1.44157723e-01 5.27529046e-02 -3.23087305e-01 5.41937053e-01 -2.46710747e-01 -1.16518378e+00 -5.83173692e-01 6.86600685e-01 -4.55519676e-01 -1.28772827e-02 -3.33578557e-01 4.75477219e-01 4.74105567e-01 7.88465440e-01 -4.45029046e-03 -5.91656387e-01 2.75892198e-01 1.17026404e-01 5.49098611e-01 -2.50121295e-01 -5.66451669e-01 -1.91879764e-01 -4.79160666e-01 -4.99703944e-01 -3.32114398e-01 -6.64641142e-01 -8.36225450e-01 -3.17340910e-01 -4.45425481e-01 2.31351126e-02 3.55916739e-01 7.84857690e-01 4.03744310e-01 3.15457970e-01 1.02295578e+00 -9.82207358e-01 -5.93573868e-01 -1.23482883e+00 -5.27031064e-01 5.29314339e-01 4.43649381e-01 -9.92000759e-01 -2.42364183e-01 -1.09408632e-01]
[13.172743797302246, 0.6984913349151611]
7507dfca-7cae-43c7-97dc-66e0d321595a
wavemixsr-a-resource-efficient-neural-network
2307.0043
null
https://arxiv.org/abs/2307.00430v1
https://arxiv.org/pdf/2307.00430v1.pdf
WaveMixSR: A Resource-efficient Neural Network for Image Super-resolution
Image super-resolution research recently been dominated by transformer models which need higher computational resources than CNNs due to the quadratic complexity of self-attention. We propose a new neural network -- WaveMixSR -- for image super-resolution based on WaveMix architecture which uses a 2D-discrete wavelet transform for spatial token-mixing. Unlike transformer-based models, WaveMixSR does not unroll the image as a sequence of pixels/patches. It uses the inductive bias of convolutions along with the lossless token-mixing property of wavelet transform to achieve higher performance while requiring fewer resources and training data. We compare the performance of our network with other state-of-the-art methods for image super-resolution. Our experiments show that WaveMixSR achieves competitive performance in all datasets and reaches state-of-the-art performance in the BSD100 dataset on multiple super-resolution tasks. Our model is able to achieve this performance using less training data and computational resources while maintaining high parameter efficiency compared to current state-of-the-art models.
['Amit Sethi', 'Pasunuri Prathiba', 'Akella Srinidhi', 'Pranav Jeevan']
2023-07-01
null
null
null
null
['image-super-resolution', 'super-resolution']
['computer-vision', 'computer-vision']
[ 3.80888402e-01 -5.01231700e-02 -6.08890541e-02 -9.65607613e-02 -1.28096759e+00 1.51141435e-01 4.95885670e-01 -4.79238123e-01 -4.08365548e-01 6.82886481e-01 5.31010330e-01 3.87802608e-02 1.44264564e-01 -1.01524997e+00 -8.37300062e-01 -6.00803554e-01 3.94685604e-02 1.57907590e-01 5.53123891e-01 -4.12333548e-01 8.30871332e-03 2.40829542e-01 -1.62937498e+00 1.07583869e+00 6.43620670e-01 9.45981503e-01 5.74033856e-01 5.86605847e-01 -1.88420638e-01 1.00396144e+00 -1.43642604e-01 -1.02033377e-01 3.27008903e-01 -4.71978754e-01 -8.59116256e-01 -1.94528371e-01 9.36246872e-01 -6.21476591e-01 -6.76355720e-01 1.17806768e+00 7.83727467e-01 7.14484304e-02 1.67457148e-01 -4.11276162e-01 -1.24512732e+00 8.86117041e-01 -8.13687563e-01 6.97514176e-01 8.52813199e-03 -1.31925881e-01 8.36408317e-01 -1.34482872e+00 7.22856998e-01 1.39828503e+00 9.35600698e-01 6.43360019e-01 -1.63721025e+00 -8.09752762e-01 -9.06217545e-02 4.00451601e-01 -1.38087034e+00 -6.00234270e-01 4.99736130e-01 2.29518265e-02 1.27908111e+00 -1.01362308e-02 4.56640810e-01 1.01824892e+00 3.48743610e-02 5.84561825e-01 1.34335899e+00 -3.31086129e-01 1.57392070e-01 -1.29184827e-01 -2.15467855e-01 7.75818169e-01 -1.18846111e-01 -1.97117925e-02 -8.83078456e-01 2.76580006e-01 1.66254985e+00 -1.39092267e-01 -1.64508998e-01 4.43308614e-02 -1.25196946e+00 7.09332466e-01 7.43166566e-01 6.92234635e-01 -6.20821178e-01 4.10046071e-01 1.20391533e-01 3.34958106e-01 9.28262413e-01 2.62827814e-01 -3.22298676e-01 1.85415432e-01 -1.51033902e+00 3.23071480e-01 1.07838988e-01 7.33090699e-01 5.89789748e-01 3.84868741e-01 -3.06403160e-01 8.91506433e-01 -4.81576174e-01 1.07688606e-01 5.73599637e-01 -1.34306276e+00 4.76885349e-01 2.39788204e-01 1.08470418e-01 -6.55913293e-01 -2.96166539e-01 -7.70571530e-01 -1.33149838e+00 6.06989503e-01 1.83915317e-01 2.62696981e-01 -1.07151520e+00 1.73296642e+00 -6.70604184e-02 5.89881420e-01 8.34937990e-02 9.94203866e-01 1.07250953e+00 8.20962608e-01 -2.91194208e-02 -2.87865400e-01 1.49087512e+00 -1.08077300e+00 -7.51921594e-01 -1.27714887e-01 5.07606342e-02 -6.79831684e-01 1.05513239e+00 2.99750388e-01 -1.80646634e+00 -8.85335386e-01 -1.07776487e+00 -6.60147190e-01 -1.94981515e-01 1.23362364e-02 5.68600476e-01 1.74879029e-01 -1.54791284e+00 1.01266348e+00 -8.65171075e-01 -2.31352061e-01 9.88236368e-01 1.69232160e-01 -5.14297247e-01 -2.14082405e-01 -1.04729807e+00 1.05014396e+00 2.12312371e-01 -3.21590960e-01 -9.01388884e-01 -1.39478707e+00 -6.65389121e-01 3.13806564e-01 4.88329306e-02 -9.43527699e-01 1.09236157e+00 -6.44259453e-01 -1.55512118e+00 8.41547370e-01 -4.20609683e-01 -8.44727695e-01 4.55499023e-01 -3.74406427e-01 -3.63538176e-01 4.78721201e-01 5.80072664e-02 7.81244874e-01 1.07958996e+00 -1.24418032e+00 -8.08278561e-01 -2.26357788e-01 -1.10053219e-01 1.38343647e-01 -3.03195179e-01 1.92810908e-01 -3.41307253e-01 -8.22760344e-01 1.97263867e-01 -4.11258489e-01 -3.04040939e-01 4.66395728e-02 5.70787527e-02 7.12333387e-03 8.16550434e-01 -7.75673389e-01 1.03764391e+00 -2.09241462e+00 3.56746286e-01 -6.02748096e-01 5.69007397e-01 4.58773524e-01 -4.92106229e-01 -2.58164369e-02 -3.67424726e-01 2.32369512e-01 -1.75634027e-01 -6.82629824e-01 -4.04804945e-01 -7.71484375e-02 -4.72977310e-01 3.11330706e-01 4.89700943e-01 9.26795185e-01 -7.48156726e-01 -5.46282113e-01 3.23182672e-01 1.14591038e+00 -5.89020550e-01 -7.29087461e-03 -7.06230327e-02 3.30034971e-01 -1.45605057e-01 4.03807491e-01 9.15126503e-01 -5.42793393e-01 -1.39001623e-01 -6.46554351e-01 -3.92563730e-01 2.71831959e-01 -9.29393470e-01 2.16110396e+00 -7.77850211e-01 7.45491624e-01 5.10015748e-02 -9.25124526e-01 6.17913544e-01 3.64021182e-01 4.21298862e-01 -1.05416250e+00 -1.51458815e-01 1.59322590e-01 -5.87751329e-01 -3.33496392e-01 5.94710410e-01 -1.24258175e-01 5.19719243e-01 2.53344029e-01 2.96070635e-01 2.42694151e-02 5.71378618e-02 1.55306160e-01 1.24486864e+00 3.36673945e-01 -1.09894954e-01 -3.95798713e-01 2.09532455e-01 -1.19233452e-01 3.52172673e-01 7.54741013e-01 3.13104987e-01 9.87180650e-01 4.27721255e-02 -7.75635481e-01 -1.51160741e+00 -1.30133569e+00 -2.90900022e-02 1.20861244e+00 -4.13507521e-02 -2.23437786e-01 -8.14697385e-01 -4.13183607e-02 -4.60653484e-01 5.13224959e-01 -7.54978478e-01 2.44976386e-01 -8.69580925e-01 -9.39965367e-01 4.21243191e-01 6.06914878e-01 1.12801969e+00 -9.05674279e-01 -7.40143836e-01 3.20865870e-01 -4.82029051e-01 -1.46542716e+00 -1.98756874e-01 1.07166573e-01 -1.03814244e+00 -5.71481705e-01 -1.02898705e+00 -9.92186308e-01 4.22925979e-01 4.68961567e-01 1.30816174e+00 -1.50044486e-01 -5.62826872e-01 -2.48376742e-01 -2.59329140e-01 1.16687596e-01 -6.69240579e-02 2.21674263e-01 -2.47682646e-01 -1.16085567e-01 -3.57146338e-02 -1.12633204e+00 -8.38222265e-01 1.74760688e-02 -1.04594624e+00 4.80269194e-01 8.48736167e-01 9.58603680e-01 8.90904188e-01 4.45463747e-01 4.50060517e-01 -7.29982793e-01 3.92548233e-01 -2.02509940e-01 -3.94995868e-01 -8.33823979e-02 -5.01991749e-01 2.24741340e-01 6.42307103e-01 -7.09619224e-01 -1.31047392e+00 -7.84293190e-02 1.09842159e-01 -6.56222761e-01 1.84910551e-01 2.62038857e-01 2.56964982e-01 -2.84838408e-01 8.25606227e-01 4.64088678e-01 -2.32483074e-02 -8.92359257e-01 5.01553833e-01 1.78800687e-01 9.05191600e-01 -1.22305393e-01 9.75036323e-01 9.47911322e-01 2.02850729e-01 -8.04064512e-01 -1.14707601e+00 -6.74703047e-02 -5.88600695e-01 1.76845059e-01 1.00792909e+00 -1.31759548e+00 -3.43569368e-01 4.04629588e-01 -1.14693248e+00 -4.48639959e-01 -4.40101236e-01 3.30704093e-01 -5.46279788e-01 -3.66052799e-02 -1.07610655e+00 -4.85227078e-01 -4.88495946e-01 -8.97281647e-01 9.69938636e-01 1.30220950e-01 2.62793541e-01 -6.61104441e-01 -2.83737898e-01 3.12186331e-01 1.21101105e+00 2.97830760e-01 8.29849720e-01 1.34737819e-01 -8.71526361e-01 2.15874717e-01 -9.22619224e-01 2.22363338e-01 9.94313275e-04 -6.80458307e-01 -1.00266123e+00 -2.81449407e-01 -1.46886874e-02 -3.84245574e-01 1.51283514e+00 6.33539975e-01 1.25967133e+00 -4.22563553e-01 -8.47510397e-02 1.02933431e+00 1.84594893e+00 -4.10407722e-01 1.03939319e+00 4.58645761e-01 5.59062719e-01 2.25105554e-01 1.11747451e-01 2.57297277e-01 4.18160915e-01 6.76608324e-01 5.74828207e-01 -6.73770368e-01 -8.91655207e-01 -1.55802563e-01 1.60847440e-01 5.44810295e-01 -5.57216763e-01 1.59052253e-01 -3.81279230e-01 7.83703387e-01 -1.84893262e+00 -1.35078466e+00 -2.94821858e-02 1.98432672e+00 1.14454114e+00 -6.93932027e-02 -4.77704443e-02 -3.20459157e-02 6.65135860e-01 5.45242369e-01 -5.18593669e-01 -2.74276342e-02 -4.69181895e-01 7.39815176e-01 5.59552431e-01 6.37975097e-01 -1.07879090e+00 1.20926428e+00 6.88148069e+00 1.03935158e+00 -9.49855149e-01 4.93866742e-01 7.12823927e-01 -4.40217406e-01 -1.35084912e-01 -4.60759848e-01 -6.99341118e-01 4.90657464e-02 8.02423596e-01 7.71041811e-02 9.10111725e-01 3.96994919e-01 9.49090049e-02 1.42391697e-01 -8.76972139e-01 1.11995184e+00 4.25031707e-02 -1.89162838e+00 2.42006272e-01 -1.82150647e-01 8.14554334e-01 3.89788955e-01 4.34188992e-01 1.28606007e-01 4.31830972e-01 -1.44755435e+00 6.40228748e-01 3.62467498e-01 1.25744426e+00 -7.06840217e-01 5.76705575e-01 2.01461706e-02 -1.38062418e+00 -1.02143228e-01 -7.76269257e-01 -2.22817827e-02 5.43014705e-02 6.95783734e-01 -2.03082591e-01 5.25313318e-01 1.24870098e+00 7.06159174e-01 -3.50587249e-01 6.42712116e-01 1.67320281e-01 4.10939544e-01 -2.15497568e-01 7.18870163e-01 1.19434483e-01 2.53498703e-01 3.96577299e-01 1.34413183e+00 5.70353150e-01 3.73673975e-01 -1.13601469e-01 1.12126911e+00 -2.37296864e-01 -2.98284501e-01 -1.16785511e-01 1.87681347e-01 4.61649030e-01 1.17912006e+00 -4.79276717e-01 -4.78382766e-01 -4.12061125e-01 1.11060858e+00 4.15849984e-01 4.10360932e-01 -6.51172459e-01 -1.73081160e-01 6.63093448e-01 5.18046319e-01 8.10443044e-01 -1.76493391e-01 -3.70716631e-01 -1.09552956e+00 -9.57367644e-02 -7.59089351e-01 2.10241988e-01 -1.04502070e+00 -1.12674952e+00 1.10961604e+00 -1.11862935e-01 -1.09680474e+00 1.01977229e-01 -3.41376096e-01 -1.42957300e-01 1.10118425e+00 -2.14365435e+00 -1.58142436e+00 -5.25366902e-01 8.41732144e-01 7.82627821e-01 -4.52494472e-02 8.75255644e-01 3.75904739e-01 -1.76037610e-01 3.83155495e-01 -3.95372212e-02 9.81600061e-02 6.14848197e-01 -1.05269325e+00 7.21236110e-01 8.76224816e-01 -4.81406376e-02 3.13207597e-01 8.41162086e-01 -3.70970130e-01 -1.24701869e+00 -1.19931030e+00 8.60982358e-01 -1.85724050e-01 6.38253272e-01 -1.84100240e-01 -1.12997639e+00 6.42142057e-01 5.22665203e-01 5.64522386e-01 1.73059121e-01 -1.07778877e-01 -8.68109584e-01 -2.39686191e-01 -1.28580439e+00 4.85006332e-01 1.42087972e+00 -5.01359105e-01 -5.12351930e-01 8.26598555e-02 1.06440091e+00 -5.13571858e-01 -1.02443707e+00 3.10999602e-01 4.19842958e-01 -1.17067075e+00 1.53446555e+00 -3.38154078e-01 1.04991531e+00 -2.73399740e-01 -2.06216782e-01 -1.21134341e+00 -1.12692547e+00 -5.89470088e-01 -1.38950884e-01 9.78766859e-01 2.87141591e-01 -4.28755462e-01 6.65501177e-01 1.13652498e-01 8.78639594e-02 -6.63869500e-01 -1.20249724e+00 -6.29395247e-01 1.10186830e-01 -6.04435354e-02 6.21261537e-01 9.43325877e-01 -3.94847274e-01 3.30873311e-01 -5.26441514e-01 2.38731071e-01 1.22532690e+00 1.06726393e-01 1.70916229e-01 -1.01437545e+00 -2.04491690e-01 -4.99632269e-01 -9.51175541e-02 -8.51525187e-01 -4.42041345e-02 -7.64136434e-01 -2.34237641e-01 -1.73142970e+00 4.36444789e-01 -1.69221647e-02 -4.46046740e-01 6.75665736e-01 4.98685334e-03 9.45586741e-01 1.77181363e-01 3.20466161e-01 -5.64699471e-01 4.12446052e-01 1.38025999e+00 -2.36636288e-02 -2.22244233e-01 -5.49059331e-01 -8.10921490e-01 5.93082070e-01 7.00602949e-01 -2.85340697e-01 -2.38849193e-01 -9.53710139e-01 2.00135991e-01 2.31607467e-01 6.12486959e-01 -1.12350488e+00 2.79270709e-01 1.37434900e-01 7.03125477e-01 -5.04983783e-01 6.15668714e-01 -5.40195286e-01 1.24508448e-01 2.87560076e-01 -5.50796986e-01 -2.84502469e-03 2.85532326e-01 2.75692284e-01 -1.19024657e-01 3.62477988e-01 1.24315810e+00 -6.21834576e-01 -5.47002196e-01 3.20208371e-01 -2.66019017e-01 -2.95947678e-02 3.84512126e-01 -1.50215298e-01 -6.68176711e-01 -2.02699691e-01 -7.35417128e-01 -2.67875969e-01 3.98647636e-01 3.26575160e-01 8.55020344e-01 -1.31631172e+00 -1.29699504e+00 1.08012125e-01 -5.10141909e-01 1.34471774e-01 5.90549409e-01 5.37166059e-01 -3.92777532e-01 1.64419144e-01 -5.38658679e-01 -3.19585413e-01 -1.23489404e+00 6.45130396e-01 2.95060307e-01 -6.15797937e-01 -1.25524855e+00 9.36571419e-01 1.70637548e-01 1.87870383e-01 -1.25226751e-03 -1.89604610e-01 -1.67854741e-01 -1.31924391e-01 1.14440846e+00 4.37913120e-01 -9.25142318e-02 -2.51195818e-01 -1.01129860e-01 7.93518662e-01 -2.85849214e-01 -2.00829670e-01 1.90326667e+00 -2.34862417e-01 -3.01442713e-01 7.43856877e-02 1.06283879e+00 -3.88501972e-01 -1.46572971e+00 -8.06873262e-01 -4.16465580e-01 -5.54452181e-01 7.65311599e-01 -9.34170306e-01 -1.36526704e+00 8.10107291e-01 7.83547640e-01 6.56503066e-02 1.57488692e+00 -3.87385883e-03 9.32134032e-01 -6.57462552e-02 5.12749195e-01 -1.01932478e+00 2.46374249e-01 2.87210912e-01 1.06941581e+00 -1.11449289e+00 1.62839279e-01 -3.77230197e-01 -3.28671038e-01 8.96542072e-01 4.02959913e-01 -5.41506946e-01 5.67398548e-01 5.93481183e-01 -1.85388878e-01 4.73339260e-02 -9.70930934e-01 -3.29869479e-01 1.63533866e-01 6.87453330e-01 3.26217711e-01 -2.19327077e-01 6.58358708e-02 4.84765351e-01 -1.43460557e-01 4.69905704e-01 3.31880569e-01 4.71160918e-01 -4.84910041e-01 -7.57735431e-01 -2.85447896e-01 1.37829348e-01 -8.16540003e-01 -6.40917957e-01 1.92232892e-01 5.44094980e-01 8.62568691e-02 7.41352856e-01 1.70906708e-01 -3.00050914e-01 9.77904126e-02 -1.80327341e-01 7.98188984e-01 -3.63544911e-01 -4.81566310e-01 1.75081193e-01 -1.35930598e-01 -9.54574883e-01 -7.52864301e-01 -3.18970531e-01 -9.91295815e-01 -4.82409477e-01 2.96940412e-02 -2.81960726e-01 5.43171465e-01 6.40104651e-01 6.46502376e-01 9.97361124e-01 3.82020175e-01 -1.37897635e+00 -4.51485068e-01 -1.09200847e+00 -5.36673903e-01 2.01101899e-01 6.78405821e-01 -2.89447337e-01 -1.35526508e-01 3.36145133e-01]
[11.086946487426758, -1.9382935762405396]
401345d1-308c-422b-838e-5395edfed681
learning-invariant-representations-for-2
2209.10944
null
https://arxiv.org/abs/2209.10944v1
https://arxiv.org/pdf/2209.10944v1.pdf
Learning Invariant Representations for Equivariant Neural Networks Using Orthogonal Moments
The convolutional layers of standard convolutional neural networks (CNNs) are equivariant to translation. However, the convolution and fully-connected layers are not equivariant or invariant to other affine geometric transformations. Recently, a new class of CNNs is proposed in which the conventional layers of CNNs are replaced with equivariant convolution, pooling, and batch-normalization layers. The final classification layer in equivariant neural networks is invariant to different affine geometric transformations such as rotation, reflection and translation, and the scalar value is obtained by either eliminating the spatial dimensions of filter responses using convolution and down-sampling throughout the network or average is taken over the filter responses. In this work, we propose to integrate the orthogonal moments which gives the high-order statistics of the function as an effective means for encoding global invariance with respect to rotation, reflection and translation in fully-connected layers. As a result, the intermediate layers of the network become equivariant while the classification layer becomes invariant. The most widely used Zernike, pseudo-Zernike and orthogonal Fourier-Mellin moments are considered for this purpose. The effectiveness of the proposed work is evaluated by integrating the invariant transition and fully-connected layer in the architecture of group-equivariant CNNs (G-CNNs) on rotated MNIST and CIFAR10 datasets.
['Chandan Singh', 'Jaspreet Singh']
2022-09-22
null
null
null
null
['rotated-mnist']
['computer-vision']
[-7.62506425e-02 -2.53350168e-01 2.51700908e-01 -7.16381192e-01 1.64538473e-01 -7.00397491e-01 7.74975538e-01 -3.05467546e-01 -8.82630885e-01 4.55126375e-01 2.04011664e-01 7.00281858e-02 -2.13684097e-01 -9.51503694e-01 -8.36370051e-01 -7.68567085e-01 -6.12366274e-02 -3.78685355e-01 3.24212432e-01 -3.82634491e-01 -5.85327744e-02 1.17810357e+00 -1.27000833e+00 3.33422512e-01 2.75386214e-01 1.06163764e+00 -3.72459620e-01 6.80186987e-01 2.75665224e-01 4.85971957e-01 -2.93196350e-01 -3.80264163e-01 3.64485592e-01 -2.21928194e-01 -7.30634332e-01 -2.32303903e-01 6.31361604e-01 -2.61053443e-01 -7.32151210e-01 1.42308319e+00 4.76763725e-01 5.23030043e-01 6.25430763e-01 -7.96986878e-01 -1.02113283e+00 5.36100805e-01 2.07731962e-01 4.57931280e-01 -3.18606019e-01 -1.42788827e-01 9.68480110e-01 -1.17026877e+00 4.87885624e-01 1.46425867e+00 7.18567014e-01 2.35837683e-01 -1.02607787e+00 -3.24818164e-01 2.64236450e-01 2.80999929e-01 -1.44692492e+00 -3.56758863e-01 6.96875513e-01 -1.99059457e-01 9.73092973e-01 4.98023987e-01 6.03903651e-01 7.67999053e-01 6.94753110e-01 3.32069874e-01 8.23473215e-01 -1.59900323e-01 8.51253867e-02 -2.28821769e-01 1.37362912e-01 8.38623405e-01 2.53795981e-01 -3.54097068e-01 -1.20494040e-02 2.50118613e-01 1.23473740e+00 5.93455017e-01 -1.84514463e-01 -9.00919735e-02 -1.39856529e+00 6.46636724e-01 9.94108617e-01 3.69052380e-01 -4.66209084e-01 1.26302660e-01 3.07826489e-01 4.33486819e-01 3.41449738e-01 5.68751454e-01 -5.46677768e-01 5.22561431e-01 -4.49618250e-01 2.65821040e-01 4.14380550e-01 7.75806427e-01 8.45530212e-01 4.63901252e-01 -3.97427768e-01 6.67786598e-01 1.66909575e-01 3.36002231e-01 8.51898789e-01 -5.76755166e-01 1.48955449e-01 7.16108561e-01 -3.71426731e-01 -1.11746240e+00 -7.08828926e-01 -9.49310541e-01 -1.26810527e+00 1.63091496e-01 2.06697643e-01 -2.18079928e-02 -1.03732884e+00 1.79230726e+00 -7.55841332e-03 1.50972277e-01 2.06413746e-01 8.66413951e-01 8.69060934e-01 2.60672301e-01 -1.97989777e-01 1.21404357e-01 1.41316032e+00 -8.11737061e-01 -8.79313707e-01 8.25914219e-02 1.85360193e-01 -9.99312401e-01 1.04496574e+00 -1.84956506e-01 -1.16173601e+00 -9.77953255e-01 -1.37048733e+00 -2.75148690e-01 -8.98008585e-01 2.59106725e-01 5.08937001e-01 3.40653539e-01 -1.06873941e+00 7.41095722e-01 -8.63179862e-01 -1.59898251e-01 3.02496910e-01 5.26766002e-01 -5.91426253e-01 1.05792023e-01 -1.36272573e+00 6.42148733e-01 4.50758964e-01 3.20482016e-01 -4.86301929e-01 -5.36336243e-01 -8.88299584e-01 2.95148730e-01 -3.29616725e-01 -5.17831981e-01 9.77855325e-01 -1.05983794e+00 -1.61129022e+00 4.55740958e-01 -3.48221860e-03 -3.85165542e-01 4.41605777e-01 -1.57237381e-01 -5.25040150e-01 -1.90753827e-03 -3.04140955e-01 4.63318646e-01 9.54213679e-01 -3.83262217e-01 -3.16007465e-01 -4.35704827e-01 3.55824947e-01 2.13939875e-01 -5.10576904e-01 -5.27119450e-02 -2.44099990e-01 -9.53976631e-01 9.54845667e-01 -1.02467811e+00 -8.92786235e-02 -2.41668895e-01 -3.36003602e-01 -1.53502762e-01 1.10509586e+00 -5.59817433e-01 8.38230252e-01 -2.33578229e+00 5.81509620e-03 2.47398138e-01 1.05365358e-01 3.14148128e-01 -2.80023664e-01 -7.85024371e-03 -5.82195759e-01 8.49373341e-02 1.53186679e-01 -1.87494308e-02 -1.02350853e-01 1.86743498e-01 -2.72652566e-01 8.74403059e-01 5.02333224e-01 1.01614153e+00 -5.60597062e-01 -1.02521524e-01 4.12435383e-01 8.14020574e-01 -7.64157116e-01 -1.26686543e-01 1.44143701e-01 4.45284218e-01 -2.70856112e-01 2.73612380e-01 8.35797966e-01 6.73289001e-02 -1.80667967e-01 -6.33766651e-01 -3.89180958e-01 1.56884745e-01 -1.18227220e+00 1.43799639e+00 -2.94582129e-01 7.25986660e-01 -3.45789820e-01 -1.11206543e+00 9.62091267e-01 3.51068974e-01 3.05467248e-01 -5.13821661e-01 5.44634521e-01 6.50155544e-02 2.67818600e-01 -2.69387394e-01 4.05410528e-01 1.93386674e-01 4.71638516e-02 7.19194114e-02 5.46584964e-01 1.60214454e-01 2.00920925e-02 -2.87828684e-01 6.45308614e-01 -3.22134495e-02 2.21148670e-01 -4.91186082e-01 8.36742580e-01 -7.13215351e-01 4.94522512e-01 5.16231477e-01 1.18539721e-01 7.48219848e-01 3.90573293e-01 -1.09108829e+00 -9.88901079e-01 -1.21073759e+00 -4.01258498e-01 9.85751271e-01 -1.27879366e-01 2.11551804e-02 -1.02922404e+00 -2.46819213e-01 -3.84895384e-01 2.23262012e-01 -6.59515977e-01 -5.87522209e-01 -7.07028866e-01 -1.01368403e+00 7.22607911e-01 5.73315620e-01 1.38623238e+00 -7.54484415e-01 -3.87196541e-01 1.68179765e-01 -4.14948240e-02 -1.38539910e+00 -4.75594670e-01 2.71691442e-01 -9.87346053e-01 -9.94408607e-01 -6.54450715e-01 -7.74221599e-01 9.08842742e-01 6.62682131e-02 2.76024729e-01 -5.09964108e-01 -2.27352038e-01 1.02972321e-01 -1.02205969e-01 -2.96906233e-01 1.31264195e-01 1.68834418e-01 4.18513358e-01 6.80240750e-01 -5.18540740e-02 -7.91153312e-01 -6.65715337e-01 4.16827053e-01 -1.04094160e+00 -2.48622745e-01 5.82029998e-01 7.00016379e-01 8.32431078e-01 6.29817769e-02 2.91142851e-01 -5.96898675e-01 5.66963196e-01 5.62786609e-02 -4.59699661e-01 8.33427813e-03 5.74765094e-02 3.56492370e-01 1.05156291e+00 -7.34940827e-01 -9.13150549e-01 3.50605808e-02 -1.69131652e-01 -5.43120980e-01 -4.72912155e-02 3.66976649e-01 -3.30795258e-01 -5.02753556e-01 8.49108517e-01 3.99181694e-02 -4.18593168e-01 -4.78667498e-01 3.91945124e-01 1.68650895e-01 8.15516949e-01 -1.79089919e-01 1.03166735e+00 7.13188469e-01 3.59672815e-01 -1.05153775e+00 -6.14703774e-01 -8.37706588e-03 -1.04766273e+00 -8.87530670e-02 1.19653690e+00 -7.41341710e-01 -6.23332560e-01 9.80586529e-01 -1.33935785e+00 1.19212233e-01 -4.19745743e-01 1.10318446e+00 -2.84179926e-01 -7.35863298e-02 -4.39920127e-01 -2.07375363e-01 -1.99515000e-01 -1.32533705e+00 5.26140869e-01 4.66032445e-01 1.57236710e-01 -1.01194072e+00 -3.72773647e-01 -5.45277238e-01 8.69579315e-01 4.20617700e-01 1.06878591e+00 -7.94993818e-01 -5.17109036e-01 -6.60163403e-01 -3.55685681e-01 7.57440150e-01 1.58109143e-01 5.49337640e-02 -1.14697981e+00 -2.79698730e-01 6.37301132e-02 1.92520678e-01 9.91626620e-01 5.70666552e-01 1.35186934e+00 -5.86498439e-01 3.67900550e-01 1.28804851e+00 1.28334761e+00 -1.94068924e-02 6.40825331e-01 2.66966343e-01 6.95351303e-01 1.69658124e-01 -1.82899758e-01 2.24387407e-01 1.13754153e-01 4.02453393e-01 6.56741858e-01 -3.59344006e-01 -4.59357463e-02 2.40480900e-02 2.57110506e-01 8.92546117e-01 -7.90048301e-01 1.24434642e-01 -3.18616122e-01 1.79090843e-01 -1.64966059e+00 -9.48818266e-01 -9.77636650e-02 2.22828627e+00 4.03778076e-01 7.07179829e-02 -5.41318476e-01 2.32619613e-01 6.44741893e-01 3.90957922e-01 -4.39227879e-01 -7.03220725e-01 -4.71368611e-01 6.13954544e-01 8.36336195e-01 3.87180805e-01 -1.58355737e+00 1.00062931e+00 5.58482695e+00 4.90812182e-01 -1.57221782e+00 -6.37974143e-02 3.73653114e-01 2.55229592e-01 1.11922830e-01 -2.23401159e-01 -6.00002468e-01 -1.98592186e-01 6.59840584e-01 1.50530010e-01 5.48779666e-01 8.61298621e-01 8.50887001e-02 5.21560550e-01 -1.00182331e+00 6.59199893e-01 -6.84323385e-02 -1.18124664e+00 3.77582908e-01 -2.00135499e-01 8.84431660e-01 2.45992780e-01 4.52470779e-01 2.58761078e-01 4.33527492e-02 -9.97896492e-01 8.05035949e-01 9.00848269e-01 7.94849753e-01 -8.69054437e-01 9.37899590e-01 -1.69935495e-01 -1.35076678e+00 -1.38863167e-02 -7.31048107e-01 -1.37429208e-01 -4.19676363e-01 2.37763315e-01 -5.22760689e-01 4.04859811e-01 8.28429520e-01 6.56473696e-01 -6.69286788e-01 7.05926538e-01 -1.64495856e-01 2.26553768e-01 -1.81998178e-01 7.23973885e-02 5.57397902e-01 -1.55010462e-01 4.34740067e-01 1.19027841e+00 3.28966290e-01 -1.31105976e-02 -1.95862710e-01 6.85239851e-01 -3.91091555e-01 5.24406284e-02 -4.25553054e-01 6.21509105e-02 -3.24290469e-02 1.36276889e+00 -7.94270813e-01 -1.44486770e-01 -4.12408203e-01 9.53915060e-01 1.18341714e-01 9.04292703e-01 -7.28399098e-01 -9.28890109e-01 1.05191338e+00 -1.43671870e-01 2.18782827e-01 -5.01715600e-01 -1.04251526e-01 -1.25075996e+00 -6.09581098e-02 -4.29465026e-01 1.81466043e-01 -4.61184829e-01 -7.49906480e-01 6.87118709e-01 -2.64662020e-02 -1.03291070e+00 1.03743464e-01 -1.12949502e+00 -7.20140636e-01 1.11048126e+00 -1.53611743e+00 -1.13693845e+00 -4.28510100e-01 1.19794106e+00 3.49440455e-01 -4.20953393e-01 9.08393562e-01 3.78064871e-01 -4.10193443e-01 7.58522391e-01 8.25957805e-02 7.39806294e-01 5.74457109e-01 -9.75869954e-01 5.45922935e-01 9.95889723e-01 -2.41858289e-02 1.09294462e+00 3.78290951e-01 -2.43258663e-02 -1.35279858e+00 -1.62831843e+00 7.83640802e-01 1.72369078e-01 4.85451311e-01 -4.30606246e-01 -8.54856670e-01 1.00827909e+00 -1.03390537e-01 7.38912642e-01 2.60185599e-01 -3.53136748e-01 -6.46472454e-01 -4.12617832e-01 -1.00297809e+00 8.91185045e-01 8.86659920e-01 -7.43868828e-01 -3.76090020e-01 2.37510994e-01 9.09475744e-01 -4.71986473e-01 -8.14647913e-01 6.10489249e-01 7.68159389e-01 -8.16838443e-01 1.17931390e+00 -1.01690471e+00 5.36980554e-02 -3.90663028e-01 -5.97968698e-01 -1.31235671e+00 -7.39519179e-01 -3.66530240e-01 5.27451277e-01 6.29160225e-01 2.67304212e-01 -1.18136847e+00 1.31000921e-01 5.94834238e-02 -4.47906733e-01 -4.61232662e-01 -9.91926968e-01 -6.04297400e-01 -2.52763219e-02 -3.04423004e-01 7.93922961e-01 1.12611938e+00 -6.72166944e-01 7.73185119e-02 4.10858653e-02 5.13015866e-01 2.11464509e-01 -4.45945531e-01 4.30870861e-01 -1.26478481e+00 1.72184065e-01 -4.85284984e-01 -9.89295721e-01 -6.82383001e-01 1.34476930e-01 -1.19309258e+00 -5.07592738e-01 -1.11132622e+00 -2.00303599e-01 1.80810317e-01 -6.26438856e-01 5.16198218e-01 2.57037252e-01 4.98906910e-01 -6.41622068e-03 2.13667527e-02 -2.40392715e-01 4.35099572e-01 1.47554660e+00 -6.28745034e-02 -2.08765656e-01 1.78101197e-01 -3.49672735e-01 1.15296733e+00 9.95574117e-01 6.01317286e-02 -3.00673008e-01 -4.72011805e-01 1.28173739e-01 -5.84221721e-01 6.94316268e-01 -1.22513700e+00 2.27781817e-01 7.97038972e-02 8.28673601e-01 -3.52228016e-01 1.83451012e-01 -8.08992684e-01 -5.09938598e-03 4.75876272e-01 -3.15073073e-01 4.87374097e-01 1.42955378e-01 2.35351160e-01 -4.12009507e-01 3.10039129e-02 1.12802780e+00 -1.77341238e-01 -4.75674033e-01 7.29633451e-01 -3.71194422e-01 -2.24870428e-01 6.27508819e-01 -1.75793581e-02 -3.54133964e-01 -1.40451059e-01 -8.61489832e-01 -5.68147480e-01 -2.07703151e-02 5.59396625e-01 6.88931763e-01 -1.56529415e+00 -5.98765254e-01 6.99585795e-01 -1.61145046e-01 8.17444995e-02 3.31038117e-01 8.26960266e-01 -7.89235115e-01 4.80581164e-01 -7.75539935e-01 -4.10301805e-01 -1.04542887e+00 1.82204008e-01 7.77456582e-01 -3.31294388e-02 -3.25957537e-01 6.73317432e-01 3.96910369e-01 -6.46954298e-01 1.67953089e-01 -8.71809542e-01 -4.95721936e-01 1.12712188e-02 3.05487275e-01 3.23321104e-01 4.30888325e-01 -9.99503255e-01 -3.14921528e-01 6.95962846e-01 9.79136825e-02 -1.19739212e-01 1.41099417e+00 3.00643086e-01 -5.10533035e-01 2.23811015e-01 1.73187768e+00 -2.09109515e-01 -9.44441378e-01 -5.18720686e-01 -4.58465755e-01 8.60549882e-02 7.17706755e-02 -1.47999257e-01 -1.23103333e+00 1.20869207e+00 7.35931814e-01 7.10231885e-02 1.16895139e+00 -4.92374599e-01 1.57027856e-01 8.16143274e-01 -1.66720971e-01 -9.73594069e-01 3.99313122e-02 1.09101295e+00 1.17155921e+00 -5.81998706e-01 -1.59849837e-01 5.08675091e-02 1.09839281e-02 1.55414951e+00 5.17517328e-01 -5.71991444e-01 9.57440794e-01 3.08587980e-02 -1.34039819e-01 8.63539279e-02 -1.71076253e-01 2.92606670e-02 6.40757501e-01 2.19602033e-01 5.39252579e-01 3.91012840e-02 -3.08097363e-01 5.67180157e-01 -5.58355212e-01 -5.76899886e-01 2.57248491e-01 6.13049686e-01 -3.48891675e-01 -5.50704718e-01 -3.58014137e-01 9.77196991e-02 -7.01084375e-01 -4.64388318e-02 -2.06678152e-01 8.82991433e-01 3.46390575e-01 3.58809441e-01 3.24492306e-01 -3.92874837e-01 6.63245440e-01 1.75746500e-01 3.26353490e-01 -3.09078634e-01 -4.67119724e-01 -8.49529803e-02 -4.85517442e-01 -5.38623035e-01 -3.20236415e-01 -4.71101761e-01 -1.28169024e+00 -1.11688368e-01 6.68376125e-03 -2.69254982e-01 9.18267667e-01 8.50404203e-01 -5.49652874e-02 1.02018929e+00 7.87564933e-01 -8.64095509e-01 -5.14873624e-01 -1.03275073e+00 -4.44607824e-01 3.51616383e-01 6.76864028e-01 -4.92335796e-01 -3.20718080e-01 1.99872285e-01]
[8.94102954864502, 2.338167905807495]
ec50ece5-874c-48b5-8a66-530e0f5e24cc
habitat-a-platform-for-embodied-ai-research
1904.01201
null
https://arxiv.org/abs/1904.01201v2
https://arxiv.org/pdf/1904.01201v2.pdf
Habitat: A Platform for Embodied AI Research
We present Habitat, a platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation. Specifically, Habitat consists of: (i) Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, sensors, and generic 3D dataset handling. Habitat-Sim is fast -- when rendering a scene from Matterport3D, it achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU. (ii) Habitat-API: a modular high-level library for end-to-end development of embodied AI algorithms -- defining tasks (e.g., navigation, instruction following, question answering), configuring, training, and benchmarking embodied agents. These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or 'merely' impractical. Specifically, in the context of point-goal navigation: (1) we revisit the comparison between learning and SLAM approaches from two recent works and find evidence for the opposite conclusion -- that learning outperforms SLAM if scaled to an order of magnitude more experience than previous investigations, and (2) we conduct the first cross-dataset generalization experiments {train, test} x {Matterport3D, Gibson} for multiple sensors {blind, RGB, RGBD, D} and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.
['Julian Straub', 'Bhavana Jain', 'Abhishek Kadian', 'Manolis Savva', 'Yili Zhao', 'Vladlen Koltun', 'Erik Wijmans', 'Oleksandr Maksymets', 'Jia Liu', 'Dhruv Batra', 'Jitendra Malik', 'Devi Parikh']
2019-04-02
habitat-a-platform-for-embodied-ai-research-1
http://openaccess.thecvf.com/content_ICCV_2019/html/Savva_Habitat_A_Platform_for_Embodied_AI_Research_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Savva_Habitat_A_Platform_for_Embodied_AI_Research_ICCV_2019_paper.pdf
iccv-2019-10
['pointgoal-navigation']
['robots']
[ 2.13802643e-02 -5.24783395e-02 5.55494070e-01 -1.16623513e-01 -3.43863964e-01 -8.91935229e-01 6.28627598e-01 1.88124776e-02 -8.48029494e-01 5.48801064e-01 3.76215146e-04 -5.44535220e-01 -2.82304622e-02 -7.84004033e-01 -1.08306170e+00 -6.13555193e-01 -5.86613536e-01 5.98984301e-01 2.57382810e-01 -6.38527513e-01 3.85537148e-01 6.57838464e-01 -2.26962447e+00 -6.08051680e-02 5.30054510e-01 8.53133619e-01 4.88498837e-01 1.01841497e+00 3.36321354e-01 7.48653173e-01 -5.64080179e-01 1.69827804e-01 5.38450599e-01 -2.27725625e-01 -7.05852151e-01 -4.22402382e-01 8.50881860e-02 -2.67567098e-01 -3.52948159e-01 6.20331883e-01 8.14759672e-01 1.86781198e-01 3.00110430e-01 -1.59482479e+00 -3.66076291e-01 6.26454549e-03 -2.67135929e-02 -3.28061357e-02 7.97921240e-01 8.57499897e-01 3.28624576e-01 -5.01398206e-01 8.54849756e-01 1.31800234e+00 8.36096287e-01 8.09355974e-01 -7.84507930e-01 -3.81893158e-01 2.03677639e-02 -1.66517004e-01 -1.07482362e+00 -4.59922016e-01 7.07380995e-02 -3.80646348e-01 1.51006782e+00 3.66898179e-01 1.15665674e+00 1.52301979e+00 3.75405043e-01 4.98837948e-01 1.30504191e+00 -1.34143054e-01 7.48279870e-01 -2.27980629e-01 -2.97942847e-01 1.20621240e+00 1.25806957e-01 6.39025092e-01 -7.87963390e-01 -3.23265754e-02 1.14819801e+00 -5.62170267e-01 -1.94355577e-01 -6.74830019e-01 -1.88775253e+00 4.48567659e-01 6.68021739e-01 -5.46774045e-02 -4.66073155e-01 6.70280159e-01 4.40294147e-01 4.82038826e-01 -1.82827506e-02 8.28035593e-01 -7.51390815e-01 -6.48767829e-01 -5.57035804e-02 6.13107264e-01 1.08601511e+00 1.28736424e+00 7.36194789e-01 1.15787886e-01 5.89855194e-01 1.66884273e-01 1.93697095e-01 7.06046581e-01 3.43235821e-01 -1.42228746e+00 -9.10099223e-03 4.46979731e-01 1.92601278e-01 -6.05395555e-01 -1.02759302e+00 -1.17149530e-02 -4.12257850e-01 9.92022097e-01 2.75568992e-01 -4.37022507e-01 -9.64791954e-01 1.62117159e+00 6.97322249e-01 -4.10239585e-02 4.28568125e-01 1.26078391e+00 1.11967504e+00 5.49064279e-01 1.96990922e-01 4.35918719e-01 1.34024334e+00 -9.74775672e-01 1.07076675e-01 -3.01776469e-01 8.37669730e-01 -2.72261679e-01 1.29136097e+00 2.71545559e-01 -1.00405335e+00 -4.36810404e-01 -1.14255214e+00 -1.27410606e-01 -7.79619753e-01 -3.96527261e-01 1.32097805e+00 5.84446371e-01 -1.40246439e+00 5.80936968e-01 -1.16887820e+00 -9.77733970e-01 6.01213127e-02 6.38047099e-01 -7.23478377e-01 1.22331530e-01 -6.15584016e-01 1.18289530e+00 2.70755649e-01 -1.82733744e-01 -1.55455911e+00 -6.40900373e-01 -9.33912098e-01 -6.07086658e-01 1.04134768e-01 -1.37758231e+00 1.27467167e+00 -6.41102076e-01 -1.91996741e+00 1.16561425e+00 2.23488182e-01 -2.65479684e-01 4.14524674e-01 -2.16462702e-01 -4.89589535e-02 2.26845983e-02 1.81098729e-01 1.04529035e+00 2.12137923e-01 -1.48871660e+00 -5.93237996e-01 -5.46441734e-01 4.76993710e-01 6.86941564e-01 4.31887478e-01 -9.42819864e-02 -1.78268030e-01 -1.72669273e-02 1.79998815e-01 -1.19722724e+00 -3.20920229e-01 2.81810343e-01 2.74262913e-02 2.06282973e-01 5.64856410e-01 -2.39662677e-01 -1.62627846e-01 -2.12134790e+00 5.91270387e-01 -1.75674841e-01 9.75293741e-02 -2.09014431e-01 -1.72824636e-01 5.01526237e-01 3.77849638e-01 -9.67438444e-02 -1.09620348e-01 -1.70206636e-01 4.54995483e-01 3.26705784e-01 9.59276408e-02 5.30383945e-01 -3.13598007e-01 8.68325591e-01 -1.14550757e+00 -1.86498627e-01 4.11915958e-01 5.33718407e-01 -6.69762194e-01 1.74665377e-01 -2.54593104e-01 7.64715910e-01 -3.85364860e-01 7.40682483e-01 2.48141631e-01 1.49506003e-01 -2.78799742e-01 1.49646461e-01 -6.50540531e-01 1.77937895e-01 -8.70553851e-01 2.54161572e+00 -5.91567039e-01 5.73520184e-01 3.66467863e-01 -3.09211016e-01 7.22162724e-01 4.78426553e-02 3.93277913e-01 -8.19531500e-01 3.69760066e-01 4.06125069e-01 -2.74793208e-01 -6.78023338e-01 5.87418914e-01 1.80288516e-02 -3.98338020e-01 1.66625291e-01 1.30988538e-01 -8.31807971e-01 -2.45630518e-02 -2.38185786e-02 1.63103306e+00 8.03904653e-01 -4.74160910e-02 -4.07681644e-01 -2.00552806e-01 6.71727896e-01 7.70668909e-02 8.53930056e-01 -3.47214013e-01 3.06865007e-01 1.09095983e-01 -6.07929170e-01 -1.13112259e+00 -1.34306908e+00 2.21742734e-01 1.53873074e+00 7.18704998e-01 -9.70255658e-02 -8.67661953e-01 -1.33981049e-01 2.98230529e-01 9.05888379e-01 -7.76778221e-01 -1.76812261e-01 -3.49172026e-01 -5.73390722e-01 8.32698941e-01 4.28498685e-01 6.57207191e-01 -1.34935915e+00 -1.73553598e+00 6.61455169e-02 2.45907143e-01 -8.42938125e-01 3.41445059e-01 5.97361803e-01 -6.52241766e-01 -9.76750314e-01 -4.85427588e-01 -8.35643768e-01 3.96062285e-01 4.69845742e-01 1.23203337e+00 2.40856439e-01 -2.79985696e-01 1.04387951e+00 -4.80890155e-01 -5.57299078e-01 -3.20102751e-01 -1.41103789e-01 3.64730835e-01 -1.08192480e+00 1.25853702e-01 -6.69148982e-01 -5.96298695e-01 4.37082440e-01 -5.87047219e-01 3.73503566e-01 6.62486970e-01 4.75683719e-01 3.58613193e-01 -5.47210217e-01 2.98155937e-02 -1.38570830e-01 4.59552258e-01 -4.45700377e-01 -6.43999100e-01 -3.54648288e-03 -7.59865064e-03 -2.18829289e-01 3.72031182e-01 -3.99810523e-01 -7.11462200e-01 7.49541353e-03 -2.27453113e-01 7.52743930e-02 -5.98916531e-01 1.17525317e-01 -5.43931760e-02 -7.20132351e-01 8.93304825e-01 2.52901673e-01 1.32489920e-01 1.03249058e-01 4.92219388e-01 3.31579030e-01 7.27721930e-01 -1.04571939e+00 5.41532457e-01 6.14099562e-01 9.41102952e-02 -9.11376953e-01 -1.28369272e-01 -1.57227457e-01 -4.26294059e-01 -3.23443741e-01 9.91628110e-01 -9.01081026e-01 -1.48688960e+00 5.58780670e-01 -9.12657320e-01 -1.15277302e+00 -4.02787536e-01 6.33629262e-01 -1.17153633e+00 -3.14024240e-01 -5.52134216e-01 -6.86492205e-01 -1.28237858e-01 -1.45289445e+00 1.48576772e+00 4.57231641e-01 -3.22754383e-01 -6.77424610e-01 3.46572727e-01 1.20003462e-01 4.25623119e-01 5.24276197e-01 5.46398997e-01 -1.91556901e-01 -6.18926048e-01 1.14731230e-01 -1.19300298e-01 -5.34052372e-01 -3.69274825e-01 -8.85884762e-02 -9.03971791e-01 -3.53611410e-01 -3.46702248e-01 -7.15630829e-01 3.56662124e-01 -5.69445919e-03 5.72868824e-01 2.77212590e-01 -4.79654551e-01 9.91109073e-01 1.31886899e+00 3.51547837e-01 6.16185188e-01 9.68226135e-01 6.15838289e-01 4.02407825e-01 6.70140862e-01 4.10995841e-01 7.09579885e-01 4.29203004e-01 8.51375997e-01 -8.34286287e-02 1.08359866e-01 -5.09029329e-02 5.02525151e-01 4.20463085e-01 -5.49044251e-01 -2.53748208e-01 -9.74088848e-01 3.74328375e-01 -1.65432274e+00 -7.66960561e-01 9.24471393e-02 2.07785201e+00 2.93213218e-01 -1.02149181e-01 2.25466311e-01 -2.35026702e-01 1.29662007e-01 -1.57101080e-01 -8.63828421e-01 -4.70965624e-01 -2.43187487e-01 1.43566087e-01 6.11611187e-01 2.97759891e-01 -8.49472582e-01 1.28504252e+00 6.43598938e+00 5.50400885e-03 -9.92291689e-01 3.36705707e-02 -3.24168988e-02 -1.82927728e-01 -3.10056806e-01 3.08597572e-02 -3.16994876e-01 8.95240754e-02 8.74629200e-01 5.33665270e-02 8.79810989e-01 1.03113675e+00 -7.10703731e-02 -5.35569787e-01 -1.17011094e+00 9.48638618e-01 -5.16850054e-02 -1.06840503e+00 -2.75995344e-01 9.41885486e-02 3.96623969e-01 5.84253967e-01 -6.75965399e-02 6.14443839e-01 8.60381246e-01 -1.07755721e+00 1.21330500e+00 4.58686173e-01 5.04464209e-01 -6.23259127e-01 3.81374002e-01 4.63097930e-01 -1.02325106e+00 5.94959557e-02 -4.82297093e-01 -3.44566733e-01 7.06305578e-02 -2.19757766e-01 -6.31219745e-01 3.62923473e-01 1.10328102e+00 2.86205083e-01 -3.11365455e-01 1.12402523e+00 9.89507791e-03 -5.17032370e-02 -6.85690701e-01 -5.49207389e-01 4.85174924e-01 -1.21193416e-01 6.42071128e-01 9.77729797e-01 3.99406970e-01 5.03978908e-01 -1.39780249e-02 6.32543743e-01 3.73427480e-01 -3.28771919e-01 -8.26029778e-01 1.25581846e-01 3.56616944e-01 1.11945426e+00 -1.02165544e+00 -4.20152992e-02 -9.23982542e-03 1.40502858e+00 3.59806895e-01 2.19118699e-01 -1.02818298e+00 -2.21179187e-01 1.05846834e+00 -4.33312923e-01 -3.83075140e-02 -9.61308897e-01 -3.16448122e-01 -7.89451003e-01 -3.30338180e-01 -8.65687072e-01 -4.76439968e-02 -1.36610198e+00 -8.13737392e-01 6.57556176e-01 -1.86361119e-01 -7.40050852e-01 -1.13771558e-01 -9.49493289e-01 -9.97972190e-02 4.90217417e-01 -1.08187068e+00 -1.23449099e+00 -1.05671775e+00 6.10084713e-01 2.30205476e-01 -1.62131041e-01 1.22171569e+00 -1.12666413e-01 -2.36162186e-01 8.49608034e-02 -8.19870308e-02 -3.06693912e-01 2.19310239e-01 -1.25426137e+00 9.30371702e-01 2.75331259e-01 -1.38467744e-01 5.81881523e-01 8.47555757e-01 -6.35164738e-01 -2.30726027e+00 -6.31570518e-01 -1.68237880e-01 -9.25148487e-01 5.79356849e-01 -3.97008002e-01 -2.20302254e-01 8.23858917e-01 2.21512124e-01 -2.38050267e-01 4.70156312e-01 -1.75337404e-01 -1.44467726e-01 3.78148615e-01 -1.40590644e+00 8.78935456e-01 1.79367387e+00 -3.44907224e-01 -3.39859784e-01 3.36808264e-01 8.74263167e-01 -1.01636446e+00 -9.11267579e-01 2.26901308e-01 9.26902115e-01 -1.30820096e+00 9.88807440e-01 -4.38115686e-01 1.85976431e-01 -4.32440907e-01 -5.39654016e-01 -1.48982430e+00 -1.58012658e-01 -7.75718570e-01 2.09752962e-01 5.51791906e-01 1.36072442e-01 -8.13248575e-01 6.52565539e-01 4.10726279e-01 -5.85620046e-01 -5.05147636e-01 -8.80439699e-01 -7.24666655e-01 -1.30836636e-01 -5.42579055e-01 6.96198642e-01 6.19412065e-01 1.02555059e-01 -7.19565228e-02 1.94788307e-01 5.96471131e-01 5.81054330e-01 -1.71979964e-01 1.28905940e+00 -9.22249019e-01 -1.67248085e-01 -4.60792392e-01 -7.57660925e-01 -1.14291120e+00 7.59804472e-02 -5.44780374e-01 4.92090225e-01 -1.72393191e+00 -3.05025756e-01 -8.81976843e-01 2.92161822e-01 5.09603798e-01 3.23972672e-01 9.50709656e-02 1.34300992e-01 9.98101011e-02 -7.37429798e-01 5.91491997e-01 1.28014767e+00 1.82164460e-01 -5.37542477e-02 -4.28736508e-01 -4.23828959e-01 7.00551987e-01 6.51547670e-01 -1.90785199e-01 -3.16506475e-01 -9.27819192e-01 2.84195393e-01 -4.31599356e-02 1.04857111e+00 -1.56530905e+00 3.33363444e-01 -2.52492011e-01 3.30255777e-01 -2.60051012e-01 7.76094377e-01 -8.03591788e-01 2.49069542e-01 4.79072452e-01 6.09651543e-02 4.50861812e-01 7.05516696e-01 3.04538548e-01 5.73732018e-01 3.93525651e-03 3.33621830e-01 -6.55568898e-01 -1.36664128e+00 4.41871360e-02 -7.10133135e-01 -6.15040865e-03 1.27379942e+00 -4.80810851e-01 -5.90628564e-01 -2.26640522e-01 -3.97573471e-01 1.07867941e-01 1.26269293e+00 3.82597506e-01 6.06354296e-01 -8.74075830e-01 -3.56687695e-01 1.75101861e-01 1.59113944e-01 2.62004346e-01 8.00337195e-02 4.71272916e-01 -1.29765797e+00 3.63321193e-02 -5.83669424e-01 -6.69054449e-01 -8.12374055e-01 4.69598949e-01 5.43824434e-01 6.92639530e-01 -5.98979890e-01 1.23846173e+00 1.34514580e-02 -1.10052359e+00 2.33090639e-01 -3.66417915e-01 4.36492741e-01 -5.83003879e-01 2.95409888e-01 3.59026223e-01 -1.31407261e-01 -6.46120906e-01 -5.97930610e-01 6.50979877e-01 6.87768459e-01 -4.15659785e-01 1.54038894e+00 4.65535298e-02 -5.47595881e-02 6.47901893e-01 7.94020355e-01 -3.36994261e-01 -1.53501439e+00 6.35928094e-01 -3.83713663e-01 -9.61800814e-02 -7.07959384e-02 -8.75575125e-01 -5.70261061e-01 4.90034312e-01 8.09126377e-01 4.58965376e-02 8.27817082e-01 3.45752351e-02 6.09153032e-01 7.86364675e-01 1.40875602e+00 -8.03627312e-01 3.38735655e-02 6.80241048e-01 1.05896235e+00 -9.94121909e-01 -1.26380781e-02 1.59905273e-02 -5.51201522e-01 9.19647336e-01 8.37178826e-01 -1.58953905e-01 -8.53473227e-03 6.18302286e-01 2.48557538e-01 -5.15477777e-01 -6.18769169e-01 -4.39026713e-01 -3.14433426e-01 1.13888085e+00 -1.39736189e-02 -3.66956601e-03 5.30433774e-01 -5.61120640e-03 -7.48012006e-01 -9.66856480e-02 3.45022976e-01 1.50072551e+00 -5.26463926e-01 -4.17453736e-01 -3.51401865e-01 -1.60364658e-01 5.72511137e-01 1.59294069e-01 -4.73946393e-01 1.20371580e+00 2.09486350e-01 8.52582872e-01 1.23737335e-01 -6.40015602e-01 5.16779721e-01 -3.30486715e-01 1.11606741e+00 -3.44544709e-01 -8.76572549e-01 -6.61377549e-01 2.82153279e-01 -9.92191374e-01 -4.02908474e-01 -6.96333051e-01 -1.77122581e+00 -7.00097978e-01 3.51025276e-02 -3.26230898e-02 1.41312611e+00 6.91342354e-01 6.31518304e-01 5.72178841e-01 -2.39684843e-02 -1.75109899e+00 -1.56631898e-02 -6.17186308e-01 -3.17531347e-01 1.93864346e-01 1.54696867e-01 -9.09493685e-01 -4.36678290e-01 -1.39940694e-01]
[4.621621608734131, 0.8042087554931641]
4ac1af28-f036-4e30-a4d4-92e2b5f1d1ce
sked-sketch-guided-text-based-3d-editing
2303.10735
null
https://arxiv.org/abs/2303.10735v3
https://arxiv.org/pdf/2303.10735v3.pdf
SKED: Sketch-guided Text-based 3D Editing
Text-to-image diffusion models are gradually introduced into computer graphics, recently enabling the development of Text-to-3D pipelines in an open domain. However, for interactive editing purposes, local manipulations of content through a simplistic textual interface can be arduous. Incorporating user guided sketches with Text-to-image pipelines offers users more intuitive control. Still, as state-of-the-art Text-to-3D pipelines rely on optimizing Neural Radiance Fields (NeRF) through gradients from arbitrary rendering views, conditioning on sketches is not straightforward. In this paper, we present SKED, a technique for editing 3D shapes represented by NeRFs. Our technique utilizes as few as two guiding sketches from different views to alter an existing neural field. The edited region respects the prompt semantics through a pre-trained diffusion model. To ensure the generated output adheres to the provided sketches, we propose novel loss functions to generate the desired edits while preserving the density and radiance of the base instance. We demonstrate the effectiveness of our proposed method through several qualitative and quantitative experiments.
['Ali Mahdavi-Amiri', 'Mehdi Safaee', 'Daniel Cohen-Or', 'Or Perel', 'Aryan Mikaeili']
2023-03-19
null
null
null
null
['text-to-3d']
['computer-vision']
[ 4.09344435e-01 -6.39145914e-03 4.97422665e-01 -5.71584046e-01 -2.95464635e-01 -7.63310254e-01 9.35393870e-01 -5.99766411e-02 -5.00463396e-02 3.19478780e-01 9.61621478e-02 -1.40886664e-01 2.31481776e-01 -1.02251327e+00 -7.33565271e-01 -3.35364044e-01 2.96324402e-01 2.24161252e-01 2.83037603e-01 -2.54839480e-01 5.92250943e-01 1.04804063e+00 -1.36696184e+00 3.30865949e-01 9.49988186e-01 8.41143608e-01 2.80148625e-01 1.03368020e+00 -5.41033864e-01 7.79495299e-01 -4.72976267e-01 -4.68207151e-01 5.53944707e-01 -4.01076317e-01 -2.44091168e-01 -2.56576631e-02 9.18983102e-01 -6.84613824e-01 -2.59729296e-01 8.50352705e-01 5.42949736e-01 3.66071403e-01 9.40919340e-01 -9.55559611e-01 -1.11682272e+00 1.58923417e-01 -8.11365724e-01 -3.42456579e-01 3.33353579e-01 3.17941010e-01 7.54627943e-01 -9.43263948e-01 9.93662238e-01 1.41552639e+00 5.66574156e-01 5.69865167e-01 -1.46342587e+00 -5.46527147e-01 3.26477021e-01 -6.98926270e-01 -1.07427967e+00 -3.50640923e-01 1.19935024e+00 -4.50110823e-01 9.33102012e-01 4.32289213e-01 7.20192194e-01 8.71424854e-01 1.98501810e-01 7.03104079e-01 9.65961337e-01 -4.14129585e-01 3.10833812e-01 4.67496693e-01 -5.15716255e-01 9.92034256e-01 -5.51210761e-01 4.03834172e-02 -7.57483959e-01 -7.50782192e-02 1.34533417e+00 -5.97996078e-02 -1.64586529e-01 -6.36990726e-01 -9.27473962e-01 6.38380170e-01 5.68317831e-01 -1.58935916e-04 -3.43419611e-01 5.04657626e-01 1.21828400e-01 2.39381045e-01 9.64119971e-01 3.78884465e-01 -3.81758437e-02 2.16816813e-02 -1.24169064e+00 3.76556158e-01 5.50967097e-01 1.10333920e+00 6.77124202e-01 1.36614844e-01 -2.83384383e-01 8.20661366e-01 2.43211895e-01 4.89250481e-01 -1.94758356e-01 -1.24696863e+00 3.15971136e-01 5.96947193e-01 2.64781147e-01 -1.06044865e+00 9.48066935e-02 -1.14556521e-01 -7.83002079e-01 1.07657528e+00 3.72836888e-01 -2.03518500e-03 -9.80907679e-01 1.36215568e+00 4.70049798e-01 -6.99642003e-02 -4.70153987e-01 8.50196183e-01 3.39973629e-01 8.08571160e-01 7.82768130e-02 4.76401329e-01 8.15112054e-01 -8.81984830e-01 -5.52414238e-01 -3.71630751e-02 2.30313703e-01 -9.35225725e-01 1.44126379e+00 2.94319600e-01 -1.48231125e+00 -4.09238249e-01 -8.51453483e-01 -7.20277369e-01 -4.66831267e-01 1.08430117e-01 5.57230294e-01 6.46561384e-01 -1.20558870e+00 8.49117577e-01 -7.44713306e-01 -2.24157751e-01 6.54423356e-01 1.49198831e-03 -1.80902630e-01 1.60422809e-02 -8.14021707e-01 7.75443077e-01 -3.94484669e-01 1.14496388e-02 -7.84092128e-01 -1.20870125e+00 -6.89396381e-01 5.22980206e-02 -8.42945054e-02 -9.31632876e-01 1.05996263e+00 -1.04501927e+00 -1.99592662e+00 9.04546857e-01 -4.69510667e-02 5.16958535e-02 1.15151668e+00 -3.84564281e-01 2.18884706e-01 1.12463847e-01 -1.24290250e-01 1.04227293e+00 1.10080886e+00 -1.61896718e+00 -4.87668216e-01 -1.37962773e-01 3.07644397e-01 3.78958434e-01 -2.32365951e-01 -9.12547484e-02 -6.75203383e-01 -9.90709007e-01 -1.25599802e-01 -4.90724534e-01 -1.38098001e-01 1.25335073e+00 -3.95805597e-01 9.50325653e-02 1.03080392e+00 -6.00530148e-01 8.85796547e-01 -2.25701642e+00 2.00815782e-01 3.75085920e-01 2.68261641e-01 -1.34275556e-01 -1.83420464e-01 4.01670247e-01 1.94147125e-01 1.97428316e-01 -5.60552120e-01 -7.79325604e-01 1.71411961e-01 -2.83862948e-01 -5.14724612e-01 3.37018073e-01 3.72715682e-01 7.48064101e-01 -9.94622111e-01 -2.63639152e-01 7.23174512e-01 1.03335571e+00 -7.96251178e-01 4.27776515e-01 -4.64243054e-01 4.65927929e-01 -3.83007526e-01 3.86225164e-01 9.33681726e-01 1.50196299e-01 -2.87652791e-01 -2.60605335e-01 -4.29583639e-01 -4.03072350e-02 -1.01709235e+00 2.17177272e+00 -8.83352339e-01 7.67876685e-01 2.98734576e-01 -3.15019131e-01 1.09216392e+00 -2.05069184e-01 2.11833969e-01 -7.00578213e-01 -1.50799289e-01 1.31080419e-01 -5.99840224e-01 -1.22241333e-01 7.34320819e-01 -8.39024410e-03 2.52667964e-01 7.61830747e-01 -2.30707631e-01 -8.47500682e-01 -1.90528721e-01 4.03570712e-01 6.64472818e-01 8.94248247e-01 -1.69913486e-01 -2.58397520e-01 1.27206683e-01 -2.10649535e-01 -1.84484035e-01 8.64457846e-01 2.94658214e-01 9.77067113e-01 3.62802714e-01 -3.96444589e-01 -1.38427973e+00 -1.20913315e+00 4.33114693e-02 9.26243842e-01 9.46565568e-02 -1.75071105e-01 -8.41980338e-01 -6.32938623e-01 1.75046362e-02 1.00184691e+00 -8.17372441e-01 2.12881982e-01 -4.90600824e-01 -1.20220304e-01 5.33692300e-01 3.94586772e-01 4.41023678e-01 -9.79358315e-01 -9.02251661e-01 1.05316363e-01 6.17547750e-01 -6.22317433e-01 -8.93073201e-01 -6.04204871e-02 -8.88007402e-01 -5.31358480e-01 -1.30443418e+00 -5.10685503e-01 1.06909716e+00 2.61121631e-01 1.06626272e+00 1.69249833e-01 -4.75274742e-01 4.51326370e-01 -1.79402754e-02 -2.24815920e-01 -4.32508707e-01 2.93480884e-03 -5.61885357e-01 1.71857998e-02 -2.07717657e-01 -7.71719873e-01 -9.33282912e-01 1.49086699e-01 -1.23186374e+00 7.19460666e-01 1.97643161e-01 3.83504897e-01 4.42750961e-01 -2.98212141e-01 6.65088594e-02 -9.38465953e-01 8.38893116e-01 6.29058778e-02 -6.98635697e-01 2.49435604e-01 -3.29943120e-01 3.70653868e-01 7.78093338e-01 -4.43700910e-01 -1.57839167e+00 1.83794111e-01 -2.41605863e-02 -6.06614172e-01 -1.74045607e-01 -6.30038753e-02 2.66104713e-02 -1.84378892e-01 6.94209039e-01 -1.69715798e-03 -1.98734596e-01 -3.92343402e-01 1.03127015e+00 4.16616797e-01 3.90501946e-01 -7.53744781e-01 9.05591071e-01 8.16066265e-01 -1.11828655e-01 -8.42862844e-01 -4.34315950e-01 1.83093980e-01 -7.17350781e-01 -5.43292463e-01 7.89853930e-01 -4.81164247e-01 -4.05784577e-01 6.33826911e-01 -1.43405294e+00 -8.56063128e-01 -4.66269732e-01 -1.96854696e-01 -5.48582494e-01 1.80412427e-01 -5.22206843e-01 -1.00862074e+00 -3.40541691e-01 -1.16464567e+00 1.48224390e+00 3.08211863e-01 -3.79736692e-01 -1.18206573e+00 3.90665494e-02 -3.01776975e-01 8.14176857e-01 3.26966465e-01 1.03870165e+00 3.32566381e-01 -8.42992425e-01 -5.20606339e-02 -4.95837927e-01 8.23120698e-02 2.09288746e-01 5.07890821e-01 -1.24736607e+00 1.06117688e-01 -3.85646462e-01 -1.67675778e-01 6.73736274e-01 2.54349768e-01 1.47595501e+00 6.29986003e-02 -2.18170300e-01 8.97477448e-01 1.32492197e+00 3.13633494e-02 7.08303571e-01 4.03993316e-02 8.89519870e-01 7.63435423e-01 1.42411590e-01 4.74698484e-01 1.31153733e-01 4.68332916e-01 2.21444756e-01 -3.56247365e-01 -4.17265296e-01 -6.84895098e-01 1.16858132e-01 3.54096144e-01 -3.62081304e-02 -3.80919188e-01 -3.95177484e-01 2.77658284e-01 -1.48550332e+00 -7.36377358e-01 -6.37258813e-02 2.25776792e+00 8.76761019e-01 8.69294703e-02 -3.10902327e-01 -3.35442156e-01 5.34537256e-01 4.64482009e-01 -7.70114839e-01 -6.00174546e-01 7.73663148e-02 2.48024657e-01 2.73158282e-01 9.88818347e-01 -6.57711744e-01 1.10129535e+00 5.72346497e+00 7.10255921e-01 -1.36512840e+00 -1.83371753e-01 8.01442444e-01 -3.46473932e-01 -1.08002639e+00 1.92556251e-02 -3.42399657e-01 1.42174438e-01 2.32003838e-01 1.29237518e-01 7.34951615e-01 5.81923962e-01 5.68186283e-01 -2.80305803e-01 -1.20109987e+00 9.96605277e-01 2.75888527e-03 -1.52961600e+00 3.60362262e-01 -1.97846264e-01 8.58035803e-01 -3.35837632e-01 2.04356894e-01 -1.65237859e-01 3.97365540e-01 -9.74155188e-01 1.08807039e+00 8.92857373e-01 1.18369770e+00 -6.58346057e-01 -3.06021750e-01 1.09698288e-01 -9.54718232e-01 5.52813292e-01 -3.30315441e-01 2.45108292e-01 4.50761437e-01 8.11564445e-01 -4.43249434e-01 2.05534488e-01 5.63089311e-01 5.92391789e-01 -3.83086473e-01 6.88280821e-01 -1.96235135e-01 6.85267076e-02 -4.90946025e-01 1.89948082e-02 2.26556793e-01 -4.31652129e-01 4.35966343e-01 1.39391732e+00 4.19606805e-01 -3.99015546e-02 -2.34827995e-01 1.59581602e+00 -3.45854849e-01 1.23463072e-01 -7.66877353e-01 -2.51197554e-02 2.83791035e-01 1.35256684e+00 -8.64926696e-01 -3.16607237e-01 -1.58538043e-01 1.77849078e+00 4.80428785e-01 5.91765702e-01 -7.29555547e-01 -7.39923537e-01 4.87998188e-01 3.09717745e-01 1.45478368e-01 -3.94822717e-01 -6.54918373e-01 -9.10291851e-01 -2.73469798e-02 -4.03384447e-01 -4.12430674e-01 -1.33558512e+00 -1.33708322e+00 5.52070498e-01 -1.81664824e-01 -9.47861433e-01 1.92622527e-01 -5.61024189e-01 -8.17008495e-01 1.36081588e+00 -1.57087934e+00 -1.20980012e+00 -5.48786163e-01 3.55771601e-01 7.87730634e-01 1.35012716e-01 7.27432847e-01 2.31769070e-01 -3.01692598e-02 3.47449511e-01 -8.30106251e-03 -1.11903921e-01 9.38876867e-01 -1.42429960e+00 1.06472850e+00 6.42268121e-01 3.75114344e-02 6.70004010e-01 6.08606696e-01 -8.10911477e-01 -1.24000037e+00 -8.37924123e-01 4.83056843e-01 -4.26373482e-01 3.32786590e-01 -6.47286177e-01 -7.80806780e-01 3.35820675e-01 5.94202459e-01 -1.02486953e-01 1.53874055e-01 -3.97979409e-01 -3.43124658e-01 1.37972683e-01 -1.23187387e+00 1.07647896e+00 1.20228934e+00 -8.62323225e-01 2.02615168e-02 8.38018805e-02 3.71872306e-01 -7.10255623e-01 -6.55071974e-01 -2.19486877e-01 7.92404175e-01 -1.16095769e+00 9.72163618e-01 -3.83922964e-01 7.74438083e-01 -5.01727581e-01 6.06818013e-02 -1.63652837e+00 -1.04507826e-01 -9.16721404e-01 4.92804013e-02 1.16995633e+00 3.23130280e-01 -1.47509307e-01 7.59943366e-01 9.43818748e-01 5.48055246e-02 -4.23224300e-01 -5.21230638e-01 -8.98385271e-02 1.68147132e-01 -4.31340516e-01 5.48855841e-01 9.12589610e-01 -4.08215374e-01 8.35829973e-03 -4.56691116e-01 -3.22210565e-02 7.53721535e-01 -1.63742639e-02 8.61050606e-01 -1.00065315e+00 -1.39196113e-01 -7.99915195e-01 1.86413437e-01 -1.46893072e+00 -6.91272914e-02 -8.30501676e-01 5.44740856e-02 -1.68327880e+00 -1.99963138e-01 -7.56516755e-01 3.13382566e-01 9.92092863e-02 -1.16944551e-01 3.15566212e-01 3.58329535e-01 -1.21905006e-01 6.14248589e-02 7.42697001e-01 1.58514500e+00 -2.43919238e-01 -3.51919979e-01 -2.88227022e-01 -4.57016468e-01 6.27390027e-01 6.35820627e-01 -3.44327688e-01 -6.37222588e-01 -9.19253826e-01 3.71121526e-01 -1.51723519e-01 3.21155995e-01 -6.65472627e-01 2.07921416e-01 -1.92479834e-01 6.85471952e-01 -4.53491360e-01 4.71359044e-01 -8.12170029e-01 1.12113141e-01 -6.96130469e-02 -7.24271953e-01 5.05109690e-02 2.54567474e-01 3.98497522e-01 2.78003186e-01 -2.30752319e-01 8.81038487e-01 -2.00902358e-01 -4.02292758e-01 3.43436241e-01 -1.70036659e-01 -1.80057675e-01 7.91071236e-01 -2.67844200e-01 -4.24896777e-02 -6.03347063e-01 -4.69060421e-01 -7.24745244e-02 8.45293105e-01 4.57070172e-01 7.81495333e-01 -1.21992445e+00 -4.73557651e-01 3.83661956e-01 -6.35708496e-02 3.24485809e-01 4.23678607e-01 1.73976481e-01 -1.01398098e+00 -8.69908631e-02 -1.42682001e-01 -5.03801823e-01 -9.01842475e-01 1.77371949e-01 5.82500756e-01 1.81845143e-01 -9.72273350e-01 8.44729364e-01 6.35309041e-01 -8.34388912e-01 2.82699555e-01 -4.31048542e-01 4.03611571e-01 -1.81148082e-01 5.66210508e-01 2.36299664e-01 -1.01629503e-01 -2.17962004e-02 1.00541979e-01 6.92683399e-01 -8.56471136e-02 -6.01402640e-01 1.40293121e+00 -1.68379232e-01 6.45829812e-02 3.22242230e-01 1.05555701e+00 3.85686994e-01 -2.05843592e+00 1.44305781e-01 -5.36806643e-01 -8.77984047e-01 4.27809983e-01 -9.56898749e-01 -1.18214965e+00 1.29259443e+00 5.01395285e-01 -3.72183807e-02 7.77970791e-01 -4.89248812e-01 5.90879858e-01 1.17461815e-01 1.53465390e-01 -1.05499697e+00 -6.35321066e-02 2.19669089e-01 1.22477794e+00 -8.43127191e-01 1.10402619e-02 -3.84244531e-01 -6.05800390e-01 1.24118507e+00 5.94109416e-01 -2.98241764e-01 6.82085395e-01 5.30955970e-01 2.26347089e-01 -2.43518278e-01 -3.61978352e-01 4.29598361e-01 2.16164574e-01 7.16766477e-01 6.91261411e-01 -2.51277834e-01 2.93014854e-01 -2.88262278e-01 -2.76589002e-02 1.09610677e-01 4.77732182e-01 8.65456045e-01 -1.63284406e-01 -1.04702556e+00 -2.60114491e-01 2.68810004e-01 5.34904338e-02 -2.87470400e-01 -5.15725911e-01 5.00989079e-01 -3.21933836e-01 3.70226890e-01 3.07503045e-01 2.19030634e-01 4.33046788e-01 -1.03371404e-01 7.45968640e-01 -4.26453769e-01 -6.40207767e-01 1.28231674e-01 -2.11879507e-01 -6.39337778e-01 -3.28909189e-01 -3.53086829e-01 -1.10559523e+00 -4.00076985e-01 -2.26966925e-02 -4.16714638e-01 9.44876909e-01 4.75806445e-01 4.69220340e-01 5.90385377e-01 6.39527023e-01 -1.52905595e+00 -1.59756884e-01 -6.59070313e-01 -5.73155880e-01 4.19984639e-01 1.79504693e-01 -4.61894423e-01 -2.52453685e-01 1.71917483e-01]
[9.374850273132324, -3.172276020050049]
e4531165-5f60-4c33-9a27-b93da78b2b60
scale-equivalent-distillation-for-semi
2203.12244
null
https://arxiv.org/abs/2203.12244v2
https://arxiv.org/pdf/2203.12244v2.pdf
Scale-Equivalent Distillation for Semi-Supervised Object Detection
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, i.e., generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals. Although they achieved certain success, the limited labeled data in semi-supervised learning scales up the challenges of object detection. We analyze the challenges these methods meet with the empirical experiment results. We find that the massive False Negative samples and inferior localization precision lack consideration. Besides, the large variance of object sizes and class imbalance (i.e., the extreme ratio between background and object) hinder the performance of prior arts. Further, we overcome these challenges by introducing a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance. SED has several appealing benefits compared to the previous works. (1) SED imposes a consistency regularization to handle the large scale variance problem. (2) SED alleviates the noise problem from the False Negative samples and inferior localization precision. (3) A re-weighting strategy can implicitly screen the potential foreground regions of the unlabeled data to reduce the effect of class imbalance. Extensive experiments show that SED consistently outperforms the recent state-of-the-art methods on different datasets with significant margins. For example, it surpasses the supervised counterpart by more than 10 mAP when using 5% and 10% labeled data on MS-COCO.
['Ping Luo', 'Yizhou Yu', 'Tianqi Wang', 'Jianyu Chen', 'Yao Mu', 'Qiushan Guo']
2022-03-23
null
http://openaccess.thecvf.com//content/CVPR2022/html/Guo_Scale-Equivalent_Distillation_for_Semi-Supervised_Object_Detection_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Guo_Scale-Equivalent_Distillation_for_Semi-Supervised_Object_Detection_CVPR_2022_paper.pdf
cvpr-2022-1
['semi-supervised-object-detection']
['computer-vision']
[ 1.67718068e-01 8.40551779e-02 -3.42027664e-01 -2.54632115e-01 -9.21506941e-01 -3.56899977e-01 5.13142943e-01 -1.70305327e-01 -4.65573639e-01 6.60825133e-01 -2.54943341e-01 -3.05018835e-02 1.98285714e-01 -4.10396695e-01 -8.80547225e-01 -9.96577203e-01 3.64966303e-01 5.18732786e-01 7.63151467e-01 1.18739396e-01 2.28976160e-02 2.44332314e-01 -1.66737974e+00 2.11250857e-01 1.11951733e+00 1.20565414e+00 4.85883087e-01 1.64951697e-01 -2.37827256e-01 8.18062603e-01 -6.83422089e-01 -2.07507819e-01 4.52008873e-01 -4.04737413e-01 -3.26958627e-01 4.00335491e-01 7.56876945e-01 -2.85135925e-01 -1.85274407e-01 1.37679446e+00 7.20019281e-01 -1.47444665e-01 6.21971846e-01 -1.45402253e+00 -6.33682966e-01 3.90599370e-01 -1.01584625e+00 3.20804656e-01 -4.50490087e-01 3.42680722e-01 6.56913579e-01 -1.39432859e+00 2.68696904e-01 1.21470344e+00 6.72646046e-01 4.60504532e-01 -1.35976613e+00 -9.25915241e-01 2.32075319e-01 7.80083016e-02 -1.63296890e+00 -3.91395181e-01 6.53642237e-01 -4.94126678e-01 2.64503628e-01 1.30365700e-01 2.61949718e-01 9.13283408e-01 -3.49715263e-01 1.10389411e+00 1.30645573e+00 -5.55787981e-01 3.16843420e-01 5.06985724e-01 1.79337621e-01 7.37449169e-01 5.87247252e-01 1.12384982e-01 -4.37425375e-01 4.55823168e-02 6.98450863e-01 -4.33755741e-02 -1.31568000e-01 -7.25904763e-01 -1.13931656e+00 6.11130416e-01 4.95825201e-01 -4.49366644e-02 1.00503983e-02 -4.12230119e-02 2.91874468e-01 -1.57434851e-01 6.11310363e-01 1.28995880e-01 -4.64360923e-01 3.87605339e-01 -1.03883612e+00 -4.64452282e-02 3.34675521e-01 1.13770950e+00 7.67556369e-01 2.38115758e-01 -4.94239807e-01 8.55455101e-01 3.78213853e-01 7.63499677e-01 3.77613902e-01 -5.58095276e-01 5.46112239e-01 7.45415270e-01 2.26667017e-01 -7.06723571e-01 -2.77259588e-01 -8.62208962e-01 -7.42948592e-01 3.32325518e-01 8.34979415e-01 -1.02115817e-01 -1.18603492e+00 1.67018616e+00 6.29917681e-01 3.62959385e-01 -2.14478225e-01 1.11697710e+00 9.23221409e-01 3.20329428e-01 1.33075669e-01 -2.73465693e-01 1.37433422e+00 -1.24613583e+00 -8.09104502e-01 -4.97007817e-01 4.72481340e-01 -6.74667895e-01 1.12591672e+00 3.04874837e-01 -7.79555559e-01 -6.71057940e-01 -1.22393703e+00 2.00419575e-01 -1.80889055e-01 7.62646914e-01 5.10095060e-01 8.22514236e-01 -5.73096573e-01 2.39398852e-01 -8.81794631e-01 -6.40779957e-02 8.19943547e-01 2.06848606e-01 4.10973607e-03 -1.72181204e-02 -7.96644211e-01 6.89463615e-01 4.45430994e-01 1.13989644e-01 -9.90812778e-01 -7.75548935e-01 -7.31579185e-01 4.28749062e-03 1.01892149e+00 -1.96174726e-01 1.09559071e+00 -1.14633548e+00 -1.33881903e+00 9.46317673e-01 7.61340465e-03 -3.56245428e-01 7.73237228e-01 -3.65502805e-01 -2.26135284e-01 1.21866733e-01 2.36495867e-01 6.77754939e-01 9.51396823e-01 -1.30491734e+00 -8.35491776e-01 -4.87411410e-01 -3.85118574e-01 1.42108873e-01 -3.93282712e-01 -1.47618428e-01 -8.43189359e-01 -8.02221775e-01 3.42029989e-01 -1.01659131e+00 -1.95945203e-01 2.47072741e-01 -4.62231100e-01 -1.54802456e-01 9.84171093e-01 -1.82182491e-01 9.32875991e-01 -2.39754868e+00 -3.80059153e-01 -1.60679147e-01 2.49407932e-01 5.99927068e-01 -9.50580463e-02 -1.54508665e-01 -5.58051839e-03 -9.86537263e-02 -4.62079756e-02 -2.63851851e-01 -5.14413193e-02 6.33679554e-02 -3.44142467e-01 6.64429605e-01 4.47420746e-01 9.24537003e-01 -9.97916043e-01 -7.94379354e-01 1.75363421e-01 3.25525463e-01 -2.35744178e-01 1.24285966e-01 -1.99584484e-01 2.88469106e-01 -2.92960465e-01 7.86612332e-01 9.03798461e-01 -6.01957500e-01 1.16042951e-02 -3.09991658e-01 4.13267501e-02 2.04691291e-02 -1.62105024e+00 1.23638082e+00 6.14386611e-02 4.98479575e-01 2.03537107e-01 -9.43117559e-01 7.06421375e-01 3.09427679e-02 1.30517840e-01 -5.80644131e-01 9.20840651e-02 2.74928778e-01 -3.54182757e-02 -3.30303431e-01 1.42498642e-01 -6.21067062e-02 3.47852260e-01 1.96161419e-01 2.27151588e-01 1.01158619e-01 1.85891613e-01 2.74535507e-01 7.78988898e-01 2.51797289e-01 1.24252014e-01 -4.52442080e-01 4.00838196e-01 -1.11301497e-01 9.60137784e-01 8.95239115e-01 -4.23855811e-01 6.82717562e-01 4.15793270e-01 -1.73122987e-01 -7.09375978e-01 -1.13717878e+00 -3.49553078e-01 1.21146059e+00 5.53286612e-01 -8.58532563e-02 -7.34249234e-01 -1.05068016e+00 1.29426420e-01 4.28887576e-01 -6.08800650e-01 -1.46121189e-01 -2.82494515e-01 -1.25008667e+00 4.84004408e-01 8.02767336e-01 5.29869974e-01 -8.15826416e-01 -3.60078663e-01 1.14743421e-02 -1.83032215e-01 -1.42225909e+00 -4.53840941e-01 4.72958356e-01 -9.10143435e-01 -1.02173150e+00 -6.95363820e-01 -7.53096521e-01 1.05720890e+00 6.91662490e-01 1.00363231e+00 -7.47461542e-02 -5.32933056e-01 -1.57881118e-02 -2.48663738e-01 -7.73588479e-01 -2.10810348e-01 -1.94169402e-01 2.08268955e-01 1.99314296e-01 3.61249208e-01 -2.48220954e-02 -6.65159166e-01 8.77672613e-01 -7.89437830e-01 6.55887136e-03 8.57377112e-01 1.06578636e+00 9.38537717e-01 1.33219734e-01 7.76985705e-01 -9.69776273e-01 -7.38462582e-02 -1.82661757e-01 -8.92907143e-01 2.66694576e-01 -8.41972888e-01 4.92087156e-02 2.59138852e-01 -7.69836724e-01 -1.18670797e+00 3.49297583e-01 3.76752198e-01 -4.69911486e-01 -8.01320523e-02 -1.45592019e-01 -2.93874919e-01 -2.28046998e-01 8.46285760e-01 1.40676662e-01 2.09872909e-02 -4.78219330e-01 2.61750787e-01 6.73778534e-01 6.00850880e-01 -4.23307240e-01 1.01223993e+00 7.67121851e-01 -1.83565602e-01 -5.91070235e-01 -1.38416898e+00 -5.88012516e-01 -5.99336863e-01 -1.33736521e-01 6.05929971e-01 -1.24786937e+00 -2.01251253e-01 5.66705465e-01 -6.64663017e-01 -4.49219197e-01 -4.02015448e-01 4.58805203e-01 -1.90863758e-01 4.44390088e-01 -5.89312077e-01 -1.04885161e+00 -1.95795327e-01 -1.06127429e+00 1.11084104e+00 3.84716749e-01 3.09146643e-01 -4.15227681e-01 -4.90882307e-01 5.60562015e-01 3.03406000e-01 9.16276574e-02 4.52268690e-01 -7.01343775e-01 -6.70914114e-01 -1.30840138e-01 -6.51912332e-01 4.73185807e-01 -9.06925369e-03 -1.11387469e-01 -1.14115524e+00 -3.53026986e-01 -4.74150181e-02 -5.47928691e-01 9.37013328e-01 3.19799274e-01 1.24971414e+00 6.49493039e-02 -4.69982833e-01 3.55349571e-01 1.23878551e+00 -1.67465910e-01 3.82668376e-01 2.65104383e-01 7.31408298e-01 5.19056439e-01 1.02838945e+00 3.08864355e-01 1.57970205e-01 6.54337168e-01 5.70319176e-01 -4.77847070e-01 -5.84382296e-01 -1.27075851e-01 3.46772492e-01 3.25266391e-01 2.23527625e-01 -5.45940660e-02 -7.92546391e-01 5.02125621e-01 -1.92981303e+00 -6.11956954e-01 -4.73397255e-01 2.34235597e+00 9.40177441e-01 4.89537358e-01 2.25152984e-01 1.28845289e-01 9.80845451e-01 -1.78982794e-01 -7.64793575e-01 6.48467362e-01 -2.96077251e-01 -1.07345000e-01 7.71705270e-01 3.98144573e-02 -1.24152172e+00 9.37838018e-01 5.50332928e+00 1.16011691e+00 -1.03417933e+00 3.03684771e-01 8.01513433e-01 -2.19585463e-01 3.80891472e-01 -3.45120609e-01 -1.31441426e+00 6.50875747e-01 4.42490548e-01 3.16361964e-01 5.36141992e-02 1.10076499e+00 -7.58047998e-02 -3.49146813e-01 -9.88806188e-01 1.03210282e+00 1.94877803e-01 -1.02775204e+00 -2.71099627e-01 -1.43232390e-01 8.83919120e-01 2.60083497e-01 6.64434135e-02 5.58314741e-01 2.11348608e-01 -6.49488747e-01 9.86263037e-01 -4.05907370e-02 9.37744141e-01 -5.59773088e-01 8.72116804e-01 6.63421035e-01 -9.78900015e-01 -1.37808606e-01 -4.92467821e-01 1.64599746e-01 -2.51455177e-02 1.02390492e+00 -7.21449435e-01 2.63482749e-01 7.38184094e-01 2.63121396e-01 -9.35105562e-01 1.07691669e+00 -4.19231683e-01 9.29675758e-01 -4.50080663e-01 2.03092232e-01 9.50508267e-02 4.23077457e-02 4.29148793e-01 1.23276305e+00 -2.07146201e-02 -5.72696440e-02 3.14904630e-01 9.45015609e-01 -1.46842506e-02 -5.27151935e-02 -6.54721931e-02 2.11974546e-01 4.75021660e-01 1.41226327e+00 -1.17040992e+00 -4.83605295e-01 -3.91018063e-01 7.47842252e-01 3.13485205e-01 3.64552855e-01 -1.07930899e+00 -2.56227762e-01 2.68086535e-03 2.74065673e-01 5.97106099e-01 9.85865146e-02 -3.78588438e-01 -1.19112945e+00 2.09450766e-01 -7.66762137e-01 3.77972245e-01 -5.53960621e-01 -1.39041376e+00 3.41494441e-01 -1.35642961e-01 -1.28350663e+00 2.49980316e-01 -5.86147308e-01 -3.93854409e-01 3.98064822e-01 -1.65506101e+00 -9.85528827e-01 -4.66395199e-01 2.99834490e-01 5.27788281e-01 -7.68515542e-02 3.58428061e-01 6.03987217e-01 -9.40032780e-01 8.12000632e-01 1.42459780e-01 2.57635117e-01 1.05568993e+00 -1.34968555e+00 6.17046878e-02 1.01074922e+00 2.48381943e-01 3.27198476e-01 4.97966856e-01 -5.20959079e-01 -1.24422765e+00 -1.20084321e+00 4.31859553e-01 -6.47748888e-01 5.63931823e-01 -6.91640735e-01 -9.74262774e-01 4.40142810e-01 -3.48372906e-01 7.62243092e-01 4.37784970e-01 -7.01158568e-02 -3.54824454e-01 -2.97871172e-01 -1.08631396e+00 4.18605715e-01 1.00127029e+00 -1.16291627e-01 -3.93970907e-01 4.15812850e-01 6.94815338e-01 -5.33775389e-01 -2.20958024e-01 7.62627423e-01 2.33867824e-01 -9.24997807e-01 8.96014154e-01 -2.71193534e-01 1.19977169e-01 -7.57173777e-01 8.52251202e-02 -8.75919759e-01 -2.53433317e-01 -4.42234069e-01 -4.86068130e-01 1.55370164e+00 2.82373607e-01 -4.24258769e-01 9.88709927e-01 3.89248639e-01 5.03681675e-02 -7.51351953e-01 -8.46119702e-01 -1.10775065e+00 -2.96185046e-01 -1.74616501e-01 1.90954089e-01 9.34808195e-01 -4.35179412e-01 4.70967591e-01 -2.65670270e-01 3.53922874e-01 1.00142324e+00 1.98007628e-01 8.38510156e-01 -1.19530010e+00 -3.23095620e-01 -1.62930652e-01 -2.59741157e-01 -1.25542033e+00 -1.95035785e-01 -6.71202421e-01 3.33286822e-01 -9.83945131e-01 4.64601338e-01 -6.85768068e-01 -5.11017025e-01 5.26523650e-01 -6.85890436e-01 6.30577266e-01 1.76597074e-01 2.70417541e-01 -1.06207490e+00 5.47095954e-01 1.24589479e+00 -1.82820782e-02 -2.18931869e-01 1.11932298e-02 -6.91677451e-01 9.16457832e-01 6.12893701e-01 -7.85469234e-01 -2.33731404e-01 -2.21472532e-01 -1.00642489e-02 -2.96041995e-01 5.26203334e-01 -1.00597763e+00 2.21483946e-01 3.12353782e-02 5.69495499e-01 -7.34746456e-01 -3.41357924e-02 -7.59616494e-01 -4.15271133e-01 5.17254174e-01 -1.17985882e-01 -5.28543293e-01 2.39524633e-01 9.55946445e-01 -1.10171713e-01 -1.13553397e-01 1.16837978e+00 1.95753306e-01 -7.30049729e-01 8.68751928e-02 -7.63663650e-02 3.10765088e-01 1.16129696e+00 -2.43318036e-01 -4.04705644e-01 -1.65553186e-02 -4.40728813e-01 4.91286933e-01 1.50942445e-01 4.24046099e-01 1.30642951e-01 -1.32467484e+00 -6.63314521e-01 2.92284638e-01 3.28926146e-01 4.60404307e-01 1.10677198e-01 1.14644897e+00 -7.53279403e-02 5.09623326e-02 8.77139866e-02 -9.36962605e-01 -1.18363094e+00 5.70419014e-01 1.26859784e-01 -1.87151998e-01 -5.91678739e-01 1.02680743e+00 6.23640776e-01 -3.38354856e-01 6.20188892e-01 -1.37720019e-01 5.95896505e-02 9.55975205e-02 6.92030489e-01 4.93361712e-01 5.91041408e-02 -3.46071452e-01 -4.41738904e-01 2.39093244e-01 -2.15024322e-01 2.24047303e-01 1.28949440e+00 -7.80713409e-02 2.50514209e-01 3.75228018e-01 6.68052197e-01 4.13723476e-02 -1.68970335e+00 -5.98589718e-01 1.03609614e-01 -4.77094322e-01 1.83726355e-01 -9.34061408e-01 -1.19296753e+00 7.95731485e-01 8.81408691e-01 -1.99321304e-02 9.11598027e-01 1.55387700e-01 5.22650361e-01 2.00125754e-01 2.65797555e-01 -1.32783151e+00 3.75976205e-01 3.08176965e-01 4.47075605e-01 -1.69687593e+00 2.30198115e-01 -7.02628314e-01 -8.07197809e-01 7.07106411e-01 1.02521908e+00 4.44351286e-02 3.50874603e-01 5.12200475e-01 2.49795094e-01 -1.35256276e-01 -3.94341022e-01 -3.62710416e-01 4.57163364e-01 4.59124446e-01 1.12193078e-01 -1.62996739e-01 -1.45484954e-01 7.85457730e-01 3.85614753e-01 2.05134321e-03 1.46304578e-01 7.52372980e-01 -5.32635808e-01 -6.67299807e-01 -6.75909281e-01 4.28128064e-01 -5.17388523e-01 -6.21305406e-03 -3.10791880e-01 8.25575948e-01 3.62229794e-01 8.00984085e-01 -1.11962274e-01 -2.76663504e-03 2.37333030e-01 -1.20844886e-01 2.97931790e-01 -7.58013189e-01 -2.33026370e-01 4.23706442e-01 -3.28490794e-01 -4.80381638e-01 -3.89672279e-01 -4.36926574e-01 -1.39516187e+00 4.04025078e-01 -1.12855065e+00 -9.44504291e-02 5.18518209e-01 8.44706178e-01 4.32994097e-01 5.38771093e-01 4.31946218e-01 -9.34235215e-01 -1.16281962e+00 -1.01797307e+00 -7.43162632e-01 4.20495957e-01 2.50514716e-01 -9.98657525e-01 -6.06576025e-01 1.24206111e-01]
[9.191727638244629, 1.2656563520431519]
2810f026-d7c2-4ca7-8d8a-9a8722261cef
towards-open-vocabulary-video-instance
2304.01715
null
https://arxiv.org/abs/2304.01715v1
https://arxiv.org/pdf/2304.01715v1.pdf
Towards Open-Vocabulary Video Instance Segmentation
Video Instance Segmentation(VIS) aims at segmenting and categorizing objects in videos from a closed set of training categories, lacking the generalization ability to handle novel categories in real-world videos. To address this limitation, we make the following three contributions. First, we introduce the novel task of Open-Vocabulary Video Instance Segmentation, which aims to simultaneously segment, track, and classify objects in videos from open-set categories, including novel categories unseen during training. Second, to benchmark Open-Vocabulary VIS, we collect a Large-Vocabulary Video Instance Segmentation dataset(LV-VIS), that contains well-annotated objects from 1,212 diverse categories, significantly surpassing the category size of existing datasets by more than one order of magnitude. Third, we propose an efficient Memory-Induced Vision-Language Transformer, MindVLT, to first achieve Open-Vocabulary VIS in an end-to-end manner with near real-time inference speed. Extensive experiments on LV-VIS and four existing VIS datasets demonstrate the strong zero-shot generalization ability of MindVLT on novel categories. We will release the dataset and code to facilitate future endeavors.
['Efstratios Gavves', 'Weidi Xie', 'Yao Hu', 'Xu Tang', 'XiaoLong Jiang', 'Cilin Yan', 'Shuai Wang', 'Haochen Wang']
2023-04-04
null
null
null
null
['video-instance-segmentation']
['computer-vision']
[ 4.44124937e-01 6.35843053e-02 -4.55566853e-01 -5.42793810e-01 -9.12182510e-01 -8.57611418e-01 3.37272644e-01 -3.09173346e-01 -2.37389669e-01 5.01221836e-01 -2.12370902e-02 -1.21855438e-01 1.98996156e-01 -3.75670493e-01 -1.11695445e+00 -3.15330684e-01 -1.62862018e-01 5.05852759e-01 3.67845446e-01 2.50819981e-01 4.75000441e-02 -1.00752451e-01 -2.00302100e+00 5.10523558e-01 6.78912759e-01 1.33521187e+00 3.26458603e-01 5.85075021e-01 -1.54044256e-02 9.73655760e-01 -1.90495014e-01 -2.81807721e-01 4.82721299e-01 -3.93837422e-01 -1.06945407e+00 5.04510283e-01 1.27857387e+00 -4.55161452e-01 -5.01137972e-01 9.89897907e-01 9.15225148e-02 5.40451229e-01 6.34852886e-01 -1.25501668e+00 -7.73955405e-01 6.03420973e-01 -4.05170709e-01 5.26176393e-01 2.90030301e-01 4.03049767e-01 1.03787303e+00 -9.22597051e-01 9.86588597e-01 1.18306589e+00 6.85898721e-01 8.53053212e-01 -1.05044639e+00 -8.84497285e-01 6.21753156e-01 3.80086362e-01 -1.62239850e+00 -4.32552665e-01 4.80727255e-01 -7.33746231e-01 9.63483810e-01 2.52206504e-01 7.42513657e-01 1.10158634e+00 -4.13088113e-01 1.13936234e+00 8.17366123e-01 1.33124307e-01 1.19085170e-01 6.08952455e-02 5.60387313e-01 7.10978448e-01 1.24021307e-01 -1.78836763e-01 -2.58302867e-01 2.72998929e-01 6.31531835e-01 1.25840202e-01 -4.03495133e-01 -6.96322739e-01 -1.52299392e+00 7.07557917e-01 4.47303027e-01 -3.35746109e-02 -1.16132736e-01 1.20607443e-01 8.15449178e-01 2.04942971e-01 5.01093030e-01 2.92358518e-01 -6.66048646e-01 -2.51644552e-01 -9.26394403e-01 1.73902102e-02 5.94367981e-01 1.55030847e+00 7.36695886e-01 9.89118069e-02 -3.65729749e-01 7.46326625e-01 -2.77594049e-02 7.12387323e-01 5.65992892e-01 -1.03746438e+00 3.24049652e-01 4.10194427e-01 -5.25117099e-01 -5.89563310e-01 -6.24562353e-02 -7.29990005e-02 -6.43973291e-01 -5.75086057e-01 2.09801838e-01 2.79953275e-02 -1.33471966e+00 1.62105310e+00 3.42515379e-01 7.15294421e-01 7.54252449e-02 9.68230963e-01 1.46443474e+00 8.53531778e-01 1.66177258e-01 -3.09708953e-01 1.51197791e+00 -1.29715240e+00 -4.04156804e-01 -2.61642009e-01 3.85766447e-01 -2.21977860e-01 1.18883753e+00 3.68382156e-01 -8.04048538e-01 -8.79769802e-01 -6.73146725e-01 -2.47592166e-01 -3.05942804e-01 -2.43625268e-01 7.76945055e-01 4.05143619e-01 -7.66156137e-01 -4.24767882e-02 -7.66405702e-01 -4.50307399e-01 9.85771596e-01 1.80158466e-01 -2.99138606e-01 -2.35841766e-01 -8.21465194e-01 1.37074813e-01 7.41156101e-01 -2.76760370e-01 -1.38667798e+00 -1.13710093e+00 -1.19331861e+00 -1.10686831e-01 9.16668057e-01 -6.50769591e-01 1.29660761e+00 -1.37133253e+00 -8.85883451e-01 1.02688205e+00 -2.96526343e-01 -5.83384931e-01 3.47717285e-01 -8.86096805e-02 -2.69253224e-01 4.55925554e-01 2.06769466e-01 1.12950933e+00 9.48103309e-01 -1.12543643e+00 -8.42381179e-01 -3.08829933e-01 3.33114684e-01 1.45462990e-01 -3.42160583e-01 -2.86671460e-01 -1.01596725e+00 -9.42508280e-01 -9.86136943e-02 -1.13848233e+00 7.39392359e-03 -6.26768395e-02 -3.47582281e-01 -3.49967778e-01 8.70638549e-01 -5.30067921e-01 1.08292580e+00 -2.17791057e+00 3.00297678e-01 -2.35951245e-01 5.38134098e-01 3.42076063e-01 -2.54043162e-01 -2.11923480e-01 -5.90443052e-02 -1.22953199e-01 -2.65020013e-01 -8.82864147e-02 -8.74032974e-02 3.88006121e-01 -6.00570858e-01 1.89518943e-01 3.01596280e-02 1.18724847e+00 -9.60891068e-01 -6.67748570e-01 1.08754091e-01 9.74545777e-02 -8.31287742e-01 1.66399419e-01 -6.03270173e-01 3.56202900e-01 -3.13537538e-01 9.65087116e-01 4.51571703e-01 -4.20289338e-01 -1.62726957e-02 -3.77855659e-01 3.04625601e-01 -7.63146803e-02 -9.10241604e-01 1.88960099e+00 -1.86166763e-01 9.95541871e-01 -2.89410889e-01 -1.17747104e+00 4.25732106e-01 4.13702056e-03 5.42229950e-01 -5.66427171e-01 1.60783172e-01 -1.65919900e-01 -4.18643296e-01 -6.66544139e-01 5.14110446e-01 -2.71342341e-02 -2.72224933e-01 1.65772766e-01 5.08616149e-01 -4.74496968e-02 7.12761939e-01 4.21720505e-01 6.96936250e-01 4.58797626e-02 1.21882156e-01 -2.11579844e-01 4.10840541e-01 2.99534768e-01 6.60784483e-01 8.54237258e-01 -4.07015890e-01 6.23658717e-01 2.90669411e-01 -4.98350829e-01 -7.48154581e-01 -1.23936677e+00 -3.16313028e-01 1.31777585e+00 4.23290133e-01 -3.34091455e-01 -8.35713923e-01 -9.89254773e-01 5.93734719e-02 4.02255893e-01 -5.78208447e-01 2.09716074e-02 -4.23738807e-01 -2.37244144e-01 4.89697486e-01 6.98328912e-01 5.98325491e-01 -9.27137315e-01 -3.76419514e-01 -1.03052303e-01 -5.54753184e-01 -1.41540051e+00 -7.69012332e-01 -1.55979425e-01 -7.14915335e-01 -1.42853367e+00 -6.60605490e-01 -1.21426523e+00 5.61128557e-01 6.84015751e-01 1.35614276e+00 -1.09596394e-01 -5.41614592e-01 7.90705740e-01 -4.08976436e-01 -1.95123553e-01 -1.66609764e-01 -4.13351543e-02 1.48041055e-01 -5.30329049e-02 7.06044495e-01 -1.78347118e-02 -3.77420813e-01 2.41145819e-01 -9.47565913e-01 2.14269847e-01 2.52287984e-01 7.51854002e-01 1.09054923e+00 -2.92472802e-02 4.06668931e-01 -9.40560102e-01 -5.71023524e-02 -6.92404687e-01 -5.74366331e-01 2.66575515e-01 -2.10810766e-01 -3.10104311e-01 4.77510989e-01 -7.81168580e-01 -7.28150785e-01 1.26426339e-01 6.26881868e-02 -1.01151097e+00 -2.40160033e-01 3.93943518e-01 -5.97688928e-02 -1.67949963e-03 3.48499358e-01 5.46991825e-01 1.72416456e-02 -2.87536114e-01 6.89996600e-01 6.94293439e-01 8.92268360e-01 -3.97260159e-01 6.07733011e-01 4.94089007e-01 -5.86542010e-01 -9.85447049e-01 -1.14181042e+00 -8.01014662e-01 -7.60199726e-01 -2.49375507e-01 1.03048849e+00 -1.51104653e+00 -4.14447844e-01 4.36379790e-01 -6.56516194e-01 -6.49817884e-01 -5.21045446e-01 3.54027927e-01 -8.43272626e-01 4.90471005e-01 -6.26957297e-01 -1.99484631e-01 -3.16922754e-01 -1.25707638e+00 1.12217557e+00 1.23454288e-01 -5.17722517e-02 -8.15605640e-01 -3.00824791e-01 8.92733097e-01 -1.16746098e-01 8.68742317e-02 6.20149970e-01 -7.74445117e-01 -9.78275836e-01 4.29189093e-02 -3.86086047e-01 6.22147381e-01 -4.15804237e-02 -1.56304792e-01 -8.65452707e-01 -6.32987738e-01 -2.81677514e-01 -7.08682835e-01 1.24833000e+00 4.04290527e-01 1.58691919e+00 -2.37813458e-01 -4.59045231e-01 9.33026910e-01 1.26206887e+00 1.79448023e-01 4.78232205e-01 3.14607620e-02 1.10162938e+00 1.39179453e-01 9.37994599e-01 3.50415736e-01 6.02214038e-01 5.50509989e-01 1.51189357e-01 6.52630106e-02 -3.80698889e-01 -2.63108641e-01 3.05957705e-01 9.07708108e-01 1.27978310e-01 -1.85679108e-01 -6.43341839e-01 9.07465577e-01 -1.56553531e+00 -1.20374823e+00 7.99652785e-02 2.01593351e+00 7.18823552e-01 1.19072109e-01 2.92954952e-01 -2.84839064e-01 6.74171627e-01 2.11011559e-01 -8.89889479e-01 -6.27468154e-02 1.03055939e-01 -8.20315629e-02 5.97538590e-01 6.81928471e-02 -1.64571345e+00 1.25512850e+00 6.40571451e+00 9.94861662e-01 -9.88759160e-01 1.78413853e-01 5.91972172e-01 -3.92972678e-01 -1.17628962e-01 -1.99869648e-01 -8.06480289e-01 5.90280592e-01 7.29648471e-01 -1.15597069e-01 4.67165858e-01 1.15208125e+00 -1.61595717e-01 2.04736561e-01 -1.26346111e+00 1.27405262e+00 5.73631167e-01 -1.49982703e+00 4.63636369e-01 -2.57615834e-01 9.75045562e-01 3.76168668e-01 1.52144907e-02 9.25961196e-01 6.39954060e-02 -7.39784002e-01 8.41555119e-01 3.33936423e-01 1.29246151e+00 -5.59108138e-01 3.78444582e-01 1.67655408e-01 -1.41943383e+00 -2.74800181e-01 -4.08925295e-01 -2.27957703e-02 5.80040179e-02 1.38780698e-01 -6.60712540e-01 1.31236002e-01 9.23964083e-01 1.25596476e+00 -6.91649854e-01 9.77235734e-01 1.82108536e-01 8.98528159e-01 -2.16576964e-01 2.40011975e-01 4.90812242e-01 -1.61578786e-02 4.44942236e-01 1.28118289e+00 -1.01200558e-01 4.01396990e-01 6.63725078e-01 6.18206918e-01 -3.69773179e-01 -2.42488995e-01 -5.50541520e-01 -2.96098173e-01 4.34972346e-01 9.08927381e-01 -8.39276433e-01 -8.76523912e-01 -7.85901845e-01 1.03303313e+00 7.96968862e-02 3.34644109e-01 -1.26122940e+00 -3.73156756e-01 1.03269124e+00 3.85772772e-02 8.25616837e-01 7.47027481e-03 5.84291704e-02 -1.49593723e+00 7.84004778e-02 -1.15404642e+00 6.77390397e-01 -7.17527390e-01 -1.27972651e+00 5.12683928e-01 3.28888983e-01 -1.29898584e+00 -1.95420101e-01 -5.02451897e-01 3.55416201e-02 6.39582351e-02 -1.44579542e+00 -1.29843771e+00 -6.24309659e-01 7.97532976e-01 1.40368998e+00 -2.17002243e-01 3.76306653e-01 5.17962515e-01 -5.34190714e-01 6.80755615e-01 1.73017114e-01 4.28689629e-01 5.55132627e-01 -9.98838544e-01 5.21613061e-01 9.07240510e-01 3.88729632e-01 3.51024568e-01 4.41934913e-01 -5.36138415e-01 -1.59674907e+00 -1.71036351e+00 3.69419634e-01 -7.65444160e-01 6.95099294e-01 -5.70913434e-01 -9.72808838e-01 1.25755048e+00 -1.51236057e-01 4.05795842e-01 6.49685025e-01 -1.01767078e-01 -7.01325357e-01 1.35795968e-02 -9.58066583e-01 3.94380391e-01 1.64954484e+00 -6.16041124e-01 -9.58451629e-01 5.26479781e-01 1.25671971e+00 -6.23060882e-01 -8.88338566e-01 5.19393444e-01 4.44159418e-01 -5.55154324e-01 1.24486327e+00 -8.59852254e-01 3.76422286e-01 -1.91627890e-01 -3.10086966e-01 -9.63429034e-01 -3.65785062e-01 -3.78304124e-01 -3.25070620e-01 1.18882990e+00 8.09215680e-02 -3.30665559e-01 7.19075441e-01 4.29203421e-01 -3.25760394e-01 -6.58969343e-01 -8.03489625e-01 -9.52028513e-01 -5.22937952e-03 -8.07225823e-01 4.42077905e-01 9.54531372e-01 -2.87394106e-01 3.49104673e-01 -2.85693526e-01 7.69015634e-03 7.80883253e-01 5.20100713e-01 9.33028936e-01 -1.02645254e+00 -2.06846997e-01 -2.82290161e-01 -8.71491671e-01 -1.65337884e+00 4.01468694e-01 -1.07386780e+00 1.89565167e-01 -1.40285707e+00 7.38597274e-01 -4.06271845e-01 -2.65426099e-01 5.53329468e-01 -2.27776825e-01 9.05938983e-01 2.93939948e-01 2.72316337e-01 -1.41783619e+00 4.54106212e-01 1.27010226e+00 -6.60505116e-01 -7.22002164e-02 -2.54367769e-01 -8.33302200e-01 8.28393102e-01 2.34086692e-01 -2.17765450e-01 -7.27620184e-01 -6.02732182e-01 -4.24562514e-01 -8.55052695e-02 4.43845630e-01 -1.17062008e+00 -7.17827007e-02 -3.30029815e-01 1.79280415e-01 -8.89977396e-01 3.03940684e-01 -6.45208895e-01 -9.86156166e-02 1.78301916e-01 -4.48740333e-01 -4.28179622e-01 3.11758071e-01 9.77795541e-01 -2.23315254e-01 8.93501714e-02 7.09276259e-01 -1.41617805e-01 -1.90391505e+00 7.48315036e-01 -4.21192259e-01 7.05700397e-01 1.47115469e+00 -5.70180714e-01 -2.62425184e-01 -1.10811889e-01 -6.95634902e-01 5.52896619e-01 5.64484715e-01 9.69553471e-01 6.22074306e-01 -1.07482922e+00 -6.04410887e-01 2.76686609e-01 6.33373082e-01 2.43497193e-01 6.80543840e-01 6.14898562e-01 -5.20624101e-01 5.45233905e-01 -7.68412426e-02 -1.01195288e+00 -1.44849503e+00 1.18744993e+00 7.04034939e-02 3.74627292e-01 -8.65922213e-01 1.18464947e+00 7.95643389e-01 -3.66053700e-01 4.95440573e-01 -6.29533052e-01 -1.29228011e-01 1.22437170e-02 7.22168386e-01 1.16171062e-01 -2.69670010e-01 -9.48926389e-01 -2.88486063e-01 6.28636956e-01 -1.02676108e-01 6.31214738e-01 1.09702146e+00 -4.07981277e-01 4.40459587e-02 6.15141809e-01 1.45921814e+00 -4.60011989e-01 -1.48810923e+00 -4.33945626e-01 -3.39927673e-01 -5.77080607e-01 -4.24783491e-02 -5.05390465e-01 -1.31618226e+00 5.48215687e-01 6.77416980e-01 -1.00202262e-01 1.16844296e+00 3.70030761e-01 1.32664359e+00 5.58750927e-01 5.47369540e-01 -9.94598746e-01 1.37093887e-01 5.42214334e-01 4.77192312e-01 -1.52944851e+00 -8.51569846e-02 -5.88790655e-01 -1.00638473e+00 8.03017497e-01 7.90221512e-01 3.06351222e-02 5.77542841e-01 -2.31510550e-01 -3.26511636e-02 -2.23786846e-01 -7.62809992e-01 -5.33260345e-01 5.61613083e-01 8.02668452e-01 -4.37651388e-02 1.50779665e-01 1.91212326e-01 7.13213861e-01 6.29764199e-02 1.96313739e-01 4.80904400e-01 6.97832942e-01 -4.94455218e-01 -3.21832865e-01 -1.23189829e-01 7.33162403e-01 -2.27543578e-01 -8.35624337e-02 -2.44119335e-02 8.02364767e-01 2.58182794e-01 7.97674656e-01 6.27945781e-01 -3.02293450e-01 1.67318255e-01 -1.24846011e-01 3.63621980e-01 -7.88050592e-01 -2.89319623e-02 -2.39686936e-01 -6.02520406e-02 -7.55801260e-01 -5.11339009e-01 -7.32155681e-01 -1.26823819e+00 -4.82460149e-02 -1.72958642e-01 -7.15796873e-02 2.35085219e-01 9.90835249e-01 4.26749259e-01 5.12272418e-01 3.34656715e-01 -8.99065077e-01 -2.78425843e-01 -7.51354992e-01 -4.51292157e-01 8.18616033e-01 3.50680977e-01 -8.33785236e-01 -1.93862528e-01 6.45957232e-01]
[9.35136890411377, 0.3187369108200073]
b84c96b7-c81c-4f8a-8d5c-5e3802d06e78
sound2synth-interpreting-sound-via-fm
2205.03043
null
https://arxiv.org/abs/2205.03043v2
https://arxiv.org/pdf/2205.03043v2.pdf
Sound2Synth: Interpreting Sound via FM Synthesizer Parameters Estimation
Synthesizer is a type of electronic musical instrument that is now widely used in modern music production and sound design. Each parameters configuration of a synthesizer produces a unique timbre and can be viewed as a unique instrument. The problem of estimating a set of parameters configuration that best restore a sound timbre is an important yet complicated problem, i.e.: the synthesizer parameters estimation problem. We proposed a multi-modal deep-learning-based pipeline Sound2Synth, together with a network structure Prime-Dilated Convolution (PDC) specially designed to solve this problem. Our method achieved not only SOTA but also the first real-world applicable results on Dexed synthesizer, a popular FM synthesizer.
['Hang Zhao', 'Jian Wu', 'Yifei Xu', 'Shengcheng Yuan', 'Yansen Jing', 'Zui Chen']
2022-05-06
null
null
null
null
['audio-signal-processing']
['audio']
[-3.82449813e-02 -7.43267894e-01 1.66545346e-01 2.41075352e-01 -7.80668736e-01 -8.42773616e-01 6.41451627e-02 -7.34024167e-01 8.32087025e-02 3.77669960e-01 1.55748963e-01 -1.32885769e-01 -2.54269123e-01 -5.41145384e-01 -6.34869337e-01 -6.80936396e-01 1.70366451e-01 5.05293846e-01 -4.58356351e-01 -4.88525808e-01 8.16684365e-02 6.17755473e-01 -1.66030443e+00 3.60224754e-01 4.95082974e-01 1.06572807e+00 2.73216307e-01 1.15815604e+00 5.87488562e-02 6.40979826e-01 -1.00730228e+00 -3.11901808e-01 3.98047447e-01 -7.02609837e-01 -5.97673118e-01 -4.73867267e-01 5.18008947e-01 -3.71350318e-01 -1.27822816e-01 1.04525352e+00 1.08749390e+00 3.61096144e-01 6.29284024e-01 -8.26195657e-01 -5.76877594e-01 1.42703545e+00 -1.94679618e-01 -9.38441381e-02 6.57580048e-02 3.31925660e-01 1.32325566e+00 -6.32694602e-01 2.36354113e-01 1.10067391e+00 9.65213299e-01 5.60944438e-01 -1.08500004e+00 -9.20719624e-01 -7.80297279e-01 -1.14297748e-01 -1.35453212e+00 -5.74714005e-01 1.06012845e+00 -3.66761506e-01 7.15310454e-01 4.14218664e-01 8.26128423e-01 9.95921791e-01 7.07985908e-02 6.62325621e-01 7.66503632e-01 -4.15583819e-01 6.94753602e-02 -6.11549318e-01 -4.75100756e-01 3.63655835e-01 -5.98632812e-01 2.54013211e-01 -7.92696536e-01 8.19341838e-02 1.38615930e+00 -6.16740465e-01 -3.62218618e-01 3.80831987e-01 -1.30763066e+00 5.69933474e-01 1.80506915e-01 3.83488476e-01 -3.04302394e-01 8.48980665e-01 5.02394795e-01 6.38673782e-01 2.11101398e-02 1.05368757e+00 -6.64377689e-01 -6.43647432e-01 -1.00133717e+00 6.65225565e-01 9.04368103e-01 5.51734328e-01 3.37929338e-01 8.36953938e-01 -9.98282284e-02 1.28025651e+00 1.62073761e-01 6.17017090e-01 6.98496938e-01 -1.15102768e+00 2.82640755e-01 -7.61485323e-02 1.11260235e-01 -9.04420614e-01 -4.85948801e-01 -7.99486339e-01 -1.00221741e+00 2.21282989e-01 4.68672246e-01 -4.11336541e-01 -5.68784118e-01 1.73109388e+00 -9.27487761e-02 5.01692832e-01 -1.89962000e-01 1.21885538e+00 1.20256269e+00 8.16421866e-01 -6.05753839e-01 1.20070726e-01 1.24381649e+00 -9.20926213e-01 -9.36413348e-01 1.98335811e-01 -5.99666461e-02 -1.39924228e+00 1.22922444e+00 9.58730996e-01 -1.33928406e+00 -1.12714911e+00 -1.34923482e+00 -2.87727505e-01 2.14819729e-01 5.92092872e-01 6.62922382e-01 7.14355350e-01 -8.45192194e-01 1.21621013e+00 -3.17342907e-01 4.21083272e-01 5.09734564e-02 3.78893346e-01 -2.37119608e-02 8.51882637e-01 -1.13385987e+00 5.25043130e-01 4.16720480e-01 3.01468670e-01 -1.09628880e+00 -1.12294757e+00 -1.80477962e-01 2.56403565e-01 1.57959774e-01 -8.88394594e-01 1.84384286e+00 -1.12359750e+00 -2.54380250e+00 5.80088496e-01 3.89999926e-01 -4.40639824e-01 3.27378303e-01 -6.97431386e-01 -8.08049142e-01 -3.05736989e-01 -5.33025265e-01 3.16313326e-01 1.27401555e+00 -9.92987454e-01 -3.76724184e-01 1.03016600e-01 -2.51961797e-01 2.10976765e-01 -1.06911235e-01 1.89728081e-01 -3.30857307e-01 -1.20026481e+00 9.69635919e-02 -9.06243384e-01 3.94034013e-02 -4.78310198e-01 -7.29901373e-01 -1.26041412e-01 1.51302859e-01 -9.56036687e-01 1.46017087e+00 -2.00938582e+00 5.33328652e-01 2.25326493e-02 -7.57101178e-02 3.51866782e-01 -1.45721972e-01 3.28593969e-01 -3.22937608e-01 -7.89003894e-02 8.56472775e-02 -3.47095221e-01 2.56895751e-01 -3.11336696e-01 -8.29967022e-01 2.25578099e-01 -1.83443323e-01 7.83201635e-01 -5.31587780e-01 -1.72822233e-02 2.31649891e-01 4.48283136e-01 -6.28172457e-01 3.73384148e-01 -6.44933164e-01 5.78729570e-01 -4.51443382e-02 4.88023847e-01 5.00435293e-01 2.16347441e-01 -2.34088972e-02 -6.33110821e-01 -3.15692395e-01 3.52518111e-01 -1.58883393e+00 2.17946267e+00 -8.44212711e-01 7.30911255e-01 7.94290602e-02 -5.19308209e-01 1.44183564e+00 6.89818561e-01 5.22997022e-01 -2.22506210e-01 6.00905299e-01 6.17193580e-01 2.37466007e-01 -4.29603457e-01 9.00599182e-01 -5.11082947e-01 -3.81649323e-02 6.39019012e-01 3.25901419e-01 -7.25161135e-01 -2.86131591e-01 -6.06571972e-01 7.02828467e-01 3.36452723e-01 1.81411564e-01 -1.95505440e-01 2.58563221e-01 -6.17793083e-01 6.12094879e-01 6.48596704e-01 4.23738658e-01 1.08192360e+00 2.15739876e-01 -5.40350556e-01 -1.20276046e+00 -9.09120202e-01 1.19910941e-01 1.00850153e+00 -3.01889360e-01 -4.50839549e-01 -6.76359832e-01 2.71205634e-01 -1.56027123e-01 5.36163330e-01 -1.47530675e-01 -9.58309546e-02 -9.67237175e-01 -2.49666825e-01 1.16942441e+00 3.56245279e-01 2.53426015e-01 -1.46644127e+00 -2.75621891e-01 5.38882017e-01 -3.17952096e-01 -4.67183292e-01 -7.71588683e-01 3.34510654e-01 -6.21169388e-01 -7.36849785e-01 -7.18773544e-01 -8.16125572e-01 -5.33215880e-01 -3.64460260e-01 1.34387577e+00 -2.75961637e-01 -1.53898522e-01 -3.48366737e-01 -7.54860342e-02 -5.25224566e-01 -8.88676167e-01 4.25692052e-01 4.38068777e-01 9.71646160e-02 -3.01820517e-01 -1.15083468e+00 -5.43297052e-01 1.22435592e-01 -8.35525870e-01 2.40673169e-01 1.48760349e-01 6.33688867e-01 8.15204263e-01 1.96072996e-01 1.00988746e+00 -4.77655351e-01 1.05454731e+00 -4.96131629e-02 -5.40452898e-01 7.81537592e-02 5.27024306e-02 -4.23582047e-02 1.18298149e+00 -7.80807376e-01 -9.17364419e-01 -7.13146701e-02 -6.85825765e-01 -8.28645587e-01 1.05568305e-01 4.68732148e-01 -4.02290702e-01 1.76937267e-01 8.32000971e-01 -2.88525280e-02 -2.00951904e-01 -1.01634848e+00 5.46877623e-01 9.59523797e-01 1.19245017e+00 -8.36827159e-01 7.30505228e-01 -7.85418227e-02 1.50029168e-01 -7.83300281e-01 -7.88129508e-01 -1.26856416e-01 -4.64708775e-01 -3.02367121e-01 4.60095227e-01 -8.79821062e-01 -1.27140355e+00 8.84040594e-01 -1.36378276e+00 -5.59519053e-01 -4.08692300e-01 4.46516782e-01 -1.10215497e+00 -1.22229941e-01 -7.38751113e-01 -4.85300004e-01 -8.69704068e-01 -1.08562958e+00 8.46150637e-01 3.48617136e-01 -3.28864664e-01 -7.82385051e-01 5.09880066e-01 2.14455023e-01 5.66624045e-01 1.52457312e-01 7.94935465e-01 -8.84049460e-02 -4.10616845e-01 1.75353691e-01 2.39471406e-01 7.59542406e-01 2.76781708e-01 2.68649548e-01 -1.25788844e+00 -1.92559242e-01 1.07742190e-01 -2.74055660e-01 6.78234100e-01 5.86620688e-01 1.38583863e+00 -6.18072376e-02 5.44438660e-01 1.26913655e+00 1.15700817e+00 2.75442034e-01 7.25545943e-01 1.91808585e-02 9.10561204e-01 -1.19311698e-01 2.14525923e-01 6.23052955e-01 -2.46121526e-01 1.01734030e+00 1.72089100e-01 -4.17164825e-02 -6.25753462e-01 -5.31473994e-01 3.23246568e-01 1.43336701e+00 -4.18969244e-01 -2.82673448e-01 -4.74545509e-01 7.41353557e-02 -1.54688036e+00 -9.39283371e-01 -3.31122614e-02 1.98338223e+00 1.27395034e+00 -2.65106708e-01 1.71229362e-01 5.01298904e-01 7.06822574e-01 1.59468263e-01 -6.31761849e-01 -5.57191312e-01 -2.87272990e-01 9.91328716e-01 6.00734465e-02 1.85410410e-01 -1.10874867e+00 1.02427936e+00 6.88641214e+00 1.26048374e+00 -1.51344085e+00 -2.75180638e-01 2.19692215e-02 -3.25090975e-01 -3.13530505e-01 -3.24680567e-01 -5.04692376e-01 3.64563942e-01 8.86541545e-01 -1.68778971e-02 1.28571904e+00 4.72366393e-01 2.26960197e-01 5.68038285e-01 -9.70827103e-01 1.47964311e+00 -9.66669694e-02 -1.60155010e+00 2.73523852e-02 -4.31511521e-01 8.38861942e-01 -2.62114167e-01 5.42406201e-01 1.69780225e-01 1.42356500e-01 -1.33571029e+00 1.21037495e+00 8.15682590e-01 1.26319706e+00 -1.05190039e+00 3.64652514e-01 6.38893768e-02 -1.20241892e+00 -1.18123880e-02 -1.74488127e-01 -1.48049295e-01 1.51919678e-01 5.73248148e-01 -8.05611789e-01 4.75612938e-01 4.74886775e-01 7.95356452e-01 1.65318847e-02 1.20237696e+00 -3.69785070e-01 1.03701937e+00 -1.32894978e-01 1.03832684e-01 -2.70582110e-01 -1.44110933e-01 8.27510178e-01 9.49992836e-01 8.33548367e-01 -3.14854950e-01 -1.72143593e-01 1.12600815e+00 -5.45997143e-01 1.16702244e-01 -4.54831757e-02 -3.44467282e-01 6.27713323e-01 1.26914775e+00 -3.93511385e-01 1.88743368e-01 3.29613686e-01 7.54706979e-01 -1.03850819e-01 1.93488240e-01 -8.48320365e-01 -4.92508978e-01 8.36823046e-01 -2.38280043e-01 3.68931741e-01 -2.78238028e-01 -2.87871093e-01 -1.01929474e+00 -2.79703975e-01 -1.44616079e+00 -7.80893788e-02 -9.88876641e-01 -1.26502895e+00 6.09127223e-01 -6.96074367e-01 -1.52691817e+00 -4.89486486e-01 -7.29870319e-01 -6.95697784e-01 1.21794641e+00 -1.13221419e+00 -1.02780557e+00 8.31174403e-02 4.72757161e-01 4.72801000e-01 -6.65773511e-01 1.27175760e+00 4.81002271e-01 -4.37315285e-01 6.71591163e-01 2.78736770e-01 1.91263785e-03 8.69051397e-01 -1.37221968e+00 5.34552276e-01 4.56026703e-01 5.77458978e-01 6.06354833e-01 9.45353746e-01 -1.97444111e-01 -1.59347677e+00 -8.23561013e-01 2.58484900e-01 -2.43548192e-02 7.41061687e-01 -1.91356316e-01 -6.58127487e-01 4.07076865e-01 2.02852950e-01 -4.75205898e-01 6.83971226e-01 2.79803306e-01 -2.64792711e-01 -3.34965974e-01 -6.41547680e-01 7.29084909e-01 8.81166279e-01 -6.98895156e-01 -4.81930107e-01 4.91009504e-02 8.72830987e-01 -8.06548417e-01 -1.01980054e+00 1.27041966e-01 8.44040632e-01 -1.01615894e+00 1.10663009e+00 -3.54502708e-01 7.71647334e-01 -5.88351727e-01 -1.62760958e-01 -1.86059380e+00 -2.86963791e-01 -1.46690226e+00 -4.33864206e-01 1.46414053e+00 1.35265008e-01 -1.09508164e-01 3.85239661e-01 -2.82680213e-01 -5.44501781e-01 -3.96285117e-01 -8.91772449e-01 -6.65056765e-01 1.64168432e-01 -6.18332624e-01 1.25182831e+00 7.55490124e-01 -5.56501746e-01 4.89457428e-01 -8.76248062e-01 1.59675498e-02 3.33877921e-01 4.67348725e-01 1.03260684e+00 -1.27462220e+00 -8.90451252e-01 -6.42496467e-01 -5.03578708e-02 -1.01022327e+00 1.36603758e-01 -8.97266805e-01 2.50062048e-01 -9.89066482e-01 -2.55418837e-01 -6.11717463e-01 -4.03709501e-01 2.04078287e-01 1.67588755e-01 2.44298995e-01 2.62325257e-01 1.58266239e-02 5.04979938e-02 5.44431686e-01 1.49916375e+00 -1.14418082e-01 -5.35863519e-01 5.14808416e-01 -5.79545498e-01 7.46705055e-01 8.98192525e-01 -2.55681664e-01 -3.11915725e-01 -5.45195043e-01 7.64620841e-01 5.54303408e-01 3.32218289e-01 -1.29207146e+00 1.81239203e-01 -4.91248965e-02 1.17373511e-01 -7.65821874e-01 5.44620931e-01 -4.16581184e-01 7.76309311e-01 1.30846739e-01 -4.45740014e-01 -1.90091074e-01 3.24133515e-01 -1.14503138e-01 -3.04737866e-01 -3.43418628e-01 7.62155175e-01 -1.18483976e-02 -4.69824433e-01 1.78267613e-01 8.97638351e-02 -2.26297807e-02 -1.66160129e-02 1.96861103e-01 -2.22701296e-01 -4.81811374e-01 -6.60635293e-01 -5.99828482e-01 -7.25101621e-04 4.55992639e-01 4.86493438e-01 -1.71320593e+00 -1.00280869e+00 1.81590527e-01 -3.02643657e-01 -1.41028807e-01 5.74749529e-01 1.56397015e-01 -7.99409926e-01 2.60952092e-03 -3.80291849e-01 -1.22985773e-01 -1.11252654e+00 1.54448166e-01 8.63325179e-01 2.01219786e-02 -8.79225791e-01 1.07190108e+00 -1.59133524e-01 -6.41807497e-01 2.66151547e-01 -5.03768682e-01 -2.04101264e-01 9.61057991e-02 6.44771397e-01 4.87935305e-01 1.42064661e-01 -4.47996467e-01 1.56648234e-01 6.44648731e-01 5.31221032e-01 -4.33419794e-01 1.46762300e+00 2.44496316e-01 -2.96010852e-01 8.68839264e-01 1.09437633e+00 2.38469437e-01 -1.04234135e+00 -4.53769043e-02 -5.63431084e-01 -3.50175291e-01 4.15772855e-01 -1.06015038e+00 -1.27434886e+00 8.14127445e-01 5.24282098e-01 2.01915458e-01 1.11168730e+00 -4.50824916e-01 1.16763079e+00 4.51180965e-01 2.47494817e-01 -1.12976587e+00 2.99575239e-01 7.12489188e-01 1.38192284e+00 -5.39419830e-01 -2.68780798e-01 2.96999246e-01 -4.71591979e-01 1.47340989e+00 1.50963649e-01 -2.23696902e-01 6.92327261e-01 6.12933218e-01 3.29005092e-01 3.40101495e-02 -4.36513454e-01 2.87897617e-01 6.29478276e-01 3.02587032e-01 6.38599277e-01 4.71004188e-01 2.40522668e-01 1.37525213e+00 -1.23406672e+00 1.84252441e-01 2.23616973e-01 6.94105178e-02 -2.50865132e-01 -9.59394991e-01 -6.59654796e-01 1.47024915e-01 -5.58987200e-01 -1.21584870e-01 -1.59680292e-01 2.48250261e-01 4.41542327e-01 7.94285059e-01 1.28066182e-01 -7.99248993e-01 4.11947012e-01 -9.23306048e-02 7.53612757e-01 -2.94319779e-01 -1.14333284e+00 3.70794982e-01 3.93311419e-02 -1.33541003e-01 -1.43321738e-01 -3.98460656e-01 -1.26046455e+00 -4.81707543e-01 -3.17915022e-01 -2.31497988e-01 8.12274814e-01 6.59988463e-01 1.11286482e-02 1.28743517e+00 9.63610232e-01 -9.05501485e-01 -6.43658459e-01 -1.16666579e+00 -1.15332055e+00 1.90290526e-01 4.31351542e-01 -3.25948864e-01 -1.56340286e-01 7.69521892e-02]
[15.686894416809082, 5.900119304656982]
6586ddbe-0b61-40c0-9827-78586b0075d5
online-structured-sparsity-based-moving
1911.12989
null
https://arxiv.org/abs/1911.12989v3
https://arxiv.org/pdf/1911.12989v3.pdf
Online Structured Sparsity-based Moving Object Detection from Satellite Videos
Inspired by the recent developments in computer vision, low-rank and structured sparse matrix decomposition can be potentially be used for extract moving objects in satellite videos. This set of approaches seeks for rank minimization on the background that typically requires batch-based optimization over a sequence of frames, which causes delays in processing and limits their applications. To remedy this delay, we propose an Online Low-rank and Structured Sparse Decomposition (O-LSD). O-LSD reformulates the batch-based low-rank matrix decomposition with the structured sparse penalty to its equivalent frame-wise separable counterpart, which then defines a stochastic optimization problem for online subspace basis estimation. In order to promote online processing, O-LSD conducts the foreground and background separation and the subspace basis update alternatingly for every frame in a video. We also show the convergence of O-LSD theoretically. Experimental results on two satellite videos demonstrate the performance of O-LSD in term of accuracy and time consumption is comparable with the batch-based approaches with significantly reduced delay in processing.
['Junpeng Zhang', 'Xiuping Jia', 'Jocelyn Chanussot', 'Jiankun Hu']
2019-11-29
null
null
null
null
['moving-object-detection']
['computer-vision']
[ 2.26530686e-01 -6.99001253e-01 2.60212928e-01 -1.23932414e-01 -7.20436752e-01 -5.07151723e-01 2.56717354e-01 -3.83093596e-01 -2.41680518e-01 4.11969006e-01 2.39738762e-01 -1.18615545e-01 -3.08674335e-01 -1.29731104e-01 -4.91143525e-01 -1.07713974e+00 -3.32387745e-01 -8.72499570e-02 2.82209456e-01 2.30471864e-01 1.43562378e-02 4.99384165e-01 -1.45816517e+00 2.40781322e-01 9.98466730e-01 9.70608234e-01 5.54280519e-01 6.79278791e-01 1.77251831e-01 8.11718106e-01 1.42839747e-02 5.49939200e-02 6.73410714e-01 -3.33079398e-01 -3.55719239e-01 9.25482810e-01 6.58804655e-01 -6.68275535e-01 -7.67851353e-01 1.22609389e+00 3.15248072e-01 5.24435103e-01 2.40085378e-01 -9.67359245e-01 -7.35206455e-02 4.77291411e-03 -9.46356833e-01 6.13351464e-01 3.63918126e-01 -7.49442428e-02 6.30810916e-01 -1.54860651e+00 4.65679348e-01 1.35212708e+00 6.08784735e-01 3.74255143e-02 -1.29513788e+00 -2.12311044e-01 3.46296549e-01 2.58823901e-01 -1.57778561e+00 -7.11079299e-01 6.07589483e-01 -5.06317437e-01 4.01129186e-01 6.07919693e-01 6.94012821e-01 3.74688894e-01 -3.32133830e-01 1.03694928e+00 1.01721275e+00 -2.23120317e-01 1.78553686e-01 -3.81601751e-01 2.31212586e-01 5.62990725e-01 4.90155041e-01 -1.29364878e-01 -6.63455844e-01 -3.84644300e-01 7.76331544e-01 1.62671611e-01 -5.39865196e-01 -4.33206230e-01 -1.49732459e+00 5.11548221e-01 -1.94859549e-01 -4.51964512e-02 -5.88857234e-01 -1.71494052e-01 4.01736647e-01 1.32711500e-01 4.74240929e-01 -3.18719745e-01 -1.01703122e-01 1.15464143e-01 -1.54881847e+00 1.75520942e-01 8.03582191e-01 9.00329590e-01 6.34686172e-01 5.58123112e-01 -3.10458779e-01 8.15065682e-01 4.49482888e-01 8.09975088e-01 2.59555340e-01 -1.16520190e+00 4.48673427e-01 1.48320436e-01 3.07414502e-01 -1.42456806e+00 -1.28462747e-01 -4.54814881e-01 -1.00963211e+00 -1.31035462e-01 2.81736940e-01 -3.36904489e-02 -5.80784976e-01 1.13289070e+00 8.08053792e-01 9.06551182e-01 6.27741292e-02 1.42789912e+00 6.90046608e-01 1.09195173e+00 -3.69844824e-01 -9.44877267e-01 1.11681116e+00 -1.08493173e+00 -8.42481613e-01 -1.17884636e-01 2.80774087e-01 -7.63746142e-01 6.15775704e-01 5.36263585e-01 -9.72419441e-01 -4.01564211e-01 -7.57931113e-01 3.01383585e-01 5.31388342e-01 5.87996900e-01 4.99453723e-01 5.79037189e-01 -1.02620649e+00 3.72938097e-01 -1.14888418e+00 -2.53451020e-01 9.28544849e-02 4.10603642e-01 -2.94471532e-01 -2.52582282e-01 -7.63981938e-01 3.15025270e-01 2.30055943e-01 7.60463834e-01 -1.28984094e+00 -4.57655460e-01 -8.08368444e-01 -2.08072993e-03 6.26236022e-01 -4.08066064e-01 8.55410039e-01 -9.91220653e-01 -1.42276633e+00 6.60155952e-01 -5.68502486e-01 -3.17781627e-01 3.36819559e-01 -5.41817725e-01 -3.08342248e-01 4.84686077e-01 1.91578537e-01 -1.14589415e-01 1.53613448e+00 -1.19076335e+00 -7.45920599e-01 -3.67996007e-01 -1.19013555e-01 4.78577852e-01 -5.40342152e-01 2.35139951e-01 -1.03449333e+00 -8.70748043e-01 7.78928459e-01 -1.03495419e+00 -5.50452828e-01 -8.14987198e-02 -1.04536220e-01 2.48935685e-01 1.06927860e+00 -1.09508169e+00 1.42962039e+00 -2.46408892e+00 3.75585228e-01 8.04914087e-02 2.16628209e-01 3.25529426e-01 -8.12877342e-02 1.98564097e-01 -8.41035023e-02 -6.61791801e-01 -2.76891053e-01 -2.36599818e-01 -4.07162011e-01 1.74885169e-01 -4.19843584e-01 1.05991840e+00 -3.71723399e-02 1.86485514e-01 -9.99226391e-01 -6.37402594e-01 1.84135944e-01 3.52040619e-01 -5.70157349e-01 2.17145130e-01 3.10022712e-01 5.20949364e-01 -5.16738176e-01 7.43039787e-01 1.02316213e+00 -2.53694862e-01 3.33435357e-01 -6.22210920e-01 -4.34061944e-01 -2.39206105e-01 -1.86016357e+00 1.59998572e+00 -1.24048702e-02 6.62025690e-01 1.06480765e+00 -1.20163262e+00 5.12730360e-01 1.98906884e-01 7.36721158e-01 -1.74681284e-02 -1.98075399e-01 2.32831448e-01 -3.07928234e-01 -5.75824201e-01 6.65020406e-01 6.15370683e-02 4.34635311e-01 3.84779237e-02 -1.81461960e-01 3.84978354e-01 6.53333485e-01 5.14137149e-01 8.70765686e-01 2.74083346e-01 1.52753904e-01 -5.22134960e-01 1.11820781e+00 -7.68108591e-02 1.00313032e+00 6.62624896e-01 -1.36981100e-01 4.35209185e-01 -8.15971643e-02 -3.81873280e-01 -5.89726746e-01 -7.53407061e-01 -9.37230047e-03 1.12527466e+00 4.12833899e-01 -4.25839067e-01 -6.36135817e-01 -1.90206736e-01 -1.10760331e-01 7.68557116e-02 -3.02080177e-02 4.69325095e-01 -7.52280235e-01 -8.69469702e-01 -7.52741694e-02 1.56247124e-01 4.23540652e-01 -2.10131004e-01 -4.65584517e-01 3.03685725e-01 -3.54630560e-01 -1.37621593e+00 -6.61954284e-01 -2.09049329e-01 -1.30601132e+00 -8.23766410e-01 -9.21383619e-01 -6.92791402e-01 1.11007369e+00 1.25709164e+00 6.51841402e-01 -2.10277531e-02 -2.08492428e-01 7.51269519e-01 -4.50953096e-01 2.07088441e-01 2.66956419e-01 -5.26950598e-01 5.29978395e-01 8.79940391e-01 -2.55236253e-02 -5.50641358e-01 -6.70328677e-01 4.32446301e-01 -1.16299200e+00 3.53200734e-02 4.51278180e-01 8.50985467e-01 7.67380714e-01 2.65879512e-01 -2.00672582e-01 -4.33654189e-01 2.73158610e-01 -3.28449667e-01 -1.06389225e+00 1.39771149e-01 -2.27184400e-01 -3.04802090e-01 4.67502564e-01 -3.16736966e-01 -1.26368165e+00 5.21271348e-01 5.05435765e-01 -9.12237763e-01 3.19800973e-01 7.71708488e-01 -2.72492141e-01 -2.82915384e-01 2.46821657e-01 7.86785364e-01 1.92516334e-02 -6.29603565e-01 2.58052796e-01 5.14369726e-01 7.06448734e-01 -5.90374351e-01 1.28279662e+00 1.01198936e+00 -4.03239887e-04 -1.42891848e+00 -8.84950757e-01 -1.01195884e+00 -5.86609244e-01 -5.36457300e-01 6.33663416e-01 -1.49008870e+00 -4.91067678e-01 4.04785663e-01 -9.50793207e-01 5.56026846e-02 -5.24071343e-02 9.14958119e-01 -3.47917974e-01 1.13676596e+00 -5.31764567e-01 -1.11696827e+00 -1.00166157e-01 -8.88779879e-01 1.01457369e+00 1.36315539e-01 3.48026901e-01 -6.92964554e-01 -1.36982337e-01 4.14921612e-01 7.93552473e-02 8.03370774e-02 1.56184852e-01 -1.72426283e-01 -8.89661908e-01 -1.52286813e-01 -2.89257646e-01 3.80726635e-01 -9.50729027e-02 -2.20209017e-01 -5.28579593e-01 -8.70332003e-01 5.28121412e-01 1.05032630e-01 7.50303566e-01 6.54417992e-01 8.47429872e-01 -3.85777861e-01 -2.33654812e-01 1.01276672e+00 1.55543840e+00 5.63083962e-02 3.90081018e-01 4.46856558e-01 8.93529773e-01 5.37127197e-01 1.06074202e+00 9.80533123e-01 7.53780603e-02 6.27632856e-01 3.10533017e-01 -2.45397389e-02 2.36418456e-01 3.57969701e-01 8.00925374e-01 1.28478527e+00 -3.00135136e-01 1.39535353e-01 -6.22004688e-01 6.00456893e-01 -2.16223741e+00 -1.16006446e+00 -6.21620417e-01 2.43517780e+00 3.50919038e-01 -4.52325195e-01 2.01508939e-01 4.56388891e-02 9.58818853e-01 4.82081413e-01 -4.58299965e-01 3.26364607e-01 -2.67038465e-01 -5.09557426e-01 6.53498650e-01 4.31182802e-01 -1.27922428e+00 7.93417037e-01 6.22616768e+00 8.61807048e-01 -9.22708035e-01 2.00186923e-01 2.64299423e-01 -3.97386789e-01 2.95008030e-02 2.48774469e-01 -8.59309971e-01 3.54802459e-01 6.15057945e-01 -2.50423551e-01 7.31748044e-01 8.93926203e-01 8.11974168e-01 -1.95841119e-01 -8.35535884e-01 1.54016423e+00 2.37488955e-01 -1.14102793e+00 5.85898198e-02 -1.24915754e-02 9.06850159e-01 -8.12267214e-02 -2.37777457e-01 -6.49526343e-02 -1.68132499e-01 -3.29214662e-01 7.90211201e-01 3.82695407e-01 5.14025569e-01 -5.03517568e-01 2.66655594e-01 4.47372794e-01 -1.51987553e+00 -1.66827172e-01 -6.03526592e-01 -1.25136554e-01 5.83559692e-01 9.54471529e-01 -8.48352835e-02 7.51812220e-01 8.47190917e-01 9.64789689e-01 -1.15478180e-01 1.20564532e+00 1.05178460e-01 7.96966434e-01 -4.46470976e-01 5.39739430e-01 2.74404168e-01 -1.09126270e+00 1.19590282e+00 1.34958982e+00 5.20191431e-01 6.39296174e-01 7.64388323e-01 2.11822808e-01 4.19008493e-01 1.94075271e-01 -2.00874627e-01 -9.81576517e-02 2.82182842e-01 1.46097398e+00 -8.22294354e-01 -5.12421608e-01 -7.50225902e-01 1.26533222e+00 -2.21784517e-01 6.35458946e-01 -7.75409281e-01 -5.55581041e-02 6.05481982e-01 6.68823570e-02 7.04012394e-01 -7.29481697e-01 1.99862465e-01 -1.62048268e+00 1.57434374e-01 -1.20814919e+00 3.79776031e-01 -5.27875066e-01 -9.70577002e-01 3.98906052e-01 -9.84957516e-02 -1.83542299e+00 2.23276496e-01 -3.53473306e-01 -3.22602570e-01 5.98109305e-01 -1.27643132e+00 -9.00811374e-01 -4.59099263e-01 9.39338982e-01 9.01928663e-01 -1.39204741e-01 2.01759487e-01 5.14394760e-01 -9.19082046e-01 2.72982009e-02 7.02469230e-01 3.17732617e-02 4.91279811e-01 -8.22455823e-01 -1.59777969e-01 1.56478965e+00 1.45264789e-01 6.40086770e-01 8.73773396e-01 -6.75538719e-01 -2.18224216e+00 -1.06084096e+00 3.41905177e-01 4.63783517e-02 8.76122475e-01 3.33330147e-02 -8.48548949e-01 4.46209252e-01 -5.82643449e-02 2.84760773e-01 8.86405706e-01 -2.72004455e-01 9.22056090e-04 -3.65009934e-01 -6.74637794e-01 4.38685149e-01 1.02353871e+00 -4.18423772e-01 -4.48905498e-01 6.55679822e-01 3.84210199e-01 -5.03889263e-01 -6.72417819e-01 1.65156543e-01 3.72453868e-01 -8.87392282e-01 1.08740401e+00 -3.76947135e-01 1.45040331e-02 -1.11539114e+00 -5.04950345e-01 -8.17461491e-01 -6.76213682e-01 -1.19272256e+00 -5.26350379e-01 1.06292284e+00 -2.53058761e-01 -2.57409096e-01 7.10444152e-01 5.39256990e-01 -7.79436976e-02 -3.65305841e-01 -9.27251697e-01 -1.11598098e+00 -9.43278611e-01 -3.36306512e-01 -1.44566938e-01 1.00889957e+00 -3.61044139e-01 1.24330074e-01 -9.45992172e-01 8.90920103e-01 1.30669260e+00 4.33390647e-01 9.44086015e-01 -9.97628510e-01 -4.96182770e-01 2.45456487e-01 -3.92306536e-01 -1.67627370e+00 4.40419391e-02 -6.00923717e-01 2.17521340e-01 -1.33073175e+00 4.42282379e-01 9.11153182e-02 -9.02739018e-02 -1.58859923e-01 -3.75904858e-01 1.27374813e-01 3.56596828e-01 7.98623443e-01 -9.21241403e-01 6.14837110e-01 8.44250143e-01 -1.35533020e-01 -2.96229690e-01 -1.52756661e-01 -3.27050537e-01 8.83924782e-01 3.03330738e-02 -3.86728227e-01 -3.67608339e-01 -5.84463000e-01 2.31322348e-02 4.17540997e-01 8.87468234e-02 -8.89847219e-01 3.41476887e-01 -2.45542765e-01 2.01220676e-01 -8.67724955e-01 2.71107614e-01 -1.03003490e+00 3.18586379e-01 4.99694973e-01 1.75727695e-01 -2.26040214e-01 1.54919112e-02 1.04494119e+00 -5.59536934e-01 -2.06851810e-01 6.11341774e-01 7.09039159e-03 -9.56510365e-01 4.83285069e-01 -7.37654984e-01 -2.35438779e-01 9.72227514e-01 -6.47964776e-01 3.07285190e-01 -4.96877253e-01 -9.38447833e-01 4.41179752e-01 2.50107199e-01 -6.44547343e-02 7.40754783e-01 -1.34663165e+00 -9.67095554e-01 -7.06605101e-03 -3.58564287e-01 -9.99625772e-02 6.43633068e-01 1.46000743e+00 -7.10512042e-01 3.41470629e-01 1.98349819e-01 -9.28645313e-01 -1.69571459e+00 5.83345234e-01 -1.21163987e-01 -2.20924452e-01 -6.20995522e-01 7.61669397e-01 4.99436021e-01 1.41588792e-01 1.12862192e-01 8.85025337e-02 -1.63128152e-01 2.23989949e-01 8.71076882e-01 9.46915090e-01 -2.39241108e-01 -9.69919503e-01 -4.59165484e-01 5.78326344e-01 6.85239509e-02 -1.75666258e-01 1.49914253e+00 -6.54825985e-01 -6.70943975e-01 3.35671961e-01 9.42890882e-01 2.54356116e-01 -1.62300396e+00 -4.13149625e-01 1.42833535e-02 -1.01841545e+00 3.73959512e-01 2.24453643e-01 -1.21681392e+00 4.29824889e-01 6.27927840e-01 1.97484996e-03 1.51269972e+00 -5.73291540e-01 7.50801504e-01 5.52990615e-01 5.38021028e-01 -1.04296148e+00 -1.43980265e-01 5.78413725e-01 8.45180273e-01 -1.08576500e+00 4.64379460e-01 -8.61087382e-01 -4.36825722e-01 1.03314769e+00 2.56489754e-01 -2.74563760e-01 5.13233244e-01 8.04689899e-02 -1.82190806e-01 2.06197631e-02 -5.22976220e-01 -2.28966311e-01 3.80094051e-01 3.07780653e-01 2.34491855e-01 -2.52159715e-01 -6.14069223e-01 3.25541198e-01 6.04886115e-01 -4.03313637e-02 4.49158132e-01 1.04416299e+00 -5.63068390e-01 -7.19962835e-01 -1.13705373e+00 4.21857923e-01 -4.51596379e-01 -1.92476109e-01 1.77253429e-02 7.72785321e-02 -3.40395778e-01 1.08268726e+00 -2.53768563e-01 -1.26365915e-01 1.43963739e-01 -2.65399784e-01 3.05898845e-01 -4.80294317e-01 -2.07033828e-01 8.52977574e-01 2.60235686e-02 -9.42068100e-01 -8.27126682e-01 -1.00350380e+00 -9.64042246e-01 -2.09382437e-02 -5.15154481e-01 3.81602526e-01 3.87622207e-01 7.50214577e-01 3.36851031e-01 6.09186776e-02 8.95869493e-01 -1.31813359e+00 -7.00964630e-01 -5.98843098e-01 -9.23568964e-01 4.29256022e-01 3.44513297e-01 -4.85159814e-01 -7.01524019e-01 6.64148808e-01]
[8.999110221862793, -0.8348671793937683]
0d243c3b-df29-4361-87f1-e6f774d6ff2b
medal-deep-active-learning-sampling-method
1809.09287
null
http://arxiv.org/abs/1809.09287v2
http://arxiv.org/pdf/1809.09287v2.pdf
MedAL: Deep Active Learning Sampling Method for Medical Image Analysis
Deep learning models have been successfully used in medical image analysis problems but they require a large amount of labeled images to obtain good performance.Deep learning models have been successfully used in medical image analysis problems but they require a large amount of labeled images to obtain good performance. However, such large labeled datasets are costly to acquire. Active learning techniques can be used to minimize the number of required training labels while maximizing the model's performance.In this work, we propose a novel sampling method that queries the unlabeled examples that maximize the average distance to all training set examples in a learned feature space. We then extend our sampling method to define a better initial training set, without the need for a trained model, by using ORB feature descriptors. We validate MedAL on 3 medical image datasets and show that our method is robust to different dataset properties. MedAL is also efficient, achieving 80% accuracy on the task of Diabetic Retinopathy detection using only 425 labeled images, corresponding to a 32% reduction in the number of required labeled examples compared to the standard uncertainty sampling technique, and a 40% reduction compared to random sampling.
['Adrián Galdrán', 'Pedro Costa', 'Asim Smailagic', 'Susu Xu', 'Mostafa Mirshekari', 'Kartik Khandelwal', 'Hae Young Noh', 'Jonathon Fagert', 'Devesh Walawalkar']
2018-09-25
null
null
null
null
['diabetic-retinopathy-detection']
['medical']
[ 1.32496536e-01 2.79609382e-01 -2.87815005e-01 -9.08332586e-01 -1.27236700e+00 -1.91502884e-01 2.27467313e-01 4.00198400e-01 -8.89028430e-01 5.85084736e-01 -2.44342119e-01 3.84067260e-02 -2.24686041e-01 -8.73406589e-01 -6.11828268e-01 -8.84533823e-01 1.68201849e-01 7.87416279e-01 2.10754469e-01 6.39778793e-01 1.58284437e-02 3.81091535e-01 -1.48857009e+00 3.61456594e-04 1.01869476e+00 1.09286177e+00 2.02229977e-01 2.78075874e-01 -1.14349037e-01 9.38690543e-01 -7.41769910e-01 -9.05830786e-02 2.79453158e-01 -3.98085803e-01 -7.51110792e-01 6.51386738e-01 4.50019926e-01 -5.39058626e-01 8.67455974e-02 1.01745892e+00 8.42286170e-01 1.47160590e-01 8.83509457e-01 -8.08931231e-01 -3.75681251e-01 4.60701227e-01 -5.49727798e-01 -4.20755148e-02 -3.25982958e-01 -4.98789437e-02 7.50000834e-01 -8.62619102e-01 4.90055919e-01 8.27331662e-01 2.87501693e-01 6.23659551e-01 -1.33422160e+00 -5.68584919e-01 -2.04597130e-01 2.96542227e-01 -1.46794152e+00 -4.82899308e-01 4.62593973e-01 -5.82032979e-01 4.83004600e-01 -6.72889501e-03 6.49533212e-01 5.39802909e-01 -8.20192024e-02 9.45337236e-01 8.97522509e-01 -6.79010153e-01 8.74801576e-01 3.52475941e-01 2.41063222e-01 7.94179499e-01 3.59014302e-01 7.24007860e-02 -1.51483461e-01 -2.47889072e-01 7.81060755e-01 8.84695947e-02 -2.36756578e-01 -7.42051482e-01 -7.82827199e-01 1.24357915e+00 4.96524423e-01 1.34275019e-01 -5.66750407e-01 1.77609362e-02 2.35734552e-01 -5.62983714e-02 6.46736026e-01 6.81202888e-01 -3.23009253e-01 1.99460909e-01 -1.07050467e+00 -3.20517533e-02 4.83583629e-01 8.15616965e-01 8.43710661e-01 -2.87834913e-01 -1.25325695e-01 1.13713157e+00 3.39581132e-01 4.19322789e-01 4.44225043e-01 -1.09008121e+00 2.72657326e-03 9.65100169e-01 1.69697687e-01 -6.14445090e-01 -3.34856480e-01 -4.03720081e-01 -6.49751246e-01 4.86710846e-01 5.15873373e-01 -2.53909558e-01 -1.15861559e+00 1.26069748e+00 2.62974113e-01 -7.98265934e-02 -1.75471995e-02 7.11630821e-01 6.57887459e-01 3.56656581e-01 -2.13163290e-02 -4.30094659e-01 9.62256610e-01 -6.74292505e-01 -5.20384908e-01 -2.15293482e-01 9.02188003e-01 -6.04312539e-01 1.01528680e+00 4.35189962e-01 -7.62129128e-01 -2.32131049e-01 -8.87471974e-01 1.96237445e-01 -4.55777608e-02 4.77399379e-01 5.70170522e-01 7.52951384e-01 -6.98905408e-01 3.85643095e-01 -1.00861073e+00 -7.34787583e-02 9.81486619e-01 5.41786373e-01 -2.12723151e-01 -2.53638327e-01 -7.44876802e-01 8.34355235e-01 4.76317286e-01 -4.94247675e-02 -9.53952134e-01 -6.38817847e-01 -1.02947199e+00 8.53886753e-02 4.38876063e-01 -3.30247134e-01 1.26360917e+00 -9.81808782e-01 -1.20889020e+00 8.51555586e-01 -2.17487514e-02 -6.34360135e-01 6.19504929e-01 -2.14978144e-01 -3.20857689e-02 4.05826449e-01 -7.93813914e-03 9.73608136e-01 5.91755033e-01 -9.63263631e-01 -5.14226496e-01 -3.72254103e-01 -8.29904340e-03 9.75681990e-02 -3.95673305e-01 -8.15755203e-02 -4.80001181e-01 -2.92566419e-01 1.16961710e-01 -1.18201625e+00 -6.78603530e-01 2.60528713e-01 -1.84596077e-01 -3.12962800e-01 4.24745113e-01 -1.72974914e-01 8.22175860e-01 -2.03404784e+00 -2.21576810e-01 2.83216238e-01 3.93311918e-01 4.11729842e-01 3.66416089e-02 -8.47278461e-02 1.78037763e-01 -3.56389359e-02 -5.21785259e-01 -1.94186658e-01 -3.15003783e-01 3.59082162e-01 1.05677411e-01 4.90271807e-01 2.41104111e-01 7.42573261e-01 -7.74668574e-01 -8.18223417e-01 4.99848455e-01 3.90339851e-01 -4.96381283e-01 1.63545683e-01 -2.40419880e-01 3.30958754e-01 -2.81924903e-01 4.86485571e-01 4.85941559e-01 -6.75547719e-01 1.58024475e-01 -6.09473400e-02 3.55947942e-01 -1.18735112e-01 -1.01163292e+00 1.33692539e+00 -5.50631166e-01 7.26188481e-01 -5.28849125e-01 -1.31380498e+00 1.08472347e+00 3.52059692e-01 8.45101595e-01 -4.46714640e-01 3.28845620e-01 2.40834475e-01 1.51449278e-01 -6.47524178e-01 -1.71335667e-01 -3.26026604e-02 2.52053350e-01 4.25051838e-01 5.51143326e-02 3.00001111e-02 3.89085382e-01 2.19468120e-02 8.30948174e-01 -3.73741329e-01 4.91791725e-01 -1.88481003e-01 1.97755098e-01 1.89213231e-02 6.57999039e-01 7.51483917e-01 -2.62273163e-01 6.50002182e-01 3.66512120e-01 -6.43581033e-01 -8.36242795e-01 -6.78321600e-01 -5.81411779e-01 4.97354388e-01 1.22858040e-01 -7.30337203e-02 -8.12008202e-01 -1.05762768e+00 -1.71298414e-01 6.39695168e-01 -7.33004630e-01 -2.48206817e-02 -3.41759443e-01 -1.23848295e+00 1.64865464e-01 6.25280857e-01 4.79036748e-01 -9.82072413e-01 -8.67735684e-01 -7.44839944e-03 -3.71180438e-02 -8.39116991e-01 -1.28538042e-01 1.21022031e-01 -1.06290603e+00 -1.39208543e+00 -1.04328787e+00 -7.06334889e-01 1.25817978e+00 -2.67081320e-01 9.97222424e-01 -8.59202296e-02 -7.97767878e-01 2.32462138e-01 -3.69087040e-01 -7.47857809e-01 -3.05368066e-01 -1.05669841e-01 -1.91931933e-01 -4.54437025e-02 7.38112926e-01 2.49711256e-02 -7.48284400e-01 4.47475493e-01 -9.20868456e-01 -2.45905071e-01 7.70068347e-01 1.12630129e+00 8.66824090e-01 -9.57447384e-03 7.08799481e-01 -1.10611010e+00 2.06333712e-01 -1.03281893e-01 -9.80093479e-01 3.44145149e-01 -9.06563103e-01 1.92561120e-01 2.42377236e-01 -5.97612262e-01 -7.74662614e-01 5.20974994e-01 -4.92255297e-03 -2.32971400e-01 -1.29956171e-01 5.04886985e-01 1.21785775e-01 -1.18471570e-01 1.18021059e+00 -4.28922698e-02 2.51925796e-01 -3.51667941e-01 9.95285213e-02 9.01395500e-01 -1.40151143e-01 -1.54535800e-01 1.82834223e-01 4.73702818e-01 -1.50314257e-01 -6.80676520e-01 -1.14852214e+00 -5.11601627e-01 -5.98481834e-01 -2.42865860e-01 6.92627132e-01 -7.05340683e-01 -3.54197234e-01 2.47180194e-01 -7.06361294e-01 -3.64691764e-01 -5.84309697e-01 1.13438690e+00 -6.47336364e-01 3.39676708e-01 -3.64410877e-01 -6.03688240e-01 -4.93538946e-01 -1.53116405e+00 9.55784738e-01 2.36637756e-01 -3.03068817e-01 -8.88469756e-01 6.92330375e-02 4.49399710e-01 2.31968448e-01 1.16793051e-01 9.44870353e-01 -7.58480310e-01 -6.51087046e-01 -4.29873943e-01 -1.57500774e-01 6.61598444e-01 3.89883876e-01 -5.93756586e-02 -8.07711482e-01 -2.81473637e-01 -3.39018404e-02 -6.31855845e-01 9.59908187e-01 8.97520185e-01 1.26768363e+00 3.35859098e-02 -2.75784999e-01 2.55016476e-01 1.45957673e+00 5.23768127e-01 6.09726250e-01 5.04936241e-02 1.82999492e-01 5.11093259e-01 6.97633743e-01 3.44223320e-01 -1.47062793e-01 4.19162184e-01 2.90856063e-01 -3.63271713e-01 -1.84490234e-02 3.31326902e-01 -2.89309293e-01 4.52091902e-01 1.61160320e-01 -1.88828837e-02 -1.12328446e+00 6.26170576e-01 -1.88040447e+00 -5.74653149e-01 1.87472135e-01 2.53028440e+00 9.56884742e-01 1.27444476e-01 5.48698418e-02 1.96702749e-01 6.59143806e-01 -3.51800323e-01 -8.51886928e-01 1.40822425e-01 3.38964373e-01 2.44300231e-01 4.85294491e-01 4.42975163e-01 -1.16886282e+00 4.60954845e-01 6.88861036e+00 7.38040030e-01 -1.21211433e+00 -1.40346482e-01 8.78814280e-01 -2.53485262e-01 2.00289011e-01 -1.60904691e-01 -6.79377913e-01 4.24948990e-01 6.63456321e-01 -1.21370312e-02 -1.99037805e-01 1.27707028e+00 1.11861221e-01 -5.38837612e-01 -1.25910175e+00 1.25120163e+00 3.44735309e-02 -1.50103593e+00 -6.06062561e-02 2.05580115e-01 6.87606752e-01 8.86218902e-03 -2.28171363e-01 5.84811643e-02 2.13181719e-01 -1.01447058e+00 1.72038555e-01 4.68828410e-01 7.52931774e-01 -7.64444053e-01 9.78413582e-01 4.25758094e-01 -4.52663302e-01 7.07483441e-02 -6.39912903e-01 3.61644596e-01 -6.20040707e-02 1.01001048e+00 -1.21774817e+00 7.11490512e-02 4.63807613e-01 4.00878161e-01 -5.58901787e-01 1.56032872e+00 7.28141144e-03 7.12970316e-01 -2.79166996e-01 -2.32892051e-01 -4.55454364e-02 -5.02876006e-02 1.27957344e-01 6.87122703e-01 1.56633064e-01 -1.07705995e-01 3.26699406e-01 7.48142004e-01 -1.06779665e-01 3.58730197e-01 -3.21151644e-01 -2.95986068e-02 5.43294966e-01 9.81325507e-01 -9.35677350e-01 -5.44164300e-01 -2.75084525e-01 6.44557476e-01 2.41078153e-01 2.33667567e-01 -6.43384695e-01 -5.05511761e-01 -5.36181480e-02 5.55044338e-02 4.91300374e-02 5.35040759e-02 -7.54720271e-02 -9.10332859e-01 -1.09801263e-01 -6.20243669e-01 2.93967783e-01 -4.92259622e-01 -1.19057631e+00 5.83040416e-01 5.40087558e-02 -1.39826941e+00 -4.52056915e-01 -5.94650745e-01 1.23204419e-03 7.53619492e-01 -1.12586594e+00 -6.85120463e-01 -4.20216292e-01 4.46290851e-01 5.10776162e-01 -3.54281306e-01 1.08580971e+00 4.65866029e-01 -5.39822757e-01 5.36845326e-01 1.82873294e-01 5.04672766e-01 8.13721955e-01 -1.32645118e+00 -9.82121825e-02 5.22509277e-01 4.21924978e-01 5.01508892e-01 3.67551029e-01 -3.59908998e-01 -7.37093151e-01 -1.03552103e+00 6.20916188e-01 -8.10411274e-02 -1.64513453e-03 -1.29717747e-02 -6.33344829e-01 6.33315742e-01 -1.81942672e-01 3.99291158e-01 1.05282092e+00 1.17011607e-01 -1.03118710e-01 -2.94982731e-01 -1.41139531e+00 3.45161170e-01 4.17476535e-01 -1.98128164e-01 -3.32525343e-01 5.24335682e-01 3.53543460e-01 -3.36124659e-01 -9.10445273e-01 6.94808185e-01 3.95503491e-01 -7.73221612e-01 6.23373330e-01 -3.25677186e-01 2.44664118e-01 -1.34161830e-01 7.24365115e-02 -1.13370645e+00 -2.13926047e-01 -1.95067953e-02 9.27832127e-02 7.26933837e-01 6.46742284e-01 -6.49121463e-01 1.08146000e+00 8.62894595e-01 2.24156484e-01 -1.13461053e+00 -6.96780980e-01 -6.68903351e-01 -1.43999085e-01 -2.68738002e-01 8.79595950e-02 8.13462138e-01 -2.56845891e-01 2.18912393e-01 -1.02057323e-01 -4.52192221e-03 7.90974617e-01 1.10909589e-01 4.90972072e-01 -1.31154346e+00 -2.03450575e-01 9.89504531e-03 -6.07922077e-01 -6.83187068e-01 -1.53933585e-01 -5.74447453e-01 1.25162810e-01 -1.74706256e+00 4.10311401e-01 -9.35635209e-01 -2.82600820e-01 7.02443123e-01 -9.19608176e-02 3.42463225e-01 -2.25670546e-01 2.62844563e-01 -4.68909502e-01 3.10606122e-01 9.73833323e-01 -2.78808862e-01 -2.21658632e-01 2.64834672e-01 -5.47320724e-01 7.81937659e-01 7.48603642e-01 -6.22042298e-01 -8.43110085e-01 -3.40560615e-01 6.75436705e-02 -1.09969616e-01 7.10706934e-02 -9.53699231e-01 3.25477570e-02 -8.90812427e-02 6.42965078e-01 -5.19081414e-01 3.11811149e-01 -8.37772548e-01 -9.47717875e-02 5.34599543e-01 -6.90153897e-01 -6.20183766e-01 -3.65653932e-02 5.00283003e-01 -3.04769188e-01 -6.78256333e-01 1.26703668e+00 -2.62198478e-01 -6.32088721e-01 3.89880121e-01 -2.98446417e-01 -4.88160923e-02 1.31037366e+00 -4.36032489e-02 4.16777693e-02 -1.68767899e-01 -1.07207263e+00 7.56140724e-02 3.97139668e-01 7.43690431e-02 6.33805156e-01 -1.10313129e+00 -6.02433145e-01 1.73048288e-01 3.29138339e-01 3.90624434e-01 1.90442204e-01 6.77450299e-01 -8.18783045e-01 2.98481613e-01 8.60384032e-02 -1.00916862e+00 -1.49226844e+00 5.29408038e-01 5.42772770e-01 -8.63511637e-02 -7.56388307e-01 7.63590336e-01 1.03741616e-01 -3.02707523e-01 4.85524774e-01 -3.56460214e-01 -2.39626706e-01 2.30708212e-01 7.60709941e-01 4.04310763e-01 3.90619129e-01 -5.79153374e-02 -3.46509308e-01 5.04812121e-01 -3.28804702e-01 2.02417700e-03 1.24388087e+00 1.36626214e-01 1.78273350e-01 3.10322165e-01 1.29770362e+00 -1.53765425e-01 -1.11668527e+00 -4.56044525e-01 1.81317568e-01 -5.34692109e-01 3.19930196e-01 -8.34868193e-01 -1.25242198e+00 8.59884024e-01 1.27994144e+00 5.36142588e-02 1.15077162e+00 4.53683548e-02 4.06968981e-01 5.01822829e-01 4.60855603e-01 -1.01656246e+00 2.04099581e-01 -1.75701976e-01 5.12112796e-01 -1.76379907e+00 1.87314019e-01 -4.25624311e-01 -7.34206557e-01 9.25023675e-01 4.45701152e-01 -2.11308792e-01 7.37177372e-01 2.47177646e-01 4.75777745e-01 -2.27063552e-01 -4.43425924e-01 -1.92521214e-01 3.32604975e-01 3.80820423e-01 4.97845769e-01 1.61472753e-01 -2.73620009e-01 7.19852820e-02 3.19455832e-01 3.97491425e-01 3.84281695e-01 8.97526860e-01 -5.61630845e-01 -1.15570867e+00 -8.81659240e-02 7.54619896e-01 -4.92355376e-01 3.00077591e-02 -8.97801965e-02 6.76373243e-01 5.60232401e-02 9.11083221e-01 2.91191339e-01 3.90163250e-02 3.04199848e-02 9.41234380e-02 6.38296068e-01 -9.84247625e-01 1.48095377e-03 2.14914575e-01 1.86358541e-02 -3.67094189e-01 -6.40717924e-01 -3.81878823e-01 -1.20217454e+00 3.26139182e-01 -7.46698558e-01 1.35722086e-01 5.19944131e-01 8.83111238e-01 3.72058719e-01 2.45070621e-01 6.43848538e-01 -2.93061793e-01 -6.97985530e-01 -1.06328237e+00 -6.30565107e-01 2.31522679e-01 9.72722918e-02 -6.52752638e-01 -2.40118489e-01 2.06514105e-01]
[14.800943374633789, -2.2836427688598633]
1e595f8b-878b-40cb-98cd-a6dcaa914814
evaluating-openai-s-whisper-asr-for
2305.1458
null
https://arxiv.org/abs/2305.14580v2
https://arxiv.org/pdf/2305.14580v2.pdf
Evaluating OpenAI's Whisper ASR for Punctuation Prediction and Topic Modeling of life histories of the Museum of the Person
Automatic speech recognition (ASR) systems play a key role in applications involving human-machine interactions. Despite their importance, ASR models for the Portuguese language proposed in the last decade have limitations in relation to the correct identification of punctuation marks in automatic transcriptions, which hinder the use of transcriptions by other systems, models, and even by humans. However, recently Whisper ASR was proposed by OpenAI, a general-purpose speech recognition model that has generated great expectations in dealing with such limitations. This chapter presents the first study on the performance of Whisper for punctuation prediction in the Portuguese language. We present an experimental evaluation considering both theoretical aspects involving pausing points (comma) and complete ideas (exclamation, question, and fullstop), as well as practical aspects involving transcript-based topic modeling - an application dependent on punctuation marks for promising performance. We analyzed experimental results from videos of Museum of the Person, a virtual museum that aims to tell and preserve people's life histories, thus discussing the pros and cons of Whisper in a real-world scenario. Although our experiments indicate that Whisper achieves state-of-the-art results, we conclude that some punctuation marks require improvements, such as exclamation, semicolon and colon.
['Sandra Maria Aluísio', 'Anderson Soares', 'Edresson Casanova', 'Arnaldo Candido Junior', 'Ricardo Marcacini', 'Lucas Rafael Stefanel Gris']
2023-05-23
null
null
null
null
['automatic-speech-recognition']
['speech']
[ 4.41224240e-02 1.29746526e-01 2.19005242e-01 -2.18411341e-01 -9.66754436e-01 -5.71722150e-01 8.52056265e-01 3.17104936e-01 -5.98665476e-01 7.13282883e-01 5.97929716e-01 -3.35449338e-01 3.26208584e-02 -2.37687677e-01 -3.26732934e-01 -5.82529783e-01 1.12724587e-01 6.27783060e-01 4.91987586e-01 -6.53281212e-01 4.35338229e-01 4.33557868e-01 -1.65950632e+00 6.54892683e-01 5.89124382e-01 4.89961773e-01 6.04072928e-01 8.15314412e-01 -6.90523505e-01 6.73045933e-01 -1.38316655e+00 -5.19669354e-01 -2.21337110e-01 -3.92655671e-01 -1.03980720e+00 1.73053861e-01 1.38596758e-01 2.85165727e-01 -4.40028012e-01 8.10037374e-01 5.39745331e-01 1.83677927e-01 6.29295468e-01 -9.83086586e-01 -3.74013454e-01 1.00879049e+00 -5.39437979e-02 3.07140738e-01 8.90295446e-01 -1.27544969e-01 7.45854259e-01 -5.67788839e-01 6.99240506e-01 1.20921779e+00 5.48687398e-01 7.51314878e-01 -8.24115217e-01 -2.53585100e-01 -2.63292462e-01 3.59031618e-01 -1.73386633e+00 -6.90025866e-01 5.16645253e-01 -2.65742153e-01 1.17369890e+00 7.34163105e-01 4.00773317e-01 1.32921445e+00 -1.25882998e-01 1.15167928e+00 9.97583389e-01 -8.28122914e-01 2.54742920e-01 5.68817914e-01 2.45000228e-01 2.71333843e-01 -3.20565075e-01 -5.00150025e-01 -7.68234968e-01 -1.49299607e-01 3.64765882e-01 -3.86185765e-01 -4.74247634e-01 5.65107763e-01 -1.35556877e+00 5.38012803e-01 -2.24077463e-01 9.71759796e-01 -3.33491385e-01 -3.47765654e-01 4.64414269e-01 2.51490861e-01 2.18203977e-01 2.34851897e-01 -3.17864954e-01 -8.39011669e-01 -1.42333806e+00 5.63796535e-02 1.03552866e+00 1.16589081e+00 2.79754013e-01 -6.42808005e-02 -1.62745029e-01 1.37238657e+00 2.92228043e-01 5.25215268e-01 8.42181981e-01 -6.75309241e-01 4.60153341e-01 3.31755340e-01 2.58436590e-01 -6.28292859e-01 -2.83690482e-01 -1.20841704e-01 -5.22043705e-01 -2.66325742e-01 4.37443107e-01 -7.03141466e-03 -8.64378035e-01 1.05275691e+00 1.32317413e-02 -2.84064591e-01 1.39148936e-01 6.22802496e-01 1.09328187e+00 1.08202732e+00 -1.02098539e-01 -5.09584725e-01 1.51484740e+00 -8.78886700e-01 -1.30000877e+00 1.06980525e-01 6.70747221e-01 -1.15037096e+00 1.25131750e+00 6.01423144e-01 -1.12122750e+00 -3.89198929e-01 -6.61383748e-01 -1.40904590e-01 -4.96007711e-01 1.99633256e-01 1.86158791e-02 1.04645729e+00 -1.17280340e+00 3.43833715e-01 -7.81817079e-01 -8.48955393e-01 -2.67878830e-01 1.83928683e-01 -2.45305285e-01 5.03320098e-01 -9.99194741e-01 8.03907931e-01 1.00765482e-01 5.64535521e-02 -4.96330649e-01 -2.15780616e-01 -6.35849714e-01 1.54724956e-01 1.98742241e-01 5.83497658e-02 1.57528639e+00 -9.26569104e-01 -1.75571668e+00 9.84843433e-01 -4.64057297e-01 -6.84373260e-01 4.83706266e-01 -1.96886227e-01 -8.05564284e-01 3.23939919e-01 -1.62916556e-01 4.43712562e-01 3.34941030e-01 -1.12776780e+00 -8.25766623e-01 -2.95345128e-01 -1.84980884e-01 1.20349437e-01 -2.31660023e-01 6.60701990e-01 -3.65052938e-01 -8.42231691e-01 6.24279492e-02 -7.82718539e-01 6.05070125e-03 -5.69431901e-01 -3.42220515e-01 -4.95061666e-01 6.99731767e-01 -1.06700861e+00 1.73489797e+00 -2.25835919e+00 -2.23474890e-01 7.89492112e-03 -4.99269754e-01 5.43226779e-01 2.16515064e-01 9.62635100e-01 5.73504828e-02 3.34789544e-01 -2.63229936e-01 -7.28254974e-01 -5.52263744e-02 3.63090426e-01 -4.00610685e-01 2.79791176e-01 -2.98262179e-01 4.56802160e-01 -6.84789240e-01 -8.15358818e-01 2.73146480e-01 5.56113899e-01 -8.56581628e-02 2.66057730e-01 8.67651328e-02 -6.29773140e-02 -1.56412318e-01 5.92757761e-01 3.48186582e-01 3.27240646e-01 -2.48263739e-02 3.15280527e-01 -6.39237165e-01 8.85944664e-01 -1.31538522e+00 1.57792342e+00 -5.18792450e-01 8.34961593e-01 2.38516644e-01 -7.45923877e-01 1.13853371e+00 8.40344429e-01 2.04960331e-01 -3.83975834e-01 3.34079266e-02 5.14656901e-01 -2.01835513e-01 -8.08168769e-01 1.13019168e+00 -1.80253293e-02 1.56409182e-02 1.86979830e-01 1.43783748e-01 -3.49166274e-01 3.91544133e-01 3.46759856e-01 9.00341392e-01 -5.57583235e-02 3.87457609e-01 -2.75617838e-01 8.10638189e-01 -9.27210823e-02 3.79620083e-02 7.27147818e-01 -2.77061313e-01 1.14707315e+00 2.16622233e-01 -1.13385245e-01 -9.11318064e-01 -7.21573770e-01 3.38088069e-03 9.11108851e-01 -3.06777835e-01 -7.14707553e-01 -1.07101393e+00 -6.72631621e-01 -7.07717419e-01 1.25095856e+00 -2.51845300e-01 5.00320435e-01 -7.14611530e-01 -3.34762484e-01 7.97036707e-01 5.31012341e-02 1.58764228e-01 -1.57495463e+00 -3.03262919e-01 3.98063809e-01 -6.60333812e-01 -1.22233307e+00 -3.80324662e-01 1.67128235e-01 -6.23851120e-01 -6.11749172e-01 -1.14701998e+00 -8.66703868e-01 2.36131221e-01 3.89799476e-01 7.89528668e-01 5.61030209e-02 -1.14650488e-01 6.88673079e-01 -8.66992712e-01 -3.95532131e-01 -1.01810098e+00 2.42975742e-01 -1.35299951e-01 9.82243288e-03 4.93189692e-01 -6.07833207e-01 -1.18480615e-01 4.94656682e-01 -9.37213898e-01 -2.95376360e-01 2.68846154e-01 3.21102351e-01 2.19358709e-02 -3.32498521e-01 4.62391913e-01 -5.55936754e-01 6.99879825e-01 -1.27275974e-01 -1.73243389e-01 3.90249908e-01 3.51815633e-02 -1.06229082e-01 4.06319678e-01 -3.17983150e-01 -1.09712160e+00 -2.63641868e-02 -7.67647326e-01 1.14909243e-02 -7.19364166e-01 3.97023052e-01 -1.26289606e-01 2.11038888e-01 8.38814199e-01 7.96244442e-01 -1.31583288e-01 -6.77465260e-01 -1.84164837e-01 1.63107407e+00 4.55980152e-01 -4.09030169e-01 2.88623035e-01 2.05583900e-01 -5.94616830e-01 -2.01967573e+00 -4.53608751e-01 -1.12671101e+00 -5.21948338e-01 -3.95117879e-01 6.44532561e-01 -7.52258420e-01 -7.36515343e-01 4.00929034e-01 -1.44074392e+00 -1.41163664e-02 -4.88692850e-01 3.76043111e-01 -6.66744113e-01 9.02867556e-01 -6.54341996e-01 -1.46029043e+00 -4.06270206e-01 -9.58588421e-01 1.16098893e+00 2.90963829e-01 -6.61985755e-01 -8.09941232e-01 -4.21842048e-03 6.05956376e-01 2.25397035e-01 -4.51489896e-01 3.99669260e-01 -1.06302404e+00 -9.20369253e-02 -1.31707741e-02 4.28842843e-01 3.59100550e-01 -2.97517069e-02 1.30412877e-01 -9.39656675e-01 1.10728569e-01 4.79018539e-02 -1.54338315e-01 4.71184313e-01 7.80247152e-02 7.16260791e-01 -4.43522960e-01 -1.62900880e-01 -1.57735541e-01 8.16577554e-01 5.08589149e-01 1.06257236e+00 5.61850309e-01 1.55234116e-03 6.78008318e-01 6.65729821e-01 6.03745043e-01 3.76672387e-01 7.93374956e-01 9.84995905e-03 4.09641176e-01 -3.49144608e-01 -2.95382738e-01 7.75283039e-01 1.18065464e+00 -9.97886658e-02 -5.55323064e-01 -9.69903708e-01 8.24221790e-01 -1.61035240e+00 -9.07585204e-01 -5.34386575e-01 2.36340141e+00 8.81906986e-01 1.46902040e-01 3.02085012e-01 5.19739509e-01 8.92710984e-01 1.59413680e-01 6.75346792e-01 -6.87543511e-01 -3.96584094e-01 1.07634380e-01 1.15501426e-01 6.91264391e-01 -7.64372289e-01 1.04617310e+00 6.37412882e+00 1.10757649e+00 -1.10648775e+00 8.62386823e-02 2.63025314e-01 2.14056998e-01 -2.51182199e-01 -1.79841727e-01 -1.10053861e+00 6.70741141e-01 1.32211494e+00 1.21209212e-01 3.71154249e-01 7.53293216e-01 5.73887646e-01 -3.07851642e-01 -7.76867151e-01 1.09392393e+00 4.45292562e-01 -1.17077971e+00 9.66437757e-02 -1.62732944e-01 4.66794938e-01 -3.77737209e-02 -3.99875551e-01 2.72925347e-01 -2.19163090e-01 -6.33614123e-01 1.16935015e+00 2.85924494e-01 2.88454384e-01 -5.69409728e-01 7.93545723e-01 5.38425982e-01 -8.08713317e-01 3.06448907e-01 -2.51670152e-01 1.62087128e-01 3.45664829e-01 2.13047951e-01 -1.26780224e+00 5.32141566e-01 5.69428325e-01 6.43195882e-02 -4.22485977e-01 1.39317083e+00 -3.16981435e-01 1.04054034e+00 -5.50881088e-01 -6.14087939e-01 3.28687042e-01 -6.14727288e-02 9.39071000e-01 2.00777006e+00 6.15879595e-01 2.50029147e-01 -1.39231518e-01 3.00422281e-01 4.22450602e-01 6.04534268e-01 -1.00796320e-01 -1.86297104e-01 3.63501072e-01 9.39239025e-01 -1.01047814e+00 -3.39965940e-01 -2.00573772e-01 1.04778755e+00 -1.86230078e-01 2.94149399e-01 -5.26457012e-01 -5.05430877e-01 3.12271744e-01 5.27196109e-01 1.59396157e-01 -4.76994336e-01 -2.62594759e-01 -9.67141032e-01 6.87809810e-02 -9.42999065e-01 2.69816399e-01 -7.66754806e-01 -6.70715570e-01 8.88515711e-01 -8.35268423e-02 -1.25628376e+00 -2.46355101e-01 -4.47039604e-01 -5.30755103e-01 6.21758521e-01 -1.15798438e+00 -1.16291130e+00 7.74047524e-02 4.07764286e-01 1.19341028e+00 -1.76604182e-01 9.17777836e-01 3.47537309e-01 -2.29063973e-01 4.91105855e-01 2.14769408e-01 5.66858761e-02 6.71473920e-01 -1.16254377e+00 2.76719481e-01 6.72613621e-01 5.99622607e-01 6.25146568e-01 1.27697659e+00 -4.93601352e-01 -9.13718224e-01 -3.34600985e-01 1.79428864e+00 -1.81562319e-01 7.08836317e-01 -4.17171687e-01 -9.13896501e-01 4.78659272e-01 4.88490283e-01 -5.58277011e-01 6.70306444e-01 3.59751545e-02 1.11943744e-01 9.80280563e-02 -8.97667170e-01 7.25798786e-01 6.72009826e-01 -4.58482534e-01 -1.07377970e+00 3.08946252e-01 4.96970564e-01 -2.14138433e-01 -4.51231718e-01 -1.14400201e-01 3.41376573e-01 -8.96443427e-01 5.27363896e-01 -2.83742428e-01 1.91841871e-01 -2.47219339e-01 -1.36048719e-01 -1.17684174e+00 2.89155722e-01 -1.35922766e+00 2.26517543e-01 1.66608751e+00 6.01879001e-01 -2.03991845e-01 7.95447528e-01 5.24971604e-01 -5.68181455e-01 -7.75811896e-02 -1.19783211e+00 -8.38967681e-01 -3.89813244e-01 -6.08721614e-01 2.05149740e-01 6.60970449e-01 4.92217213e-01 2.15788841e-01 -3.89820188e-01 7.46913478e-02 7.78380409e-02 -3.55432332e-01 7.08988249e-01 -9.68660951e-01 2.17356198e-02 -5.03056586e-01 -4.99524444e-01 -1.25857043e+00 -8.24780092e-02 -4.34328705e-01 2.83485025e-01 -1.58841836e+00 -2.25538671e-01 -8.98130238e-02 1.79818168e-01 3.82770866e-01 1.59253970e-01 -3.29351053e-02 4.06641424e-01 1.40178531e-01 -6.57965302e-01 5.47396064e-01 7.40415752e-01 -1.06667452e-01 -4.01968479e-01 5.10509491e-01 -9.43354443e-02 8.13605189e-01 5.90772569e-01 -5.62346756e-01 7.52166733e-02 -1.02096155e-01 6.86381608e-02 3.00653398e-01 -1.62706226e-01 -1.10926855e+00 5.20774424e-01 5.43934247e-03 -2.52248436e-01 -8.84140790e-01 6.17399871e-01 -8.62785637e-01 3.07700248e-03 3.21962178e-01 -3.97269458e-01 -5.89528121e-02 6.05723225e-02 2.97539718e-02 -4.12465215e-01 -9.92121398e-01 5.54190874e-01 -2.44795486e-01 -5.74382246e-01 -4.41388756e-01 -1.12960565e+00 -1.47067651e-01 7.06749737e-01 -5.36566913e-01 -3.32256034e-02 -6.84212506e-01 -1.00036788e+00 -1.45158350e-01 2.21042439e-01 5.44193029e-01 5.92305183e-01 -7.24151969e-01 -7.45989799e-01 -6.58303127e-02 3.93478051e-02 -2.82584161e-01 3.31817985e-01 6.27538621e-01 -7.36807406e-01 5.42660654e-01 9.29344296e-02 -4.04815227e-01 -1.76232266e+00 3.95452797e-01 1.12515222e-02 -6.12605959e-02 -3.64597648e-01 5.75689912e-01 -2.25443467e-01 -2.08190441e-01 7.16266036e-01 -2.51145512e-01 -6.09038949e-01 2.63685077e-01 7.86749899e-01 6.68175578e-01 3.96509558e-01 -8.90929580e-01 -3.13067496e-01 1.12421274e-01 4.71438989e-02 -7.03921318e-01 1.18572795e+00 -5.64250052e-01 -3.47701609e-02 9.33965683e-01 8.70245457e-01 5.27534425e-01 -5.47495365e-01 -4.52438816e-02 3.68569344e-01 -2.35720515e-01 -2.07481205e-01 -1.01638103e+00 -2.64118612e-01 9.75655913e-01 2.58102119e-01 7.84879744e-01 7.45364428e-01 1.65886283e-02 6.95988655e-01 6.02310061e-01 4.27007735e-01 -1.34145558e+00 -1.57360733e-01 8.03474963e-01 1.21999407e+00 -8.92473221e-01 -4.49985802e-01 -5.32262444e-01 -8.59376848e-01 1.37386966e+00 2.17461348e-01 3.56485814e-01 4.64689046e-01 2.75980026e-01 2.73930788e-01 2.27389008e-01 -4.45322514e-01 -2.06037372e-01 3.14992713e-03 6.51516318e-01 6.63794816e-01 1.81683555e-01 -8.95917594e-01 6.27018213e-01 -7.03189135e-01 -1.32859603e-01 9.76741791e-01 9.64944005e-01 -7.49941349e-01 -1.15204418e+00 -7.35839009e-01 -1.72192827e-01 -7.99864709e-01 -1.36131510e-01 -6.69552803e-01 7.18954802e-01 -1.36320293e-01 1.27250016e+00 -5.49321398e-02 -2.35787094e-01 4.37782288e-01 3.57985944e-01 1.93546265e-01 -6.73404217e-01 -1.18579102e+00 4.26541120e-01 5.11533380e-01 2.88406275e-02 -4.12531585e-01 -1.01953554e+00 -1.17993057e+00 -9.77360383e-02 -3.52273196e-01 8.79284739e-01 1.16625440e+00 9.82446432e-01 1.72052652e-01 1.17866240e-01 4.27157670e-01 -6.70388341e-01 -4.20267880e-01 -1.47692990e+00 -6.54005349e-01 1.74892247e-01 1.39054805e-01 4.46075872e-02 -4.77225125e-01 2.61817634e-01]
[14.287074089050293, 6.958329200744629]
875706ea-3128-46e7-a033-81d509573d50
a-novel-twitter-sentiment-analysis-model-with
2003.08137
null
https://arxiv.org/abs/2003.08137v2
https://arxiv.org/pdf/2003.08137v2.pdf
A Novel Twitter Sentiment Analysis Model with Baseline Correlation for Financial Market Prediction with Improved Efficiency
A novel social networks sentiment analysis model is proposed based on Twitter sentiment score (TSS) for real-time prediction of the future stock market price FTSE 100, as compared with conventional econometric models of investor sentiment based on closed-end fund discount (CEFD). The proposed TSS model features a new baseline correlation approach, which not only exhibits a decent prediction accuracy, but also reduces the computation burden and enables a fast decision making without the knowledge of historical data. Polynomial regression, classification modelling and lexicon-based sentiment analysis are performed using R. The obtained TSS predicts the future stock market trend in advance by 15 time samples (30 working hours) with an accuracy of 67.22% using the proposed baseline criterion without referring to historical TSS or market data. Specifically, TSS's prediction performance of an upward market is found far better than that of a downward market. Under the logistic regression and linear discriminant analysis, the accuracy of TSS in predicting the upward trend of the future market achieves 97.87%.
['Xinyi Guo', 'Jinfeng Li']
2020-03-18
null
null
null
null
['twitter-sentiment-analysis']
['natural-language-processing']
[-6.75920129e-01 -1.22513384e-01 -2.53599346e-01 -4.43155378e-01 -2.08994791e-01 -5.61604619e-01 6.65729225e-01 2.59445995e-01 -4.46170568e-01 6.21615708e-01 -5.71154850e-03 -6.15184844e-01 -2.35265512e-02 -1.22930861e+00 -2.08838861e-02 -4.30159479e-01 -1.34090856e-01 1.89313754e-01 6.35990873e-02 -7.08438873e-01 6.73940778e-01 2.36866802e-01 -1.37069714e+00 -5.45313805e-02 3.38507444e-01 1.61444962e+00 -1.03314094e-01 3.54717702e-01 -1.36767462e-01 1.41691196e+00 -7.17064142e-01 -8.78312230e-01 6.19491756e-01 4.32190932e-02 -1.15426898e-01 -3.19171011e-01 -5.39452255e-01 -2.71076381e-01 1.78460911e-01 7.57963598e-01 -5.64702116e-02 -5.70630692e-02 5.35454452e-01 -1.12622321e+00 -5.66531956e-01 5.78336656e-01 -7.40187824e-01 2.82462031e-01 1.64131731e-01 -3.30377817e-01 1.35588276e+00 -1.00241840e+00 5.33366144e-01 6.99121475e-01 7.34627545e-01 -3.60350788e-01 -6.15167379e-01 -9.21761215e-01 1.85961768e-01 -3.21677536e-01 -1.05717969e+00 2.13208765e-01 7.19453692e-01 -6.69394672e-01 9.01615679e-01 2.95498490e-01 1.14518440e+00 1.55990034e-01 8.10717940e-01 2.96507448e-01 1.37571359e+00 -1.10379808e-01 1.69971257e-01 5.81018567e-01 2.72926599e-01 2.03757565e-02 4.19196129e-01 7.74853528e-02 -5.32872975e-01 -2.78233916e-01 3.47426534e-01 3.57689381e-01 4.80638236e-01 4.17457610e-01 -1.18909502e+00 1.10729635e+00 2.34450668e-01 3.82970840e-01 -6.69230044e-01 -3.86924982e-01 4.80611444e-01 7.90869176e-01 1.12769663e+00 6.58734262e-01 -9.45876718e-01 -2.18944341e-01 -1.16459763e+00 4.67128813e-01 1.02869761e+00 6.18948042e-01 4.29142833e-01 3.97605270e-01 3.22488636e-01 1.95502967e-01 4.21612233e-01 8.94520402e-01 8.87498319e-01 -4.33719814e-01 3.17189038e-01 8.50325882e-01 3.97577882e-01 -1.52922559e+00 -7.14490294e-01 -9.59650040e-01 -4.28850830e-01 1.94712445e-01 3.21943611e-01 -6.02939308e-01 2.32588537e-02 1.00289202e+00 9.96118635e-02 -1.00821503e-01 5.39062560e-01 4.53129798e-01 4.59742814e-01 8.59515846e-01 -1.33763582e-01 -6.19918823e-01 1.21615911e+00 -7.24001646e-01 -8.73312593e-01 3.05588990e-02 6.66501820e-01 -9.71725106e-01 3.51416767e-01 7.24916041e-01 -8.08202267e-01 -4.24602717e-01 -1.04954410e+00 4.41554695e-01 -6.61310077e-01 2.96301335e-01 8.33929777e-01 7.65610635e-01 -7.05040872e-01 5.87881446e-01 -5.23737252e-01 4.01640534e-01 -1.82330459e-01 4.89808112e-01 1.58069879e-01 7.59211481e-01 -1.32866669e+00 9.67694819e-01 2.19503626e-01 1.28373832e-01 7.82833062e-03 -5.66150963e-01 -4.07272100e-01 -1.77527964e-01 -1.92796618e-01 -1.70320138e-01 1.14991391e+00 -1.20756662e+00 -1.63784850e+00 4.98812228e-01 1.42055508e-02 -9.12228823e-01 7.96887040e-01 -1.10201754e-01 -8.41143250e-01 -5.98391183e-02 1.23962194e-01 -1.74636364e-01 7.26560593e-01 -3.68466318e-01 -1.13044262e+00 -3.87150049e-01 -1.11373447e-01 4.27555293e-02 -4.08848614e-01 3.02059740e-01 4.32961524e-01 -9.21442628e-01 2.50370830e-01 -9.08735275e-01 -2.61294007e-01 -8.31633449e-01 3.95430848e-02 -2.00035766e-01 6.25070870e-01 -8.00021291e-01 1.36695182e+00 -1.86238348e+00 -7.61353314e-01 7.21550763e-01 1.04873544e-02 -1.53528571e-01 5.71411431e-01 5.86192966e-01 -3.20923597e-01 6.08225949e-02 1.74286619e-01 -2.27672569e-02 3.57738473e-02 -3.88251245e-01 -8.60981882e-01 3.86484087e-01 2.10393369e-01 7.34834015e-01 -6.39874339e-01 5.38717061e-02 3.92729491e-02 3.79009508e-02 -3.04923981e-01 -3.98811065e-02 1.45748556e-01 1.67275846e-01 -5.33480108e-01 6.63001597e-01 6.34463608e-01 -3.60114932e-01 9.80934203e-02 8.56192112e-02 -8.04316342e-01 1.34964287e-01 -1.08632767e+00 6.04818106e-01 -3.95431429e-01 5.11835873e-01 -6.83082819e-01 -6.36337519e-01 1.83897102e+00 2.96655953e-01 5.63552022e-01 -7.31199086e-01 3.46141338e-01 7.11243510e-01 -5.85688874e-02 -2.22200781e-01 8.49379241e-01 -5.29268622e-01 -2.58292258e-01 5.35353482e-01 -4.87849414e-01 9.05057192e-02 2.08564475e-01 -2.33901829e-01 4.09395874e-01 -4.57294583e-02 4.41121221e-01 -5.19761026e-01 6.11147106e-01 9.17125642e-02 5.36343038e-01 2.19362572e-01 9.52025801e-02 -5.01758456e-02 8.16379368e-01 -6.02237165e-01 -9.42229927e-01 -3.16331118e-01 -2.49772698e-01 7.94082403e-01 -1.82552543e-02 -1.83263958e-01 -2.21852422e-01 -2.43931636e-01 3.55744600e-01 8.30278397e-01 -5.79218924e-01 4.17729557e-01 7.42556602e-02 -1.22684371e+00 -6.57636672e-02 1.94947645e-01 5.38402379e-01 -5.60939074e-01 -6.87594235e-01 2.75461197e-01 2.88250089e-01 -9.24187601e-01 2.37953633e-01 -8.70892629e-02 -9.77853119e-01 -9.85783041e-01 -7.75203288e-01 -4.07873869e-01 4.06728238e-01 -1.27232134e-01 6.84464157e-01 -8.70124027e-02 6.79599345e-01 -1.24103360e-01 -3.44226927e-01 -1.13470018e+00 -9.36977118e-02 6.02728352e-02 1.61547050e-01 3.86065632e-01 6.90728784e-01 -2.25787193e-01 -5.18832922e-01 3.45740944e-01 -4.01796490e-01 -1.61313817e-01 2.76595533e-01 5.87791622e-01 3.56690913e-01 4.34576541e-01 1.39773750e+00 -8.59231591e-01 7.69950986e-01 -9.45882916e-01 -1.10846496e+00 -2.66687926e-02 -1.32483673e+00 -4.29092318e-01 5.77513099e-01 -2.39795912e-02 -1.19294322e+00 -4.04065430e-01 9.65759233e-02 1.44606829e-01 5.67817509e-01 1.22900331e+00 9.19381142e-01 5.03523722e-02 2.11374894e-01 6.95552006e-02 1.96913391e-01 -3.24769557e-01 -3.88374448e-01 6.80470526e-01 9.85577554e-02 6.72182739e-02 7.61394501e-01 4.37138557e-01 1.06239505e-01 -5.14354646e-01 -8.35078478e-01 -5.01173973e-01 -4.92234886e-01 -4.59036380e-01 5.05233824e-01 -1.32988298e+00 -1.02010047e+00 7.00106144e-01 -7.48042643e-01 2.69380420e-01 -7.75537938e-02 9.82893169e-01 -1.74081892e-01 -1.19569428e-01 -6.22710228e-01 -1.43494821e+00 -4.64190781e-01 -8.24794948e-01 4.16837454e-01 1.39617324e-01 -4.12786543e-01 -1.23267484e+00 -7.83386827e-02 3.92374337e-01 4.93020117e-01 7.33280361e-01 4.19876844e-01 -1.40647984e+00 -2.50622123e-01 -1.12134814e+00 7.95613322e-03 5.44447124e-01 -6.44682301e-03 4.55747336e-01 -7.38520145e-01 -1.41793787e-01 6.06357872e-01 1.99900165e-01 3.51872116e-01 3.51246119e-01 9.84917432e-02 -2.33856574e-01 2.19944477e-01 2.51605242e-01 1.44320858e+00 6.98968530e-01 2.62851834e-01 1.15757191e+00 -2.55155712e-02 8.73352349e-01 1.25788343e+00 1.17145801e+00 6.54527724e-01 -1.15694411e-01 2.15214372e-01 7.33876228e-02 9.68410373e-01 -9.67997685e-02 5.85270584e-01 1.31531560e+00 -4.67100769e-01 1.92718863e-01 -1.00626183e+00 2.37430647e-01 -1.65061116e+00 -8.01625013e-01 -5.78289449e-01 2.14048576e+00 2.94830590e-01 6.48682177e-01 4.07449722e-01 4.62178946e-01 5.47060013e-01 1.74067378e-01 -3.91627491e-01 -4.72907901e-01 -3.81926745e-01 1.65214986e-02 1.09006798e+00 2.09279880e-01 -9.02132690e-01 6.26244962e-01 6.40376043e+00 4.68690097e-01 -1.34550285e+00 -1.94273889e-01 9.99497890e-01 4.16179746e-02 -2.59607762e-01 1.09118648e-01 -9.84362662e-01 5.20823717e-01 1.24063289e+00 -7.61228800e-01 -1.02954865e-01 1.05649996e+00 4.33649451e-01 -2.14990631e-01 -3.67903978e-01 5.70891082e-01 -2.37365767e-01 -1.38707149e+00 -1.99150831e-01 1.27787784e-01 8.53137612e-01 -1.16182044e-01 4.80404407e-01 1.92773908e-01 -9.90252271e-02 -4.03948933e-01 1.09156930e+00 9.81629252e-01 2.07398042e-01 -1.14630508e+00 1.53727412e+00 4.05487508e-01 -1.18047833e+00 -4.72787410e-01 -2.07422152e-01 -8.73158574e-01 1.18388675e-01 7.51522958e-01 -7.55607367e-01 6.67948902e-01 5.78242183e-01 1.13294530e+00 -4.22502488e-01 4.22628611e-01 8.09087530e-02 4.76773113e-01 -1.38607591e-01 -5.20102262e-01 3.91355425e-01 -6.73198998e-01 2.56316811e-01 8.04208994e-01 7.22319007e-01 1.24207489e-01 -3.25460285e-01 2.89391160e-01 3.93298656e-01 8.47699821e-01 -4.46488559e-01 -8.47473890e-02 2.04645813e-01 8.92149389e-01 -8.10987473e-01 -4.59299803e-01 -7.44811118e-01 3.90014723e-02 -4.55527991e-01 1.09482788e-01 -5.55481434e-01 -5.00831842e-01 1.64313555e-01 2.09695294e-01 3.53745341e-01 -2.48720795e-01 -7.67514110e-01 -1.05218315e+00 -5.87952649e-03 -5.78306019e-01 2.10760370e-01 -5.60095251e-01 -1.23316944e+00 6.88879132e-01 -2.96034247e-01 -1.75475740e+00 -3.88843715e-01 -8.39622021e-01 -6.76496148e-01 8.34475935e-01 -1.78845668e+00 -7.36530185e-01 3.43783289e-01 3.38865578e-01 7.75702745e-02 -9.05690551e-01 6.63921714e-01 -4.28949781e-02 -6.08913362e-01 1.94303781e-01 5.96874475e-01 8.15063417e-02 4.50144112e-01 -1.10850978e+00 2.92096078e-01 5.60363948e-01 -5.71249902e-01 6.37044132e-01 7.98246086e-01 -1.05208158e+00 -9.44740176e-01 -6.93704963e-01 1.50679564e+00 -2.04231828e-01 1.35797882e+00 2.21603081e-01 -4.69968677e-01 6.04517341e-01 -2.49728523e-02 -4.74700958e-01 1.04591417e+00 4.93343803e-04 -1.03610806e-01 -4.84956950e-01 -1.10151863e+00 2.79304475e-01 -2.05102190e-01 -3.05135369e-01 -6.80561244e-01 3.08944255e-01 5.13370395e-01 -9.45483148e-02 -1.60225737e+00 1.52561143e-01 9.24215078e-01 -1.17956555e+00 6.73578441e-01 -1.97318509e-01 4.31648105e-01 -1.49280190e-01 -5.10817990e-02 -7.83232808e-01 -2.65635215e-02 -5.81151009e-01 3.84728491e-01 9.54548657e-01 8.44482124e-01 -1.36560416e+00 5.69492698e-01 1.09690893e+00 2.79790252e-01 -7.88959742e-01 -7.09578216e-01 -7.53287613e-01 -3.04614622e-02 -6.14065349e-01 9.84992266e-01 1.19092619e+00 3.08476567e-01 -6.41964376e-02 -4.49676126e-01 -5.00083268e-02 3.13639760e-01 4.31660175e-01 7.38665342e-01 -1.60483491e+00 8.83546993e-02 -2.71192104e-01 -4.14988220e-01 -5.04671097e-01 7.28152394e-02 -5.69833457e-01 -9.20722723e-01 -8.24574053e-01 -5.36589205e-01 -3.37719560e-01 -5.96178353e-01 -1.23017088e-01 4.32962656e-01 2.02693701e-01 3.19948167e-01 6.59527659e-01 -4.75833705e-03 3.60890687e-01 1.21046078e+00 1.57286629e-01 -2.21207187e-01 5.75324953e-01 -6.92678511e-01 9.70767260e-01 9.66586232e-01 -3.86042088e-01 -1.36418670e-01 3.56931001e-01 1.19046903e+00 3.99391025e-01 -1.82660241e-02 -6.62671030e-01 2.79745549e-01 -1.59864828e-01 4.15693134e-01 -9.09766138e-01 7.12689385e-02 -7.08256781e-01 4.40986067e-01 6.80586815e-01 -2.53381729e-01 6.00179434e-01 -4.52044196e-02 4.51462328e-01 -8.07361782e-01 -4.34152246e-01 2.53943443e-01 5.79290166e-02 -3.99903476e-01 3.39425728e-02 -6.12627506e-01 -4.35351670e-01 1.20399618e+00 -4.17459279e-01 -1.85973451e-01 -5.68162978e-01 -6.50727153e-01 1.44791439e-01 2.04008237e-01 3.10631692e-01 2.40644753e-01 -1.05630231e+00 -7.42735863e-01 1.31404027e-01 -1.01951145e-01 -5.48583746e-01 -4.09696810e-03 9.54524577e-01 -8.73571932e-01 5.87357998e-01 -1.00608498e-01 -4.73493477e-03 -6.16327763e-01 2.94772327e-01 1.76291764e-01 -5.08873463e-01 -7.74923339e-02 6.08771086e-01 -1.80688009e-01 9.06757414e-02 -4.08551067e-01 -5.56714714e-01 -8.90872538e-01 1.00587833e+00 5.71950853e-01 6.41308129e-01 1.56559765e-01 -9.73332345e-01 -1.19788714e-01 8.01285326e-01 3.19199897e-02 -7.61703327e-02 1.64339876e+00 -2.14233115e-01 -3.66454542e-01 1.08640027e+00 1.05544198e+00 3.37288588e-01 -8.31829488e-01 -1.35844380e-01 5.93033612e-01 -4.33854282e-01 1.47635996e-01 -5.22380292e-01 -1.08492017e+00 3.06431890e-01 2.51871794e-01 8.10749948e-01 9.48046088e-01 -7.62009025e-01 7.84970045e-01 3.72528225e-01 2.12509423e-01 -1.50641549e+00 -4.27617371e-01 5.37451148e-01 8.57225478e-01 -1.29422510e+00 2.82798767e-01 -1.05866455e-01 -1.11959541e+00 1.64450574e+00 -1.50747523e-01 -5.67194581e-01 1.46246517e+00 -4.56571989e-02 2.34246388e-01 -2.23961666e-01 -7.95775712e-01 2.94762552e-01 1.99871704e-01 -6.39389083e-02 6.12656593e-01 3.00245345e-01 -6.13615751e-01 1.27775621e+00 -1.02631235e+00 1.13476403e-02 6.86234772e-01 7.98825562e-01 -3.54197353e-01 -6.17477179e-01 -2.95279384e-01 6.92749023e-01 -1.15852487e+00 -1.72968239e-01 -2.82798875e-02 9.81639445e-01 -1.40727311e-01 1.01515329e+00 4.73041862e-01 -5.24137139e-01 4.64622527e-01 3.78941298e-02 -6.32774591e-01 -1.87301069e-01 -1.10933757e+00 3.25489789e-01 2.14324638e-01 -8.81863460e-02 -8.88903081e-01 -1.23739994e+00 -1.14415610e+00 -5.87347388e-01 -4.64344293e-01 3.52816880e-01 9.49980319e-01 9.61105049e-01 2.49952897e-02 2.10755602e-01 1.40269709e+00 -4.29968894e-01 -5.51394939e-01 -9.23758090e-01 -1.28505492e+00 -6.31805360e-02 2.91989297e-01 -4.75051731e-01 -8.18421304e-01 -1.99622959e-02]
[4.481029033660889, 4.333154678344727]
64e0a369-23cd-4a61-bbb6-008aedec9156
parallel-detection-for-efficient-video
2107.12563
null
https://arxiv.org/abs/2107.12563v1
https://arxiv.org/pdf/2107.12563v1.pdf
Parallel Detection for Efficient Video Analytics at the Edge
Deep Neural Network (DNN) trained object detectors are widely deployed in many mission-critical systems for real time video analytics at the edge, such as autonomous driving and video surveillance. A common performance requirement in these mission-critical edge services is the near real-time latency of online object detection on edge devices. However, even with well-trained DNN object detectors, the online detection quality at edge may deteriorate for a number of reasons, such as limited capacity to run DNN object detection models on heterogeneous edge devices, and detection quality degradation due to random frame dropping when the detection processing rate is significantly slower than the incoming video frame rate. This paper addresses these problems by exploiting multi-model multi-device detection parallelism for fast object detection in edge systems with heterogeneous edge devices. First, we analyze the performance bottleneck of running a well-trained DNN model at edge for real time online object detection. We use the offline detection as a reference model, and examine the root cause by analyzing the mismatch among the incoming video streaming rate, video processing rate for object detection, and output rate for real time detection visualization of video streaming. Second, we study performance optimizations by exploiting multi-model detection parallelism. We show that the model-parallel detection approach can effectively speed up the FPS detection processing rate, minimizing the FPS disparity with the incoming video frame rate on heterogeneous edge devices. We evaluate the proposed approach using SSD300 and YOLOv3 on benchmark videos of different video stream rates. The results show that exploiting multi-model detection parallelism can speed up the online object detection processing rate and deliver near real-time object detection performance for efficient video analytics at edge.
['Ramana Kompella', 'Ling Liu', 'Yanzhao Wu']
2021-07-27
null
null
null
null
['real-time-object-detection']
['computer-vision']
[-5.45128575e-03 -5.15422285e-01 -3.04860294e-01 7.38161802e-02 -1.58837214e-01 -3.12002927e-01 1.11451596e-01 -2.41353661e-02 -7.53513277e-01 -1.64357036e-01 -4.53182161e-01 -5.48758268e-01 3.20130408e-01 -6.44764125e-01 -9.34314132e-01 -4.35043275e-01 -2.82230377e-01 1.46522045e-01 1.14992011e+00 2.46701762e-02 -4.90982793e-02 6.41622543e-01 -2.03140736e+00 4.27351534e-01 2.07569748e-01 1.54206514e+00 4.41020191e-01 1.40672922e+00 -3.10374964e-02 8.71236205e-01 -6.75284982e-01 5.74477427e-02 7.05274999e-01 -1.71683226e-02 1.47159874e-01 5.93349040e-02 5.70811093e-01 -1.17941213e+00 -6.82609200e-01 1.26425111e+00 5.57369769e-01 -2.16692343e-01 2.98299223e-01 -1.73180926e+00 2.62688041e-01 2.19036192e-01 -7.77434170e-01 9.34810579e-01 -1.83630720e-01 3.66928160e-01 4.34529215e-01 -7.42988408e-01 3.85175675e-01 1.08884215e+00 4.53274429e-01 6.12673283e-01 -4.97174054e-01 -7.80729532e-01 4.50915582e-02 6.19486868e-01 -1.15283477e+00 -8.37628841e-01 3.19846511e-01 -3.13215643e-01 1.29536092e+00 7.16686994e-02 4.37243819e-01 3.92921716e-01 5.67811072e-01 9.15839255e-01 1.27508789e-01 -2.22587764e-01 4.26853687e-01 -1.81821525e-01 2.46871442e-01 5.55527925e-01 6.07315063e-01 3.36067587e-01 -6.36885166e-01 9.04293582e-02 1.06607533e+00 2.90632486e-01 -2.12288916e-01 2.26476446e-01 -9.84539747e-01 2.97237217e-01 1.95006862e-01 -1.25056326e-01 -5.66045165e-01 6.23096526e-01 9.47544038e-01 4.85734046e-01 1.70396313e-01 -4.11331326e-01 -6.62422299e-01 -4.30379212e-01 -1.13312316e+00 -1.91024184e-01 6.29945099e-01 1.49323821e+00 4.10238802e-01 4.31863427e-01 -1.84185460e-01 7.55185038e-02 2.72862643e-01 8.31460178e-01 3.01089734e-01 -1.03825855e+00 5.46506226e-01 3.96797597e-01 1.22031443e-01 -6.70544565e-01 -3.23033512e-01 -2.10700899e-01 -6.69924438e-01 6.90885127e-01 3.87176961e-01 -4.23750728e-01 -9.00260270e-01 1.08257997e+00 3.57004136e-01 4.39088941e-01 1.95767686e-01 1.16023290e+00 8.51470053e-01 8.35697651e-01 1.49390064e-02 -1.96161196e-01 1.74864161e+00 -1.01354313e+00 -4.71248955e-01 -2.96752840e-01 8.36188138e-01 -7.20466375e-01 5.03034472e-01 4.44860071e-01 -1.16999066e+00 -8.15260172e-01 -1.17986083e+00 2.74178926e-02 1.20375700e-01 4.01336670e-01 3.61716360e-01 8.58387411e-01 -1.07405150e+00 9.56295878e-02 -1.30834484e+00 -2.56840497e-01 2.93724924e-01 6.44750774e-01 7.80116096e-02 -4.35343198e-02 -6.27668619e-01 2.22771332e-01 5.98450363e-01 -6.98704645e-02 -1.21795583e+00 -9.07750130e-01 -4.36571002e-01 3.94193292e-01 5.46152472e-01 -5.73154211e-01 1.34776282e+00 -1.38252962e+00 -1.33664453e+00 5.20128250e-01 -1.64145872e-01 -6.83393717e-01 6.74248576e-01 -2.90674001e-01 -5.41876912e-01 3.64063144e-01 -2.62227058e-01 7.16077745e-01 1.01133227e+00 -5.42238235e-01 -1.29818738e+00 -2.42839262e-01 2.02912897e-01 1.15253083e-01 -5.19924283e-01 3.91397953e-01 -7.04916179e-01 -3.33597623e-02 -2.23070905e-01 -7.44898200e-01 -8.02545920e-02 3.99954587e-01 2.10626677e-01 -1.55994311e-01 1.45073187e+00 -2.38190934e-01 1.04268038e+00 -2.56915474e+00 -6.70016885e-01 -3.68856817e-01 4.42160100e-01 6.27435267e-01 -1.59889422e-02 -2.90864289e-01 3.53880167e-01 -2.73755074e-01 4.98977154e-01 -1.67259097e-01 -4.34578866e-01 1.70721710e-02 -7.91802481e-02 2.73759186e-01 1.25948237e-02 5.87571800e-01 -7.72501171e-01 -3.53515983e-01 2.58566469e-01 3.44002217e-01 -7.16723442e-01 3.14924896e-01 -1.69178128e-01 -1.61674380e-01 -1.87323630e-01 7.38213718e-01 7.34487951e-01 -1.34674922e-01 -1.05598763e-01 -4.65618819e-01 -2.17353821e-01 -1.23851687e-01 -1.43198538e+00 9.75280881e-01 -3.61939192e-01 1.23546565e+00 5.03758967e-01 -5.93087733e-01 5.11335969e-01 3.76116484e-01 3.08603436e-01 -7.44212985e-01 3.01051795e-01 2.82424241e-01 9.87614095e-02 -6.36965156e-01 6.89476132e-01 1.21829227e-01 3.89429837e-01 3.26869264e-02 -2.94114143e-01 7.06133544e-01 3.44676584e-01 1.39834553e-01 1.50091588e+00 -4.07146901e-01 -7.41731972e-02 -1.88439354e-01 2.62012661e-01 1.27198577e-01 7.01591372e-01 8.08160007e-01 -6.39921427e-01 1.71734273e-01 4.44639415e-01 -7.14779615e-01 -1.19559503e+00 -1.01384199e+00 -4.00757566e-02 1.19599128e+00 5.90598524e-01 -3.01248431e-01 -6.39566839e-01 -3.42885017e-01 -2.70485878e-01 3.26814890e-01 2.35409606e-02 -2.41160631e-01 -5.16007006e-01 -6.94944978e-01 4.72390682e-01 9.59486067e-01 7.37969279e-01 -8.13435555e-01 -1.57032883e+00 3.51399988e-01 3.32160056e-01 -1.67152905e+00 -3.93336296e-01 2.72082165e-02 -1.11140621e+00 -1.00311136e+00 -4.34518278e-01 -7.82635808e-01 5.62233806e-01 9.12097454e-01 1.04690087e+00 3.58323395e-01 -4.59343880e-01 3.58978093e-01 -1.96226627e-01 -5.19620359e-01 -5.32296717e-01 -3.98458689e-01 3.00743669e-01 -1.31335616e-01 5.34180582e-01 -3.13704573e-02 -8.00775290e-01 4.69580173e-01 -1.28379655e+00 1.78236693e-01 4.27968413e-01 4.53858435e-01 3.92592192e-01 1.91521183e-01 3.85005385e-01 -2.86249518e-01 4.10680361e-02 -2.68917233e-01 -1.27240026e+00 4.19350825e-02 -1.90263882e-01 -1.97820321e-01 6.86645031e-01 -6.72263920e-01 -7.46921122e-01 1.28643155e-01 2.28574127e-02 -1.04978228e+00 3.07435188e-02 -1.42384797e-01 -2.06598669e-01 -1.43434525e-01 5.99217951e-01 1.67789042e-01 -1.93979383e-01 1.43890634e-01 -7.78551996e-02 8.35602164e-01 3.99071097e-01 -1.12774791e-02 1.88438982e-01 6.90389156e-01 9.06305388e-02 -1.19283307e+00 3.42362118e-03 -8.29160690e-01 1.49935797e-01 -6.59809828e-01 7.76431084e-01 -1.47351909e+00 -1.03332615e+00 6.63703740e-01 -1.44755101e+00 -4.39500928e-01 -6.70296652e-03 6.99437857e-01 -2.42703319e-01 2.40001336e-01 -8.57045352e-01 -8.72400463e-01 -5.92734039e-01 -1.35772121e+00 1.19143736e+00 5.10227680e-01 5.24620712e-01 -5.63333929e-01 -6.42386675e-01 -7.95759037e-02 5.18805981e-01 -1.65065333e-01 2.20177293e-01 -2.57477850e-01 -1.20473027e+00 -4.10326660e-01 -7.21503019e-01 2.63450533e-01 -2.74181813e-01 4.92272601e-02 -8.84692013e-01 -4.92927372e-01 6.53405711e-02 2.76229501e-01 8.27927172e-01 6.43522322e-01 8.90292406e-01 1.82907060e-02 -4.75269824e-01 8.86924744e-01 1.75354004e+00 4.91466194e-01 5.30325770e-01 1.39146298e-01 7.20615923e-01 -2.02369504e-02 4.80000794e-01 6.50322616e-01 -7.47720525e-02 5.70638537e-01 6.89110756e-01 9.54992026e-02 -2.53524840e-01 2.67535597e-01 8.71991813e-01 5.45255601e-01 1.38359070e-01 -5.97750366e-01 -8.49504650e-01 4.96720642e-01 -1.82944167e+00 -7.69587696e-01 -4.41289544e-01 2.37309146e+00 -2.52254665e-01 7.58745193e-01 3.52892905e-01 -3.00640948e-02 8.54263484e-01 -2.91684151e-01 -9.35174704e-01 -2.84393102e-01 6.25652149e-02 -4.62533802e-01 1.27602088e+00 1.46591589e-01 -7.96171606e-01 7.83352375e-01 5.69254875e+00 8.31968367e-01 -1.31854451e+00 3.76416028e-01 6.89237416e-01 -6.24806225e-01 4.17369485e-01 -1.31485537e-01 -1.42250907e+00 5.37469447e-01 1.31164408e+00 -2.10259408e-01 1.13574319e-01 1.37099373e+00 4.70273316e-01 -1.57494649e-01 -1.29290438e+00 1.55094612e+00 1.45963831e-02 -1.52553856e+00 -5.79280034e-02 2.35015657e-02 4.10626054e-01 6.09800875e-01 -4.33418840e-01 1.74927637e-01 -2.34248146e-01 -2.04479769e-01 9.30719972e-01 -3.01602297e-02 7.94867277e-01 -6.44063950e-01 7.38279164e-01 4.52329427e-01 -1.52803266e+00 -3.55681449e-01 -5.94527066e-01 -3.21823180e-01 4.90271568e-01 7.14974523e-01 -6.43310547e-01 -1.54734895e-01 1.00021505e+00 2.95019597e-01 -2.89970577e-01 1.24118924e+00 3.32319379e-01 5.63108981e-01 -8.50352168e-01 -1.23709954e-01 -2.96995211e-02 2.35697508e-01 7.42528260e-01 1.20687079e+00 4.44534302e-01 2.15016559e-01 1.43757373e-01 4.30836290e-01 -2.86962211e-01 -3.94769967e-01 -3.95618200e-01 2.61133671e-01 3.01741451e-01 1.23184502e+00 -1.12027764e+00 -7.31683195e-01 -8.14731479e-01 9.24815834e-01 -2.43339315e-01 2.65352935e-01 -1.19065797e+00 -3.20989341e-01 1.01144743e+00 4.16175574e-01 2.93910116e-01 -5.78764677e-01 -3.90282385e-02 -1.02841163e+00 3.27346355e-01 -4.79737997e-01 2.33469948e-01 -7.11892009e-01 -5.11752009e-01 5.45582712e-01 -1.40425578e-01 -1.29051960e+00 1.06292322e-01 -1.03748786e+00 -6.19506598e-01 9.40686986e-02 -1.47084391e+00 -4.97404993e-01 -4.92542416e-01 4.24823821e-01 1.09253657e+00 -1.42370090e-01 -7.06677586e-02 9.75263596e-01 -8.47105563e-01 7.26685107e-01 2.35934570e-01 1.38550684e-01 2.54098028e-01 -5.90263546e-01 8.08263361e-01 1.29065204e+00 -8.76940042e-02 -1.85185105e-01 6.87471390e-01 -6.47516131e-01 -1.94069219e+00 -1.09926748e+00 1.55910119e-01 2.93336883e-02 5.29169261e-01 -4.28247511e-01 -7.21135080e-01 4.75790173e-01 -1.71702877e-01 7.42825449e-01 1.12516001e-01 -7.79997468e-01 5.81402779e-02 -3.79399031e-01 -8.71100366e-01 6.10580921e-01 1.06051731e+00 -1.19916551e-01 1.13096878e-01 4.73834753e-01 8.91828418e-01 -5.46600282e-01 -4.45002168e-01 2.10702255e-01 5.15310824e-01 -1.08564925e+00 7.64031589e-01 -4.92147893e-01 8.31265524e-02 -5.34431577e-01 -1.51175067e-01 -4.14807528e-01 -4.18973528e-02 -6.28643036e-01 -4.26501781e-01 8.99793208e-01 9.44435596e-02 -4.18052942e-01 1.31697595e+00 6.11836612e-01 -2.93157876e-01 -4.04840410e-01 -1.18914092e+00 -1.16058862e+00 -9.09705818e-01 -7.65342236e-01 1.66315332e-01 9.30789933e-02 -3.44513148e-01 1.15975160e-02 -1.67862922e-01 6.05629027e-01 6.56673908e-01 -1.88994527e-01 8.18473518e-01 -7.98085392e-01 -5.24048150e-01 -3.49495977e-01 -1.17287457e+00 -1.58152604e+00 -5.26445508e-01 -2.52994299e-01 1.39313623e-01 -1.03624344e+00 5.48293218e-02 -7.22463354e-02 -1.72999322e-01 -5.28368205e-02 -1.22138195e-01 7.86181018e-02 5.76077819e-01 3.13197643e-01 -1.09600735e+00 6.13634288e-02 6.18084610e-01 2.21230835e-01 -2.95129031e-01 -9.21773091e-02 2.44532481e-01 8.80402923e-01 4.18158382e-01 -7.01777935e-01 -2.85739750e-01 -7.56902575e-01 3.90717566e-01 3.24915081e-01 4.52985734e-01 -1.66813052e+00 7.82838583e-01 7.70272091e-02 2.83444971e-01 -4.90245670e-01 1.75335765e-01 -1.07498109e+00 5.46002528e-03 9.04969394e-01 2.94371217e-01 4.07307237e-01 7.33146966e-01 7.61705458e-01 3.61458771e-02 -3.99407186e-02 7.47024059e-01 2.38992572e-01 -1.37975872e+00 4.61432666e-01 -6.94904804e-01 4.96638268e-02 1.37147224e+00 -6.71333015e-01 -3.58446360e-01 -6.97808191e-02 -3.52593422e-01 2.70961195e-01 5.12628853e-01 5.89426696e-01 7.47693002e-01 -1.05153632e+00 -7.20490575e-01 4.99833703e-01 8.06567743e-02 1.76410435e-03 3.58738869e-01 8.35830033e-01 -1.20777225e+00 1.53829858e-01 -3.05484712e-01 -1.09848297e+00 -1.46536517e+00 7.75410175e-01 5.61765075e-01 2.03586668e-01 -6.43075705e-01 8.71340275e-01 5.31772435e-01 7.64689922e-01 3.92605513e-01 -5.66733658e-01 3.92475069e-01 -4.70746428e-01 1.05405450e+00 8.02180111e-01 2.22572029e-01 -2.95047402e-01 -3.33588004e-01 4.43811476e-01 -2.24395487e-02 1.71863988e-01 7.64558733e-01 -1.91130742e-01 3.82328808e-01 1.51702389e-01 1.00079954e+00 -5.10844171e-01 -1.75878024e+00 7.16375709e-02 -1.70738444e-01 -3.53362948e-01 6.51571274e-01 2.51499214e-03 -1.44261599e+00 6.83900297e-01 1.22029817e+00 7.35096782e-02 1.41457653e+00 -1.30419701e-01 1.19622803e+00 4.77356911e-01 4.03279960e-01 -1.01992977e+00 -8.01879242e-02 1.88797697e-01 1.03799984e-01 -1.38954127e+00 -2.11963788e-01 -5.34236312e-01 -4.99271266e-02 1.30838513e+00 9.04479444e-01 -2.27546513e-01 6.95494235e-01 8.60675752e-01 -4.11680294e-03 -9.88181606e-02 -8.25023234e-01 1.86022501e-02 -1.19554222e-01 3.00103277e-01 5.50545112e-04 5.15597016e-02 9.86244902e-02 1.79841712e-01 6.49524450e-01 2.17880577e-01 7.13041723e-01 8.67293000e-01 -7.95311987e-01 -5.73523462e-01 -5.37923813e-01 6.35696948e-01 -4.84579057e-01 -1.69572219e-01 3.50077659e-01 5.34656525e-01 1.09985411e-01 1.11594474e+00 7.46480763e-01 -3.16719860e-01 3.65478396e-01 -4.43721265e-01 9.37346518e-02 -3.48362029e-01 -5.11072159e-01 -4.27784398e-03 -1.70116588e-01 -6.48119152e-01 4.19299938e-02 -3.18797201e-01 -1.43374527e+00 -4.29244161e-01 -5.07054448e-01 -3.75432700e-01 1.07227683e+00 9.05105233e-01 7.19821453e-01 5.77985585e-01 2.16587588e-01 -9.74080920e-01 -3.04526776e-01 -4.12464559e-01 -5.10532141e-01 1.44404337e-01 5.54681897e-01 -3.52730632e-01 -4.92791057e-01 2.20507845e-01]
[8.411710739135742, -0.47293657064437866]
76bcef52-6dac-46d0-bfa5-477a06676ad4
a-practical-method-for-constructing
2104.09459
null
https://arxiv.org/abs/2104.09459v1
https://arxiv.org/pdf/2104.09459v1.pdf
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Symmetries and equivariance are fundamental to the generalization of neural networks on domains such as images, graphs, and point clouds. Existing work has primarily focused on a small number of groups, such as the translation, rotation, and permutation groups. In this work we provide a completely general algorithm for solving for the equivariant layers of matrix groups. In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before, including $\mathrm{O}(1,3)$, $\mathrm{O}(5)$, $\mathrm{Sp}(n)$, and the Rubik's cube group. Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems. We release our software library to enable researchers to construct equivariant layers for arbitrary matrix groups.
['Andrew Gordon Wilson', 'Max Welling', 'Marc Finzi']
2021-04-19
a-practical-method-for-constructing-1
https://arxiv.org/abs/2104.09459
https://arxiv.org/pdf/2104.09459.pdf
null
['rubik-s-cube']
['graphs']
[ 2.50935167e-01 2.49906957e-01 1.41731739e-01 -1.68460950e-01 -3.77359055e-02 -6.95838451e-01 7.32449174e-01 -2.27081746e-01 -2.91145235e-01 4.31676090e-01 1.41521573e-01 -5.69822550e-01 -4.47870046e-01 -7.55445182e-01 -1.08413517e+00 -7.33241975e-01 -5.78738987e-01 5.20956635e-01 -8.78263041e-02 -5.65597713e-01 3.85012239e-01 6.61865294e-01 -1.39693213e+00 1.84044257e-01 3.59250277e-01 7.82554150e-01 -1.35532096e-01 6.75934970e-01 3.10273394e-02 6.34697735e-01 -9.52102467e-02 -2.76736677e-01 5.98399699e-01 -5.47903739e-02 -9.29368138e-01 -8.52479339e-02 1.29092669e+00 -9.48986188e-02 -5.60132027e-01 1.35289717e+00 5.36686927e-02 3.26260209e-01 8.38258505e-01 -1.38316762e+00 -9.68846858e-01 9.34374452e-01 -5.18104672e-01 1.41748458e-01 -1.17350966e-02 -1.50998518e-01 1.42067659e+00 -8.55326235e-01 7.63353825e-01 1.42281413e+00 6.96443796e-01 4.11747128e-01 -1.25955617e+00 -8.26069295e-01 2.13893250e-01 3.88592154e-01 -1.24368203e+00 -3.87576878e-01 8.64255190e-01 -5.49668491e-01 1.16136372e+00 5.06761849e-01 4.13668871e-01 7.54270971e-01 3.53986800e-01 3.90718162e-01 7.84907877e-01 -1.67599797e-01 2.04044566e-01 -5.88633537e-01 3.54678601e-01 8.32975209e-01 3.48129600e-01 -2.98973978e-01 -1.37880549e-01 8.67826939e-02 1.06212854e+00 -8.23750570e-02 5.99875860e-03 -5.96098185e-01 -1.40108049e+00 8.50874543e-01 6.51185632e-01 4.38340977e-02 -6.94035366e-02 3.55263472e-01 -4.40349728e-02 4.24523115e-01 1.71568111e-01 7.82327712e-01 -2.93955743e-01 4.61019039e-01 -5.18714547e-01 4.80575562e-01 1.01398647e+00 1.08922517e+00 1.01024258e+00 2.43870750e-01 3.22525352e-01 6.14575803e-01 1.85377628e-01 4.57484066e-01 7.65611930e-03 -1.44109464e+00 6.40284836e-01 5.24038792e-01 -1.25565216e-01 -1.23116457e+00 -9.45959151e-01 -3.63500059e-01 -1.26925194e+00 1.79401457e-01 3.83033305e-01 7.80960545e-02 -7.46170461e-01 1.81383860e+00 3.61582786e-02 7.32732192e-02 -2.09516659e-02 7.77885497e-01 8.78911436e-01 4.32811111e-01 -4.68773752e-01 1.91739053e-01 1.14853358e+00 -1.01376438e+00 -1.86100021e-01 -3.09374869e-01 6.06986105e-01 -7.17372596e-01 7.29854286e-01 2.82857150e-01 -1.43525755e+00 -3.35161537e-01 -1.25298882e+00 -3.18787992e-01 -2.64557391e-01 -1.34606853e-01 9.10208642e-01 2.53688842e-01 -1.57031083e+00 9.96681154e-01 -8.66801023e-01 -1.07542351e-01 2.55427152e-01 8.83583009e-01 -6.02370739e-01 5.45434169e-02 -9.15218294e-01 7.91327059e-01 1.73177198e-01 -5.19930981e-02 -4.94335681e-01 -7.83235550e-01 -8.62086058e-01 -3.23394202e-02 6.31351769e-02 -7.42206991e-01 1.07403290e+00 -6.00699604e-01 -1.31803429e+00 8.05886090e-01 -5.81222065e-02 -5.93057275e-01 3.01660269e-01 2.23456904e-01 -8.95081460e-02 -1.80388782e-02 -1.16922157e-02 8.25291634e-01 7.45407999e-01 -8.16885948e-01 -1.06533423e-01 -4.71836805e-01 5.95546067e-01 2.22460032e-01 -8.13329518e-02 1.03579074e-01 -5.95415160e-02 -4.01041299e-01 8.07749629e-01 -1.38559520e+00 -1.91098765e-01 -2.72454113e-01 -5.51000416e-01 -4.10720289e-01 6.15359187e-01 -5.54314375e-01 4.80625212e-01 -1.87296212e+00 7.60411799e-01 4.01894063e-01 6.50459886e-01 -3.82164158e-02 -1.29647255e-01 3.22806031e-01 -5.98205745e-01 3.37444186e-01 -8.44174474e-02 -2.49610215e-01 3.33631754e-01 2.36751780e-01 -2.44729862e-01 7.85714626e-01 1.10135816e-01 6.46606505e-01 -5.24255514e-01 -4.69548553e-02 2.71260113e-01 3.13641578e-01 -1.04781580e+00 -4.70382512e-01 -4.33840692e-01 2.69884646e-01 -1.73693269e-01 3.91355842e-01 9.67552364e-01 -5.31984091e-01 1.82129264e-01 -1.99497163e-01 -2.20835745e-01 4.44045573e-01 -1.58009458e+00 1.33419073e+00 -8.46191421e-02 5.61669111e-01 3.98782432e-01 -1.17834508e+00 5.97169518e-01 -7.35843480e-02 6.99993670e-01 -4.64864463e-01 7.39042833e-02 -1.23693205e-01 4.92988467e-01 -1.59862474e-01 6.79177999e-01 4.05786522e-02 -4.58141265e-04 6.75918519e-01 1.71336979e-01 -2.94609405e-02 3.35520357e-01 2.40442678e-01 1.28720772e+00 -1.32630408e-01 9.89325568e-02 -5.28753400e-01 4.14408416e-01 -3.46914500e-01 3.49917918e-01 8.67392242e-01 2.87364572e-02 6.56098604e-01 6.70787096e-01 -6.97608769e-01 -1.31147480e+00 -1.26170552e+00 -1.64036900e-01 1.20250189e+00 3.97213697e-02 -5.67857087e-01 -9.36224103e-01 1.26782404e-02 -2.03802884e-01 4.90128398e-01 -4.64196652e-01 -1.45802468e-01 -9.63616192e-01 -8.18182945e-01 4.22069162e-01 4.46038008e-01 5.98115981e-01 -9.96953905e-01 -3.61124501e-02 -1.05848365e-01 -6.81656133e-03 -1.10390580e+00 -3.42826217e-01 5.80617860e-02 -8.40271056e-01 -1.09677649e+00 -8.16514120e-02 -8.23449552e-01 8.20946038e-01 4.17107165e-01 9.34199333e-01 1.28134601e-02 -1.63168773e-01 3.12762946e-01 1.72072381e-01 -4.30005997e-01 -3.17778170e-01 3.24262202e-01 5.89660943e-01 -8.33820924e-02 8.60567465e-02 -8.97948742e-01 -4.38422382e-01 4.61223960e-01 -7.97496259e-01 2.11203292e-01 2.18889803e-01 3.18951219e-01 4.96530592e-01 -5.58610186e-02 -1.07103482e-01 -8.20943654e-01 2.71515220e-01 -3.44709575e-01 -7.50208676e-01 -2.63452560e-01 -1.61330730e-01 3.01132381e-01 1.04831648e+00 -3.38625282e-01 -3.07432860e-01 3.26009244e-02 8.80405959e-03 -5.05068541e-01 -1.15404151e-01 3.58848542e-01 -1.60082862e-01 -5.28506041e-01 7.56026983e-01 -3.45177725e-02 -5.88918328e-02 -4.78812397e-01 3.77241790e-01 1.20009713e-01 6.09552741e-01 -7.19704628e-01 1.15388906e+00 7.27242410e-01 5.49459755e-01 -1.23290479e+00 -5.54976583e-01 -4.55472060e-02 -7.53814757e-01 3.33727002e-01 7.98016012e-01 -7.63033569e-01 -9.95464683e-01 4.60941225e-01 -1.24401653e+00 -1.62135437e-01 -9.49820969e-03 5.71649194e-01 -6.95282996e-01 5.06776094e-01 -5.90866506e-01 -2.30973646e-01 -1.03297703e-01 -1.26775682e+00 9.21967208e-01 9.58688706e-02 -3.05450559e-01 -1.10035157e+00 -5.56876324e-02 4.55277890e-01 4.33691621e-01 1.51259795e-01 1.28503847e+00 -6.06402338e-01 -1.17441142e+00 -1.39093576e-02 -2.27198809e-01 3.23247015e-01 -3.35077882e-01 1.15616433e-02 -5.87210715e-01 -5.09616911e-01 -8.56085196e-02 -8.94774348e-02 1.06745946e+00 3.00263196e-01 1.32299638e+00 -6.79799378e-01 -6.47910759e-02 1.08574843e+00 7.35172749e-01 4.43207510e-02 6.68679237e-01 2.11962834e-01 1.01818621e+00 3.56629044e-01 -4.12941337e-01 5.22250198e-02 6.54801011e-01 4.90787327e-01 8.35283577e-01 5.96971661e-02 3.25570554e-02 1.11746155e-01 5.20243227e-01 1.17839420e+00 -6.29037201e-01 -1.86426491e-02 -7.05250204e-01 2.15656012e-01 -1.72567880e+00 -1.09648216e+00 -2.45697394e-01 1.83987081e+00 3.09027433e-01 2.08930578e-02 -2.48292461e-01 8.69848281e-02 7.34102845e-01 5.61869860e-01 -5.23428202e-01 -6.56043649e-01 -1.65869817e-01 6.01702631e-01 7.87347555e-01 6.90989137e-01 -1.32551932e+00 1.07963252e+00 6.75149965e+00 3.72290254e-01 -1.03279138e+00 -1.37650907e-01 -1.19054236e-01 -1.82599291e-01 -3.96590531e-01 2.66414762e-01 -9.12769079e-01 7.56937712e-02 6.27970755e-01 8.15222561e-02 1.08429468e+00 6.16681159e-01 -7.56036490e-02 6.61316156e-01 -1.51074147e+00 8.46800029e-01 3.11800390e-01 -1.73088813e+00 1.56792343e-01 4.54929739e-01 9.78342116e-01 4.44306701e-01 3.68571103e-01 1.33232072e-01 7.41773963e-01 -1.25414252e+00 6.17101014e-01 3.21605593e-01 4.41882402e-01 -4.64488745e-01 1.92659572e-01 1.29980206e-01 -1.07740939e+00 9.63972211e-02 -8.08153331e-01 -4.07298565e-01 -2.66768426e-01 1.99806869e-01 -7.61189222e-01 4.14399773e-01 7.51237392e-01 9.63566303e-01 -4.62400943e-01 5.04559636e-01 -7.54431263e-02 4.22403872e-01 -5.07612705e-01 9.74635482e-02 3.67364407e-01 -6.90297246e-01 7.71746993e-01 6.78573668e-01 2.89127797e-01 2.37372220e-01 1.37217402e-01 1.02135658e+00 -4.03537929e-01 -2.09447034e-02 -7.33168840e-01 -6.77824616e-02 1.40881129e-02 1.32812357e+00 -8.11564684e-01 1.69757828e-01 -3.01055372e-01 4.14029747e-01 4.99994010e-01 4.02165502e-01 -6.87217772e-01 -3.04137409e-01 1.14435470e+00 1.82330027e-01 5.69470406e-01 -8.25373709e-01 -1.58083394e-01 -1.41629112e+00 6.76440680e-03 -8.79305303e-01 2.36285731e-01 -7.82008350e-01 -1.14466894e+00 1.27916187e-01 1.91778690e-01 -8.82745504e-01 -2.23482788e-01 -1.34413040e+00 -5.95198870e-01 5.50674081e-01 -9.15649652e-01 -9.25896227e-01 -2.61498895e-02 6.89255714e-01 -2.83631757e-02 -5.23672342e-01 8.03577960e-01 1.12282708e-01 -5.11556327e-01 4.41688895e-01 2.79805243e-01 2.70567149e-01 2.99737662e-01 -1.19479978e+00 8.64754736e-01 8.32250178e-01 3.69681805e-01 9.55625713e-01 7.90350616e-01 -2.86508501e-01 -2.01905227e+00 -1.05212605e+00 5.13727605e-01 -6.68727040e-01 9.57285523e-01 -6.64472818e-01 -7.14355290e-01 1.29031229e+00 4.45365794e-02 -3.36105898e-02 3.03212434e-01 2.76144683e-01 -7.68834949e-01 -1.44303605e-01 -7.56077051e-01 1.15794170e+00 1.63621855e+00 -5.81093490e-01 -3.74659687e-01 6.60652578e-01 7.41115272e-01 -7.40430653e-01 -9.64771569e-01 2.96144009e-01 4.54984188e-01 -8.75089228e-01 1.39941370e+00 -9.62250173e-01 5.38544834e-01 -3.11451048e-01 -4.92059410e-01 -1.30219007e+00 -8.01508069e-01 -6.54367924e-01 4.43740515e-03 5.03145874e-01 3.55978638e-01 -8.54675472e-01 7.96668530e-01 3.01973790e-01 -4.27375823e-01 -2.39098053e-02 -1.06056547e+00 -4.49825555e-01 4.97017413e-01 -4.49350625e-01 6.41114175e-01 1.16377544e+00 -3.26723307e-01 3.75886440e-01 -4.02870744e-01 3.98237079e-01 6.57122076e-01 2.02765778e-01 8.65322709e-01 -1.44455862e+00 -3.52271169e-01 -5.68298399e-01 -8.81649613e-01 -6.20202780e-01 5.03249645e-01 -1.74907243e+00 -4.02627438e-01 -1.50822163e+00 7.07702711e-02 -2.06431419e-01 -2.68048763e-01 5.93431234e-01 5.94051123e-01 4.09924656e-01 2.52461344e-01 9.55528170e-02 -7.07128882e-01 1.66364029e-01 1.28417850e+00 -2.88745195e-01 1.44822508e-01 -1.65838480e-01 -1.03433990e+00 1.17931259e+00 8.62327874e-01 -3.23632240e-01 -2.83057868e-01 -7.74789751e-01 7.05767512e-01 -3.02108765e-01 5.86295605e-01 -1.19767749e+00 2.99125522e-01 -3.43452483e-01 3.01790237e-01 -3.74690443e-01 5.21446764e-01 -3.80516291e-01 2.85091966e-01 3.36512268e-01 -2.35751256e-01 4.88281578e-01 4.30424791e-03 3.11279297e-01 1.76524684e-01 -1.27292648e-01 7.01304853e-01 -4.36372757e-01 -2.99831688e-01 6.06415153e-01 -2.67056137e-01 2.96338826e-01 6.37386084e-01 -8.67352076e-03 -9.65010047e-01 -5.00442326e-01 -7.44438112e-01 1.50987640e-01 5.48897803e-01 5.06878853e-01 3.56660336e-01 -1.29903960e+00 -6.16202414e-01 3.98253500e-01 -5.39471358e-02 2.65903771e-01 2.27556914e-01 8.96454871e-01 -8.76779199e-01 3.62248182e-01 -6.48593664e-01 -7.61474550e-01 -1.06342268e+00 3.02192539e-01 4.22218114e-01 -1.48263142e-01 -6.30724549e-01 6.11796260e-01 4.31193709e-01 -8.39143813e-01 3.49324830e-02 -5.61590433e-01 -1.37447044e-01 -2.06287771e-01 4.09263402e-01 6.01439774e-01 2.05606163e-01 -8.84286582e-01 -2.95799464e-01 7.55555511e-01 -1.92848623e-01 6.73199445e-02 1.43904829e+00 3.75172496e-01 -8.50269318e-01 2.04074770e-01 1.42422354e+00 -4.97311614e-02 -1.02112556e+00 -1.20701589e-01 -3.39227468e-01 2.17464164e-01 -4.42344546e-01 8.17753598e-02 -9.12851870e-01 1.02197313e+00 1.50727436e-01 3.47577035e-01 4.18967128e-01 1.04600631e-01 4.00741071e-01 1.08225942e+00 2.43290424e-01 -9.13867295e-01 -4.86918949e-02 1.21405661e+00 1.00013268e+00 -7.18956351e-01 -2.55391281e-03 -2.82047629e-01 5.05650602e-02 1.10291469e+00 3.77152443e-01 -7.75319695e-01 8.02063823e-01 1.29273072e-01 -2.82954484e-01 -1.23672880e-01 -6.57065511e-01 1.59007534e-01 5.29483676e-01 3.44534039e-01 2.23189175e-01 2.72452682e-01 6.91490695e-02 2.87965685e-01 -1.12503374e+00 -5.98669469e-01 9.03360724e-01 6.02307677e-01 -3.67463440e-01 -1.03192997e+00 -3.25901181e-01 5.98046899e-01 -4.26546842e-01 -9.00450721e-02 -5.78880608e-01 8.20552289e-01 2.46452913e-01 5.19743681e-01 2.90681839e-01 -5.66758513e-01 1.64551765e-01 5.53320087e-02 7.27391660e-01 -4.19881612e-01 -2.89012760e-01 -3.51402074e-01 4.06340621e-02 -6.40202880e-01 -3.50888550e-01 -9.01011527e-01 -1.37116897e+00 -6.74935818e-01 4.38537300e-01 -1.74844876e-01 7.98373938e-01 1.01317406e+00 2.90194660e-01 3.87211859e-01 1.99171290e-01 -1.20904720e+00 -5.71727455e-01 -7.72128701e-01 -5.39214730e-01 4.75377768e-01 4.34746683e-01 -6.61577940e-01 -5.55518389e-01 -2.14339554e-01]
[8.799604415893555, 2.491394281387329]
85bfb024-cf45-4b32-bb2c-454a02505963
ecg-arrhythmia-classification-using-a-2-d
1804.06812
null
http://arxiv.org/abs/1804.06812v1
http://arxiv.org/pdf/1804.06812v1.pdf
ECG arrhythmia classification using a 2-D convolutional neural network
In this paper, we propose an effective electrocardiogram (ECG) arrhythmia classification method using a deep two-dimensional convolutional neural network (CNN) which recently shows outstanding performance in the field of pattern recognition. Every ECG beat was transformed into a two-dimensional grayscale image as an input data for the CNN classifier. Optimization of the proposed CNN classifier includes various deep learning techniques such as batch normalization, data augmentation, Xavier initialization, and dropout. In addition, we compared our proposed classifier with two well-known CNN models; AlexNet and VGGNet. ECG recordings from the MIT-BIH arrhythmia database were used for the evaluation of the classifier. As a result, our classifier achieved 99.05% average accuracy with 97.85% average sensitivity. To precisely validate our CNN classifier, 10-fold cross-validation was performed at the evaluation which involves every ECG recording as a test data. Our experimental results have successfully validated that the proposed CNN classifier with the transformed ECG images can achieve excellent classification accuracy without any manual pre-processing of the ECG signals such as noise filtering, feature extraction, and feature reduction.
['Young-Hak Kim', 'Tae Joon Jun', 'Dohyeun Kim', 'Hoang Minh Nguyen', 'Daeyoun Kang', 'Daeyoung Kim']
2018-04-18
null
null
null
null
['arrhythmia-detection', 'electrocardiography-ecg']
['medical', 'methodology']
[ 2.61329710e-01 -3.65563244e-01 4.54742879e-01 -5.68492234e-01 -4.38538373e-01 -2.22461835e-01 -2.58640707e-01 2.78461903e-01 -8.26838911e-01 6.77547753e-01 -5.08681715e-01 -3.58087480e-01 -1.02639005e-01 -7.44878948e-01 -3.05098504e-01 -5.79425275e-01 -2.36295119e-01 3.07030566e-02 -3.56118619e-01 1.14790253e-01 9.78726074e-02 9.09511447e-01 -1.07473624e+00 2.28514001e-01 6.55147970e-01 1.47546899e+00 -4.35441256e-01 9.17904437e-01 3.94510508e-01 5.09671032e-01 -1.12133086e+00 -2.39816263e-01 3.27024370e-01 -6.24363482e-01 -4.83036190e-01 -3.11766863e-02 2.37729563e-03 -2.41947070e-01 -3.70224208e-01 8.50032926e-01 1.11628878e+00 -2.00763196e-01 3.78648371e-01 -9.02166665e-01 -2.59879559e-01 3.37877274e-01 -2.76983947e-01 7.41273344e-01 -3.26436520e-01 1.70401409e-01 3.94466668e-01 -7.49424756e-01 1.78204224e-01 3.87533754e-01 1.06334007e+00 3.46215516e-01 -8.41739595e-01 -9.01355088e-01 -6.58802629e-01 3.43495220e-01 -1.68541276e+00 1.90543812e-02 1.11897230e+00 -4.20252532e-01 7.47068107e-01 3.05828035e-01 1.04046702e+00 5.68367898e-01 5.96184731e-01 4.30180639e-01 1.02652740e+00 -4.24124241e-01 1.21578656e-01 -1.35154324e-02 2.83035934e-01 6.56211674e-01 3.24661255e-01 4.21684347e-02 2.62095276e-02 -1.98466286e-01 1.00515592e+00 1.28243178e-01 -2.84008592e-01 2.67267227e-01 -1.16817009e+00 5.31812251e-01 6.43065870e-01 5.12565613e-01 -6.65705323e-01 -1.05677755e-03 7.81711280e-01 4.50846940e-01 2.19893947e-01 5.92143953e-01 -5.06602705e-01 -1.24134839e-01 -7.40028977e-01 -7.15460628e-02 5.01184881e-01 5.87126136e-01 3.34929138e-01 4.64295208e-01 -2.34499246e-01 7.97513545e-01 -1.20073959e-01 2.95501977e-01 7.85278976e-01 -3.74751896e-01 3.82983178e-01 6.36272311e-01 -2.44102150e-01 -1.26844311e+00 -7.07346380e-01 -1.04726601e+00 -1.56471276e+00 6.16131313e-02 1.67523548e-01 -6.01913929e-01 -9.58892405e-01 1.31170189e+00 -1.56903893e-01 3.10720950e-01 2.56577760e-01 1.02573133e+00 9.23958719e-01 3.45391750e-01 1.27643093e-01 -3.95552129e-01 1.13661027e+00 -3.43024999e-01 -9.22508895e-01 2.81430870e-01 5.86569667e-01 -5.17354131e-01 8.44582975e-01 5.53748429e-01 -8.53136480e-01 -9.46513712e-01 -1.46926844e+00 2.79041082e-01 -1.20353051e-01 7.67966688e-01 4.60474223e-01 7.85215497e-01 -6.27653062e-01 8.37572515e-01 -8.88658941e-01 -1.33502498e-01 7.56286085e-01 6.79194152e-01 -3.24657619e-01 3.18169892e-01 -1.41317248e+00 6.09225690e-01 3.34109783e-01 7.02579200e-01 -6.63980782e-01 -3.57087761e-01 -5.73635936e-01 2.43150249e-01 -3.75416428e-01 -4.80220556e-01 9.23849106e-01 -1.07135832e+00 -1.33383048e+00 8.66217554e-01 3.08068544e-01 -6.54752612e-01 4.12260324e-01 -5.39707951e-02 -6.42984688e-01 5.70697784e-02 -2.28762537e-01 6.80986866e-02 6.35976911e-01 -5.38174987e-01 -3.41723889e-01 -5.69358528e-01 -3.63985687e-01 1.76513910e-01 -5.01082122e-01 -5.32283224e-02 -1.04749203e-01 -9.56057847e-01 4.70192939e-01 -6.85384810e-01 -1.47102788e-01 -2.59400815e-01 -4.13127422e-01 2.49061614e-01 7.36556709e-01 -6.23045325e-01 1.37364936e+00 -2.39930344e+00 -2.97317952e-01 5.68475306e-01 4.22790676e-01 4.55006808e-01 1.63760290e-01 -7.44938999e-02 -3.94379765e-01 1.35377020e-01 -3.73564035e-01 7.48936608e-02 -6.24002993e-01 -3.03903352e-02 3.12866658e-01 6.38346493e-01 3.52698565e-01 8.01577270e-01 -3.16573381e-01 -3.59166354e-01 3.06785375e-01 6.81283355e-01 -1.33313701e-01 3.63654763e-01 5.57329476e-01 5.40053785e-01 -2.51104295e-01 4.29368794e-01 6.80915713e-01 -2.00245827e-01 2.59901106e-01 -6.09928012e-01 1.88211069e-01 -2.45457307e-01 -1.00493050e+00 1.45361674e+00 -1.87314197e-01 6.73808157e-01 -3.37248534e-01 -1.35611510e+00 1.35745490e+00 5.33215463e-01 6.61641300e-01 -5.87546468e-01 7.06297755e-01 2.21713930e-01 5.75510085e-01 -7.09517777e-01 -1.96293980e-01 -1.06076196e-01 3.20517235e-02 2.06619740e-01 9.32625085e-02 1.20152459e-01 -1.61540389e-01 -3.52179796e-01 9.86204445e-01 -3.54128599e-01 2.22599193e-01 -3.65325898e-01 5.88904679e-01 -3.96751538e-02 8.01921308e-01 8.18222344e-01 -3.34496170e-01 8.13127875e-01 3.64038140e-01 -1.17994714e+00 -8.08698118e-01 -5.93060017e-01 -4.40343350e-01 5.37434816e-02 -1.60347149e-01 -7.45216832e-02 -9.09549892e-01 -6.03316188e-01 -3.05158287e-01 -1.34323716e-01 -6.07107460e-01 -3.44051540e-01 -7.86847770e-01 -1.27704263e+00 1.09231699e+00 8.03907454e-01 8.46651137e-01 -1.34951806e+00 -1.04434752e+00 5.04799902e-01 7.48774186e-02 -8.72344196e-01 5.32063516e-03 4.04047817e-01 -1.00512683e+00 -1.26806808e+00 -7.03692973e-01 -1.00643861e+00 6.32337570e-01 -5.84724307e-01 8.20936084e-01 4.51365948e-01 -9.24742579e-01 -2.89956272e-01 -1.26206517e-01 -8.72185647e-01 -1.40054792e-01 1.54640600e-01 4.01711203e-02 3.44964415e-01 4.78641272e-01 -5.54756939e-01 -9.61747587e-01 -1.95838567e-02 -6.37718499e-01 -1.84590742e-01 7.14370072e-01 9.52094078e-01 6.91467762e-01 1.49247780e-01 9.02985990e-01 -8.72085571e-01 9.70825851e-01 1.68053135e-02 -4.37945306e-01 8.93427990e-03 -6.00907266e-01 -5.75846672e-01 7.89140165e-01 -1.61883935e-01 -3.30540419e-01 3.09415549e-01 -5.40711582e-01 -4.50733393e-01 -3.06368351e-01 7.19987750e-01 -4.19190014e-03 -9.83017311e-02 7.75665760e-01 9.12723392e-02 1.39725238e-01 -2.09839627e-01 -3.55133325e-01 9.56681371e-01 5.96289515e-01 3.32466476e-02 3.81042212e-01 1.34771258e-01 9.54944268e-02 -8.10993314e-01 -4.47124630e-01 -1.83078453e-01 -9.30066526e-01 -1.27197623e-01 1.03620851e+00 -7.85704732e-01 -7.69056320e-01 9.24781621e-01 -1.09069145e+00 8.46723095e-02 -1.54050902e-01 7.68968761e-01 -1.99578971e-01 9.72301960e-02 -7.96768844e-01 -5.90342641e-01 -1.08151567e+00 -1.05975795e+00 3.55333328e-01 1.62777826e-01 -2.12310180e-01 -8.34492683e-01 -1.99930057e-01 -1.96651444e-01 6.26399577e-01 7.87982523e-01 9.59355474e-01 -8.16989839e-01 -2.28356160e-02 -8.56160939e-01 -6.15957417e-02 7.71206319e-01 3.52007538e-01 -4.45864610e-02 -1.02179205e+00 -3.26630801e-01 4.23399180e-01 -8.77481475e-02 5.58111548e-01 4.58706796e-01 1.72776330e+00 -6.83681518e-02 6.89790398e-02 9.69662726e-01 1.54490304e+00 7.40499854e-01 7.96685338e-01 2.51918554e-01 6.29377365e-01 -2.41521731e-01 3.09727252e-01 4.38838929e-01 -9.41040367e-02 2.79253989e-01 2.78007269e-01 -8.94623220e-01 2.52284616e-01 4.91146833e-01 -5.38792431e-01 8.95136178e-01 -3.61359060e-01 9.34167504e-02 -1.11107624e+00 1.80963144e-01 -1.52183473e+00 -7.89049685e-01 -1.97258130e-01 2.00207734e+00 6.38028681e-01 2.06010655e-01 -1.27776697e-01 9.57332492e-01 7.06695974e-01 -3.75114143e-01 -5.79347312e-01 -3.44818264e-01 -1.90326288e-01 8.58764470e-01 1.30841359e-01 -1.43375443e-02 -1.49565446e+00 2.61930287e-01 5.55685425e+00 6.91494197e-02 -1.78742623e+00 -6.81064697e-03 1.01017082e+00 2.55103052e-01 7.46038437e-01 -7.66391695e-01 -1.26923665e-01 3.10201019e-01 8.06154907e-01 -5.89569807e-02 -6.25497336e-03 7.45913386e-01 2.11782068e-01 4.52018470e-01 -8.06615710e-01 1.54519975e+00 7.88948592e-03 -1.40038407e+00 -1.52018756e-01 -4.24023062e-01 3.49733561e-01 -2.32712671e-01 -1.14868283e-01 1.55403331e-01 -7.41850197e-01 -1.19653535e+00 2.25105926e-01 6.07870877e-01 1.12342036e+00 -1.09995806e+00 1.47210181e+00 8.41011629e-02 -9.36473727e-01 -3.95223200e-01 -2.41766289e-01 -1.62655622e-01 -3.71270895e-01 5.83245575e-01 -7.00349689e-01 5.56714475e-01 8.89668047e-01 7.67344475e-01 -5.98865926e-01 1.23926330e+00 1.87523395e-01 8.32550943e-01 -1.42542377e-01 1.11982740e-01 -2.14121379e-02 3.51696350e-02 1.72094598e-01 1.17564392e+00 1.87480122e-01 4.56992358e-01 1.41391873e-01 5.80876827e-01 -3.09280306e-01 3.66026551e-01 -2.70161420e-01 1.65471524e-01 1.55100912e-01 1.20587564e+00 -7.99734771e-01 -4.88298088e-01 1.28239708e-03 7.13672340e-01 -6.50555044e-02 3.27701956e-01 -8.56401026e-01 -1.29151702e+00 2.45002165e-01 4.48634624e-02 -2.33698919e-01 1.06491819e-01 -8.61845195e-01 -1.06067717e+00 8.26260000e-02 -8.01176488e-01 3.36383522e-01 -3.90893251e-01 -1.05677450e+00 1.24262834e+00 -4.54284132e-01 -1.44951117e+00 3.74404527e-02 -5.13219655e-01 -7.86565661e-01 1.18367100e+00 -1.05950022e+00 -5.23131788e-01 -9.13221538e-01 6.13853157e-01 1.97790742e-01 -4.56426948e-01 1.18031144e+00 7.55928695e-01 -8.47194314e-01 7.90821552e-01 -2.30877385e-01 8.08662713e-01 3.15268666e-01 -1.03060019e+00 3.20444971e-01 8.18521082e-01 -1.70073897e-01 5.12039483e-01 1.51222125e-01 -2.94146121e-01 -1.06588864e+00 -1.36872125e+00 5.22599161e-01 9.84366685e-02 -4.58822139e-02 -2.26523563e-01 -8.41909766e-01 4.13689524e-01 3.65820564e-02 4.79051918e-01 7.34849632e-01 -2.69341409e-01 3.75622988e-01 -4.92338866e-01 -1.19873810e+00 1.47331148e-01 4.08547163e-01 -3.47278863e-01 -2.92999923e-01 2.08526924e-01 -5.47757223e-02 -7.41823077e-01 -1.09837353e+00 9.40445900e-01 6.41218185e-01 -6.88713610e-01 6.21442795e-01 -6.52368128e-01 2.58764803e-01 -2.87949830e-01 2.98381478e-01 -1.14541328e+00 -3.44675124e-01 -3.83031577e-01 1.90704465e-01 6.36301994e-01 4.56840724e-01 -5.78827024e-01 7.18235433e-01 2.65272468e-01 -1.89839110e-01 -1.30944765e+00 -6.64809346e-01 -4.49329227e-01 -1.86032698e-01 -4.01176035e-01 6.20403707e-01 1.09146130e+00 -2.86455005e-01 2.65166938e-01 -2.68178433e-01 2.65734166e-01 5.44803679e-01 -1.04428597e-01 4.89587635e-01 -1.29314268e+00 5.07406779e-02 -1.76809236e-01 -1.02959466e+00 -1.28808767e-01 -3.10344011e-01 -8.91346633e-01 -2.09203929e-01 -1.35217118e+00 -4.69966978e-03 -6.35165691e-01 -9.90182698e-01 5.29667795e-01 -1.41817555e-01 7.53660619e-01 -6.33771345e-02 5.06030396e-02 1.31172808e-02 1.69298679e-01 1.11920798e+00 -1.72420025e-01 -4.87859994e-01 3.72478545e-01 -3.91304433e-01 5.66294491e-01 1.24795127e+00 -5.07348239e-01 -2.98289359e-01 -3.78583759e-01 -3.56685072e-01 1.86491370e-01 3.16010416e-01 -1.53829253e+00 5.42687206e-03 5.45016766e-01 1.18462396e+00 -3.98377448e-01 1.23152681e-01 -7.62081802e-01 3.04548681e-01 8.01712394e-01 -4.59402412e-01 3.61170858e-01 3.40611756e-01 8.53508636e-02 -5.05399525e-01 1.27692670e-01 8.72196257e-01 1.48864612e-02 -2.53646851e-01 6.05226398e-01 -3.28521401e-01 -1.61912128e-01 1.02655983e+00 -2.97945172e-01 7.30657801e-02 -6.39946610e-02 -1.33227992e+00 -2.38341883e-01 -1.84064046e-01 1.74570039e-01 1.04719937e+00 -1.36992097e+00 -7.05786586e-01 5.78642547e-01 2.63403617e-02 -1.57914743e-01 2.60883719e-01 8.74894321e-01 -1.04261935e+00 1.14396080e-01 -6.93135381e-01 -7.72176385e-01 -1.43355095e+00 1.52242824e-01 9.75622356e-01 1.53406803e-02 -8.55155587e-01 5.76672018e-01 -3.61948222e-01 7.18926964e-03 4.98227537e-01 -5.25999665e-01 -3.78104597e-01 -2.87595212e-01 5.00346661e-01 1.23867586e-01 6.65322423e-01 -1.78920403e-01 -5.66051185e-01 6.37264669e-01 1.01551898e-01 3.15016896e-01 1.35388398e+00 4.79220659e-01 -1.42308608e-01 2.59931207e-01 1.31883061e+00 -6.77236915e-01 -6.71533287e-01 2.16842175e-01 -2.81828225e-01 -1.78468838e-01 1.51074007e-01 -9.55695033e-01 -1.56948602e+00 1.34819865e+00 1.36545289e+00 1.82560682e-01 1.50965750e+00 -8.13148081e-01 6.87452197e-01 5.88518322e-01 1.29816815e-01 -9.27061915e-01 -2.46025905e-01 2.61794209e-01 8.43849778e-01 -9.84962463e-01 -1.98155642e-01 -2.96936594e-02 -6.09951437e-01 1.43904746e+00 7.09166884e-01 -4.20647085e-01 1.05980718e+00 3.88795346e-01 7.15503633e-01 -3.22701752e-01 -2.90725201e-01 2.79186338e-01 1.85240120e-01 4.26156580e-01 5.88739932e-01 -2.81328969e-02 -4.13169175e-01 8.92967761e-01 -1.36886105e-01 5.02844512e-01 5.04283786e-01 9.49216247e-01 -4.93165199e-03 -5.83427787e-01 1.63410814e-03 7.85106182e-01 -1.05045819e+00 5.81244379e-03 -1.09600313e-01 7.69130051e-01 2.51178265e-01 6.22334361e-01 1.03254810e-01 -5.25435627e-01 6.34832263e-01 1.83218881e-01 2.91922331e-01 -4.75395471e-01 -1.14571929e+00 -1.86727606e-02 -4.01417464e-01 -1.56471014e-01 -1.12750217e-01 -1.33347064e-01 -1.33997035e+00 1.96339875e-01 -2.39424497e-01 2.63277948e-01 7.95491219e-01 7.48888195e-01 4.61077213e-01 1.01522601e+00 7.57764041e-01 -4.81078237e-01 -5.17034948e-01 -1.21646810e+00 -6.36506438e-01 5.14126480e-01 4.43894923e-01 -1.75257608e-01 -1.63838342e-01 2.27971762e-01]
[14.26003646850586, 3.246610403060913]
a15ad65a-0988-4b73-8f58-35fd3c748c8f
mcgnet-partial-multi-view-few-shot-learning
2105.02046
null
https://arxiv.org/abs/2105.02046v4
https://arxiv.org/pdf/2105.02046v4.pdf
Few-shot Partial Multi-view Learning
It is often the case that data are with multiple views in real-world applications. Fully exploring the information of each view is significant for making data more representative. However, due to various limitations and failures in data collection and pre-processing, it is inevitable for real data to suffer from view missing and data scarcity. The coexistence of these two issues makes it more challenging to achieve the pattern classification task. Currently, to our best knowledge, few appropriate methods can well-handle these two issues simultaneously. Aiming to draw more attention from the community to this challenge, we propose a new task in this paper, called few-shot partial multi-view learning, which focuses on overcoming the negative impact of the view-missing issue in the low-data regime. The challenges of this task are twofold: (i) it is difficult to overcome the impact of data scarcity under the interference of missing views; (ii) the limited number of data exacerbates information scarcity, thus making it harder to address the view-missing issue in turn. To address these challenges, we propose a new unified Gaussian dense-anchoring method. The unified dense anchors are learned for the limited partial multi-view data, thereby anchoring them into a unified dense representation space where the influence of data scarcity and view missing can be alleviated. We conduct extensive experiments to evaluate our method. The results on Cub-googlenet-doc2vec, Handwritten, Caltech102, Scene15, Animal, ORL, tieredImagenet, and Birds-200-2011 datasets validate its effectiveness.
['Jiebo Luo', 'Richang Hong', 'Shijie Hao', 'Yanrong Guo', 'Yuan Zhou']
2021-05-05
null
null
null
null
['multi-view-learning']
['computer-vision']
[-4.44409586e-02 -3.40682417e-01 -1.33825347e-01 -3.27797055e-01 -5.27727127e-01 -2.63407081e-01 3.96613687e-01 -2.71410435e-01 -1.79364473e-01 6.47278965e-01 4.68380809e-01 1.54194638e-01 -1.83779240e-01 -6.28388345e-01 -5.51801443e-01 -7.50091076e-01 3.59618276e-01 8.80326852e-02 1.35839069e-02 -2.61777371e-01 -2.56550610e-02 1.68095976e-01 -1.76888764e+00 2.85881072e-01 8.87807190e-01 1.03786027e+00 5.14791131e-01 -7.89435804e-02 -7.82424584e-02 6.11741722e-01 -2.98229277e-01 -3.47612828e-01 4.87099826e-01 -8.47157612e-02 -2.58295953e-01 5.04613996e-01 3.98224622e-01 -5.28666675e-01 -3.75076234e-01 1.13551319e+00 6.22675598e-01 1.27727956e-01 3.33486676e-01 -1.40755618e+00 -7.42545068e-01 1.66034997e-01 -1.13473332e+00 2.19543725e-01 1.77975502e-02 -6.99211955e-02 9.25489366e-01 -1.24760413e+00 5.83904207e-01 1.20163667e+00 4.82903033e-01 4.28427905e-01 -8.87104809e-01 -6.55372560e-01 6.75754845e-01 2.53174543e-01 -1.22840941e+00 -4.10668224e-01 9.15601850e-01 -5.48139632e-01 4.10362065e-01 -5.74895591e-02 4.80258107e-01 1.46517432e+00 -2.83458945e-03 9.17997420e-01 1.13509297e+00 2.41967011e-03 6.56012744e-02 1.95185378e-01 9.75558013e-02 3.37751448e-01 3.22146744e-01 -1.12243369e-03 -6.00215077e-01 1.45314699e-02 5.32530129e-01 6.61397517e-01 -5.59508204e-01 -6.03496253e-01 -1.06914687e+00 7.63256371e-01 4.86040175e-01 1.20482750e-01 -4.30900306e-01 -4.66317654e-01 4.18279707e-01 1.91191673e-01 6.21363699e-01 1.35071039e-01 -4.53245521e-01 4.21564979e-03 -7.65513718e-01 1.19187616e-01 6.14397347e-01 1.11845803e+00 6.71858430e-01 2.18956545e-01 1.11612447e-01 1.01848519e+00 2.55528867e-01 4.37524796e-01 4.69862550e-01 -4.98353124e-01 8.19053590e-01 7.00069010e-01 1.07887223e-01 -1.31508851e+00 -2.47124180e-01 -7.75664747e-01 -1.34360504e+00 1.59891814e-01 3.24729115e-01 -1.21901877e-01 -7.67842174e-01 1.81826353e+00 4.46341902e-01 9.81507972e-02 6.75745681e-02 1.22235596e+00 1.01999581e+00 6.23763919e-01 -1.65142283e-01 -3.83344054e-01 1.25849080e+00 -9.81231213e-01 -8.78635943e-01 -2.84783095e-01 1.71550095e-01 -6.40554905e-01 1.12231791e+00 5.06640792e-01 -6.07928514e-01 -6.39624953e-01 -1.26295769e+00 3.21872421e-02 -3.20851117e-01 1.85814127e-01 7.47066677e-01 1.21114783e-01 -5.26270032e-01 2.69498974e-01 -5.95303774e-01 -2.43930057e-01 5.61660230e-01 1.08352760e-02 -7.64471233e-01 -6.98314607e-01 -9.48714197e-01 6.13208055e-01 1.63954675e-01 3.20046753e-01 -7.31653929e-01 -8.36933911e-01 -8.15462351e-01 1.94608187e-03 9.49704230e-01 -4.77761626e-01 7.13321805e-01 -7.43629813e-01 -7.41868377e-01 4.45421189e-01 -3.94136645e-02 -8.76746103e-02 6.53406382e-01 -3.81496161e-01 -5.30184805e-01 -3.19702446e-01 3.24462503e-01 3.15452665e-01 7.85863101e-01 -1.61521029e+00 -5.94310641e-01 -8.46349001e-01 1.35009646e-01 5.29317737e-01 -5.42538106e-01 -4.74535048e-01 -7.75497556e-01 -6.47517323e-01 3.12257677e-01 -7.51519918e-01 -1.82130709e-01 2.16528680e-03 -3.90991777e-01 -2.33127307e-02 1.04742837e+00 -6.12600029e-01 1.00499737e+00 -2.34810877e+00 3.54287952e-01 -3.11665088e-01 3.48192513e-01 2.10047752e-01 -1.67688876e-01 4.51175570e-01 -3.19494808e-04 -1.13517016e-01 -1.33778542e-01 -4.81051266e-01 -3.08170676e-01 4.86609817e-01 -4.35837358e-01 5.07531404e-01 -4.48400974e-02 5.86249113e-01 -8.91316772e-01 -2.92821109e-01 1.44353643e-01 4.66239184e-01 -4.73118305e-01 3.32530260e-01 1.18565470e-01 4.83590722e-01 -5.49897432e-01 8.36826742e-01 9.61436868e-01 -2.45817795e-01 -1.27207115e-01 -5.23666263e-01 -1.51396498e-01 -3.78070682e-01 -1.47823977e+00 1.82985592e+00 -4.60702747e-01 2.94132322e-01 3.08571845e-01 -1.01818538e+00 6.65495455e-01 1.71207890e-01 5.70569158e-01 -6.67467892e-01 -1.56378672e-02 6.21793717e-02 -1.19673960e-01 -7.08387554e-01 4.42294449e-01 -3.71666193e-01 1.38456123e-02 1.91181898e-01 1.20147176e-01 2.81627268e-01 5.40427677e-02 2.05308452e-01 8.65069568e-01 1.04439721e-01 3.52423310e-01 -8.27907249e-02 3.65309864e-01 -2.59236366e-01 1.08400822e+00 5.27057469e-01 -3.07010680e-01 9.36355174e-01 4.05522346e-01 -6.50746882e-01 -9.26556826e-01 -8.18917572e-01 7.71715194e-02 8.79903793e-01 2.80443341e-01 -3.92631173e-01 -2.49990150e-01 -8.82991195e-01 1.38396248e-01 3.57885599e-01 -6.94171548e-01 -3.27740461e-02 -2.21989289e-01 -8.97566438e-01 -1.12137042e-01 5.47435939e-01 6.52746618e-01 -6.78335011e-01 -4.75372851e-01 1.68115869e-01 -4.00525361e-01 -1.39226413e+00 -4.31716859e-01 -6.60864860e-02 -7.17489779e-01 -1.16114855e+00 -7.91362703e-01 -3.40669215e-01 6.74093723e-01 8.34152818e-01 8.47491622e-01 -2.33880565e-01 -1.93126962e-01 2.87179112e-01 -4.84261215e-01 -5.94529867e-01 1.94971010e-01 -4.66957800e-02 2.31184438e-01 2.93336272e-01 2.61476666e-01 -7.37749159e-01 -6.16254449e-01 3.81332725e-01 -1.02741110e+00 2.55579382e-01 6.56984568e-01 1.11974156e+00 7.77553260e-01 9.57638919e-02 6.50570869e-01 -8.94965649e-01 3.85855079e-01 -7.46456385e-01 -4.44466680e-01 1.65574089e-01 -4.66820329e-01 -2.75469661e-01 7.28950262e-01 -4.09470618e-01 -1.00003672e+00 4.56129201e-03 3.44131924e-02 -1.00223207e+00 -4.06646393e-02 7.46803343e-01 -7.02773154e-01 1.76638141e-01 2.72396982e-01 2.87821054e-01 1.06721632e-01 -6.58206642e-01 1.95089504e-01 5.81612289e-01 2.98260987e-01 -1.99277461e-01 7.61515141e-01 7.52583861e-01 -4.81807813e-02 -9.94004488e-01 -1.13902831e+00 -5.85372090e-01 -4.19771552e-01 -2.16007754e-01 7.40736425e-01 -1.33393407e+00 -2.27447659e-01 5.01376092e-01 -8.53677273e-01 3.63436460e-01 -2.21040070e-01 4.53847706e-01 -1.73486143e-01 5.79424858e-01 -5.19009419e-02 -5.96883953e-01 -2.85979509e-01 -1.22699416e+00 7.25956857e-01 3.04257840e-01 3.76624227e-01 -6.19696081e-01 -8.87363702e-02 5.48510790e-01 3.41417104e-01 3.58149201e-01 6.23022497e-01 -5.97809434e-01 -5.44932544e-01 -2.19095856e-01 -3.85263473e-01 5.97353458e-01 4.01277959e-01 -3.47468615e-01 -1.11292529e+00 -5.94135821e-01 3.82889211e-01 -4.76662248e-01 9.47093487e-01 1.94606408e-01 1.26053298e+00 -1.61439404e-01 -1.32507235e-01 7.37737060e-01 1.58993423e+00 -6.47403002e-02 3.59379947e-01 1.06588349e-01 9.93436337e-01 6.30997062e-01 8.89305115e-01 7.40548909e-01 6.04355216e-01 6.81005061e-01 8.60535562e-01 -8.02176073e-02 -5.04476689e-02 -2.29507729e-01 -7.17544407e-02 1.09739721e+00 -3.90433893e-02 -3.38189363e-01 -7.64567375e-01 6.30169630e-01 -1.95553863e+00 -8.99661303e-01 4.58319113e-02 2.17282963e+00 3.61404866e-01 -4.41115871e-02 -1.24673307e-01 -4.16335911e-02 5.56662440e-01 4.69263792e-01 -6.95579052e-01 3.34702730e-01 -3.21094334e-01 -5.73742926e-01 2.61778355e-01 -1.09397247e-01 -1.25539982e+00 4.86701220e-01 4.57069254e+00 7.67635703e-01 -1.09794366e+00 2.49735311e-01 6.79288447e-01 -2.44803280e-01 -2.88369894e-01 -1.73116401e-01 -9.14352298e-01 6.50426626e-01 3.06118935e-01 4.26702155e-03 3.81908774e-01 8.57768238e-01 4.26966250e-02 -6.45959228e-02 -1.06120539e+00 1.40011227e+00 4.27655429e-01 -1.00234485e+00 5.60680367e-02 2.10823134e-01 7.41104186e-01 2.09591359e-01 2.06686720e-01 5.35581350e-01 -9.18981656e-02 -7.30620742e-01 4.53771949e-01 4.51823622e-01 7.20292509e-01 -7.45696545e-01 7.23056555e-01 6.77095711e-01 -1.16059482e+00 -3.88981491e-01 -6.44183695e-01 -2.63706949e-02 1.23939790e-01 9.06678855e-01 -1.30971596e-01 1.02592051e+00 7.01359808e-01 1.08041465e+00 -3.86826009e-01 1.03857017e+00 5.60595989e-02 1.45851403e-01 -2.15806395e-01 4.92829919e-01 2.53494442e-01 -2.54003018e-01 6.22136712e-01 5.85506618e-01 4.02460068e-01 2.65016407e-01 4.21810836e-01 7.18968809e-01 -1.63310900e-01 4.80123684e-02 -9.00561869e-01 5.18484153e-02 3.25790107e-01 1.39655662e+00 -4.43069518e-01 -1.52727328e-02 -9.19300139e-01 8.11807036e-01 5.02258122e-01 4.50036377e-01 -6.64678514e-01 8.00829232e-02 7.34522283e-01 6.94741076e-03 3.12538445e-01 -1.16039701e-01 -1.56399548e-01 -1.77175570e+00 3.68213773e-01 -1.14738178e+00 4.01494503e-01 -5.90610445e-01 -1.65958321e+00 4.70820278e-01 -7.72931278e-02 -1.55203581e+00 1.55212387e-01 -3.73505503e-01 -4.51530755e-01 7.81266153e-01 -1.60160983e+00 -1.24514484e+00 -6.04894221e-01 4.23565894e-01 8.76052916e-01 -3.26674730e-01 5.55019081e-01 6.30062044e-01 -7.16371596e-01 4.15636212e-01 1.98895365e-01 -5.60305007e-02 7.96335340e-01 -9.83434141e-01 1.11365514e-02 8.72795582e-01 1.00585409e-01 4.16936100e-01 6.19826138e-01 -5.84093571e-01 -1.67464626e+00 -1.13688350e+00 3.99474800e-01 -3.16756636e-01 4.29955751e-01 -4.44527507e-01 -1.06677604e+00 4.05630022e-01 4.52617668e-02 3.55285794e-01 8.22598934e-01 2.00494438e-01 -4.39889818e-01 -3.43213081e-01 -8.69943738e-01 4.08411294e-01 1.05561125e+00 -3.20850313e-01 -5.24874032e-01 2.61531949e-01 5.18490434e-01 -3.71984482e-01 -6.84578836e-01 6.31545961e-01 4.38172072e-01 -1.09019494e+00 9.80942011e-01 -5.67259431e-01 6.48864150e-01 -2.22356662e-01 -5.75881124e-01 -1.56624389e+00 -1.91710487e-01 -6.34091347e-02 -1.81279719e-01 1.43060708e+00 -4.33166977e-03 -4.99663919e-01 5.83345354e-01 3.69413376e-01 -1.17580943e-01 -1.16194153e+00 -1.09682798e+00 -6.56696677e-01 -9.76439640e-02 -1.82554290e-01 6.80342138e-01 1.05226243e+00 -4.37874138e-01 4.37442482e-01 -9.15007651e-01 2.52315193e-01 7.22309887e-01 4.38586742e-01 9.50363696e-01 -1.28034222e+00 -3.14157575e-01 9.72108841e-02 -2.72753656e-01 -9.87917900e-01 -7.09530413e-02 -4.27301317e-01 -7.72558525e-02 -1.57314205e+00 4.85522777e-01 -3.83251220e-01 -3.16076338e-01 2.27190614e-01 -3.09640586e-01 -9.65337083e-02 3.56613606e-01 3.64656180e-01 -5.95059395e-01 1.00683057e+00 1.37071872e+00 -4.85332608e-02 7.76381418e-02 1.70823857e-02 -8.85596037e-01 8.07491899e-01 3.85522157e-01 -1.80754259e-01 -7.58931756e-01 -6.94283545e-01 1.99166745e-01 1.98381171e-01 1.99442729e-01 -1.08310962e+00 2.52876461e-01 -1.34221211e-01 4.06369627e-01 -9.43489432e-01 6.01332486e-01 -1.11203921e+00 -4.17697616e-03 3.54526155e-02 1.60764664e-01 9.09556523e-02 2.09410507e-02 1.10010982e+00 -5.16867936e-01 1.68879852e-01 6.42381549e-01 -4.25660729e-01 -8.77456546e-01 6.70578122e-01 1.97177112e-01 1.73744738e-01 1.00780988e+00 -1.14265166e-01 -3.28341335e-01 -5.01467466e-01 -6.12626791e-01 6.92791343e-01 4.58407044e-01 8.52564692e-01 6.80713534e-01 -1.42064714e+00 -6.48976147e-01 4.70375180e-01 4.77831721e-01 1.81830764e-01 9.85287249e-01 9.69935477e-01 7.36278966e-02 9.63493958e-02 -2.62118995e-01 -5.47940254e-01 -1.17226994e+00 8.24464500e-01 9.37292427e-02 -2.21123055e-01 -5.71498930e-01 7.82113612e-01 6.44378483e-01 -3.18955868e-01 2.86809355e-01 4.05216366e-02 -5.05457222e-01 4.98565972e-01 5.99895298e-01 2.95005620e-01 3.25110629e-02 -7.67012954e-01 -1.48813635e-01 4.35765594e-01 -3.10001135e-01 3.47590148e-01 1.59138799e+00 -4.72104341e-01 5.43647259e-02 6.44028187e-01 1.14336789e+00 -1.65074632e-01 -1.37994576e+00 -5.20079434e-01 -5.37977695e-01 -6.86262369e-01 4.99959774e-02 -4.84421462e-01 -1.37189102e+00 1.16120017e+00 6.23030365e-01 3.63262780e-02 1.12221050e+00 -3.23402673e-01 7.49850690e-01 1.80905432e-01 4.96549070e-01 -1.11701000e+00 1.06758021e-01 4.31490153e-01 9.26365435e-01 -1.70361209e+00 1.86309636e-01 -4.05875415e-01 -7.54916191e-01 7.47332335e-01 9.51351106e-01 9.48909894e-02 7.65339017e-01 -1.95949264e-02 3.98518331e-02 -2.68477768e-01 -7.36141086e-01 -6.66006431e-02 2.37012029e-01 4.14494991e-01 -3.79396416e-02 -9.07494351e-02 -1.06255531e-01 9.31041658e-01 2.57139921e-01 -5.63765205e-02 5.98060668e-01 9.71375763e-01 -1.78718418e-01 -8.40119064e-01 -2.53710151e-01 6.81628287e-01 -5.54639876e-01 7.53169879e-02 -1.00886762e-01 8.31636846e-01 2.83751577e-01 9.21570122e-01 -1.50291368e-01 -4.88585472e-01 5.04083753e-01 -1.89460844e-01 1.61935687e-02 -6.04170620e-01 -1.73278023e-02 2.14939803e-01 -1.78516164e-01 -6.45355821e-01 -3.97753716e-01 -6.39864922e-01 -5.74454784e-01 -1.23351596e-01 -4.60632414e-01 -7.41457120e-02 4.80833888e-01 1.02614415e+00 5.19436896e-01 5.88132620e-01 6.56014144e-01 -8.10862839e-01 -9.90157545e-01 -8.51933837e-01 -8.67903829e-01 6.02973640e-01 3.55135381e-01 -1.02680993e+00 -4.55027729e-01 -2.97070712e-01]
[8.488686561584473, 4.5418219566345215]
c8b40a8e-7817-46ba-92d7-dfb0a875ada2
schema-independent-relational-learning
1508.03846
null
http://arxiv.org/abs/1508.03846v2
http://arxiv.org/pdf/1508.03846v2.pdf
Schema Independent Relational Learning
Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions.
['Parisa Ataei', 'Alan Fern', 'Jose Picado', 'Arash Termehchy']
2015-08-16
null
null
null
null
['novel-concepts']
['reasoning']
[ 1.36296436e-01 1.00845210e-01 -7.40998983e-01 -8.31545711e-01 -5.93729019e-01 -7.58978784e-01 3.05662006e-01 7.07055330e-01 -2.46370584e-01 5.24330199e-01 -2.08255574e-01 -4.11343485e-01 -6.93166375e-01 -1.42433274e+00 -1.00051129e+00 -4.85704035e-01 -2.38351896e-01 1.09861934e+00 4.60098594e-01 -3.76336545e-01 -1.08222522e-01 7.09731340e-01 -1.97859371e+00 6.56400859e-01 5.36329985e-01 9.15464163e-01 -3.11070949e-01 4.34821188e-01 -4.64766115e-01 9.85869348e-01 -5.19530594e-01 -7.59555101e-01 5.35923421e-01 -2.58247018e-01 -9.86131847e-01 -1.10427432e-01 4.19865489e-01 2.40834773e-01 -4.52639878e-01 9.78886306e-01 1.15096346e-01 -3.77227589e-02 3.01336676e-01 -1.57946968e+00 -5.22729933e-01 1.10258353e+00 -2.29365170e-01 8.67325217e-02 3.93796474e-01 -4.57692474e-01 1.38448596e+00 -5.89028299e-01 7.88553774e-01 1.20958328e+00 4.28040564e-01 2.59248376e-01 -1.43934667e+00 -7.53189504e-01 9.82954726e-02 3.42083216e-01 -1.64560568e+00 -4.00291830e-01 4.95492339e-01 -2.71382213e-01 8.93503547e-01 7.04165101e-01 3.41369748e-01 3.51937294e-01 -8.99531171e-02 7.61684537e-01 9.06987250e-01 -5.04246891e-01 2.25832894e-01 7.63535380e-01 4.43979830e-01 5.44518352e-01 7.30059326e-01 2.25867122e-01 -5.76400697e-01 -2.82169700e-01 3.78850639e-01 7.04834610e-02 -4.29028366e-03 -1.17382729e+00 -7.35701919e-01 7.24573016e-01 4.45959419e-01 2.13633552e-01 8.83622169e-02 -2.17481092e-01 4.88498896e-01 9.73505020e-01 1.76075939e-02 4.55481797e-01 -8.48753154e-01 3.00047249e-01 -1.70705155e-01 2.51998961e-01 1.32288480e+00 1.59697950e+00 1.16101336e+00 -4.62486953e-01 3.05997133e-01 8.66554916e-01 6.14693873e-02 4.62548673e-01 2.41412550e-01 -5.83697796e-01 4.75445211e-01 1.01068461e+00 -3.66217315e-01 -7.53505230e-01 -2.43127316e-01 -1.39492437e-01 -6.64488554e-01 -3.09267920e-02 3.52508008e-01 2.51694411e-01 -3.68044436e-01 1.73893690e+00 4.74929810e-01 -4.15050954e-01 4.78004813e-01 3.90594810e-01 6.74550474e-01 3.45883429e-01 -3.66842262e-02 -6.17998302e-01 1.00946522e+00 -6.07608616e-01 -4.87913966e-01 8.86472538e-02 1.24890959e+00 -3.89088720e-01 1.11674285e+00 5.26425958e-01 -8.64498138e-01 -5.65119445e-01 -1.05801868e+00 4.88916747e-02 -6.38626218e-01 -3.89926463e-01 9.84153450e-01 1.04977322e+00 -5.55477619e-01 3.17363799e-01 -5.83085835e-01 -5.96987188e-01 2.64689386e-01 6.68015838e-01 -6.36426449e-01 -2.88487792e-01 -9.22005594e-01 7.46521115e-01 8.63308191e-01 -5.31687796e-01 -2.67653912e-01 -7.86017895e-01 -7.50690520e-01 -3.20283994e-02 1.02612197e+00 -5.71119010e-01 1.14429712e+00 -7.74047852e-01 -1.01444077e+00 1.01790273e+00 -1.30802274e-01 -4.87896472e-01 2.47735351e-01 -8.63004029e-02 -7.05902815e-01 -3.15381259e-01 -2.45106846e-01 -1.11838639e-01 1.54829726e-01 -1.33340096e+00 -1.07535052e+00 -5.45834064e-01 5.00664413e-01 7.73596540e-02 -2.93183714e-01 -2.38163933e-01 -4.96348113e-01 -1.57135040e-01 4.59438741e-01 -9.22368765e-01 -6.22820929e-02 1.82813667e-02 -3.44279975e-01 -4.09169734e-01 6.61935031e-01 4.41947848e-01 1.29277849e+00 -2.18399763e+00 -6.81309476e-02 5.83493292e-01 1.64580271e-01 -5.67543134e-02 1.36085451e-01 5.86361706e-01 -3.85608792e-01 2.24490657e-01 -1.10448338e-01 3.61372173e-01 -2.06994399e-01 7.39206970e-01 -4.28280920e-01 2.21834034e-01 -8.70137513e-02 6.51688099e-01 -7.25468338e-01 -6.18039668e-01 -4.57332619e-02 -2.60993540e-01 -6.49295390e-01 4.28614199e-01 -4.17898923e-01 -2.50845432e-01 -2.95830131e-01 5.64653873e-01 5.77623725e-01 -2.43182138e-01 7.90468991e-01 -4.36100841e-01 3.09485346e-01 3.92064631e-01 -1.61938393e+00 1.46470714e+00 -3.71431351e-01 1.68483362e-01 -4.62664098e-01 -1.22312832e+00 1.02659369e+00 2.81924337e-01 5.94601512e-01 -6.94839597e-01 -3.12882990e-01 2.46422842e-01 2.82692283e-01 -6.70309424e-01 2.82089353e-01 -3.49986613e-01 -6.16426282e-02 7.90529788e-01 -9.83465388e-02 -6.84934407e-02 4.07151788e-01 2.08848700e-01 1.04890227e+00 -2.63075650e-01 6.06518328e-01 -2.52823859e-01 6.30441427e-01 1.26459286e-01 6.07155263e-01 8.90934110e-01 4.15716141e-01 2.78740913e-01 7.02455401e-01 -6.55307412e-01 -8.70913327e-01 -1.20399427e+00 -4.07667726e-01 1.44688356e+00 2.66464591e-01 -7.78806031e-01 -9.89333466e-02 -8.60112548e-01 3.80666107e-01 6.85308337e-01 -4.98077661e-01 -3.79987657e-01 -5.77108383e-01 -5.60616076e-01 4.55981672e-01 6.09839320e-01 -6.35928512e-02 -7.73201764e-01 -2.80450284e-01 7.89784715e-02 3.54631960e-01 -1.00282419e+00 -3.62726534e-03 4.92410302e-01 -9.54962432e-01 -1.61680365e+00 6.06397331e-01 -5.64792156e-01 5.82781017e-01 4.01756048e-01 1.34391832e+00 2.65925944e-01 4.83944267e-02 4.96723324e-01 -2.57221371e-01 -5.99346161e-01 -7.45310366e-01 5.25614679e-01 1.51937962e-01 -1.49739549e-01 6.55420661e-01 -6.04231000e-01 2.17509910e-01 4.74730819e-01 -1.32559371e+00 -6.71694726e-02 6.94476008e-01 7.31790245e-01 8.79556477e-01 6.44379556e-01 4.75556493e-01 -1.91885698e+00 3.79275650e-01 -5.67134976e-01 -7.75906861e-01 9.96459484e-01 -1.23206389e+00 5.91091514e-01 3.51865053e-01 -3.90017837e-01 -8.90318692e-01 2.17058867e-01 2.19886363e-01 -1.92306101e-01 -1.53549641e-01 7.90180802e-01 -7.10331082e-01 2.15119451e-01 9.82451499e-01 6.72032386e-02 -4.80175503e-02 -3.50008339e-01 5.69192410e-01 5.34624100e-01 5.90319872e-01 -1.16991532e+00 1.01058722e+00 3.06197196e-01 1.69828594e-01 -6.04257226e-01 -1.01623893e+00 -4.33176816e-01 -8.87149930e-01 3.13468277e-01 1.16158888e-01 -6.70588434e-01 -8.59532475e-01 -8.96437615e-02 -7.22552180e-01 -1.48597654e-04 -5.91571152e-01 1.97901085e-01 -5.61845064e-01 -5.34452163e-02 -2.67792255e-01 -6.35818303e-01 2.53263675e-02 -1.01264894e+00 3.82686079e-01 -4.70063128e-02 -1.65670604e-01 -9.59634721e-01 9.75394696e-02 1.25596851e-01 2.44269008e-03 4.46024314e-02 1.55802441e+00 -1.42690587e+00 -8.77600074e-01 -2.70372599e-01 -1.16036311e-01 1.48381799e-01 4.45638001e-01 -8.26012716e-02 -7.86521792e-01 -3.84089857e-01 -7.15557113e-02 -4.59851742e-01 3.82094443e-01 -3.20414007e-01 1.07231760e+00 -4.95097637e-01 -5.14380753e-01 5.66453218e-01 1.71984172e+00 3.98090631e-01 4.78596449e-01 2.13467628e-01 6.17877483e-01 8.27435076e-01 7.46189296e-01 1.68071315e-01 3.40706348e-01 5.21037281e-01 1.31657660e-01 2.31146023e-01 3.16681057e-01 -3.19320351e-01 -1.72404766e-01 6.33292377e-01 1.93980485e-01 -1.47836301e-02 -1.09533310e+00 2.74693578e-01 -1.86179757e+00 -8.04398298e-01 -6.22671843e-02 2.55437183e+00 1.36352968e+00 4.78479922e-01 1.97058454e-01 3.95300627e-01 4.41016912e-01 -3.04050535e-01 -6.92567348e-01 -3.12674850e-01 -3.58593583e-01 4.89362895e-01 5.47088742e-01 2.84759015e-01 -8.53261769e-01 8.26876342e-01 6.25683212e+00 3.87869984e-01 -1.03523636e+00 -7.65491724e-02 2.06719205e-01 -7.58796260e-02 -5.17601371e-01 2.14972556e-01 -9.15040493e-01 -2.70936459e-01 1.04063427e+00 -8.12590122e-01 3.50862443e-01 1.15524697e+00 -7.53698111e-01 -4.84093139e-03 -2.06230903e+00 9.75446224e-01 -2.82578152e-02 -1.43505347e+00 2.64333516e-01 -1.36796571e-02 5.63869834e-01 -1.13978341e-01 -1.81523785e-01 4.74787682e-01 5.28192163e-01 -9.76775110e-01 4.76507097e-01 3.38147074e-01 7.97802567e-01 -1.02535784e+00 6.75340712e-01 3.42745334e-01 -1.19911277e+00 -1.99555367e-01 -3.71450424e-01 1.60973385e-01 -5.94929874e-01 3.45350891e-01 -7.84663498e-01 8.10890973e-01 8.10288191e-01 5.65712750e-01 -7.47605979e-01 6.86305344e-01 8.94893184e-02 2.16260433e-01 -4.39211875e-01 2.29058489e-01 -5.30328393e-01 -7.00781494e-02 5.94499521e-02 9.64178860e-01 -3.42553668e-02 3.37219775e-01 1.99307263e-01 6.36250019e-01 -3.06771010e-01 1.62482873e-01 -9.35185254e-01 4.66610529e-02 9.52387869e-01 8.51804078e-01 -4.20251429e-01 -4.22900498e-01 -7.40767002e-01 5.30776903e-02 4.38414395e-01 1.28651887e-01 -3.84909987e-01 -1.74981788e-01 7.98815191e-01 4.08988804e-01 1.80609092e-01 1.01637341e-01 -4.09992099e-01 -1.01232994e+00 2.38223374e-01 -1.22949219e+00 1.03930879e+00 -1.51330456e-01 -1.47349477e+00 5.06597996e-01 4.49527830e-01 -1.00710785e+00 -1.47564337e-01 -4.71330076e-01 1.25452086e-01 4.82526392e-01 -1.05956805e+00 -9.07190084e-01 -1.94767207e-01 7.47670233e-01 8.75410661e-02 -3.52800250e-01 9.53857064e-01 3.92595232e-01 -4.30491477e-01 9.19704676e-01 -9.05334875e-02 2.08664507e-01 9.23960567e-01 -1.30798900e+00 1.19392172e-01 4.27431703e-01 6.30993426e-01 9.39263761e-01 6.07958615e-01 -3.26562792e-01 -1.86910141e+00 -1.07881796e+00 8.44018281e-01 -6.74193799e-01 5.32992303e-01 -3.64930332e-01 -1.31368804e+00 1.21605039e+00 -3.29100102e-01 3.28348696e-01 1.03934634e+00 6.95561886e-01 -1.05142355e+00 -9.60843921e-01 -1.00421405e+00 3.85304034e-01 1.24011660e+00 -8.14558327e-01 -6.55027986e-01 3.43478233e-01 7.98838675e-01 -3.29389870e-01 -1.38181782e+00 7.42801070e-01 7.23057270e-01 -1.19777763e+00 9.17765081e-01 -1.16090512e+00 5.52742220e-02 -3.61651033e-01 -5.66596270e-01 -7.68648803e-01 -1.48278341e-01 -1.60448372e-01 -3.81772608e-01 1.20191824e+00 5.52484572e-01 -7.96366096e-01 9.67483222e-01 9.42035615e-01 3.80971432e-01 -8.17684174e-01 -6.25736475e-01 -1.06225967e+00 9.65522528e-02 -6.22788072e-01 1.10660028e+00 1.15970159e+00 -4.65850607e-02 5.67598999e-01 1.39917552e-01 3.72982204e-01 3.71412873e-01 5.56820333e-01 1.26081336e+00 -1.52794850e+00 -4.00026441e-01 -3.52718979e-01 -5.43383896e-01 -8.50667596e-01 -1.00097694e-02 -1.07675040e+00 -3.81221950e-01 -1.03094375e+00 2.28426024e-01 -1.26100016e+00 -4.93815273e-01 5.15069544e-01 3.06313206e-02 -5.10857642e-01 -4.20171842e-02 4.17374521e-01 -5.06721497e-01 6.78327829e-02 6.26056492e-01 -2.73416311e-01 -3.23046625e-01 3.68355215e-01 -8.16909730e-01 2.69412100e-01 5.55005968e-01 -8.69417429e-01 -1.04816794e+00 -2.03517467e-01 7.92532086e-01 1.30959392e-01 -2.45758310e-01 -9.75856006e-01 5.67429304e-01 -5.60183823e-01 -1.48450404e-01 -5.55750251e-01 -1.32962570e-01 -1.19544756e+00 5.98768950e-01 4.53426749e-01 -7.75217533e-01 1.63624540e-01 -1.54796569e-02 5.55807829e-01 -2.32359827e-01 -9.81075093e-02 7.78562665e-01 -1.34722963e-02 -4.55648124e-01 4.19379830e-01 2.16802120e-01 3.19118649e-01 1.03741968e+00 -2.46803649e-02 -3.19179386e-01 -9.41060781e-02 -4.60047454e-01 -9.53330006e-03 5.10993600e-01 5.89187682e-01 3.80490512e-01 -1.25905931e+00 -5.47976017e-01 4.20175791e-01 8.03868055e-01 4.57544506e-01 -4.18713808e-01 4.74768043e-01 -3.28242213e-01 4.62354422e-01 4.34436947e-02 -7.06483662e-01 -1.35958529e+00 1.16124213e+00 2.52621323e-01 -1.79389164e-01 -3.11196685e-01 5.64739943e-01 1.72136575e-01 -8.04777265e-01 5.21937907e-01 -3.51035267e-01 1.22497402e-01 -1.85018331e-02 2.91338801e-01 3.22743990e-02 4.02747184e-01 -1.66832253e-01 -2.15522751e-01 1.32625744e-01 -3.86207908e-01 2.99842298e-01 1.23923874e+00 8.69937912e-02 -4.69070941e-01 9.39443946e-01 1.08019841e+00 -6.95265262e-05 -4.05367017e-01 -1.12879741e+00 7.78188407e-01 -4.99220669e-01 -6.63796663e-01 -5.72551072e-01 -1.18448758e+00 4.04216379e-01 4.64772284e-01 4.84354109e-01 1.18854344e+00 3.84255052e-01 3.19240034e-01 1.20874488e+00 7.44036078e-01 -8.84716332e-01 -1.86462969e-01 2.54770130e-01 6.14446640e-01 -1.23057580e+00 4.18188453e-01 -7.78071344e-01 -2.73286194e-01 1.13965082e+00 8.32786262e-01 2.31562406e-01 9.94378626e-01 6.46775246e-01 1.65240079e-01 -2.37733632e-01 -1.32859802e+00 -6.97784722e-02 1.84307680e-01 6.14000261e-01 4.82152522e-01 1.41595438e-01 -1.53486177e-01 6.11407101e-01 -4.97042418e-01 -2.21348956e-01 2.02344969e-01 1.25049603e+00 -1.93520844e-01 -1.69969285e+00 -2.01109834e-02 5.99538624e-01 -4.82569374e-02 1.50559276e-01 -3.50805283e-01 1.14028490e+00 2.69847065e-01 6.84894204e-01 7.72412196e-02 -5.02735317e-01 7.28704572e-01 1.92059845e-01 5.81591904e-01 -9.32102501e-01 -3.88443649e-01 -5.19286990e-01 2.56482422e-01 -3.27859342e-01 -4.25362766e-01 -6.71065092e-01 -1.37239361e+00 -4.07469690e-01 -4.54476714e-01 3.26827049e-01 3.72534305e-01 9.57227349e-01 2.12853879e-01 1.23419791e-01 6.96718454e-01 5.33673346e-01 -6.80607378e-01 -5.30485451e-01 -6.80262327e-01 6.98001981e-01 -5.84852463e-03 -5.01031578e-01 1.62652172e-02 1.58439070e-01]
[9.267040252685547, 7.688653469085693]
517f0635-aa52-44bd-b481-2fdc24b221c4
a-deep-moving-camera-background-model
2209.07923
null
https://arxiv.org/abs/2209.07923v1
https://arxiv.org/pdf/2209.07923v1.pdf
A Deep Moving-camera Background Model
In video analysis, background models have many applications such as background/foreground separation, change detection, anomaly detection, tracking, and more. However, while learning such a model in a video captured by a static camera is a fairly-solved task, in the case of a Moving-camera Background Model (MCBM), the success has been far more modest due to algorithmic and scalability challenges that arise due to the camera motion. Thus, existing MCBMs are limited in their scope and their supported camera-motion types. These hurdles also impeded the employment, in this unsupervised task, of end-to-end solutions based on deep learning (DL). Moreover, existing MCBMs usually model the background either on the domain of a typically-large panoramic image or in an online fashion. Unfortunately, the former creates several problems, including poor scalability, while the latter prevents the recognition and leveraging of cases where the camera revisits previously-seen parts of the scene. This paper proposes a new method, called DeepMCBM, that eliminates all the aforementioned issues and achieves state-of-the-art results. Concretely, first we identify the difficulties associated with joint alignment of video frames in general and in a DL setting in particular. Next, we propose a new strategy for joint alignment that lets us use a spatial transformer net with neither a regularization nor any form of specialized (and non-differentiable) initialization. Coupled with an autoencoder conditioned on unwarped robust central moments (obtained from the joint alignment), this yields an end-to-end regularization-free MCBM that supports a broad range of camera motions and scales gracefully. We demonstrate DeepMCBM's utility on a variety of videos, including ones beyond the scope of other methods. Our code is available at https://github.com/BGU-CS-VIL/DeepMCBM .
['Oren Freifeld', 'Ron Shapira Weber', 'Guy Erez']
2022-09-16
null
null
null
null
['video-background-subtraction']
['computer-vision']
[ 1.09563850e-01 -5.15044868e-01 -1.93452947e-02 -2.01351568e-02 -6.02046609e-01 -5.17193377e-01 6.59445286e-01 -3.43043625e-01 -3.72556388e-01 5.48298538e-01 -1.36607990e-01 -2.86137342e-01 1.30439429e-02 -4.14073080e-01 -7.80215681e-01 -9.39020216e-01 1.17069818e-01 1.53687507e-01 5.74406207e-01 -7.13787600e-02 -5.10800146e-02 6.08923793e-01 -1.48035169e+00 -2.94908155e-02 4.65284139e-01 9.05169308e-01 4.05406058e-01 8.46619129e-01 -1.05184652e-01 8.86803687e-01 -3.83738518e-01 -5.94940126e-01 4.89339352e-01 -4.09862548e-01 -5.75656712e-01 5.25801420e-01 7.81525433e-01 -4.64974701e-01 -5.74869633e-01 1.07789969e+00 2.90760547e-01 2.61687428e-01 3.02730292e-01 -1.28183234e+00 -5.07392138e-02 -5.32544926e-02 -6.62752926e-01 4.61810946e-01 2.11077124e-01 7.08816499e-02 6.73746228e-01 -8.16284418e-01 6.65523231e-01 1.02659285e+00 7.58165717e-01 5.43618441e-01 -1.20636666e+00 -3.32403272e-01 3.35754544e-01 1.88868970e-01 -1.07992005e+00 -5.57108998e-01 8.91517401e-01 -6.33491993e-01 5.54508626e-01 3.28144759e-01 5.91725767e-01 1.21596336e+00 -1.03156613e-02 9.27931428e-01 8.36130202e-01 -4.01898026e-01 1.09622546e-01 -1.62267268e-01 -7.76068568e-02 5.60574889e-01 1.27010733e-01 -1.42326906e-01 -2.56770253e-01 -4.12505046e-02 9.59219217e-01 2.29155377e-01 -5.15910506e-01 -7.38243163e-01 -1.17754316e+00 6.15845561e-01 -2.94678379e-02 4.07752603e-01 -2.85023063e-01 1.23890884e-01 3.44493628e-01 2.14915410e-01 5.09105027e-01 7.07727100e-04 -4.51335549e-01 -2.55830258e-01 -1.33429658e+00 2.46250942e-01 8.67768407e-01 9.24555361e-01 7.38205731e-01 1.36230826e-01 2.25378484e-01 6.40496612e-01 4.43337560e-02 3.80988419e-01 4.16465610e-01 -9.69288468e-01 4.18380201e-01 2.16043025e-01 1.47841781e-01 -1.18496239e+00 -2.88539350e-01 -3.43487263e-01 -9.11912560e-01 2.58190632e-01 6.79616690e-01 -1.07059762e-01 -7.25898325e-01 1.82505655e+00 5.90202272e-01 4.90888387e-01 -2.51121502e-02 9.03057516e-01 3.66026521e-01 6.42140746e-01 -3.29423457e-01 -3.43110025e-01 1.14554310e+00 -1.16738367e+00 -7.01828957e-01 -4.61611629e-01 3.51081610e-01 -8.59173000e-01 7.41178513e-01 4.87320811e-01 -1.05042136e+00 -4.98890430e-01 -8.37462842e-01 -8.03307537e-03 -1.79957628e-01 8.42875093e-02 4.62198228e-01 3.94727290e-01 -1.15395713e+00 5.43397546e-01 -1.07910264e+00 -6.09901190e-01 1.87860906e-01 2.29974195e-01 -4.66885924e-01 -7.13170618e-02 -7.21677005e-01 8.60144854e-01 2.05431044e-01 2.71562964e-01 -7.83703148e-01 -2.78510332e-01 -7.98852205e-01 -7.63327777e-02 7.77873099e-01 -7.37108111e-01 1.19331503e+00 -1.52073681e+00 -1.64838529e+00 7.86331952e-01 -1.83109105e-01 -4.31061238e-01 1.00632644e+00 -4.48165745e-01 -3.81609380e-01 1.57328576e-01 6.61427006e-02 2.89051056e-01 1.18619573e+00 -1.07895279e+00 -7.29579628e-01 -1.37150541e-01 1.59474298e-01 1.83575109e-01 -2.55568862e-01 2.56046176e-01 -1.08440173e+00 -8.15813899e-01 -2.65620463e-02 -1.01134479e+00 -3.11398804e-01 5.60613908e-02 -1.02389760e-01 3.09567630e-01 9.72987831e-01 -9.00072098e-01 1.20173311e+00 -2.33335853e+00 4.19589996e-01 -1.07309438e-01 -3.18530900e-03 4.90446508e-01 -1.01429299e-01 2.57476211e-01 -1.27888992e-01 -3.50338876e-01 -3.08409572e-01 -5.07109523e-01 -1.45288944e-01 2.36109391e-01 -2.61773288e-01 7.04134703e-01 1.35236695e-01 5.50978541e-01 -8.21463287e-01 -2.96851188e-01 4.25185561e-01 4.75048184e-01 -5.55178165e-01 2.66144753e-01 -9.50228423e-02 5.87761879e-01 -8.10306221e-02 6.06124103e-01 7.81748176e-01 -2.49702618e-01 1.67078465e-01 -1.78079784e-01 -2.09909573e-01 -1.34396836e-01 -1.50066543e+00 1.68132031e+00 -1.89453438e-01 8.19672644e-01 4.20914322e-01 -1.15801966e+00 4.80744183e-01 2.14263931e-01 6.74679339e-01 -2.64671087e-01 -5.52477725e-02 2.76178151e-01 -1.14172742e-01 -5.30692041e-01 4.64186132e-01 1.94903370e-02 3.54170680e-01 1.37168765e-01 9.17085484e-02 2.33568951e-01 4.30037111e-01 -1.09649077e-03 1.14413071e+00 4.56524879e-01 3.51660907e-01 -3.61185633e-02 6.34562552e-01 -1.15054965e-01 7.48041749e-01 6.70336306e-01 -2.55052418e-01 9.06608164e-01 2.90443063e-01 -4.57270443e-01 -9.53838468e-01 -8.18755686e-01 -3.65476008e-03 9.43448544e-01 1.87748224e-01 -3.65859449e-01 -7.61336744e-01 -6.18960679e-01 -2.04018727e-01 3.02481294e-01 -2.65647888e-01 1.33058399e-01 -8.69037688e-01 -8.79399896e-01 3.14680427e-01 4.59313571e-01 5.01571655e-01 -7.33577907e-01 -8.64356577e-01 3.91631871e-01 -2.26626858e-01 -1.58545971e+00 -5.27255177e-01 1.06550686e-01 -9.60437179e-01 -1.11209118e+00 -9.06898081e-01 -6.28224671e-01 4.74723190e-01 5.13927817e-01 9.87172544e-01 -3.53659242e-02 -1.64638504e-01 6.92320466e-01 -1.38751656e-01 -3.53494920e-02 -2.58072525e-01 -2.01697394e-01 1.37001827e-01 3.75568658e-01 2.06718683e-01 -5.99486411e-01 -5.85534751e-01 3.28039825e-01 -1.10505021e+00 1.54026210e-01 5.81737220e-01 8.34415317e-01 3.84446144e-01 9.61198509e-02 4.74050641e-02 -5.58918953e-01 -1.05414866e-03 -3.17079991e-01 -9.60703254e-01 1.15741663e-01 -1.21629357e-01 -3.58210921e-01 4.94642049e-01 -7.18510568e-01 -9.03364301e-01 1.96285978e-01 -1.20378546e-01 -7.41085112e-01 -2.89143503e-01 2.76439130e-01 -3.47083688e-01 -6.61343783e-02 2.71070272e-01 3.25212389e-01 1.48775607e-01 -5.44874668e-01 1.81059450e-01 3.16649944e-01 7.92274714e-01 -3.75201643e-01 9.22772646e-01 6.81077302e-01 -3.44575942e-02 -1.11161518e+00 -6.96726441e-01 -7.09747136e-01 -7.62499928e-01 -2.42967159e-01 9.02865708e-01 -9.94860172e-01 -2.62587845e-01 7.32663035e-01 -1.13953078e+00 -5.08638859e-01 -9.53378975e-02 4.84118670e-01 -6.17096484e-01 8.78875077e-01 -6.36009037e-01 -7.14968741e-01 -5.27678430e-02 -1.21986914e+00 9.20218110e-01 1.00580841e-01 3.70540321e-02 -1.10491049e+00 7.43485056e-03 2.81927526e-01 3.33111078e-01 3.35708529e-01 4.26042944e-01 -3.95745337e-01 -8.24929595e-01 -2.69544035e-01 -5.25829569e-02 5.93606889e-01 1.72976404e-01 2.14344889e-01 -9.26520109e-01 -4.49865133e-01 2.67652601e-01 2.09168270e-01 7.29703605e-01 5.14409661e-01 9.31441605e-01 -3.67245227e-01 -2.26860672e-01 9.27616894e-01 1.47281265e+00 1.21004969e-01 5.57548106e-01 7.92005002e-01 8.53603661e-01 3.87732714e-01 4.67202753e-01 3.54874730e-01 2.76108176e-01 1.00329244e+00 5.55689692e-01 -2.53790289e-01 -5.00795506e-02 2.24483594e-01 7.26974666e-01 7.08493114e-01 -3.44310313e-01 -1.20603777e-01 -8.29214096e-01 5.15099347e-01 -2.11380005e+00 -1.13559961e+00 -1.08052462e-01 2.22848392e+00 5.60621262e-01 1.14020025e-02 2.84848243e-01 -3.64639312e-02 8.42554808e-01 2.79600382e-01 -3.96947771e-01 6.89664558e-02 -2.91244984e-01 -1.63124964e-01 4.60746258e-01 4.07608509e-01 -1.48504794e+00 8.14212143e-01 5.47876358e+00 6.72253609e-01 -1.22776282e+00 2.00523883e-01 4.07046080e-01 -1.61979392e-01 3.45328182e-01 8.21102858e-02 -8.35404098e-01 6.34181440e-01 6.80865288e-01 2.38948464e-01 5.13017833e-01 9.77528811e-01 7.32333437e-02 -1.41522720e-01 -1.10395825e+00 1.24529898e+00 1.62244573e-01 -1.21381736e+00 -1.90156326e-01 1.51718155e-01 6.09234035e-01 1.38751477e-01 -1.38949469e-01 1.66166052e-01 -1.65845692e-01 -5.09159207e-01 9.06560779e-01 4.32204813e-01 4.17449921e-01 -4.48379368e-01 6.85689688e-01 4.76199597e-01 -9.91877079e-01 -1.31284371e-01 -4.04893398e-01 -8.53749886e-02 2.72473305e-01 5.97017884e-01 -3.92073721e-01 6.80968463e-01 8.09344888e-01 7.31468916e-01 -5.24810553e-01 1.08829844e+00 8.77851695e-02 4.13037986e-01 -3.71469676e-01 4.69555885e-01 3.00838500e-01 -5.45803547e-01 7.72143483e-01 1.51730657e+00 5.06078482e-01 -3.95347774e-02 3.13874662e-01 4.48685586e-01 2.10227177e-01 -6.21654764e-02 -5.65422535e-01 1.30689055e-01 -5.06587289e-02 1.35292935e+00 -8.24306548e-01 -3.02342057e-01 -8.54472458e-01 1.13642526e+00 1.79294080e-01 6.03164494e-01 -1.01548886e+00 7.92374760e-02 7.17640340e-01 2.13443145e-01 6.31474316e-01 -3.79354894e-01 2.13315204e-01 -1.68169534e+00 2.81651914e-01 -1.19783056e+00 3.42061788e-01 -5.52028954e-01 -1.18034351e+00 5.22765696e-01 6.66344836e-02 -1.31993997e+00 -3.34588110e-01 -7.89927483e-01 -6.36271894e-01 5.19225776e-01 -1.51318657e+00 -1.12013507e+00 -4.23707247e-01 7.55665720e-01 6.66899562e-01 -9.74010900e-02 4.28896010e-01 6.36993408e-01 -8.40978324e-01 2.35841483e-01 3.07103813e-01 3.18143666e-01 8.30559552e-01 -1.21531045e+00 2.59657234e-01 1.46048892e+00 1.90763533e-01 4.15883869e-01 8.00456405e-01 -3.60484064e-01 -1.42436862e+00 -1.03984916e+00 6.12140119e-01 -4.89835680e-01 8.53180110e-01 -3.71666819e-01 -9.16237593e-01 8.82585287e-01 9.75833100e-04 2.34820023e-01 3.86087090e-01 -1.70232028e-01 -4.50400636e-02 -2.16517687e-01 -6.47984982e-01 7.87714541e-01 9.33406055e-01 -3.72063935e-01 -3.82141382e-01 2.19858468e-01 3.01150739e-01 -6.07526958e-01 -5.37362337e-01 3.73136073e-01 4.71440256e-01 -1.22915649e+00 1.10141516e+00 -4.96500820e-01 2.49573678e-01 -5.81298530e-01 -3.93835157e-01 -8.99331152e-01 -2.18763962e-01 -7.08235979e-01 -5.05458474e-01 1.24602938e+00 -1.55833155e-01 -6.05395377e-01 6.22671127e-01 6.24026060e-01 -6.63772821e-02 -5.91852725e-01 -1.01541829e+00 -8.47776055e-01 -1.87368289e-01 -4.96325344e-01 2.34574512e-01 1.00123179e+00 -5.50753176e-01 1.04904041e-01 -6.42997980e-01 2.76924372e-01 6.01053238e-01 1.84462011e-01 1.19044805e+00 -1.01900375e+00 -5.75175881e-01 -4.80216593e-01 -6.38473332e-01 -1.27476001e+00 1.33340687e-01 -4.02356148e-01 2.64549106e-02 -1.10155940e+00 1.59336686e-01 -9.16860998e-02 -1.21495344e-01 2.09939942e-01 -1.43003702e-01 8.21994022e-02 4.61060673e-01 3.74242365e-01 -6.25450611e-01 2.75535285e-01 8.73991370e-01 -5.85616902e-02 -8.71927142e-02 1.81835979e-01 -1.95908159e-01 1.17521131e+00 6.12689614e-01 -3.16445410e-01 -1.51357666e-01 -4.81883734e-01 2.19948702e-02 1.74403086e-01 7.07252920e-01 -1.16558945e+00 2.82746792e-01 -1.51791915e-01 4.49780464e-01 -4.97115612e-01 3.64189804e-01 -9.53977585e-01 3.98097485e-01 2.31482118e-01 2.56951451e-01 2.47233525e-01 2.00355902e-01 6.52580976e-01 -3.68392169e-01 -2.19304919e-01 7.91616797e-01 -8.56153965e-02 -9.05721188e-01 3.52088213e-01 -4.46388632e-01 -5.41331805e-02 9.29446220e-01 -4.09364372e-01 -1.08595796e-01 -4.97062355e-01 -7.41347015e-01 -1.24668203e-01 8.44131172e-01 2.95673251e-01 2.41807804e-01 -1.16600871e+00 -4.61402774e-01 1.34881616e-01 -2.28137374e-01 1.68051213e-01 2.65849680e-01 1.30253506e+00 -6.51727259e-01 7.08003342e-02 -1.40798092e-01 -8.01505148e-01 -1.30046320e+00 7.45894909e-01 4.20639426e-01 -3.51125419e-01 -9.08499956e-01 5.14712393e-01 4.84658241e-01 -5.37191480e-02 3.50359052e-01 -2.31640726e-01 4.33203913e-02 5.62331788e-02 5.13051450e-01 3.62985402e-01 6.65807351e-02 -8.19405615e-01 -3.21375638e-01 6.87445402e-01 6.62929714e-02 -3.55679989e-02 1.32829547e+00 -2.84329653e-01 -1.27022848e-01 4.15419906e-01 1.04124808e+00 1.13108352e-01 -1.80740666e+00 -2.66983509e-01 1.65441245e-01 -5.66179931e-01 -9.63293239e-02 -2.61145949e-01 -1.20476699e+00 7.85777748e-01 5.60975015e-01 1.39448091e-01 1.39528000e+00 -3.01699579e-01 6.59448862e-01 3.74233335e-01 1.95530936e-01 -9.81048763e-01 1.09709918e-01 5.95702469e-01 6.03046119e-01 -1.30990791e+00 5.57915196e-02 -1.50252327e-01 -5.76560736e-01 1.21197999e+00 4.46682960e-01 -2.05671005e-02 5.51237047e-01 3.56300116e-01 2.41110891e-01 1.36289671e-01 -4.74401176e-01 -3.12373370e-01 2.30320573e-01 4.04196352e-01 2.42544591e-01 -3.00891101e-01 1.49487644e-01 2.56442249e-01 2.03565761e-01 -9.67076123e-02 5.18788934e-01 1.05188024e+00 -1.33998483e-01 -1.01987016e+00 -6.07110143e-01 4.24765758e-02 -6.94603384e-01 -1.00948196e-02 -9.18773934e-02 9.94562209e-01 1.20534524e-01 7.65163958e-01 5.80878668e-02 -2.24458799e-03 1.10749729e-01 7.90685341e-02 4.51364964e-01 -3.19219857e-01 -2.13137761e-01 5.85209489e-01 -1.19200341e-01 -6.86626256e-01 -8.85923564e-01 -8.92233312e-01 -7.36796200e-01 -2.54418910e-01 -3.93898010e-01 -1.80211633e-01 5.26394784e-01 9.44410503e-01 1.92617536e-01 3.90336335e-01 3.43586415e-01 -1.29305959e+00 -4.68967080e-01 -7.79146016e-01 -5.02858520e-01 5.51215410e-01 6.97375357e-01 -6.35226846e-01 -3.83360356e-01 3.55662853e-01]
[8.935518264770508, -0.6837957501411438]
2e5be8ee-d10b-4305-a498-5f6b06e6ad63
mdi-a-flexible-random-forest-based-feature
2307.01932
null
https://arxiv.org/abs/2307.01932v1
https://arxiv.org/pdf/2307.01932v1.pdf
MDI+: A Flexible Random Forest-Based Feature Importance Framework
Mean decrease in impurity (MDI) is a popular feature importance measure for random forests (RFs). We show that the MDI for a feature $X_k$ in each tree in an RF is equivalent to the unnormalized $R^2$ value in a linear regression of the response on the collection of decision stumps that split on $X_k$. We use this interpretation to propose a flexible feature importance framework called MDI+. Specifically, MDI+ generalizes MDI by allowing the analyst to replace the linear regression model and $R^2$ metric with regularized generalized linear models (GLMs) and metrics better suited for the given data structure. Moreover, MDI+ incorporates additional features to mitigate known biases of decision trees against additive or smooth models. We further provide guidance on how practitioners can choose an appropriate GLM and metric based upon the Predictability, Computability, Stability framework for veridical data science. Extensive data-inspired simulations show that MDI+ significantly outperforms popular feature importance measures in identifying signal features. We also apply MDI+ to two real-world case studies on drug response prediction and breast cancer subtype classification. We show that MDI+ extracts well-established predictive genes with significantly greater stability compared to existing feature importance measures. All code and models are released in a full-fledged python package on Github.
['Bin Yu', 'Tiffany M. Tang', 'Yan Shuo Tan', 'Ana M. Kenney', 'Abhineet Agarwal']
2023-07-04
null
null
null
null
['drug-response-prediction', 'feature-importance']
['medical', 'methodology']
[ 6.79458082e-01 -6.19826093e-02 -5.97149014e-01 -6.98367298e-01 -8.96907270e-01 -2.60658622e-01 4.51707691e-01 1.74752533e-01 -2.88738385e-02 1.10612869e+00 1.46263823e-01 -4.72370774e-01 -7.33103812e-01 -7.97829628e-01 -5.64734221e-01 -9.86119509e-01 -3.41745675e-01 2.05493525e-01 -1.78003341e-01 1.17935807e-01 3.85856628e-01 7.29341030e-01 -1.44613242e+00 1.09036781e-01 7.66222715e-01 1.07084644e+00 -2.09922209e-01 4.45330709e-01 2.07656473e-01 3.60653818e-01 -1.79193616e-01 -1.91908419e-01 1.55671090e-01 -3.16119432e-01 -8.70222688e-01 -3.30230772e-01 2.35847205e-01 4.20028955e-01 1.42478213e-01 7.45995343e-01 4.25403535e-01 -1.61258280e-01 1.13307142e+00 -1.41263425e+00 -3.86382937e-01 6.17286205e-01 -5.93569577e-01 1.96279675e-01 1.10520005e-01 1.20563045e-01 1.39184928e+00 -1.01389372e+00 6.47528470e-01 1.05197132e+00 8.88236761e-01 3.12481821e-01 -1.77378666e+00 -7.15136647e-01 2.91879326e-02 1.10933051e-01 -1.53876340e+00 -3.60366791e-01 3.33156437e-01 -6.49815559e-01 7.37654030e-01 7.59870112e-01 2.72902995e-01 7.43733943e-01 5.88549197e-01 6.25769079e-01 1.35262179e+00 -3.57034862e-01 3.07717115e-01 4.98718768e-02 7.14509726e-01 7.11245894e-01 3.34557027e-01 3.20094645e-01 -5.78710258e-01 -6.97065651e-01 4.66758460e-01 7.33101368e-02 -2.51159132e-01 -3.70106578e-01 -1.00993812e+00 1.04764092e+00 4.26913381e-01 2.10551411e-01 -2.99254060e-01 1.45034790e-02 1.98837787e-01 4.54334885e-01 5.05781531e-01 5.39438486e-01 -6.54978514e-01 2.85565376e-01 -7.91598260e-01 2.40712300e-01 5.53653717e-01 7.19981611e-01 7.93383777e-01 -2.32785225e-01 -4.73938972e-01 7.74921477e-01 2.31544793e-01 3.98113400e-01 1.74749359e-01 -8.95173192e-01 -1.65902346e-01 8.41347456e-01 -1.79925740e-01 -7.96796441e-01 -7.59074569e-01 -8.93113971e-01 -1.07809007e+00 8.82318988e-02 3.68312299e-01 3.33796829e-01 -8.09929788e-01 1.75119865e+00 2.54323810e-01 -2.07453847e-01 -2.75650948e-01 5.74653327e-01 6.27899051e-01 1.76793411e-01 1.50674209e-01 -5.78401506e-01 1.26226544e+00 -3.50464731e-01 -2.05321833e-01 3.14254947e-02 6.78351760e-01 -4.03459817e-01 1.06595027e+00 4.87079471e-01 -6.81195080e-01 -1.32645458e-01 -8.25390160e-01 2.63194084e-01 -3.07553619e-01 -8.87050256e-02 9.74363208e-01 5.43354154e-01 -8.16342711e-01 9.83083963e-01 -5.18895447e-01 -2.23134771e-01 5.59922457e-01 5.88676393e-01 -5.45330107e-01 -2.59594545e-02 -1.19221807e+00 7.97198117e-01 -2.73149788e-01 -5.71623743e-02 -5.96582532e-01 -1.03568935e+00 -5.75108767e-01 -2.74821490e-01 4.04996611e-02 -8.51379275e-01 8.39159548e-01 -6.12393856e-01 -1.00599122e+00 8.63786995e-01 -3.84477615e-01 -4.57588196e-01 2.86825418e-01 3.02513868e-01 -2.73231834e-01 -3.66835147e-01 2.86075234e-01 2.21744910e-01 7.01817632e-01 -8.78625929e-01 -5.45215368e-01 -6.80076003e-01 -4.12991017e-01 -1.61377221e-01 1.11272097e-01 -1.66031942e-01 6.90891296e-02 -6.13836646e-01 4.10559416e-01 -8.61755610e-01 -6.88691795e-01 -1.44957393e-01 -6.10944390e-01 -1.41263008e-02 3.04505706e-01 -3.45413744e-01 1.43104005e+00 -1.76353276e+00 4.32800949e-02 7.72724986e-01 4.29549158e-01 -3.09063196e-01 -1.63694039e-01 9.59873796e-02 -3.93939674e-01 4.36574697e-01 -6.18157268e-01 5.31284332e-01 -2.02307075e-01 -1.19138971e-01 -5.31908423e-02 6.39163971e-01 2.33157977e-01 8.39511514e-01 -6.64355755e-01 -1.96801826e-01 -1.98405340e-01 4.47001487e-01 -4.64282751e-01 -3.81740421e-01 1.61488578e-01 3.70201260e-01 -4.57883209e-01 9.94720757e-01 7.60757267e-01 -4.44224447e-01 2.23383576e-01 -6.22507259e-02 -1.43331766e-01 2.79029131e-01 -9.91212010e-01 9.17016864e-01 -2.18120709e-01 2.62208700e-01 -1.03819501e-02 -9.45702970e-01 1.01226318e+00 -2.69888520e-01 6.92869365e-01 -4.31239158e-01 -1.22851379e-01 1.97984517e-01 1.52810112e-01 1.30082443e-01 -2.60142609e-02 -3.35700452e-01 -1.70637161e-01 4.22485799e-01 -9.59026515e-02 -5.46284504e-02 -3.14307697e-02 -5.27937375e-02 1.52946484e+00 -3.06779563e-01 9.74775195e-01 -8.99179518e-01 4.49969083e-01 -4.17462289e-02 6.77675724e-01 8.03097129e-01 -1.99188426e-01 3.48081797e-01 6.90367997e-01 -2.95976043e-01 -6.56889379e-01 -9.53842044e-01 -1.03141701e+00 1.13168156e+00 -2.77038038e-01 -2.44734466e-01 -3.51907670e-01 -7.49370456e-01 5.68275630e-01 7.25383222e-01 -9.92425919e-01 -4.79152910e-02 6.81844354e-02 -1.46657991e+00 2.69021481e-01 3.62367034e-01 1.06384665e-01 -6.42481387e-01 2.68141199e-02 2.59127349e-01 6.51746616e-02 -1.67341724e-01 -3.88489991e-01 9.85128820e-01 -9.05065417e-01 -1.03151798e+00 -3.11427891e-01 -3.75049621e-01 6.90702915e-01 2.29265735e-01 1.14554012e+00 -1.94835737e-02 -6.31191194e-01 -7.98302367e-02 -3.30652505e-01 -3.19732934e-01 -2.13200420e-01 1.81614876e-01 1.24530464e-01 -2.21383899e-01 6.04151964e-01 -7.66932189e-01 -6.56466246e-01 7.06202269e-01 -6.22868180e-01 -1.47560909e-01 6.71275139e-01 1.27827454e+00 1.02663314e+00 4.38382030e-02 7.72475123e-01 -1.18116546e+00 3.85340869e-01 -7.31611192e-01 -4.44308817e-01 1.20754011e-01 -1.25990164e+00 4.86131370e-01 2.58777797e-01 2.12192666e-02 -3.20045739e-01 2.44904459e-01 -1.73005849e-01 1.60659224e-01 1.95175096e-01 6.79524660e-01 -3.15109789e-01 -2.07340136e-01 9.43376660e-01 3.74168716e-02 3.37505974e-02 -3.50903481e-01 1.02868073e-01 5.85932851e-01 8.40356946e-02 -4.81728584e-01 6.22426152e-01 2.12053984e-01 5.18204689e-01 -6.52579963e-01 -6.40744030e-01 -3.83702338e-01 -6.81468248e-01 9.49118361e-02 2.52433926e-01 -5.14309943e-01 -8.82152259e-01 2.37905055e-01 -3.70783180e-01 -1.73562512e-01 -3.15338254e-01 3.88624519e-01 -5.04220724e-01 4.97418717e-02 -2.31220901e-01 -7.62551188e-01 -4.79370117e-01 -1.03085983e+00 9.52238679e-01 -7.73815066e-02 -4.97285783e-01 -8.67911994e-01 5.42072989e-02 1.49150535e-01 3.49190474e-01 4.54832852e-01 1.32053721e+00 -6.11225843e-01 -2.69559264e-01 -3.76565903e-01 -2.65383154e-01 1.38487503e-01 2.48419493e-01 2.99999386e-01 -1.07914007e+00 -1.40182495e-01 -1.02401398e-01 3.84444632e-02 1.33678913e+00 9.68069494e-01 1.18510985e+00 -3.66563499e-01 -7.23764539e-01 7.13205993e-01 1.34684420e+00 2.01818094e-01 5.09561062e-01 3.21217686e-01 1.72575012e-01 5.58768034e-01 7.68646240e-01 5.42759538e-01 1.44002408e-01 6.66740656e-01 3.35227638e-01 -1.86777994e-01 2.97069967e-01 -1.19259730e-01 2.52148956e-01 3.05172592e-01 -2.06491619e-01 2.22546801e-01 -9.31358278e-01 1.04032628e-01 -1.55536747e+00 -8.87794554e-01 -5.20859659e-01 2.53079200e+00 9.01478529e-01 1.70301959e-01 2.50442564e-01 1.90930709e-01 7.30415523e-01 -2.02579126e-01 -8.33303452e-01 -3.96053761e-01 -3.48900884e-01 5.36145329e-01 9.20174360e-01 6.96220398e-01 -1.12199843e+00 4.48676407e-01 6.92307520e+00 9.49505508e-01 -1.05056751e+00 -8.42391327e-02 1.01686740e+00 -2.20228266e-02 -5.25113285e-01 1.22198224e-01 -9.37821627e-01 3.08831125e-01 9.46729958e-01 -5.92342079e-01 2.42583260e-01 1.02817178e+00 4.31194633e-01 -9.07616839e-02 -1.24118960e+00 5.08502185e-01 -6.21753693e-01 -1.36016345e+00 -1.42413124e-01 4.98446256e-01 4.45538580e-01 -5.55182584e-02 2.79938757e-01 1.31078809e-01 5.86865366e-01 -1.49462378e+00 1.32975817e-01 6.73001349e-01 1.19693816e+00 -6.94380403e-01 7.20426738e-01 -1.85962599e-02 -9.80535209e-01 -6.27228757e-03 -3.11861038e-01 -2.80700643e-02 -4.25301552e-01 1.25822246e+00 -1.22184932e+00 5.92319667e-01 6.25053883e-01 7.41295695e-01 -7.20283806e-01 7.79744446e-01 1.34140640e-01 6.53424919e-01 -2.72446871e-01 2.75345836e-02 -1.88829541e-01 -6.14638552e-02 4.35387611e-01 1.12999856e+00 3.43273371e-01 -3.87084447e-02 -2.90107012e-01 6.84757531e-01 1.96079120e-01 4.25735444e-01 -6.48579001e-01 7.14028403e-02 6.00063920e-01 1.33023465e+00 -5.82436740e-01 8.94240588e-02 -2.42331296e-01 5.92037559e-01 1.51834842e-02 -2.92985924e-02 -5.37676692e-01 -2.54427969e-01 1.00165725e+00 4.37129915e-01 2.47208476e-02 4.07605767e-01 -5.61739445e-01 -8.41715157e-01 -2.78024822e-01 -8.42875063e-01 6.66625261e-01 -3.42065632e-01 -1.73071468e+00 5.78411460e-01 -2.33032167e-01 -1.40402544e+00 -2.83486634e-01 -8.47984493e-01 -3.88829052e-01 1.09497130e+00 -1.36205757e+00 -8.04006696e-01 4.07020608e-03 3.78375113e-01 1.37713216e-02 -9.42942724e-02 1.13209200e+00 -1.46607846e-01 -7.64811218e-01 8.73733222e-01 5.17220438e-01 -3.41982692e-01 6.42775953e-01 -1.30593097e+00 3.92170310e-01 3.84998888e-01 -3.17463964e-01 8.77422392e-01 8.06630313e-01 -5.59764922e-01 -1.25278223e+00 -1.28314543e+00 8.31181109e-01 -4.27006811e-01 5.73740542e-01 -1.78897768e-01 -7.29868591e-01 5.74368596e-01 -5.81188679e-01 6.16337061e-02 1.23893726e+00 6.15546882e-01 -3.33036542e-01 -3.68481517e-01 -1.49285090e+00 2.89772242e-01 1.12717438e+00 -2.45908156e-01 -3.96267325e-02 4.20081735e-01 2.54670203e-01 2.43468568e-01 -1.34822226e+00 7.46597826e-01 8.17355514e-01 -8.08244407e-01 8.75454307e-01 -6.75996304e-01 2.05853894e-01 -2.38788873e-01 -5.39155841e-01 -1.22656620e+00 -9.12950635e-01 -4.97917324e-01 3.26783508e-01 9.95404184e-01 9.20592606e-01 -8.12525332e-01 7.61779130e-01 8.24663281e-01 1.51515171e-01 -1.05411351e+00 -1.09162569e+00 -7.30115652e-01 3.09343964e-01 -4.79498148e-01 5.57089865e-01 9.81530368e-01 1.47851765e-01 4.35889870e-01 -1.25404030e-01 -7.33255595e-02 7.52765000e-01 1.57686859e-01 5.99009693e-01 -1.80842793e+00 -3.30980241e-01 -5.35847425e-01 -6.43524706e-01 -3.56522173e-01 -2.55823508e-02 -1.40790665e+00 -2.58645833e-01 -1.04172182e+00 7.00848401e-01 -8.10752153e-01 -5.97742200e-01 7.92451441e-01 -2.82859802e-01 2.24389315e-01 -2.82695651e-01 3.09379190e-01 -3.36607061e-02 1.36633605e-01 9.30904329e-01 -2.14543477e-01 -3.27412337e-01 3.94026250e-01 -1.32439518e+00 6.68684304e-01 7.24867463e-01 -5.69518387e-01 -1.26912579e-01 5.04455686e-01 1.28277883e-01 4.47055958e-02 2.10087359e-01 -6.42274916e-01 -1.81011513e-01 -5.71162641e-01 6.47493958e-01 -4.14284766e-01 -3.15464251e-02 -6.23080730e-01 5.90922236e-01 5.01810491e-01 -5.34423769e-01 -2.39699781e-01 -1.38697773e-01 4.20003891e-01 3.57380435e-02 -1.31242529e-01 9.35883641e-01 8.06229468e-03 -2.72539437e-01 3.33194584e-01 -1.11765340e-01 -2.31799945e-01 9.23084319e-01 -2.96188235e-01 -3.41995120e-01 -2.23643884e-01 -8.36531281e-01 8.02995712e-02 5.76086462e-01 -1.10748105e-01 4.06942427e-01 -1.31845152e+00 -9.74757195e-01 3.11532617e-01 4.18780208e-01 -4.34853762e-01 1.17702864e-01 1.11308622e+00 -9.83186513e-02 5.00722587e-01 -9.50763598e-02 -5.86641908e-01 -1.43002927e+00 3.49526644e-01 3.07585508e-01 -6.14421785e-01 -1.39155313e-01 9.47981834e-01 3.95778567e-01 -4.23928767e-01 -1.15271494e-01 -3.67742717e-01 4.29973044e-02 2.36208871e-01 6.07326269e-01 5.21971703e-01 3.95221651e-01 -4.19257998e-01 -8.88117552e-01 4.53443825e-01 -2.82661051e-01 9.36221257e-02 1.57798696e+00 1.50209427e-01 -2.01978907e-01 3.73477310e-01 1.18462312e+00 1.26620731e-03 -9.64368045e-01 -2.51300514e-01 2.30742320e-01 -3.11664730e-01 1.40466779e-01 -1.08222711e+00 -9.98460293e-01 4.80156600e-01 5.55000246e-01 4.12242413e-02 1.32798302e+00 5.87906316e-03 -1.21574551e-01 8.51572976e-02 3.79389346e-01 -8.20521116e-01 -5.34243762e-01 2.80081779e-01 1.12430918e+00 -1.03636873e+00 5.29771984e-01 -5.19982219e-01 -7.46347189e-01 9.67225969e-01 1.09297596e-01 1.11149915e-01 9.61286843e-01 4.37364340e-01 -2.24509656e-01 -1.64487213e-01 -9.89411056e-01 -1.86335683e-01 1.77708209e-01 6.00555301e-01 6.88251972e-01 4.50246483e-01 -7.36334205e-01 1.14663005e+00 -4.09054756e-01 1.93320319e-01 1.56611472e-01 7.25236654e-01 -4.88757730e-01 -1.13856137e+00 -3.17045033e-01 1.18133521e+00 -3.85038227e-01 -3.39095265e-01 -4.68311161e-01 8.03781331e-01 5.68117667e-03 6.90459907e-01 -2.09908038e-01 -7.54780591e-01 2.45891333e-01 3.32795799e-01 2.01253340e-01 -4.02912587e-01 -4.35959250e-01 -1.18213154e-01 5.15613146e-02 -4.60725337e-01 -1.77249283e-01 -1.00021768e+00 -1.15102088e+00 -5.56226492e-01 -5.12934029e-01 1.74433589e-01 5.80799997e-01 5.90344608e-01 5.90772927e-01 2.12330267e-01 1.01369298e+00 -4.20792699e-01 -4.51033473e-01 -9.23722923e-01 -1.07789361e+00 -2.34966492e-03 2.33031854e-01 -9.05392885e-01 -6.95830762e-01 -1.60645917e-01]
[7.970056533813477, 4.8347344398498535]
fbef7e97-c8df-4ff7-94b3-49fbe779749b
composition-loss-for-counting-density-map
1808.0105
null
http://arxiv.org/abs/1808.01050v1
http://arxiv.org/pdf/1808.01050v1.pdf
Composition Loss for Counting, Density Map Estimation and Localization in Dense Crowds
With multiple crowd gatherings of millions of people every year in events ranging from pilgrimages to protests, concerts to marathons, and festivals to funerals; visual crowd analysis is emerging as a new frontier in computer vision. In particular, counting in highly dense crowds is a challenging problem with far-reaching applicability in crowd safety and management, as well as gauging political significance of protests and demonstrations. In this paper, we propose a novel approach that simultaneously solves the problems of counting, density map estimation and localization of people in a given dense crowd image. Our formulation is based on an important observation that the three problems are inherently related to each other making the loss function for optimizing a deep CNN decomposable. Since localization requires high-quality images and annotations, we introduce UCF-QNRF dataset that overcomes the shortcomings of previous datasets, and contains 1.25 million humans manually marked with dot annotations. Finally, we present evaluation measures and comparison with recent deep CNN networks, including those developed specifically for crowd counting. Our approach significantly outperforms state-of-the-art on the new dataset, which is the most challenging dataset with the largest number of crowd annotations in the most diverse set of scenes.
['Somaya Al-Maadeed', 'Dong Zhang', 'Nasir Rajpoot', 'Kishan Athrey', 'Muhmmad Tayyab', 'Mubarak Shah', 'Haroon Idrees']
2018-08-02
composition-loss-for-counting-density-map-1
http://openaccess.thecvf.com/content_ECCV_2018/html/Haroon_Idrees_Composition_Loss_for_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/papers/Haroon_Idrees_Composition_Loss_for_ECCV_2018_paper.pdf
eccv-2018-9
['visual-crowd-analysis']
['computer-vision']
[-4.42997545e-01 -4.88288313e-01 4.00560707e-01 -1.21274471e-01 -4.85530198e-01 -5.46338379e-01 8.30243647e-01 3.41489315e-01 -1.26199484e+00 1.05583894e+00 3.53566617e-01 2.07138266e-02 4.44284081e-01 -5.98888397e-01 -6.12472951e-01 -4.19355214e-01 -2.36074366e-02 9.54263389e-01 5.72387099e-01 -2.69946575e-01 1.38140693e-01 4.84103501e-01 -1.41522944e+00 -3.35806720e-02 6.67922020e-01 8.78583372e-01 5.72903454e-02 7.60178149e-01 -1.13459058e-01 1.36314607e+00 -9.77713704e-01 -9.46297467e-01 6.25797957e-02 7.86143690e-02 -7.09656477e-01 6.42359331e-02 6.52544141e-01 -4.83771592e-01 -4.03149486e-01 9.43855047e-01 7.80343473e-01 2.71256715e-01 6.69592619e-01 -1.35261297e+00 -6.48035645e-01 6.55186251e-02 -1.09605551e+00 7.58288801e-01 2.99867898e-01 4.08449382e-01 6.07020497e-01 -9.68676329e-01 4.39673752e-01 1.33691823e+00 7.28747666e-01 4.25484955e-01 -6.68758214e-01 -5.85387349e-01 1.57546122e-02 6.79803267e-02 -1.47471035e+00 -3.73346031e-01 1.69697434e-01 -1.09764135e+00 8.21706295e-01 -8.77223089e-02 8.50106537e-01 1.00160944e+00 -3.05594057e-01 8.38995576e-01 8.57139528e-01 -2.10189357e-01 3.84080261e-01 -1.18409954e-01 -1.63823262e-01 8.56010795e-01 6.89185917e-01 -4.11721110e-01 -5.14976919e-01 -3.33797693e-01 7.04153776e-01 2.02443734e-01 -1.84619538e-02 -1.29389375e-01 -1.29779756e+00 1.06236994e+00 4.27309126e-01 1.03289023e-01 -3.13633591e-01 3.06756705e-01 6.19453788e-01 -4.38876122e-01 4.63629633e-01 2.73254961e-01 1.27714097e-01 -1.96937159e-01 -8.75205576e-01 7.57316053e-01 7.49599516e-01 7.97276258e-01 5.00839472e-01 -6.11736290e-02 -6.84206605e-01 5.82495332e-01 1.99698340e-02 7.15178192e-01 8.76858383e-02 -9.14730489e-01 8.28015089e-01 5.97928762e-01 7.33582914e-01 -1.30711925e+00 -6.05171621e-01 -6.09997846e-02 -9.94216621e-01 2.97295693e-02 1.09315574e+00 -3.82919699e-01 -5.53441167e-01 1.41841006e+00 4.49845582e-01 1.36219233e-01 -3.64096105e-01 1.23873150e+00 9.98043358e-01 3.57795745e-01 2.52716422e-01 1.57072961e-01 1.67906713e+00 -9.00798082e-01 -4.84161854e-01 -5.10591924e-01 2.11726218e-01 -4.64330524e-01 1.03680813e+00 -6.90200031e-02 -9.44706559e-01 -3.45993847e-01 -6.13804817e-01 -3.61332119e-01 -2.87791222e-01 2.55758286e-01 7.26686776e-01 3.70204598e-01 -8.56715322e-01 1.52829900e-01 -6.13373041e-01 -5.84004700e-01 9.49916482e-01 2.01556429e-01 -4.04020667e-01 -4.24008537e-03 -9.26466525e-01 9.10278082e-01 9.03313756e-02 1.87136561e-01 -9.92360711e-01 -3.11816633e-01 -9.00531650e-01 -1.55520439e-01 4.10195947e-01 -6.09622657e-01 1.22510934e+00 -3.44480395e-01 -8.03877831e-01 1.24277091e+00 -2.82147616e-01 -5.42056382e-01 1.15815639e+00 -1.92780629e-01 -6.67859092e-02 -5.48082851e-02 8.02404881e-01 6.95141256e-01 3.87410760e-01 -1.02953565e+00 -9.23784733e-01 -4.61746812e-01 2.10277930e-01 -5.26778325e-02 -2.69758850e-01 4.00424421e-01 -5.34857750e-01 -2.34940842e-01 -6.30220234e-01 -6.30908310e-01 -3.09002399e-01 -5.64904958e-02 -4.77235168e-01 -4.66497123e-01 6.01988792e-01 -5.40380359e-01 9.69214082e-01 -1.79062462e+00 -5.69050387e-02 -2.40000620e-01 7.42872238e-01 4.67016041e-01 2.02034608e-01 2.96041131e-01 6.87906206e-01 -1.08639054e-01 -1.44316658e-01 -7.85806596e-01 1.04725063e-01 2.36563571e-03 -1.63001522e-01 8.46100628e-01 3.36456984e-01 1.12765980e+00 -1.23159993e+00 -8.12922776e-01 8.98032710e-02 4.55774158e-01 -1.61064357e-01 1.72030732e-01 -2.07813866e-02 8.75397325e-01 -2.52720952e-01 7.92753518e-01 6.27431333e-01 -5.04538119e-01 -8.39575827e-02 2.13285044e-01 -3.25657696e-01 -4.22156721e-01 -1.04958534e+00 1.34988081e+00 -9.87762469e-04 9.27150130e-01 -8.28102380e-02 -5.90524793e-01 7.81898677e-01 2.64862292e-02 2.42165506e-01 -5.27587712e-01 4.36648428e-01 2.59147733e-01 -4.36398655e-01 -6.64719045e-01 9.18698370e-01 5.92119480e-03 -3.84071618e-01 1.51816562e-01 -2.65494883e-02 1.00892648e-01 8.17464530e-01 2.78640211e-01 1.04516077e+00 -4.06933337e-01 4.98346329e-01 -1.11636914e-01 4.23795402e-01 7.73689672e-02 6.64531708e-01 9.73837435e-01 -7.31861949e-01 7.85804272e-01 7.87087440e-01 -1.06594765e+00 -1.32675183e+00 -8.43816280e-01 2.57231683e-01 1.10394990e+00 7.48780221e-02 8.86484385e-02 -8.13062787e-01 -5.94876468e-01 1.68790445e-01 4.34981659e-02 -8.29962015e-01 6.77376211e-01 -9.53838587e-01 -6.78108633e-01 8.96978974e-01 7.44414449e-01 8.86394978e-01 -1.10848093e+00 -8.81296277e-01 -1.35195348e-02 -6.52760029e-01 -1.62513566e+00 -6.47126079e-01 -3.73204380e-01 -1.20874546e-01 -1.39964676e+00 -1.32879353e+00 -7.04852402e-01 4.76506501e-01 5.06280661e-01 1.52439630e+00 2.50707179e-01 -4.14569676e-01 3.48774403e-01 3.99430357e-02 -9.32046711e-01 1.60049811e-01 1.61190838e-01 1.64935350e-01 1.20544173e-01 8.40248287e-01 -1.89084545e-01 -6.78900421e-01 1.48642108e-01 -6.28937304e-01 -4.58528370e-01 7.53203183e-02 6.02662802e-01 3.32493842e-01 -4.35712546e-01 3.98229361e-01 -5.36554813e-01 6.99120879e-01 -5.09874642e-01 -9.57033753e-01 1.42076954e-01 5.07618904e-01 -3.83285940e-01 2.99253672e-01 -3.37944776e-01 -7.83348501e-01 1.82457402e-01 2.37250954e-01 -2.98530608e-01 -1.43271238e-01 -2.03944385e-01 1.42579943e-01 5.73511012e-02 9.23923135e-01 -1.19517736e-01 -2.47371957e-01 -9.74938869e-02 4.16179597e-02 4.88398433e-01 8.79791141e-01 -4.43516463e-01 6.90427125e-01 1.16996658e+00 7.63005763e-02 -9.73958910e-01 -1.21361232e+00 -7.86919713e-01 -7.40156114e-01 -4.49238986e-01 1.29379678e+00 -1.26422489e+00 -1.45264769e+00 6.81623697e-01 -1.67589307e+00 -1.77029029e-01 -2.88164884e-01 3.51068676e-01 -2.47205302e-01 5.32364666e-01 -6.19340479e-01 -1.19683957e+00 -1.52697638e-01 -9.89924192e-01 1.38637352e+00 3.78351837e-01 -1.52930334e-01 -9.04569387e-01 1.89221755e-01 4.54726875e-01 2.90391862e-01 7.72097945e-01 -3.78339700e-02 -5.13323545e-01 -5.32591999e-01 -2.74642706e-01 -5.97887933e-01 1.56187177e-01 -3.98480952e-01 -2.30622888e-01 -1.04993474e+00 -2.79427081e-01 -4.78485078e-01 -6.54489696e-01 1.16770613e+00 5.82973778e-01 9.19297695e-01 -5.06642088e-02 -3.42886776e-01 3.56947482e-01 1.13220286e+00 -4.10880536e-01 5.50623655e-01 4.41516399e-01 9.53535497e-01 5.90376079e-01 2.91673213e-01 7.80966818e-01 9.69532311e-01 5.24019420e-01 5.45730829e-01 -1.92932844e-01 1.45301789e-01 -2.05458373e-01 -1.25759438e-01 2.83237547e-01 -6.31512284e-01 -4.61208194e-01 -1.19259036e+00 8.66980433e-01 -2.02433777e+00 -1.14748645e+00 -3.35402369e-01 2.04148269e+00 3.22607607e-01 -2.04228476e-01 7.26670027e-01 -1.44665018e-01 1.10830069e+00 3.34102601e-01 -2.39898697e-01 2.76487023e-01 -4.15847927e-01 -2.16603652e-01 6.38892293e-01 4.42908287e-01 -1.53062999e+00 9.47898984e-01 5.80259228e+00 5.13070285e-01 -5.75319469e-01 3.87657076e-01 7.71584451e-01 -2.38308936e-01 4.16662663e-01 -4.13554162e-01 -1.15039623e+00 6.64878428e-01 1.65878639e-01 2.39754990e-01 2.56719977e-01 6.52336657e-01 4.41203788e-02 -4.63980913e-01 -8.94941568e-01 1.19038296e+00 2.69078523e-01 -1.40685427e+00 -2.87884474e-01 4.39395979e-02 9.11694765e-01 2.42929548e-01 -4.88626547e-02 2.32818738e-01 6.21667385e-01 -1.14500582e+00 1.05327129e+00 5.63696504e-01 6.66681528e-01 -7.81574965e-01 1.08205795e+00 4.32542562e-01 -1.16220832e+00 -2.34535843e-01 -5.48747778e-01 -4.28994238e-01 6.44376576e-01 7.77087748e-01 -6.68340445e-01 -2.15262860e-01 9.36389685e-01 2.40855858e-01 -5.65590739e-01 1.18255627e+00 -2.01869980e-01 7.88584650e-02 -2.99260288e-01 -3.42318356e-01 3.24284822e-01 1.89971954e-01 4.15636361e-01 1.53175151e+00 3.06915224e-01 7.58812875e-02 3.84909391e-01 7.99098611e-01 -3.27942282e-01 -1.75434157e-01 -6.37130797e-01 3.04426402e-01 4.65474248e-01 1.22958827e+00 -8.42603564e-01 -4.58533347e-01 -3.49525779e-01 8.52272332e-01 1.01530528e+00 3.77495825e-01 -1.02148759e+00 -1.25987291e-01 5.52531600e-01 4.50097233e-01 2.92129338e-01 -4.60057080e-01 1.36987679e-02 -1.25005770e+00 2.92315751e-01 -4.17928666e-01 2.82928109e-01 -3.70837480e-01 -1.52745616e+00 5.63276947e-01 -1.94430556e-02 -8.75841141e-01 -1.52203202e-01 -5.20599246e-01 -6.25366569e-01 7.92214096e-01 -1.64786386e+00 -1.08018124e+00 -8.84234309e-01 6.13995910e-01 1.99679062e-01 -4.01015937e-01 3.07480067e-01 5.51969707e-01 -4.45644677e-01 3.86720240e-01 -1.86437503e-01 7.46689081e-01 5.22664666e-01 -1.20939159e+00 7.28005350e-01 8.60297322e-01 -1.24628574e-01 6.13707397e-03 4.30056512e-01 -6.41240656e-01 -6.69303477e-01 -1.24091578e+00 1.20411396e+00 -9.43618357e-01 5.13498604e-01 -6.73724651e-01 -5.73878825e-01 5.17505586e-01 -7.17673749e-02 5.72004199e-01 2.97868699e-01 -2.43310571e-01 -2.24670008e-01 1.89557105e-01 -1.09697270e+00 2.81964719e-01 1.10385513e+00 -2.89833874e-01 -9.85050425e-02 6.91890299e-01 4.56483990e-01 -5.71505249e-01 -2.41290778e-01 5.26234061e-02 3.02222043e-01 -1.18568230e+00 9.85261738e-01 -4.48226690e-01 4.94651318e-01 -3.95586491e-01 -1.15931749e-01 -1.00410891e+00 -2.77163863e-01 -4.40312266e-01 -1.13631062e-01 1.25846648e+00 6.99223503e-02 -5.17614484e-01 8.17258000e-01 5.25802493e-01 2.06130341e-01 -3.76697332e-01 -1.08748901e+00 -7.76090324e-01 -3.26988921e-02 1.88906249e-02 7.48293757e-01 7.87168086e-01 -3.89811784e-01 3.11965823e-01 -7.39697993e-01 -3.51683795e-02 9.14400160e-01 -5.03635645e-01 1.32409894e+00 -1.40024090e+00 -1.93185806e-02 -3.41379344e-01 -6.33916676e-01 -9.55631971e-01 1.02796346e-01 -3.99217039e-01 8.21547806e-02 -1.71587598e+00 5.49161017e-01 -2.76213020e-01 4.35241759e-01 6.40837848e-02 -4.66242015e-01 6.43222630e-01 5.33542454e-01 2.82959193e-01 -1.25169790e+00 3.16393644e-01 1.28253901e+00 -3.54003370e-01 9.35435370e-02 -7.60888383e-02 -3.75766188e-01 9.88085270e-01 5.85334957e-01 -3.39712292e-01 1.81715608e-01 -9.49658811e-01 4.36423123e-01 -1.67721108e-01 8.54061365e-01 -1.17278492e+00 5.47363877e-01 -7.37794042e-02 5.20004630e-01 -5.35967350e-01 4.80923176e-01 -2.58303642e-01 -3.68047893e-01 3.73574734e-01 1.27195753e-02 2.19316423e-01 2.41454579e-02 7.60374844e-01 -2.65372157e-01 -4.59544882e-02 8.27400088e-01 -5.45856178e-01 -8.34265351e-01 4.81218368e-01 -1.30059168e-01 8.42310429e-01 1.08809066e+00 -9.12246332e-02 -6.57208622e-01 -4.24037606e-01 -3.28322709e-01 4.87850010e-01 3.41174811e-01 2.65564501e-01 3.46840560e-01 -1.24508464e+00 -1.29130304e+00 -2.71315008e-01 1.51981801e-01 4.86765206e-01 2.58384079e-01 7.76144207e-01 -8.53572905e-01 1.89970106e-01 -9.46944803e-02 -7.26921618e-01 -9.16577339e-01 4.48243320e-01 1.78049684e-01 -5.50489545e-01 -4.32772428e-01 1.14703667e+00 2.07290947e-01 -4.82892632e-01 4.21091437e-01 -1.67692035e-01 -4.70033020e-01 1.73442200e-01 9.43415523e-01 9.48048532e-01 -1.36319771e-01 -1.07385147e+00 -5.93639016e-01 3.55494469e-01 3.31250012e-01 4.42367196e-02 1.12359333e+00 -4.29775054e-03 -9.69092697e-02 3.28500509e-01 9.71812129e-01 -9.20440406e-02 -1.51212370e+00 -3.03496033e-01 -1.16892308e-01 -7.54595280e-01 -5.82938731e-01 -2.37196371e-01 -1.11647475e+00 1.04809618e+00 3.00309986e-01 7.23006055e-02 4.20631140e-01 3.26261103e-01 7.61099339e-01 4.43399936e-01 5.75927913e-01 -1.23841214e+00 5.00259161e-01 8.10143888e-01 6.89976931e-01 -1.81601119e+00 9.07121599e-02 -1.00418748e-02 -9.53045845e-01 5.93518376e-01 7.54393160e-01 -1.27017751e-01 2.29859576e-01 3.45117927e-01 -2.11053818e-01 -5.22327781e-01 -1.20284520e-01 -5.17373562e-01 1.09693669e-01 8.65167856e-01 2.43845791e-01 3.08240950e-01 5.66458143e-02 4.13689286e-01 -1.04739867e-01 2.39145495e-02 4.92475361e-01 7.24680126e-01 -7.11971581e-01 -2.01535657e-01 -7.83179641e-01 3.26984018e-01 -4.37984824e-01 6.56720400e-02 -5.14945090e-01 8.62692297e-01 4.33736712e-01 1.02432382e+00 4.64664280e-01 4.78082485e-02 5.59902787e-01 -5.05087435e-01 3.36541861e-01 -2.69242138e-01 -5.20215988e-01 -5.19968271e-01 7.25777447e-02 -3.39995593e-01 -7.04422891e-01 -7.39615977e-01 -9.43975806e-01 -8.30720425e-01 -1.75765201e-01 -9.30765346e-02 3.41515839e-01 9.13423538e-01 -5.10168284e-05 1.84200421e-01 2.11039111e-01 -1.31845725e+00 -3.03494334e-01 -1.07191133e+00 -7.14268565e-01 5.02955258e-01 3.27911526e-01 -9.19526577e-01 -1.09168097e-01 -1.55228034e-01]
[8.404275894165039, -0.3269347548484802]
d1f0d348-6e60-4c59-bb9c-7f9205fa24bf
training-data-efficient-image-transformers
2012.12877
null
https://arxiv.org/abs/2012.12877v2
https://arxiv.org/pdf/2012.12877v2.pdf
Training data-efficient image transformers & distillation through attention
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. However, these visual transformers are pre-trained with hundreds of millions of images using an expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.
['Hervé Jégou', 'Alexandre Sablayrolles', 'Francisco Massa', 'Matthijs Douze', 'Matthieu Cord', 'Hugo Touvron']
2020-12-23
null
null
null
null
['document-image-classification', 'document-layout-analysis']
['computer-vision', 'computer-vision']
[ 2.34593064e-01 3.67680103e-01 1.85660437e-01 -1.97937518e-01 -4.65994984e-01 -5.83199620e-01 7.53893197e-01 -2.02098072e-01 -6.46512449e-01 2.99466491e-01 -3.13293189e-01 -8.19244921e-01 3.88325512e-01 -8.56782317e-01 -1.27496338e+00 -4.41025078e-01 1.25978678e-01 3.47002685e-01 4.47841942e-01 -1.15955554e-01 -2.37410106e-02 3.42426240e-01 -1.54339623e+00 3.87325704e-01 7.76209891e-01 1.23301685e+00 4.57709759e-01 8.93923044e-01 2.41444428e-02 1.29691756e+00 -6.40593171e-01 -7.46876478e-01 3.66367072e-01 6.05266914e-02 -1.10699570e+00 5.89336343e-02 1.11432636e+00 -7.00709403e-01 -3.48069847e-01 8.76473725e-01 2.58122265e-01 -5.18301845e-01 4.39572692e-01 -1.46477902e+00 -9.29288566e-01 6.93531990e-01 -2.74731100e-01 9.46998745e-02 -1.65913016e-01 4.25900906e-01 9.98435915e-01 -1.01890171e+00 3.56478661e-01 9.29435730e-01 8.84606957e-01 4.89201546e-01 -1.13282228e+00 -6.81973875e-01 1.03324190e-01 3.46062452e-01 -1.03021359e+00 -3.40168923e-01 3.59697700e-01 -4.41737622e-01 1.35772824e+00 -2.16997236e-01 8.16651881e-01 1.03891873e+00 -2.80414857e-02 8.36472392e-01 1.05584705e+00 -3.55720222e-01 -1.01852030e-01 3.68815631e-01 -1.16134323e-01 9.66857016e-01 2.58502126e-01 -1.12820864e-01 -4.16317910e-01 3.08897018e-01 8.89012098e-01 -4.94087785e-02 -2.87086219e-01 -3.84829074e-01 -1.24656022e+00 7.15619385e-01 1.01378143e+00 2.36952052e-01 -2.60954827e-01 7.34833062e-01 3.67108792e-01 5.05440116e-01 3.50049913e-01 4.01655495e-01 -6.35449111e-01 -2.15278380e-02 -8.68791521e-01 -2.02001318e-01 7.84704149e-01 1.24042726e+00 1.03168750e+00 2.91489244e-01 1.60117075e-01 4.72202569e-01 -9.17192027e-02 5.89416921e-01 3.50557595e-01 -9.64783430e-01 3.01664472e-01 4.89574939e-01 -2.96302587e-01 -6.39602661e-01 3.61047164e-02 -5.72893023e-01 -9.66230690e-01 5.26274145e-01 5.36115527e-01 1.11468345e-01 -1.36111450e+00 1.66171086e+00 -4.41997387e-02 4.22531664e-01 1.13928869e-01 5.00567377e-01 8.30236554e-01 4.40303832e-01 1.75163984e-01 4.56803739e-01 1.50898004e+00 -1.36794913e+00 2.80413758e-02 -2.57029057e-01 6.54844224e-01 -6.90502584e-01 1.20963407e+00 7.18632042e-01 -1.19591033e+00 -6.94727540e-01 -1.04101932e+00 -4.04433846e-01 -5.55886209e-01 2.60019571e-01 6.29227877e-01 4.94563550e-01 -1.71105254e+00 6.69542193e-01 -9.05740321e-01 -6.53498054e-01 8.48705828e-01 4.62057412e-01 -4.74749416e-01 -7.65132457e-02 -7.67142534e-01 1.10521686e+00 9.65116769e-02 -1.80511773e-01 -1.50210512e+00 -1.07011139e+00 -7.75676489e-01 3.06627452e-01 6.16837181e-02 -8.93495262e-01 1.46502030e+00 -1.33672225e+00 -1.42979062e+00 1.08240521e+00 1.50177494e-01 -8.96346033e-01 6.32676184e-01 -2.76130140e-01 2.00338021e-01 3.50765228e-01 2.08502728e-02 1.15677238e+00 1.06631422e+00 -1.04679894e+00 -6.49775147e-01 1.51586384e-01 5.34804404e-01 -1.94828525e-01 -6.44387782e-01 -2.66255647e-01 -4.68552947e-01 -2.18616992e-01 -3.18746626e-01 -6.95188642e-01 -4.14063297e-02 3.54025155e-01 -1.92934066e-01 -3.21788043e-01 9.82227206e-01 -5.18735945e-01 3.09009135e-01 -2.04657984e+00 -2.48371303e-01 -1.21458955e-01 6.46851122e-01 5.98044872e-01 -5.05455077e-01 1.45102203e-01 -1.95167169e-01 1.59678206e-01 -2.14371294e-01 -6.44182742e-01 -5.12706265e-02 1.78969011e-01 -4.95258361e-01 3.85241300e-01 6.44168854e-01 1.24618137e+00 -8.29393148e-01 -4.26831603e-01 4.42328513e-01 7.07643211e-01 -7.86741555e-01 3.66730005e-01 -1.90345347e-01 5.15828766e-02 -3.18225995e-02 5.67176819e-01 6.52833581e-01 -6.37238562e-01 3.85081097e-02 -5.34392655e-01 -1.36630923e-01 4.10892487e-01 -3.98118943e-01 1.77232277e+00 -7.83725858e-01 1.02882278e+00 8.91795307e-02 -1.32666898e+00 6.16920114e-01 3.37081462e-01 1.51015565e-01 -6.26058817e-01 -2.98260488e-02 2.54734814e-01 2.82550529e-02 -2.85659045e-01 3.07167262e-01 7.68545419e-02 2.99730599e-01 4.41103101e-01 7.72286773e-01 -3.43100101e-01 9.42586362e-02 5.38329542e-01 1.34351265e+00 1.13450006e-01 -9.49557964e-03 -4.65399951e-01 1.36230409e-01 1.02850363e-01 5.03195599e-02 8.67987931e-01 -5.27793169e-02 6.28942907e-01 5.18375814e-01 -6.61704719e-01 -1.40508294e+00 -1.09534204e+00 7.61503354e-02 1.01702714e+00 -1.21200018e-01 -5.15214443e-01 -8.57260406e-01 -7.37143099e-01 -2.18123689e-01 3.24520797e-01 -7.48222351e-01 -7.62890792e-03 -4.59552616e-01 -2.76452810e-01 7.46120155e-01 8.05965722e-01 8.03194463e-01 -9.98953879e-01 -8.13832223e-01 4.89327572e-02 1.87546968e-01 -1.32966292e+00 -1.82812855e-01 4.85770881e-01 -7.30908453e-01 -1.23937750e+00 -8.11180413e-01 -1.04856479e+00 7.77388930e-01 2.95087874e-01 1.53579795e+00 4.34509277e-01 -3.39014322e-01 6.60612702e-01 -9.27406102e-02 -4.13531095e-01 -3.44681889e-01 5.07102430e-01 -2.77205974e-01 -3.45401257e-01 2.24745572e-01 -8.75694335e-01 -6.77724540e-01 -1.69313303e-03 -7.17630804e-01 3.51853669e-01 7.93514848e-01 9.06465471e-01 9.47099254e-02 -3.46469849e-01 1.51120678e-01 -8.70446205e-01 1.80369675e-01 -1.94667906e-01 -8.98952186e-01 4.03407842e-01 -6.67574883e-01 8.13276395e-02 7.74269760e-01 -5.89028597e-01 -6.44974351e-01 1.82839394e-01 -4.81721386e-02 -7.42550731e-01 -1.33768693e-01 1.35539949e-01 2.07306847e-01 -3.29429030e-01 6.20705068e-01 3.40449780e-01 3.65523025e-02 -2.58171439e-01 4.45166945e-01 4.03854698e-01 6.81576490e-01 -5.60107827e-01 1.02255499e+00 3.66459578e-01 -2.43224531e-01 -6.38330579e-01 -7.98685730e-01 -2.34139606e-01 -4.56847340e-01 1.54822655e-02 8.33017051e-01 -1.25406384e+00 -1.11113238e+00 7.84313798e-01 -1.38385987e+00 -8.23959708e-01 -3.84000182e-01 2.34495267e-01 -4.87067401e-01 2.99000423e-02 -7.96849608e-01 -2.56923705e-01 -6.45669639e-01 -1.32700086e+00 9.74874616e-01 2.75422633e-02 2.26821586e-01 -1.07738292e+00 -2.84030706e-01 2.45954499e-01 9.02929902e-01 -2.35849127e-01 6.53834581e-01 -4.41466480e-01 -1.03260267e+00 2.67515332e-01 -7.82785714e-01 6.58933342e-01 -3.28120925e-02 -3.60203832e-02 -1.55854177e+00 -3.08824062e-01 -1.37451991e-01 -8.66371036e-01 1.24513125e+00 1.53292984e-01 1.39789820e+00 -2.40054786e-01 -1.97378784e-01 8.65470469e-01 1.54395890e+00 -4.58531350e-01 8.38592172e-01 3.32343996e-01 9.10487056e-01 3.24198663e-01 -3.06517761e-02 1.54025049e-03 5.00500083e-01 2.82678664e-01 8.85892153e-01 -6.84169054e-01 -3.48181099e-01 -3.30958009e-01 4.17709142e-01 7.20464706e-01 -1.46335915e-01 -1.77064896e-01 -9.86965835e-01 8.94791365e-01 -1.51702571e+00 -6.30444229e-01 4.46237251e-02 1.89718926e+00 9.43592787e-01 2.18162000e-01 -9.90136862e-02 -3.65840644e-02 2.84444779e-01 -7.24774301e-02 -5.29198408e-01 -3.95687401e-01 4.80775908e-02 8.61603320e-01 7.93361783e-01 5.53489268e-01 -1.07076776e+00 1.23253715e+00 6.49047041e+00 6.44298613e-01 -1.52382255e+00 1.78339928e-01 6.41999006e-01 2.22842395e-01 -2.23631084e-01 3.66532542e-02 -5.60015380e-01 9.42261070e-02 9.48772490e-01 4.25609276e-02 4.12737250e-01 1.03440201e+00 -3.24037552e-01 -2.08716057e-02 -1.14030445e+00 8.93690526e-01 1.50351878e-02 -1.36866903e+00 2.36172840e-01 6.36821687e-02 6.37738228e-01 4.91011828e-01 2.79077262e-01 4.31852758e-01 6.29821062e-01 -1.38343668e+00 7.70646751e-01 4.67255339e-02 1.09059274e+00 -4.22045052e-01 6.09348536e-01 5.07351384e-02 -1.24501979e+00 2.51275927e-01 -4.98728693e-01 -1.48808494e-01 -2.19053566e-01 6.01829529e-01 -1.20782709e+00 1.70389965e-01 1.00246811e+00 1.04132020e+00 -7.93054998e-01 8.11847389e-01 -4.64576513e-01 8.16206098e-01 -4.46599811e-01 2.34998599e-01 4.16036904e-01 9.56944525e-02 -2.10943356e-01 1.13138986e+00 4.30970550e-01 -3.07000846e-01 -1.65323988e-02 9.55262184e-01 -5.01159072e-01 -3.50555420e-01 -7.34658659e-01 2.46419869e-02 2.14128256e-01 1.47088218e+00 -5.75159609e-01 -6.76097155e-01 -5.63088298e-01 1.16152513e+00 7.62667060e-01 2.23508775e-01 -9.43978250e-01 -4.30709213e-01 7.41433263e-01 1.30069092e-01 7.73793757e-01 -1.10154979e-01 -7.97414407e-02 -1.10190499e+00 -1.45767570e-01 -8.19954038e-01 -5.32464944e-02 -1.02598965e+00 -1.14745522e+00 8.19964767e-01 -2.03440294e-01 -8.82872045e-01 -8.88198912e-02 -1.16895735e+00 -7.01022804e-01 7.14593649e-01 -1.87590611e+00 -1.60641181e+00 -5.77790499e-01 7.45694697e-01 2.51963913e-01 6.85187727e-02 8.43921065e-01 4.30556893e-01 -1.64552286e-01 7.64028668e-01 -3.63133103e-01 4.48915839e-01 6.76705599e-01 -1.52827334e+00 7.80954778e-01 7.86746681e-01 1.86334133e-01 5.59416771e-01 4.33669150e-01 1.01807825e-02 -1.27376950e+00 -1.19677520e+00 9.82470393e-01 -5.23016691e-01 8.56582761e-01 -5.48560262e-01 -7.77682364e-01 1.11423349e+00 8.41182411e-01 2.55589932e-01 1.57670975e-01 7.73377120e-02 -8.57340515e-01 -2.74670780e-01 -9.66144860e-01 4.17895049e-01 1.07444549e+00 -7.03549325e-01 -2.65747488e-01 3.04156661e-01 9.24345315e-01 -2.42004395e-01 -8.21843863e-01 2.63800561e-01 4.62805539e-01 -1.08161652e+00 1.04764998e+00 -4.44725096e-01 7.57588983e-01 -2.11467192e-01 7.43081495e-02 -1.28271091e+00 -7.40114972e-02 -3.84160697e-01 1.35173053e-01 1.02603197e+00 4.50987965e-01 -8.49705338e-01 6.95959806e-01 2.82937884e-01 -2.13040590e-01 -6.00686848e-01 -5.62728822e-01 -6.62545562e-01 3.18063587e-01 -4.31858510e-01 4.61826682e-01 9.02861059e-01 -2.90281743e-01 3.67490977e-01 -3.38937551e-01 1.35429297e-02 6.48878932e-01 -3.92404348e-02 9.17071581e-01 -1.00770545e+00 -3.02246600e-01 -3.04448336e-01 -5.02837777e-01 -1.32251275e+00 1.43629044e-01 -7.84834623e-01 -1.16432123e-02 -1.28371060e+00 4.49929178e-01 -5.16177058e-01 -2.38351852e-01 9.15715218e-01 1.14528969e-01 6.93149984e-01 2.74463296e-01 -3.14129554e-02 -5.30488372e-01 4.15934056e-01 1.18150556e+00 -4.70244527e-01 5.63593447e-01 -3.19836289e-01 -7.49166548e-01 6.62602544e-01 9.87970293e-01 -4.44187611e-01 -4.59553123e-01 -8.83664489e-01 8.66364911e-02 -6.47105157e-01 8.64155173e-01 -1.23116028e+00 3.52432311e-01 1.95207626e-01 2.88310647e-01 -2.62755722e-01 3.71784955e-01 -8.88435066e-01 -1.64366215e-01 8.01097870e-01 -1.90842703e-01 1.13955870e-01 4.00006294e-01 2.35170908e-02 -1.54169545e-01 -1.16296887e-01 7.71601677e-01 -3.66589695e-01 -6.93804741e-01 3.78529876e-01 -2.97231764e-01 6.07834496e-02 7.59244800e-01 -5.50277047e-02 -7.20056832e-01 -4.80162501e-01 -4.52942908e-01 3.59919071e-02 6.17141485e-01 -2.18922878e-03 5.90728879e-01 -1.01327920e+00 -7.08962083e-01 2.50872731e-01 3.00984010e-02 2.13141367e-01 -7.70283043e-02 7.38138199e-01 -7.91397154e-01 4.14362729e-01 -3.26978266e-01 -9.44927216e-01 -1.25326920e+00 5.48113585e-01 5.89646101e-01 -3.40596259e-01 -5.93110323e-01 9.72471356e-01 5.06799459e-01 -4.79829729e-01 2.79525548e-01 -7.26099074e-01 2.74752885e-01 -2.97470421e-01 5.44580877e-01 -1.27540007e-01 1.65806800e-01 -5.69547489e-02 -3.37053508e-01 6.05668426e-01 -1.43254071e-01 1.29207829e-02 1.44720840e+00 4.03784752e-01 -1.47914022e-01 5.72830476e-02 1.33674943e+00 -3.92035365e-01 -1.49508083e+00 -2.09224954e-01 -3.65301132e-01 -1.10443845e-01 9.05243307e-02 -7.18416810e-01 -1.47485209e+00 1.43224692e+00 5.50597906e-01 2.28648320e-01 1.21874976e+00 7.82409459e-02 6.42040551e-01 6.19150758e-01 3.71928364e-01 -4.92344052e-01 3.38072181e-01 7.45244563e-01 6.82960629e-01 -1.38467336e+00 -1.86412662e-01 -2.41768256e-01 -2.06722185e-01 1.01274657e+00 7.96141565e-01 -3.44999671e-01 6.39208257e-01 6.16770327e-01 1.30982220e-01 -1.33200094e-01 -1.11824572e+00 -3.65172833e-01 1.43024586e-02 8.73809218e-01 4.18525845e-01 -1.94829762e-01 4.33763862e-01 -5.55749014e-02 -3.20506424e-01 1.97152317e-01 4.95444328e-01 8.64221036e-01 -3.82394671e-01 -1.00571108e+00 8.06132481e-02 2.64921933e-01 -3.64358604e-01 -7.61329055e-01 -2.85658985e-01 8.02525640e-01 1.28049597e-01 7.52112746e-01 3.24328244e-01 -3.24926168e-01 2.31298571e-03 -1.99970096e-01 8.28379869e-01 -5.24113476e-01 -9.03807282e-01 -4.86032307e-01 -7.98469111e-02 -6.16407335e-01 -5.19723713e-01 -1.17353827e-01 -8.23709607e-01 -7.55783498e-01 -1.76374033e-01 -8.56108814e-02 7.89757371e-01 6.76697016e-01 3.84095222e-01 5.33089638e-01 3.06027859e-01 -8.78471494e-01 -4.86662358e-01 -1.07361650e+00 -1.80571452e-01 2.57336110e-01 4.10328567e-01 -3.03079426e-01 -3.45778108e-01 4.64342088e-01]
[9.452077865600586, 1.5363589525222778]
67434265-2201-4393-a5db-90ee4ac29bec
model-based-offline-reinforcement-learning-1
2301.11426
null
https://arxiv.org/abs/2301.11426v1
https://arxiv.org/pdf/2301.11426v1.pdf
Model-based Offline Reinforcement Learning with Local Misspecification
We present a model-based offline reinforcement learning policy performance lower bound that explicitly captures dynamics model misspecification and distribution mismatch and we propose an empirical algorithm for optimal offline policy selection. Theoretically, we prove a novel safe policy improvement theorem by establishing pessimism approximations to the value function. Our key insight is to jointly consider selecting over dynamics models and policies: as long as a dynamics model can accurately represent the dynamics of the state-action pairs visited by a given policy, it is possible to approximate the value of that particular policy. We analyze our lower bound in the LQR setting and also show competitive performance to previous lower bounds on policy selection across a set of D4RL tasks.
['Emma Brunskill', 'Allen Nie', 'Yannis Flet-Berliac', 'Kefan Dong']
2023-01-26
null
null
null
null
['d4rl']
['robots']
[-3.38917136e-01 1.64111659e-01 -8.93953800e-01 1.50079802e-01 -9.77066159e-01 -9.39390123e-01 2.65531123e-01 1.30724818e-01 -6.54147625e-01 1.08761990e+00 1.11392133e-01 -6.77896500e-01 -4.57097292e-01 -3.66424859e-01 -9.60482359e-01 -6.94450676e-01 -4.61771578e-01 7.22069502e-01 4.68878150e-02 -1.91959277e-01 -6.85102716e-02 6.69588089e-01 -1.07146621e+00 -1.77564994e-01 6.19377613e-01 9.01195586e-01 3.21338624e-01 1.03527713e+00 2.98100740e-01 8.00497472e-01 -7.35165000e-01 1.87835887e-01 4.64136124e-01 -4.02892798e-01 -6.45187497e-01 3.51303034e-02 7.00802431e-02 -8.11727524e-01 -6.78689301e-01 9.31254864e-01 4.58678931e-01 4.71658826e-01 3.79230857e-01 -1.39798665e+00 -3.13024670e-01 9.18864846e-01 -3.99290472e-01 4.79033709e-01 -2.29962990e-02 5.36494970e-01 9.15115356e-01 3.07377756e-01 5.46488047e-01 1.47337949e+00 2.67286628e-01 8.00219178e-01 -1.45165384e+00 -4.30080205e-01 9.24463511e-01 -2.43675485e-02 -8.93274248e-01 -2.14631855e-01 1.22754224e-01 -2.27497980e-01 9.99106765e-01 -1.07324965e-01 7.25582540e-01 1.20910215e+00 2.86739260e-01 9.35801744e-01 1.18195069e+00 -2.98919678e-01 4.06270981e-01 -1.98075816e-01 -9.21866223e-02 7.38860905e-01 2.31474683e-01 9.14769471e-01 -2.47766092e-01 -5.24866104e-01 1.12749493e+00 -1.29871204e-01 -1.21740215e-01 -5.58045447e-01 -9.09567297e-01 6.54655695e-01 -4.14069146e-02 -3.65674287e-01 -5.15273273e-01 9.37844276e-01 5.02975285e-01 8.10544550e-01 3.82601321e-02 6.03671193e-01 -8.14854622e-01 -6.42670035e-01 -2.80636102e-01 7.89926112e-01 9.27529514e-01 8.81667078e-01 3.20511311e-01 3.93601567e-01 -7.74688601e-01 3.53225917e-01 -1.32543132e-01 8.34224403e-01 1.81055322e-01 -1.80690205e+00 5.06302774e-01 -2.45757535e-01 1.04181457e+00 -3.26258421e-01 -2.35823378e-01 -5.95745564e-01 2.55378503e-02 3.15256625e-01 5.86734176e-01 -5.73069930e-01 -6.20788813e-01 2.18474936e+00 2.76593655e-01 1.23226054e-01 1.25345945e-01 7.18957543e-01 -5.63091278e-01 5.82997084e-01 2.39860844e-02 -8.24552238e-01 7.44418383e-01 -6.30383849e-01 -6.54383600e-01 -2.91643459e-02 7.07514226e-01 -1.14704669e-01 1.10041833e+00 4.02397871e-01 -1.09027290e+00 -1.62485167e-01 -7.05203712e-01 5.37378609e-01 4.56052542e-01 -6.27193898e-02 4.34292406e-01 2.20398560e-01 -9.80236471e-01 1.03541362e+00 -1.15462601e+00 -1.57797396e-01 -3.58022540e-03 4.02648211e-01 2.72769809e-01 4.11902934e-01 -9.17021096e-01 1.01044464e+00 5.61858237e-01 -3.63348871e-01 -1.84898186e+00 -5.51339865e-01 -2.38831803e-01 1.18078247e-01 1.04178452e+00 -4.26420748e-01 2.11465335e+00 -7.12659419e-01 -1.87345850e+00 1.08095236e-01 -4.67520989e-02 -1.00963378e+00 7.11869359e-01 -2.27297783e-01 -8.31824467e-02 1.07532196e-01 -1.87524542e-01 1.21317104e-01 8.11300218e-01 -1.21860933e+00 -1.04724121e+00 -5.15124761e-02 6.12205207e-01 5.64556241e-01 -1.70343325e-01 -1.99077889e-01 5.57765663e-02 -3.64591211e-01 -6.22223914e-01 -1.18826115e+00 -4.86034572e-01 -1.95380062e-01 -7.32945278e-02 -2.58777529e-01 4.02954966e-01 -4.83224452e-01 1.34529030e+00 -1.85240948e+00 8.37947950e-02 1.90879792e-01 1.13438061e-02 6.03655688e-02 -2.14663982e-01 5.75930893e-01 3.47307473e-01 5.74693233e-02 2.23826423e-01 3.80855128e-02 4.64568436e-01 5.92071414e-01 -1.04973388e+00 5.93413413e-01 -5.19652843e-01 7.50858009e-01 -9.61605370e-01 -1.26835912e-01 1.46199003e-01 -3.56279880e-01 -6.80194736e-01 2.20505744e-01 -8.90053928e-01 3.36500973e-01 -8.06039214e-01 3.25793810e-02 2.70354897e-01 1.14790857e-01 7.21936882e-01 3.84457141e-01 -1.14367332e-03 3.27175051e-01 -1.06569791e+00 1.04218054e+00 -5.77640533e-01 1.86908752e-01 3.06572855e-01 -9.51753259e-01 4.10193473e-01 3.15286070e-01 7.92043865e-01 -5.87707639e-01 4.17637900e-02 -4.69223000e-02 -1.05980515e-01 -3.06845456e-01 2.21943066e-01 -2.02621356e-01 -2.11635530e-01 6.49924099e-01 -1.06827840e-01 7.59645253e-02 5.85342310e-02 -7.29678199e-02 1.00756526e+00 5.53814530e-01 2.90559769e-01 -3.65887314e-01 -7.28187934e-02 2.08818600e-01 7.35251427e-01 1.30221796e+00 -5.78391314e-01 -5.20986676e-01 1.10246086e+00 -2.09007829e-01 -1.11655939e+00 -1.04679382e+00 2.37435818e-01 1.36745381e+00 8.57544020e-02 -7.91038871e-02 -5.72490096e-01 -7.88901806e-01 6.74301803e-01 8.67275953e-01 -6.97419107e-01 -1.82425648e-01 -6.43446982e-01 -2.56197661e-01 2.30460927e-01 5.36561549e-01 1.21546544e-01 -7.32846439e-01 -8.28271925e-01 5.01185119e-01 2.12674484e-01 -1.13896155e+00 -8.17309380e-01 3.02597702e-01 -1.02497864e+00 -1.04304969e+00 -3.00727904e-01 -1.53490111e-01 2.16409504e-01 7.43392855e-02 8.57523799e-01 -3.20854813e-01 3.55967045e-01 8.78421903e-01 2.87194718e-02 -2.33640984e-01 -6.79813504e-01 8.88927802e-02 5.03122807e-01 -5.42930186e-01 -1.76691785e-01 -2.89520890e-01 -5.33427179e-01 1.64605364e-01 -3.02902400e-01 -2.23297998e-01 2.58210927e-01 7.33728707e-01 8.33782971e-01 -6.40448704e-02 6.08039260e-01 -4.41939354e-01 1.11951363e+00 -3.33232969e-01 -1.36465251e+00 6.11868978e-01 -7.10560620e-01 6.56407058e-01 9.54605997e-01 -7.47470021e-01 -1.01602459e+00 -5.63515723e-02 2.50617117e-01 -7.56343603e-01 5.23076318e-02 9.19816718e-02 1.91180915e-01 2.34256715e-01 5.56663513e-01 3.39428097e-01 3.79280478e-01 -4.91642147e-01 3.62533122e-01 2.12299675e-01 3.54567230e-01 -1.52470303e+00 4.90627974e-01 3.05508196e-01 1.03373326e-01 -3.86946887e-01 -8.07723761e-01 -6.14265688e-02 9.17297602e-02 -1.54161900e-01 2.94438303e-01 -9.50533628e-01 -1.62946832e+00 -1.02743022e-01 -7.09175169e-01 -1.13843453e+00 -6.05438232e-01 5.31380951e-01 -1.38510466e+00 1.07600123e-01 -5.38905084e-01 -1.36313140e+00 8.05931538e-02 -1.07058895e+00 5.66301644e-01 9.68339890e-02 2.18097165e-01 -9.47409570e-01 3.95412564e-01 -4.80207801e-01 2.08897755e-01 1.85059249e-01 9.48421121e-01 -4.14613724e-01 -4.57853526e-01 2.75036246e-01 2.48336166e-01 2.18647420e-01 -1.56305179e-01 -1.46723837e-01 -3.67350310e-01 -8.06675851e-01 -2.16612756e-01 -4.34886783e-01 6.67132497e-01 7.09032655e-01 1.40296578e+00 -8.99399400e-01 -4.54005510e-01 3.76990020e-01 1.38000810e+00 6.17869079e-01 1.61112081e-02 3.98252338e-01 2.80273616e-01 4.59697247e-02 8.11202466e-01 8.95142198e-01 2.15207189e-01 6.92124009e-01 2.41956964e-01 5.87840617e-01 4.25576776e-01 -7.38375545e-01 7.80256033e-01 6.31198138e-02 1.14734404e-01 -2.31876150e-01 -5.17136574e-01 4.90672261e-01 -2.19925308e+00 -9.71168220e-01 7.08650231e-01 2.64788508e+00 1.00275826e+00 3.54858428e-01 8.00421178e-01 -5.14018774e-01 3.23660672e-01 -1.63875729e-01 -1.38666272e+00 -6.92039847e-01 2.76135117e-01 8.61744881e-02 1.19175494e+00 8.53000164e-01 -7.34210789e-01 1.08697116e+00 8.00519180e+00 8.98589671e-01 -7.56404757e-01 1.11180738e-01 3.86914849e-01 -6.04619443e-01 -2.96843886e-01 -2.64845751e-02 -1.01009905e+00 4.24611241e-01 1.11857975e+00 -7.39853263e-01 1.10083735e+00 1.09932435e+00 6.67706966e-01 -1.10359602e-01 -1.02940261e+00 5.77677131e-01 -8.97363067e-01 -1.22348702e+00 -1.56645656e-01 3.28139752e-01 8.27732801e-01 -1.71713531e-02 1.46044031e-01 7.35641837e-01 1.15293264e+00 -7.14650571e-01 7.94930160e-01 4.40042675e-01 6.04304373e-01 -1.26179826e+00 4.45818864e-02 6.27205193e-01 -8.50925684e-01 -7.87458658e-01 -4.19075221e-01 -1.85552940e-01 2.37083882e-02 -7.12578893e-02 -6.72324538e-01 9.90032256e-02 2.23542735e-01 2.07281128e-01 1.21486418e-01 8.40710700e-01 -1.61679372e-01 7.98620343e-01 -5.36906183e-01 -2.15806574e-01 5.03274083e-01 -1.91731095e-01 6.44937038e-01 7.93598115e-01 8.88070017e-02 7.71500228e-04 7.79533088e-01 6.23570383e-01 8.51242989e-02 -3.39717895e-01 -4.97276813e-01 -5.09761512e-01 7.00066388e-01 6.83123350e-01 -3.63900095e-01 -2.60024905e-01 9.94285718e-02 6.80830777e-01 6.21161103e-01 7.08202124e-01 -1.07085359e+00 9.39362217e-03 1.45356977e+00 -2.33929425e-01 4.52241242e-01 -6.07507408e-01 1.39584884e-01 -9.67878401e-01 -2.22823173e-01 -1.03126180e+00 4.40122277e-01 -1.28871664e-01 -9.32159543e-01 -2.41293125e-02 3.68362069e-01 -8.14021409e-01 -7.66861200e-01 -5.50625026e-01 -2.57748574e-01 6.06891632e-01 -1.14708674e+00 -4.25952047e-01 6.38638079e-01 3.23127717e-01 3.47230345e-01 -7.15920180e-02 4.50436503e-01 -2.37524897e-01 -5.76191723e-01 6.54437065e-01 7.73079753e-01 -3.91825676e-01 3.55133504e-01 -1.52191472e+00 2.34178945e-01 7.27467299e-01 -2.81021565e-01 3.24213654e-01 1.03353071e+00 -5.57520092e-01 -1.71836734e+00 -7.96985567e-01 -1.38431638e-01 -2.20786616e-01 8.98503125e-01 -5.51508134e-03 -6.26735210e-01 9.63048398e-01 -6.87447637e-02 -2.79935837e-01 -3.87940183e-02 8.35200399e-02 9.24144685e-03 -2.15228155e-01 -9.24856484e-01 7.98242807e-01 1.26771450e+00 -4.19608086e-01 -1.98570237e-01 4.21388566e-01 1.12643456e+00 -7.51506746e-01 -7.29843378e-01 1.31432280e-01 5.27216196e-01 -4.47149694e-01 7.69630671e-01 -1.31317639e+00 -2.12396279e-01 -1.11793922e-02 -1.54699475e-01 -1.51770055e+00 -2.25656137e-01 -1.36291111e+00 -9.49031353e-01 5.33322752e-01 1.47440046e-01 -6.84704900e-01 5.09269059e-01 6.49115741e-01 6.31355047e-02 -9.50764179e-01 -9.55253541e-01 -1.53012764e+00 5.32016754e-01 -3.78026664e-01 6.64123893e-01 2.73437560e-01 8.14286172e-02 -1.73377439e-01 -5.90170979e-01 2.17649609e-01 8.76261234e-01 3.21605712e-01 5.23426533e-01 -3.79646510e-01 -9.66188967e-01 -6.63308680e-01 4.47926462e-01 -1.59456587e+00 5.87845504e-01 -4.10030097e-01 -2.44916547e-02 -1.34050751e+00 6.69033751e-02 -4.75007415e-01 -5.09592056e-01 3.76522690e-01 8.19101650e-03 -8.82346630e-01 4.50182468e-01 8.79334956e-02 -7.98299313e-01 7.35730290e-01 1.57845867e+00 3.01966876e-01 -5.34694195e-01 2.62197196e-01 -6.15809500e-01 2.77922601e-01 9.20255065e-01 -4.40082848e-01 -8.18220258e-01 -2.50480831e-01 1.41877413e-01 7.86144078e-01 1.66125640e-01 -5.28810322e-01 -2.51853824e-01 -1.04301274e+00 -3.61952409e-02 -3.00048679e-01 -5.33084385e-03 -4.61910874e-01 -1.38165757e-01 9.46115613e-01 -9.72065449e-01 2.09286034e-01 3.29038233e-01 1.16199696e+00 5.79966962e-01 1.96621586e-02 9.51549709e-01 -7.90119469e-02 -7.66851068e-01 7.27079988e-01 -6.35397553e-01 4.87599313e-01 1.08881497e+00 3.72531116e-01 -2.02352241e-01 -6.42790556e-01 -8.97414804e-01 7.88610578e-01 3.63948971e-01 2.15926468e-01 2.90836960e-01 -1.10650718e+00 -3.39200467e-01 -2.73334205e-01 -2.65453458e-01 -6.47940397e-01 5.62093966e-02 4.33360964e-01 -3.26241702e-02 4.96659756e-01 -1.08016312e-01 -1.00753881e-01 -7.91661203e-01 7.96023488e-01 8.31046700e-01 -5.53404391e-01 -5.68652213e-01 3.14131826e-01 -5.20388000e-02 -8.15373585e-02 4.67195481e-01 -5.53179502e-01 3.41524690e-01 -4.45697486e-01 4.06350493e-01 5.54559708e-01 -5.20636141e-01 1.55538216e-01 -1.43319413e-01 -1.79485288e-02 1.36442319e-03 -7.12742269e-01 9.01274204e-01 -1.82713687e-01 4.93583739e-01 3.78777385e-01 9.12241638e-01 -5.60911953e-01 -2.23718071e+00 -3.13090920e-01 3.27842273e-02 -4.45261836e-01 8.46128538e-02 -8.40665996e-01 -5.96224785e-01 4.39479858e-01 7.37582624e-01 2.02727035e-01 7.28175044e-01 -2.03778297e-01 5.75142503e-01 8.48492324e-01 7.21995533e-01 -1.57970178e+00 -3.51306088e-02 8.03958535e-01 6.67759717e-01 -7.83407211e-01 -1.14855126e-01 4.96342897e-01 -9.41641390e-01 8.75524342e-01 6.88660026e-01 -4.11436975e-01 3.82858902e-01 4.64182526e-01 -3.39053184e-01 3.73841375e-01 -1.39433300e+00 -5.45419753e-01 -1.75302029e-01 6.52570188e-01 -1.17048167e-01 5.16929567e-01 -2.86851197e-01 3.08984280e-01 8.60603750e-02 1.77000642e-01 3.26256514e-01 9.99856651e-01 -8.63101363e-01 -1.07796741e+00 -1.29429802e-01 3.62399161e-01 -4.50698078e-01 4.31104302e-01 1.37773156e-01 8.30994666e-01 -6.16332650e-01 6.37935698e-01 2.37467021e-01 -1.08534567e-01 2.54914314e-01 4.81127063e-03 1.13102973e+00 -2.93515056e-01 -3.22842866e-01 1.17442153e-01 7.61374161e-02 -9.09911096e-01 2.15840772e-01 -4.85713601e-01 -1.39447641e+00 -6.39095962e-01 1.08673550e-01 1.57988206e-01 2.55812556e-01 1.07905722e+00 6.08313859e-01 3.90215963e-01 9.39507484e-01 -4.28314060e-01 -1.84786069e+00 -5.69026232e-01 -7.17270315e-01 1.90841764e-01 7.08100498e-01 -8.98181736e-01 -2.54255623e-01 -4.54358488e-01]
[4.089269638061523, 2.3319191932678223]
b39b6e50-3dfc-4a8f-8c7a-ba0f2087cb16
a-configuration-space-decomposition-scheme
1911.08581
null
https://arxiv.org/abs/1911.08581v1
https://arxiv.org/pdf/1911.08581v1.pdf
A Configuration-Space Decomposition Scheme for Learning-based Collision Checking
Motion planning for robots of high degrees-of-freedom (DOFs) is an important problem in robotics with sampling-based methods in configuration space C as one popular solution. Recently, machine learning methods have been introduced into sampling-based motion planning methods, which train a classifier to distinguish collision free subspace from in-collision subspace in C. In this paper, we propose a novel configuration space decomposition method and show two nice properties resulted from this decomposition. Using these two properties, we build a composite classifier that works compatibly with previous machine learning methods by using them as the elementary classifiers. Experimental results are presented, showing that our composite classifier outperforms state-of-the-art single classifier methods by a large margin. A real application of motion planning in a multi-robot system in plant phenotyping using three UR5 robotic arms is also presented.
['Yong-Jin Liu', 'Yiheng Han', 'Wang Zhao', 'Ran Yi', 'Jia Pan', 'Zipeng Ye']
2019-11-17
null
null
null
null
['plant-phenotyping']
['computer-vision']
[ 1.52633205e-01 1.40437752e-01 -4.85023677e-01 7.63437226e-02 -6.95805103e-02 -5.59109688e-01 4.98010457e-01 4.79009040e-02 -3.10063586e-02 5.18500686e-01 -5.30544341e-01 -4.45051044e-01 -6.89183354e-01 -6.80044889e-01 -5.51070213e-01 -1.06552088e+00 -2.08869979e-01 9.40236866e-01 4.33445007e-01 -4.55680281e-01 3.78595263e-01 9.45180595e-01 -1.51871943e+00 6.14796579e-02 7.27796078e-01 4.31787282e-01 7.55477846e-01 6.52642369e-01 1.76118717e-01 4.56585884e-01 -1.56383798e-01 5.00624239e-01 2.61972517e-01 -3.21290165e-01 -1.17666674e+00 3.10815245e-01 -2.11049840e-01 2.29414806e-01 1.50807619e-01 6.55333579e-01 2.74416715e-01 7.76062310e-02 1.01199663e+00 -1.49843252e+00 7.73851350e-02 6.19334936e-01 -4.64713573e-01 -7.38842547e-01 4.89433765e-01 -1.53437793e-01 6.73394740e-01 -6.69271827e-01 1.08766448e+00 1.30241692e+00 7.22010612e-01 4.33721483e-01 -1.25915968e+00 7.44391009e-02 -1.18095130e-01 4.79272664e-01 -1.13029075e+00 1.71342298e-01 8.38664114e-01 -6.03477895e-01 9.24228668e-01 2.77329504e-01 6.12668335e-01 6.79102242e-01 5.90006173e-01 8.34101379e-01 8.58738661e-01 -8.35913062e-01 5.91093302e-01 -2.63880819e-01 -4.81780022e-02 7.90559471e-01 2.40939543e-01 1.27372518e-02 3.92039865e-01 -1.68166935e-01 1.02101731e+00 -1.11493811e-01 -1.41399667e-01 -1.46198905e+00 -1.37974358e+00 9.48723793e-01 3.95030379e-01 3.96015823e-01 -3.17171998e-02 -3.10803410e-02 1.81688607e-01 -5.38004115e-02 -2.19946653e-01 6.91807687e-01 -8.07054996e-01 2.01969206e-01 -4.53023046e-01 5.99589050e-01 1.11953473e+00 1.41580737e+00 5.53421915e-01 -3.08798015e-01 3.16998631e-01 5.51617384e-01 2.27978304e-01 2.46025711e-01 4.87722486e-01 -1.13916588e+00 -1.11670889e-01 7.26209223e-01 1.85039401e-01 -8.18574846e-01 -9.04665768e-01 1.59241915e-01 -1.00306737e+00 5.25901675e-01 4.59241003e-01 1.23156182e-01 -5.70298195e-01 1.27942610e+00 6.16859853e-01 -3.81907314e-01 7.12779984e-02 7.24035800e-01 9.47885141e-02 3.73644859e-01 -3.17791671e-01 -2.35286608e-01 1.11749184e+00 -9.90860045e-01 -3.01727265e-01 2.82176673e-01 9.54654276e-01 -6.84113383e-01 4.53057617e-01 8.52956116e-01 -4.41784859e-01 -6.86092317e-01 -1.20391190e+00 3.85311365e-01 -3.47201288e-01 7.18824506e-01 8.93774092e-01 3.64257514e-01 -5.49733281e-01 1.39903677e+00 -1.02171946e+00 -7.59292245e-01 8.81121308e-02 3.39317858e-01 -5.56804478e-01 9.34869722e-02 -4.76830810e-01 1.30610955e+00 5.85174978e-01 -2.42738705e-03 -8.33439767e-01 -1.02637798e-01 -6.49312556e-01 -3.86994749e-01 4.24058080e-01 -3.90574574e-01 1.31934142e+00 -1.43985510e-01 -1.87544048e+00 4.64892387e-01 2.94364959e-01 8.04330111e-02 4.17034298e-01 -3.76820266e-02 -9.73180160e-02 9.86527205e-02 -5.15546137e-03 7.29734659e-01 8.17256272e-01 -1.18052411e+00 -6.35616362e-01 -4.53485578e-01 -1.36737138e-01 -2.07963996e-02 3.10825497e-01 -4.07355338e-01 1.99058354e-01 -2.12037787e-01 8.52622151e-01 -1.44534254e+00 -7.89323032e-01 1.23860836e-01 -6.39944255e-01 -6.38235450e-01 1.11074829e+00 1.08536795e-01 4.31298554e-01 -1.51737773e+00 8.84665668e-01 -9.19903740e-02 -1.62644193e-01 2.57120579e-01 -2.16828033e-01 5.86140871e-01 -2.90940791e-01 -2.05710381e-01 -2.95124799e-01 1.96258500e-01 -2.29948565e-01 4.81223404e-01 -9.14270580e-02 6.92162514e-01 5.52728176e-01 2.81966418e-01 -9.63091016e-01 -4.01509196e-01 5.06250501e-01 -1.44372955e-01 -3.10487658e-01 -6.27820753e-03 -4.79770690e-01 6.13632560e-01 -6.37128532e-01 7.39296019e-01 9.50157642e-01 2.90918976e-01 4.41694558e-01 -5.01143709e-02 -5.23423314e-01 -2.60933906e-01 -1.40813804e+00 2.02856541e+00 -1.18758284e-01 1.71497405e-01 1.86881036e-01 -1.61178255e+00 1.18760407e+00 7.86985084e-02 8.75046849e-01 4.95739400e-01 1.76195785e-01 2.68789560e-01 4.66021895e-02 -6.30179405e-01 2.61468500e-01 3.69211912e-01 -2.17102498e-01 -7.68532902e-02 2.66977847e-01 -8.98972154e-01 2.26204917e-01 -2.95844555e-01 1.16281140e+00 8.70722353e-01 7.22419143e-01 -6.14683270e-01 7.50678718e-01 5.37622929e-01 7.16172397e-01 4.29293931e-01 -2.68864065e-01 6.05200946e-01 5.15420735e-01 -5.79626143e-01 -1.15283787e+00 -5.63295424e-01 -4.13585633e-01 4.19972926e-01 2.96965301e-01 -2.88686872e-01 -6.02816105e-01 -5.74477971e-01 3.06716114e-01 3.68099809e-01 -2.65943170e-01 -5.76830730e-02 -7.11190939e-01 -7.08522737e-01 3.89281839e-01 4.18862820e-01 2.16904283e-01 -1.01231289e+00 -1.10666680e+00 4.10046041e-01 -4.51998552e-03 -1.11476803e+00 5.13344049e-01 6.18245542e-01 -1.21172833e+00 -1.42804921e+00 -6.77907705e-01 -1.03116405e+00 5.09793222e-01 6.16398692e-01 6.32121444e-01 -2.60772407e-01 -7.02095628e-01 5.79130054e-02 -7.58214056e-01 -5.91104031e-01 -6.81385458e-01 3.18179727e-01 3.53035688e-01 -7.42757082e-01 4.31644581e-02 -5.75591981e-01 -3.59497145e-02 8.04315567e-01 -4.81925935e-01 1.14138484e-01 9.40841615e-01 1.06226408e+00 6.76499903e-01 1.08510539e-01 4.56999481e-01 -4.95301306e-01 -6.13201782e-02 -4.97735888e-01 -9.47772741e-01 2.97447115e-01 -5.76616168e-01 2.82977492e-01 6.62925661e-01 -5.74890196e-01 -5.79263628e-01 1.11514890e+00 1.99740991e-01 -2.96471834e-01 -8.46822262e-01 4.37178671e-01 -4.31893498e-01 -2.05521926e-01 6.55973494e-01 -1.15140624e-01 3.37467939e-01 -5.60945153e-01 6.45142734e-01 5.96492469e-01 5.41347861e-01 -6.10023081e-01 6.57418132e-01 3.54674011e-01 9.89441872e-01 -1.15448642e+00 -9.31893513e-02 -8.14339638e-01 -1.43450773e+00 -2.22332537e-01 7.60242999e-01 -4.38689291e-01 -8.80765438e-01 5.61714292e-01 -1.39366794e+00 -1.82271630e-01 -2.63958573e-01 7.20045567e-01 -1.31732798e+00 4.95626271e-01 -3.15415472e-01 -8.32557738e-01 4.59671803e-02 -1.45784593e+00 1.12939405e+00 1.10583052e-01 -1.06260199e-02 -4.82804596e-01 3.52669597e-01 -1.95280001e-01 1.79555686e-03 8.16685200e-01 1.00907815e+00 -4.52904493e-01 -5.06528795e-01 -4.13288802e-01 2.92821705e-01 -1.67992562e-01 7.44820386e-02 4.14997935e-01 -6.23187780e-01 -2.15405867e-01 1.71391129e-01 -2.73748785e-01 5.78350961e-01 5.09803832e-01 1.06395197e+00 2.05769897e-01 -9.69764829e-01 3.59358996e-01 1.49521875e+00 2.48768002e-01 5.65003574e-01 3.41626883e-01 6.37140095e-01 9.19799626e-01 1.23120201e+00 4.22475398e-01 -2.18232855e-01 1.01427460e+00 7.88137794e-01 3.74018133e-01 2.86399037e-01 1.13026388e-01 2.14854687e-01 6.45785987e-01 -2.87760407e-01 1.05804041e-01 -9.52757120e-01 3.35588098e-01 -2.40262103e+00 -8.37590873e-01 -6.54074192e-01 1.96741009e+00 4.35134441e-01 -1.88075334e-01 2.53120095e-01 7.05343246e-01 7.00115144e-01 -4.45926338e-01 -4.14582133e-01 -3.62547576e-01 8.13180115e-03 -7.70189762e-02 5.41692615e-01 1.80940121e-01 -1.64345348e+00 9.01364326e-01 6.00977278e+00 8.20040882e-01 -8.31881523e-01 -4.53974992e-01 -2.04264477e-01 7.19051719e-01 3.71468514e-01 4.40558046e-01 -9.01130915e-01 -1.12849981e-01 5.22022545e-01 3.52044612e-01 2.23012775e-01 1.55890906e+00 -1.08688489e-01 -3.55289340e-01 -1.22450960e+00 7.37727761e-01 -1.52097151e-01 -1.14928615e+00 -1.97077662e-01 1.43144861e-01 6.48230851e-01 -2.34603122e-01 -4.62696671e-01 1.21846594e-01 2.96259791e-01 -8.24700952e-01 7.38682032e-01 2.92636216e-01 5.38593650e-01 -6.06444180e-01 6.12015486e-01 8.89719188e-01 -1.47110748e+00 -3.51205200e-01 -9.89546955e-01 -2.31533051e-01 8.59188884e-02 8.24995816e-01 -1.20678520e+00 1.29733193e+00 3.42955381e-01 6.88889503e-01 -4.45474178e-01 1.19232571e+00 -1.66541740e-01 1.05843976e-01 -2.42835045e-01 -4.35745418e-01 4.59369905e-02 -3.94650817e-01 9.52784419e-01 9.38091099e-01 4.51841623e-01 -1.05889915e-02 4.18981850e-01 9.26727295e-01 8.10681999e-01 -7.35247284e-02 -1.12145019e+00 2.09895313e-01 2.82818973e-01 1.76054657e+00 -1.11344433e+00 2.94843107e-01 6.77536204e-02 7.70491302e-01 6.22352026e-02 -4.62823927e-01 -5.46598375e-01 -6.57226861e-01 3.70163918e-01 -3.55327189e-01 5.60948670e-01 -6.75810039e-01 -2.37554498e-02 -8.19541514e-01 -2.55996346e-01 -4.48887259e-01 -1.44302040e-01 -6.74882710e-01 -8.61920297e-01 2.72448361e-01 4.73590523e-01 -1.78303552e+00 -6.88104272e-01 -1.49269295e+00 -4.83281195e-01 4.27968711e-01 -8.66580367e-01 -1.38606966e+00 -3.75077099e-01 1.95171729e-01 6.76224172e-01 -3.91730994e-01 1.45148647e+00 -4.61321026e-01 -5.10960519e-01 -5.84820658e-02 3.10512751e-01 -2.53605276e-01 5.30437827e-01 -1.50425637e+00 1.52447104e-01 5.58854282e-01 -3.61888371e-02 2.07008585e-01 6.24640763e-01 -7.09800124e-01 -1.96926725e+00 -1.13739026e+00 4.37048852e-01 -5.49804211e-01 2.29886100e-01 -1.11756824e-01 -4.48594391e-01 2.95704186e-01 -1.78674400e-01 -1.25241846e-01 8.58571902e-02 -1.01433918e-01 6.73498958e-02 1.72420174e-01 -1.29412830e+00 4.28441644e-01 1.03016841e+00 1.34059921e-01 -4.61780161e-01 5.97668529e-01 6.60338938e-01 -4.61570174e-01 -9.80781436e-01 8.43559504e-01 6.33336067e-01 -3.51311296e-01 9.54171777e-01 -6.37587428e-01 1.63447753e-01 -5.79944909e-01 -1.27048776e-01 -1.40530825e+00 -6.86697841e-01 -8.95163894e-01 1.20059341e-01 1.00035584e+00 6.31323531e-02 -2.84860939e-01 7.35434115e-01 -2.53790945e-01 -4.41459388e-01 -7.65193284e-01 -7.31272757e-01 -1.26086605e+00 4.88603413e-01 -3.65330316e-02 3.71024609e-01 1.01855183e+00 7.16683745e-01 3.82142633e-01 8.41328800e-02 9.48792920e-02 4.86579061e-01 2.93574750e-01 8.83506298e-01 -1.79662406e+00 -1.83201686e-01 -3.03443521e-01 -7.39456534e-01 -8.15850317e-01 3.03350985e-01 -9.69101012e-01 5.00016391e-01 -1.21649897e+00 -7.46005401e-02 -6.82961404e-01 5.18367052e-01 4.53017026e-01 3.59296620e-01 -7.57669568e-01 6.59771040e-02 3.78126264e-01 -1.95219919e-01 4.08870310e-01 1.25550687e+00 -6.14813417e-02 -3.53446305e-01 3.88288677e-01 5.94062321e-02 9.45219874e-01 1.02674961e+00 -3.78098071e-01 -2.35247850e-01 7.09654465e-02 -2.45910555e-01 1.57830164e-01 1.58332646e-01 -1.49017310e+00 1.68496504e-01 -4.98075157e-01 3.12624127e-01 -1.00627398e+00 1.71394616e-01 -8.25968981e-01 2.96983987e-01 1.01444161e+00 -1.22023664e-01 8.73120725e-02 7.28948042e-02 6.97066367e-01 1.61358237e-01 -8.15009773e-01 8.18465829e-01 -2.68120706e-01 -7.94223011e-01 -5.83165698e-02 -7.17412233e-01 -7.63813734e-01 1.34272921e+00 3.71616557e-02 -3.43687892e-01 2.13295296e-01 -7.89071441e-01 -1.28745334e-02 5.31354606e-01 3.35415751e-01 5.31034231e-01 -1.33415496e+00 -5.83557546e-01 9.33131650e-02 2.16600254e-01 3.53326797e-01 -3.42458457e-01 8.94316018e-01 -1.05044901e+00 7.49963224e-01 -7.18918204e-01 -1.27692544e+00 -1.05561209e+00 9.02794302e-01 -1.16565302e-01 -1.54498205e-01 -3.95075113e-01 4.07970130e-01 -4.35189724e-01 -1.08739722e+00 1.46864830e-02 -8.99097979e-01 -4.66372162e-01 -2.81176955e-01 -3.58054526e-02 7.12480843e-01 2.35920087e-01 -5.74981868e-01 -5.09642661e-01 9.34318423e-01 5.19610047e-01 -2.31633931e-01 1.35459018e+00 2.61144727e-01 -2.61120975e-01 3.19260478e-01 8.19212258e-01 -4.53882843e-01 -8.71942699e-01 4.92207676e-01 4.27987695e-01 -1.92363635e-01 -5.26614249e-01 -3.48681539e-01 -4.96443063e-01 6.90182865e-01 6.06185496e-01 4.15298462e-01 9.72357154e-01 -6.23566769e-02 -2.06963494e-02 1.02762604e+00 9.84576464e-01 -9.53377724e-01 -1.39733115e-02 7.23537683e-01 1.18440759e+00 -1.05341220e+00 1.17631324e-01 -1.01681614e+00 -4.28879410e-01 1.59590948e+00 4.51036185e-01 -5.38261712e-01 7.17040896e-01 3.22308511e-01 -3.90947342e-01 2.25507900e-01 -6.73227727e-01 -2.54397333e-01 -9.95062888e-02 1.23495460e+00 2.36332297e-01 4.54652488e-01 -5.61184108e-01 4.68010694e-01 -8.03854764e-02 7.56988488e-03 8.56956542e-01 1.38936758e+00 -8.13898027e-01 -1.58770025e+00 -5.75025082e-01 -4.63506728e-02 2.71826088e-01 8.16730082e-01 -5.18060386e-01 1.09503901e+00 3.36428046e-01 9.98199999e-01 -2.06051648e-01 -7.60538638e-01 3.54207486e-01 7.72100836e-02 8.81354451e-01 -5.42840242e-01 -5.11835283e-03 4.25102375e-02 -7.10543711e-03 -8.01615417e-01 -4.12379920e-01 -1.06734407e+00 -1.33537197e+00 2.08814070e-01 -9.57307041e-01 -8.59971344e-02 1.07621861e+00 8.25643241e-01 2.51270413e-01 2.73593038e-01 7.97753513e-01 -1.39849102e+00 -1.11576724e+00 -1.06615984e+00 -6.03734076e-01 8.19305256e-02 -3.13339941e-02 -1.00978422e+00 -1.09926276e-01 3.24517265e-02]
[4.876671314239502, 1.266391396522522]
3116a91b-ae33-4d1b-a05d-10fb24d7bd2b
characterization-of-lung-nodule-malignancy
1609.06668
null
http://arxiv.org/abs/1609.06668v1
http://arxiv.org/pdf/1609.06668v1.pdf
Characterization of Lung Nodule Malignancy using Hybrid Shape and Appearance Features
Computed tomography imaging is a standard modality for detecting and assessing lung cancer. In order to evaluate the malignancy of lung nodules, clinical practice often involves expert qualitative ratings on several criteria describing a nodule's appearance and shape. Translating these features for computer-aided diagnostics is challenging due to their subjective nature and the difficulties in gaining a complete description. In this paper, we propose a computerized approach to quantitatively evaluate both appearance distinctions and 3D surface variations. Nodule shape was modeled and parameterized using spherical harmonics, and appearance features were extracted using deep convolutional neural networks. Both sets of features were combined to estimate the nodule malignancy using a random forest classifier. The proposed algorithm was tested on the publicly available Lung Image Database Consortium dataset, achieving high accuracy. By providing lung nodule characterization, this method can provide a robust alternative reference opinion for lung cancer diagnosis.
['Daniel J. Mollura', 'Ulas Bagci', 'Mingchen Gao', 'Ziyue Xu', 'Aaron Wu', 'Mario Buty']
2016-09-21
null
null
null
null
['lung-cancer-diagnosis']
['medical']
[ 1.43751279e-01 2.55852610e-01 -3.98265153e-01 -3.16324174e-01 -9.82202411e-01 -6.23822510e-01 4.77057785e-01 2.72908628e-01 -1.94761589e-01 2.60155529e-01 1.20463610e-01 -4.59596306e-01 -2.03472357e-02 -6.86487317e-01 -5.12131974e-02 -6.91732049e-01 1.20887928e-01 9.67142582e-01 3.48477006e-01 2.77361244e-01 -1.42729774e-01 1.00035977e+00 -1.19174445e+00 3.62257600e-01 6.37971580e-01 1.35519171e+00 3.16763073e-01 7.51508713e-01 -4.71759364e-02 6.38221920e-01 3.05813015e-03 -9.15819779e-02 3.47966999e-01 -4.29117382e-01 -7.65260696e-01 3.65060896e-01 3.97320241e-01 -5.48655212e-01 -6.88466653e-02 6.63230598e-01 3.62491935e-01 -4.98829126e-01 1.24914742e+00 -7.00040758e-01 -3.16029966e-01 1.59681007e-01 -1.03587866e-01 2.01613590e-01 5.96340485e-02 2.01488018e-01 9.20208693e-01 -1.00618207e+00 3.36521417e-01 5.94897568e-01 8.57105076e-01 4.39591825e-01 -8.85675907e-01 -1.67169273e-01 -7.16358304e-01 4.93867956e-02 -1.28664076e+00 1.74783785e-02 4.24733400e-01 -8.47480953e-01 4.31462348e-01 5.27917564e-01 1.07266998e+00 5.28489888e-01 2.37034798e-01 4.48635191e-01 1.13283324e+00 -2.73992568e-01 1.34772301e-01 4.42725271e-01 -3.55788648e-01 1.23598444e+00 6.30423665e-01 1.33987591e-01 3.98255855e-01 -4.25954372e-01 1.09533155e+00 2.27640450e-01 -2.29573801e-01 -6.41986907e-01 -1.33561015e+00 8.29740047e-01 7.99456298e-01 4.90188509e-01 -6.25054657e-01 2.57580161e-01 1.28402352e-01 -3.15765977e-01 1.85030818e-01 3.88016522e-01 -9.25990418e-02 2.16918290e-01 -9.47821736e-01 -2.37153873e-01 8.14527869e-01 2.53503621e-01 3.94449592e-01 -2.71103591e-01 -6.05662107e-01 6.88107729e-01 5.00891805e-01 5.25016069e-01 7.69559562e-01 -8.54602337e-01 -3.20480078e-01 7.35135972e-01 -3.72289978e-02 -7.08196521e-01 -5.74409604e-01 -4.37003911e-01 -9.88525569e-01 4.05632257e-01 5.20758927e-01 3.26076120e-01 -1.10000587e+00 1.00709677e+00 2.89886594e-01 -1.45086318e-01 -4.11569059e-01 9.28864777e-01 1.18993211e+00 -1.04155168e-01 5.72951920e-02 1.00110963e-01 1.69136190e+00 -8.94538164e-01 -2.44543523e-01 1.59741670e-01 6.51059866e-01 -6.46582723e-01 8.40525508e-01 -8.41796212e-03 -1.07756329e+00 -3.16844761e-01 -7.84479976e-01 1.16573721e-01 -6.86352188e-03 8.31706345e-01 4.53783125e-01 8.49110544e-01 -1.21614873e+00 3.95297855e-01 -1.19324875e+00 -5.96894860e-01 6.49794459e-01 4.72306192e-01 -3.07232141e-01 9.49627087e-02 -7.75765359e-01 1.00398612e+00 2.27817893e-01 -2.68004108e-02 -7.85021305e-01 -7.53322124e-01 -4.72788304e-01 1.33335710e-01 5.67429401e-02 -1.08323765e+00 1.64581847e+00 -7.14770555e-01 -1.33723474e+00 1.19426751e+00 -1.79535598e-01 -2.77824342e-01 7.54691243e-01 5.94987690e-01 -9.42218453e-02 4.70122933e-01 -5.28143868e-02 3.63145858e-01 9.24333096e-01 -1.00588810e+00 -5.53806841e-01 -3.12185943e-01 -3.55891466e-01 2.01313093e-01 -2.18073025e-01 -3.14176500e-01 -4.42972124e-01 -3.67618144e-01 3.37743163e-01 -1.07468855e+00 -4.24781978e-01 7.31761634e-01 -2.68086523e-01 -1.59963056e-01 6.86801434e-01 -6.63409829e-01 8.70365858e-01 -1.79892492e+00 -3.02382082e-01 4.38647211e-01 8.36407602e-01 2.22370371e-01 2.49800771e-01 -6.50401264e-02 1.42773926e-01 4.66247112e-01 -1.39280483e-01 2.68099099e-01 -2.14552149e-01 -2.27659047e-01 5.76210499e-01 4.53677237e-01 4.49084222e-01 1.39505434e+00 -6.55087590e-01 -8.50151062e-01 4.48563933e-01 6.76547706e-01 -3.17567676e-01 2.63062477e-01 2.79399659e-02 3.33216548e-01 -6.77973509e-01 8.54398012e-01 2.31095746e-01 -8.20005238e-01 1.48293242e-01 -5.42012095e-01 3.03875208e-01 3.61828953e-02 -6.14221931e-01 9.24639404e-01 -7.08401501e-01 5.16955316e-01 -2.62118317e-03 -4.75455284e-01 6.39566362e-01 6.51293278e-01 7.75223255e-01 -1.33172631e-01 2.99925208e-01 5.22318244e-01 3.70496035e-01 -6.13065302e-01 -2.08208784e-01 -4.12058234e-01 4.45998430e-01 5.73580801e-01 -3.07338774e-01 -7.38114059e-01 7.36630559e-02 -2.19866708e-01 1.43519378e+00 -3.58571410e-01 9.00952816e-01 -2.90358692e-01 5.79811692e-01 2.89984316e-01 -1.50031775e-01 4.58769202e-01 -4.56826895e-01 1.01220214e+00 2.64463007e-01 -4.92318392e-01 -1.01748180e+00 -1.19049942e+00 -4.43931222e-01 3.76904100e-01 -2.25544974e-01 3.00287426e-01 -4.37103033e-01 -8.90488565e-01 9.51195136e-02 3.00920814e-01 -1.02501667e+00 8.89752712e-03 -3.25667948e-01 -4.88672793e-01 3.11448783e-01 7.11887002e-01 2.73423880e-01 -9.49974597e-01 -7.02824295e-01 1.03127755e-01 -2.27434427e-01 -7.07692981e-01 -4.73794132e-01 3.39156210e-01 -9.79961216e-01 -1.46172404e+00 -1.11162221e+00 -8.29326332e-01 1.09060860e+00 4.08174336e-01 1.27975297e+00 4.99447763e-01 -9.61695731e-01 4.79081869e-01 -1.78180486e-02 -2.65443921e-01 -8.74261022e-01 5.66755533e-02 -3.63945723e-01 -3.65150124e-01 1.07326567e-01 -1.36408642e-01 -9.27160084e-01 3.42263222e-01 -9.67101872e-01 -1.58026844e-01 1.38256645e+00 7.50714719e-01 7.88115203e-01 3.61401401e-02 3.84206399e-02 -9.58693922e-01 5.22800267e-01 -4.95075315e-01 -1.62752151e-01 1.86561987e-01 -4.97182757e-01 -6.70590550e-02 4.00659561e-01 -2.31594965e-01 -9.79351699e-01 2.09072798e-01 9.78499055e-02 -2.83714920e-01 -3.80792052e-01 6.61822796e-01 3.47338825e-01 -3.28257382e-01 9.05467153e-01 8.40552747e-02 2.89900631e-01 1.01018317e-01 -4.24161255e-02 5.32671332e-01 3.51149678e-01 -5.28582092e-03 1.20483458e+00 6.65760398e-01 2.81018674e-01 -7.08909512e-01 -8.46322179e-01 -9.86516297e-01 -9.62006450e-01 -2.56001294e-01 9.33756709e-01 -7.65353322e-01 -3.24385881e-01 6.07739575e-02 -7.11776137e-01 -1.63497239e-01 -3.88185948e-01 6.80132985e-01 -5.29827952e-01 3.35147709e-01 -4.24733877e-01 -5.10630488e-01 -3.84020090e-01 -1.08279634e+00 1.24930024e+00 5.94625808e-02 -3.71902406e-01 -1.18651414e+00 1.72438323e-01 5.46804130e-01 9.29359794e-01 1.41388863e-01 1.09025800e+00 -8.11784267e-01 -5.25623202e-01 -7.12416410e-01 -6.07511342e-01 9.36023295e-02 6.60751939e-01 2.75437593e-01 -8.97201061e-01 -1.51934549e-01 6.55357018e-02 -4.33136672e-01 8.07621539e-01 6.88205421e-01 1.34554696e+00 -4.58511300e-02 -5.48187435e-01 4.86906141e-01 1.48505127e+00 1.54457167e-02 2.52581775e-01 7.52068684e-02 5.15739918e-01 2.80417353e-01 3.24126244e-01 3.95342052e-01 -7.44780898e-03 3.18210095e-01 7.12356806e-01 -3.85648042e-01 -4.49745625e-01 1.05661884e-01 -2.59705812e-01 5.86558282e-01 -4.09793496e-01 -6.85341358e-02 -1.24685836e+00 3.43335301e-01 -1.09076858e+00 -8.29556763e-01 -2.71707892e-01 2.03141594e+00 5.36753953e-01 -2.49136630e-02 7.14725405e-02 -1.24809466e-01 6.67438686e-01 -2.95467913e-01 -4.95344251e-01 1.83883846e-01 2.66870320e-01 6.53361827e-02 4.32033002e-01 4.69535515e-02 -1.14233148e+00 1.37703568e-01 7.04942083e+00 6.60689354e-01 -1.49295843e+00 -4.26620021e-02 8.80119801e-01 3.36157590e-01 -2.48644471e-01 -4.25100148e-01 -3.02854955e-01 -4.80900109e-02 4.97240692e-01 -2.51222283e-01 4.74746302e-02 7.49955416e-01 2.65110821e-01 -1.03272095e-01 -1.19320619e+00 6.18893445e-01 5.04003838e-02 -1.35937774e+00 -2.94445474e-02 1.86905473e-01 6.13491297e-01 3.29957634e-01 2.88322628e-01 7.24870265e-02 7.76896626e-02 -1.42646801e+00 1.26326010e-01 5.70147514e-01 1.14144719e+00 -1.58558369e-01 1.04820752e+00 2.02053621e-01 -1.40407276e+00 1.75928444e-01 -1.12748280e-01 5.95242679e-01 -3.52347046e-01 4.81383741e-01 -1.97362006e+00 2.83233047e-01 5.91327786e-01 2.79867232e-01 -9.90332484e-01 1.38561916e+00 2.30460986e-01 7.37725437e-01 -4.29044783e-01 -3.52123350e-01 -4.15145084e-02 -1.13413900e-01 2.13585168e-01 1.02964926e+00 7.22242475e-01 -7.51556903e-02 1.31681368e-01 1.09748054e+00 7.66779333e-02 3.36280227e-01 -4.07727659e-01 -4.54861224e-01 2.98528910e-01 1.78461981e+00 -1.25126719e+00 -2.80508041e-01 -4.86942977e-01 6.95984542e-01 9.90937427e-02 8.01175120e-05 -8.16789925e-01 2.15455830e-01 -8.79260153e-02 7.31132805e-01 3.08294713e-01 2.18315169e-01 -8.85704160e-02 -8.55731606e-01 -1.67688489e-01 -5.32301843e-01 1.25560999e-01 -7.75392830e-01 -1.33246374e+00 8.11273873e-01 -1.90855622e-01 -1.48175633e+00 -3.26698840e-01 -8.86845171e-01 -9.30990219e-01 6.81673050e-01 -1.18477499e+00 -1.34815693e+00 -8.88849914e-01 4.95420471e-02 3.16265672e-01 -2.05493718e-01 9.68914032e-01 -8.62614661e-02 -8.89390334e-02 1.85117707e-01 1.25536650e-01 3.10863685e-02 5.99037826e-01 -1.58491731e+00 -1.48886636e-01 -8.03321227e-02 -1.20628014e-01 7.38285109e-02 3.80885929e-01 -4.97915447e-01 -1.09770346e+00 -1.42918456e+00 5.37705719e-01 -5.40378571e-01 6.84482932e-01 4.21541125e-01 -7.95497715e-01 3.24323952e-01 -2.51100630e-01 6.00320697e-01 8.77226353e-01 -4.93037283e-01 -3.17835286e-02 3.13620031e-01 -1.34709716e+00 2.96253055e-01 3.58125538e-01 -3.55343372e-01 -2.31452629e-01 5.14413297e-01 -4.41092886e-02 -1.25893950e-01 -1.14877033e+00 6.71383560e-01 6.85034394e-01 -1.10759783e+00 8.66449893e-01 -2.50464201e-01 4.46194142e-01 -1.02307342e-01 8.80878121e-02 -1.10157013e+00 -7.83827484e-01 2.26954728e-01 2.77604073e-01 3.04837644e-01 6.13248348e-01 -3.41410398e-01 1.43288064e+00 3.53269428e-01 1.26883402e-01 -1.14349818e+00 -7.28080094e-01 -5.27620137e-01 1.39665574e-01 -1.53592065e-01 2.08670065e-01 4.95372325e-01 -4.07416493e-01 -1.80522233e-01 5.22214890e-01 -3.41222100e-02 4.11603749e-01 7.72918612e-02 3.15483004e-01 -1.61944437e+00 -3.19353193e-01 -9.03219879e-01 -6.32962167e-01 -4.38511580e-01 -1.44126818e-01 -1.33339369e+00 5.26469387e-02 -1.89386296e+00 8.41839910e-01 -3.29643250e-01 -3.53104085e-01 1.64766997e-01 -2.10789233e-01 6.82369232e-01 -2.52319425e-01 5.31620681e-01 -2.32431367e-01 1.38340697e-01 1.54064977e+00 -2.70465255e-01 2.37260073e-01 5.87474942e-01 -4.03449118e-01 8.94635260e-01 9.84343112e-01 -2.54125088e-01 -2.11272940e-01 1.88905336e-02 -1.76322103e-01 2.47734889e-01 6.92135990e-01 -1.13808370e+00 3.33239026e-02 -1.19944833e-01 7.55722463e-01 -7.94772387e-01 3.78717661e-01 -1.14728224e+00 2.68021911e-01 1.08377886e+00 -3.50240082e-01 -4.66481894e-01 -6.29560575e-02 6.59116387e-01 -2.99600750e-01 -4.59845096e-01 1.01939869e+00 -3.96454662e-01 -1.07873306e-01 7.16052473e-01 -7.60265350e-01 -2.15963811e-01 1.18133593e+00 -4.40869093e-01 1.71807960e-01 -5.86210191e-01 -8.52937996e-01 -2.45156974e-01 5.76821029e-01 -2.10641250e-01 6.69941962e-01 -1.58361197e+00 -9.64018524e-01 1.24710456e-01 3.43687594e-01 5.43173328e-02 -7.45850429e-02 1.30485010e+00 -1.09246337e+00 7.48319745e-01 -7.73840025e-02 -9.80372906e-01 -1.42515612e+00 1.81363061e-01 9.20538604e-01 -6.75473750e-01 -1.17927074e-01 7.55279839e-01 3.00561637e-01 -5.15042067e-01 9.18732062e-02 -5.91041565e-01 -2.47255370e-01 -2.46620491e-01 -3.81590500e-02 2.86973208e-01 2.76070356e-01 -4.92761433e-01 -2.14557946e-01 4.58120495e-01 3.23351212e-02 5.31788655e-02 9.77987587e-01 2.75779795e-02 -1.86121419e-01 2.95811892e-01 1.14623582e+00 3.72445933e-03 -6.53493404e-01 -2.55886436e-01 6.70134202e-02 -2.15859964e-01 2.47859225e-01 -8.82677197e-01 -1.12399638e+00 8.29138458e-01 9.14225996e-01 5.07095933e-01 9.20454144e-01 3.94128114e-01 4.58156407e-01 7.11439013e-01 -6.82127252e-02 -4.16694820e-01 2.12124512e-01 3.43619846e-03 1.02039862e+00 -1.76211762e+00 2.00268537e-01 -7.80664146e-01 -4.88433778e-01 1.55439866e+00 6.28717244e-01 2.50267480e-02 9.86162663e-01 2.56447941e-01 4.69445556e-01 -3.43061686e-01 -6.96791708e-01 -2.69745886e-01 9.03178513e-01 6.43547773e-01 1.07215035e+00 2.47888178e-01 -7.20510483e-02 4.01860654e-01 2.44335760e-03 5.62355854e-02 2.71953613e-01 6.86512113e-01 -8.41914237e-01 -9.01442468e-01 -4.04850364e-01 1.22980917e+00 -5.29843688e-01 6.83358163e-02 -7.01052725e-01 9.66398895e-01 -4.87644002e-02 4.33424175e-01 3.03730052e-02 1.15050226e-01 -4.40858081e-02 -1.57078013e-01 5.37090480e-01 -9.79266047e-01 -5.19595444e-01 2.76657522e-01 -1.45465329e-01 -1.47162437e-01 -3.56654674e-01 -5.77458441e-01 -1.24173951e+00 3.89329910e-01 -4.55975860e-01 3.56561914e-02 6.49284184e-01 7.10599422e-01 -1.72042683e-01 6.12008035e-01 7.28297353e-01 -8.00803244e-01 -9.59290087e-01 -9.51851785e-01 -5.80728233e-01 3.97523433e-01 1.38969213e-01 -4.46715206e-01 -5.71919858e-01 1.02044165e-01]
[15.379424095153809, -2.155588388442993]
0c6329b7-68b7-4b1c-87bf-fe1e240a0393
hypertransformer-a-textural-and-spectral
2203.02503
null
https://arxiv.org/abs/2203.02503v3
https://arxiv.org/pdf/2203.02503v3.pdf
HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening
Pansharpening aims to fuse a registered high-resolution panchromatic image (PAN) with a low-resolution hyperspectral image (LR-HSI) to generate an enhanced HSI with high spectral and spatial resolution. Existing pansharpening approaches neglect using an attention mechanism to transfer HR texture features from PAN to LR-HSI features, resulting in spatial and spectral distortions. In this paper, we present a novel attention mechanism for pansharpening called HyperTransformer, in which features of LR-HSI and PAN are formulated as queries and keys in a transformer, respectively. HyperTransformer consists of three main modules, namely two separate feature extractors for PAN and HSI, a multi-head feature soft attention module, and a spatial-spectral feature fusion module. Such a network improves both spatial and spectral quality measures of the pansharpened HSI by learning cross-feature space dependencies and long-range details of PAN and LR-HSI. Furthermore, HyperTransformer can be utilized across multiple spatial scales at the backbone for obtaining improved performance. Extensive experiments conducted on three widely used datasets demonstrate that HyperTransformer achieves significant improvement over the state-of-the-art methods on both spatial and spectral quality measures. Implementation code and pre-trained weights can be accessed at https://github.com/wgcban/HyperTransformer.
['Vishal M. Patel', 'Wele Gedara Chaminda Bandara']
2022-03-04
null
http://openaccess.thecvf.com//content/CVPR2022/html/Bandara_HyperTransformer_A_Textural_and_Spectral_Feature_Fusion_Transformer_for_Pansharpening_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Bandara_HyperTransformer_A_Textural_and_Spectral_Feature_Fusion_Transformer_for_Pansharpening_CVPR_2022_paper.pdf
cvpr-2022-1
['pansharpening']
['computer-vision']
[ 7.90252149e-01 -5.33044696e-01 2.90648602e-02 -2.44097084e-01 -1.26991081e+00 -5.14630318e-01 3.71060371e-01 -3.49735588e-01 3.52534764e-02 4.78805751e-01 3.13848406e-01 8.71883333e-03 -4.74290520e-01 -1.22110176e+00 -5.48286796e-01 -1.18854272e+00 3.85235846e-01 -1.76645473e-01 -4.94968332e-02 -3.00527900e-01 3.40795927e-02 7.10414708e-01 -1.57793617e+00 3.69480133e-01 1.37087333e+00 1.21186459e+00 5.33564627e-01 6.33419573e-01 5.20095706e-01 3.67932826e-01 -2.06947058e-01 -6.69671362e-03 6.14482343e-01 -2.82343537e-01 -6.07130527e-01 2.64623404e-01 5.93512118e-01 -3.01429331e-01 -4.91978467e-01 1.41798389e+00 5.37333846e-01 3.98155928e-01 3.69244397e-01 -1.01946545e+00 -1.33807731e+00 5.00432014e-01 -1.08519053e+00 1.16246223e-01 4.56414819e-02 3.44160616e-01 1.09676182e+00 -9.21468556e-01 1.08953275e-01 8.94593596e-01 5.58281362e-01 -2.06667379e-01 -1.21264625e+00 -8.31201255e-01 -3.01367283e-01 4.15614545e-01 -1.36769879e+00 -2.01448813e-01 8.74403536e-01 -2.17150912e-01 9.69687521e-01 6.17882967e-01 8.10042500e-01 4.49444622e-01 2.16389239e-01 5.01527846e-01 1.24966908e+00 -3.03853005e-01 -3.23670447e-01 -1.39016405e-01 2.45446078e-02 3.15616488e-01 1.17649920e-01 4.49531853e-01 -1.63627774e-01 6.44859821e-02 8.30832541e-01 2.09886611e-01 -7.36091435e-01 -6.80108741e-02 -9.72009063e-01 8.79284143e-01 1.19576180e+00 3.89012009e-01 -8.39001477e-01 -3.07068586e-01 -3.04539409e-03 2.35602111e-01 5.62136292e-01 5.96249640e-01 -3.48903865e-01 5.75789452e-01 -8.15618396e-01 -9.84698683e-02 8.80319849e-02 6.58433616e-01 1.11130762e+00 -4.29559089e-02 -1.94993705e-01 1.03882277e+00 8.88189301e-02 9.78972077e-01 4.03409570e-01 -7.56119967e-01 3.11218381e-01 5.35460353e-01 -1.30129993e-01 -9.63363230e-01 -2.99805284e-01 -4.05752093e-01 -1.04187119e+00 1.59143433e-02 -5.35018265e-01 -1.61394030e-01 -1.06594539e+00 1.44131041e+00 3.11919689e-01 5.43336980e-02 7.54147694e-02 1.18686330e+00 9.46845770e-01 1.27442586e+00 -3.64957117e-02 -1.50285691e-01 1.34769070e+00 -1.26071978e+00 -4.52892274e-01 -2.83211410e-01 2.62852795e-02 -9.59840417e-01 1.04903102e+00 1.19688377e-01 -8.51195991e-01 -6.59324944e-01 -9.56778705e-01 -1.90999717e-01 -6.46903396e-01 4.39332247e-01 5.67602634e-01 2.91921467e-01 -9.20340955e-01 4.41049129e-01 -4.36251312e-01 -4.68582928e-01 3.93768191e-01 1.14789456e-01 -4.01607960e-01 -1.88038200e-01 -1.14244425e+00 7.24270165e-01 5.83097816e-01 2.69600034e-01 -5.15154660e-01 -9.71518159e-01 -9.27004158e-01 2.53422320e-01 3.01321179e-01 -3.70340258e-01 8.99725914e-01 -1.02646756e+00 -1.36232913e+00 7.11001515e-01 6.72507808e-02 1.25598446e-01 -1.35674372e-01 -3.10190052e-01 -9.54993546e-01 3.73732984e-01 2.01928630e-01 4.18408155e-01 9.43594337e-01 -1.26313806e+00 -8.05239320e-01 -4.97790307e-01 -2.54998595e-01 6.23606980e-01 -2.16761589e-01 -3.61661837e-02 -2.99807191e-01 -6.97237551e-01 1.65525004e-01 -4.67620522e-01 -1.02926224e-01 -2.41723031e-01 -5.08277774e-01 2.20077291e-01 1.19877517e+00 -1.07474387e+00 7.21367300e-01 -2.17320824e+00 2.23536655e-01 1.96801290e-01 -5.69765233e-02 5.53728819e-01 -5.37220955e-01 2.83134520e-01 -6.35894239e-01 -1.25099421e-01 -6.12168491e-01 3.94738406e-01 -1.82029858e-01 -2.20549196e-01 -5.07792890e-01 5.80920458e-01 2.49173358e-01 1.03697145e+00 -7.81500816e-01 -1.12881899e-01 6.01869643e-01 7.80631602e-01 -2.27573179e-02 3.55470449e-01 -7.03565702e-02 3.39338690e-01 -3.57803732e-01 9.11902487e-01 1.22585785e+00 -9.86842513e-02 -2.72016525e-01 -9.02604997e-01 -4.94393319e-01 -1.70996144e-01 -7.65757918e-01 1.37943089e+00 -3.90310287e-01 3.45353186e-01 2.01882139e-01 -8.66387010e-01 9.71981943e-01 7.35745057e-02 6.31710649e-01 -1.10897136e+00 5.65002151e-02 9.25106481e-02 -5.12722135e-01 -4.61284429e-01 7.72219002e-01 -2.67887056e-01 3.18747669e-01 4.31651145e-01 -1.99706126e-02 -6.21614933e-01 -1.15662612e-01 -2.71412730e-01 3.64005834e-01 5.79135083e-02 2.87683159e-01 -1.40652090e-01 6.70301497e-01 -1.01607323e-01 4.83574510e-01 3.89836282e-01 1.10724881e-01 5.61159253e-01 -6.75370097e-02 -7.78179839e-02 -1.18684304e+00 -9.35780883e-01 -3.16554427e-01 1.24532378e+00 1.88373014e-01 5.25499992e-02 -4.03518885e-01 -2.72101015e-01 1.37985907e-02 8.08441579e-01 -6.35499656e-01 -1.65180534e-01 -1.32395923e-01 -1.18078721e+00 9.42952707e-02 3.87904286e-01 1.04138327e+00 -1.16802788e+00 -5.57945669e-01 1.30167259e-02 -2.91330278e-01 -8.24706912e-01 -5.92261791e-01 3.91041189e-02 -6.17741823e-01 -1.02740133e+00 -6.97659731e-01 -4.44704533e-01 2.54622370e-01 8.86631250e-01 7.08306968e-01 -4.05395240e-01 -5.23345709e-01 2.81559050e-01 -5.88055611e-01 -2.95845628e-01 7.42877722e-02 8.20307285e-02 -5.05467415e-01 3.81713420e-01 2.24315181e-01 -6.99799538e-01 -5.73233187e-01 2.51230747e-01 -1.37513733e+00 3.10808450e-01 1.01686156e+00 8.24969351e-01 9.06174064e-01 5.10295987e-01 2.48956054e-01 -5.82904994e-01 1.85723796e-01 -4.82966602e-01 -9.23771203e-01 4.68225330e-01 -5.03303111e-01 -4.19370592e-01 4.61120486e-01 -1.11120500e-01 -1.49521971e+00 -4.20967937e-02 -7.23783001e-02 -2.20417887e-01 -1.20641164e-01 6.75684750e-01 -4.23270375e-01 -4.87173408e-01 6.00465298e-01 6.01161420e-01 -4.12770301e-01 -4.92078304e-01 4.81771588e-01 8.74175727e-01 8.00501704e-01 -2.44877890e-01 1.18206239e+00 6.01605058e-01 -1.14254557e-01 -1.17606676e+00 -1.17801595e+00 -6.20509684e-01 -4.81880724e-01 -6.20007254e-02 8.81131113e-01 -1.08086753e+00 -1.76326424e-01 7.97066867e-01 -6.34796083e-01 -5.40499866e-01 -4.90076870e-01 4.60888445e-01 -4.70042646e-01 3.59107822e-01 -4.68423843e-01 -4.75729793e-01 -7.76353538e-01 -8.81547868e-01 1.32354391e+00 7.69988060e-01 6.75855100e-01 -6.78711772e-01 9.63206291e-02 5.48165023e-01 7.64694512e-01 2.75543541e-01 7.80518353e-01 -1.16963007e-01 -6.01759851e-01 -6.63642585e-02 -1.02509677e+00 3.99258584e-01 4.35240746e-01 3.43176462e-02 -1.19530904e+00 -4.83525097e-01 1.29626080e-01 -3.76926929e-01 1.13137865e+00 5.99632561e-01 1.43570113e+00 -3.10585678e-01 -9.32657942e-02 1.31385064e+00 1.84651124e+00 2.06542760e-01 8.71205747e-01 4.23168391e-01 8.18196237e-01 3.20147097e-01 6.91534638e-01 3.10662091e-01 1.93408161e-01 4.19323623e-01 6.41081333e-01 -7.06843138e-01 -2.87452191e-02 -4.59300503e-02 2.90130824e-01 2.50839949e-01 -2.55077749e-01 -1.42906725e-01 -6.22298658e-01 5.10448873e-01 -1.53855956e+00 -1.16311491e+00 4.45490237e-03 2.14260936e+00 7.42684782e-01 -7.56016076e-01 -2.41881177e-01 8.82273889e-04 8.26751828e-01 6.68268502e-01 -7.94606686e-01 2.17141613e-01 -6.82079434e-01 3.62024963e-01 7.79109538e-01 6.12746894e-01 -1.39695764e+00 1.00534797e+00 5.15959311e+00 6.68221593e-01 -1.52637792e+00 1.78789437e-01 4.62666810e-01 9.88591909e-02 -3.28023523e-01 -7.86561966e-02 -2.27962032e-01 -1.03306426e-02 4.44355786e-01 -3.92149776e-01 8.88009071e-01 4.57456052e-01 6.10431544e-02 -6.47769272e-02 -3.73232663e-01 1.03395259e+00 1.42769888e-01 -1.00617719e+00 3.53313908e-02 -9.74031463e-02 9.15280282e-01 5.02811551e-01 3.38159889e-01 2.36106534e-02 3.90134037e-01 -9.08535302e-01 3.66008282e-01 7.57693946e-01 1.05731201e+00 -7.75314093e-01 7.71086693e-01 -2.73665339e-01 -1.56796825e+00 -4.31389838e-01 -5.79152703e-01 6.14788353e-01 -3.56138940e-03 7.48290598e-01 -4.92963865e-02 1.36823118e+00 9.92415309e-01 1.08643520e+00 -5.70360541e-01 1.17049086e+00 -3.95312607e-01 3.67634863e-01 -2.23343283e-01 7.94824958e-01 3.12633365e-01 -6.71940088e-01 6.19878292e-01 1.12228787e+00 6.85398221e-01 6.54246211e-01 1.50264874e-02 1.06487286e+00 1.01369835e-01 7.31090158e-02 -4.39803302e-01 -1.44678324e-01 1.90243751e-01 1.73521376e+00 -1.96707532e-01 -2.95590937e-01 -3.53521854e-01 9.47310507e-01 -7.58651868e-02 6.93982244e-01 -9.79265809e-01 -6.16011798e-01 5.39182603e-01 -2.76255429e-01 5.19610524e-01 2.42947936e-01 -5.06090149e-02 -1.30634594e+00 -2.92082101e-01 -9.98476326e-01 6.65393591e-01 -1.61829269e+00 -1.31914520e+00 8.02855253e-01 -1.35957047e-01 -9.61033940e-01 5.56679428e-01 -4.31562632e-01 -6.50196791e-01 1.16592062e+00 -1.94668448e+00 -1.66909504e+00 -1.05910075e+00 8.67056847e-01 3.32212657e-01 1.12346567e-01 7.03957856e-01 1.26030862e-01 -7.23639488e-01 7.37605393e-02 2.68818855e-01 -1.57121480e-01 6.68520987e-01 -1.03434014e+00 6.67678416e-02 1.08203185e+00 -1.78059980e-01 -8.80943239e-02 5.03273547e-01 -5.83783746e-01 -1.33132613e+00 -1.61628008e+00 4.01388705e-01 2.21613780e-01 5.95437706e-01 2.20606178e-01 -1.01226449e+00 7.71820307e-01 4.33278322e-01 -1.62516590e-02 5.47088921e-01 -4.30351526e-01 -4.33111608e-01 -6.16704643e-01 -1.20162010e+00 3.07382315e-01 5.81564009e-01 -7.32368171e-01 -4.22654897e-01 5.70958734e-01 6.20570540e-01 -2.52041072e-01 -1.02173507e+00 6.49186015e-01 3.88326257e-01 -1.09030938e+00 9.81759846e-01 -1.33774459e-01 4.94492680e-01 -3.94022197e-01 -5.67683518e-01 -1.56481040e+00 -9.32908952e-01 -4.13730562e-01 3.52779061e-01 9.74842846e-01 1.90378115e-01 -8.80663812e-01 1.39534816e-01 1.04908109e-01 -2.32294351e-01 -2.58464605e-01 -4.75724041e-01 -4.37404722e-01 -1.24941662e-01 -1.08694308e-01 1.04442275e+00 1.17682457e+00 -4.12828684e-01 2.29431152e-01 -2.80550152e-01 8.38274002e-01 8.61011028e-01 7.31686652e-01 2.91715026e-01 -1.05436087e+00 -8.63327533e-02 -5.53805113e-01 8.63230452e-02 -5.73289037e-01 1.08530764e-02 -8.91276419e-01 8.28375965e-02 -1.67287827e+00 5.08467734e-01 -2.11339623e-01 -4.74320918e-01 8.33773911e-01 -2.64761806e-01 5.13870895e-01 1.35855064e-01 5.26602864e-02 -3.31784599e-02 1.00518489e+00 1.34289503e+00 -4.15899247e-01 -2.90772676e-01 -2.02333093e-01 -8.87082636e-01 4.07621115e-01 9.61957872e-01 -2.43829593e-01 -2.02003628e-01 -5.71186662e-01 -1.18044592e-01 1.03423245e-01 6.23079896e-01 -1.13065016e+00 7.64057711e-02 -4.42951471e-01 5.28960884e-01 -7.23168671e-01 4.05512661e-01 -9.02268112e-01 4.66059446e-01 1.14686668e-01 1.57987569e-02 -3.09771478e-01 3.39346796e-01 2.18700811e-01 -1.80972964e-01 2.05581769e-01 1.21711409e+00 5.68810664e-02 -7.76533842e-01 6.87476158e-01 -3.80756706e-02 -6.33684993e-01 1.01294899e+00 -6.14443384e-02 -7.49640346e-01 -2.78733283e-01 -3.84389430e-01 1.21143751e-01 4.38858837e-01 3.14449817e-01 7.01830447e-01 -1.27614379e+00 -8.90728176e-01 5.75499594e-01 1.88239977e-01 -8.71304795e-02 8.18775475e-01 9.06196713e-01 -4.69488472e-01 4.22493517e-01 -5.37881672e-01 -3.90075147e-01 -1.22485042e+00 5.20283163e-01 7.25624740e-01 -1.77556455e-01 -6.35416329e-01 7.93931305e-01 4.43987697e-01 -6.91777229e-01 -4.00166124e-01 -1.89622790e-01 -1.84037045e-01 3.37099768e-02 6.25517070e-01 3.52793068e-01 3.75228114e-02 -1.05962121e+00 -4.93844710e-02 9.45751965e-01 2.70240456e-01 1.15399562e-01 1.85084248e+00 -2.39335522e-01 -5.77024460e-01 3.27901803e-02 9.87932265e-01 -1.13246478e-01 -1.31411958e+00 -6.52997613e-01 -6.22344434e-01 -7.73344755e-01 6.67151749e-01 -9.63171363e-01 -1.53903151e+00 7.88646460e-01 8.18972230e-01 2.30899513e-01 1.99755573e+00 -4.82601635e-02 7.28396356e-01 1.72944948e-01 -7.07881153e-02 -8.13946545e-01 -1.85046062e-01 3.89227360e-01 1.35663712e+00 -1.20944035e+00 1.52055681e-01 -4.22794729e-01 -6.48569942e-01 1.01564574e+00 5.62314451e-01 6.88631907e-02 6.48545384e-01 -6.84710443e-02 7.12189302e-02 -3.86709869e-01 -2.79721022e-01 -3.25728983e-01 5.55903196e-01 6.32025898e-01 1.57966539e-01 3.12559187e-01 3.53815496e-01 3.79312307e-01 -2.03206167e-01 -7.22614452e-02 2.03405052e-01 4.69700068e-01 -6.44193172e-01 -5.52095413e-01 -6.91865861e-01 6.15333438e-01 -3.86362001e-02 -3.46307307e-01 -1.53795421e-01 4.86950040e-01 1.67241096e-01 9.43079293e-01 3.21431085e-02 -4.63327408e-01 4.03459221e-01 -2.58153439e-01 1.89672068e-01 -3.50384623e-01 -3.88147086e-01 3.47443432e-01 -3.04206312e-01 -7.14993775e-01 -6.05491757e-01 -5.53500712e-01 -6.54391944e-01 -3.61493409e-01 -5.19286096e-01 1.04472771e-01 4.09413099e-01 6.23337448e-01 2.65023470e-01 5.41233718e-01 8.89579415e-01 -1.12585795e+00 -2.75262773e-01 -1.12547493e+00 -1.12804866e+00 1.59802213e-01 5.18417656e-01 -3.12314600e-01 -3.39676768e-01 -1.22643910e-01]
[10.193822860717773, -1.9335129261016846]
1b9e56b1-3c7f-4ba4-b442-20c05bd8a61e
analysis-of-benfords-law-for-no-reference
null
null
https://www.mdpi.com/2079-9292/10/19/2378
https://www.mdpi.com/2079-9292/10/19/2378
Analysis of Benford’s Law for No-Reference Quality Assessment of Natural, Screen-Content, and Synthetic Images
With the tremendous growth and usage of digital images, no-reference image quality assessment is becoming increasingly important. This paper presents in-depth analysis of Benford’s law inspired first digit distribution feature vectors for no-reference quality assessment of natural, screen-content, and synthetic images in various viewpoints. Benford’s law makes a prediction for the probability distribution of first digits in natural datasets. It has been applied among others for detecting fraudulent income tax returns, detecting scientific fraud, election forensics, and image forensics. In particular, our analysis is based on first digit distributions in multiple domains (wavelet coefficients, DCT coefficients, singular values, etc.) as feature vectors and the extracted features are mapped onto image quality scores. Extensive experiments have been carried out on seven large image quality benchmark databases. It has been demonstrated that first digit distributions are quality-aware features, and it is possible to reach or outperform the state-of-the-art with them.
['Domonkos Varga']
2021-09-21
null
null
null
electronics-2021-9
['no-reference-image-quality-assessment', 'image-forensics']
['computer-vision', 'computer-vision']
[ 1.76732749e-01 -5.38157523e-01 -2.41107166e-01 -2.24345669e-01 -8.82211208e-01 -3.97583902e-01 7.34831989e-01 4.23288137e-01 -3.86800736e-01 4.41320807e-01 1.77402824e-01 -1.49276406e-01 -2.66094565e-01 -7.79512346e-01 -3.37097019e-01 -4.33429182e-01 -6.25555664e-02 -1.14695445e-01 2.26229414e-01 -6.96145520e-02 9.91499901e-01 7.37131715e-01 -1.69431949e+00 2.92787015e-01 6.96610034e-01 1.28145230e+00 -2.22797513e-01 7.84319103e-01 2.91710682e-02 8.93786848e-01 -8.47119570e-01 -1.19678164e+00 2.95543462e-01 -3.98870111e-01 -6.01789773e-01 2.35273212e-01 5.20386815e-01 -5.45613587e-01 -5.33193707e-01 1.50736916e+00 3.78529876e-01 -3.35339069e-01 9.54130352e-01 -1.22899890e+00 -1.00798881e+00 -1.30419940e-01 -1.02527368e+00 5.53004980e-01 7.01865673e-01 2.07238972e-01 8.48911047e-01 -7.92206764e-01 7.75498211e-01 1.20252168e+00 5.28090596e-01 -7.29034990e-02 -9.91627932e-01 -4.07816678e-01 -7.07760632e-01 7.61818886e-01 -1.22759759e+00 -2.44622633e-01 7.96148002e-01 -6.21291935e-01 5.30998707e-01 3.15829992e-01 5.91154933e-01 9.12468135e-01 6.71394408e-01 6.09275997e-01 1.33194613e+00 -6.85291767e-01 5.73272593e-02 8.82491320e-02 5.45363426e-02 7.35890150e-01 7.46038318e-01 1.27044916e-01 -7.76290715e-01 -3.03770810e-01 6.59915924e-01 -2.16011666e-02 -1.49809539e-01 -3.12560111e-01 -1.10196805e+00 7.50051796e-01 -4.59482409e-02 4.16132361e-01 -4.02257204e-01 -5.08432090e-02 4.44431216e-01 4.59328324e-01 3.57182920e-01 1.57175228e-01 1.65018067e-01 -4.68576014e-01 -1.23659670e+00 9.92150381e-02 4.13824826e-01 5.57197869e-01 5.68163514e-01 -1.19525582e-01 -2.14873716e-01 7.17458785e-01 3.59484404e-02 6.73378050e-01 5.74516714e-01 -1.03727877e+00 4.85980064e-01 5.67724705e-01 2.35520437e-01 -1.72116280e+00 4.21260819e-02 -8.99539515e-02 -1.01149809e+00 5.41676521e-01 5.60975194e-01 4.84015703e-01 -3.88407171e-01 9.51740980e-01 -1.42804335e-03 -1.91781163e-01 -1.27038687e-01 7.16624379e-01 5.27740180e-01 4.37479824e-01 -1.86950490e-01 -2.47363284e-01 1.42511392e+00 -1.35369495e-01 -7.27684200e-01 3.25858861e-01 -2.74211285e-03 -1.13178909e+00 1.14703941e+00 9.66457963e-01 -9.91441309e-01 -7.67045140e-01 -1.00465894e+00 9.67787653e-02 -2.52247304e-01 2.63783008e-01 4.02149588e-01 1.18211508e+00 -7.33809829e-01 8.40791643e-01 -3.26687902e-01 -2.58812040e-01 6.61803901e-01 -1.92201346e-01 -5.69850445e-01 -3.73377562e-01 -7.84415901e-01 6.91290796e-01 7.04650357e-02 -5.36825657e-01 -4.26748306e-01 -4.49897766e-01 -6.42280042e-01 -1.86662958e-03 -1.87638178e-02 -1.39369160e-01 6.57101512e-01 -8.19385827e-01 -1.13747609e+00 1.23177552e+00 9.98947993e-02 -4.88795340e-01 7.52791882e-01 1.32405469e-02 -9.07948852e-01 6.79452479e-01 2.05737054e-01 3.83209204e-04 1.22817791e+00 -1.00960553e+00 -6.76151216e-01 -5.08314788e-01 -3.36307794e-01 -2.69627154e-01 -6.42661214e-01 1.70712903e-01 -3.92371655e-01 -8.21046948e-01 7.36742746e-03 -3.38381469e-01 3.79142135e-01 2.84349471e-01 -3.42468411e-01 9.63198990e-02 4.78014082e-01 -9.37465608e-01 1.32696223e+00 -2.32160568e+00 -3.89279962e-01 4.10304248e-01 3.17898005e-01 1.33133903e-01 -1.16351247e-01 3.78278881e-01 7.96357095e-02 2.04552710e-01 -3.48103382e-02 2.11374551e-01 2.18474474e-02 -3.36124122e-01 -9.14587453e-02 9.18801427e-01 2.25005716e-01 6.31784141e-01 -7.34074354e-01 -7.66546726e-01 4.56302911e-01 3.98717225e-01 -1.45012870e-01 -3.83597240e-02 5.31626463e-01 -5.35370372e-02 -2.31585115e-01 8.70653868e-01 1.01009071e+00 -2.60470808e-01 2.67509315e-02 -5.17850220e-01 5.45670241e-02 -2.56945521e-01 -1.05336308e+00 1.20340931e+00 -2.29511142e-01 1.05857205e+00 -4.04729724e-01 -8.76512647e-01 1.08795846e+00 -2.88765617e-02 5.10529160e-01 -1.37756789e+00 1.10963337e-01 2.63921976e-01 -1.26373842e-01 -6.59617424e-01 7.73801863e-01 1.30454063e-01 -8.56968836e-06 2.87517011e-01 8.43760371e-02 -9.86517295e-02 4.86681581e-01 1.18550479e-01 1.06610084e+00 -1.68761551e-01 4.84845072e-01 -1.52161300e-01 7.79707432e-01 -1.26099512e-01 3.43332104e-02 6.10559642e-01 -4.70846206e-01 6.87910259e-01 7.23161280e-01 -2.85143375e-01 -1.42887568e+00 -1.10581982e+00 -2.48572022e-01 4.98743087e-01 2.95830220e-01 -2.08834127e-01 -7.86207676e-01 -4.28977549e-01 2.31582716e-01 5.63406050e-01 -5.89975536e-01 -6.55106753e-02 -2.61280149e-01 -7.33411908e-01 5.45211434e-01 9.02714655e-02 6.81102455e-01 -8.58685732e-01 -8.81765842e-01 1.10153703e-03 -6.60499483e-02 -1.18136919e+00 -1.98934570e-01 -4.93819088e-01 -9.14723039e-01 -1.60871446e+00 -9.61835563e-01 -3.31539437e-02 3.33930671e-01 3.36654276e-01 1.25795209e+00 1.40310545e-03 -7.85529792e-01 5.93709767e-01 -5.40193081e-01 -1.51473776e-01 -4.71699685e-01 -5.36783814e-01 -7.69162625e-02 2.62935936e-01 4.34336901e-01 -2.83317357e-01 -7.50808895e-01 3.46433908e-01 -1.14218390e+00 -7.03173399e-01 7.43619025e-01 7.31479168e-01 6.30255818e-01 4.55631346e-01 2.78121918e-01 -6.85162663e-01 8.99258852e-01 -2.29123265e-01 -6.13354981e-01 3.49037677e-01 -6.84173584e-01 -8.23196024e-02 5.48256695e-01 -2.70910621e-01 -8.53461683e-01 -6.71080291e-01 9.78718847e-02 -2.51200765e-01 -8.89619142e-02 1.61129728e-01 2.54266951e-02 -2.02327296e-01 7.53427446e-01 4.08831388e-01 2.09709425e-02 -4.84285623e-01 2.44404897e-01 7.37945259e-01 9.22160566e-01 -3.38784516e-01 8.35861385e-01 6.94128215e-01 2.23389223e-01 -1.07111275e+00 -2.99309313e-01 -6.70477569e-01 -4.26280200e-01 -3.67562830e-01 5.40426195e-01 -6.00712657e-01 -8.24938118e-01 7.53300965e-01 -8.84935737e-01 4.85790223e-01 -2.43552104e-01 3.95037681e-01 -5.40953755e-01 1.06523347e+00 -5.16206920e-01 -9.97100294e-01 -2.44309068e-01 -9.20396626e-01 8.06956172e-01 2.26679698e-01 6.32393116e-04 -6.81921482e-01 -1.37048826e-01 4.41115290e-01 3.26632679e-01 4.88846302e-01 9.10101414e-01 -1.77393585e-01 -3.66988033e-01 -5.69630742e-01 -5.67957997e-01 5.27256727e-01 4.31571975e-02 2.60267794e-01 -7.34929562e-01 -1.53585896e-01 1.86241925e-01 -1.37916520e-01 6.85449898e-01 4.12289381e-01 1.27708650e+00 -2.55631834e-01 1.01286381e-01 5.22038400e-01 1.72460377e+00 1.19209506e-01 1.26929915e+00 6.93891048e-01 5.61882369e-02 4.58795458e-01 9.10507679e-01 7.42901385e-01 -9.46289748e-02 5.24712443e-01 4.94117349e-01 1.47537276e-01 -2.11238146e-01 -7.74482191e-02 2.67179251e-01 3.83388489e-01 -2.32423231e-01 -2.49688327e-01 -7.00891137e-01 5.52279532e-01 -1.26506948e+00 -1.39532626e+00 -2.76217550e-01 2.39479160e+00 4.03296560e-01 3.25168014e-01 2.42518917e-01 7.99174964e-01 8.93020093e-01 1.61779955e-01 -4.50750232e-01 -3.01563382e-01 -2.87619501e-01 2.98714340e-01 6.94262743e-01 -1.54219732e-01 -9.91949260e-01 3.53197366e-01 6.35342789e+00 1.35715473e+00 -9.71671820e-01 3.85703668e-02 1.02155721e+00 2.75719613e-01 -1.31397337e-01 -4.51166302e-01 -3.91841978e-01 7.20196366e-01 7.93351531e-01 -2.64270693e-01 7.33173788e-02 7.77707160e-01 1.35202091e-02 -6.27405643e-01 -5.16813993e-01 1.67030454e+00 2.81745434e-01 -1.27198493e+00 1.24531336e-01 3.14263433e-01 5.53664446e-01 -4.24626023e-01 4.89701331e-01 -3.43885392e-01 -1.59995824e-01 -9.98839021e-01 8.35391164e-01 7.64680684e-01 1.33515334e+00 -1.11494601e+00 8.33855748e-01 -1.52431019e-02 -8.21759105e-01 -1.34548083e-01 -6.68044806e-01 2.49555081e-01 -8.70690644e-02 1.11560297e+00 -3.19851309e-01 6.99397564e-01 7.82853484e-01 6.84406996e-01 -9.03340220e-01 1.23845887e+00 1.20461755e-01 4.52456564e-01 7.51810148e-02 1.12155743e-03 -2.65294947e-02 -4.15025115e-01 3.10861558e-01 1.16459262e+00 7.18244612e-01 -1.29739136e-01 -5.56076109e-01 6.29330695e-01 -8.19760934e-02 3.10854197e-01 -5.66516459e-01 -2.26563588e-01 1.33703008e-01 1.24852419e+00 -9.48753357e-01 -3.41423273e-01 -5.15675306e-01 1.14112294e+00 -3.02838892e-01 1.60358492e-02 -6.61081433e-01 -6.31771386e-01 6.32646620e-01 3.94748837e-01 2.52755731e-01 -1.90928280e-01 -3.53327960e-01 -1.12310445e+00 1.58282638e-01 -1.04072845e+00 1.86717033e-01 -6.61768854e-01 -1.48936152e+00 5.60202360e-01 -2.01936737e-01 -1.63557148e+00 -2.18062297e-01 -8.67764831e-01 -3.70551020e-01 7.45464563e-01 -1.62738502e+00 -6.55402541e-01 -2.67673194e-01 6.90301418e-01 3.91634762e-01 -6.06597066e-01 4.86392230e-01 4.45011884e-01 -1.64570630e-01 5.40966094e-01 5.78946650e-01 2.82540888e-01 5.89395821e-01 -1.04620504e+00 4.56435859e-01 9.48444188e-01 3.14135402e-01 2.47707829e-01 6.64298534e-01 -5.16781628e-01 -1.38105583e+00 -6.03604794e-01 4.96251762e-01 -2.47947231e-01 5.23475707e-01 1.62960932e-01 -6.93655193e-01 -2.76896656e-01 1.41471237e-01 1.20262252e-02 6.87998414e-01 -5.06136477e-01 -5.53259015e-01 -2.60817617e-01 -1.48369563e+00 1.47410348e-01 6.52776003e-01 -5.93549132e-01 -3.56734961e-01 1.43629923e-01 -1.16404399e-01 7.77350739e-02 -9.38055992e-01 5.47873303e-02 7.44808733e-01 -1.68687904e+00 1.30552304e+00 -1.89537868e-01 6.80717945e-01 -1.02029197e-01 -3.66577923e-01 -7.87399232e-01 -1.78115949e-01 -4.19060022e-01 -2.56925166e-01 1.12282622e+00 -1.73142254e-01 -3.31600934e-01 6.89274848e-01 1.32998914e-01 5.77538013e-01 -4.28251803e-01 -9.75587130e-01 -9.57541883e-01 -2.00018167e-01 -4.49404359e-01 6.46586418e-01 6.95918202e-01 -1.48949131e-01 -1.72640622e-01 -4.61608917e-01 -2.23825306e-01 1.05916381e+00 6.78193718e-02 7.53019512e-01 -1.37754202e+00 -1.95698172e-01 -6.19900942e-01 -1.08404160e+00 -4.77607340e-01 -3.13650191e-01 -4.49091315e-01 -7.00846910e-01 -1.25463426e+00 5.09587169e-01 -1.21885901e-02 -1.63894609e-01 -2.15526432e-01 -9.98052955e-02 6.15103722e-01 3.84057224e-01 4.32882607e-01 -4.43605006e-01 2.27281317e-01 1.19138491e+00 -2.90818512e-01 3.64056736e-01 -4.64717448e-02 -5.32126367e-01 7.39128590e-01 7.97332287e-01 -4.00776923e-01 -7.16069862e-02 -2.45526638e-02 4.03662503e-01 8.91984403e-02 5.69332421e-01 -1.43955898e+00 -8.95326957e-02 -1.62390038e-01 7.67836750e-01 -6.93114281e-01 2.22755119e-01 -7.89575398e-01 3.84374112e-02 6.18166864e-01 -7.08484873e-02 2.42304564e-01 -1.07890546e-01 6.54175639e-01 -4.69784081e-01 -5.26924551e-01 1.07215381e+00 -1.63962439e-01 -8.34730029e-01 -3.87248173e-02 -1.88737690e-01 4.66716290e-02 9.92399573e-01 -5.43047607e-01 -3.48520190e-01 -5.17014980e-01 -1.79006070e-01 -6.22643471e-01 8.00669432e-01 1.28804833e-01 1.03442299e+00 -1.32208705e+00 -7.64734089e-01 1.99059620e-01 2.21332043e-01 -1.00018501e+00 3.33856732e-01 5.34100175e-01 -8.75211656e-01 2.39681482e-01 -6.99513793e-01 -5.19594550e-01 -1.40298402e+00 6.98672831e-01 -8.71286169e-02 -4.01175916e-01 -3.68493527e-01 3.70388180e-01 -4.23675299e-01 3.11665356e-01 -9.95238200e-02 -1.13073342e-01 -3.14074516e-01 2.21855238e-01 8.09596062e-01 8.91799986e-01 1.45493358e-01 -9.12483156e-01 -2.24305868e-01 8.73082399e-01 7.97181875e-02 -2.81497240e-01 1.31344914e+00 -2.33070835e-01 2.67836265e-03 1.68664798e-01 1.32110095e+00 1.98603496e-01 -8.47908616e-01 -4.17457111e-02 1.50324821e-01 -1.27117431e+00 6.81947470e-02 -7.51842737e-01 -1.07157278e+00 1.06959748e+00 9.49649811e-01 6.01495683e-01 1.35368824e+00 -3.87788236e-01 7.58672893e-01 1.09240077e-01 6.04960859e-01 -1.32206333e+00 5.01071453e-01 -4.99892142e-03 7.82150686e-01 -1.28658414e+00 4.28680569e-01 -2.73764521e-01 -7.12418556e-01 1.41022038e+00 -6.71464503e-02 -1.33053347e-01 4.26571369e-01 -8.14037994e-02 -1.26937211e-01 -1.58012241e-01 -1.14846893e-01 -7.16189817e-02 4.17356879e-01 9.36677277e-01 3.91101182e-01 7.22140372e-02 -5.96525788e-01 1.94153845e-01 -1.33733809e-01 1.27891049e-01 7.54748523e-01 6.16858482e-01 -4.76156265e-01 -1.17451584e+00 -9.04662073e-01 8.71253788e-01 -8.87822390e-01 2.44304761e-02 -1.63866311e-01 8.17628980e-01 2.34383605e-02 1.05143440e+00 -9.91057381e-02 -3.30376685e-01 3.10660392e-01 -1.72720611e-01 5.29750228e-01 5.88922463e-02 -2.55355418e-01 -2.24187151e-01 -3.41985166e-01 -7.80354261e-01 -4.94592577e-01 -7.73315191e-01 -5.80460906e-01 -6.48794293e-01 -7.19809905e-02 -1.68937176e-01 9.08538818e-01 3.78731161e-01 2.80199528e-01 2.51211524e-01 6.93791628e-01 -5.69713175e-01 -6.33135617e-01 -8.35957348e-01 -9.58509624e-01 8.89761865e-01 1.65517062e-01 -6.39278591e-01 -2.63316303e-01 3.15997839e-01]
[11.826131820678711, -1.7998625040054321]
49229b18-b4b0-4c74-b664-d627d95db8b3
approximate-fpga-based-lstms-under
1801.0219
null
http://arxiv.org/abs/1801.02190v1
http://arxiv.org/pdf/1801.02190v1.pdf
Approximate FPGA-based LSTMs under Computation Time Constraints
Recurrent Neural Networks and in particular Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art accuracy in several emerging Artificial Intelligence tasks. However, the models are becoming increasingly demanding in terms of computational and memory load. Emerging latency-sensitive applications including mobile robots and autonomous vehicles often operate under stringent computation time constraints. In this paper, we address the challenge of deploying computationally demanding LSTMs at a constrained time budget by introducing an approximate computing scheme that combines iterative low-rank compression and pruning, along with a novel FPGA-based LSTM architecture. Combined in an end-to-end framework, the approximation method's parameters are optimised and the architecture is configured to address the problem of high-performance LSTM execution in time-constrained applications. Quantitative evaluation on a real-life image captioning application indicates that the proposed methods required up to 6.5x less time to achieve the same application-level accuracy compared to a baseline method, while achieving an average of 25x higher accuracy under the same computation time constraints.
['Christos-Savvas Bouganis', 'Alexandros Kouris', 'Michalis Rizakis', 'Stylianos I. Venieris']
2018-01-07
null
null
null
null
['low-rank-compression']
['computer-code']
[ 5.70437491e-01 -3.28749418e-02 -7.50122443e-02 -3.54246795e-01 -9.23313737e-01 2.75457576e-02 5.27498722e-01 -6.78459108e-02 -7.57354259e-01 4.02663022e-01 -3.38854402e-01 -5.82673967e-01 -5.91032282e-02 -4.94907886e-01 -8.91779542e-01 -5.91097176e-01 -1.14426101e-02 5.88330865e-01 6.44679815e-02 2.19218917e-02 3.35349441e-01 3.69754732e-01 -1.72257543e+00 5.28028786e-01 6.51679933e-01 1.58143449e+00 6.32455111e-01 6.27492785e-01 -6.76216781e-02 7.76319623e-01 -5.25219202e-01 -1.98829800e-01 1.94512233e-01 2.71034449e-01 -5.23637116e-01 -2.77667880e-01 8.10677767e-01 -4.93537486e-01 -4.16526735e-01 8.76398504e-01 6.20906055e-01 9.59542766e-02 1.34387612e-01 -8.56893063e-01 -2.23695971e-02 4.55656260e-01 -3.45111728e-01 3.15616548e-01 -2.38789514e-01 -4.40106653e-02 6.34955883e-01 -9.89477813e-01 2.23054782e-01 9.77404773e-01 8.01728725e-01 3.17982256e-01 -9.31193650e-01 -7.16943204e-01 1.83793828e-01 5.50026178e-01 -1.33051193e+00 -7.79148996e-01 3.47866595e-01 1.56861022e-01 1.69427013e+00 -3.67440283e-03 3.75167698e-01 9.07863736e-01 5.16125739e-01 6.94927633e-01 6.22914791e-01 -2.40424857e-01 2.78761894e-01 -1.42185703e-01 6.02063909e-02 6.96826577e-01 2.27264032e-01 -1.60883278e-01 -8.04510355e-01 -3.11523257e-03 3.01975876e-01 -7.88080320e-02 1.72016680e-01 1.56557664e-01 -1.12035072e+00 6.09278321e-01 5.71234584e-01 4.09115434e-01 -5.80418706e-01 7.17659295e-01 8.31095397e-01 5.89956157e-02 5.71725309e-01 1.45384520e-01 -6.23126626e-01 -4.20879275e-01 -1.32404220e+00 -1.27940718e-02 6.05738461e-01 1.01540375e+00 4.93137330e-01 5.56218445e-01 1.43681327e-02 9.73286688e-01 1.24464631e-01 5.04498005e-01 8.71311009e-01 -8.00505996e-01 7.61210501e-01 3.13548326e-01 -1.79604813e-01 -1.05493629e+00 -5.71498513e-01 -8.15629125e-01 -1.00638664e+00 -1.10624209e-01 -1.40600935e-01 5.40526100e-02 -1.32539153e+00 1.51359665e+00 -3.31403390e-02 3.03097486e-01 1.47692293e-01 8.91267300e-01 4.64551002e-01 1.05433309e+00 7.48914331e-02 -2.18705893e-01 1.49629056e+00 -1.19544256e+00 -7.08384693e-01 -8.19193661e-01 8.00378263e-01 -6.25583589e-01 8.71587336e-01 3.83083045e-01 -1.05664182e+00 -4.87461120e-01 -1.51734567e+00 -3.86221766e-01 -2.87133932e-01 6.16372943e-01 6.86469793e-01 4.69667345e-01 -1.21018326e+00 6.80700302e-01 -1.16465414e+00 -3.49040926e-01 3.26852411e-01 8.13325226e-01 3.25657539e-02 2.89416432e-01 -9.18578684e-01 1.05326521e+00 5.10256648e-01 6.42048061e-01 -6.05758607e-01 -7.66325891e-01 -5.99575996e-01 2.12065056e-01 2.28952482e-01 -6.43587768e-01 1.57342470e+00 -7.05853820e-01 -1.81736040e+00 4.33529049e-01 -3.08466345e-01 -1.23292887e+00 3.91378999e-01 -5.57894230e-01 -3.46182317e-01 1.39344737e-01 -2.49514133e-01 6.71408534e-01 8.34849894e-01 -4.46180880e-01 -7.57848680e-01 -4.66457576e-01 -3.06699812e-01 2.94567347e-01 -8.65301371e-01 -1.72191694e-01 -5.49653471e-01 -4.23861623e-01 4.11984742e-01 -1.18669927e+00 -3.43277156e-01 -1.09998710e-01 -1.70408562e-02 1.13334171e-01 1.35164583e+00 -4.63806272e-01 1.13654101e+00 -2.02852297e+00 -1.47584662e-01 3.61797996e-02 2.73828357e-02 6.00186288e-01 -2.92548388e-02 8.83308705e-04 3.44466805e-01 -3.45420390e-01 -1.12809703e-01 -6.26954377e-01 -1.30554721e-01 2.52482474e-01 -6.29241228e-01 3.49850178e-01 7.57685676e-02 7.44670093e-01 -5.40558755e-01 -3.32186759e-01 3.37290913e-01 7.12938726e-01 -2.83622891e-01 -7.51606375e-02 -3.93692523e-01 -2.56839097e-01 -2.57254094e-01 6.66099072e-01 3.20184231e-01 -2.19093382e-01 4.18444961e-01 -3.90142798e-01 -1.36907831e-01 3.80962580e-01 -6.64719224e-01 1.87896585e+00 -9.72781777e-01 1.23882961e+00 6.29979968e-02 -8.00669372e-01 9.30413187e-01 3.06063622e-01 1.72350720e-01 -1.19611800e+00 4.05404627e-01 6.43669903e-01 -2.15168715e-01 -1.54240847e-01 1.05559826e+00 3.60224664e-01 8.87871534e-02 1.66789711e-01 -1.43125981e-01 3.05203378e-01 -3.14898267e-02 -1.34728312e-01 1.01766145e+00 -2.59681549e-02 -1.39094278e-01 -2.28900075e-01 1.86151922e-01 3.79783995e-02 3.58013481e-01 5.07382751e-01 9.68543142e-02 4.31017093e-02 -4.53800745e-02 -7.02943325e-01 -1.19845784e+00 -4.28137094e-01 -1.01026267e-01 1.24038541e+00 -2.32838765e-01 -1.55052334e-01 -7.36460149e-01 1.82708472e-01 -4.50052470e-01 6.68389976e-01 -1.98438674e-01 -8.34367424e-02 -9.57561433e-01 -8.08914423e-01 9.78742957e-01 4.77918833e-01 9.09628212e-01 -7.39014387e-01 -1.70478737e+00 5.29481232e-01 2.04163380e-02 -1.64788389e+00 -2.03186005e-01 3.49424630e-01 -1.20649838e+00 -3.23032767e-01 -6.34681761e-01 -8.33672225e-01 6.00574851e-01 2.86113679e-01 8.28650355e-01 -2.09037885e-01 -2.17344999e-01 -3.79438996e-01 -4.19117063e-02 -3.49234849e-01 2.51845475e-02 4.66078252e-01 2.39401206e-01 -1.92653030e-01 2.09482163e-01 -6.52083218e-01 -6.07865214e-01 7.72446394e-02 -6.07617974e-01 2.94470817e-01 1.11909318e+00 1.00624239e+00 7.03490913e-01 -1.74212009e-01 3.87484372e-01 -6.56660259e-01 3.51299495e-01 -1.27118111e-01 -8.75488162e-01 7.41067082e-02 -9.97166812e-01 2.45190248e-01 7.98685849e-01 -7.20914483e-01 -9.08540964e-01 3.21862936e-01 6.23267181e-02 -7.34675050e-01 4.06190664e-01 8.36980939e-01 1.54851124e-01 -2.43578851e-01 3.54608297e-01 3.00911635e-01 -2.70842016e-01 -2.70542622e-01 1.33605272e-01 6.69930518e-01 7.69144118e-01 -2.28680223e-01 1.43383324e-01 3.37465227e-01 2.15491682e-01 -9.87068474e-01 -6.28754914e-01 -5.74444048e-02 -2.68128812e-01 -1.32362425e-01 3.22514236e-01 -1.00974202e+00 -7.82504618e-01 4.75582153e-01 -1.28418934e+00 -3.34053993e-01 2.19871134e-01 5.57759643e-01 -5.24069846e-01 -7.28530958e-02 -7.26549029e-01 -9.01657164e-01 -1.10598767e+00 -1.21472561e+00 1.15636325e+00 -3.85889448e-02 1.23907402e-02 -4.17606950e-01 -4.55744445e-01 2.69833803e-01 8.07863951e-01 6.92824274e-02 8.55432212e-01 -3.72564107e-01 -8.13091815e-01 -2.83935100e-01 -5.82358897e-01 -1.90901328e-02 -4.67293233e-01 -2.30252579e-01 -1.20616913e+00 -3.94746363e-01 9.27132294e-02 -1.22008249e-01 1.03925407e+00 6.01088583e-01 1.05036139e+00 -5.19825757e-01 -3.42457443e-01 7.93994129e-01 1.49647772e+00 3.59494805e-01 4.74290371e-01 3.36008638e-01 6.83450520e-01 3.17407727e-01 7.24049032e-01 3.98328125e-01 7.66814202e-02 8.77931476e-01 3.89611602e-01 1.12044401e-01 1.58976853e-01 -1.58906057e-01 4.27618057e-01 1.15565848e+00 4.03553545e-01 -1.36062458e-01 -1.11505878e+00 5.81723869e-01 -2.05246568e+00 -7.29665339e-01 8.53738487e-02 2.19104004e+00 5.34344554e-01 6.27328277e-01 -2.89788157e-01 2.91149199e-01 4.83260036e-01 2.25424081e-01 -8.31787944e-01 -8.16972435e-01 1.97712138e-01 -2.87440531e-02 1.04560161e+00 2.48356417e-01 -8.32947910e-01 1.00438166e+00 5.81201220e+00 1.09363914e+00 -1.74464965e+00 2.11906791e-01 8.25052142e-01 -6.05585754e-01 3.29364628e-01 -2.12925643e-01 -9.31399047e-01 2.62378544e-01 1.92840147e+00 -1.10062145e-01 1.64337382e-01 1.04977596e+00 3.01526934e-01 -6.02175631e-02 -9.45133507e-01 1.22043920e+00 1.10500261e-01 -1.47424626e+00 6.02229908e-02 1.99298576e-01 4.21407938e-01 5.01808107e-01 5.49088657e-01 2.47334212e-01 -5.16742766e-01 -9.75764513e-01 9.62550402e-01 2.15888873e-01 1.06108820e+00 -1.02723372e+00 8.59569907e-01 3.14276934e-01 -1.26323521e+00 -3.17344457e-01 -5.30037284e-01 -1.91698045e-01 1.35326192e-01 7.98585832e-01 -9.70620930e-01 1.26193747e-01 8.50007534e-01 3.78058970e-01 -2.41464093e-01 7.03249574e-01 4.00365084e-01 3.43308061e-01 -6.50050223e-01 -4.04427499e-01 6.92028999e-01 1.55440971e-01 3.42510283e-01 1.31330144e+00 5.85303664e-01 9.20307636e-02 -2.07665980e-01 3.95668268e-01 -1.64183095e-01 -1.82669967e-01 -4.91678059e-01 -1.41833231e-01 6.24873877e-01 1.05700505e+00 -8.24416757e-01 -4.05325472e-01 7.28433207e-03 9.63249147e-01 2.51957923e-01 1.68720350e-01 -1.03937423e+00 -3.78072470e-01 4.66180623e-01 -3.19958590e-02 3.91645432e-01 -5.43029904e-01 -6.47713721e-01 -5.48681915e-01 4.68067765e-01 -5.23289740e-01 -1.26683675e-02 -7.12955296e-01 -3.55873555e-01 1.16439414e+00 -2.21965104e-01 -1.25369656e+00 -5.60897887e-01 -5.63539982e-01 -1.81932181e-01 4.26010668e-01 -1.51198280e+00 -1.26846707e+00 -2.90589899e-01 4.31722365e-02 8.73781264e-01 -2.54540533e-01 8.81052136e-01 6.78895533e-01 -7.04662383e-01 8.53857696e-01 2.81498075e-01 -5.20559788e-01 8.29892606e-02 -4.16133940e-01 6.20145738e-01 8.51098657e-01 5.78084290e-02 5.48984945e-01 9.45104182e-01 -3.95338267e-01 -1.82208002e+00 -1.44990516e+00 8.73565078e-01 2.05954447e-01 4.86824989e-01 -3.92498523e-01 -7.20811009e-01 5.51911235e-01 4.55541462e-02 -1.78229827e-02 1.57884449e-01 -7.23662674e-02 -3.09818804e-01 -3.68545115e-01 -1.00200319e+00 6.51194990e-01 8.92158806e-01 -5.62435985e-01 -8.48538652e-02 4.23967153e-01 7.73153484e-01 -7.35876024e-01 -4.67324823e-01 6.18618190e-01 8.85631323e-01 -6.44815922e-01 6.55525804e-01 5.84899597e-02 2.50487000e-01 -1.51473254e-01 -3.01063120e-01 -7.84830332e-01 1.24534085e-01 -6.09699309e-01 -4.87063110e-01 6.78952098e-01 6.15332723e-01 -4.29972261e-01 1.07620788e+00 5.62188983e-01 -3.81305546e-01 -1.33737791e+00 -1.42364073e+00 -8.39055955e-01 -6.21013403e-01 -6.08336687e-01 1.82232305e-01 2.86461413e-01 -1.77637979e-01 4.16342527e-01 -5.13044298e-01 2.06669971e-01 4.53040034e-01 -7.57032260e-02 4.35296386e-01 -7.22727716e-01 1.16555942e-02 -4.73348916e-01 -6.28994882e-01 -1.17723024e+00 1.71421528e-01 -3.98283839e-01 2.73515821e-01 -1.40890181e+00 -1.04025781e-01 -2.25401595e-01 -3.30208987e-01 3.99168104e-01 4.99160051e-01 3.41353089e-01 1.43208221e-01 1.83859304e-01 -5.70355713e-01 5.90972483e-01 2.78110594e-01 -3.00221324e-01 -2.42672324e-01 -1.98146045e-01 -1.44521549e-01 7.60400891e-01 7.95693040e-01 -3.54662806e-01 -5.99603534e-01 -1.12739968e+00 1.18009061e-01 1.31761730e-02 1.51096418e-01 -1.54105735e+00 9.41000938e-01 3.04773241e-01 1.74719349e-01 -9.76803064e-01 1.01169586e+00 -9.43541229e-01 1.72761470e-01 7.65795052e-01 -3.08904529e-01 5.28173566e-01 7.36764789e-01 4.70172107e-01 -2.28446051e-01 8.31062123e-02 8.47978413e-01 3.46670866e-01 -8.54734182e-01 1.32467479e-01 -5.19785702e-01 -6.11578524e-01 9.42138672e-01 -4.53066885e-01 -3.95122081e-01 -2.50533879e-01 -6.27118275e-02 5.95993847e-02 -8.53837654e-02 3.44908953e-01 9.14116800e-01 -9.65791225e-01 -4.95931715e-01 1.88571215e-01 -1.06476866e-01 -1.08161382e-01 3.91661882e-01 6.81746662e-01 -8.51737857e-01 1.08541775e+00 -2.36926273e-01 -6.88392878e-01 -1.39355421e+00 1.86353847e-01 2.72222787e-01 -3.70635420e-01 -6.48781478e-01 9.73055661e-01 -3.43392730e-01 1.03416160e-01 5.07245183e-01 -5.99442959e-01 1.08986825e-01 -1.47412708e-02 5.35037220e-01 5.31560898e-01 6.94876313e-01 -4.57210511e-01 -3.31916392e-01 4.04904872e-01 -3.88434410e-01 -2.02752590e-01 1.19321489e+00 -2.39476543e-02 7.02989921e-02 4.53580379e-01 1.27857339e+00 -7.16314435e-01 -1.00916803e+00 -2.80896634e-01 3.46029818e-01 -2.30341077e-01 6.75387800e-01 -6.28878653e-01 -1.20288813e+00 9.44838405e-01 1.00000143e+00 -3.04311275e-01 1.29650283e+00 -6.91718817e-01 1.42940676e+00 9.24596429e-01 6.55956209e-01 -1.39634550e+00 -2.69210428e-01 8.78924251e-01 5.65566421e-01 -8.06272149e-01 1.65153041e-01 5.37703969e-02 -2.52042949e-01 1.01555026e+00 5.27880371e-01 -5.08881584e-02 3.31526518e-01 4.61130410e-01 -9.23135802e-02 -3.46556082e-02 -1.35179865e+00 3.27767134e-01 7.29544759e-02 1.58677753e-02 1.39060572e-01 -1.92360170e-02 -2.23625645e-01 1.32839188e-01 -3.31595212e-01 3.66635174e-02 2.28485852e-01 8.70455086e-01 -4.60711807e-01 -4.78237271e-01 -4.64905500e-02 7.52585173e-01 -5.53513944e-01 -3.29356849e-01 1.01248518e-01 2.63267010e-01 -1.38149977e-01 9.56843317e-01 3.20364356e-01 -7.90726125e-01 3.15284491e-01 -1.80080190e-01 1.83605596e-01 -2.45167255e-01 -5.88591397e-01 -2.81567569e-03 2.56459236e-01 -8.65630507e-01 -2.83814281e-01 -2.19429687e-01 -1.30186963e+00 -5.46325803e-01 -3.82409513e-01 -1.01810880e-01 1.44355071e+00 1.00788164e+00 8.69373620e-01 7.42240429e-01 1.37859151e-01 -1.23948240e+00 -5.99621594e-01 -9.56041515e-01 -3.54251675e-02 -4.44018722e-01 3.54327768e-01 -3.59967828e-01 3.97348031e-02 -1.80828750e-01]
[8.475311279296875, 2.917058229446411]
c1df2e0b-210d-46bf-b9cf-14d8410cb80a
diagnosis-of-covid-19-using-chest-x-ray
null
null
https://link.springer.com/article/10.1007/s12065-021-00679-7
https://link.springer.com/content/pdf/10.1007/s12065-021-00679-7.pdf
Diagnosis of COVID-19 using chest X-ray images based on modified DarkCovidNet model
Coronavirus disease, also known as COVID-19, is an infectious disease caused by SARS-CoV-2. It has a direct impact on the upper and lower respiratory tract and threatened the health of many people around the world. The latest statistics show that the number of people diagnosed with COVID-19 is growing exponentially. Diagnosing positive cases of COVID-19 is important for preventing further spread of the disease. Currently, Coronavirus is a serious threat to scientists, medical experts and researchers around the world from its detection to its treatment. It is currently detected using reverse transcription polymerase chain reaction (RT-PCR) analysis at the most test centers around the world. Yet, knowing the reliability of a deep learning based medical diagnosis is important for doctors to build confidence in the technology and improve treatment. The goal of this study is to develop a model that automatically identifies COVID-19 by using chest X-ray images. To achieve this, we modified the DarkCovidNet model which is based on a convolutional neural network (CNN) and plotted the experimental results for two scenarios: binary classification (COVID-19 versus No-findings) and multi-class classification (COVID-19 versus pneumonia versus No-findings). The model is trained on more than 10 thousand X-ray images and achieved an average accuracy of 99.53% and 94.18% for binary and multi-class classification, respectively. Therefore, the proposed method demonstrates the effectiveness of COVID-19 detection using X-ray images. Our model can be used to test the patient via cloud and also be used in situations where RT-PCR tests and other options aren't available.
['Om Prakash Verma & Tarun Kumar Sharma', 'Vimal Kumar Shrivastava', 'Semagn Sisay Teferi', 'Tensaie Melkamu Demissie', 'Abdulhakim Edao Sirko', 'Dawit Kiros Redie']
2022-03-09
null
null
null
journal-2022-3
['covid-19-detection']
['medical']
[-3.68422866e-02 -6.87021971e-01 1.35972217e-01 -1.32143766e-01 -2.54061639e-01 -6.22660160e-01 1.36526423e-02 3.20897400e-01 -5.77715993e-01 6.83842123e-01 -3.32262278e-01 -7.29575455e-01 2.37441272e-03 -8.09804916e-01 -3.93739760e-01 -6.96346641e-01 -1.88112870e-01 7.76440442e-01 3.69241685e-02 7.46234432e-02 -2.60367393e-01 1.06696200e+00 -1.15144265e+00 4.06596303e-01 7.30330825e-01 1.00770843e+00 4.79465485e-01 1.05534005e+00 2.14073256e-01 4.65611160e-01 -7.20900118e-01 5.68316765e-02 8.10842514e-02 -2.57575274e-01 -3.98878694e-01 -5.39352298e-01 1.73756219e-02 -6.77510023e-01 1.58523932e-01 6.44122899e-01 5.73246896e-01 -3.02749932e-01 8.32102656e-01 -1.05646670e+00 -3.35280418e-01 -4.17040348e-01 -4.16912079e-01 5.29910207e-01 -4.71855961e-02 2.66461790e-01 3.84688109e-01 -5.45989335e-01 4.78295892e-01 9.20380652e-01 9.88329887e-01 6.06591344e-01 -5.03144860e-01 -8.43137681e-01 -6.03606462e-01 2.01786816e-01 -1.31263590e+00 5.62837780e-01 8.56623799e-02 -9.00095105e-01 1.08870447e+00 3.68535310e-01 8.24498892e-01 8.86292338e-01 8.72671902e-01 2.89391220e-01 1.04157102e+00 1.00548446e-01 1.49792105e-01 1.25561476e-01 1.56796768e-01 8.40911746e-01 8.23843539e-01 1.29650235e-01 3.97950292e-01 -5.19299805e-01 8.26725483e-01 9.37879145e-01 -3.74228030e-01 7.92711675e-02 -9.45219576e-01 1.09442902e+00 5.88107288e-01 4.29040253e-01 -5.93165398e-01 -1.55944780e-01 6.33931756e-01 -1.32544160e-01 1.77580714e-01 4.63316798e-01 -6.87157989e-01 2.03563944e-01 -7.76808321e-01 2.80309021e-01 3.50855291e-01 3.77428085e-01 2.91001916e-01 -9.19415653e-02 -2.09849179e-01 7.09485769e-01 4.16097850e-01 1.21974921e+00 4.79394168e-01 -1.94537684e-01 1.63292408e-01 7.47585177e-01 2.16775119e-01 -8.77197146e-01 -8.82085502e-01 -5.14957964e-01 -1.20048964e+00 4.89700064e-02 -5.00726178e-02 -5.16660154e-01 -1.24218929e+00 1.35132432e+00 1.40471369e-01 3.49929035e-01 -7.53610283e-02 1.19328809e+00 1.04024768e+00 7.71510124e-01 5.59435152e-02 -1.96344376e-01 1.95296967e+00 -6.66262984e-01 -6.65408790e-01 1.65779784e-01 8.03047478e-01 -5.66983759e-01 6.49582326e-01 2.38551319e-01 -4.00587201e-01 -3.73266995e-01 -1.16041052e+00 5.47135174e-01 -5.84741175e-01 3.55673969e-01 3.11513215e-01 7.73720503e-01 -7.79609978e-01 2.84266055e-01 -9.39469576e-01 -7.27437794e-01 5.06565690e-01 3.78973752e-01 -1.42740473e-01 -2.89402187e-01 -1.18954301e+00 8.31644356e-01 -4.53295633e-02 1.32156998e-01 -8.71519566e-01 -5.34771383e-01 -4.60418791e-01 7.59476945e-02 -7.37928823e-02 -1.02311170e+00 9.52017009e-01 -2.32498839e-01 -6.26872003e-01 8.33948195e-01 -5.09175770e-02 -3.59070271e-01 3.17218900e-01 -3.98284465e-01 -6.68866694e-01 3.67064714e-01 -1.07703172e-02 3.09970647e-01 5.28546095e-01 -1.08987403e+00 -7.35103905e-01 -4.64715660e-01 -2.21524060e-01 -3.85508925e-01 1.93407312e-01 4.34426904e-01 -5.95402457e-02 -5.39821386e-01 -4.53182697e-01 -1.26137304e+00 -1.49852499e-01 -5.83097525e-02 -3.00060660e-01 -4.28038687e-01 1.35898399e+00 -7.15255857e-01 7.07483411e-01 -1.89811778e+00 -8.13693523e-01 1.20997362e-01 4.84723687e-01 1.21357846e+00 1.18732393e-01 4.59565997e-01 -4.65955399e-02 2.93155909e-01 -3.38468313e-01 2.07809359e-01 -6.30419075e-01 1.56755194e-01 -1.42807350e-01 6.71233654e-01 4.91525084e-01 8.87864530e-01 -7.52136111e-01 -4.90635872e-01 2.46487290e-01 9.46836770e-01 -2.79907465e-01 6.70496643e-01 -1.59043342e-01 4.00575042e-01 -5.30712008e-01 7.96678185e-01 9.11667883e-01 -8.67627144e-01 -3.69206886e-03 -3.84389982e-02 1.33322403e-01 -2.58705348e-01 -6.94423378e-01 6.45040751e-01 -1.75315827e-01 6.49805725e-01 -7.39700869e-02 -7.36746252e-01 5.78481555e-01 7.03445196e-01 3.25390190e-01 -2.51379162e-01 5.89018345e-01 1.14809312e-01 -3.52482731e-03 -1.11708999e+00 2.24484671e-02 -3.68712932e-01 3.23881716e-01 5.83406329e-01 -6.34478569e-01 2.54024386e-01 4.84288186e-02 -6.00483529e-02 1.22290599e+00 -4.85454291e-01 2.18723133e-01 2.02113315e-02 4.79727954e-01 2.70157844e-01 4.86046791e-01 7.13320732e-01 -3.33330125e-01 6.32128775e-01 2.14633415e-03 -7.41201937e-01 -7.98394561e-01 -1.30055845e+00 -2.88778871e-01 4.75617945e-01 -1.12176135e-01 2.10553646e-01 -7.35904098e-01 -5.38350046e-01 -3.05100866e-02 2.68597752e-01 -5.35400808e-01 1.40495256e-01 -6.53436840e-01 -8.36971402e-01 6.46681130e-01 7.64454782e-01 5.91560006e-01 -1.20239151e+00 -1.16186059e+00 1.64406989e-02 -2.49851376e-01 -1.03731453e+00 -6.86728358e-02 -2.59612966e-02 -7.90135682e-01 -1.41780829e+00 -8.17441702e-01 -8.58937323e-01 6.09867156e-01 3.33014488e-01 7.48570740e-01 7.13430464e-01 -9.33272898e-01 1.74709201e-01 -3.02990794e-01 -8.40966702e-01 -4.51884389e-01 -2.10477918e-01 2.38807797e-01 -3.46075267e-01 5.36245942e-01 1.13908798e-01 -1.08003199e+00 2.59346068e-01 -9.61827278e-01 -2.65786558e-01 6.27028644e-01 6.38214767e-01 4.44892406e-01 -1.34743735e-01 7.31040418e-01 -8.55684996e-01 6.29058957e-01 -5.86390138e-01 -4.70597357e-01 8.31029192e-02 -5.49330115e-01 -5.65019608e-01 7.15627015e-01 -2.47580722e-01 -5.97649515e-01 -2.47915670e-01 -3.37616771e-01 -6.86824977e-01 -3.58483315e-01 2.77592301e-01 4.60074216e-01 3.70445728e-01 4.31334853e-01 -7.23978430e-02 6.74182596e-03 -3.59938681e-01 -3.48544419e-01 1.13468087e+00 4.10021722e-01 1.72297075e-01 4.43969578e-01 7.35084236e-01 2.82075796e-02 -9.78051722e-01 -6.56495512e-01 -8.33883882e-01 -7.83479661e-02 -3.08942258e-01 1.65571821e+00 -1.01400852e+00 -1.05108142e+00 6.11077666e-01 -1.45161140e+00 2.25588992e-01 5.01955450e-01 9.62268233e-01 -2.05501989e-02 2.02374488e-01 -8.63692582e-01 -7.17581809e-01 -9.26389635e-01 -1.19400609e+00 1.00957203e+00 1.63465366e-01 -2.60731518e-01 -8.97128284e-01 3.66177708e-01 4.45411533e-01 5.52042007e-01 3.38738889e-01 1.12895966e+00 -9.06812668e-01 -5.19978225e-01 -4.42107350e-01 -6.84995472e-01 5.52576363e-01 3.08416307e-01 4.01776135e-02 -9.59816456e-01 -6.36493802e-01 3.37921172e-01 -1.05333738e-01 6.20942533e-01 5.57200372e-01 1.02319062e+00 -7.05567896e-02 -7.67611086e-01 5.19561112e-01 1.67946565e+00 7.77369022e-01 4.96289134e-01 2.45641489e-02 6.72400057e-01 2.42166027e-01 6.11544073e-01 3.67852628e-01 9.63328853e-02 9.36779827e-02 6.68501496e-01 -4.47963834e-01 2.77075708e-01 3.49859864e-01 -3.15414965e-01 7.31637061e-01 -3.17494541e-01 -6.65836334e-01 -1.21027434e+00 5.68556190e-01 -1.22305238e+00 -1.01528215e+00 -5.23774624e-01 1.81560969e+00 3.37599188e-01 -2.38178626e-01 -1.74012363e-01 -7.31576309e-02 1.00083995e+00 -3.77019346e-01 -5.31640708e-01 -5.77114463e-01 3.24130625e-01 4.01632965e-01 2.87176043e-01 -1.06198922e-01 -1.12983012e+00 9.83556807e-02 6.19753075e+00 8.06463212e-02 -1.73811162e+00 1.27373055e-01 5.34097850e-01 1.81226045e-01 3.17165494e-01 -6.44682229e-01 -6.44499540e-01 4.60340440e-01 6.85560584e-01 2.78343171e-01 -2.67889034e-02 8.88084054e-01 4.25338417e-01 4.12678756e-02 -7.32226610e-01 1.03992450e+00 1.60412118e-01 -1.54243541e+00 -1.73874006e-01 -1.13984267e-03 5.99767208e-01 6.13999546e-01 -3.39889944e-01 1.05239213e-01 2.94358507e-02 -9.94518876e-01 -1.88547924e-01 3.79605949e-01 1.00730491e+00 -6.51095688e-01 1.42757082e+00 4.07077581e-01 -1.11841714e+00 1.72711730e-01 -1.98434740e-01 1.76643610e-01 2.88509279e-01 5.27894258e-01 -1.48389494e+00 6.44012466e-02 1.07939517e+00 1.58371583e-01 -1.88268095e-01 1.10612118e+00 -4.68010269e-03 8.90084863e-01 -3.39362144e-01 -4.02178109e-01 1.77864879e-01 -2.52706595e-02 3.13202322e-01 1.54799664e+00 3.86626750e-01 2.50751376e-01 2.62791757e-02 6.63818955e-01 5.31327687e-02 8.62099826e-02 -6.65374637e-01 -1.78745627e-01 1.31347805e-01 1.18155372e+00 -1.00866938e+00 -6.50397420e-01 -2.97616422e-01 6.13905013e-01 -1.66334748e-01 2.46512264e-01 -1.10533726e+00 -4.25605446e-01 7.55711734e-01 3.69845152e-01 6.40787959e-01 1.33454958e-02 -7.43263960e-02 -6.25029683e-01 -2.44275585e-01 -7.07183719e-01 4.19398576e-01 -9.50346708e-01 -1.34398258e+00 8.37005436e-01 -1.42656282e-01 -1.27884054e+00 -1.79514885e-01 -9.36792254e-01 -8.27134728e-01 8.75085711e-01 -1.51334834e+00 -8.12381327e-01 -5.22770047e-01 3.48620296e-01 1.83244273e-01 -7.79724568e-02 1.12533092e+00 2.28212968e-01 -4.32801008e-01 2.44104758e-01 2.60307461e-01 3.34946096e-01 4.73215640e-01 -7.79307485e-01 1.05561733e-01 4.85154003e-01 -7.18730748e-01 9.26735818e-01 4.83800918e-01 -9.28575516e-01 -1.14620936e+00 -1.58290482e+00 9.80663657e-01 -2.30442733e-01 1.67141587e-01 -1.80951074e-01 -8.35750997e-01 4.09007281e-01 2.73856878e-01 3.17774825e-02 9.75939989e-01 -5.95602572e-01 -1.12800576e-01 1.38583630e-01 -1.55360830e+00 1.21657774e-01 3.86870801e-01 -4.39778924e-01 -6.21473670e-01 5.96967578e-01 8.14145148e-01 -1.06271639e-01 -7.22174466e-01 7.58183300e-01 5.73555887e-01 -8.41553092e-01 7.74760664e-01 -6.18725240e-01 3.38339448e-01 -3.42522293e-01 -5.62087670e-02 -1.08760989e+00 -1.55933231e-01 1.49075136e-01 2.81861156e-01 3.51548404e-01 6.78637922e-02 -9.48189437e-01 5.87531149e-01 -1.10301644e-01 1.84295196e-02 -1.09379351e+00 -5.85759461e-01 -7.44214535e-01 -1.50035873e-01 -4.16308463e-01 7.01985836e-01 1.08280063e+00 -5.89098215e-01 2.42135867e-01 -1.48494512e-01 4.94034052e-01 2.27904290e-01 2.12795511e-01 5.23549139e-01 -1.34369075e+00 -1.39948577e-01 6.93034157e-02 -4.08795118e-01 -5.09615898e-01 -5.68888187e-01 -5.85360646e-01 -1.15127392e-01 -2.00061011e+00 3.28208238e-01 -4.21601772e-01 -4.27434921e-01 3.89022827e-01 -5.52858505e-03 5.21941721e-01 7.69461840e-02 1.91861138e-01 -6.32595494e-02 -1.32156685e-01 1.36416948e+00 -6.88891932e-02 4.29907553e-02 6.36617169e-02 -1.44530147e-01 6.47652209e-01 1.13715172e+00 -7.06622303e-01 -2.97107667e-01 -1.11440875e-01 3.49264324e-01 1.32390559e-01 4.65683848e-01 -1.07073343e+00 -1.51249364e-01 -1.54937908e-01 4.52379435e-01 -1.36888325e+00 2.66639471e-01 -9.84269142e-01 1.88239068e-01 1.22446644e+00 3.40473920e-01 4.99139935e-01 2.84598857e-01 4.41154867e-01 1.03643581e-01 -1.47108048e-01 8.74984324e-01 -1.19067393e-01 -9.58997905e-02 3.27467352e-01 -9.45465565e-01 1.18475035e-02 1.36014390e+00 -8.27675760e-02 -6.44837976e-01 -5.90172261e-02 -3.93810630e-01 1.63741305e-01 3.09813499e-01 3.59816074e-01 9.30579603e-01 -9.67924118e-01 -7.45318770e-01 5.12792289e-01 3.21505398e-01 2.82968562e-02 3.98509711e-01 8.74111831e-01 -1.34719086e+00 7.01977015e-01 -5.01562133e-02 -1.01050973e+00 -1.70046580e+00 8.23228657e-01 3.72585714e-01 -3.29466343e-01 -4.28405941e-01 5.55408239e-01 3.34076554e-01 -2.83602118e-01 9.31660458e-02 -5.48051476e-01 -3.57965529e-01 -2.43168294e-01 7.19055474e-01 2.95160562e-01 2.03277990e-01 -5.43020546e-01 -6.35637879e-01 5.32773733e-01 -2.65071332e-01 6.31950021e-01 1.35718083e+00 4.06473070e-01 -2.85821378e-01 2.16046005e-01 1.44128656e+00 -2.63147950e-01 -3.43700171e-01 2.15813518e-01 -6.06339872e-01 -1.72301024e-01 -1.99938372e-01 -9.51596260e-01 -9.71346140e-01 1.06333745e+00 1.35464144e+00 2.07899317e-01 9.06431019e-01 2.20034286e-01 1.28659904e+00 5.18197477e-01 1.43340021e-01 -6.62684858e-01 -4.13723961e-02 2.96993166e-01 5.48553944e-01 -1.21405804e+00 -2.33301800e-02 -1.87925071e-01 -3.57130766e-01 7.69528389e-01 4.30439830e-01 -1.91570878e-01 8.77301395e-01 4.00926083e-01 6.47418737e-01 -7.71447122e-01 -6.53981745e-01 2.47676164e-01 -4.31859754e-02 7.11333871e-01 4.01674807e-01 5.86658776e-01 -2.99098969e-01 2.19060525e-01 9.67797041e-02 2.93497175e-01 2.70105630e-01 1.17622709e+00 -5.34390450e-01 -5.61999440e-01 -6.72275484e-01 1.10306644e+00 -6.64365232e-01 -4.16935571e-02 -1.85859293e-01 7.18760431e-01 5.40841699e-01 1.02873683e+00 2.02697664e-01 -2.85387844e-01 1.19378462e-01 -8.64807740e-02 6.94422573e-02 -5.77460349e-01 -4.87754166e-01 -1.53556436e-01 -1.38230592e-01 -1.82744652e-01 -5.07639825e-01 -2.91453660e-01 -1.72333360e+00 -2.80876756e-01 -4.78515983e-01 1.95379667e-02 9.59379733e-01 9.17640865e-01 2.37347171e-01 6.48929894e-01 5.14920056e-01 -1.79775998e-01 -3.03087443e-01 -8.82376432e-01 -5.16265392e-01 2.15170801e-01 5.81165493e-01 -5.89238405e-01 -3.70758623e-01 -3.54459789e-03]
[15.588909149169922, -1.6648826599121094]
91d038f7-db43-4c9f-a875-0d10232de9e1
fully-transformer-networks-for-semantic
2106.04108
null
https://arxiv.org/abs/2106.04108v3
https://arxiv.org/pdf/2106.04108v3.pdf
Fully Transformer Networks for Semantic Image Segmentation
Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated that combining such Transformers with CNN-based semantic image segmentation models is very promising. However, it is not well studied yet on how well a pure Transformer based approach can achieve for image segmentation. In this work, we explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN). Specifically, we first propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, meanwhile reducing the computation complexity of the standard Visual Transformer (ViT). Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation. Surprisingly, this simple baseline can achieve better results on multiple challenging semantic segmentation and face parsing benchmarks, including PASCAL Context, ADE20K, COCOStuff, and CelebAMask-HQ. The source code will be released on https://github.com/BR-IDL/PaddleViT.
['Guodong Guo', 'Shengwei Tian', 'Fangjian Lin', 'Tianyi Wu', 'Sitong Wu']
2021-06-08
null
null
null
null
['face-parsing']
['computer-vision']
[ 3.23335350e-01 2.72633523e-01 -4.11380231e-02 -7.26834297e-01 -8.53974283e-01 -5.56382775e-01 4.75924641e-01 -2.45003968e-01 -1.23532861e-01 2.27533922e-01 -2.37117466e-02 -3.51375908e-01 2.10654899e-01 -8.36567998e-01 -9.44865644e-01 -5.30916631e-01 3.87205482e-01 4.88031805e-01 5.61350226e-01 -1.36069536e-01 3.37615027e-03 1.96577892e-01 -1.41796029e+00 5.24128377e-01 8.44007611e-01 1.33989465e+00 3.13466191e-01 5.42311788e-01 -4.03826118e-01 9.21161830e-01 -3.85169923e-01 -7.95698643e-01 -5.72447143e-02 -4.77133036e-01 -1.13565195e+00 6.76247776e-02 6.28743768e-01 -2.53655642e-01 -8.33349824e-02 1.04976845e+00 3.21193248e-01 -3.66172731e-01 3.29722643e-01 -1.23955643e+00 -6.34448290e-01 8.17306280e-01 -5.81896901e-01 -4.99121360e-02 8.27930123e-02 -9.83176474e-03 1.09440732e+00 -7.72971272e-01 4.82219458e-01 1.69603920e+00 7.87236869e-01 6.74228072e-01 -9.49061334e-01 -7.25963771e-01 1.05501302e-01 4.27402616e-01 -1.04589236e+00 -3.49453390e-01 6.90233350e-01 -2.31221005e-01 9.21289623e-01 1.27046611e-02 6.35116756e-01 8.64241362e-01 3.63183916e-02 1.22296762e+00 1.09755290e+00 -1.90718412e-01 -2.51766220e-02 -3.63848418e-01 3.10586035e-01 1.05218673e+00 -2.11476535e-01 -1.42855346e-01 -6.17015362e-01 2.44634569e-01 6.99587703e-01 -1.80627003e-01 8.26177076e-02 -2.41150066e-01 -5.85749209e-01 9.13590193e-01 7.27124035e-01 2.91218221e-01 -7.72682428e-02 3.92934769e-01 5.07694364e-01 7.82986432e-02 5.92686296e-01 -1.77294150e-01 -6.82523429e-01 -1.20054083e-02 -9.33579385e-01 1.67364538e-01 5.62701583e-01 9.15248871e-01 8.73354435e-01 -1.41839653e-01 -3.28219116e-01 1.01887882e+00 4.14817452e-01 3.61150891e-01 1.47606701e-01 -1.17170453e+00 3.17241281e-01 6.00180328e-01 -5.30536234e-01 -6.30536079e-01 -2.75014907e-01 -1.17834203e-01 -5.99743664e-01 -6.95957094e-02 5.77866018e-01 1.55472055e-01 -1.40173340e+00 1.69741952e+00 3.76232982e-01 3.76930028e-01 -4.05332893e-02 8.00433695e-01 1.16557467e+00 6.22847736e-01 3.78409684e-01 3.07925731e-01 1.63736236e+00 -1.25685537e+00 -4.23103124e-01 -3.94632965e-01 4.47256207e-01 -7.51837134e-01 1.17027378e+00 3.11311632e-01 -1.17513621e+00 -6.10814512e-01 -7.84155488e-01 -5.99412680e-01 -4.20791864e-01 9.96964872e-02 8.86424005e-01 6.61680698e-01 -1.43356335e+00 4.58503276e-01 -1.14675760e+00 -4.47289109e-01 9.58360314e-01 4.44015026e-01 -1.71898991e-01 -3.16081315e-01 -1.05317605e+00 4.54319119e-01 2.78258771e-01 2.49553740e-01 -1.03981888e+00 -7.68574715e-01 -1.15127802e+00 9.41349640e-02 3.26905906e-01 -5.73396742e-01 1.51494610e+00 -9.97391045e-01 -1.50924063e+00 1.06160796e+00 -3.35769951e-01 -5.80733716e-01 3.88843775e-01 -1.73910007e-01 1.84256196e-01 4.09123719e-01 2.84238100e-01 1.38545036e+00 8.07694435e-01 -1.06891692e+00 -6.08442008e-01 -5.59224129e-01 1.43902436e-01 5.46396747e-02 -1.51907712e-01 2.11333513e-01 -9.37535703e-01 -4.49536830e-01 1.53866643e-02 -6.58511281e-01 -1.57995343e-01 -3.30368057e-02 -4.99777198e-01 -6.14470780e-01 9.38739836e-01 -8.86176825e-01 6.82628572e-01 -2.23133016e+00 8.60206932e-02 -1.17168218e-01 1.88738778e-01 3.75877380e-01 -3.68636310e-01 1.10974863e-01 1.52538687e-01 2.05581009e-01 -5.50646663e-01 -4.93468791e-01 1.16835795e-01 3.34335774e-01 -1.11215316e-01 -1.36885038e-02 4.09993976e-01 1.43314087e+00 -5.33083737e-01 -6.71427429e-01 3.83890808e-01 7.21612811e-01 -7.65817165e-01 6.34242371e-02 -5.37020266e-01 5.55243492e-01 -5.18319547e-01 9.70384479e-01 8.10593307e-01 -4.74483490e-01 9.44181532e-02 -3.14231724e-01 7.58013055e-02 2.61874855e-01 -3.92739117e-01 1.82576072e+00 -3.75773996e-01 5.58633208e-01 1.63595840e-01 -1.34630239e+00 5.69296777e-01 5.68142533e-02 4.46156055e-01 -1.19208765e+00 1.97946802e-01 1.14069752e-01 -2.94583350e-01 -1.64005294e-01 2.13790253e-01 -1.95838604e-02 -1.71622872e-01 -6.46679848e-02 4.50721592e-01 -2.28142008e-01 3.31136405e-01 2.07743496e-01 9.72650468e-01 3.47277820e-01 -8.65733474e-02 -2.72265106e-01 4.80815381e-01 -3.51253115e-02 6.87126219e-01 4.99694228e-01 -2.39127889e-01 6.51989579e-01 8.52391601e-01 -2.32658684e-01 -7.48734295e-01 -1.29482174e+00 -2.91379243e-01 1.36171353e+00 1.97208166e-01 -5.36833644e-01 -1.42250991e+00 -7.25230694e-01 -1.46375045e-01 4.00375813e-01 -5.45692980e-01 9.13716182e-02 -6.84399664e-01 -7.76956499e-01 7.79889762e-01 7.33817935e-01 1.06744266e+00 -1.17418456e+00 -4.42711532e-01 6.33992031e-02 -3.12132001e-01 -1.59475958e+00 -5.05766630e-01 1.27521172e-01 -6.83552861e-01 -1.20312583e+00 -5.79893470e-01 -1.01907146e+00 3.49566191e-01 -6.10404797e-02 1.23514199e+00 1.31745160e-01 -4.19362366e-01 3.39688331e-01 -3.87428313e-01 -1.87573031e-01 -1.23429410e-01 1.06434166e-01 -7.19626009e-01 -1.33261323e-01 3.63251895e-01 -3.04864258e-01 -6.47557378e-01 2.54330426e-01 -8.52298737e-01 2.73893505e-01 4.29685444e-01 7.32401431e-01 7.10805178e-01 -1.38924003e-01 3.40000987e-01 -1.02820873e+00 2.01812968e-01 -1.87420473e-01 -6.47829950e-01 3.58250648e-01 -2.46010467e-01 -1.35779455e-01 5.63925207e-01 1.01430088e-01 -1.20450485e+00 1.14428766e-01 -7.94280231e-01 -2.55426794e-01 -1.13044769e-01 2.28928164e-01 -4.38785046e-01 -6.33563325e-02 2.20357371e-03 2.52214015e-01 -1.30200133e-01 -5.58969319e-01 4.81578708e-01 5.03691792e-01 5.50858736e-01 -7.33267963e-01 4.09248143e-01 3.84816438e-01 -2.02714220e-01 -8.47521424e-01 -1.17541635e+00 -2.18580678e-01 -6.24716699e-01 6.42174780e-02 1.44927490e+00 -9.94775832e-01 -6.69073701e-01 9.08981204e-01 -1.20977581e+00 -7.92444825e-01 -9.08505395e-02 -2.01575994e-01 -6.14874363e-01 3.59491646e-01 -1.05907249e+00 -1.92698240e-01 -4.00833249e-01 -1.55954158e+00 1.56908667e+00 5.20190895e-01 2.97520995e-01 -1.00572264e+00 -4.44717467e-01 9.41806197e-01 3.66907865e-01 1.51707917e-01 8.99480283e-01 -3.99941325e-01 -7.95833528e-01 3.24769616e-01 -5.96536815e-01 5.91629684e-01 -2.16051247e-02 -1.16626263e-01 -1.08593726e+00 -1.49150461e-01 -1.78075358e-01 -5.35584033e-01 1.21206868e+00 6.59147859e-01 1.55985987e+00 -4.60227281e-02 -2.99303085e-01 9.53920245e-01 1.39297462e+00 8.20544455e-03 7.20944226e-01 -3.17419358e-02 1.08365750e+00 4.84683782e-01 4.14342463e-01 1.76075250e-02 8.35729837e-01 6.95908129e-01 4.33346391e-01 -3.97189498e-01 -5.42021692e-01 -3.62482011e-01 4.15010244e-01 6.74386621e-01 1.66257054e-01 -1.54115126e-01 -9.27903891e-01 4.78988796e-01 -1.69554114e+00 -4.78123575e-01 -3.47969905e-02 1.57741380e+00 7.22009599e-01 9.18691307e-02 5.66725479e-03 -6.90687150e-02 6.11694813e-01 1.99779019e-01 -6.55668318e-01 -5.74599981e-01 -8.82854760e-02 7.46806800e-01 5.24006188e-01 4.71644610e-01 -1.31145358e+00 1.65929711e+00 5.58083630e+00 1.12483549e+00 -9.97062802e-01 4.35066432e-01 1.02983713e+00 4.70929563e-01 -2.39620432e-01 -1.53442174e-02 -9.58028913e-01 3.86117071e-01 8.78766894e-01 2.12973446e-01 3.91055644e-01 7.26268172e-01 -1.01372413e-01 -4.76894639e-02 -8.88841331e-01 8.90503705e-01 -1.84754748e-02 -1.22932732e+00 1.85906962e-01 -1.21258251e-01 3.82347941e-01 2.64436811e-01 2.44651273e-01 3.45772117e-01 4.17760760e-01 -1.12248540e+00 6.98901176e-01 2.76460405e-02 7.76361644e-01 -5.75219512e-01 5.51750839e-01 -4.53919470e-02 -1.56093550e+00 3.13253962e-02 -3.28620195e-01 3.52204740e-01 1.09811381e-01 5.12578368e-01 -5.33579350e-01 4.66683865e-01 1.11584711e+00 1.01265931e+00 -8.38641047e-01 6.02938771e-01 -3.88049275e-01 8.94450426e-01 -3.54765475e-01 4.72388953e-01 5.10752022e-01 -1.77931741e-01 -2.57680714e-02 1.15430963e+00 1.59835979e-01 -5.35955541e-02 1.75060824e-01 7.14829683e-01 -3.29020619e-01 -3.23637687e-02 -3.04161787e-01 -8.23812187e-02 2.29285225e-01 1.29113412e+00 -1.12954760e+00 -3.80033940e-01 -6.35098696e-01 1.09593594e+00 3.97839427e-01 2.21076325e-01 -1.10910559e+00 6.48831809e-03 6.71798170e-01 -7.26451203e-02 6.40606403e-01 6.22058101e-03 -1.83423817e-01 -1.01652670e+00 -6.26363000e-03 -7.57192850e-01 5.88511050e-01 -6.94118679e-01 -9.88270879e-01 5.62083364e-01 -8.01217183e-02 -5.30067861e-01 2.41146032e-02 -8.16325963e-01 -3.80250394e-01 3.73674512e-01 -1.74657297e+00 -1.67765045e+00 -1.84361666e-01 7.42807627e-01 8.94355357e-01 2.12388158e-01 4.13145751e-01 4.68110412e-01 -5.62936842e-01 7.09124148e-01 -3.29864889e-01 4.26998824e-01 3.18620175e-01 -1.45029569e+00 6.54968917e-01 7.56981015e-01 1.79235682e-01 1.33659437e-01 2.35715836e-01 -4.12396759e-01 -1.25630760e+00 -1.31292748e+00 7.14890480e-01 -3.90094757e-01 4.58382130e-01 -6.54765785e-01 -8.35619032e-01 8.49123180e-01 4.36707735e-01 1.48541912e-01 3.01494539e-01 -9.00403336e-02 -5.65512836e-01 -1.98716506e-01 -1.15355980e+00 3.61047387e-01 1.18928838e+00 -4.60256845e-01 -2.44302109e-01 3.16544682e-01 1.05920494e+00 -5.18251956e-01 -8.89572918e-01 6.05462134e-01 3.56418550e-01 -1.17503083e+00 1.15109408e+00 -6.18844628e-02 6.24294996e-01 -1.10108405e-01 -1.74521372e-01 -9.39093530e-01 5.00696786e-02 -3.05896252e-01 3.87863487e-01 1.48872578e+00 2.10005462e-01 -6.06471419e-01 9.11681652e-01 1.71183705e-01 -3.65402907e-01 -8.05854917e-01 -9.89884257e-01 -6.55005157e-01 4.62656230e-01 -4.97657716e-01 6.50176227e-01 5.21361887e-01 -4.94545221e-01 4.48833197e-01 -1.20885119e-01 -3.02639650e-03 8.04216802e-01 1.50007859e-01 4.91584182e-01 -1.04042828e+00 -1.43806905e-01 -5.08609414e-01 -3.29253644e-01 -1.27659106e+00 4.37583864e-01 -1.14183867e+00 1.36707336e-01 -1.74120760e+00 3.14328462e-01 -2.97222793e-01 -2.24149838e-01 8.22694540e-01 -6.59811795e-02 6.20155573e-01 3.39666158e-01 -2.25038201e-01 -8.82081747e-01 5.01906097e-01 1.53435922e+00 -2.60461450e-01 1.95751190e-01 -2.37429053e-01 -7.46297657e-01 8.06041777e-01 9.98734415e-01 -3.02967906e-01 -5.47234237e-01 -8.09624255e-01 -8.85887668e-02 2.25790471e-01 6.09333217e-01 -8.86279583e-01 1.80611625e-01 1.81201369e-01 2.86033630e-01 -6.16551042e-01 3.25156450e-01 -4.46703613e-01 -1.62481442e-01 3.61087084e-01 -1.36827081e-01 -6.69641346e-02 2.53477842e-01 2.04119533e-01 -5.54826379e-01 7.46193528e-02 9.40461755e-01 -1.99845552e-01 -1.05734420e+00 6.66889906e-01 -7.67128542e-02 3.15272629e-01 7.69500077e-01 -2.35393748e-01 -3.87515426e-01 -4.37649451e-02 -7.26478279e-01 4.63944793e-01 3.19554538e-01 5.36673129e-01 6.37881756e-01 -9.42496240e-01 -6.37903750e-01 1.79633260e-01 -2.14506555e-02 2.49608546e-01 3.01264167e-01 7.68560469e-01 -6.52322888e-01 4.54095304e-01 -1.69016242e-01 -9.34760511e-01 -1.28318596e+00 2.68448800e-01 4.28303272e-01 -3.51448357e-01 -6.53774083e-01 1.21582639e+00 6.63475215e-01 -6.59420192e-01 9.42108333e-02 -4.80158091e-01 -1.89905524e-01 -5.13479114e-02 2.72909403e-01 -6.90843165e-02 2.69326512e-02 -8.19998324e-01 -5.93245149e-01 1.01709175e+00 -1.78837970e-01 1.22240677e-01 1.29539359e+00 -9.10414830e-02 -4.84868497e-01 -1.01807266e-01 1.37091863e+00 -5.14821112e-01 -1.49297369e+00 -8.80257636e-02 2.77205527e-01 -2.65895445e-02 -8.38763490e-02 -7.59626687e-01 -1.61379719e+00 1.28100228e+00 6.11739337e-01 6.78725354e-03 1.55875254e+00 4.28321958e-01 1.14973032e+00 -2.97918404e-03 3.30429554e-01 -8.69688511e-01 5.93861789e-02 6.14885688e-01 5.49757183e-01 -1.17061889e+00 -4.83540177e-01 -8.87853444e-01 -5.62275052e-01 9.04012501e-01 6.98248386e-01 -1.10030159e-01 8.07188094e-01 4.11532968e-01 5.03371619e-02 -3.46721113e-01 -6.23845994e-01 -5.63784480e-01 1.62420601e-01 5.12015581e-01 4.95044917e-01 1.48912698e-01 -1.43694311e-01 6.21762812e-01 -3.54473621e-01 5.50267100e-03 7.72867128e-02 5.60776472e-01 -3.76095593e-01 -1.29703987e+00 -2.30692290e-02 3.56429309e-01 -7.81702697e-01 -3.03386331e-01 -4.02454883e-01 6.77401006e-01 3.22316229e-01 9.99280691e-01 1.68715075e-01 -1.63005441e-01 1.42802194e-01 3.85135226e-02 7.35698760e-01 -5.81014752e-01 -5.82674205e-01 2.69891053e-01 -4.45024110e-02 -9.35435355e-01 -4.83921498e-01 -5.86518526e-01 -1.51994479e+00 -6.86441213e-02 1.76179707e-01 1.25845388e-01 4.96836334e-01 1.11686623e+00 1.59264132e-01 6.21036828e-01 2.33730182e-01 -5.62442183e-01 -7.40919113e-02 -7.28047788e-01 -2.83855230e-01 3.05913448e-01 1.63339674e-01 -5.47782183e-01 -5.58165945e-02 2.24376932e-01]
[9.578731536865234, 0.4277397096157074]
45751355-c0a7-471e-a9af-3ab742db45e7
low-complexity-multidimensional-dct
2306.11724
null
https://arxiv.org/abs/2306.11724v1
https://arxiv.org/pdf/2306.11724v1.pdf
Low-complexity Multidimensional DCT Approximations
In this paper, we introduce low-complexity multidimensional discrete cosine transform (DCT) approximations. Three dimensional DCT (3D DCT) approximations are formalized in terms of high-order tensor theory. The formulation is extended to higher dimensions with arbitrary lengths. Several multiplierless $8\times 8\times 8$ approximate methods are proposed and the computational complexity is discussed for the general multidimensional case. The proposed methods complexity cost was assessed, presenting considerably lower arithmetic operations when compared with the exact 3D DCT. The proposed approximations were embedded into 3D DCT-based video coding scheme and a modified quantization step was introduced. The simulation results showed that the approximate 3D DCT coding methods offer almost identical output visual quality when compared with exact 3D DCT scheme. The proposed 3D approximations were also employed as a tool for visual tracking. The approximate 3D DCT-based proposed system performs similarly to the original exact 3D DCT-based method. In general, the suggested methods showed competitive performance at a considerably lower computational cost.
['F. M. Bayer', 'R. J. Cintra', 'V. A. Coutinho']
2023-06-20
null
null
null
null
['visual-tracking', 'quantization']
['computer-vision', 'methodology']
[-2.15418592e-01 -3.27560633e-01 -8.81685019e-02 1.78292133e-02 -4.16244149e-01 -4.47609723e-01 7.01308608e-01 -2.84509584e-02 -3.40502530e-01 3.03431451e-01 1.93997249e-01 -4.99756366e-01 8.00631419e-02 -1.96239114e-01 -1.59259215e-01 -5.49217939e-01 -4.58465308e-01 1.59752354e-01 3.23790193e-01 -1.47599548e-01 5.51498950e-01 6.81615472e-01 -1.55002201e+00 1.59445271e-01 4.06822085e-01 1.26015890e+00 3.96910682e-02 1.12416184e+00 4.82421042e-03 3.51567268e-01 -2.68361598e-01 -5.53344965e-01 6.23937905e-01 -3.00062090e-01 -4.49046075e-01 5.60340047e-01 4.84929383e-01 -7.05463827e-01 -3.92815500e-01 1.11402702e+00 2.82286435e-01 -2.31680106e-02 1.01184189e+00 -1.16733408e+00 -6.18002057e-01 -1.51921421e-01 -9.10616159e-01 1.93169013e-01 5.88186443e-01 -3.85225624e-01 6.52335346e-01 -1.20687187e+00 4.56388980e-01 1.23623371e+00 8.66934001e-01 7.69060403e-02 -1.00296962e+00 -2.34870240e-01 -3.26990932e-01 2.08871678e-01 -1.70985436e+00 -8.58660340e-02 5.83964705e-01 -4.57750201e-01 1.17909133e+00 3.99375051e-01 8.44627023e-01 1.85723796e-01 5.13817966e-01 5.18253624e-01 1.14425516e+00 -6.58656597e-01 2.57668734e-01 8.29143971e-02 -9.46166217e-02 1.12623703e+00 5.07916391e-01 1.65371329e-01 2.14359723e-02 -4.58807439e-01 8.07683825e-01 2.30841096e-02 -1.34461731e-01 -3.38772655e-01 -1.43078792e+00 7.67925560e-01 2.04432905e-01 5.49449742e-01 -2.20500544e-01 3.26261044e-01 7.35382915e-01 3.37069184e-01 4.80497360e-01 -4.45274770e-01 -1.06752917e-01 -4.50744212e-01 -1.26312006e+00 2.33113408e-01 7.86632538e-01 1.54497135e+00 3.36930275e-01 3.68104875e-01 2.72707731e-01 4.65030491e-01 4.67551112e-01 5.93086600e-01 4.18786019e-01 -1.24112380e+00 4.84050721e-01 1.66549653e-01 1.56664371e-01 -1.26806200e+00 -9.10647139e-02 -1.32636711e-01 -9.88058567e-01 3.85034710e-01 1.27186581e-01 2.84520894e-01 -6.87028766e-01 8.91935050e-01 3.64774972e-01 -1.51929453e-01 2.41659377e-02 9.92223620e-01 1.65936276e-01 8.03177416e-01 -1.76797986e-01 -6.22411430e-01 1.42154002e+00 -6.40070617e-01 -9.70454097e-01 7.93026447e-01 8.11027348e-01 -1.54201925e+00 4.72301275e-01 6.97189271e-01 -1.16503608e+00 -7.26833880e-01 -1.33401966e+00 -9.20103043e-02 -1.37721583e-01 4.29341286e-01 5.71880341e-01 1.02047896e+00 -1.28802979e+00 4.20997202e-01 -7.43396819e-01 -4.59898293e-01 -1.53548971e-01 4.06910032e-01 -4.65986766e-02 -8.53113607e-02 -6.88689291e-01 7.31582880e-01 1.64005414e-01 1.03083262e-02 -5.03488183e-01 3.89693230e-02 -5.53686619e-01 -1.76386833e-01 -3.44175309e-01 -4.24713135e-01 1.37267220e+00 -3.94483387e-01 -1.38507640e+00 6.72065020e-01 -2.49004155e-01 -3.54853749e-01 3.99051785e-01 2.75229245e-01 -5.11495173e-01 7.21214056e-01 4.49837632e-02 3.67057323e-01 1.02028680e+00 -7.38233924e-01 -6.53650820e-01 -1.78674757e-01 2.08244212e-02 3.07785183e-01 -2.20569447e-01 -2.33926609e-01 -2.56467581e-01 -8.87616575e-01 5.95176280e-01 -8.63404512e-01 -3.12803313e-02 8.50551844e-01 1.35405436e-01 5.24215475e-02 1.17187703e+00 -2.94287145e-01 1.35191500e+00 -2.10192823e+00 1.17546126e-01 -1.18108722e-03 1.91335693e-01 4.96055007e-01 2.91716874e-01 8.58845234e-01 1.89558510e-02 -3.38504873e-02 -3.99537794e-02 -3.11932921e-01 -8.25767592e-03 1.58492640e-01 3.82597744e-03 9.57304001e-01 -2.54282862e-01 -7.24777654e-02 -5.96805990e-01 -8.24294090e-01 4.21466351e-01 8.42388153e-01 -7.29017258e-01 -1.66599363e-01 1.57860979e-01 -1.51421413e-01 -6.17748678e-01 9.57827151e-01 1.18917048e+00 2.65269727e-01 6.59137368e-02 -8.32067847e-01 -4.33378428e-01 -3.95726413e-01 -1.31057966e+00 1.55112636e+00 -3.64265114e-01 7.83717096e-01 2.16592774e-01 -1.23904252e+00 1.14546537e+00 8.68920028e-01 7.10020125e-01 -4.76444155e-01 2.19784319e-01 6.03280425e-01 -2.83220232e-01 -7.09206939e-01 8.19935203e-01 -3.51534635e-01 1.52273566e-01 2.87801385e-01 -2.07347706e-01 -6.39568567e-01 4.55436110e-01 2.23332733e-01 6.15534842e-01 3.88966262e-01 6.59855545e-01 -4.86986905e-01 9.61007535e-01 2.74392188e-01 1.51740059e-01 -6.10569157e-02 -5.60421944e-01 4.06740189e-01 1.77373827e-01 -6.82935476e-01 -1.59052944e+00 -8.55183959e-01 -3.37738335e-01 2.10725471e-01 2.64849603e-01 -5.96689045e-01 -6.18406236e-01 -2.13652432e-01 -5.19097410e-02 2.28837430e-01 -1.31460682e-01 3.67373168e-01 -5.06000519e-01 -3.15420657e-01 6.87117398e-01 1.65885389e-01 8.60122025e-01 2.32061371e-01 -5.67570806e-01 2.76854157e-01 1.26369363e-02 -1.22548401e+00 -7.36032248e-01 -3.02937984e-01 -1.49192595e+00 -9.85032380e-01 -1.18624163e+00 -1.10691988e+00 7.41636693e-01 6.79463148e-01 5.84038615e-01 1.91282839e-01 -3.26752216e-01 6.63906515e-01 -6.37709916e-01 1.15229674e-01 -3.48598063e-01 -7.26894259e-01 5.47874570e-01 -2.48296008e-01 6.17745996e-01 -6.34453297e-01 -7.60326684e-01 3.05505604e-01 -8.10176194e-01 -2.47474805e-01 4.96309221e-01 7.71817923e-01 5.61311066e-01 3.26690376e-01 -8.97609442e-02 -1.21202320e-01 8.02957237e-01 -6.65517002e-02 -8.53436887e-01 -1.32702112e-01 -9.20590758e-01 1.35494381e-01 9.35671747e-01 -4.05015826e-01 -9.15058613e-01 8.11306536e-02 -1.41308144e-01 -5.29728532e-01 3.97261769e-01 2.36310482e-01 6.04416072e-01 -4.98175204e-01 4.97544885e-01 5.14164388e-01 -2.69283745e-02 -7.07802057e-01 2.86453426e-01 1.14134181e+00 2.26652414e-01 -5.51141202e-01 7.21897185e-01 6.36131048e-01 5.35420477e-01 -1.18184996e+00 1.03161827e-01 -4.99227375e-01 -6.38461947e-01 -2.63477951e-01 6.82688653e-01 -1.03850877e+00 -9.24466074e-01 2.37405986e-01 -1.28056312e+00 5.94922304e-01 -3.97115275e-02 1.09131122e+00 -9.37165618e-01 1.03122211e+00 -8.20029974e-01 -1.08881998e+00 -2.45446473e-01 -1.52367389e+00 1.03806996e+00 -3.36330920e-01 1.55135110e-01 -1.07143033e+00 3.56584452e-02 7.46039823e-02 3.49036813e-01 3.25286835e-01 8.75848591e-01 1.69241220e-01 -3.68191034e-01 -3.24643165e-01 -3.35699379e-01 2.84229249e-01 1.91575199e-01 1.49922341e-01 -4.73234475e-01 -5.11772394e-01 2.33899787e-01 -2.59177154e-03 2.05854774e-01 3.62284362e-01 6.19845033e-01 -4.85821843e-01 -1.99427232e-01 7.43563771e-01 1.93835449e+00 3.79128724e-01 2.23226413e-01 1.50299788e-01 1.06132165e-01 -1.88500620e-02 9.36812699e-01 6.75970554e-01 1.22718468e-01 7.31853306e-01 3.62456053e-01 9.60378870e-02 -3.81529659e-01 5.33661358e-02 2.59759337e-01 1.51186061e+00 -5.64603984e-01 -5.94544001e-02 -4.39540356e-01 5.10053873e-01 -1.34194458e+00 -9.79722023e-01 -6.90519452e-01 2.11241937e+00 5.75177312e-01 1.03389099e-01 1.88681513e-01 7.22767353e-01 7.40700006e-01 5.59642799e-02 8.58638659e-02 -1.30681729e+00 3.60419929e-01 2.16528922e-01 6.69139266e-01 6.03366315e-01 -7.89091229e-01 2.38041535e-01 6.64027405e+00 7.67062008e-01 -9.17267263e-01 1.43271700e-01 -5.29697873e-02 1.59999073e-01 1.39675550e-02 1.16381541e-01 -5.81636965e-01 2.95522004e-01 9.59571362e-01 -4.13144767e-01 2.36538514e-01 9.43885148e-01 5.20738602e-01 -2.42309391e-01 -9.09786940e-01 1.36668706e+00 -6.68144971e-02 -1.21751034e+00 4.08710092e-01 3.29475582e-01 7.08500683e-01 -3.81228298e-01 8.06053355e-02 -7.09080473e-02 -4.98602659e-01 -2.66957790e-01 6.43729448e-01 2.28268072e-01 1.28522146e+00 -8.52850258e-01 6.24650002e-01 1.57589391e-01 -1.98393500e+00 8.39360580e-02 -6.51138902e-01 -2.71847576e-01 1.85314640e-01 3.96184742e-01 -5.85220098e-01 4.65265960e-01 4.95103329e-01 5.94012439e-01 -7.41316229e-02 1.10156798e+00 5.74732721e-01 2.03202143e-01 -4.48529065e-01 -2.94946402e-01 7.14069068e-01 -3.82908344e-01 7.19348133e-01 1.46549201e+00 9.30969656e-01 3.65884393e-01 -9.00739804e-02 1.41198248e-01 2.81247407e-01 1.59335032e-01 -7.90871501e-01 -2.11774170e-01 2.81767368e-01 8.44560862e-01 -7.51745760e-01 -6.78073347e-01 -7.11520612e-01 1.27198172e+00 -4.75540370e-01 2.81652451e-01 -7.15089440e-01 -7.83942103e-01 4.92609084e-01 2.60829598e-01 8.02436352e-01 -8.51319849e-01 2.36264572e-01 -1.18837380e+00 4.06575911e-02 -6.64910614e-01 2.29702309e-01 -8.14620852e-01 -7.84866393e-01 6.63050652e-01 2.54516095e-01 -2.32592297e+00 -4.60908592e-01 -8.07592154e-01 4.51575853e-02 7.58443594e-01 -1.26564288e+00 -7.51169801e-01 -8.43508616e-02 7.38858700e-01 7.89293766e-01 -1.39534011e-01 9.19328630e-01 5.65483034e-01 2.06868470e-01 4.66977149e-01 6.32542312e-01 -2.06950516e-01 2.25347534e-01 -8.77296388e-01 9.58542153e-02 7.55544245e-01 -2.84673035e-01 6.24160051e-01 9.13158417e-01 -4.29571092e-01 -1.87202764e+00 -5.83108604e-01 1.02028453e+00 4.83343571e-01 4.75024045e-01 1.85202602e-02 -3.21844548e-01 4.37867314e-01 3.86951804e-01 3.21801156e-01 5.60923398e-01 -7.72125959e-01 -2.82606184e-01 -8.30006078e-02 -1.77615118e+00 4.39634681e-01 8.19051445e-01 -6.68003261e-01 -6.07774436e-01 5.04494965e-01 4.92494166e-01 -3.78348857e-01 -1.36436868e+00 -2.20296547e-01 7.96267152e-01 -1.17970252e+00 9.08369243e-01 2.54308850e-01 -8.80562589e-02 -6.96381450e-01 -8.77979696e-01 -6.90800786e-01 -4.37182158e-01 -7.46327817e-01 -3.91647339e-01 4.60349679e-01 -1.12035908e-01 -3.16601634e-01 5.32055438e-01 1.37630001e-01 -8.18878189e-02 -7.47332096e-01 -1.26050472e+00 -1.04286778e+00 -3.51014644e-01 -4.17750597e-01 2.10369408e-01 7.08410501e-01 4.68442887e-01 -9.29848403e-02 -3.22007269e-01 3.95267680e-02 1.08405817e+00 -6.21402264e-02 1.83066264e-01 -7.54287601e-01 -3.13555300e-01 -1.44783333e-01 -1.29791236e+00 -1.53462422e+00 -7.78989494e-01 -7.82357275e-01 -7.04300761e-01 -1.21670735e+00 -1.47290647e-01 -2.26264507e-01 2.36786485e-01 -3.65019858e-01 6.78445816e-01 6.14697516e-01 1.68849409e-01 4.57870781e-01 1.99348573e-02 5.65282106e-01 1.43108463e+00 -2.19411895e-01 2.53939956e-01 5.42489029e-02 1.84322596e-02 6.30432785e-01 4.51531976e-01 -3.85237247e-01 -7.49785364e-01 -5.19253671e-01 -1.59344375e-01 5.01066804e-01 -2.05748323e-02 -1.24954343e+00 2.24409506e-01 1.20169878e-01 3.72518331e-01 -1.14645064e+00 7.63846815e-01 -1.35277522e+00 1.36305198e-01 9.01199579e-01 1.56540468e-01 6.71155930e-01 1.83291323e-02 5.50269365e-01 -3.36186886e-01 -3.76105785e-01 7.09429383e-01 -1.73038200e-01 -6.56384587e-01 1.58888295e-01 -6.28957689e-01 -5.19613206e-01 1.24868822e+00 -1.06903756e+00 2.31759116e-01 -5.31871498e-01 -9.30965841e-01 -6.40352726e-01 4.04534906e-01 -2.03659490e-01 9.87671614e-01 -1.80150771e+00 -4.18770850e-01 9.68049467e-02 -9.91680250e-02 -6.83171690e-01 -1.87781215e-01 1.02272201e+00 -1.35164464e+00 9.25166190e-01 -3.00205797e-01 -9.12029266e-01 -1.32804227e+00 7.61567414e-01 2.03784183e-01 1.72410801e-01 -6.46120310e-01 3.56067032e-01 -4.59867299e-01 1.56395182e-01 2.12213933e-01 -6.91813707e-01 2.07943857e-01 -2.19734415e-01 4.54082966e-01 7.07587481e-01 2.80508883e-02 -9.17107701e-01 -3.85065526e-01 1.27995765e+00 1.07548557e-01 -3.96347493e-01 1.22124684e+00 -5.99447548e-01 -3.70728690e-03 9.70103741e-02 1.79578841e+00 -1.86223716e-01 -8.37194204e-01 -8.77948850e-02 -2.21887350e-01 -9.02804315e-01 2.72517771e-01 -1.01373345e-01 -1.00374746e+00 8.17059636e-01 1.03360224e+00 2.88276106e-01 1.45502913e+00 -6.73272729e-01 8.07327926e-01 3.57950360e-01 7.37843156e-01 -1.09824133e+00 -2.16430485e-01 8.35080221e-02 6.07137740e-01 -8.05782020e-01 7.92825103e-01 -3.64321947e-01 -3.43934357e-01 1.86524332e+00 5.96578941e-02 -3.09474528e-01 8.61075103e-01 2.56608129e-01 -3.58833641e-01 -6.95708022e-02 -6.86255336e-01 6.71479777e-02 1.02053240e-01 8.46098542e-01 8.50410044e-01 -5.39004728e-02 -1.29425347e+00 -4.17833418e-01 1.59135029e-01 2.21395403e-01 8.98104906e-01 1.30509150e+00 -4.65085834e-01 -1.05416644e+00 -7.28674173e-01 1.08327895e-01 -4.48077321e-01 -3.53668332e-02 2.30949923e-01 1.05997705e+00 1.41441315e-01 8.80845249e-01 5.98889776e-02 -6.03437841e-01 1.90612167e-01 -1.54270262e-01 8.17528307e-01 2.03919277e-01 -2.77257383e-01 3.85624200e-01 3.63114178e-02 -6.23568475e-01 -7.80106008e-01 -6.45908177e-01 -1.23387766e+00 -8.17274749e-01 -1.36040181e-01 4.22703803e-01 1.25200319e+00 5.00592768e-01 2.02867568e-01 -1.10724755e-01 7.73350358e-01 -8.12166512e-01 -7.80464709e-01 -7.19793200e-01 -7.56564558e-01 -3.85411195e-02 6.31583929e-01 -6.16443396e-01 -3.33492905e-01 5.67805529e-01]
[11.440278053283691, -2.190136671066284]
044b4ffa-6e82-4147-9add-5e52a902f82a
horizon-lines-in-the-wild
1604.02129
null
http://arxiv.org/abs/1604.02129v2
http://arxiv.org/pdf/1604.02129v2.pdf
Horizon Lines in the Wild
The horizon line is an important contextual attribute for a wide variety of image understanding tasks. As such, many methods have been proposed to estimate its location from a single image. These methods typically require the image to contain specific cues, such as vanishing points, coplanar circles, and regular textures, thus limiting their real-world applicability. We introduce a large, realistic evaluation dataset, Horizon Lines in the Wild (HLW), containing natural images with labeled horizon lines. Using this dataset, we investigate the application of convolutional neural networks for directly estimating the horizon line, without requiring any explicit geometric constraints or other special cues. An extensive evaluation shows that using our CNNs, either in isolation or in conjunction with a previous geometric approach, we achieve state-of-the-art results on the challenging HLW dataset and two existing benchmark datasets.
['Menghua Zhai', 'Scott Workman', 'Nathan Jacobs']
2016-04-07
null
null
null
null
['horizon-line-estimation']
['computer-vision']
[ 3.47629815e-01 6.19439296e-02 -6.94430992e-02 -4.86860335e-01 -5.27842224e-01 -6.01762176e-01 9.16921079e-01 2.29362801e-01 -4.35876817e-01 2.68553287e-01 -1.82753503e-01 -2.06320956e-01 3.15880850e-02 -7.90523112e-01 -9.35822606e-01 -3.51399601e-01 -1.10160872e-01 2.93917030e-01 6.45655453e-01 -2.79869586e-01 3.86185408e-01 5.90416193e-01 -1.43845975e+00 1.80467099e-01 4.64883059e-01 1.41579676e+00 6.10985421e-02 4.51799542e-01 1.53439224e-01 4.34448868e-01 -4.86039370e-01 -4.31625634e-01 5.24624348e-01 1.45424232e-01 -6.31100059e-01 3.10617238e-01 1.00625575e+00 -5.41632295e-01 -2.68202245e-01 7.73897231e-01 3.16311926e-01 6.79019094e-02 5.40265501e-01 -9.68198180e-01 -4.50089186e-01 2.47998476e-01 -8.45172465e-01 -2.21978575e-01 3.92995059e-01 4.04130220e-02 9.39596355e-01 -8.41095865e-01 7.25730240e-01 1.08002174e+00 9.97687101e-01 -4.87851202e-02 -1.15543103e+00 -2.64168411e-01 1.99555963e-01 1.72459796e-01 -1.43971896e+00 -3.14210534e-01 1.07774472e+00 -3.42581898e-01 7.61859775e-01 2.21522129e-03 3.52657259e-01 1.05391848e+00 1.34212002e-01 8.18123341e-01 1.09460664e+00 -6.91260576e-01 1.18379034e-01 -2.21972793e-01 -9.83842388e-02 6.70227587e-01 1.47939026e-01 6.98614344e-02 -3.14307272e-01 7.96384588e-02 9.94959414e-01 -1.02721393e-01 -4.24032331e-01 -8.42977881e-01 -1.26594341e+00 6.57890201e-01 6.68765366e-01 -1.17134832e-01 -4.15510591e-03 1.85774371e-01 2.39698365e-01 -4.08657528e-02 3.94783705e-01 4.49082047e-01 -3.53209585e-01 2.32202366e-01 -8.02040279e-01 3.22015345e-01 6.35923326e-01 1.11445594e+00 8.09640944e-01 -2.87522495e-01 1.67112514e-01 9.35890019e-01 -6.06633462e-02 5.39071143e-01 -5.97542748e-02 -9.15426075e-01 4.24792379e-01 4.89668816e-01 2.80596912e-01 -1.31487644e+00 -6.57351971e-01 -3.76059979e-01 -6.39725626e-01 1.66064888e-01 7.84281671e-01 9.25876424e-02 -1.05126595e+00 1.52634919e+00 3.00244004e-01 2.41190985e-01 -2.04610124e-01 8.95381629e-01 8.15214634e-01 4.17347193e-01 -3.93898100e-01 4.18055624e-01 1.23062336e+00 -1.22417974e+00 -2.39035487e-01 -4.67345059e-01 5.06404757e-01 -1.14958048e+00 1.14393854e+00 7.11514175e-01 -7.00141609e-01 -4.98879701e-01 -1.17104149e+00 -2.30948299e-01 -5.78654051e-01 3.26611549e-01 6.51934385e-01 3.64293128e-01 -8.25267017e-01 5.46440482e-01 -5.82596421e-01 -3.82218838e-01 2.85035610e-01 1.42012611e-01 -5.01873136e-01 -4.23764497e-01 -8.36012721e-01 6.29517257e-01 2.44339034e-01 4.02278483e-01 -5.70946038e-01 -5.71625412e-01 -1.19270325e+00 -6.67627230e-02 6.00626171e-01 -4.06454831e-01 1.21453285e+00 -7.24471688e-01 -1.28800225e+00 8.84916127e-01 5.55917472e-02 -4.59405959e-01 7.85241008e-01 -6.52036667e-01 -1.38031185e-01 3.89544636e-01 -2.30067715e-01 7.22518623e-01 1.01237333e+00 -1.53453493e+00 -3.17973405e-01 -3.37195188e-01 5.58039188e-01 -8.31452310e-02 -5.56810386e-02 -2.46332690e-01 -7.96806157e-01 -7.21799672e-01 1.74661487e-01 -1.10111392e+00 -1.43031284e-01 3.25975895e-01 -7.62448132e-01 -1.68723702e-01 1.16822100e+00 -3.23030293e-01 7.99975038e-01 -1.95469284e+00 -2.64707983e-01 3.10516119e-01 1.05673708e-01 2.45227367e-01 -1.67076111e-01 4.69140142e-01 9.86908600e-02 1.83129702e-02 -2.16497213e-01 -3.89985710e-01 -3.91244814e-02 3.06989718e-02 -3.78506750e-01 6.04137361e-01 3.50600749e-01 8.51499498e-01 -7.59060204e-01 -3.13779682e-01 5.91186762e-01 6.12434685e-01 -4.41239655e-01 1.24651894e-01 -3.91929805e-01 3.13611388e-01 -3.38323355e-01 5.79536796e-01 7.89550960e-01 -2.77811259e-01 -1.39927834e-01 -5.37318170e-01 -8.73753801e-02 -1.18215114e-01 -1.15805984e+00 1.76669729e+00 -5.82319856e-01 9.04436648e-01 -2.51947343e-01 -8.40881050e-01 1.05227864e+00 -3.26179825e-02 2.44845137e-01 -6.34499609e-01 1.30535617e-01 1.96647465e-01 -1.73598841e-01 -3.08661640e-01 4.08404619e-01 5.86535633e-01 8.13641176e-02 1.52739868e-01 -1.42592862e-01 -4.03773308e-01 1.58626541e-01 -9.64822993e-02 9.06091750e-01 3.47785860e-01 3.35860610e-01 -3.29418689e-01 4.56326395e-01 -9.05363187e-02 4.85976994e-01 7.66201079e-01 1.96879562e-02 1.37355173e+00 4.70181555e-01 -9.04672980e-01 -1.25886929e+00 -8.77036035e-01 -4.30746108e-01 5.98903537e-01 4.66718525e-01 -4.41929996e-01 -6.95771277e-01 -5.10850370e-01 -4.98123690e-02 3.59062642e-01 -7.88677990e-01 1.16526619e-01 -6.56786859e-01 -3.58010411e-01 3.01000446e-01 7.26826727e-01 9.58058774e-01 -6.83401287e-01 -8.39704871e-01 7.88017884e-02 3.08264419e-02 -1.75000501e+00 -3.94418061e-01 3.71244550e-02 -4.93116677e-01 -1.33599758e+00 -8.18117142e-01 -5.32230318e-01 7.67289221e-01 5.11342645e-01 1.24092126e+00 1.81339934e-01 -5.32871127e-01 3.70939732e-01 -4.48643714e-01 -3.74136716e-01 3.01917166e-01 3.79893854e-02 -4.82574195e-01 7.62771070e-02 -3.67274918e-02 -2.96511739e-01 -9.43906367e-01 6.97127283e-01 -8.73637140e-01 2.52245367e-01 5.40424705e-01 8.69499326e-01 4.72490907e-01 -1.84258848e-01 2.87602901e-01 -1.01015627e+00 9.11754668e-02 -8.51543024e-02 -8.27843368e-01 2.47585922e-01 -1.56684384e-01 -1.05813004e-01 7.39800096e-01 -3.53868634e-01 -8.04015398e-01 1.27625525e-01 -4.35146615e-02 -4.79061753e-01 -4.72001195e-01 3.41194093e-01 -1.25208601e-01 -4.55598235e-01 6.54355407e-01 -5.00846878e-02 -3.25759560e-01 -4.35774058e-01 3.72659624e-01 3.36447626e-01 6.95869565e-01 -8.17257881e-01 7.81984746e-01 8.54082167e-01 2.26920232e-01 -1.16912508e+00 -1.21625531e+00 -6.01550579e-01 -9.83206809e-01 -8.04243311e-02 6.95886672e-01 -7.29480863e-01 -5.03676891e-01 7.39695847e-01 -1.23845840e+00 -6.12183571e-01 7.79475719e-02 3.04744214e-01 -6.83680892e-01 4.60294425e-01 -4.01500374e-01 -4.53253090e-01 -4.83857282e-02 -1.27877235e+00 1.50644767e+00 1.58420488e-01 -2.41831727e-02 -1.04857039e+00 -3.09546739e-01 4.04804319e-01 3.12547326e-01 6.87770963e-01 9.61073577e-01 -3.41888577e-01 -7.94742882e-01 -2.96072721e-01 -5.21473348e-01 2.27116913e-01 -6.45045415e-02 1.88682109e-01 -1.19092965e+00 -1.23534709e-01 -4.93826598e-01 -5.03775299e-01 9.17010307e-01 1.98072925e-01 1.51493156e+00 1.08331569e-01 -1.59397960e-01 1.00037789e+00 1.45676041e+00 -1.47374058e-02 7.62315810e-01 5.64800799e-01 8.14510107e-01 6.29124165e-01 5.47812581e-01 3.83005291e-01 3.50037336e-01 7.13404655e-01 6.48139715e-01 -3.76418650e-01 -1.31425709e-01 -1.69728875e-01 -2.12702289e-01 2.06362382e-01 -1.69962049e-01 -3.98234457e-01 -1.07383478e+00 4.91735667e-01 -1.83303869e+00 -5.37384987e-01 -1.56608820e-01 2.47351813e+00 3.77324104e-01 2.29241580e-01 -2.25561529e-01 9.87034068e-02 4.91152495e-01 4.48271543e-01 -5.72956920e-01 -1.61336333e-01 -3.43873650e-01 2.72562243e-02 6.75670385e-01 2.78799742e-01 -1.48578537e+00 9.35442567e-01 6.79421663e+00 7.28278458e-01 -1.49151111e+00 -5.14789701e-01 8.83186042e-01 3.87106627e-01 -1.86128572e-01 -1.55935837e-02 -7.32835591e-01 -3.10631772e-03 2.32273906e-01 3.04476112e-01 1.84144139e-01 8.13049138e-01 7.90388212e-02 -4.18017209e-01 -1.14261568e+00 9.80225086e-01 1.77560046e-01 -1.26097751e+00 -1.81259409e-01 -9.15467553e-03 9.24911857e-01 1.23059273e-01 2.26555794e-01 -8.52894858e-02 3.74220721e-02 -1.12552118e+00 7.12993026e-01 3.19195658e-01 7.50952303e-01 -6.09663486e-01 7.02407539e-01 1.61262900e-01 -1.24201977e+00 2.59116948e-01 -4.20561314e-01 1.67542607e-01 -1.18816346e-02 7.12610066e-01 -6.77963793e-01 6.06702566e-01 7.75254726e-01 6.75957322e-01 -9.33654070e-01 1.24171448e+00 -3.72624427e-01 5.50173700e-01 -7.81655729e-01 3.73811066e-01 4.64465410e-01 -1.90928251e-01 1.99226543e-01 1.05774713e+00 2.23977745e-01 -2.33743280e-01 3.39621276e-01 7.48200119e-01 -8.93783867e-02 2.62067407e-01 -7.45431960e-01 1.51927441e-01 1.98036864e-01 1.26516283e+00 -1.05249524e+00 -7.29557052e-02 -7.21707404e-01 7.42077827e-01 4.72504526e-01 5.47422230e-01 -6.93968832e-01 -4.61036533e-01 3.28704417e-01 3.46627951e-01 4.42788154e-01 -6.84813619e-01 -1.63338616e-01 -1.11694515e+00 2.04343751e-01 -6.24490738e-01 1.01944841e-01 -8.71426582e-01 -1.08465672e+00 5.30149996e-01 1.76708385e-01 -1.15173399e+00 -1.36423364e-01 -9.88144457e-01 -8.58078361e-01 5.89584231e-01 -1.84761536e+00 -1.45214021e+00 -6.34001613e-01 5.53225100e-01 5.76889217e-01 1.55541256e-01 6.80624127e-01 8.21780041e-02 -4.41311330e-01 4.48633432e-01 2.08563685e-01 3.48830581e-01 9.30798888e-01 -1.21667910e+00 4.78558213e-01 7.76296973e-01 1.57980800e-01 5.81168950e-01 6.78447068e-01 -2.73187220e-01 -1.30692863e+00 -1.11816132e+00 3.25700104e-01 -2.88280547e-01 4.22841370e-01 -6.02855980e-01 -8.83841276e-01 6.08767450e-01 1.46633968e-01 5.29603422e-01 1.96916178e-01 1.12759635e-01 -6.63037896e-01 -4.25754935e-02 -8.08842540e-01 7.26507545e-01 9.87785816e-01 -3.67933959e-01 -2.68606305e-01 3.74175727e-01 6.26213789e-01 -6.41373694e-01 -8.30231190e-01 8.24166894e-01 5.90719938e-01 -1.21174240e+00 1.28713489e+00 -2.01740354e-01 6.90938592e-01 -3.52532566e-01 -3.25820036e-02 -1.18969965e+00 1.63210884e-01 -5.49335361e-01 8.64883959e-02 9.40005124e-01 2.26186261e-01 -4.88473207e-01 8.16859365e-01 5.31667709e-01 -1.82523966e-01 -1.09943795e+00 -4.84074444e-01 -7.84346998e-01 -6.78805709e-02 -5.67351639e-01 5.21205425e-01 8.37014854e-01 -5.03125489e-01 2.61317231e-02 -4.58425194e-01 2.14228511e-01 6.55572712e-01 5.34894586e-01 1.07506585e+00 -1.10944128e+00 -1.34131208e-01 -3.30201417e-01 -6.67075276e-01 -1.36202157e+00 1.64728269e-01 -3.96597207e-01 1.74601272e-01 -1.36203146e+00 -2.58414894e-01 -6.39370799e-01 5.92765585e-02 3.96865487e-01 -7.58343562e-02 4.56020206e-01 1.55406833e-01 4.25261119e-03 -5.70552826e-01 5.66175282e-01 1.30881882e+00 -1.71089217e-01 2.16090813e-01 -1.55510738e-01 -3.09626102e-01 1.27722812e+00 7.70364046e-01 8.31666365e-02 -5.65153301e-01 -6.79040194e-01 1.40782654e-01 -2.50536650e-01 4.82774079e-01 -1.08128572e+00 1.95489675e-01 -2.24987343e-01 5.24764359e-01 -7.15511918e-01 6.30154490e-01 -7.42000043e-01 -2.54305750e-01 1.92374140e-02 -2.37021685e-01 -1.35700312e-03 2.28156880e-01 5.99600315e-01 -2.35209167e-01 -3.51807415e-01 7.39649117e-01 -1.15922447e-02 -1.11200130e+00 4.33354557e-01 2.14443326e-01 2.29222775e-01 1.12001896e+00 -2.99392790e-01 -5.85314453e-01 -5.05867004e-01 -4.02893215e-01 2.26023123e-01 8.57819617e-01 4.65349972e-01 8.04522157e-01 -1.04066491e+00 -4.44347143e-01 2.49165654e-01 5.53699017e-01 5.40477216e-01 3.25721800e-02 6.06099784e-01 -1.03140891e+00 3.77723068e-01 -6.02113716e-02 -9.31105852e-01 -9.11124349e-01 5.99350095e-01 3.55054259e-01 -2.62321271e-02 -9.24398541e-01 5.79137564e-01 6.61701798e-01 -3.49963576e-01 1.86651856e-01 -4.49291229e-01 -7.89795071e-02 -2.93767333e-01 4.22303766e-01 -1.41123921e-01 1.96852654e-01 -6.11257017e-01 -5.69682531e-02 9.82846618e-01 -7.01180100e-02 1.14907205e-01 1.16780984e+00 -9.62693617e-02 2.34298840e-01 3.86107624e-01 1.31859064e+00 -1.78112779e-02 -1.60894096e+00 -5.58714271e-01 7.30769560e-02 -8.89921665e-01 1.02633163e-02 -3.90119135e-01 -1.15398741e+00 1.11834550e+00 2.94284314e-01 1.80102792e-02 8.25714290e-01 -1.97255209e-01 8.11999619e-01 6.53646231e-01 6.61557913e-01 -9.34089541e-01 2.00075269e-01 6.43429577e-01 1.04310572e+00 -1.60943818e+00 3.65967825e-02 -8.40163648e-01 -3.89653295e-01 1.60422719e+00 6.38210833e-01 -3.33680600e-01 6.90128207e-01 2.53036350e-01 2.50836194e-01 -3.29658911e-02 -5.16630769e-01 -2.66205251e-01 5.91660738e-01 6.12451077e-01 5.08287728e-01 -1.42009616e-01 9.12146419e-02 1.67336885e-03 -1.96093529e-01 -2.95411199e-01 5.19837976e-01 8.62571418e-01 -2.67018676e-01 -8.98910820e-01 -4.18352723e-01 3.04685265e-01 -3.07046354e-01 7.64310919e-03 -3.44838142e-01 1.15951967e+00 -1.83821674e-02 7.36772358e-01 2.07585812e-01 -8.27765986e-02 2.96920687e-01 -3.68444771e-01 5.82446396e-01 -4.31403309e-01 -1.10512406e-01 1.56811133e-01 1.09333329e-01 -7.86055863e-01 -3.70936841e-01 -4.19462621e-01 -1.03819561e+00 -2.16659278e-01 -3.27991724e-01 -3.76642078e-01 7.22397208e-01 9.60736275e-01 1.81675762e-01 2.10516587e-01 3.96426648e-01 -1.08624125e+00 -2.85853744e-01 -7.53117919e-01 -3.88519913e-01 7.09546149e-01 2.88467228e-01 -8.30763757e-01 -1.50387794e-01 3.58298905e-02]
[8.249381065368652, -1.9886410236358643]
5377532f-71cc-4ca3-8725-aed0c83930a6
efficient-annotation-and-learning-for-3d-hand
2206.02257
null
https://arxiv.org/abs/2206.02257v3
https://arxiv.org/pdf/2206.02257v3.pdf
Efficient Annotation and Learning for 3D Hand Pose Estimation: A Survey
In this survey, we present a systematic review of 3D hand pose estimation from the perspective of efficient annotation and learning. 3D hand pose estimation has been an important research area owing to its potential to enable various applications, such as video understanding, AR/VR, and robotics. However, the performance of models is tied to the quality and quantity of annotated 3D hand poses. Under the status quo, acquiring such annotated 3D hand poses is challenging, e.g., due to the difficulty of 3D annotation and the presence of occlusion. To reveal this problem, we review the pros and cons of existing annotation methods classified as manual, synthetic-model-based, hand-sensor-based, and computational approaches. Additionally, we examine methods for learning 3D hand poses when annotated data are scarce, including self-supervised pretraining, semi-supervised learning, and domain adaptation. Based on the study of efficient annotation and learning, we further discuss limitations and possible future directions in this field.
['Yoichi Sato', 'Ryosuke Furuta', 'Takehiko Ohkawa']
2022-06-05
null
null
null
null
['3d-hand-pose-estimation', '3d-hand-pose-estimation']
['computer-vision', 'graphs']
[ 3.57313678e-02 -5.62417544e-02 -5.36703348e-01 -7.28666931e-02 -5.12256086e-01 -7.43616104e-01 -3.33227031e-02 -1.59069479e-01 -3.15111428e-01 6.25324607e-01 2.96452701e-01 -2.08545546e-03 -7.36669078e-02 -1.13926068e-01 -5.41298151e-01 -4.40427572e-01 7.86528811e-02 8.65537524e-01 2.11063087e-01 -7.73873329e-02 3.11246991e-01 9.75432873e-01 -1.60614765e+00 -3.61188471e-01 4.15318638e-01 7.84215629e-01 4.62558508e-01 4.56371754e-01 -9.78290737e-02 2.89663941e-01 -6.80940986e-01 -7.47120380e-02 3.30619991e-01 -1.27936721e-01 -9.42744613e-01 2.74323851e-01 2.85594851e-01 -6.81294858e-01 -2.97481596e-01 7.25958109e-01 1.10744715e+00 1.42842904e-01 6.89278424e-01 -1.22090638e+00 -2.02156883e-03 7.70942345e-02 -4.43770170e-01 -1.07529663e-01 8.30845416e-01 1.80879645e-02 6.70317113e-01 -8.86714697e-01 1.03876984e+00 1.11355150e+00 6.57817423e-01 7.58386493e-01 -8.20574164e-01 -4.67223734e-01 3.79892558e-01 8.55707526e-02 -1.58386528e+00 -1.69385061e-01 1.00184584e+00 -9.09094155e-01 9.94713604e-01 -4.32065278e-02 9.45646524e-01 1.18339789e+00 -2.23818645e-01 1.29351413e+00 9.53124404e-01 -8.50748837e-01 1.09430432e-01 3.65334302e-02 -1.10301316e-01 6.23874962e-01 5.92123643e-02 3.31189297e-02 -8.07462037e-01 2.56143492e-02 1.13357484e+00 -2.45475546e-01 -2.97041953e-01 -7.75660038e-01 -1.14641953e+00 3.57962102e-01 1.98077172e-01 8.50427672e-02 -4.15618718e-01 -1.56174660e-01 4.47184831e-01 -5.36599979e-02 4.21315044e-01 3.88774037e-01 -8.75021219e-01 -3.56247991e-01 -7.55757689e-01 4.48667467e-01 7.55976260e-01 1.31206107e+00 4.38754231e-01 -2.09786370e-02 -1.05841942e-02 6.07428253e-01 4.64041799e-01 4.10741210e-01 1.92072820e-02 -7.77969897e-01 5.37069738e-01 4.85703349e-01 3.73931199e-01 -4.97721225e-01 -5.99405289e-01 -2.01078936e-01 -4.53369379e-01 3.06879699e-01 5.78919232e-01 -1.35707617e-01 -9.63298619e-01 1.42644477e+00 5.78217924e-01 -3.84960502e-01 -3.21284145e-01 1.18804431e+00 7.37865865e-01 -1.21750049e-01 7.77996480e-02 -3.04666668e-01 1.04631484e+00 -9.07965362e-01 -8.41801107e-01 -1.82276800e-01 4.27751750e-01 -9.10871685e-01 1.11156607e+00 3.58984709e-01 -8.00167620e-01 -5.63733339e-01 -5.93405902e-01 -6.86234757e-02 -2.62540370e-01 3.21299195e-01 6.97850883e-01 6.81305110e-01 -5.64431071e-01 4.25393403e-01 -1.10054624e+00 -3.93376321e-01 3.09418052e-01 5.34705102e-01 -3.92821640e-01 1.36730641e-01 -8.86921763e-01 1.19181955e+00 5.11683702e-01 2.19552934e-01 -4.59491760e-01 -3.12223941e-01 -7.87270784e-01 -5.23235619e-01 5.43076694e-01 -4.73400086e-01 1.26480603e+00 -2.84817070e-01 -1.64934433e+00 9.17636991e-01 -1.81651756e-01 3.37836921e-01 7.84569979e-01 -6.86612904e-01 3.81056994e-01 -9.30217132e-02 -7.73910210e-02 5.52159369e-01 6.32830083e-01 -1.26979136e+00 -4.19797480e-01 -8.14881742e-01 8.22516307e-02 4.38912988e-01 -9.91372168e-02 -5.00214547e-02 -6.63594127e-01 -7.05329657e-01 3.70687038e-01 -1.06263733e+00 -1.78037375e-01 1.93687677e-01 -3.77767652e-01 -4.91441935e-01 7.96512842e-01 -9.16254938e-01 8.45129609e-01 -2.01117301e+00 6.40606523e-01 2.69648612e-01 5.96403256e-02 2.42183328e-01 1.76957026e-01 2.25795254e-01 3.21460277e-01 -1.14710003e-01 1.47046223e-01 -3.48705947e-01 -6.45351782e-02 1.34969234e-01 -6.57830574e-03 2.27135494e-01 -1.13653861e-01 6.95504248e-01 -9.79901373e-01 -7.33156681e-01 5.16302645e-01 7.70610094e-01 -3.93920273e-01 4.83113706e-01 -3.35401386e-01 1.13036609e+00 -5.63523948e-01 1.03429484e+00 1.70069158e-01 -1.10804141e-01 2.83592522e-01 -4.61381316e-01 -2.30251644e-02 2.01361477e-01 -1.46988845e+00 1.98969162e+00 -4.21069890e-01 5.39652646e-01 1.67276710e-02 -5.37787855e-01 7.42255151e-01 7.30147660e-01 6.63904488e-01 -5.84545881e-02 3.98719013e-01 5.22269726e-01 -2.87177503e-01 -6.69487536e-01 4.61052805e-01 1.22321948e-01 3.17393571e-01 5.24918258e-01 1.24621145e-01 -4.48533088e-01 -9.41790044e-02 -3.90248239e-01 4.75102305e-01 9.60202098e-01 5.97129762e-01 2.59869665e-01 2.57212102e-01 8.31787810e-02 1.75502300e-01 3.36323470e-01 -4.39023674e-01 5.75222075e-01 1.29198611e-01 -4.08737630e-01 -1.08391881e+00 -7.13299990e-01 -2.21000239e-02 1.02115262e+00 1.02857992e-01 -2.70783037e-01 -6.68272853e-01 -6.00389063e-01 1.17161684e-01 1.02061890e-01 -3.02865118e-01 3.44987869e-01 -7.31167793e-01 -2.25169659e-01 2.10930035e-01 1.15617812e+00 2.48714358e-01 -1.12087476e+00 -7.52471447e-01 8.37282985e-02 -2.52492040e-01 -1.15209389e+00 -4.47830200e-01 4.16390933e-02 -1.04694867e+00 -1.16544712e+00 -1.02256525e+00 -8.59581649e-01 6.88624561e-01 1.80682972e-01 7.44529963e-01 -3.08018476e-02 -3.04906577e-01 7.06191063e-01 -5.42428136e-01 -6.66010201e-01 -1.05608981e-02 6.20142341e-01 4.65590447e-01 -6.96172833e-01 3.16911936e-01 -5.39080620e-01 -3.84696335e-01 5.28288662e-01 -2.38791674e-01 -1.71601847e-01 5.99593580e-01 7.34592617e-01 8.81430387e-01 -2.90362000e-01 2.60675848e-01 -5.16870499e-01 5.34795463e-01 2.80395597e-01 -4.71171796e-01 3.63111824e-01 -3.74945849e-01 -2.13162843e-02 -1.88834995e-01 -7.24559903e-01 -1.04978299e+00 8.20298672e-01 -3.55824351e-01 -5.53751349e-01 -3.25068682e-01 2.71428555e-01 -4.00699884e-01 -3.98796231e-01 6.56855226e-01 -1.03473337e-02 1.62485585e-01 -7.31159627e-01 3.03765714e-01 9.05369997e-01 3.36171091e-01 -7.09041059e-01 5.12922466e-01 2.03666925e-01 2.19198652e-02 -7.93630898e-01 -9.05835092e-01 -5.78596354e-01 -1.48504126e+00 -6.32475078e-01 7.49606669e-01 -6.60947621e-01 -7.43722260e-01 5.59770584e-01 -1.46129394e+00 -3.91523778e-01 -2.25731239e-01 7.99446225e-01 -9.42410648e-01 3.94961864e-01 -3.63746673e-01 -1.20929384e+00 -3.74149412e-01 -1.42391777e+00 1.32659554e+00 2.74422877e-02 -6.24433100e-01 -7.74525404e-01 -6.70988187e-02 4.21530694e-01 -1.29811779e-01 2.91034937e-01 8.02769005e-01 -3.79060894e-01 -3.97100955e-01 -5.57360053e-01 9.11534280e-02 2.30634004e-01 3.00951153e-01 -4.40067232e-01 -8.97065580e-01 -4.09375578e-01 -6.05884373e-01 -5.40130496e-01 -6.82280287e-02 3.57939392e-01 1.04632556e+00 9.83818769e-02 -4.35536206e-01 1.78000927e-01 8.77691031e-01 2.79512294e-02 1.48228213e-01 1.84008777e-01 9.18732882e-01 9.01600599e-01 9.23558652e-01 4.80855525e-01 2.70809144e-01 9.94133711e-01 3.61779720e-01 2.52676666e-01 -2.12854013e-01 -3.23227704e-01 -2.54797876e-01 5.34764171e-01 -1.06142139e+00 9.99410674e-02 -1.01943624e+00 2.29633704e-01 -1.63462675e+00 -4.50327367e-01 2.43172601e-01 2.18524480e+00 8.19838941e-01 2.68846583e-02 5.17597198e-01 6.27509415e-01 5.53780556e-01 -1.44072920e-01 -7.07519054e-01 3.84835750e-01 2.34324425e-01 2.78446347e-01 3.40643287e-01 5.03270805e-01 -9.66070831e-01 1.29543209e+00 6.47734642e+00 3.10163379e-01 -9.37765360e-01 8.89307335e-02 -2.39527509e-01 2.04344720e-01 2.98617154e-01 -3.84053677e-01 -9.27714884e-01 -2.43580136e-02 -2.03256309e-01 4.78148580e-01 4.64760691e-01 1.15374482e+00 9.32734087e-02 -1.27747998e-01 -1.26704907e+00 1.13891816e+00 2.74050206e-01 -7.21974194e-01 -8.91410634e-02 6.41376972e-02 5.53893983e-01 -3.86336595e-01 -3.26342195e-01 -2.76847426e-02 -3.32010061e-01 -7.44502604e-01 9.67531621e-01 2.21325666e-01 1.06190670e+00 -4.95599568e-01 8.51898432e-01 5.79724669e-01 -1.33955836e+00 2.21168324e-01 2.14750975e-01 -1.85152829e-01 4.52527732e-01 -3.60763483e-02 -8.55052352e-01 4.18302864e-01 7.79750705e-01 4.89278942e-01 -1.78701669e-01 8.77548456e-01 -5.85541666e-01 4.74518649e-02 -3.50605339e-01 -2.42482841e-01 -3.51744652e-01 3.00300986e-01 6.07617438e-01 7.97175169e-01 -2.10861806e-02 3.18615854e-01 5.65080643e-01 3.92853230e-01 3.01315129e-01 8.74313414e-02 -3.69728923e-01 -3.43803130e-02 6.77428305e-01 5.65482557e-01 -7.65866160e-01 1.86192896e-02 -1.68234408e-01 1.08522451e+00 1.95009798e-01 3.02217901e-01 -8.88803676e-02 -4.07875746e-01 4.13488895e-01 3.34784001e-01 -6.55969456e-02 -9.41520214e-01 -4.48512256e-01 -9.14898217e-01 3.38616312e-01 -6.83928311e-01 1.50371566e-01 -7.70156682e-01 -1.00917947e+00 4.60043848e-01 3.33445758e-01 -1.28659248e+00 -6.10994339e-01 -9.88431752e-01 2.30627984e-01 8.48476708e-01 -1.24434054e+00 -1.27743280e+00 -6.88694298e-01 4.67830151e-01 7.96478570e-01 -2.00637951e-01 1.01815116e+00 1.72231346e-01 -1.54835671e-01 5.25181174e-01 -4.55325574e-01 2.23758072e-01 7.08225191e-01 -1.04247367e+00 2.83900112e-01 2.43284211e-01 7.70594701e-02 4.26363856e-01 5.56529760e-01 -8.17333639e-01 -1.59340167e+00 -5.47963560e-01 7.74321616e-01 -8.03738177e-01 7.86055550e-02 -2.71512896e-01 -5.52728832e-01 8.70048285e-01 -4.99170750e-01 -4.48651053e-03 5.16746640e-01 3.42957228e-01 -2.64682055e-01 3.36247563e-01 -1.26069558e+00 5.02366543e-01 1.64194643e+00 -5.60925245e-01 -5.95059156e-01 4.75871414e-01 3.05809557e-01 -1.19310868e+00 -9.45532262e-01 4.77993399e-01 1.23852003e+00 -4.30053860e-01 9.86510754e-01 -6.25970423e-01 -1.16093114e-01 -1.35582522e-01 -9.88990515e-02 -1.11357558e+00 -6.00532182e-02 -4.91922796e-01 -4.26069409e-01 8.32483768e-01 -4.92073447e-02 -1.44014701e-01 1.20533562e+00 5.40067375e-01 1.14136316e-01 -7.16492474e-01 -8.34355712e-01 -8.43650460e-01 -2.81161070e-01 -5.78914225e-01 4.88550723e-01 5.46323299e-01 5.44180274e-02 3.27493459e-01 -3.84112418e-01 2.16509029e-01 6.22518957e-01 -4.79174443e-02 1.12571573e+00 -1.54751241e+00 4.62404974e-02 -3.20244014e-01 -5.83225429e-01 -1.43408358e+00 4.03385252e-01 -3.71165395e-01 2.82656163e-01 -1.59302235e+00 4.49136319e-03 -5.17006636e-01 3.34884346e-01 4.27819014e-01 -1.09420486e-01 2.11428821e-01 2.21308216e-01 5.24982750e-01 -2.78581828e-01 1.74665555e-01 1.52948093e+00 1.25204861e-01 -6.37895882e-01 4.24904048e-01 1.70090094e-01 7.75224149e-01 8.01214457e-01 -9.67907682e-02 -2.96316892e-01 -4.90362734e-01 -6.54213801e-02 1.24684781e-01 3.05744946e-01 -6.75895751e-01 1.19139478e-01 -1.64229855e-01 2.76487380e-01 -9.99367237e-01 4.66884375e-01 -9.39678729e-01 -2.10787296e-01 3.72097224e-01 -1.53510664e-02 3.84851135e-02 -1.91648658e-02 3.97536695e-01 -9.25462879e-03 -2.42621794e-01 3.54653805e-01 -3.79143924e-01 -8.84909511e-01 2.79701740e-01 -1.44270673e-01 4.82928380e-02 8.69797587e-01 -6.33953512e-01 5.03601909e-01 -3.43093276e-01 -8.86530936e-01 9.08918530e-02 1.59720168e-01 5.03245831e-01 4.87192154e-01 -1.02789378e+00 -2.44548440e-01 2.45310068e-01 1.81962296e-01 5.88020623e-01 1.30547062e-01 5.47163606e-01 -3.81263107e-01 6.22641027e-01 -3.27217638e-01 -8.37049901e-01 -1.43935847e+00 3.63613009e-01 1.01793729e-01 5.22945039e-02 -5.19420803e-01 6.35820687e-01 -5.09120464e-01 -7.02005625e-01 1.12097967e+00 -9.81303453e-02 -2.67653853e-01 -8.28030780e-02 3.34640205e-01 6.97965741e-01 1.65634230e-01 -5.98410547e-01 -4.09856796e-01 1.05990040e+00 3.28572541e-01 -8.09516683e-02 1.01694071e+00 9.68819782e-02 1.76594570e-01 3.61119688e-01 6.11223996e-01 -1.77366927e-01 -1.26722121e+00 -2.74497569e-01 7.46816397e-02 -6.02557480e-01 -1.95728675e-01 -8.35985780e-01 -7.63217568e-01 1.03580046e+00 6.95809066e-01 -4.47170883e-01 7.75579810e-01 3.98633450e-01 5.51497579e-01 6.06980860e-01 8.70492399e-01 -1.26265287e+00 2.77061135e-01 5.59488297e-01 1.06198168e+00 -1.33708394e+00 1.83910891e-01 -8.74775350e-01 -4.61518615e-01 1.02060163e+00 9.35691953e-01 4.38610762e-01 7.91548431e-01 3.60321343e-01 1.28539741e-01 2.93704718e-02 2.22008049e-01 -3.78472835e-01 4.36080515e-01 9.88794029e-01 5.95156014e-01 7.87993819e-02 -2.24392667e-01 3.23891789e-01 -2.75483489e-01 2.68530190e-01 -1.68471932e-01 1.48655736e+00 -8.60773772e-02 -1.19202077e+00 -5.49721658e-01 2.40370840e-01 -1.30171329e-01 4.36401546e-01 -4.51210052e-01 1.03899002e+00 1.00382037e-01 5.45884550e-01 -1.92378789e-01 -5.20682096e-01 8.40273976e-01 2.42678776e-01 1.27572036e+00 -8.66596341e-01 -1.87246948e-01 1.89318627e-01 -2.12031677e-01 -1.55599758e-01 -8.48519564e-01 -5.59323490e-01 -1.16151834e+00 1.06393166e-01 -6.34208322e-01 -2.07485080e-01 8.70738089e-01 1.21083272e+00 9.49924290e-02 2.30970934e-01 8.47690627e-02 -1.55358350e+00 -7.37885594e-01 -1.12792706e+00 -4.72147822e-01 4.06538621e-02 1.65473312e-01 -1.43156064e+00 -1.93278827e-02 8.07775110e-02]
[6.578194618225098, -0.7599847316741943]
83e6e5f7-1e59-4a65-a3cf-21c6480b748e
logical-form-generation-via-multi-task
null
null
https://aclanthology.org/2022.coling-1.145
https://aclanthology.org/2022.coling-1.145.pdf
Logical Form Generation via Multi-task Learning for Complex Question Answering over Knowledge Bases
Question answering over knowledge bases (KBQA) for complex questions is a challenging task in natural language processing. Recently, generation-based methods that translate natural language questions to executable logical forms have achieved promising performance. These methods use auxiliary information to augment the logical form generation of questions with unseen KB items or novel combinations, but the noise introduced can also leads to more incorrect results. In this work, we propose GMT-KBQA, a Generation-based KBQA method via Multi-Task learning, to better retrieve and utilize auxiliary information. GMT-KBQA first obtains candidate entities and relations through dense retrieval, and then introduces a multi-task model which jointly learns entity disambiguation, relation classification, and logical form generation. Experimental results show that GMT-KBQA achieves state-of-the-art results on both ComplexWebQuestions and WebQuestionsSP datasets. Furthermore, the detailed evaluation demonstrates that GMT-KBQA benefits from the auxiliary tasks and has a strong generalization capability.
['Yuzhong Qu', 'Yiheng Shu', 'Xuan Wu', 'Xixin Hu']
null
null
null
null
coling-2022-10
['relation-classification', 'entity-disambiguation']
['natural-language-processing', 'natural-language-processing']
[-1.27955243e-01 3.24528068e-01 -1.49293423e-01 -3.74899805e-01 -1.51359749e+00 -6.50115967e-01 2.92609304e-01 2.38458946e-01 -3.31058770e-01 1.35047948e+00 1.48784757e-01 -4.38948095e-01 -4.09894288e-01 -1.33603251e+00 -8.49371016e-01 -7.73951560e-02 2.49342412e-01 1.17835557e+00 5.68378508e-01 -8.43217194e-01 -2.04252869e-01 -6.64297566e-02 -1.17649877e+00 8.59256864e-01 1.52342463e+00 1.03836405e+00 -1.31340966e-01 4.70880955e-01 -7.05441713e-01 1.08343995e+00 -6.23350382e-01 -1.04220164e+00 -1.17344400e-02 -8.52610022e-02 -1.48336375e+00 -5.81444681e-01 6.50889516e-01 -4.25791383e-01 -2.18535140e-01 7.77194023e-01 3.69650185e-01 2.49089420e-01 4.65035111e-01 -1.20263457e+00 -1.09027481e+00 7.91025519e-01 -5.04688546e-02 1.69920295e-01 1.04012716e+00 -1.32571399e-01 1.67874801e+00 -1.09165859e+00 5.05423605e-01 1.71749592e+00 3.97994846e-01 4.85010594e-01 -1.01835299e+00 -7.25759447e-01 1.46039009e-01 7.36926019e-01 -1.43989205e+00 -4.44025062e-02 3.81623656e-01 8.68137330e-02 1.43526971e+00 2.48169690e-01 2.93290883e-01 8.06670964e-01 -7.56536946e-02 1.15711522e+00 8.54216456e-01 -4.22500461e-01 -1.38137732e-02 1.61463603e-01 5.62096715e-01 8.43006849e-01 4.91739064e-01 -5.57329893e-01 -5.34328580e-01 -5.22199988e-01 6.39277577e-01 -5.46807230e-01 -2.84850538e-01 3.07244509e-02 -1.11702955e+00 9.56113160e-01 4.39632297e-01 5.20855412e-02 -4.47324395e-01 1.16932616e-02 1.52700737e-01 6.41458213e-01 3.75639111e-01 1.06609774e+00 -9.57434118e-01 1.76554412e-01 -2.45793626e-01 6.81745768e-01 1.13411796e+00 1.28738177e+00 1.19430375e+00 -5.01051366e-01 -5.39544821e-01 9.18956339e-01 3.34292978e-01 7.52808094e-01 4.65783119e-01 -7.38396943e-01 9.24530506e-01 1.03319907e+00 -1.01977708e-02 -8.99416447e-01 -1.92155391e-01 -5.97296841e-02 -4.67438191e-01 -7.52175391e-01 1.55915529e-01 -4.08348560e-01 -7.98184693e-01 1.58776617e+00 4.95930463e-01 -4.06692214e-02 6.08922064e-01 7.43730366e-01 1.57371724e+00 9.15304124e-01 2.05843806e-01 -4.83908989e-02 1.70199966e+00 -1.16384077e+00 -9.04233217e-01 -2.83717155e-01 7.08277047e-01 -4.13359314e-01 1.26245570e+00 2.25337893e-01 -8.60561550e-01 -4.25018400e-01 -6.89128280e-01 -5.38753510e-01 -6.06588781e-01 -1.04810195e-02 9.68109667e-01 3.01598340e-01 -9.21056449e-01 -1.13337792e-01 -2.65174866e-01 -1.88053951e-01 2.83794016e-01 2.39110500e-01 -2.89041668e-01 -4.52765882e-01 -1.98753977e+00 1.01038599e+00 7.46453643e-01 -1.27356112e-01 -6.87041461e-01 -8.15518081e-01 -1.12790263e+00 2.43531615e-01 9.33878005e-01 -1.21639800e+00 1.40333688e+00 -1.81493312e-01 -1.27789092e+00 3.94329041e-01 -3.44213247e-01 -4.42722648e-01 -2.06329256e-01 -6.50887489e-01 -5.78589261e-01 3.36403370e-01 3.93127978e-01 6.38979435e-01 4.99266982e-01 -1.02512860e+00 -6.22338295e-01 -2.65548319e-01 6.27225995e-01 4.05274391e-01 -3.64089787e-01 -3.32303464e-01 -5.23068488e-01 -4.92503345e-01 -4.21526805e-02 -5.00728726e-01 -1.69712633e-01 -3.34962934e-01 -3.76784414e-01 -1.21154606e+00 4.38906163e-01 -6.20034814e-01 1.28095019e+00 -1.43549156e+00 5.63753583e-02 5.85515872e-02 2.96229124e-01 3.84669751e-01 -5.29825211e-01 3.88227940e-01 3.12598199e-01 2.64281780e-01 9.03181266e-04 1.89334780e-01 1.23893306e-01 4.73395139e-01 -6.76667452e-01 -7.05779552e-01 7.61105120e-01 1.45694447e+00 -1.12799382e+00 -8.09652567e-01 -3.97030115e-01 -1.28581315e-01 -5.44603646e-01 3.68772775e-01 -9.38700438e-01 -1.84694424e-01 -1.10443592e+00 8.03125083e-01 5.23937047e-01 -6.76209986e-01 5.65075986e-02 -3.67394745e-01 6.22395515e-01 6.92826569e-01 -9.34080064e-01 1.73294473e+00 -5.83643317e-01 1.31904662e-01 -3.89879137e-01 -7.64453471e-01 8.96229565e-01 3.25799793e-01 -2.25415435e-02 -7.37511694e-01 -3.49888086e-01 2.55242378e-01 -2.70176023e-01 -9.98569131e-01 7.15615511e-01 -1.59919754e-01 -3.33159775e-01 4.99410778e-01 4.46017534e-01 -7.38425553e-01 5.44936657e-01 6.53225482e-01 1.16775382e+00 9.90680978e-02 4.71160650e-01 4.43046354e-02 6.29846632e-01 2.78780937e-01 4.29134488e-01 7.71839440e-01 3.96362066e-01 -2.00808384e-02 3.15349102e-01 -3.77009809e-01 -2.90248126e-01 -1.35257685e+00 1.16410732e-01 1.30017328e+00 2.67458677e-01 -4.79040742e-01 -2.83129752e-01 -1.13367605e+00 2.83436507e-01 9.68133390e-01 -2.96876580e-01 -3.32483083e-01 -6.52733862e-01 -7.66695082e-01 7.34993994e-01 4.33567822e-01 6.43449426e-01 -1.24875295e+00 7.91788325e-02 5.03134072e-01 -7.74214745e-01 -1.46821141e+00 -9.94187072e-02 -1.19294316e-01 -7.28711069e-01 -1.19985664e+00 -3.81185591e-01 -9.01010871e-01 5.65187991e-01 1.11773521e-01 1.61010003e+00 3.97409797e-02 -4.12354209e-02 4.25493509e-01 -8.20007682e-01 -3.34694207e-01 -2.69406289e-01 3.85665208e-01 -2.69711852e-01 -3.08838665e-01 7.73114979e-01 -4.32105243e-01 -1.36348128e-01 3.23027074e-02 -1.16796720e+00 -1.28474340e-01 8.21166217e-01 8.41717660e-01 5.05549252e-01 -1.40807152e-01 1.18267512e+00 -9.51269805e-01 1.21832967e+00 -5.43656528e-01 -4.68784690e-01 1.10049832e+00 -7.11860001e-01 5.03835499e-01 5.91623843e-01 -2.74617374e-01 -1.36980605e+00 -4.10584450e-01 -1.79987401e-01 2.12712935e-03 1.40575459e-02 9.66246665e-01 -3.55317175e-01 9.07798037e-02 8.63134682e-01 2.14559808e-01 -5.19158781e-01 -3.88977736e-01 8.58078241e-01 5.24273336e-01 3.77883077e-01 -1.13398063e+00 9.07357633e-01 1.33646399e-01 -3.14828455e-01 -4.78085905e-01 -1.46577132e+00 -6.24595940e-01 -3.99251252e-01 2.17799291e-01 6.80413604e-01 -1.03793669e+00 -5.44737160e-01 1.63275868e-01 -1.49355614e+00 -2.37962842e-01 -3.18584889e-01 2.29553565e-01 -2.98211247e-01 3.86800230e-01 -7.16010273e-01 -5.27346551e-01 -8.34995389e-01 -5.81784904e-01 1.23024714e+00 4.18118209e-01 8.06372687e-02 -1.05134213e+00 1.92595854e-01 9.77908134e-01 2.01626495e-01 -1.70790091e-01 1.46261632e+00 -9.92466390e-01 -1.00621474e+00 -6.83368519e-02 -4.22982156e-01 1.25280261e-01 3.55446428e-01 -5.09365141e-01 -4.98679638e-01 9.02961791e-02 -3.85686934e-01 -1.10423160e+00 9.07325804e-01 -2.90480852e-01 9.58225250e-01 -6.77577555e-01 -1.97567269e-01 2.28140265e-01 1.23544681e+00 5.22947274e-02 6.51160836e-01 2.26405144e-01 6.87144399e-01 5.00831127e-01 9.70022559e-01 1.34484544e-01 1.06090868e+00 3.72546226e-01 -1.87972244e-02 2.90075336e-02 -1.70257706e-02 -4.02530491e-01 6.49208799e-02 8.07426214e-01 3.97738308e-01 -4.15061086e-01 -1.03296304e+00 7.53179014e-01 -1.90324700e+00 -6.83874130e-01 -9.02895257e-02 1.60306823e+00 1.52029979e+00 -7.36387596e-02 -2.58850724e-01 -2.97790706e-01 3.69456410e-01 -1.46764100e-01 -7.15627134e-01 -2.78379861e-02 -3.14017445e-01 6.96712017e-01 -1.94147572e-01 4.45460081e-01 -9.81585026e-01 1.51396203e+00 5.91171265e+00 1.03498447e+00 -5.13381302e-01 -9.15485062e-03 3.76904488e-01 2.87199795e-01 -7.08179772e-01 -3.79245542e-02 -1.13535511e+00 -1.09966196e-01 4.56252009e-01 -5.64454496e-01 2.68264234e-01 7.53407061e-01 -5.31607807e-01 -4.00405750e-02 -1.03677595e+00 7.59930789e-01 3.45892310e-01 -1.25553107e+00 9.81495321e-01 -5.72789252e-01 7.37630546e-01 -2.58069634e-01 -1.49719581e-01 1.04877710e+00 7.80378461e-01 -9.87176776e-01 9.80926082e-02 5.26263893e-01 6.16289198e-01 -5.32429099e-01 9.57926691e-01 2.60642260e-01 -1.31644750e+00 -7.20945895e-02 -5.53431332e-01 5.66118360e-02 3.64615530e-01 6.53227627e-01 -1.23647749e+00 1.06782579e+00 6.35067344e-01 4.01450157e-01 -8.32286537e-01 6.88022614e-01 -7.37845600e-01 4.36365575e-01 -2.81290323e-01 -5.79573929e-01 1.27831072e-01 -9.90985055e-03 3.51665586e-01 9.23825741e-01 1.97574139e-01 6.74449503e-01 3.10777247e-01 1.01150870e+00 -4.65235591e-01 4.00987744e-01 -2.84730881e-01 -1.80063233e-01 6.28374279e-01 1.38321900e+00 1.20791402e-02 -7.94296324e-01 -4.02328044e-01 7.15674818e-01 8.27174604e-01 5.53034484e-01 -5.49574018e-01 -6.29939497e-01 4.46561247e-01 -3.19147557e-01 2.07147002e-01 1.12157054e-02 7.77481869e-02 -1.45535207e+00 3.22396934e-01 -1.14244008e+00 1.00974560e+00 -1.00882232e+00 -1.71378040e+00 6.73558116e-01 2.50679493e-01 -6.74130201e-01 -4.91393000e-01 -4.93293583e-01 -2.08973736e-01 6.77963614e-01 -1.89417028e+00 -1.37421477e+00 -3.77697021e-01 6.85649395e-01 5.63834250e-01 -1.79028794e-01 9.43194687e-01 2.12277904e-01 -2.59953022e-01 7.08772719e-01 -4.40499961e-01 3.25711668e-01 8.47427309e-01 -1.52818036e+00 3.75286460e-01 4.87320989e-01 2.35430092e-01 7.97262549e-01 1.76508710e-01 -7.79734969e-01 -1.40108907e+00 -1.36310506e+00 9.67900932e-01 -6.86775386e-01 7.61562645e-01 -7.94433430e-02 -1.17268050e+00 6.77499115e-01 1.94870055e-01 -1.44031718e-01 8.92926991e-01 4.06835705e-01 -6.85069740e-01 -3.31237167e-01 -1.01008272e+00 5.11964440e-01 8.55905890e-01 -6.61997378e-01 -1.41667104e+00 6.05042458e-01 1.41009581e+00 -3.59683245e-01 -9.44411993e-01 7.59961188e-01 2.52244025e-01 -2.99752533e-01 9.98747408e-01 -1.16580141e+00 3.06408256e-01 -2.82021880e-01 2.01017037e-02 -1.25324762e+00 -1.55806854e-01 -4.14851904e-01 -5.79218388e-01 1.07377231e+00 1.05218005e+00 -6.48761570e-01 6.53346837e-01 7.51725793e-01 -1.56996492e-02 -8.85283589e-01 -9.40546513e-01 -6.85419321e-01 2.90560901e-01 -9.56694856e-02 1.01400900e+00 9.73896027e-01 2.00433180e-01 1.07382786e+00 6.75504133e-02 2.12039858e-01 2.37706974e-01 5.44103384e-01 8.65691304e-01 -1.15831482e+00 -2.79753685e-01 8.80347267e-02 6.81110844e-02 -1.56111097e+00 4.37225819e-01 -8.78634155e-01 5.86453602e-02 -2.03217506e+00 1.47778392e-01 -4.32963192e-01 -5.39675616e-02 8.02854061e-01 -1.00980616e+00 -2.07149953e-01 -1.26102239e-01 -1.27017200e-01 -1.28504729e+00 8.30582440e-01 1.55419707e+00 -3.73512447e-01 -1.68689251e-01 -1.13582112e-01 -8.68572593e-01 1.99661598e-01 5.64507544e-01 -3.18536401e-01 -6.09549403e-01 -6.10497832e-01 8.69249523e-01 1.95001066e-01 1.89475745e-01 -6.20410264e-01 3.18996876e-01 -1.68882668e-01 -2.58339122e-02 -6.30771875e-01 4.54125464e-01 -5.16278565e-01 -5.24381518e-01 1.25850260e-01 -3.97195101e-01 1.46496460e-01 2.59737968e-01 4.82914865e-01 -4.85580176e-01 -2.55486518e-01 3.51442434e-02 -2.58382559e-01 -8.16795886e-01 4.35509056e-01 -1.92750692e-01 6.16950810e-01 6.38607562e-01 3.73512149e-01 -7.22085059e-01 -5.73471427e-01 -4.91063625e-01 9.44468021e-01 -3.27342808e-01 5.53346097e-01 9.02606845e-01 -1.46197343e+00 -9.61443961e-01 -2.01763853e-01 4.10188377e-01 7.33497500e-01 1.63523063e-01 3.60261977e-01 -3.49324912e-01 7.88037241e-01 2.03235418e-01 -2.11540818e-01 -1.09814274e+00 4.73430693e-01 2.70515859e-01 -9.28017437e-01 7.88402259e-02 1.07050335e+00 3.36723998e-02 -8.96727085e-01 -1.41309783e-01 -5.70006490e-01 -5.18940926e-01 9.90125984e-02 4.97666687e-01 7.17474148e-02 1.85149282e-01 3.65165807e-02 -1.60283849e-01 2.96726465e-01 -4.82010424e-01 4.17055488e-02 1.11232531e+00 8.10403302e-02 -5.24081886e-01 1.96784306e-02 7.93544173e-01 -1.68483868e-01 -2.74314016e-01 -8.22446764e-01 4.45023596e-01 -1.27009064e-01 -3.98550123e-01 -1.11171865e+00 -5.45035243e-01 6.54456854e-01 -1.77038416e-01 1.62895992e-01 1.10722542e+00 4.48776633e-01 1.30514288e+00 1.41522670e+00 5.76416790e-01 -7.86346674e-01 7.12315321e-01 1.03308558e+00 1.12932384e+00 -1.26777053e+00 -9.73097235e-02 -8.76966953e-01 -4.41545069e-01 1.03969228e+00 1.32318747e+00 3.11453551e-01 3.56613904e-01 -1.31536141e-01 1.49037927e-01 -3.94921750e-01 -1.11058402e+00 -5.19482851e-01 5.40228128e-01 6.53684855e-01 2.17590138e-01 -1.59552678e-01 -2.08111882e-01 1.11036825e+00 -3.36008519e-01 -8.61532539e-02 1.92159608e-01 8.39949608e-01 -5.42021811e-01 -1.20562053e+00 -2.31246039e-01 7.94561684e-01 -1.84607089e-01 -6.09726429e-01 -6.82869434e-01 6.79049730e-01 -1.77479073e-01 1.08435905e+00 -3.51507634e-01 -2.21376091e-01 4.73759085e-01 3.63546669e-01 4.85679805e-01 -1.11472344e+00 -5.25061369e-01 -5.22157669e-01 5.63792586e-01 -3.15791905e-01 -1.77421883e-01 -7.76028112e-02 -1.42931557e+00 1.73157379e-01 -7.37238526e-01 8.23592544e-01 -2.08556876e-02 1.21530843e+00 5.97611964e-01 4.64443564e-01 2.90674865e-01 3.30920219e-01 -7.70866334e-01 -1.16631079e+00 -1.33056507e-01 3.69740367e-01 2.54229546e-01 -4.21554416e-01 -8.55090693e-02 -1.53763011e-01]
[10.63388442993164, 7.938277721405029]
67f848ed-14f9-4624-af61-660e3221566f
intrinsic-dimensionality-explains-the
2012.13255
null
https://arxiv.org/abs/2012.13255v1
https://arxiv.org/pdf/2012.13255v1.pdf
Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning
Although pretrained language models can be fine-tuned to produce state-of-the-art results for a very wide range of language understanding tasks, the dynamics of this process are not well understood, especially in the low data regime. Why can we use relatively vanilla gradient descent algorithms (e.g., without strong regularization) to tune a model with hundreds of millions of parameters on datasets with only hundreds or thousands of labeled examples? In this paper, we argue that analyzing fine-tuning through the lens of intrinsic dimension provides us with empirical and theoretical intuitions to explain this remarkable phenomenon. We empirically show that common pre-trained models have a very low intrinsic dimension; in other words, there exists a low dimension reparameterization that is as effective for fine-tuning as the full parameter space. For example, by optimizing only 200 trainable parameters randomly projected back into the full space, we can tune a RoBERTa model to achieve 90\% of the full parameter performance levels on MRPC. Furthermore, we empirically show that pre-training implicitly minimizes intrinsic dimension and, perhaps surprisingly, larger models tend to have lower intrinsic dimension after a fixed number of pre-training updates, at least in part explaining their extreme effectiveness. Lastly, we connect intrinsic dimensionality with low dimensional task representations and compression based generalization bounds to provide intrinsic-dimension-based generalization bounds that are independent of the full parameter count.
['Sonal Gupta', 'Luke Zettlemoyer', 'Armen Aghajanyan']
2020-12-22
null
https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/2021.acl-long.568.pdf
acl-2021-5
['paraphrase-identification']
['natural-language-processing']
[-1.89553797e-01 1.33900359e-01 -4.14858520e-01 -3.11181694e-01 -7.63474107e-01 -7.74174750e-01 6.93499386e-01 -3.70226474e-03 -6.67643964e-01 6.83420122e-01 3.37751627e-01 -3.79001200e-01 -3.54036629e-01 -6.94403231e-01 -7.13655949e-01 -6.23538256e-01 2.10985821e-02 7.68815041e-01 -2.16257825e-01 -5.13079524e-01 3.16034883e-01 3.98574084e-01 -1.35351372e+00 2.70311609e-02 7.64058530e-01 4.50090826e-01 7.81318620e-02 7.21078515e-01 -1.67769894e-01 2.42087647e-01 -3.28339159e-01 -3.53689849e-01 2.96324700e-01 -1.53725967e-01 -8.54882121e-01 -9.59664360e-02 3.94956648e-01 -2.32787982e-01 -2.98216105e-01 8.36766303e-01 2.58524597e-01 2.75874436e-01 8.50916445e-01 -6.20567620e-01 -9.00259495e-01 1.02407110e+00 -4.53762889e-01 4.16419566e-01 -1.93713263e-01 2.40113512e-01 1.18253827e+00 -8.42218757e-01 3.68787557e-01 1.25011170e+00 4.81579781e-01 6.19979680e-01 -1.61895382e+00 -6.23180926e-01 1.31171674e-01 -4.50624973e-01 -1.41900265e+00 -4.90042329e-01 3.82815748e-01 -4.29410934e-01 1.09347761e+00 -5.94010241e-02 4.34855372e-01 9.88887906e-01 1.42868742e-01 2.39396438e-01 7.88271606e-01 -5.15810072e-01 1.37150690e-01 3.50054979e-01 4.41393733e-01 7.04239368e-01 7.32371986e-01 7.53593445e-02 -5.55547357e-01 -2.88034439e-01 9.02821064e-01 -1.04447275e-01 -1.69933066e-01 -5.18614888e-01 -1.28582823e+00 1.34742486e+00 2.54010916e-01 6.14517033e-01 -3.49465688e-03 3.51415396e-01 4.04181004e-01 5.01884341e-01 4.31902975e-01 1.15156972e+00 -9.17946994e-01 -2.61545002e-01 -6.90272391e-01 2.24332064e-01 8.18870068e-01 7.56113112e-01 8.59568655e-01 1.46396026e-01 2.49436885e-01 1.01954997e+00 -1.10010251e-01 4.40235466e-01 8.30881953e-01 -1.03238714e+00 6.57645524e-01 4.15492415e-01 5.31443162e-03 -6.13026440e-01 -6.54192567e-01 -7.23965347e-01 -9.13495719e-01 -1.36632845e-01 6.22232378e-01 -3.03773969e-01 -6.74633145e-01 2.19862986e+00 -7.88935572e-02 -1.83793843e-01 1.37007773e-01 7.00854838e-01 1.09809205e-01 5.46667933e-01 7.68060088e-02 -1.25261590e-01 1.23893344e+00 -7.00765252e-01 -2.10897967e-01 -5.44605076e-01 1.28009498e+00 -5.41341305e-01 1.86371243e+00 1.71786368e-01 -1.11042643e+00 -3.05121541e-01 -1.01559317e+00 -5.83733730e-02 -4.22954679e-01 -9.47985426e-02 1.07320619e+00 7.92179286e-01 -9.40839589e-01 8.51567924e-01 -7.58269966e-01 -3.98721874e-01 2.29104847e-01 5.32696187e-01 -3.18026930e-01 7.60422572e-02 -1.16881049e+00 7.74488807e-01 5.02340734e-01 -4.75886703e-01 -6.27077460e-01 -9.75223303e-01 -5.50168812e-01 2.75463402e-01 2.81375557e-01 -9.68624711e-01 9.56325233e-01 -6.55709624e-01 -1.37442076e+00 7.28149652e-01 2.25441661e-02 -6.06921136e-01 2.64305979e-01 -3.30270261e-01 -7.03995377e-02 -1.24556795e-01 -2.61728883e-01 5.73786736e-01 7.42136836e-01 -9.47801471e-01 -1.30645022e-01 -4.27731514e-01 3.07956576e-01 3.50954264e-01 -9.06735241e-01 -3.51162106e-01 -4.21721429e-01 -6.82759106e-01 3.08293641e-01 -1.11727846e+00 -2.62217492e-01 -3.96657914e-01 -1.65266216e-01 -2.40982007e-02 1.69610411e-01 -1.40349241e-02 1.36400330e+00 -2.12948990e+00 2.79613703e-01 2.57009238e-01 4.78889316e-01 7.52312243e-02 -4.20584053e-01 2.89051890e-01 -3.92195918e-02 7.90928900e-01 -8.34566355e-02 -3.38599831e-01 3.94535512e-02 2.62757629e-01 -4.66484517e-01 4.38936055e-01 -1.46053657e-01 9.01480317e-01 -5.61479032e-01 -1.93385929e-01 5.55222528e-03 4.44690049e-01 -1.03170931e+00 -1.85068414e-01 -1.61360398e-01 1.84713155e-01 -6.08847916e-01 -6.63957000e-02 3.50295216e-01 -7.03999698e-01 1.74029380e-01 -4.96905744e-02 1.88026518e-01 2.89143115e-01 -1.12618840e+00 1.57932067e+00 -6.89945102e-01 5.95691919e-01 -1.78106755e-01 -1.03406608e+00 5.27688980e-01 -8.14050362e-02 3.99978846e-01 -5.28873861e-01 2.04614699e-02 2.97422409e-01 4.61311005e-02 -1.28375307e-01 6.09389246e-01 -3.79283637e-01 -1.76185057e-01 8.17446113e-01 1.40581420e-02 -2.04987407e-01 1.13388114e-01 2.51992792e-01 9.60542798e-01 -4.30873781e-01 2.05827102e-01 -4.02957976e-01 2.01990038e-01 -1.01386555e-01 2.57445484e-01 1.03155780e+00 1.82914495e-01 4.32715148e-01 4.89759147e-01 -4.53923315e-01 -1.58400083e+00 -8.72678101e-01 -4.44133192e-01 1.50078845e+00 -1.25888571e-01 -5.83467007e-01 -9.17820930e-01 -3.42882127e-01 1.30173653e-01 7.74878681e-01 -8.16564381e-01 -3.68082851e-01 -6.62552774e-01 -1.04858124e+00 6.79727852e-01 3.28930169e-01 2.64790118e-01 -6.96594477e-01 -2.00178802e-01 9.44266990e-02 3.18537682e-01 -1.05294168e+00 -5.35541534e-01 3.82740498e-01 -1.16526461e+00 -7.09557712e-01 -5.89613974e-01 -5.13743699e-01 6.60469532e-01 3.30819488e-01 1.33275139e+00 3.21963042e-01 3.88775114e-03 2.69241005e-01 -4.20919135e-02 -1.61268041e-02 -6.14747167e-01 6.90009236e-01 4.61980760e-01 -6.36808932e-01 3.41234684e-01 -7.00290799e-01 -5.55215478e-01 2.31029153e-01 -8.42700839e-01 1.31198708e-02 6.94231689e-01 9.01915491e-01 4.88407046e-01 -6.72073364e-02 6.21449053e-01 -1.09369504e+00 9.31348145e-01 -3.61003429e-01 -6.34560168e-01 2.22472578e-01 -8.89412284e-01 8.31676066e-01 8.56956363e-01 -7.50660121e-01 -5.42437136e-01 -3.22798371e-01 1.13539569e-01 -3.26548398e-01 1.37895644e-01 4.42745894e-01 2.87488580e-01 -8.45109392e-03 1.10200953e+00 1.52821496e-01 -1.09899715e-01 -5.57672918e-01 8.00869763e-01 3.75039697e-01 5.12062237e-02 -9.70847547e-01 9.42581236e-01 2.30875477e-01 -1.25184864e-01 -8.00316393e-01 -1.09524620e+00 -9.63928699e-02 -5.49606562e-01 5.27061939e-01 7.10528910e-01 -9.20443892e-01 -7.27185249e-01 -5.20637035e-02 -6.13624871e-01 -7.26664007e-01 -5.30312717e-01 6.99182093e-01 -7.63737023e-01 6.18148781e-02 -6.45382702e-01 -5.49890578e-01 -3.24083656e-01 -1.02162158e+00 8.62763047e-01 -1.00586610e-03 -1.38600871e-01 -1.18587971e+00 1.15603417e-01 1.44041821e-01 5.97299457e-01 -4.25163835e-01 1.48843110e+00 -8.61751139e-01 -3.78651857e-01 9.85079259e-02 -1.64758876e-01 3.43180329e-01 -8.35649893e-02 -3.63625556e-01 -6.95851266e-01 -5.52505016e-01 8.53182152e-02 -3.23925316e-01 8.90796363e-01 4.61869955e-01 1.26178503e+00 -4.27698165e-01 -2.37774149e-01 8.93393576e-01 1.51533592e+00 -3.55409354e-01 2.57668227e-01 3.01325351e-01 6.90247655e-01 2.87638009e-01 9.25233215e-02 4.39130127e-01 1.62153721e-01 6.32603586e-01 -1.72996551e-01 2.01888010e-01 1.16924234e-01 -2.92693615e-01 1.53774649e-01 1.04165995e+00 8.15741494e-02 -3.29407901e-02 -9.44569290e-01 2.77290434e-01 -1.35639167e+00 -7.89158046e-01 4.77335691e-01 2.61606407e+00 1.07948399e+00 6.69678450e-01 6.84259236e-02 -1.06775209e-01 4.92974430e-01 1.29374310e-01 -8.01067233e-01 -5.24709880e-01 -2.42332295e-01 1.49892390e-01 8.10581863e-01 7.12087691e-01 -7.05269754e-01 1.14653480e+00 7.18538284e+00 9.48914230e-01 -1.17266369e+00 1.53904617e-01 7.90568590e-01 -3.78618002e-01 -7.00561762e-01 -3.87255587e-02 -1.06070220e+00 1.56862736e-01 1.42848885e+00 -4.02921677e-01 9.08462465e-01 1.00403297e+00 1.03893653e-01 2.34203056e-01 -1.20237982e+00 1.06418478e+00 -1.24347016e-01 -1.69101012e+00 3.34318280e-01 3.93873841e-01 8.62164855e-01 3.39086205e-01 3.26101094e-01 6.40779614e-01 4.24038500e-01 -1.27252746e+00 3.65981609e-01 2.52563715e-01 8.77915740e-01 -8.65284741e-01 2.43770957e-01 6.24199748e-01 -7.59386778e-01 -3.32329839e-01 -8.62405896e-01 7.00866655e-02 -1.61771134e-01 6.09674990e-01 -6.63290799e-01 -1.56772241e-01 3.10494751e-01 1.79614946e-01 -7.01730609e-01 4.77687508e-01 3.32429022e-01 6.41865313e-01 -5.98450541e-01 -4.10700068e-02 2.49688193e-01 -2.45737433e-01 3.54296207e-01 1.07408869e+00 2.85687149e-01 2.31440678e-01 -2.34814137e-01 7.84787893e-01 -3.77010226e-01 2.06632257e-01 -6.88955545e-01 -4.25837636e-01 5.99799693e-01 8.71862411e-01 -4.96094942e-01 -2.93586582e-01 -2.47300327e-01 5.93368828e-01 7.47327507e-01 3.40569645e-01 -6.78432167e-01 -1.48780420e-01 8.09868217e-01 1.93947166e-01 2.24893376e-01 -6.13625467e-01 -5.72720289e-01 -1.46678817e+00 -2.35925093e-01 -9.15038764e-01 1.68129548e-01 -4.27104086e-01 -1.30789006e+00 4.42704231e-01 -7.23422542e-02 -7.79895902e-01 -4.65322822e-01 -5.90609074e-01 -2.27542520e-01 7.24983573e-01 -1.18477046e+00 -6.64492249e-01 1.23402275e-01 4.30693865e-01 5.94338894e-01 -4.04890984e-01 9.75408316e-01 7.80136585e-02 -6.00833178e-01 9.98233438e-01 5.75715840e-01 -1.20557277e-02 6.40139937e-01 -1.21396983e+00 5.37856400e-01 3.48089337e-01 4.18354154e-01 1.15696728e+00 8.82478118e-01 -3.04347724e-01 -1.61774397e+00 -8.44071269e-01 5.55299819e-01 -7.35295832e-01 7.96593010e-01 -5.08940816e-01 -1.03922200e+00 6.34424090e-01 -3.39995801e-01 -4.13850918e-02 6.31888151e-01 6.02031171e-01 -6.35120571e-01 3.45552750e-02 -9.22880471e-01 8.19463074e-01 1.20653880e+00 -6.92953587e-01 -5.70712924e-01 6.19290650e-01 1.16010535e+00 -2.79827774e-01 -1.03010869e+00 1.90202266e-01 5.08449435e-01 -6.76659882e-01 1.11239767e+00 -9.39878941e-01 3.04862082e-01 3.29110891e-01 -3.91454577e-01 -1.23489869e+00 -3.62855494e-01 -6.28383696e-01 -2.75316928e-02 9.40963030e-01 7.74172723e-01 -8.10902834e-01 8.51422429e-01 7.78254747e-01 1.45064950e-01 -1.03523195e+00 -6.39741898e-01 -8.29236269e-01 8.89622211e-01 -5.52892447e-01 6.42801106e-01 8.60019326e-01 -1.13612942e-01 6.49295330e-01 -1.41915321e-01 -1.10311501e-01 4.95425910e-01 -7.61170536e-02 7.30851591e-01 -1.22491777e+00 -5.71451843e-01 -5.95328450e-01 -6.83412701e-02 -1.23724842e+00 3.41013163e-01 -9.16434050e-01 -4.03998733e-01 -1.01509368e+00 4.11811173e-01 -9.82460916e-01 -2.93396324e-01 1.91443294e-01 -1.26488078e-02 2.92982534e-02 1.84968099e-01 5.93145490e-01 -3.57136339e-01 3.53954256e-01 1.22725070e+00 1.72946259e-01 -5.61531723e-01 -1.91206381e-01 -1.21508849e+00 7.11900234e-01 8.83657157e-01 -5.94595194e-01 -5.97154617e-01 -6.28751218e-01 7.31791556e-01 -1.31140321e-01 -5.65157309e-02 -8.75793576e-01 -4.13582107e-04 -3.94896477e-01 3.23794097e-01 -1.01847565e-02 3.78625125e-01 -4.01806444e-01 -2.46164739e-01 2.63563991e-01 -9.08796012e-01 9.92778316e-02 2.56666958e-01 5.38680851e-01 3.65341365e-01 -3.20499063e-01 9.84665751e-01 -6.01865463e-02 -2.95592129e-01 2.92861283e-01 -1.20637767e-01 5.18390298e-01 5.66369891e-01 -3.40508968e-02 -4.48132902e-01 -3.63891840e-01 -5.93405008e-01 -6.59595802e-02 6.35859370e-01 3.39808017e-01 2.25308627e-01 -1.15921569e+00 -6.48411095e-01 2.91287214e-01 3.13243940e-02 -2.66101956e-01 1.89710692e-01 4.67480987e-01 -1.76472768e-01 6.55183971e-01 1.71413541e-01 -5.34167051e-01 -6.82663739e-01 6.33913100e-01 3.64538074e-01 -3.92904460e-01 -7.54665613e-01 7.25801587e-01 5.83878577e-01 -5.39330661e-01 2.31199395e-02 -3.58147264e-01 3.16320881e-02 -7.70806894e-02 4.98776227e-01 -4.67843637e-02 -3.67801972e-02 -3.43906194e-01 -1.19808696e-01 8.60814154e-01 -3.38902354e-01 -2.59496838e-01 1.39532077e+00 -1.60223261e-01 2.18562767e-01 4.35968608e-01 1.51448655e+00 1.30428672e-01 -1.17276287e+00 -3.29160243e-01 -2.38439798e-01 -2.57059425e-01 6.00168407e-02 -4.53660727e-01 -9.08522725e-01 9.56747532e-01 5.81619501e-01 3.15331846e-01 6.43269658e-01 2.11864695e-01 5.58810532e-01 1.01956069e+00 2.78577775e-01 -1.21393442e+00 3.18911374e-01 7.66543806e-01 7.95488179e-01 -1.18762541e+00 1.38686940e-01 8.65233019e-02 -7.03721285e-01 9.92541194e-01 3.55657488e-01 -2.03025624e-01 7.04127014e-01 2.02501923e-01 -3.82283568e-01 -1.10031493e-01 -1.02115393e+00 9.95263681e-02 1.33524299e-01 2.94809520e-01 5.23633897e-01 1.39189646e-01 -3.59285325e-02 5.96431136e-01 -8.07995558e-01 -1.99895293e-01 5.03948390e-01 3.37737471e-01 -9.21709776e-01 -1.01242006e+00 -1.19716361e-01 8.27864707e-01 -4.96596009e-01 -3.27361494e-01 9.18904170e-02 8.82924199e-01 -4.27624315e-01 6.43301904e-01 1.50187463e-01 -3.42091501e-01 1.36637256e-01 2.75287002e-01 4.57465291e-01 -8.00234616e-01 -4.06661838e-01 -1.58815250e-01 -9.46142375e-02 -4.15971994e-01 2.12718114e-01 -3.80364269e-01 -1.32651949e+00 -7.24756062e-01 -3.88427258e-01 1.21378332e-01 7.99265802e-01 1.07997835e+00 4.70031470e-01 1.90080538e-01 4.99630988e-01 -6.57203913e-01 -1.12488174e+00 -8.36804032e-01 -5.53008080e-01 3.98479998e-01 2.89470822e-01 -5.62678933e-01 -8.63683581e-01 -2.74246782e-01]
[8.413430213928223, 3.776336908340454]
ce851b5e-e9b0-40ec-a913-5d0eecdba1f2
ratatouille-a-tool-for-novel-recipe
2206.08267
null
https://arxiv.org/abs/2206.08267v1
https://arxiv.org/pdf/2206.08267v1.pdf
Ratatouille: A tool for Novel Recipe Generation
Due to availability of a large amount of cooking recipes online, there is a growing interest in using this as data to create novel recipes. Novel Recipe Generation is a problem in the field of Natural Language Processing in which our main interest is to generate realistic, novel cooking recipes. To come up with such novel recipes, we trained various Deep Learning models such as LSTMs and GPT-2 with a large amount of recipe data. We present Ratatouille (https://cosylab.iiitd.edu.in/ratatouille2/), a web based application to generate novel recipes.
['Ganesh Bagler', 'Aakanksha Saini', 'Sritanaya Tatipamala', 'Minnet Khan', 'Vijay Ponnaganti', 'Pallab Chakraborty', 'Mansi Goel']
2022-05-10
null
null
null
null
['recipe-generation']
['miscellaneous']
[-2.00442180e-01 -1.65296923e-02 4.67090338e-01 -3.22072744e-01 -3.80855381e-01 -6.24211490e-01 3.49881917e-01 2.34154135e-01 -1.28692165e-01 7.37969697e-01 5.91871798e-01 -1.64425597e-01 4.63343769e-01 -1.45185769e+00 -1.04413188e+00 -5.01522005e-01 -3.30585726e-02 -8.50183610e-03 -3.62424701e-01 -8.45558763e-01 1.54437840e-01 -5.74252754e-02 -1.11654317e+00 6.94072068e-01 9.19544935e-01 2.67582953e-01 5.16423643e-01 9.43749130e-01 -5.53374112e-01 8.80031466e-01 -3.39991271e-01 -3.37643415e-01 4.41353917e-01 -8.14443171e-01 -5.21331489e-01 -2.93280482e-01 1.66744441e-01 -3.82676005e-01 -1.53710306e-01 9.90120530e-01 6.29320621e-01 8.88331234e-01 2.42757604e-01 -1.08585095e+00 -1.26890874e+00 1.47935104e+00 1.13209583e-01 -1.48867309e-01 5.01021564e-01 5.05096436e-01 7.45467901e-01 -6.80644512e-01 6.51955307e-01 9.16093826e-01 5.98865330e-01 1.00392151e+00 -1.06352127e+00 -5.23383319e-01 -7.19656125e-02 -1.32935971e-01 -1.02425230e+00 -2.49047294e-01 1.01688373e+00 5.90081885e-03 9.38166022e-01 -1.47741269e-02 8.72235119e-01 1.31800067e+00 1.15350224e-01 1.18927562e+00 1.15980184e+00 -6.68662906e-01 2.33911708e-01 6.40809909e-03 -1.58486977e-01 7.01049149e-01 -2.52196938e-01 2.90014535e-01 -3.06583345e-01 3.28729361e-01 9.45650995e-01 2.93741152e-02 5.42509407e-02 8.79235640e-02 -1.56470382e+00 1.02400208e+00 6.24738216e-01 5.19544601e-01 -8.05916190e-01 6.40412509e-01 6.54051363e-01 4.38628197e-01 4.71523970e-01 9.29028094e-01 -5.74877381e-01 1.54944751e-02 -5.12421310e-01 9.42931235e-01 6.64933980e-01 1.06424320e+00 5.25942862e-01 6.19179487e-01 -4.59113985e-01 1.00322855e+00 1.60260931e-01 7.14198947e-01 5.76137900e-01 -8.46302867e-01 3.89481902e-01 1.33240268e-01 3.37126136e-01 -1.02168703e+00 -3.52297097e-01 2.85989732e-01 -9.63885307e-01 8.62092450e-02 2.18216598e-01 -7.11454391e-01 -8.13015640e-01 1.91005313e+00 2.32058197e-01 -2.37384334e-01 2.79769599e-01 8.33155274e-01 1.24513876e+00 1.38818538e+00 4.16947842e-01 2.29487836e-01 7.83872485e-01 -1.36024344e+00 -5.60774386e-01 1.16434740e-02 5.88843346e-01 -8.48526418e-01 1.32370102e+00 4.14285988e-01 -9.56107974e-01 -8.93671572e-01 -7.28609800e-01 -2.16226690e-02 -8.66737604e-01 -4.24726456e-02 1.13420892e+00 3.65049690e-01 -1.16166806e+00 9.55015182e-01 -3.58137131e-01 -7.36743987e-01 8.23184252e-02 -2.22061828e-01 -1.14380993e-01 -3.37963134e-01 -1.48845232e+00 7.68409848e-01 1.07933629e+00 1.02339134e-01 -6.54967606e-01 -6.33699119e-01 -1.24286973e+00 2.40596547e-03 2.10601047e-01 -7.78859019e-01 1.43923390e+00 -1.13195932e+00 -1.81478512e+00 3.69167298e-01 4.28685665e-01 -2.67241120e-01 8.76241550e-02 3.99901792e-02 -7.84337103e-01 -5.48892379e-01 1.44765511e-01 1.37918341e+00 4.87987012e-01 -8.87878895e-01 -4.67064977e-01 1.02020018e-01 2.44303286e-01 2.77285069e-01 1.49512142e-01 -6.16184697e-02 5.12441099e-01 -9.66246665e-01 -4.40672576e-01 -8.27201605e-01 -5.57027280e-01 -4.79100585e-01 -5.90238094e-01 -5.15731335e-01 1.42465964e-01 -9.56412911e-01 8.50465596e-01 -1.81984174e+00 -1.58795491e-01 -2.32825994e-01 2.41938103e-02 3.80220443e-01 -6.88773632e-01 1.00261176e+00 -4.18335460e-02 2.34662995e-01 -1.03935763e-01 1.11291207e-01 5.73390007e-01 2.37298757e-02 -3.19408685e-01 -2.76520640e-01 3.69656026e-01 1.15060043e+00 -1.50706327e+00 -2.09519610e-01 6.07988358e-01 3.83777946e-01 -4.23403203e-01 6.30027413e-01 -1.04346383e+00 4.84121412e-01 -4.82009321e-01 3.58114541e-01 5.66429496e-01 1.77790329e-01 -8.24678913e-02 -1.06843606e-01 -3.97405297e-01 4.40196872e-01 -9.85775173e-01 2.32090187e+00 -4.78700608e-01 2.11509988e-01 -4.50251281e-01 -6.70652092e-01 1.11211205e+00 5.35329819e-01 2.60778248e-01 -6.43454611e-01 1.82878584e-01 4.83176596e-02 -2.63033032e-01 -6.93635941e-01 9.77465868e-01 -4.38786030e-01 -4.91996944e-01 8.05066347e-01 1.57602906e-01 -4.63305950e-01 1.05818534e+00 1.04949132e-01 9.35101092e-01 9.92009640e-01 2.55094856e-01 -3.74971807e-01 6.87089860e-02 5.09092391e-01 4.15696025e-01 4.71976995e-01 -1.32126197e-01 4.48853403e-01 -2.00426087e-01 -1.02818680e+00 -1.58974791e+00 -1.22494137e+00 7.87479103e-01 1.25029516e+00 -5.89556336e-01 -2.90605247e-01 -6.87946320e-01 -5.07103622e-01 -3.62927467e-01 1.33125865e+00 -5.68400502e-01 -9.98229459e-02 -7.33974636e-01 -7.41574526e-01 5.90964198e-01 2.71821827e-01 9.23752785e-01 -2.11350584e+00 -5.77998102e-01 7.51845360e-01 -3.63886476e-01 -5.65326095e-01 -8.02741647e-01 1.51749402e-02 -8.21566224e-01 -7.38138199e-01 -9.17120039e-01 -9.88477886e-01 3.83502007e-01 2.51082838e-01 1.61377358e+00 -2.17652217e-01 -1.74628362e-01 2.28087623e-02 -8.66660178e-01 -4.62258548e-01 -1.09812343e+00 5.22030704e-02 -1.89141691e-01 -4.42105889e-01 6.42246485e-01 -5.05069077e-01 -4.09826070e-01 -5.52230835e-01 -1.25959778e+00 8.82482290e-01 2.55858332e-01 5.64367414e-01 2.68840581e-01 1.65141314e-01 9.01529014e-01 -7.60901630e-01 9.74322438e-01 -8.28155398e-01 -3.18113953e-01 3.73308986e-01 -5.86036071e-02 2.28356972e-01 1.27979982e+00 -4.95537490e-01 -1.25431359e+00 5.89929596e-02 -4.88006353e-01 1.46160141e-01 -6.92895830e-01 6.52813911e-01 5.79692982e-02 6.70460463e-01 7.85337329e-01 3.07679296e-01 -4.36641186e-01 -4.49146152e-01 1.25401938e+00 3.39979440e-01 4.09174830e-01 -7.77236521e-01 5.74660003e-01 -3.75880450e-01 -5.12986243e-01 -4.37427193e-01 -6.70269549e-01 1.72950581e-01 -5.56223750e-01 -4.27344233e-01 9.71266448e-01 -6.72085643e-01 -5.59256256e-01 5.64301968e-01 -1.26610029e+00 -1.05023408e+00 -4.35809463e-01 3.76359284e-01 -5.96954644e-01 -4.77471612e-02 -8.64629626e-01 -4.50015783e-01 -8.42451632e-01 -7.52902329e-01 3.91505897e-01 6.17949247e-01 -3.85891229e-01 -1.05064797e+00 5.23325384e-01 4.03101891e-02 7.03053057e-01 8.20754349e-01 1.01840377e+00 -2.71640658e-01 -5.32610416e-01 1.04801983e-01 -6.45517260e-02 3.11396569e-01 4.75361735e-01 7.58181810e-02 -5.68796217e-01 1.35875314e-01 -3.42447937e-01 -6.10015988e-01 4.60107118e-01 3.36967289e-01 6.78508520e-01 -3.89487207e-01 2.94734091e-01 1.73139006e-01 1.59248149e+00 4.03606981e-01 5.03369153e-01 1.18357681e-01 8.04740131e-01 4.90072787e-01 3.38093132e-01 3.86553138e-01 7.15788603e-01 2.52719223e-01 4.70857322e-02 -1.67586416e-01 -3.00213814e-01 -9.98190582e-01 6.82706714e-01 1.24268186e+00 1.07828163e-01 -3.09277534e-01 -5.53947866e-01 8.19275558e-01 -1.81166518e+00 -1.24285138e+00 -2.89149046e-01 1.82956028e+00 1.15856016e+00 -5.16950727e-01 2.14438498e-01 -2.87467569e-01 7.18032718e-01 2.51644373e-01 -5.40496171e-01 -1.08677673e+00 6.86128959e-02 4.39612806e-01 1.50028080e-01 1.62643507e-01 -1.00892913e+00 1.41491628e+00 5.65572691e+00 6.03818476e-01 -1.06117320e+00 -1.18920922e-01 7.39720821e-01 4.91648577e-02 -4.20693398e-01 -3.94819409e-01 -3.56806844e-01 4.18642938e-01 1.10705495e+00 -9.79475603e-02 1.17148149e+00 6.10539436e-01 6.47851527e-01 -1.59280263e-02 -1.01330245e+00 4.82766628e-01 9.14131757e-03 -1.46488404e+00 2.12358069e-02 -7.10108280e-01 1.07382977e+00 1.11859329e-01 -1.58057511e-01 8.95697951e-01 1.38123357e+00 -1.02499223e+00 7.20490038e-01 3.80002528e-01 3.69299024e-01 -7.92587280e-01 2.21952319e-01 3.45696628e-01 -1.11878979e+00 2.73283064e-01 -6.22117341e-01 -3.34717751e-01 4.34548169e-01 6.07472301e-01 -8.70046675e-01 3.53425950e-01 7.01058149e-01 7.79372633e-01 -2.85531759e-01 8.35515022e-01 -4.51357782e-01 4.54022706e-01 -2.76149005e-01 -4.07650322e-01 4.88411278e-01 -5.92940927e-01 1.30115971e-01 1.14346111e+00 7.21005619e-01 1.73085704e-01 6.85864016e-02 1.71928787e+00 -2.83999681e-01 4.31017399e-01 -9.32181299e-01 -6.99563205e-01 8.45263619e-03 1.35157681e+00 -6.13563299e-01 -4.04582947e-01 -3.22467238e-01 1.14134192e+00 3.44185889e-01 3.97175789e-01 -9.48603988e-01 -3.39055747e-01 3.66766602e-01 -4.53147173e-01 6.67650998e-02 -3.55276227e-01 -2.06475258e-02 -1.22124338e+00 -5.22539318e-01 -1.11077738e+00 2.11975530e-01 -1.25702512e+00 -1.55654001e+00 6.66793823e-01 -7.52436519e-02 -6.65198028e-01 -2.93700099e-01 -3.27157766e-01 -1.07475185e+00 8.05195034e-01 -1.08920217e+00 -1.43510020e+00 -2.95341641e-01 4.06998605e-01 9.73205686e-01 -1.25276640e-01 1.19831789e+00 3.28366220e-01 -3.53952497e-01 1.45644248e-01 1.25631765e-01 3.17172676e-01 6.00331306e-01 -1.42973959e+00 1.29868054e+00 8.56448412e-01 4.27259237e-01 5.13140678e-01 9.76521850e-01 -7.72785842e-01 -1.35479558e+00 -1.48047864e+00 1.14955568e+00 -2.13026822e-01 3.26451212e-01 -5.43247879e-01 -4.33956534e-01 6.58990860e-01 7.73105562e-01 -4.63753074e-01 7.39036024e-01 -3.69349062e-01 -1.67166263e-01 1.41734779e-01 -1.37888610e+00 1.13396072e+00 7.80543029e-01 6.06344640e-02 -6.07611060e-01 4.43043262e-01 1.17437923e+00 -1.84806705e-01 -1.00445759e+00 7.30661210e-03 3.01103115e-01 -8.78370821e-01 8.08982193e-01 -5.46264231e-01 8.46857071e-01 -2.23926038e-01 -1.68156296e-01 -2.14955091e+00 -3.95278037e-01 -6.35636806e-01 3.36757272e-01 1.20128262e+00 5.09851158e-01 -1.39289752e-01 5.36786020e-01 9.20834243e-01 -3.64809990e-01 -1.05258860e-01 -8.26300401e-03 -3.62689227e-01 4.50865865e-01 -2.71136999e-01 1.17806029e+00 1.15758920e+00 2.18369648e-01 4.02821511e-01 -7.29096472e-01 -4.71233308e-01 3.49972665e-01 3.03344160e-01 8.92529011e-01 -4.77056861e-01 -3.91813755e-01 -3.02474737e-01 6.99913383e-01 -8.04732263e-01 -1.42975196e-01 -1.13629007e+00 5.16993642e-01 -1.95863688e+00 -1.58772573e-01 -4.32461530e-01 -3.38333219e-01 7.06662416e-01 -1.98394954e-01 1.56763434e-01 5.75752616e-01 -5.69077909e-01 -4.55761194e-01 7.89308906e-01 1.43866193e+00 -2.91538328e-01 -5.48057139e-01 -2.95751393e-01 -6.44628704e-01 2.56295711e-01 1.47610557e+00 -5.16603708e-01 -3.17888260e-01 -6.48373961e-01 6.10996127e-01 -9.44089610e-03 1.08973928e-01 -9.26340759e-01 -2.31466368e-01 -4.87607926e-01 2.10732624e-01 -4.27263796e-01 -6.91151619e-02 -2.39737928e-01 5.04017055e-01 3.65981758e-01 -6.53763056e-01 3.03675562e-01 3.64792109e-01 -7.95535073e-02 -2.27470193e-02 -2.96206355e-01 4.07873482e-01 -9.72012401e-01 -1.10306036e+00 3.24219078e-01 -7.13178158e-01 -3.27813439e-02 6.53726578e-01 3.07396263e-01 -2.18751922e-01 -2.29008883e-01 -6.31664395e-01 8.71769339e-02 2.68891692e-01 9.00406480e-01 5.06160200e-01 -1.89987278e+00 -1.11202145e+00 1.30023181e-01 2.24800810e-01 4.57538404e-02 5.63685834e-01 -3.09246369e-02 -1.00058055e+00 2.71029472e-01 -5.56114197e-01 3.09441626e-01 -5.97288370e-01 8.66402805e-01 9.32708755e-02 -4.17071342e-01 -9.41413999e-01 6.61719501e-01 -1.61483049e-01 -1.23691297e+00 -3.82879674e-01 -5.75017095e-01 -1.10841282e-01 -5.51844180e-01 5.36523640e-01 1.76694155e-01 -4.71766740e-01 -1.87241852e-01 5.14026046e-01 -1.10619143e-01 3.64494830e-01 1.80535361e-01 1.44459403e+00 2.29395460e-02 -1.98015407e-01 5.92802465e-01 6.79201841e-01 -4.22783136e-01 -1.17577553e+00 1.51391542e-02 4.72590737e-02 -3.18406582e-01 -1.74579024e-01 -1.20757115e+00 -1.09749997e+00 7.99882591e-01 4.84562546e-01 1.48358524e-01 8.70883524e-01 -5.46748459e-01 1.65244091e+00 5.54391205e-01 6.53981686e-01 -1.13819468e+00 -1.90985799e-02 4.85334665e-01 9.68874812e-01 -1.37328434e+00 -5.43555856e-01 2.69834101e-01 -8.07643771e-01 1.07017326e+00 5.92370272e-01 -5.48639715e-01 3.07687849e-01 -7.97233135e-02 2.91153759e-01 1.09867036e-01 -5.76368392e-01 -2.41311919e-02 -1.47593886e-01 9.00134385e-01 6.90396786e-01 5.95861614e-01 -3.01827341e-01 6.57384872e-01 -3.07322770e-01 6.46685421e-01 8.05438280e-01 5.67928493e-01 -3.91289890e-01 -1.33967137e+00 -2.22176373e-01 2.27400377e-01 -1.94823429e-01 -6.55789435e-01 1.66724890e-01 4.73487407e-01 3.14340413e-01 1.23153281e+00 -3.34492236e-01 -2.83565193e-01 7.33548403e-02 2.60545999e-01 5.49684644e-01 -8.61733794e-01 -1.07780302e+00 -2.26004645e-01 1.61821008e-01 -3.77529263e-01 -3.83566499e-01 -1.92571357e-01 -1.36526167e+00 -8.90766799e-01 3.20077986e-01 2.26584688e-01 7.46613979e-01 6.04760826e-01 1.60064921e-01 6.61601484e-01 4.83192563e-01 -9.77584600e-01 -3.28791618e-01 -1.13024879e+00 -6.96707904e-01 6.47920191e-01 -3.55050027e-01 7.96854347e-02 2.39062697e-01 3.83649349e-01]
[11.515787124633789, 4.552906513214111]
55da0d99-6cbf-467b-9777-9678563c3094
a-multiresolution-clinical-decision-support
1512.08051
null
http://arxiv.org/abs/1512.08051v1
http://arxiv.org/pdf/1512.08051v1.pdf
A Multiresolution Clinical Decision Support System Based on Fractal Model Design for Classification of Histological Brain Tumours
Tissue texture is known to exhibit a heterogeneous or non-stationary nature, therefore using a single resolution approach for optimum classification might not suffice. A clinical decision support system that exploits the subband textural fractal characteristics for best bases selection of meningioma brain histopathological image classification is proposed. Each subband is analysed using its fractal dimension instead of energy, which has the advantage of being less sensitive to image intensity and abrupt changes in tissue texture. The most significant subband that best identifies texture discontinuities will be chosen for further decomposition, and its fractal characteristics would represent the optimal feature vector for classification. The performance was tested using the support vector machine (SVM), Bayesian and k-nearest neighbour (kNN) classifiers and a leave-one-patient-out method was employed for validation. Our method outperformed the classical energy based selection approaches, achieving for SVM, Bayesian and kNN classifiers an overall classification accuracy of 94.12%, 92.50% and 79.70%, as compared to 86.31%, 83.19% and 51.63% for the co-occurrence matrix, and 76.01%, 73.50% and 50.69% for the energy texture signatures, respectively. These results indicate the potential usefulness as a decision support system that could complement radiologists diagnostic capability to discriminate higher order statistical textural information, for which it would be otherwise difficult via ordinary human vision.
['Omar S. Al-Kadi']
2015-12-25
null
null
null
null
['histopathological-image-classification']
['medical']
[ 4.19413030e-01 -1.36187430e-02 -6.69950768e-02 -1.15348868e-01 -5.05707324e-01 -1.51712433e-01 5.46154857e-01 6.73296094e-01 -5.88298202e-01 8.11536849e-01 -1.05118513e-01 -1.65088579e-01 -8.37690949e-01 -8.34155738e-01 1.33821741e-01 -1.43584406e+00 -3.99730891e-01 3.72957259e-01 4.98136550e-01 -2.05964535e-01 5.76281250e-01 6.64957702e-01 -1.82606030e+00 6.97185099e-01 8.11144173e-01 1.43371999e+00 4.17853892e-01 7.00134873e-01 -1.06252231e-01 6.69117033e-01 -3.79928231e-01 -1.23357987e-02 -2.68346071e-01 -2.88844228e-01 -7.03072131e-01 -1.41938135e-01 -1.59396857e-01 2.22799718e-01 3.46057845e-04 9.85605597e-01 4.41497117e-01 1.87561080e-01 1.38555348e+00 -3.96484792e-01 -3.41872483e-01 1.37960464e-01 -6.44328237e-01 6.75632179e-01 2.44439676e-01 -2.77156144e-01 2.84537554e-01 -5.70582211e-01 5.12394845e-01 6.39985800e-01 6.75456166e-01 3.55221212e-01 -1.10245693e+00 -2.34325141e-01 -5.93674719e-01 5.65524459e-01 -1.17016006e+00 -2.69663632e-01 7.97194898e-01 -6.76191092e-01 9.79037642e-01 8.49593341e-01 8.98501337e-01 9.29014802e-01 9.95624602e-01 1.47568971e-01 1.80686367e+00 -7.04907000e-01 3.83873403e-01 1.76478401e-01 1.93048865e-01 1.06420171e+00 5.01183927e-01 1.59833699e-01 -1.52921975e-01 -4.85245705e-01 5.73716819e-01 -2.56782055e-01 -1.11491553e-01 -1.21877022e-01 -9.93440092e-01 6.33007884e-01 7.06846640e-02 1.06351948e+00 -4.21822250e-01 -2.73944259e-01 6.26442611e-01 2.33241975e-01 3.92873824e-01 1.86380878e-01 -1.77753910e-01 -1.19943783e-01 -9.56718028e-01 -2.83015341e-01 5.27004838e-01 -6.29189163e-02 7.77920485e-02 -1.29504815e-01 -3.43736596e-02 1.01508272e+00 1.89485565e-01 5.03801465e-01 1.19069636e+00 -7.10070968e-01 -3.14198703e-01 3.79983962e-01 -3.62181783e-01 -1.19267416e+00 -7.47482538e-01 -6.06288135e-01 -1.21049154e+00 2.82771051e-01 3.51507902e-01 5.99270761e-01 -7.16209948e-01 8.79061222e-01 1.39524832e-01 -1.02967694e-01 1.98103547e-01 5.59821367e-01 8.37994635e-01 1.55368090e-01 1.05221067e-02 -5.10119796e-01 1.69302213e+00 -2.11604461e-01 -5.68001986e-01 4.37830567e-01 4.89035875e-01 -8.26570988e-01 7.47063994e-01 6.58006072e-01 -7.85595596e-01 -3.06636125e-01 -9.97399330e-01 6.93138421e-01 -2.50984550e-01 2.18806714e-01 4.84129578e-01 7.77960122e-01 -8.17858994e-01 5.76348722e-01 -1.17630494e+00 -4.97714192e-01 4.11938637e-01 3.71522546e-01 -4.13020879e-01 1.19652145e-01 -7.75560319e-01 1.06242096e+00 3.41355830e-01 -2.63544559e-01 3.77897881e-02 -3.48486692e-01 -6.27763331e-01 -1.59920245e-01 -4.25377637e-01 -3.84232223e-01 6.53729916e-01 -8.19653928e-01 -1.45209754e+00 9.86600399e-01 -1.83146536e-01 -5.26821256e-01 4.93443877e-01 7.68358707e-01 -5.57209074e-01 8.22262704e-01 -1.31509498e-01 4.64851595e-03 8.35727096e-01 -1.03334177e+00 -5.85247695e-01 -5.18087089e-01 -6.56585395e-01 -1.32147536e-01 -3.01675886e-01 -9.03494805e-02 4.51401949e-01 -7.07818151e-01 5.95769346e-01 -7.58065045e-01 3.16514820e-02 -5.38850248e-01 -9.44654569e-02 -1.37745366e-01 7.15659142e-01 -8.45337033e-01 1.15403283e+00 -1.91352999e+00 -2.03608960e-01 7.36661792e-01 1.19704217e-01 2.64750980e-02 4.64767992e-01 1.85818315e-01 -2.70024426e-02 -1.24240041e-01 -2.85136431e-01 5.42329252e-01 -4.44786638e-01 -4.90872003e-02 3.57746661e-01 8.10261428e-01 9.27599892e-02 3.13440889e-01 -7.39386976e-01 -8.55523467e-01 3.64948660e-01 7.25192547e-01 -1.48949817e-01 -5.16219556e-01 6.11741304e-01 3.75512272e-01 -5.33552587e-01 7.99810410e-01 4.58399922e-01 -1.16468652e-03 4.49061394e-02 -4.54085976e-01 4.28720899e-02 -4.91140991e-01 -6.97412908e-01 8.44712496e-01 -4.67494279e-01 8.71275723e-01 -1.60678938e-01 -1.34152699e+00 1.22177374e+00 4.16963279e-01 9.19630647e-01 -9.57124174e-01 2.44200125e-01 7.09044874e-01 3.63876551e-01 -1.01969922e+00 8.17983374e-02 -4.97565031e-01 1.37472823e-01 -2.14137331e-01 -1.90595195e-01 2.10982740e-01 -7.29791448e-02 -2.67752498e-01 1.19435191e+00 -4.34867054e-01 6.09836698e-01 -6.99492812e-01 8.62864196e-01 2.18438674e-02 -1.93899423e-02 4.84502286e-01 -3.04421484e-01 3.91278505e-01 3.52356613e-01 -4.65911061e-01 -5.63713908e-01 -7.68435061e-01 -1.05933547e+00 3.49294096e-01 -4.89589991e-03 3.41574997e-01 -8.00573945e-01 -4.21076387e-01 -7.18494505e-02 5.08115768e-01 -8.05301785e-01 -2.84784943e-01 -3.90371174e-01 -1.15396500e+00 2.85845697e-01 -6.21448308e-02 3.66175264e-01 -8.58964860e-01 -1.15927684e+00 3.42258066e-01 -2.75448263e-01 -5.61389446e-01 2.83650398e-01 4.42711055e-01 -1.29223740e+00 -1.12591636e+00 -8.15801501e-01 -6.34948730e-01 7.69419611e-01 1.15261398e-01 6.12326205e-01 1.97302878e-01 -6.95046008e-01 3.76641273e-01 -5.69490433e-01 -1.28742248e-01 -6.60319686e-01 -1.73371047e-01 -3.80483596e-03 1.43787995e-01 3.26369703e-01 -4.78191525e-01 -7.76063740e-01 2.90699959e-01 -7.71421373e-01 -2.06797615e-01 8.43929768e-01 1.20655274e+00 9.04327393e-01 6.56526506e-01 5.09810328e-01 -5.00241399e-01 5.70758581e-01 -2.96945840e-01 -1.76456235e-02 9.41369087e-02 -7.08101571e-01 -2.35930551e-02 5.59761465e-01 -2.56820798e-01 -9.16760325e-01 -6.24604560e-02 5.79899661e-02 6.36497438e-02 -3.48962933e-01 5.37171006e-01 5.03000736e-01 -6.57437265e-01 1.04945779e+00 4.82793659e-01 3.26838583e-01 -2.39708379e-01 -7.49939382e-01 8.76919091e-01 3.63434166e-01 -3.09167176e-01 1.18064664e-01 7.85667539e-01 4.75665122e-01 -1.26585340e+00 -2.07438514e-01 -7.39722431e-01 -5.46748579e-01 -5.31565845e-01 9.45890188e-01 -1.48037910e-01 -6.21511459e-01 4.08222526e-01 -7.19226778e-01 1.09548576e-01 -3.68110351e-02 7.50628293e-01 -7.28275836e-01 5.92979014e-01 -3.27748477e-01 -1.07714248e+00 -3.94199848e-01 -1.03782773e+00 7.27604508e-01 3.16788554e-02 -3.30753386e-01 -1.03072417e+00 -1.47557393e-01 4.38554823e-01 6.03044629e-01 7.66190410e-01 1.15892076e+00 -5.29366136e-01 2.25001588e-01 -4.61459965e-01 -8.32212642e-02 -3.78876217e-02 3.21419626e-01 2.06608996e-01 -9.38052654e-01 -2.27253556e-01 4.02612448e-01 1.19719602e-01 1.14901543e+00 6.90698922e-01 1.20183897e+00 -1.82484090e-01 -5.30134261e-01 3.27349067e-01 1.68472898e+00 6.46689773e-01 5.52299798e-01 7.97040880e-01 4.54436205e-02 7.02414215e-01 4.74286348e-01 4.26495582e-01 -9.52852145e-02 6.43583953e-01 3.15589368e-01 2.89048185e-03 -1.44441992e-01 6.24415398e-01 2.12856680e-02 8.34498763e-01 -6.19198203e-01 1.80585399e-01 -1.18390191e+00 3.01070720e-01 -1.47118926e+00 -1.26868391e+00 -3.29259515e-01 2.21042800e+00 5.02541244e-01 2.51010358e-01 1.19699717e-01 9.44742322e-01 6.19771421e-01 -3.30895424e-01 -7.87290782e-02 -6.02949142e-01 -2.55789101e-01 1.88107312e-01 6.65295303e-01 2.70859301e-01 -1.18202496e+00 3.13731544e-02 4.98019791e+00 1.14392304e+00 -1.17148268e+00 4.80557419e-02 8.67759585e-01 1.51383281e-01 -4.14026203e-03 -4.98512119e-01 -1.49275437e-01 6.88799143e-01 1.06597304e+00 1.17661439e-01 1.23626359e-01 2.82470644e-01 3.74972016e-01 -8.40647697e-01 -2.11440325e-01 1.22098804e+00 -4.14752103e-02 -1.10851562e+00 -1.98403433e-01 2.18916312e-01 3.90899658e-01 -2.69590080e-01 7.87453949e-02 -4.28494126e-01 -4.04488742e-01 -1.08493865e+00 4.53625649e-01 1.09666038e+00 7.67024219e-01 -8.35728049e-01 1.20829153e+00 2.83531338e-01 -1.11266887e+00 -1.94003582e-01 -4.25786138e-01 3.01011652e-01 -3.24472606e-01 9.25339282e-01 -6.33004963e-01 5.81198871e-01 8.21674228e-01 1.88515320e-01 -4.64690477e-01 1.18546283e+00 6.27207279e-01 5.17758965e-01 -3.12442422e-01 -2.41254613e-01 1.46250442e-01 -3.67997810e-02 6.19749784e-01 1.53027022e+00 5.56065738e-01 1.38132006e-01 -1.89801186e-01 -1.01658277e-01 9.14110184e-01 5.99058330e-01 -3.36648643e-01 2.58461893e-01 3.14432114e-01 1.14049375e+00 -1.65631807e+00 -2.25641221e-01 -2.80662864e-01 7.98445880e-01 -1.57012969e-01 -1.66371576e-02 -5.16635180e-01 -6.27166152e-01 -7.20335096e-02 3.11043054e-01 1.36216208e-01 2.01470647e-02 -5.00547230e-01 -7.74350762e-01 -1.09074607e-01 -6.07439995e-01 5.97512126e-01 -4.03547049e-01 -1.14574134e+00 8.79065812e-01 5.99535406e-02 -1.20785713e+00 1.00698590e-01 -8.09493721e-01 -4.02508169e-01 8.54509354e-01 -1.21235847e+00 -7.71978259e-01 -3.89850676e-01 3.79255295e-01 1.35079563e-01 -5.27259469e-01 9.63902414e-01 -2.50853002e-01 -1.91898614e-01 3.41794282e-01 6.36171818e-01 -3.11448067e-01 3.04391623e-01 -1.29164255e+00 -8.21368873e-01 1.51952021e-02 -3.47999901e-01 3.56322266e-02 8.50745082e-01 -4.59361285e-01 -1.08035052e+00 -6.00980878e-01 9.32681143e-01 1.11155268e-02 5.83010793e-01 3.16442519e-01 -9.04828131e-01 -5.52547634e-01 -2.29619116e-01 -4.05624881e-02 9.76381660e-01 -3.82115215e-01 2.30035141e-01 -9.77044031e-02 -1.68881786e+00 2.43404225e-01 5.53258419e-01 -3.16937387e-01 -4.56992090e-01 2.96164870e-01 -3.38934571e-01 -1.25285223e-01 -1.37933159e+00 4.42247242e-01 1.03497970e+00 -1.28683543e+00 1.01080096e+00 -1.26580060e-01 1.73806682e-01 -2.07569264e-02 -3.60834092e-01 -9.23985422e-01 -7.21569002e-01 7.00313896e-02 1.57146960e-01 5.96763849e-01 3.77507716e-01 -7.98063993e-01 8.11606526e-01 1.20111130e-01 1.35202408e-01 -1.20874298e+00 -1.38397634e+00 -9.39322650e-01 -1.15350157e-01 -2.31634244e-01 1.55548528e-01 8.76995981e-01 1.88362166e-01 -3.47830117e-01 2.29087025e-01 -1.70840487e-01 7.43310928e-01 -3.92783200e-03 -2.58946598e-01 -1.63605559e+00 -2.93599695e-01 -9.19627428e-01 -1.06634045e+00 4.36154187e-01 -1.21742100e-01 -1.10694671e+00 -4.07502174e-01 -1.62819386e+00 2.22875699e-01 -6.33243620e-01 -7.09002495e-01 1.93545505e-01 2.37712726e-01 4.05855268e-01 -3.29623759e-01 6.33547902e-01 1.13995187e-01 8.71981755e-02 1.24982750e+00 -1.80913463e-01 -2.62749195e-01 1.37151882e-01 -4.72613484e-01 6.25682533e-01 1.00139940e+00 -4.35590804e-01 -3.36869448e-01 4.14089143e-01 -2.22949669e-01 3.13065112e-01 3.63756359e-01 -1.26261199e+00 2.40882747e-02 -2.14034766e-01 7.48939931e-01 -8.02585334e-02 9.43868905e-02 -8.82616580e-01 4.00805503e-01 1.10593987e+00 -1.16576582e-01 -1.38817832e-01 1.19460173e-01 5.75841427e-01 -2.55793571e-01 -4.96837825e-01 1.25786197e+00 -1.17745856e-02 -5.25017023e-01 -1.56962931e-01 -8.72984886e-01 -5.79971611e-01 1.24253225e+00 -9.85677183e-01 -1.00855686e-01 1.52813094e-02 -9.64108765e-01 -7.17127860e-01 3.73507231e-01 -1.83545128e-01 6.55300736e-01 -1.19379973e+00 -6.06125414e-01 8.41136184e-03 2.02948883e-01 -7.43659854e-01 5.94288588e-01 1.55133069e+00 -7.52356172e-01 4.11574394e-01 -5.47900021e-01 -7.19369292e-01 -1.62387383e+00 2.96197385e-01 4.82129008e-01 -2.91037560e-01 -7.82229960e-01 6.77249074e-01 -2.86991775e-01 3.98341775e-01 -2.41491526e-01 -3.58238190e-01 -8.24311197e-01 2.93748081e-01 3.61427277e-01 7.09288776e-01 5.97989023e-01 -9.65591550e-01 -5.22267342e-01 9.27343905e-01 1.34590507e-01 -7.27385189e-03 1.20521545e+00 5.80497719e-02 -2.81740606e-01 3.89829397e-01 1.19051218e+00 -4.00692411e-02 -5.81584334e-01 1.11901298e-01 2.58356601e-01 -2.54223466e-01 5.46994090e-01 -9.98996913e-01 -7.49790847e-01 6.16121233e-01 1.11084330e+00 7.86815405e-01 1.55420816e+00 -3.51228751e-02 3.23982924e-01 1.85114935e-01 4.76381212e-01 -1.22378397e+00 -3.40435147e-01 1.79058105e-01 9.01583612e-01 -1.13115191e+00 2.51540337e-02 -4.76704031e-01 -3.05691659e-01 1.72879636e+00 -8.04830864e-02 -1.46024585e-01 1.03470671e+00 2.66779840e-01 -4.28738073e-02 -2.54651219e-01 -7.07308292e-01 -5.26420996e-02 4.62468266e-01 7.53785372e-01 6.00637794e-01 4.68085915e-01 -8.92391622e-01 5.93002915e-01 -2.28334457e-01 -3.94412242e-02 3.07849795e-01 9.61277604e-01 -9.17277813e-01 -7.71839440e-01 -6.38755500e-01 1.13392985e+00 -7.83453047e-01 2.60503680e-01 -1.46789923e-01 6.58150196e-01 1.62419796e-01 8.26286972e-01 -9.05185565e-02 -4.65769380e-01 1.61707506e-01 9.92298499e-02 8.28439713e-01 -1.71628464e-02 -4.35489982e-01 2.44367301e-01 1.62662968e-01 -3.26281548e-01 -5.37249804e-01 -8.93768847e-01 -1.39072168e+00 -1.82538316e-01 -2.60700136e-01 2.92945445e-01 8.80181313e-01 8.13430429e-01 -8.00330862e-02 6.94743931e-01 6.06966376e-01 -6.18073583e-01 -2.93387413e-01 -7.41409063e-01 -8.24869454e-01 1.76583409e-01 3.59850168e-01 -1.05318415e+00 -3.67388934e-01 1.17882647e-01]
[15.056410789489746, -2.6725783348083496]
a7489a91-0203-454e-890d-66d36f47bc91
construction-of-hierarchical-structured
null
null
https://aclanthology.org/2022.dialdoc-1.9
https://aclanthology.org/2022.dialdoc-1.9.pdf
Construction of Hierarchical Structured Knowledge-based Recommendation Dialogue Dataset and Dialogue System
We work on a recommendation dialogue system to help a user understand the appealing points of some target (e.g., a movie). In such dialogues, the recommendation system needs to utilize structured external knowledge to make informative and detailed recommendations. However, there is no dialogue dataset with structured external knowledge designed to make detailed recommendations for the target. Therefore, we construct a dialogue dataset, Japanese Movie Recommendation Dialogue (JMRD), in which the recommender recommends one movie in a long dialogue (23 turns on average). The external knowledge used in this dataset is hierarchically structured, including title, casts, reviews, and plots. Every recommender’s utterance is associated with the external knowledge related to the utterance. We then create a movie recommendation dialogue system that considers the structure of the external knowledge and the history of the knowledge used. Experimental results show that the proposed model is superior in knowledge selection to the baseline models.
['Sadao Kurohashi', 'Ribeka Tanaka', 'Takashi Kodama']
null
null
null
null
dialdoc-acl-2022-5
['movie-recommendation']
['miscellaneous']
[-3.50767612e-01 3.99618566e-01 -3.47481340e-01 -7.96001732e-01 -3.87003094e-01 -8.63668382e-01 5.58470547e-01 -1.04278862e-01 -1.34284467e-01 5.71548641e-01 8.04325044e-01 -2.42133602e-01 4.84052561e-02 -7.50447512e-01 -1.00438990e-01 -3.07868004e-01 6.11327648e-01 4.40235585e-01 4.91167545e-01 -6.81735218e-01 6.95713639e-01 -2.71441452e-02 -1.07533598e+00 6.40187263e-01 7.73557365e-01 9.77019548e-01 6.73460782e-01 6.33974731e-01 -5.08672714e-01 1.06929386e+00 -5.69594026e-01 -7.31301665e-01 -1.70876309e-01 -7.28722036e-01 -1.12027025e+00 2.92626709e-01 -1.71371162e-01 -7.73649335e-01 -2.49949977e-01 6.76038206e-01 3.26827437e-01 9.36658800e-01 9.46556032e-01 -4.08549428e-01 -8.04328978e-01 1.19978738e+00 9.78106409e-02 7.00186938e-02 5.73649526e-01 -4.68047529e-01 1.25905681e+00 -9.57084239e-01 8.04627478e-01 1.08364379e+00 1.40869766e-01 7.09033370e-01 -3.58206540e-01 3.38499956e-02 5.48834622e-01 5.33200242e-02 -5.87609887e-01 -3.06693017e-01 7.42387235e-01 -4.07314420e-01 6.93275690e-01 5.12117386e-01 4.30425286e-01 8.92184377e-01 -1.64141245e-02 7.52697051e-01 5.55980563e-01 -2.17918441e-01 2.80801773e-01 8.45899820e-01 7.17089176e-01 3.09363753e-01 -6.44086421e-01 -6.74603522e-01 -3.39779675e-01 -2.63290793e-01 5.75658262e-01 -6.48167683e-03 -1.44094691e-01 1.13410592e-01 -6.25494182e-01 9.35453653e-01 -5.67020513e-02 5.25329560e-02 -3.28416198e-01 -7.30989516e-01 4.66588169e-01 5.05134583e-01 5.49933076e-01 8.52985322e-01 -6.82589114e-01 -3.37498993e-01 -3.25153507e-02 5.94155081e-02 1.35532665e+00 1.13459218e+00 2.53705382e-01 -2.40292177e-01 -4.18744773e-01 1.40548778e+00 4.18104798e-01 2.21783593e-01 4.73875940e-01 -1.17722964e+00 2.99855024e-01 5.77172458e-01 5.34896791e-01 -1.17311954e+00 -3.48489344e-01 -1.78951919e-01 -3.81648779e-01 -6.79693580e-01 1.62876874e-01 -6.11630321e-01 -1.91303253e-01 1.15650976e+00 5.23278534e-01 -5.19698739e-01 4.56850678e-01 8.69575441e-01 1.67848301e+00 1.09315109e+00 -4.27231491e-01 -8.78735304e-01 1.21173227e+00 -1.45818174e+00 -1.03235507e+00 2.38532752e-01 6.22684538e-01 -1.09365702e+00 1.03107309e+00 5.32044888e-01 -9.47826087e-01 -6.38881743e-01 -5.38418412e-01 -1.34634405e-01 -1.51862770e-01 5.32177091e-01 4.58856404e-01 2.57896602e-01 -4.40021217e-01 4.69359070e-01 6.33308589e-02 -3.70310009e-01 -6.29459739e-01 6.79897070e-02 1.52690202e-01 1.79097265e-01 -1.54831362e+00 6.15231574e-01 -1.44511655e-01 9.88135263e-02 -8.92214894e-01 -2.09561303e-01 -5.84579945e-01 -1.89082116e-01 5.97722232e-01 -3.61364722e-01 1.72584045e+00 -9.43922937e-01 -2.26519275e+00 2.20759898e-01 1.63048342e-01 1.17936619e-01 4.08615544e-02 -3.72224450e-01 -6.76654220e-01 6.69663027e-02 -9.47857127e-02 2.33731549e-02 7.56384015e-01 -1.11959362e+00 -7.53097594e-01 -1.55580401e-01 8.32397103e-01 7.38373220e-01 -4.16172564e-01 4.79530126e-01 -1.05373168e+00 -6.33747876e-01 -1.58046648e-01 -8.98828745e-01 -3.44993711e-01 -9.91606176e-01 -4.18349236e-01 -5.99520504e-01 2.93483406e-01 -8.04029047e-01 1.68623173e+00 -2.05319118e+00 3.81310701e-01 8.04999471e-02 -4.65266109e-02 8.32838416e-02 4.46389057e-02 8.18293929e-01 7.14980066e-01 -1.91663831e-01 6.46700203e-01 1.01667652e-02 -4.24214266e-02 -1.33366762e-02 -5.20018935e-01 -1.21088117e-01 -7.31376708e-01 3.94109756e-01 -9.35989559e-01 -2.76280016e-01 -2.63664752e-01 1.67980064e-02 -5.28511524e-01 8.24182332e-01 -5.26152074e-01 3.53826046e-01 -1.06799829e+00 1.62384585e-01 3.11817806e-02 -4.25154299e-01 3.72184992e-01 -5.01909792e-01 -5.39504774e-02 6.97747827e-01 -8.81049395e-01 1.26899898e+00 -5.22493482e-01 4.94393222e-02 5.88212572e-02 -2.89239138e-01 1.24585474e+00 3.56626749e-01 2.26439070e-02 -3.20813537e-01 3.64580840e-01 -1.89450309e-01 -9.66129526e-02 -8.43554199e-01 1.01320422e+00 3.05661142e-01 -1.21656716e-01 8.17805111e-01 9.61522162e-02 -1.18014246e-01 2.13403150e-01 7.98026800e-01 8.49323750e-01 5.06391153e-02 2.37588450e-01 3.12956423e-02 5.26621282e-01 -1.07751265e-02 5.77313006e-01 7.91634917e-01 2.88503706e-01 2.25458786e-01 3.67203057e-01 -1.48417145e-01 -5.71769357e-01 -3.54938477e-01 1.74931616e-01 1.56869781e+00 2.70940870e-01 -1.01215386e+00 -6.49947941e-01 -1.16481578e+00 -4.78388876e-01 8.02099586e-01 -5.96313000e-01 -1.01609372e-01 -2.33575106e-01 -1.31980136e-01 -3.45274843e-02 2.62167126e-01 3.49971443e-01 -1.08368540e+00 -4.00020881e-03 3.72727662e-01 -4.85235572e-01 -7.40595579e-01 -1.01226687e+00 -8.10482576e-02 -7.57552087e-01 -7.85694063e-01 -5.78716934e-01 -7.52508521e-01 6.84043944e-01 5.32823443e-01 1.09080434e+00 -6.00296184e-02 7.29332864e-01 7.30211496e-01 -1.16700912e+00 1.68184862e-01 -4.16140735e-01 -7.45020865e-04 2.03035355e-01 6.82832971e-02 1.33277833e-01 -1.40833080e-01 -4.45032269e-01 1.12767458e+00 -4.41874504e-01 2.53354520e-01 1.00675538e-01 8.04791331e-01 3.49652618e-01 -7.04620555e-02 9.93472040e-01 -1.43654573e+00 1.38058436e+00 -6.19839966e-01 -8.99675637e-02 6.31773770e-01 -4.70460415e-01 -3.52372766e-01 1.00484633e+00 -4.46326971e-01 -1.78977430e+00 -2.86610752e-01 -3.16551298e-01 3.32426548e-01 -1.00898229e-01 9.60306168e-01 -8.22197944e-02 2.68683583e-01 7.30812669e-01 -3.56184952e-02 -3.27589303e-01 -8.34935606e-01 6.40881777e-01 1.17504394e+00 1.62279248e-01 -5.29544950e-01 -5.40475324e-02 -3.09079707e-01 -7.84219384e-01 -7.81455398e-01 -1.32464588e+00 -6.96592510e-01 -3.57142061e-01 -6.28027678e-01 4.90229368e-01 -6.42024219e-01 -5.77376187e-01 1.61893725e-01 -8.88737917e-01 -2.74442196e-01 -2.36530095e-01 7.20759571e-01 -4.62837040e-01 5.37354946e-01 -1.09545255e+00 -9.36328113e-01 -4.53396291e-01 -1.05646634e+00 2.60963172e-01 5.21108329e-01 -3.65427911e-01 -9.58200932e-01 1.53053284e-01 7.17268109e-01 4.22996759e-01 -6.46512508e-01 8.07850659e-01 -1.11883533e+00 -1.73400175e-02 -1.09772138e-01 2.43132830e-01 4.09232527e-01 3.63582581e-01 1.69663146e-01 -5.88082016e-01 1.27746418e-01 3.27789843e-01 -5.36524475e-01 4.15036201e-01 1.90025046e-01 8.01901698e-01 -6.39307737e-01 -2.76310602e-03 -2.97461122e-01 4.66933757e-01 6.47317290e-01 4.19169307e-01 -1.10197045e-01 3.71022284e-01 1.01531589e+00 1.36291432e+00 7.54217982e-01 8.17549825e-01 9.88221049e-01 -1.50648490e-01 3.09852958e-01 2.09360763e-01 -3.10506523e-01 6.44074500e-01 1.64920843e+00 -1.49467006e-01 -3.63508195e-01 -1.40507013e-01 2.83659577e-01 -1.96028543e+00 -7.08431065e-01 -6.15549050e-02 1.91708541e+00 1.08670628e+00 4.95059416e-02 2.31809959e-01 -5.40652514e-01 5.59295475e-01 -9.39479936e-03 -5.83821297e-01 -7.97835469e-01 1.52437434e-01 -8.17248285e-01 -2.39192143e-01 6.32591426e-01 -7.68167973e-01 1.08014274e+00 6.02097750e+00 8.44002187e-01 -5.54671407e-01 -1.47111639e-01 5.14787614e-01 2.53974199e-01 -5.73155224e-01 -3.25453989e-02 -1.14778876e+00 2.46880770e-01 8.07855189e-01 -4.21305746e-01 4.74187791e-01 9.56483603e-01 3.62440467e-01 -1.95409611e-01 -8.49160612e-01 4.92015600e-01 3.53369027e-01 -1.19463241e+00 2.05603853e-01 -2.63695508e-01 7.23030090e-01 -4.10304487e-01 -1.96612701e-01 6.27833068e-01 6.09935939e-01 -2.43602008e-01 9.20468196e-02 7.86133647e-01 1.36416182e-01 -6.34769857e-01 7.87646055e-01 7.19543278e-01 -8.22447062e-01 1.10584609e-01 -6.70309603e-01 -2.94942316e-03 4.23934847e-01 2.77347773e-01 -9.48905230e-01 5.62222362e-01 6.38522804e-01 9.06564534e-01 -2.50779301e-01 5.13237536e-01 -2.96705335e-01 7.20933318e-01 1.43319741e-01 -5.24484456e-01 9.23522636e-02 -6.09197795e-01 3.78383130e-01 9.70509171e-01 1.79511979e-01 9.36748385e-01 3.40688884e-01 7.10771754e-02 -2.32903138e-01 1.14168954e+00 -6.40592813e-01 -1.43484101e-01 3.79061550e-01 1.48808730e+00 -4.36638206e-01 -4.59545881e-01 -5.43027639e-01 8.52774024e-01 2.05067873e-01 2.70806581e-01 -3.68397653e-01 -4.07883912e-01 1.18782260e-01 -3.59039545e-01 3.77205968e-01 2.92046517e-01 2.92075932e-01 -1.10890675e+00 -4.17337656e-01 -1.05709088e+00 5.04946411e-01 -8.77332628e-01 -1.49201703e+00 9.07761276e-01 -2.89266378e-01 -1.23459911e+00 -4.22007024e-01 -4.92137000e-02 -5.83636642e-01 4.75276738e-01 -8.94112706e-01 -7.25570321e-01 8.31751674e-02 5.57244003e-01 1.01184380e+00 -5.28096080e-01 1.06268072e+00 1.09785959e-01 -4.56053585e-01 5.22984564e-01 2.19487920e-01 -1.12851337e-01 1.11347377e+00 -1.16299820e+00 -4.90238070e-02 2.74727702e-01 3.34483236e-02 1.01996613e+00 7.71358848e-01 -9.89243686e-01 -1.51068151e+00 -7.39341140e-01 8.22813392e-01 -3.98273498e-01 6.36691034e-01 1.26188174e-01 -7.11856008e-01 5.21238744e-01 4.14276868e-01 -7.20777690e-01 1.45844018e+00 5.94678164e-01 -3.69116813e-02 -5.79295605e-02 -1.00719047e+00 5.94450951e-01 5.94048262e-01 -3.06940049e-01 -8.70834410e-01 6.15117610e-01 1.13228083e+00 -6.60579145e-01 -1.23252594e+00 2.44015723e-01 6.20701611e-01 -4.63376850e-01 5.14966071e-01 -9.79477108e-01 6.78040326e-01 -1.91031605e-01 -3.55349511e-01 -1.50507069e+00 -3.01047981e-01 -5.39192021e-01 -4.82617617e-01 1.80604410e+00 8.26121330e-01 -9.26253274e-02 2.98835009e-01 1.10617924e+00 -4.47735459e-01 -8.40382159e-01 3.99823822e-02 -1.96804807e-01 -4.22341675e-01 -7.48616382e-02 3.69883537e-01 8.88707459e-01 8.13502431e-01 1.14600646e+00 -1.18859756e+00 -2.04166412e-01 -1.56521723e-01 6.44871294e-01 1.00584149e+00 -9.47250307e-01 -5.52499235e-01 1.47349676e-02 5.56211054e-01 -2.00946379e+00 -9.88101885e-02 -5.05191863e-01 1.73816845e-01 -1.77697718e+00 2.18662053e-01 -3.40010911e-01 -3.64536718e-02 -4.45147827e-02 -6.94726184e-02 -2.52010554e-01 -5.46683790e-03 2.36260444e-01 -1.17796504e+00 5.65734267e-01 1.55042207e+00 2.68942211e-02 -6.73751891e-01 7.43420362e-01 -1.08212054e+00 8.47294152e-01 6.20684803e-01 -1.56361327e-01 -6.78256691e-01 -5.74633069e-02 6.13919914e-01 6.43502831e-01 -7.55428195e-01 -5.73986433e-02 5.81779122e-01 -5.85512757e-01 -1.80780832e-02 -8.54017258e-01 2.94648528e-01 -7.25079417e-01 5.05105183e-02 -4.74667758e-01 -1.09435213e+00 -8.39657187e-02 -3.60785544e-01 6.56804681e-01 -1.74328551e-01 -7.09194124e-01 1.37840346e-01 -3.07803363e-01 -6.29504800e-01 2.16980755e-01 -6.62790835e-01 2.31968457e-04 6.81666136e-01 3.16700071e-01 -4.85363215e-01 -1.04544854e+00 -1.13057721e+00 4.53184932e-01 1.91875741e-01 7.47772694e-01 7.27206469e-01 -1.20421004e+00 -2.97139168e-01 -4.06962007e-01 2.40977049e-01 -5.56529462e-01 4.95051831e-01 5.09460270e-01 1.90918013e-01 2.14193568e-01 8.26743990e-02 1.55737862e-01 -1.43924642e+00 5.15461385e-01 -4.90392186e-02 -1.61661729e-01 -5.20186245e-01 8.45422208e-01 3.25665563e-01 -6.30825281e-01 7.46198595e-01 2.11691670e-02 -1.60018694e+00 4.67431188e-01 9.46308613e-01 2.86051184e-01 -2.07559913e-01 -6.10172093e-01 3.08742106e-01 3.88244957e-01 -6.05996668e-01 -1.26723513e-01 1.23920345e+00 -7.82851756e-01 -3.34781826e-01 8.48202765e-01 6.34370923e-01 4.74170327e-01 -8.92534077e-01 -6.54287338e-01 -2.69082397e-01 -4.50842708e-01 -9.73608568e-02 -1.02581143e+00 -1.02169299e+00 4.11102802e-01 -6.89912587e-02 6.68993533e-01 7.90594757e-01 1.03363723e-01 8.27150881e-01 1.02795029e+00 2.95667619e-01 -1.63982904e+00 2.77983010e-01 8.96568358e-01 1.16468060e+00 -9.60897982e-01 -5.18032163e-02 -3.89360905e-01 -1.50414836e+00 1.21444058e+00 1.05518222e+00 3.82911056e-01 9.81042981e-01 -3.60974222e-01 3.61606628e-01 -4.10488993e-01 -1.10358357e+00 1.30714625e-01 4.92011607e-01 4.56016697e-02 4.57886249e-01 1.37222335e-01 -7.70011902e-01 1.41247892e+00 -4.63641845e-02 -6.44873157e-02 8.07997286e-01 5.68877161e-01 -8.26153398e-01 -1.18526316e+00 2.95742065e-01 7.81184196e-01 -4.24765646e-01 2.13355552e-02 -7.43359804e-01 -2.61004239e-01 -4.52453196e-01 1.47030759e+00 -5.87625742e-01 -9.04299319e-01 5.81949711e-01 -1.83637604e-01 -8.33896920e-02 -1.08425128e+00 -1.02533710e+00 3.25754523e-01 9.39408481e-01 -1.49700508e-01 -4.94083434e-01 -3.33643973e-01 -1.10592175e+00 -8.27923045e-02 -8.53061795e-01 8.73747051e-01 4.75064993e-01 9.44356441e-01 2.00077310e-01 2.93950111e-01 1.33200896e+00 -4.27802831e-01 -6.17182016e-01 -1.20605564e+00 -8.33471477e-01 2.07296148e-01 -1.79746032e-01 -4.70614851e-01 -2.78974891e-01 -4.20066752e-02]
[12.378247261047363, 7.508142471313477]
8296c44c-0b8e-403c-ae3f-92833d1ae93d
adaptively-learning-facial-expression
null
null
https://ieeexplore.ieee.org/abstract/document/9321757
https://ieeexplore.ieee.org/abstract/document/9321757
Adaptively learning facial expression representation via cf labels and distillation.
Facial expression recognition is of significant importance in criminal investigation and digital entertainment. Under unconstrained conditions, existing expression datasets are highly class-imbalanced, and the similarity between expressions is high. Previous methods tend to improve the performance of facial expression recognition through deeper or wider network structures, resulting in increased storage and computing costs. In this paper, we propose a new adaptive supervised objective named AdaReg loss, re-weighting category importance coefficients to address this class imbalance and increasing the discrimination power of expression representations. Inspired by human beings’ cognitive mode, an innovative coarse-fine (C-F) labels strategy is designed to guide the model from easy to difficult to classify highly similar representations. On this basis, we propose a novel training framework named the emotional education mechanism (EEM) to transfer knowledge, composed of a knowledgeable teacher network (KTN) and a self-taught student network (STSN). Specifically, KTN integrates the outputs of coarse and fine streams, learning expression representations from easy to difficult. Under the supervision of the pre-trained KTN and existing learning experience, STSN can maximize the potential performance and compress the original KTN. Extensive experiments on public benchmarks demonstrate that the proposed method achieves superior performance compared to current state-of-the-art frameworks with 88.07% on RAF-DB, 63.97% on AffectNet and 90.49% on FERPlus.
['Hangyu Li; Nannan Wang; Xinpeng Ding; Xi Yang; Xinbo Gao']
2021-01-13
null
null
null
ieee-transactions-on-image-processing-2021-1
['facial-expression-recognition']
['computer-vision']
[ 1.91924259e-01 -9.36975703e-02 -3.36674899e-01 -8.25826526e-01 -3.80620658e-02 1.49258614e-01 2.21206099e-01 -3.02008241e-01 -4.97766793e-01 7.07448483e-01 -4.55137268e-02 1.98568434e-01 -3.66756953e-02 -8.12365115e-01 -2.80991256e-01 -7.73973465e-01 4.04080451e-02 7.91949853e-02 -2.61515468e-01 -4.01436210e-01 1.31465733e-01 5.53839505e-01 -1.59431529e+00 5.71133554e-01 9.42885399e-01 1.72937584e+00 -2.81074643e-01 4.97190021e-02 -4.05990064e-01 1.14628613e+00 -6.46080315e-01 -7.35410452e-01 -8.35439116e-02 -3.26748997e-01 -7.62382030e-01 2.41643861e-02 4.20748107e-02 -3.57806802e-01 -1.61125019e-01 1.16166437e+00 6.81220949e-01 1.95347190e-01 5.61974406e-01 -1.45859432e+00 -6.23766243e-01 3.10816497e-01 -8.22502017e-01 1.60297945e-01 4.51217964e-02 -6.92443997e-02 5.10823131e-01 -9.07886684e-01 3.53463292e-01 1.31122327e+00 6.42880619e-01 8.56307268e-01 -8.00350845e-01 -1.27784657e+00 3.01388502e-01 5.39623439e-01 -1.46938252e+00 -4.68562990e-01 9.58091140e-01 -2.84167051e-01 6.99723721e-01 2.94975825e-02 6.33796275e-01 1.20530617e+00 -1.39134124e-01 9.00987983e-01 1.27400458e+00 -1.27967805e-01 9.41113383e-02 4.17909831e-01 1.05610080e-01 7.04211891e-01 -2.10822657e-01 -7.61788040e-02 -7.30776072e-01 -7.74448738e-02 4.85279173e-01 2.02837765e-01 -1.62024781e-01 -1.25271780e-02 -2.78283417e-01 7.71701157e-01 6.64153218e-01 2.41574198e-01 -5.69606364e-01 -7.30905458e-02 6.95072472e-01 3.82713050e-01 6.39280915e-01 4.40812260e-02 -3.24849099e-01 -3.51336569e-01 -6.61246359e-01 -1.08329341e-01 4.01552707e-01 4.32732552e-01 8.61748755e-01 1.62422627e-01 -2.69528538e-01 1.13034117e+00 1.94556817e-01 3.22436929e-01 7.11760700e-01 -7.37493336e-01 2.71187961e-01 8.34842384e-01 -5.17612457e-01 -1.35699654e+00 -2.05892578e-01 -6.19160295e-01 -1.23039079e+00 1.43841833e-01 -1.34982765e-01 -2.86648005e-01 -7.31810391e-01 1.90006614e+00 2.90234894e-01 3.53075325e-01 8.04714113e-02 8.72430921e-01 8.35261106e-01 8.92845929e-01 4.21676666e-01 -3.57537538e-01 1.12374032e+00 -8.84843171e-01 -8.34080160e-01 -7.30571225e-02 4.46230531e-01 -3.51358861e-01 8.77451956e-01 6.83721662e-01 -9.73612487e-01 -6.90905273e-01 -8.59394372e-01 1.89283267e-01 -3.41058016e-01 2.24200845e-01 8.51029634e-01 6.21284544e-01 -7.59431720e-01 5.35968602e-01 -3.07759255e-01 1.03480130e-01 1.09113932e+00 5.04922450e-01 -1.80505618e-01 -6.45643249e-02 -1.46644866e+00 7.65893161e-01 3.33341509e-01 2.81727791e-01 -6.56525433e-01 -6.40565991e-01 -7.05949306e-01 2.99509048e-01 1.29510820e-01 -2.63339430e-01 1.07085896e+00 -1.86723685e+00 -1.88106930e+00 7.74999201e-01 6.59991428e-02 -1.08124457e-01 2.96233624e-01 -1.76223710e-01 -7.03134954e-01 2.71991968e-01 -3.93193990e-01 7.86273956e-01 8.44378114e-01 -9.71292794e-01 -4.21209842e-01 -5.34353673e-01 -6.80207089e-02 2.75226325e-01 -1.01689219e+00 2.33883277e-01 -2.80416876e-01 -6.37790501e-01 -2.98492163e-01 -4.96719837e-01 -4.27972302e-02 3.14284831e-01 9.06448215e-02 -5.86774707e-01 9.18507874e-01 -6.56457305e-01 1.31746912e+00 -2.29093266e+00 4.31799181e-02 5.37928700e-01 1.05082706e-01 6.92209542e-01 -1.81732848e-01 -2.97352701e-01 -2.68509895e-01 -6.05438240e-02 -1.40644878e-01 -1.62407354e-01 7.17439223e-03 3.25593948e-01 -1.50792986e-01 1.49983838e-01 4.51628327e-01 7.15953708e-01 -7.64026940e-01 -6.59891307e-01 -1.62463143e-01 5.97318113e-01 -6.48338854e-01 4.05358106e-01 1.65680006e-01 1.87778994e-01 -6.26737654e-01 9.29129064e-01 8.21015775e-01 -1.81239888e-01 8.91180784e-02 -1.95264608e-01 2.03096777e-01 -2.09667280e-01 -9.79330063e-01 1.46966922e+00 -5.61229646e-01 3.20014060e-01 1.62288964e-01 -1.33682477e+00 1.40273142e+00 1.55444011e-01 3.69817734e-01 -1.15734673e+00 4.49038297e-01 7.70547912e-02 -7.49781728e-02 -6.47497118e-01 2.11209193e-01 -2.70062685e-01 1.56436171e-02 1.89410672e-01 2.17154816e-01 4.65680927e-01 -1.24386281e-01 -4.45041098e-02 7.47913241e-01 -3.01207714e-02 6.84119985e-02 4.69488986e-02 7.01629400e-01 -6.12620473e-01 9.67155755e-01 3.92766930e-02 -3.76393914e-01 -1.06211573e-01 6.05020404e-01 -5.62896073e-01 -4.27011728e-01 -8.06094766e-01 -1.82989463e-01 1.57856095e+00 7.20168427e-02 -2.06033483e-01 -8.37187827e-01 -6.76387906e-01 -9.78913009e-02 3.11898738e-01 -7.29583263e-01 -7.26418912e-01 -3.53153735e-01 -7.90682375e-01 6.76403403e-01 5.66118956e-01 9.66455758e-01 -1.37755990e+00 -3.10277581e-01 5.15665580e-03 -1.30285844e-01 -7.43327558e-01 -3.18484828e-02 3.52222919e-02 -6.27828717e-01 -6.28745198e-01 -7.64848292e-01 -6.90754533e-01 7.74161935e-01 -2.73279548e-01 1.05701482e+00 2.06097156e-01 -2.08732754e-01 -9.05682147e-02 -4.44982231e-01 -5.39360881e-01 5.81572913e-02 -8.81911516e-02 4.48437855e-02 6.26886904e-01 6.59893394e-01 -7.08032668e-01 -5.29621780e-01 2.20074818e-01 -8.86983812e-01 -9.52996090e-02 8.17307711e-01 9.97829556e-01 4.31699365e-01 -3.82102793e-03 6.96037233e-01 -6.85969770e-01 7.56600261e-01 -7.05133736e-01 -1.42588049e-01 1.89458430e-01 -7.18316436e-01 -2.42728055e-01 7.51350582e-01 -6.54565096e-01 -1.37440479e+00 -1.90796867e-01 -2.76995122e-01 -7.05222487e-01 -4.35704626e-02 4.34927881e-01 -3.64880055e-01 -2.61944860e-01 3.72242212e-01 3.47048789e-01 1.88124940e-01 -1.43757448e-01 -7.46546760e-02 9.05951560e-01 4.66876835e-01 -7.23835170e-01 3.34390342e-01 1.49388492e-01 -2.23658666e-01 -4.93885607e-01 -8.77290010e-01 -9.68788937e-02 -2.44830295e-01 -4.93026853e-01 6.76777780e-01 -9.71639335e-01 -1.02590322e+00 7.42826104e-01 -1.03537488e+00 -2.20877230e-01 -1.43796071e-01 2.31574088e-01 -2.52946109e-01 7.94584379e-02 -7.05017805e-01 -8.53285551e-01 -5.89044869e-01 -9.04127896e-01 8.87697816e-01 7.80696511e-01 -1.51100814e-01 -6.61337733e-01 -2.55691528e-01 4.13666427e-01 6.86709583e-01 2.78571069e-01 7.10284948e-01 -3.60696912e-01 2.68710945e-02 2.00356524e-02 -5.43604136e-01 7.21281230e-01 -1.47174746e-01 -4.08136286e-02 -1.13893247e+00 4.53719608e-02 -4.99564148e-02 -1.02392900e+00 8.98888052e-01 -4.91189435e-02 2.00681496e+00 -3.91008258e-01 -1.60947353e-01 8.38372529e-01 1.14613640e+00 3.37465823e-01 9.15292084e-01 2.56204665e-01 4.71542686e-01 7.46041834e-01 6.01484776e-01 8.20304036e-01 4.29211020e-01 5.33816040e-01 3.36927921e-01 -3.40099901e-01 2.09829554e-01 -1.47902146e-01 5.60296357e-01 7.66215026e-01 -2.16553837e-01 7.06988648e-02 -5.55566728e-01 2.15701699e-01 -1.60409129e+00 -1.05998695e+00 5.14940619e-01 1.57224333e+00 1.22626138e+00 -2.61552855e-02 -1.97673179e-02 1.47280246e-01 5.80153942e-01 1.22655019e-01 -7.71072686e-01 -7.92528272e-01 -1.15483060e-01 5.52454710e-01 -2.36424315e-03 9.42451581e-02 -9.38718319e-01 8.28469753e-01 5.00038862e+00 1.35976017e+00 -1.56840551e+00 1.28635034e-01 1.16991031e+00 -2.07521424e-01 -1.07627560e-03 -6.60462499e-01 -6.98304176e-01 8.06032896e-01 9.01079178e-01 -5.41328192e-02 2.93296695e-01 1.06100702e+00 -6.40397146e-03 3.04171771e-01 -6.20275021e-01 1.33174813e+00 2.27742940e-01 -9.66473937e-01 2.07028016e-01 -1.81809038e-01 4.73795027e-01 -4.60480601e-01 2.59939790e-01 8.30536246e-01 -4.51886542e-02 -1.24872565e+00 3.06708634e-01 8.99800181e-01 8.85177910e-01 -1.16315055e+00 9.24415767e-01 1.92416921e-01 -9.22875464e-01 -2.84753293e-01 -5.78678489e-01 -1.26906648e-01 -1.54074892e-01 5.55958986e-01 -2.15827942e-01 3.87432069e-01 9.13150191e-01 8.51956785e-01 -4.25696105e-01 4.65580285e-01 -2.27114633e-01 5.98442674e-01 -1.16000801e-01 -2.49573156e-01 2.42315874e-01 -1.78474531e-01 -1.43232182e-01 1.25238729e+00 2.38709301e-01 5.95998108e-01 1.44733638e-01 5.77848256e-01 -3.72035235e-01 3.17853451e-01 -1.71959504e-01 8.08873698e-02 2.54308105e-01 1.50976276e+00 -2.60721475e-01 -4.54036862e-01 -1.70060858e-01 9.87090170e-01 7.42263436e-01 1.67419165e-01 -8.29542696e-01 -5.57654321e-01 7.45319963e-01 -2.00968266e-01 1.45156592e-01 4.03766274e-01 -3.13212397e-03 -9.22267854e-01 6.82025477e-02 -1.08118224e+00 6.47677362e-01 -7.93680906e-01 -1.41270304e+00 7.86213696e-01 -3.52163076e-01 -1.03737211e+00 1.01106763e-01 -7.84174681e-01 -7.08585501e-01 6.28588080e-01 -1.86840320e+00 -9.72226322e-01 -6.26559198e-01 8.87577891e-01 2.58925140e-01 -3.58842820e-01 9.36819971e-01 7.01260507e-01 -8.54931355e-01 1.04371548e+00 -1.60862729e-01 3.76503915e-01 6.16951227e-01 -8.35618138e-01 -5.65882087e-01 3.14244717e-01 -3.19102883e-01 3.06553066e-01 5.47495373e-02 -1.67569891e-01 -1.01708281e+00 -1.25130928e+00 6.65792048e-01 3.55518788e-01 3.28599572e-01 -2.01231152e-01 -1.08490288e+00 1.18584059e-01 9.16849300e-02 2.90259451e-01 1.02728593e+00 1.76864475e-01 -5.06449759e-01 -7.20695674e-01 -1.32059956e+00 3.06222200e-01 1.04360962e+00 -4.58141685e-01 -3.60648304e-01 1.47522077e-01 2.64767915e-01 -1.99119493e-01 -9.16944444e-01 6.67688787e-01 7.24653423e-01 -9.88828063e-01 7.79569268e-01 -7.96291947e-01 8.44783187e-01 9.82979611e-02 -1.03046440e-01 -1.25710511e+00 -3.41910660e-01 -2.74232686e-01 -2.30003685e-01 1.29855406e+00 1.65576227e-02 -5.81913173e-01 9.10541594e-01 4.67162758e-01 6.60722330e-02 -1.39971638e+00 -7.63072789e-01 -5.44172585e-01 -1.29574075e-01 -9.05336887e-02 7.67982066e-01 1.37374270e+00 -5.75391622e-03 3.63647312e-01 -4.93993878e-01 -1.33720651e-01 3.01507771e-01 4.03082557e-02 5.22124827e-01 -1.26998127e+00 -1.19153641e-01 -7.39490449e-01 -6.01540446e-01 -8.94302905e-01 6.27148032e-01 -9.30412591e-01 -2.50198841e-01 -8.43022704e-01 3.76686722e-01 -4.35105979e-01 -7.87220836e-01 7.98778713e-01 -2.20853269e-01 3.57773155e-01 1.14057720e-01 -8.17273185e-02 -8.96217346e-01 1.09477413e+00 1.25905335e+00 -2.58034497e-01 8.86482075e-02 -1.21698529e-01 -9.03322279e-01 9.21849787e-01 8.22524905e-01 -3.41063440e-01 -4.60618466e-01 -3.57591301e-01 2.93933582e-02 -1.16676100e-01 1.71277881e-01 -8.63321304e-01 2.25739822e-01 -1.41263276e-01 8.22539628e-01 -2.87961215e-01 3.88646036e-01 -7.68898606e-01 -2.61197686e-01 3.75297755e-01 -4.48845536e-01 -1.32937759e-01 2.41364062e-01 2.20002711e-01 -5.32403469e-01 -6.55451417e-02 8.93531442e-01 1.25969827e-01 -1.00783753e+00 7.60490954e-01 -1.27764896e-01 -7.39204511e-02 1.05570281e+00 -2.21902505e-01 -2.24505767e-01 -4.13265795e-01 -6.36380911e-01 4.04078037e-01 -1.29011527e-01 4.86124039e-01 8.45403433e-01 -1.66243279e+00 -6.09562576e-01 2.06768543e-01 9.63088125e-02 -1.57339975e-01 5.73461711e-01 6.85974538e-01 -1.58861458e-01 -2.44851723e-01 -7.21794069e-01 -4.29588526e-01 -1.44807816e+00 1.26373440e-01 5.08198380e-01 -4.24384594e-01 4.41904813e-02 1.14782476e+00 1.34032726e-01 -6.09367728e-01 3.70236725e-01 2.24674284e-01 -5.99767268e-01 3.45098078e-01 8.10600102e-01 3.17794204e-01 -1.32428348e-01 -6.46951556e-01 -2.71851718e-01 5.92701733e-01 -2.18440145e-01 4.35475558e-01 1.44924831e+00 1.62057728e-01 -3.14078212e-01 1.03828393e-01 1.45158935e+00 -3.99207324e-01 -1.03023398e+00 -3.88601422e-01 -2.91396022e-01 -3.43181670e-01 8.80794153e-02 -9.22618330e-01 -1.48830295e+00 1.11055863e+00 8.82052779e-01 -2.81044602e-01 1.83562911e+00 -2.19156325e-01 8.06413770e-01 4.99285102e-01 1.03084780e-01 -1.35509479e+00 4.40605164e-01 4.59211856e-01 7.82524347e-01 -1.07402492e+00 -1.26830712e-01 -3.11429143e-01 -7.95063198e-01 1.07507563e+00 1.16290927e+00 9.52651631e-03 6.71021938e-01 2.09555879e-01 1.30795136e-01 -2.43622482e-01 -8.36777747e-01 1.63054630e-01 1.00832954e-01 4.75117773e-01 3.15480113e-01 -4.67406958e-02 -2.48076960e-01 1.13800967e+00 -9.75651443e-02 3.72202933e-01 -1.07572310e-01 7.34976590e-01 -3.69134575e-01 -8.93315971e-01 -8.30302536e-02 5.39043546e-01 -6.25740230e-01 7.84613043e-02 -2.98382074e-01 4.29929048e-01 6.72464788e-01 6.13240123e-01 2.81781465e-01 -5.49186707e-01 3.66401464e-01 9.67094451e-02 2.94088811e-01 -9.47854817e-02 -6.08259797e-01 -3.25941592e-01 -1.58415791e-02 -6.87715113e-01 -6.28663957e-01 -3.74634802e-01 -1.27721047e+00 -2.78368205e-01 -7.45322555e-02 2.64065683e-01 3.78463954e-01 9.03790116e-01 5.48985183e-01 6.16635144e-01 1.10799170e+00 -5.96986175e-01 -6.75421178e-01 -9.09218192e-01 -5.56849182e-01 5.88324606e-01 -2.47040167e-02 -8.15181792e-01 -9.21906084e-02 -1.77277066e-02]
[13.604606628417969, 1.6858042478561401]
3b5d12b2-f37c-4943-b367-77a47134f2aa
inner-ear-augmented-metal-artifact-reduction
2104.1251
null
https://arxiv.org/abs/2104.12510v1
https://arxiv.org/pdf/2104.12510v1.pdf
Inner-ear Augmented Metal Artifact Reduction with Simulation-based 3D Generative Adversarial Networks
Metal Artifacts creates often difficulties for a high quality visual assessment of post-operative imaging in {c}omputed {t}omography (CT). A vast body of methods have been proposed to tackle this issue, but {these} methods were designed for regular CT scans and their performance is usually insufficient when imaging tiny implants. In the context of post-operative high-resolution {CT} imaging, we propose a 3D metal {artifact} reduction algorithm based on a generative adversarial neural network. It is based on the simulation of physically realistic CT metal artifacts created by cochlea implant electrodes on preoperative images. The generated images serve to train a 3D generative adversarial networks for artifacts reduction. The proposed approach was assessed qualitatively and quantitatively on clinical conventional and cone-beam CT of cochlear implant postoperative images. These experiments show that the proposed method {outperforms other} general metal artifact reduction approaches.
['Delingette Herve', 'Guevara Nicolas', 'Raffaelli Charles', 'Gnansia Dan', 'Demarcy Thomas', 'Vandersteen Clair', 'Wang Zihao']
2021-04-26
null
null
null
null
['metal-artifact-reduction']
['medical']
[ 5.08559167e-01 4.02013272e-01 8.53904009e-01 9.52445995e-03 -1.12494099e+00 -2.97804266e-01 1.15522027e-01 -1.79932103e-01 -4.76625741e-01 4.70113426e-01 4.66129333e-02 -2.64815778e-01 -2.74161547e-01 -3.47772628e-01 -7.20485449e-01 -6.59096420e-01 -2.63710972e-03 6.89402521e-01 1.10719815e-01 7.04797134e-02 1.22439094e-01 6.77874506e-01 -1.29330134e+00 3.29797179e-01 7.23401666e-01 1.10153103e+00 3.11101109e-01 6.19003773e-01 3.26143891e-01 4.54988390e-01 -7.16044068e-01 -4.15293783e-01 3.77842188e-01 -4.61296201e-01 -4.58458662e-01 1.92820847e-01 3.52530897e-01 -3.41273516e-01 -4.06544000e-01 1.23207331e+00 1.07013440e+00 -4.29733276e-01 9.16277647e-01 -8.88722599e-01 -6.04402423e-01 6.73833072e-01 -2.23494813e-01 2.97066122e-01 1.12485424e-01 9.91985649e-02 -2.71270815e-02 -1.18131328e+00 5.12949824e-01 6.92455888e-01 9.16530192e-01 7.84292996e-01 -1.07148814e+00 -8.28003526e-01 -4.05594617e-01 -8.44585150e-02 -1.11961460e+00 -5.67427054e-02 8.12324047e-01 -6.97095811e-01 5.94998240e-01 4.61227119e-01 9.07895982e-01 1.00522304e+00 7.75707424e-01 3.36781800e-01 1.58678746e+00 -4.59654063e-01 3.10042232e-01 3.72114703e-02 -2.09750220e-01 6.43641412e-01 4.29383069e-01 5.56168973e-01 -2.34703824e-01 -2.91359991e-01 1.20229602e+00 1.14695325e-01 -7.08991945e-01 -1.80452034e-01 -6.48617208e-01 4.79695529e-01 4.89792854e-01 5.68721771e-01 -3.90543222e-01 3.94948453e-01 8.73108357e-02 7.55483806e-02 2.72031426e-01 3.10382724e-01 2.47757971e-01 3.09403002e-01 -8.29810202e-01 8.14407393e-02 4.47839141e-01 8.93152416e-01 -1.70129508e-01 5.13561964e-01 1.69709511e-02 7.96736658e-01 8.11128378e-01 7.21143544e-01 8.07474315e-01 -3.90886128e-01 9.38644186e-02 1.12206236e-01 -1.17956996e-01 -3.44302893e-01 -2.89673150e-01 -6.39458060e-01 -1.05052400e+00 9.90151703e-01 1.75432891e-01 -1.46318302e-01 -1.82496953e+00 1.22310269e+00 -6.92978948e-02 2.72699296e-01 -2.37385213e-01 8.19904983e-01 1.00851142e+00 2.54757330e-02 1.12386696e-01 -4.07882690e-01 1.04312634e+00 -3.02981466e-01 -8.34981620e-01 -1.93641007e-01 -6.38164431e-02 -1.02796209e+00 8.32470775e-01 7.94261873e-01 -1.60561347e+00 -1.25848234e-01 -1.21699965e+00 4.85932589e-01 1.52173951e-01 -2.66134858e-01 2.30537564e-01 1.03384066e+00 -1.14525461e+00 4.48467910e-01 -8.21421862e-01 2.91019559e-01 4.75654930e-01 5.65526605e-01 -5.16656600e-03 3.38490009e-02 -7.59780109e-01 8.90017509e-01 -2.25954592e-01 3.52014214e-01 -1.17189646e+00 -8.29310775e-01 -3.98625404e-01 -3.15165281e-01 -2.86311924e-01 -7.43363023e-01 1.49857354e+00 -7.22962260e-01 -1.51491618e+00 1.05503106e+00 4.97335434e-01 -2.77635634e-01 8.00556839e-01 -2.18037769e-01 -4.02327299e-01 -2.37484723e-02 -2.39474937e-01 -5.21875657e-02 9.95511830e-01 -1.83770680e+00 1.61498576e-01 -8.01905870e-01 -4.98755783e-01 1.47701381e-02 7.86003023e-02 1.92872688e-01 -1.37988135e-01 -1.25046682e+00 7.89609015e-01 -9.82398689e-01 -5.57747006e-01 -1.82335615e-01 -3.29998344e-01 6.49546087e-01 3.35854262e-01 -8.40822399e-01 8.99213433e-01 -1.80960333e+00 -1.25974212e-02 5.23539841e-01 2.37520590e-01 1.22359470e-01 3.60782683e-01 1.01499312e-01 -4.56156403e-01 2.25223884e-01 -4.39903498e-01 -2.86370605e-01 -2.75196940e-01 -1.58685893e-01 -1.85975749e-02 5.06800175e-01 -5.69670856e-01 7.22496152e-01 -3.96045655e-01 -2.04290822e-01 1.25348464e-01 7.18061328e-01 -5.55922031e-01 2.60449052e-01 2.73609787e-01 8.01301658e-01 -3.66170853e-01 6.42395973e-01 8.46954823e-01 1.32763028e-01 -2.91541917e-03 5.00322832e-03 2.28400379e-01 -4.30616677e-01 -9.25194502e-01 1.63579011e+00 -5.60346603e-01 2.17264295e-01 1.96802780e-01 -4.32623893e-01 5.51778615e-01 7.51915753e-01 5.61894059e-01 -6.12150788e-01 5.92980683e-01 6.40113056e-01 1.85269326e-01 -7.47542560e-01 -2.73046881e-01 -1.02387464e+00 1.42540723e-01 2.95704573e-01 -2.05899313e-01 -8.58907700e-01 -9.75983262e-01 -2.03597516e-01 1.23441064e+00 -1.40795968e-02 -1.40097126e-01 -1.11017525e-01 2.01455086e-01 -3.16370666e-01 2.02310652e-01 5.43388546e-01 -6.42231479e-02 1.24581611e+00 -2.36242682e-01 -3.69615912e-01 -1.19141924e+00 -1.49679637e+00 -4.39496875e-01 2.89550964e-02 4.94591054e-03 3.63657653e-01 -1.03313172e+00 -1.85431376e-01 -2.44112298e-01 4.10606474e-01 -6.50943696e-01 -1.05610587e-01 -6.85758293e-01 -8.69006574e-01 5.26718736e-01 5.42327881e-01 2.18859151e-01 -1.32478201e+00 -7.05257535e-01 4.68385309e-01 -8.96153077e-02 -7.14488506e-01 -2.37988085e-01 4.63741064e-01 -1.28054166e+00 -7.47121513e-01 -1.05933094e+00 -1.13336921e+00 8.57132912e-01 -4.26990271e-01 1.03450549e+00 -1.70255732e-02 -8.69329274e-01 4.92919236e-01 -2.43638813e-01 -9.62081969e-01 -7.17628598e-01 -9.58698571e-01 1.73949853e-01 -3.63803089e-01 -3.09500754e-01 -1.01511919e+00 -1.02550626e+00 1.89569667e-01 -1.23597217e+00 -3.68365467e-01 9.43731546e-01 9.14368331e-01 9.16095376e-01 8.33865926e-02 4.25778270e-01 -9.40447032e-01 8.95824969e-01 2.01758463e-02 -3.30051601e-01 7.65204653e-02 -7.26984203e-01 -9.73920375e-02 2.75178492e-01 -3.30977708e-01 -1.00902271e+00 -6.97059333e-02 -5.45496941e-01 -6.67361617e-01 -1.14025220e-01 6.14543632e-02 -1.20999165e-01 -6.08608782e-01 8.20892155e-01 1.10492736e-01 -2.04711244e-01 -4.84303355e-01 -2.87605047e-01 5.55666745e-01 7.25138962e-01 -2.20092028e-01 8.34551215e-01 3.65273267e-01 3.11338045e-02 -3.89171451e-01 -1.76966712e-01 2.58875359e-03 -3.06499362e-01 -4.02418196e-01 7.93611288e-01 -5.50457597e-01 -6.63984835e-01 7.00971603e-01 -9.57043231e-01 -1.60833746e-01 -3.53295535e-01 7.40533054e-01 -9.17469144e-01 3.88709515e-01 -7.67036736e-01 -9.68232572e-01 -6.21600091e-01 -1.57511139e+00 9.53742862e-01 -2.32712924e-02 1.37886703e-01 -6.55203223e-01 1.67800277e-01 4.19086844e-01 3.26900721e-01 5.49936891e-01 1.25965142e+00 -9.10870638e-03 -6.58491552e-01 -5.39820910e-01 2.63143241e-01 5.65921605e-01 -6.50831386e-02 -4.14329499e-01 -1.31072795e+00 -2.45030403e-01 6.77363098e-01 -2.30598655e-02 3.47628385e-01 9.49145973e-01 1.42680264e+00 -7.76381195e-02 -1.78279892e-01 7.44729340e-01 1.92810655e+00 6.73906803e-01 9.98035908e-01 8.77265334e-02 3.50478768e-01 6.11736327e-02 3.35406810e-01 4.78192478e-01 -3.67730439e-01 5.04068136e-01 9.44396794e-01 -1.75463423e-01 -4.76271391e-01 -2.61891093e-02 7.06961229e-02 6.19449735e-01 -6.16081238e-01 -2.71135449e-01 -1.00220287e+00 4.76070940e-01 -1.25362539e+00 -6.85326040e-01 -2.15256855e-01 2.40912437e+00 4.58075762e-01 1.19272694e-01 -3.54842603e-01 4.70201910e-01 5.97712457e-01 -6.53585613e-01 -4.51619804e-01 -2.95436233e-01 2.05492899e-01 1.17389536e+00 4.74678755e-01 3.77740860e-01 -5.75870931e-01 3.26390147e-01 6.81199884e+00 4.50856864e-01 -1.14694333e+00 5.71753263e-01 3.50372136e-01 -2.94856150e-02 -6.28121197e-01 -5.49078226e-01 -1.23814262e-01 3.10465246e-01 6.65489793e-01 1.49550647e-01 -1.33483216e-01 5.66881299e-01 2.25723729e-01 -9.74177122e-02 -8.10889959e-01 1.19430137e+00 1.26369178e-01 -1.06222677e+00 3.00495652e-03 1.30577967e-01 5.12855470e-01 -1.37516901e-01 6.10486090e-01 -7.38910660e-02 5.16375974e-02 -1.48794425e+00 7.37015843e-01 5.91313541e-01 1.10954857e+00 -6.75379276e-01 8.26153338e-01 1.63914472e-01 -6.05035961e-01 1.07471921e-01 -4.59458120e-02 5.09707987e-01 2.37720981e-01 5.59775174e-01 -1.13067997e+00 3.44144851e-01 9.70584273e-01 -3.86631906e-01 -1.64717019e-01 1.71252978e+00 -6.91249520e-02 4.38336462e-01 -1.13151126e-01 8.95797163e-02 -4.86695208e-02 1.35782942e-01 7.16772318e-01 8.53709877e-01 6.43164873e-01 5.37108898e-01 -3.73257667e-01 5.82368612e-01 2.55085006e-02 2.07226455e-01 -7.41009116e-01 6.53867245e-01 -8.39520097e-02 7.79056013e-01 -8.32756579e-01 6.89926073e-02 -1.27530858e-01 1.00204194e+00 -3.15194070e-01 2.61762291e-01 -8.81720960e-01 -3.71791162e-02 1.81777507e-01 7.92716861e-01 -2.25576535e-01 -4.49181087e-02 -9.06853616e-01 -7.35365033e-01 9.31131169e-02 -6.94984734e-01 7.61575550e-02 -1.21292388e+00 -1.18889403e+00 1.25481761e+00 -1.46476939e-01 -1.60835338e+00 -6.75879493e-02 -6.28019512e-01 -5.23616791e-01 9.52316880e-01 -1.01339149e+00 -1.06521332e+00 -6.00029945e-01 7.84464300e-01 4.68121022e-01 -3.00555471e-02 9.65747654e-01 3.95770997e-01 1.35654911e-01 6.98873878e-01 5.67091964e-02 -2.47166246e-01 5.60617685e-01 -1.21936023e+00 -1.07151888e-01 8.37690175e-01 -1.74938291e-01 4.12433654e-01 9.11066532e-01 -9.69779313e-01 -1.08296561e+00 -9.06808019e-01 2.14042366e-01 -3.45745236e-01 3.39482874e-01 4.05587219e-02 -6.22356951e-01 7.58404076e-01 4.64649439e-01 1.11035846e-01 8.67550313e-01 -5.73599517e-01 1.46417722e-01 1.19484499e-01 -1.76919544e+00 4.32112038e-01 1.07971668e+00 -1.35340348e-01 -7.26431310e-01 4.25840467e-01 3.31044286e-01 -6.38038695e-01 -1.18685412e+00 7.54716218e-01 5.41578948e-01 -1.08912265e+00 1.03337979e+00 -2.77896196e-01 3.03641468e-01 1.13767341e-01 1.18566416e-01 -1.45081842e+00 -1.19867347e-01 -7.29456961e-01 5.48299313e-01 5.14583886e-01 4.55370903e-01 -4.61559534e-01 9.53514755e-01 5.41385531e-01 -7.24151969e-01 -6.05745077e-01 -1.16285539e+00 -6.53946877e-01 3.69923621e-01 -7.42296398e-01 5.03502004e-02 4.32553023e-01 -2.15239987e-01 -3.15879643e-01 -7.79888406e-02 6.40371740e-01 1.07070625e+00 -2.16992840e-01 6.04607426e-02 -1.32186925e+00 -4.69745278e-01 -3.10607076e-01 -8.22281957e-01 -3.51575941e-01 -3.96044075e-01 -8.49756420e-01 3.85091364e-01 -1.56617796e+00 2.35831872e-01 -8.26737463e-01 -2.70109385e-01 6.48215115e-02 2.26774558e-01 7.14977622e-01 -1.44920796e-01 2.05825925e-01 6.21249020e-01 2.35413149e-01 1.77241850e+00 -1.23736467e-02 -9.45895687e-02 5.17514527e-01 -2.01277703e-01 1.05013943e+00 4.16162014e-01 -5.09147882e-01 -3.45043510e-01 -4.90132779e-01 -5.07244729e-02 5.83078027e-01 5.66137552e-01 -1.37983990e+00 7.84663334e-02 2.80795097e-01 6.22172177e-01 -5.76882362e-01 3.59297305e-01 -1.26247394e+00 6.99649930e-01 7.45603025e-01 1.94377631e-01 2.49214545e-01 3.22767317e-01 5.54620266e-01 -3.14517498e-01 -4.41014796e-01 1.36205399e+00 -4.52432632e-01 -9.60517079e-02 3.95378143e-01 -4.11321998e-01 -1.98587731e-01 8.83704007e-01 -4.17198658e-01 2.37398624e-01 -3.84700209e-01 -1.63439035e+00 -7.64097273e-01 1.98449537e-01 1.58358067e-02 1.24796903e+00 -1.23540866e+00 -4.98683780e-01 1.91289783e-01 -1.14114285e-02 3.02656263e-01 3.76157463e-01 9.69395936e-01 -1.00835717e+00 4.81996424e-02 -4.52939540e-01 -5.34455538e-01 -1.36533761e+00 3.63757610e-01 7.75663435e-01 -3.57794613e-01 -7.35838056e-01 1.23280442e+00 4.68962520e-01 -2.68869381e-02 2.67009765e-01 -6.78568304e-01 4.05579843e-02 -6.43217385e-01 1.01027684e-02 1.05994269e-01 6.46247923e-01 -3.06825906e-01 -1.33066982e-01 8.77280891e-01 2.11711251e-03 -6.13114059e-01 1.58297777e+00 5.32996282e-02 2.09098101e-01 4.00173292e-02 5.44928432e-01 -1.74095836e-02 -7.06168413e-01 1.30678400e-01 -3.76042604e-01 -3.98331076e-01 1.60208657e-01 -1.27323735e+00 -1.29430854e+00 9.22614992e-01 1.42113233e+00 -7.74008632e-02 1.45957041e+00 -1.56066477e-01 6.48976803e-01 -3.79669279e-01 7.94957101e-01 -7.18499124e-01 4.84140903e-01 -1.44949347e-01 1.34147632e+00 -8.00090373e-01 -2.67776996e-01 -8.61160219e-01 -4.43091035e-01 9.50830936e-01 4.61569488e-01 -3.26628953e-01 1.09219694e+00 1.01036692e+00 4.03068215e-01 -4.77292776e-01 1.30818427e-01 8.18627849e-02 1.71347603e-01 6.82511151e-01 5.27380168e-01 3.88682298e-02 -4.56206858e-01 6.67537689e-01 -2.15036675e-01 2.19256580e-01 7.21057594e-01 1.04339838e+00 -3.07111800e-01 -1.14042890e+00 -6.70716703e-01 3.22924644e-01 -7.92094469e-01 -3.81413072e-01 -1.87218457e-01 6.98100328e-01 2.52226204e-01 6.82425916e-01 -4.25377876e-01 -2.34267414e-01 6.41540349e-01 7.91764557e-02 1.12620437e+00 -7.23740995e-01 -1.05846429e+00 5.76766729e-01 -4.39569175e-01 -2.36974597e-01 -7.16850087e-02 -6.42370582e-01 -1.29215300e+00 2.89341182e-01 -2.27949172e-01 -2.03729391e-01 9.95792627e-01 3.63605052e-01 -2.03993231e-01 1.03927565e+00 5.85093021e-01 -7.95352340e-01 -4.61966574e-01 -1.14531457e+00 -9.59024489e-01 3.58278483e-01 1.80849820e-01 -6.17376745e-01 -4.65174794e-01 1.63979709e-01]
[13.449530601501465, -2.555616855621338]
94c5b379-146d-4ece-bd49-420208faeb08
object-discovery-via-cohesion-measurement
1704.08944
null
http://arxiv.org/abs/1704.08944v1
http://arxiv.org/pdf/1704.08944v1.pdf
Object Discovery via Cohesion Measurement
Color and intensity are two important components in an image. Usually, groups of image pixels, which are similar in color or intensity, are an informative representation for an object. They are therefore particularly suitable for computer vision tasks, such as saliency detection and object proposal generation. However, image pixels, which share a similar real-world color, may be quite different since colors are often distorted by intensity. In this paper, we reinvestigate the affinity matrices originally used in image segmentation methods based on spectral clustering. A new affinity matrix, which is robust to color distortions, is formulated for object discovery. Moreover, a Cohesion Measurement (CM) for object regions is also derived based on the formulated affinity matrix. Based on the new Cohesion Measurement, a novel object discovery method is proposed to discover objects latent in an image by utilizing the eigenvectors of the affinity matrix. Then we apply the proposed method to both saliency detection and object proposal generation. Experimental results on several evaluation benchmarks demonstrate that the proposed CM based method has achieved promising performance for these two tasks.
['Xuelong. Li', 'Wan-Lei Zhao', 'Yan Yan', 'Hanzi Wang', 'Guanjun Guo']
2017-04-28
null
null
null
null
['object-proposal-generation']
['computer-vision']
[ 4.67317134e-01 -2.73100048e-01 -1.12262316e-01 -3.95275801e-01 -3.82037222e-01 -2.10581541e-01 2.60888606e-01 4.52843994e-01 -4.40203458e-01 4.65921134e-01 -7.38790724e-03 1.14072755e-01 -2.66394675e-01 -7.26910889e-01 -5.98850191e-01 -8.86329234e-01 2.51814872e-01 2.33205911e-02 7.62217999e-01 -4.95418124e-02 6.32991433e-01 1.50499225e-01 -1.76128888e+00 -5.85761443e-02 1.27167356e+00 9.71291840e-01 6.01123154e-01 -1.39436871e-02 -2.66227275e-01 4.12101775e-01 -5.14594018e-01 7.51147494e-02 1.28540099e-01 -5.12778521e-01 -6.90893173e-01 5.79031467e-01 4.16505150e-02 1.40646890e-01 4.28293616e-01 1.62739444e+00 1.06676295e-01 3.97106349e-01 6.49644315e-01 -1.20980179e+00 -5.57803810e-01 6.63919985e-01 -1.04695320e+00 1.58861518e-01 2.19611779e-01 -2.17718765e-01 9.83811855e-01 -9.14927363e-01 4.22493428e-01 1.31401825e+00 -3.15030143e-02 1.46164596e-01 -1.09017491e+00 -5.43165088e-01 3.93981874e-01 6.68598473e-01 -1.46372497e+00 -1.34301642e-02 1.26142871e+00 -2.94435918e-01 -5.79483174e-02 4.86625850e-01 6.75169945e-01 2.49076977e-01 -2.26252586e-01 1.25883555e+00 1.34641159e+00 -4.63428706e-01 3.77937436e-01 5.54691076e-01 9.29297656e-02 4.98579472e-01 3.81989539e-01 -5.54780006e-01 -3.25608879e-01 4.16583009e-02 4.60377455e-01 1.29557952e-01 -5.24582624e-01 -7.54658997e-01 -1.40570152e+00 6.04030132e-01 8.48711252e-01 4.53856796e-01 -3.34010184e-01 -2.23313615e-01 7.85557404e-02 -2.83121258e-01 2.61944115e-01 3.25975418e-01 4.05027904e-02 2.51222759e-01 -8.58630955e-01 1.08207628e-01 2.48072535e-01 7.93124199e-01 1.03324878e+00 -1.31533578e-01 -2.26092547e-01 9.37555075e-01 5.73446453e-01 4.81296629e-01 5.42589843e-01 -5.61626256e-01 1.67656854e-01 9.62298214e-01 2.58595943e-01 -1.63773596e+00 -4.21112865e-01 -4.82264549e-01 -9.16905224e-01 6.45014420e-02 1.14786908e-01 2.24574417e-01 -8.77210557e-01 1.65222168e+00 6.09054148e-01 2.94091046e-01 9.12180841e-02 1.39547586e+00 8.74276102e-01 7.31231987e-01 -1.03584275e-01 -3.68269444e-01 1.24457836e+00 -8.79694879e-01 -7.23541796e-01 -1.64474100e-01 -3.50120701e-02 -9.57722187e-01 9.31122541e-01 2.75340110e-01 -1.09267271e+00 -6.47351980e-01 -1.07668149e+00 3.30397546e-01 -1.40480429e-01 2.13448122e-01 5.62469065e-01 4.46497649e-01 -7.91989863e-01 2.68156201e-01 -5.94460249e-01 -4.22001302e-01 2.89113671e-01 2.58127779e-01 8.16069692e-02 6.99687377e-02 -1.01871324e+00 5.58795750e-01 9.13333416e-01 3.01856041e-01 -4.29323584e-01 -8.36382061e-02 -6.09835565e-01 -1.44467261e-02 4.61445302e-01 -2.50921339e-01 7.70517290e-01 -1.30739880e+00 -1.20447373e+00 5.50731242e-01 -1.59480855e-01 -2.53198624e-01 2.20772445e-01 1.45859852e-01 -4.48298484e-01 3.76869649e-01 3.61532301e-01 6.41066253e-01 1.11959863e+00 -1.64973152e+00 -9.60000098e-01 -3.75784487e-01 -2.10274398e-01 4.65942532e-01 -3.88511330e-01 -1.09690802e-04 -7.63402939e-01 -6.67492151e-01 7.43140697e-01 -7.97765434e-01 -2.52893627e-01 -2.24317208e-01 -7.17175782e-01 -2.16694340e-01 8.68369281e-01 -4.20390546e-01 1.09493840e+00 -2.10936213e+00 2.52652735e-01 8.37598860e-01 1.49186328e-01 2.29501978e-01 7.57286325e-02 -1.65157661e-01 -2.46563442e-02 -7.28235692e-02 -6.49105966e-01 1.68016702e-01 -1.99564725e-01 -1.96096316e-01 4.00712974e-02 2.74889857e-01 3.22268605e-01 5.11924267e-01 -1.07897961e+00 -8.18369508e-01 2.21647382e-01 2.51403935e-02 -2.77178645e-01 1.73482105e-01 -1.26089007e-01 5.14325500e-01 -7.01003373e-01 5.80235839e-01 1.00353897e+00 -1.81336641e-01 6.54452518e-02 -4.95663524e-01 -7.64925033e-02 -3.72882009e-01 -1.47061729e+00 1.52419126e+00 1.15698548e-02 3.20872545e-01 -1.33181572e-01 -1.21424568e+00 1.22485483e+00 -1.49158105e-01 5.68043053e-01 -5.40182292e-01 1.27816468e-01 2.37014681e-01 2.07203776e-01 -2.59043068e-01 6.34197116e-01 2.10643068e-01 1.51303560e-01 3.24763060e-01 -4.73694503e-01 -7.85974935e-02 5.50878465e-01 2.88936079e-01 4.26599354e-01 -1.44511953e-01 6.88044205e-02 -5.44481099e-01 9.59602296e-01 -9.69676450e-02 9.52823937e-01 4.12216693e-01 -2.16351047e-01 5.58661997e-01 2.02170625e-01 -8.04308355e-02 -7.58668840e-01 -1.05898583e+00 -1.64969653e-01 6.10706568e-01 1.02452683e+00 -1.21750005e-01 -7.98704088e-01 -4.42053467e-01 -1.60265401e-01 3.88786852e-01 -4.39870149e-01 -3.65806967e-01 -2.20294565e-01 -1.04246640e+00 -2.25380674e-01 2.29777157e-01 9.54887569e-01 -1.05070913e+00 -6.99524164e-01 2.41193146e-01 -4.47540820e-01 -8.27818453e-01 -4.56377596e-01 -3.70221138e-01 -7.83402026e-01 -9.68824148e-01 -8.74283612e-01 -1.02969313e+00 1.06082690e+00 1.00012219e+00 6.89072311e-01 4.68994945e-01 -2.38049090e-01 2.51609772e-01 -5.83409727e-01 -3.45002472e-01 -1.90107882e-01 -1.51855767e-01 9.18180197e-02 8.02854300e-01 2.59220183e-01 -3.36362898e-01 -8.34384143e-01 4.60340142e-01 -1.29997766e+00 4.36490446e-01 9.24525082e-01 7.38561332e-01 7.97089636e-01 4.45287526e-01 5.67227840e-01 -6.90030456e-01 4.57410783e-01 -3.58387262e-01 -6.27007008e-01 4.11143690e-01 -6.00054920e-01 9.96494442e-02 1.74110994e-01 -2.74249732e-01 -1.37853932e+00 1.60258174e-01 3.50212485e-01 -1.15307294e-01 -7.78291821e-02 5.92743814e-01 -3.59863877e-01 -3.92666012e-02 2.21603975e-01 4.38656121e-01 3.55856493e-02 -4.58476752e-01 3.64308774e-01 6.07637465e-01 4.93395865e-01 -3.59892607e-01 9.64454889e-01 5.75423300e-01 -6.96245432e-02 -8.50875080e-01 -6.22668982e-01 -8.15595210e-01 -5.22790670e-01 -2.43356735e-01 8.79373074e-01 -7.46355772e-01 -5.05254447e-01 5.42006791e-01 -9.90836263e-01 4.48844194e-01 1.03561513e-01 5.88266790e-01 -3.20025772e-01 6.33183777e-01 -9.63842794e-02 -7.59279251e-01 -2.54655898e-01 -1.30144572e+00 9.13995624e-01 8.16285551e-01 2.02237695e-01 -7.19827652e-01 -3.14664900e-01 2.41055429e-01 1.66350484e-01 2.74578542e-01 9.44638193e-01 -3.30470175e-01 -8.00791025e-01 3.70782539e-02 -6.56746328e-01 1.67155221e-01 5.26506782e-01 1.33415237e-01 -5.41223049e-01 -2.24084839e-01 -4.71512005e-02 1.07706025e-01 9.43166614e-01 3.33789229e-01 1.26867414e+00 -1.42155319e-01 -4.51128155e-01 1.89118758e-01 1.38908505e+00 3.50313365e-01 4.58618611e-01 4.70210671e-01 8.60540867e-01 6.91083670e-01 1.11770833e+00 4.91962612e-01 1.55449808e-01 8.34637642e-01 4.80875164e-01 -5.42006731e-01 1.15970865e-01 7.67179355e-02 2.00871915e-01 9.65376854e-01 -4.29276824e-02 2.45089754e-01 -6.79520309e-01 6.89142704e-01 -2.00086832e+00 -6.56379640e-01 -4.32585984e-01 2.12418723e+00 1.02530408e+00 2.91785568e-01 2.02623636e-01 2.67533362e-01 1.17566776e+00 -2.54467055e-02 -6.28692210e-01 4.27417792e-02 -2.93047577e-01 -9.35574844e-02 3.29333872e-01 8.11355338e-02 -1.03372824e+00 9.04183865e-01 4.70845652e+00 9.75761294e-01 -1.03244627e+00 -1.10409431e-01 6.08678699e-01 3.62296730e-01 -3.79645109e-01 1.71138853e-01 -6.16807759e-01 7.60460615e-01 3.27240564e-02 -3.84197056e-01 1.42714024e-01 8.11479807e-01 4.22158569e-01 -6.60807729e-01 -5.26884675e-01 9.32254612e-01 1.12265408e-01 -1.00543070e+00 1.92105621e-01 -3.25685114e-01 1.04409575e+00 -5.61909437e-01 5.12225747e-01 -3.36079597e-01 -1.12522036e-01 -3.88176084e-01 8.30756426e-01 5.03572583e-01 2.24736407e-01 -8.76422107e-01 7.30510056e-01 1.64623156e-01 -1.21974432e+00 1.04036860e-01 -5.00969172e-01 3.72522175e-01 -1.84308235e-02 8.19082618e-01 -7.79045880e-01 5.57161987e-01 7.51785636e-01 9.69697118e-01 -9.73865151e-01 1.41955519e+00 -2.73012400e-01 3.95017862e-01 -1.15563422e-01 -3.09821725e-01 2.89689928e-01 -5.95911026e-01 6.90696478e-01 8.31116021e-01 1.92119837e-01 -2.26583108e-02 2.64547616e-01 1.21355617e+00 1.96392387e-01 5.41460395e-01 -1.20258808e-01 1.95231020e-01 3.91728073e-01 1.49068189e+00 -1.38100863e+00 -4.13057357e-01 -2.11461559e-01 1.06094301e+00 -1.21683694e-01 4.28812563e-01 -8.46887350e-01 -4.60133880e-01 3.74043673e-01 -1.08268060e-01 1.84693009e-01 -4.71060798e-02 -1.78508274e-02 -9.96195138e-01 1.14637412e-01 -7.25083649e-01 5.74987987e-03 -7.27303088e-01 -9.34830964e-01 3.21159035e-01 6.79050460e-02 -1.65876842e+00 1.78835422e-01 -2.08150148e-01 -6.99621916e-01 6.43957376e-01 -1.54553366e+00 -9.45685565e-01 -5.49543619e-01 6.72186017e-01 5.20189226e-01 5.03176600e-02 2.77025640e-01 1.00475274e-01 -8.00850391e-01 2.68816620e-01 4.56510603e-01 -7.16147125e-02 5.17134309e-01 -1.35201633e+00 -2.10950479e-01 1.14334047e+00 2.58173615e-01 6.53617382e-01 6.29060090e-01 -6.91568315e-01 -1.21479774e+00 -1.15319967e+00 1.97602883e-01 2.54846632e-01 3.80313128e-01 -6.32599508e-03 -9.85509098e-01 5.91329485e-02 2.45830063e-02 -2.51775324e-01 4.43909943e-01 -3.23338985e-01 1.86337978e-01 -2.89179593e-01 -8.82208288e-01 5.51779091e-01 6.00903630e-01 -4.12724316e-02 -4.57876652e-01 4.26275581e-01 6.06123209e-01 -2.21463084e-01 -5.93385160e-01 4.34248149e-01 3.21422964e-01 -1.00529015e+00 9.31879044e-01 -1.63061127e-01 1.07715935e-01 -9.21366274e-01 2.53403306e-01 -1.28311050e+00 -4.99849647e-01 -2.17681065e-01 4.17950928e-01 1.36554945e+00 2.36466914e-01 -3.74703288e-01 7.15055227e-01 3.83260190e-01 1.55006766e-01 -4.05563891e-01 -5.14209747e-01 -7.87555456e-01 -6.80615664e-01 -7.95872509e-02 6.13277912e-01 7.64037073e-01 -1.70751691e-01 3.56017053e-01 -1.56287611e-01 2.51202494e-01 9.09182310e-01 6.12346172e-01 6.18985891e-01 -1.35578561e+00 -4.53025177e-02 -6.09259546e-01 -5.65225601e-01 -8.75662565e-01 -9.24865231e-02 -7.40997434e-01 3.77827108e-01 -1.50720298e+00 4.98148441e-01 -6.96238339e-01 -7.22055078e-01 9.48264450e-02 -6.76367223e-01 5.07402241e-01 3.25497836e-01 4.65697110e-01 -8.08304369e-01 7.36143172e-01 1.16332686e+00 -5.12637258e-01 -4.32843655e-01 1.58333331e-01 -7.05011249e-01 8.82264853e-01 9.11782384e-01 -2.37390101e-01 -4.44409609e-01 -2.23820552e-01 -9.80806127e-02 -4.18568552e-01 2.50896484e-01 -1.13260162e+00 4.63663675e-02 -3.50513011e-01 2.57696390e-01 -6.79048002e-01 1.15357548e-01 -9.00925338e-01 1.02443784e-01 4.98952121e-01 -1.89599276e-01 -2.96067953e-01 4.09175381e-02 6.45094514e-01 -4.12324190e-01 -3.13260615e-01 9.40110803e-01 -4.74161953e-02 -1.13975847e+00 9.48039889e-02 -1.53464884e-01 -1.88461855e-01 1.19663286e+00 -4.68699634e-01 8.03667977e-02 -3.45610917e-01 -5.20267189e-01 1.98951632e-01 4.94738042e-01 5.38427114e-01 1.01136053e+00 -1.58117795e+00 -6.10296965e-01 2.86463238e-02 3.82259429e-01 6.37372658e-02 2.17984930e-01 1.06688714e+00 -3.48158300e-01 1.02153488e-01 -3.80301952e-01 -8.76455486e-01 -1.40495574e+00 6.35768056e-01 -1.95857733e-01 2.52700925e-01 -2.03929335e-01 8.05791557e-01 4.98726875e-01 1.56322613e-01 5.94179332e-03 -4.66348737e-01 -6.77508354e-01 1.32679984e-01 4.13802803e-01 2.49224648e-01 -1.41243979e-01 -1.11186719e+00 -4.67232287e-01 1.00003743e+00 -1.02293305e-01 -3.81715707e-02 1.06783843e+00 -4.73337531e-01 -5.03073096e-01 4.33345884e-01 1.02254879e+00 -8.75128955e-02 -9.60355282e-01 -6.13604248e-01 2.99126506e-01 -7.58553684e-01 1.46110639e-01 -3.79669994e-01 -1.29929936e+00 7.54280925e-01 8.58268797e-01 3.59976888e-01 1.43429697e+00 -1.28247112e-01 7.46455729e-01 -2.29565501e-02 2.93382525e-01 -1.28629911e+00 2.82816112e-01 -1.05642185e-01 7.38874912e-01 -1.44060171e+00 8.86489674e-02 -6.77939236e-01 -6.32644713e-01 9.03802216e-01 6.91363931e-01 1.65312633e-01 5.03430903e-01 -5.19855261e-01 -1.28200620e-01 -2.18102597e-02 8.35049711e-03 -6.02199316e-01 5.62193096e-01 3.59426171e-01 9.86737758e-02 1.89038217e-01 -7.24090159e-01 3.66957635e-01 2.16009691e-01 -4.10412937e-01 6.01777017e-01 8.64845514e-01 -9.16096210e-01 -8.67624760e-01 -7.49233425e-01 3.31734985e-01 -1.57554373e-01 7.99899101e-02 -3.53577316e-01 2.52349049e-01 2.07364678e-01 1.10482943e+00 1.18638184e-02 -3.90293956e-01 6.50216490e-02 -5.12379825e-01 2.64447689e-01 -6.06392145e-01 1.19979560e-01 2.08319634e-01 -5.24269998e-01 -3.81451488e-01 -9.05385017e-01 -6.02148592e-01 -1.59963930e+00 2.82744437e-01 -6.90950215e-01 4.75971341e-01 7.85319507e-01 6.84927464e-01 4.19227891e-02 4.56237406e-01 1.03206599e+00 -6.12486184e-01 -3.22655700e-02 -7.33997405e-01 -8.96995783e-01 6.67567492e-01 -2.32977159e-02 -8.79637063e-01 -1.33831665e-01 2.55603522e-01]
[9.820380210876465, -0.6004092693328857]
4066b942-021c-45d3-987d-a48b83a83c62
energy-based-models-for-atomic-resolution-1
2004.13167
null
https://arxiv.org/abs/2004.13167v1
https://arxiv.org/pdf/2004.13167v1.pdf
Energy-based models for atomic-resolution protein conformations
We propose an energy-based model (EBM) of protein conformations that operates at atomic scale. The model is trained solely on crystallized protein data. By contrast, existing approaches for scoring conformations use energy functions that incorporate knowledge of physical principles and features that are the complex product of several decades of research and tuning. To evaluate the model, we benchmark on the rotamer recovery task, the problem of predicting the conformation of a side chain from its context within a protein structure, which has been used to evaluate energy functions for protein design. The model achieves performance close to that of the Rosetta energy function, a state-of-the-art method widely used in protein structure prediction and design. An investigation of the model's outputs and hidden representations finds that it captures physicochemical properties relevant to protein energy.
['Rob Fergus', 'Alexander Rives', 'Yilun Du', 'Jerry Ma', 'Joshua Meier']
2020-04-27
null
https://openreview.net/forum?id=S1e_9xrFvS
https://openreview.net/pdf?id=S1e_9xrFvS
iclr-2020-1
['protein-design']
['medical']
[ 1.98381767e-01 5.40216826e-02 -2.56462246e-01 -5.60416579e-01 -8.70926023e-01 -6.00059927e-01 3.27553630e-01 4.24453557e-01 -3.65297973e-01 1.03816843e+00 3.81101668e-01 -6.97400570e-01 2.84798384e-01 -5.28544664e-01 -1.03890395e+00 -9.80683863e-01 -2.11722478e-01 4.83226150e-01 1.37915760e-02 -4.57152188e-01 5.27823627e-01 6.46080196e-01 -1.24604774e+00 5.53733170e-01 5.87807775e-01 7.05867469e-01 2.96539783e-01 4.85087097e-01 -1.41355786e-02 5.50529182e-01 -3.36615771e-01 -2.66827065e-02 -2.24850029e-01 -6.23528719e-01 -1.02138019e+00 -6.21370256e-01 2.60405570e-01 1.63689330e-01 -4.67005037e-02 5.65397978e-01 6.05290592e-01 1.50631845e-01 1.04948986e+00 -1.71229541e-01 -9.00483668e-01 -4.97059263e-02 -8.05838779e-02 5.96700571e-02 7.02353597e-01 4.05620128e-01 1.27053809e+00 -1.04769659e+00 1.06481719e+00 1.06023419e+00 7.62086689e-01 6.19879901e-01 -1.86925745e+00 -1.22375064e-01 -1.53099343e-01 2.58991987e-01 -1.11533904e+00 -2.16231599e-01 4.48684752e-01 -4.84028399e-01 2.15145588e+00 4.23935428e-02 6.96117580e-01 1.12134981e+00 9.33136344e-01 2.92579383e-01 8.38808954e-01 -5.55072665e-01 5.42615950e-01 -3.61552894e-01 3.72214437e-01 8.90322447e-01 3.09092756e-02 5.37680805e-01 -6.00837827e-01 -9.05568898e-01 1.49588391e-01 4.22374904e-02 -4.55014974e-01 -7.63139129e-01 -9.39298213e-01 9.65210319e-01 5.35122991e-01 -9.11422893e-02 -6.89935088e-01 -1.84685625e-02 -2.41767317e-02 2.81826228e-01 1.83937609e-01 9.55878139e-01 -9.11580086e-01 -2.58387089e-01 -8.80654275e-01 6.48146451e-01 8.98917735e-01 3.79087061e-01 8.06570053e-01 -5.54950476e-01 1.07116207e-01 5.53992867e-01 5.71653545e-01 2.21640319e-01 4.37874347e-01 -4.03119385e-01 -1.16635442e-01 7.72807658e-01 3.38441879e-01 -3.18672657e-01 -5.22065520e-01 3.56706351e-01 -1.39699802e-01 5.61819017e-01 3.54324609e-01 2.30828732e-01 -1.12618792e+00 1.77854681e+00 2.25046024e-01 -4.18131858e-01 1.43529102e-01 6.83876574e-01 5.92584789e-01 8.75784099e-01 4.00430024e-01 -4.84187216e-01 1.05707598e+00 -6.41493142e-01 -2.54321009e-01 3.68844599e-01 6.27402127e-01 -6.81660891e-01 7.60670066e-01 5.01007855e-01 -1.16355968e+00 -3.50413799e-01 -1.19455314e+00 -3.62807155e-01 -5.66587925e-01 -1.02095671e-01 7.55451441e-01 3.66461337e-01 -8.16601872e-01 1.28470469e+00 -1.05823147e+00 -3.24890226e-01 -7.73595572e-02 7.09568441e-01 -6.29068255e-01 3.26011509e-01 -1.00759971e+00 1.64914525e+00 5.34482956e-01 -2.90450066e-01 -6.93002522e-01 -5.78140736e-01 -4.81781095e-01 -2.27409024e-02 -3.02284509e-02 -6.42074943e-01 1.23602009e+00 -8.44738185e-01 -1.79131746e+00 8.06523025e-01 -6.19778991e-01 -3.74038190e-01 -2.05146953e-01 -1.57189310e-01 -2.19892442e-01 -2.30949298e-02 -5.03184140e-01 5.76360583e-01 4.48885113e-01 -7.63971627e-01 4.85765561e-02 -4.10112351e-01 -2.49818534e-01 -2.20591240e-02 4.43578333e-01 -2.75945626e-02 3.60462904e-01 -2.76912153e-01 1.40623316e-01 -9.50580418e-01 -6.53525710e-01 -3.49843532e-01 -2.57494271e-01 -2.48617232e-01 2.42078155e-01 -4.82174844e-01 1.18561089e+00 -1.31104159e+00 7.99950540e-01 6.08990371e-01 1.56023368e-01 2.61674315e-01 4.43613790e-02 9.05623376e-01 -5.89530528e-01 -9.04971827e-03 -9.44898278e-02 3.75831425e-01 -2.03758240e-01 -4.02990803e-02 -3.24773818e-01 2.53807724e-01 4.00454938e-01 1.02803183e+00 -5.95017493e-01 1.59699284e-02 1.29612431e-01 6.33472443e-01 -8.18032503e-01 6.26682103e-01 -6.55804336e-01 2.94697732e-01 -4.71038252e-01 5.62195837e-01 3.60583335e-01 -5.81695735e-01 9.69085336e-01 -4.30865228e-01 -2.88054019e-01 8.29790711e-01 -3.87941420e-01 1.53290153e+00 1.33608922e-01 4.48583253e-03 -5.57932198e-01 -5.45364678e-01 9.17802870e-01 2.87269324e-01 5.46283960e-01 -3.71861875e-01 -6.30482137e-02 2.04831436e-01 2.12858230e-01 -4.29578155e-01 2.78133541e-01 -3.06977451e-01 2.17894226e-01 5.02634645e-01 1.93684816e-01 3.56044501e-01 -1.31464407e-01 -6.19968772e-02 1.27178657e+00 9.83967602e-01 9.17861819e-01 -3.02892536e-01 4.37821269e-01 2.89383352e-01 3.73795331e-01 2.68492669e-01 1.73188478e-01 3.94103080e-01 3.90113115e-01 -9.69820917e-01 -1.35952353e+00 -9.80807245e-01 -1.81926295e-01 1.32005167e+00 -1.59214377e-01 -7.69085348e-01 -8.98793399e-01 -4.78717953e-01 2.36425340e-01 3.50899369e-01 -7.69540012e-01 -5.08024812e-01 -7.48594761e-01 -1.22612834e+00 -2.83445753e-02 3.27032119e-01 -5.72681844e-01 -1.59028673e+00 -8.60938489e-01 7.88960755e-01 1.38051420e-01 -1.48445576e-01 -4.34341908e-01 8.69767904e-01 -1.02679348e+00 -1.39777815e+00 -3.94627750e-01 -5.58862865e-01 3.87750864e-01 -9.39251576e-03 1.50150847e+00 9.62758958e-02 -5.39866686e-01 -1.67115271e-01 -2.02550203e-01 -1.90781608e-01 -5.96692383e-01 2.02740416e-01 2.06576902e-02 -4.89905477e-01 1.04053283e+00 -7.84843981e-01 -8.51469994e-01 1.17666818e-01 -5.35865963e-01 -1.80445500e-02 8.30790699e-01 1.03672695e+00 1.04673529e+00 -8.28754425e-01 3.98843110e-01 -8.67285073e-01 5.97910941e-01 -4.74869162e-01 -4.74186063e-01 5.22585809e-01 -1.06459022e+00 9.69136417e-01 5.13294756e-01 -2.97794193e-01 -7.66911089e-01 6.17788792e-01 -4.33373868e-01 5.63783757e-02 -1.40482172e-01 4.43983495e-01 -2.70196587e-01 -2.31954113e-01 7.50697255e-01 3.67200643e-01 1.08554877e-01 -8.43807578e-01 2.25768298e-01 3.52850854e-01 3.51059526e-01 -7.93522954e-01 1.46683604e-01 -1.02002591e-01 1.94312558e-01 -5.82571507e-01 -5.45508385e-01 -4.12868053e-01 -6.04811192e-01 3.73384625e-01 8.31054389e-01 -4.58210021e-01 -1.23563218e+00 -2.45889395e-01 -1.13089418e+00 -1.10883750e-01 5.98585568e-02 5.49402237e-01 -9.34302092e-01 5.15681148e-01 -4.30722713e-01 -5.42451739e-01 -4.79641229e-01 -1.34137547e+00 1.22332525e+00 -1.46277538e-02 -6.18521571e-01 -7.48544335e-01 8.23294044e-01 7.31334463e-02 3.06088865e-01 5.07579088e-01 1.59033442e+00 -5.22011042e-01 -5.71923912e-01 3.80563736e-02 3.95328999e-01 -2.61245891e-02 -8.47306103e-02 1.45975143e-01 -7.33983696e-01 -3.01706970e-01 -2.61230469e-01 -6.77829027e-01 1.18853581e+00 5.07825792e-01 8.31371963e-01 -2.29788229e-01 -4.96441185e-01 5.97190559e-01 1.51085281e+00 3.45680714e-01 8.22697997e-01 3.94450098e-01 3.34425718e-01 4.67504531e-01 3.73492062e-01 1.97202578e-01 2.87638642e-02 8.36238921e-01 4.87275958e-01 -5.92439212e-02 4.54316586e-01 -4.91282970e-01 6.47055030e-01 3.81051809e-01 -6.66024327e-01 -1.64581940e-01 -8.44515204e-01 -1.04755037e-01 -1.89200032e+00 -1.15010905e+00 4.31845225e-02 2.21108198e+00 1.33893847e+00 7.38843391e-03 3.25865149e-01 -3.94443125e-01 1.62635192e-01 -2.61184573e-02 -1.00180805e+00 -8.39578271e-01 5.20652831e-02 6.84225798e-01 4.96876061e-01 5.93795240e-01 -6.86208844e-01 8.74239802e-01 8.40072727e+00 2.94495463e-01 -1.00293601e+00 -3.38426977e-01 3.33313644e-01 -6.99940175e-02 -1.53753251e-01 3.08206975e-01 -8.09633791e-01 4.55912948e-01 1.67397904e+00 1.63761228e-01 6.07806742e-01 9.76329207e-01 3.97032946e-01 8.47605690e-02 -1.50740588e+00 5.07643044e-01 -3.25421095e-01 -1.77093577e+00 2.69177645e-01 5.08213103e-01 3.71766359e-01 1.00487016e-01 -2.52989177e-02 4.66645434e-02 4.24054861e-01 -1.47098112e+00 3.72467220e-01 7.27782369e-01 6.72701597e-01 -8.51667523e-01 5.66093504e-01 1.24388814e-01 -8.60182703e-01 2.40541846e-01 -7.16598451e-01 2.25241035e-02 -9.82718822e-03 1.90099254e-01 -8.61734569e-01 1.24949403e-01 3.65986586e-01 4.29434657e-01 -2.51487911e-01 4.44921374e-01 7.55616724e-02 5.60740829e-01 -4.77760695e-02 -1.57618523e-01 2.01241523e-01 -4.33426470e-01 1.52226314e-01 1.31785190e+00 -8.88619423e-02 3.47288817e-01 2.73230940e-01 9.45525169e-01 -9.94401276e-02 2.55643457e-01 -4.66043532e-01 -2.17645794e-01 2.75664479e-01 9.99802828e-01 -3.06928381e-02 -3.21032777e-02 -2.96436042e-01 7.27438509e-01 7.05133796e-01 2.49390304e-01 -7.70738482e-01 -2.37770870e-01 1.08342111e+00 1.63449749e-01 3.60129267e-01 -1.65241107e-01 4.69961584e-01 -9.33790028e-01 -2.14803800e-01 -1.05428350e+00 -4.62527014e-02 -6.84410512e-01 -1.24128616e+00 4.19918090e-01 -2.93060035e-01 -6.21769547e-01 -4.08244163e-01 -1.23036909e+00 -5.14984965e-01 1.09161615e+00 -1.46795070e+00 -8.53065550e-01 3.70039016e-01 -1.91317312e-02 -1.49367424e-02 -1.81143671e-01 1.37879717e+00 -2.22093612e-01 -3.58271033e-01 4.37799573e-01 6.79431200e-01 -5.39302051e-01 7.43022919e-01 -1.56480622e+00 6.67365909e-01 2.52915248e-02 -1.38949499e-01 1.34134626e+00 1.04666722e+00 -6.98368907e-01 -1.73804164e+00 -8.33334923e-01 1.01190519e+00 -8.02065074e-01 1.64708570e-01 -1.34675711e-01 -1.18567801e+00 4.83438700e-01 -1.30402660e-02 -2.32024118e-01 1.23998642e+00 2.13256344e-01 -5.52211344e-01 6.68142319e-01 -1.05490136e+00 1.24836482e-01 1.03152394e+00 -5.32815278e-01 -8.34278524e-01 2.87149757e-01 4.79673505e-01 -1.38248101e-01 -1.13740754e+00 2.98769891e-01 1.06695294e+00 -1.05666244e+00 1.14603055e+00 -1.60855234e+00 3.00503880e-01 -2.07278386e-01 -3.01165789e-01 -1.12118077e+00 -7.78006554e-01 -8.99975896e-01 -5.26843548e-01 2.13321283e-01 8.67462695e-01 -3.83785456e-01 9.15102541e-01 5.04554689e-01 -8.30437690e-02 -1.23801374e+00 -6.78753138e-01 -5.35834491e-01 4.06447530e-01 4.01494741e-01 6.68897092e-01 3.96746576e-01 4.53096837e-01 7.55663514e-01 -3.27110291e-01 -3.55661750e-01 1.88638732e-01 4.29135084e-01 5.42551219e-01 -1.34112525e+00 -6.67917073e-01 -2.50823915e-01 -2.77795136e-01 -1.09052551e+00 1.69200405e-01 -1.00638759e+00 -4.35756370e-02 -1.02597511e+00 6.26046777e-01 3.35473090e-01 -5.62339723e-01 4.13323045e-01 -1.80226356e-01 -8.86368155e-02 -2.65823603e-01 2.80296028e-01 -5.21434307e-01 6.17471159e-01 7.46110976e-01 3.79870720e-02 -3.46888751e-01 -3.51733685e-01 -6.24332726e-01 5.41862369e-01 7.34160185e-01 -6.20338380e-01 -7.33430535e-02 3.38232309e-01 5.27521729e-01 -8.57080221e-02 6.57972097e-02 -4.57849890e-01 -3.01338136e-01 -4.74074602e-01 5.56671500e-01 -7.33880281e-01 4.01765287e-01 -5.05022049e-01 3.43094528e-01 5.54913819e-01 -5.90284765e-01 4.67634976e-01 -2.54979908e-01 6.93625629e-01 7.80643299e-02 -1.30738039e-02 9.58379745e-01 -2.29956597e-01 -2.09357426e-01 2.00773105e-01 -4.57425952e-01 -3.17486495e-01 7.44579315e-01 -3.81618261e-01 -1.17750019e-01 1.02670833e-01 -8.47200155e-01 -3.40199441e-01 1.03386557e+00 1.17872842e-02 7.58596122e-01 -1.00006926e+00 -4.18932199e-01 2.21502081e-01 1.97059721e-01 -7.22785056e-01 -4.01928425e-01 4.19035822e-01 -7.54576206e-01 7.99679339e-01 -3.03002477e-01 -2.60179192e-01 -1.43743443e+00 8.30147564e-01 6.11112058e-01 -5.62633872e-01 -4.40265507e-01 3.95833164e-01 -3.08444202e-02 -2.93895602e-01 -2.02633440e-01 -4.14680660e-01 1.51779025e-03 -3.50371271e-01 5.29355824e-01 1.07596904e-01 1.82700261e-01 -6.49575233e-01 -5.68659306e-01 5.31681538e-01 -3.69077086e-01 3.20482790e-01 1.71245885e+00 4.27473813e-01 -9.48328376e-02 1.72131360e-01 1.23776281e+00 -3.14909726e-01 -1.31292045e+00 -6.62771910e-02 4.57650214e-01 4.16606665e-02 -1.16567597e-01 -1.21373844e+00 -9.72080007e-02 7.22374916e-01 8.84514928e-01 -4.47360694e-01 5.84277034e-01 -3.92594095e-03 9.97538626e-01 1.12369895e+00 4.96587276e-01 -1.07737970e+00 -3.74389403e-02 4.63797450e-01 6.45780861e-01 -1.26856053e+00 3.47236395e-01 1.24572389e-01 -4.13279057e-01 1.38957727e+00 1.15311556e-01 -1.07981138e-01 5.18467426e-01 1.04504287e-01 -1.62607506e-01 -4.66573060e-01 -1.20947111e+00 5.53261116e-02 4.09772307e-01 5.17819345e-01 1.10473418e+00 7.15485290e-02 -4.18508381e-01 5.26867449e-01 6.14134185e-02 3.18695186e-03 1.21384198e-02 1.31942248e+00 -1.07715869e+00 -1.70826399e+00 -2.11279318e-01 2.35209152e-01 -7.40381420e-01 -2.52230406e-01 -1.16942108e+00 2.75213331e-01 2.99940836e-02 6.75408244e-01 -5.83906651e-01 -2.99193531e-01 3.12312335e-01 7.46874690e-01 8.23019564e-01 -6.66566074e-01 -9.07719731e-01 -2.69932508e-01 -5.66232465e-02 -8.80512834e-01 -4.34467614e-01 -3.87457490e-01 -1.58270335e+00 -2.72010982e-01 -5.72176814e-01 4.82853144e-01 7.04910934e-01 6.55259192e-01 8.83768916e-01 1.28899723e-01 5.30415416e-01 -1.10036802e+00 -9.38955665e-01 -8.65008235e-01 -3.46513093e-01 4.43784088e-01 3.99391592e-01 -7.52927363e-01 9.48486924e-02 1.68698579e-01]
[4.753408432006836, 5.594182014465332]
4a441619-ee12-46f2-98d6-ce66418124d7
unsupervised-question-answering-via-answer
2208.10813
null
https://arxiv.org/abs/2208.10813v1
https://arxiv.org/pdf/2208.10813v1.pdf
Unsupervised Question Answering via Answer Diversifying
Unsupervised question answering is an attractive task due to its independence on labeled data. Previous works usually make use of heuristic rules as well as pre-trained models to construct data and train QA models. However, most of these works regard named entity (NE) as the only answer type, which ignores the high diversity of answers in the real world. To tackle this problem, we propose a novel unsupervised method by diversifying answers, named DiverseQA. Specifically, the proposed method is composed of three modules: data construction, data augmentation and denoising filter. Firstly, the data construction module extends the extracted named entity into a longer sentence constituent as the new answer span to construct a QA dataset with diverse answers. Secondly, the data augmentation module adopts an answer-type dependent data augmentation process via adversarial training in the embedding level. Thirdly, the denoising filter module is designed to alleviate the noise in the constructed data. Extensive experiments show that the proposed method outperforms previous unsupervised models on five benchmark datasets, including SQuADv1.1, NewsQA, TriviaQA, BioASQ, and DuoRC. Besides, the proposed method shows strong performance in the few-shot learning setting.
['Xian-Ling Mao', 'Zewen Chi', 'Heyan Huang', 'Yuxiang Nie']
2022-08-23
null
https://aclanthology.org/2022.coling-1.149
https://aclanthology.org/2022.coling-1.149.pdf
coling-2022-10
['triviaqa']
['miscellaneous']
[ 4.61444929e-02 -2.38173688e-03 1.78687990e-01 -5.56186795e-01 -9.08758938e-01 -3.29357356e-01 3.68903577e-01 7.96849951e-02 -6.39494181e-01 7.92016387e-01 5.95770717e-01 -9.42788199e-02 8.88636708e-02 -1.22488868e+00 -2.83022970e-01 -6.43293083e-01 7.51653075e-01 4.61659133e-01 5.23689806e-01 -6.09797776e-01 2.72847325e-01 -1.56263560e-01 -1.35262585e+00 1.05453268e-01 1.40889478e+00 8.93614948e-01 3.61600704e-02 3.96943241e-01 -8.62511873e-01 1.12502742e+00 -7.40664542e-01 -9.66813624e-01 1.49079576e-01 -8.23107243e-01 -8.62939358e-01 2.43559927e-01 2.56083850e-02 -2.23391488e-01 -3.65803212e-01 9.00794685e-01 9.40183401e-01 5.15330195e-01 3.35738271e-01 -8.59164953e-01 -8.77256751e-01 3.96190137e-01 -2.30767697e-01 2.16799811e-01 3.14990133e-01 3.15429926e-01 1.14451301e+00 -1.03922749e+00 7.66522765e-01 1.06304324e+00 5.13225019e-01 7.24688649e-01 -1.02996731e+00 -3.69186431e-01 -1.90086395e-01 5.40988863e-01 -1.03640521e+00 -4.55710381e-01 1.07321835e+00 -2.30456278e-01 4.99136686e-01 4.71176691e-02 1.05194382e-01 8.56460094e-01 -2.02186599e-01 8.68824840e-01 1.05585945e+00 -3.69157225e-01 6.65270567e-01 -8.59978143e-03 5.54048181e-01 5.22909999e-01 -2.02406943e-01 -4.88095820e-01 -2.62464166e-01 -2.53952265e-01 1.33010328e-01 9.13480297e-02 -3.29886943e-01 -2.79167026e-01 -8.98666322e-01 1.25200236e+00 4.00014251e-01 2.18289271e-01 -5.25636852e-01 -3.42894077e-01 7.38557041e-01 4.54601824e-01 4.39866960e-01 4.10789043e-01 -4.87906098e-01 -1.37566328e-01 -5.62706172e-01 1.91955298e-01 8.79292548e-01 8.29090238e-01 9.22209382e-01 1.27680868e-01 -4.49402213e-01 1.17431474e+00 1.54444724e-01 2.16345713e-01 7.98695803e-01 -8.24165821e-01 8.38239014e-01 9.07605827e-01 1.31691948e-01 -9.27439511e-01 -2.09386528e-01 -4.99400467e-01 -8.36272955e-01 -4.79898125e-01 1.82375684e-01 -5.18292308e-01 -9.60720539e-01 1.61400628e+00 6.85934484e-01 9.55140293e-02 4.57396626e-01 8.25618863e-01 1.42201269e+00 8.89662981e-01 2.05832660e-01 -2.73274869e-01 1.30226040e+00 -1.28146410e+00 -1.23202479e+00 -1.93984583e-01 7.05958784e-01 -6.61571383e-01 1.25837505e+00 1.51957721e-01 -8.95525753e-01 -7.07445562e-01 -8.90600204e-01 -3.08496714e-01 -3.77308846e-01 -6.11920096e-03 4.79072928e-01 6.36160135e-01 -4.19973612e-01 -2.12770496e-02 -2.04430968e-01 -2.79124975e-01 4.10129428e-01 5.04692048e-02 -1.69432104e-01 -3.81489009e-01 -1.67023528e+00 7.98321545e-01 6.33542180e-01 -1.42887393e-02 -5.75280309e-01 -4.74705964e-01 -1.15360129e+00 2.00066462e-01 6.75415933e-01 -8.31910312e-01 1.22598791e+00 -6.19778872e-01 -1.54361820e+00 4.67675179e-01 -2.56303042e-01 -4.86209303e-01 6.22095615e-02 -9.23908725e-02 -5.81365228e-01 1.33069739e-01 1.00542948e-01 3.55529547e-01 7.39631593e-01 -1.08680594e+00 -5.19451439e-01 -4.61598396e-01 2.75303394e-01 1.30603760e-01 -5.98672152e-01 -8.94958451e-02 -3.97914201e-01 -5.88269234e-01 -1.01993037e-02 -2.94504404e-01 -4.27735835e-01 -5.44234395e-01 -2.39929557e-01 -5.39513230e-01 5.16946077e-01 -9.03298795e-01 1.51320624e+00 -2.02583361e+00 1.39198750e-01 -1.72171876e-01 1.16714075e-01 5.05609691e-01 -2.53219873e-01 5.96781015e-01 1.81680024e-01 -2.12619692e-01 -6.86297953e-01 -2.80393004e-01 9.45174918e-02 3.90755624e-01 -4.71489936e-01 -3.90869826e-02 4.79875624e-01 9.87195909e-01 -9.72086132e-01 -7.25466073e-01 -8.17752071e-03 8.15335363e-02 -5.63356221e-01 4.37833250e-01 -4.07886475e-01 4.06661600e-01 -6.71423554e-01 4.89566326e-01 7.90474057e-01 -7.20011890e-02 -1.57047674e-01 -1.03750668e-01 1.19420789e-01 3.35757375e-01 -1.14013362e+00 1.83897376e+00 -5.17714441e-01 -1.18863568e-01 -1.05064638e-01 -1.04031181e+00 1.34407067e+00 4.19930488e-01 1.97259858e-01 -8.07273746e-01 1.92735016e-01 3.35073084e-01 6.27474412e-02 -9.86707747e-01 5.20973325e-01 -4.05456215e-01 -2.14463472e-01 2.55425304e-01 4.71513540e-01 -2.72120595e-01 5.46734929e-01 2.34092459e-01 1.30503881e+00 -8.60220566e-02 8.84932056e-02 1.46082968e-01 1.06419253e+00 1.32392198e-01 1.02061236e+00 2.75311291e-01 -4.35139179e-01 6.19885564e-01 3.82059693e-01 -2.48351052e-01 -8.81748378e-01 -1.00868618e+00 5.10161929e-03 9.89936888e-01 1.53421938e-01 -3.41739565e-01 -7.09979355e-01 -1.14302766e+00 -2.66155720e-01 9.34540093e-01 -5.03256083e-01 -3.31665158e-01 -5.38012505e-01 -6.38260663e-01 3.46774727e-01 3.93416643e-01 9.64459360e-01 -1.31172848e+00 -2.08769590e-01 3.77773792e-01 -6.24823391e-01 -8.49789977e-01 -5.44874609e-01 -4.58793044e-02 -8.19645107e-01 -9.86947596e-01 -7.68608928e-01 -9.39090312e-01 5.14619648e-01 1.38144195e-01 1.10516822e+00 -9.09263119e-02 1.23436108e-01 2.81605840e-01 -7.41374075e-01 -2.43025154e-01 -7.55039901e-02 1.70016080e-01 -2.58767396e-01 4.25438970e-01 8.42366397e-01 -4.23119843e-01 -6.32149994e-01 1.39068991e-01 -1.13503218e+00 -4.02846783e-01 5.43734789e-01 1.19304490e+00 5.09707451e-01 8.47491026e-02 1.28049231e+00 -1.22172093e+00 1.00506699e+00 -7.98349738e-01 -1.00311646e-02 3.76785725e-01 -3.24484646e-01 1.26275569e-01 9.98766184e-01 -2.50854462e-01 -1.82685268e+00 -1.16526252e-02 -7.46870458e-01 7.39291385e-02 -2.46154815e-01 6.54809773e-01 -5.81652820e-01 3.99928480e-01 7.90245414e-01 4.39590394e-01 -1.67849466e-01 -6.35631800e-01 5.56425333e-01 8.86733115e-01 4.87773150e-01 -4.10562932e-01 9.36010838e-01 3.85847062e-01 -5.25862992e-01 -7.05446780e-01 -1.13830459e+00 -7.55856037e-01 -5.41024506e-01 -6.20901061e-04 1.05497110e+00 -6.26292288e-01 -2.13991672e-01 2.88685411e-01 -1.27320147e+00 1.73781887e-01 -5.98338842e-01 4.60471362e-01 -3.99251878e-01 4.20599639e-01 -5.81606150e-01 -7.80488789e-01 -7.10382998e-01 -8.01475406e-01 5.84834993e-01 5.94012141e-01 2.69692019e-02 -9.49538648e-01 4.85616744e-01 9.33518171e-01 3.84987295e-01 1.45415977e-01 1.00097823e+00 -1.17860210e+00 -2.25026384e-01 -2.46745571e-01 1.05496515e-02 5.50756395e-01 1.70323297e-01 -4.56378698e-01 -7.84970582e-01 1.10015787e-01 6.31158948e-01 -7.95066714e-01 9.45842385e-01 -3.24074477e-01 8.89147282e-01 -1.89275429e-01 3.96565944e-01 4.34875637e-02 1.27354360e+00 2.59546846e-01 8.58609915e-01 2.29056567e-01 4.71772373e-01 8.24575603e-01 7.89169133e-01 2.89506942e-01 5.42146385e-01 2.22934380e-01 2.94952780e-01 2.69010633e-01 -5.18964492e-02 -2.40224168e-01 1.89954638e-01 1.53902829e+00 3.04008245e-01 -7.14013055e-02 -8.03900301e-01 8.07844937e-01 -1.82377660e+00 -9.87325788e-01 -3.22399735e-01 2.04888797e+00 1.08039308e+00 1.38807625e-01 -8.56538415e-02 2.48033196e-01 7.01799214e-01 2.60908544e-01 -5.68887472e-01 -4.00808960e-01 -1.47629127e-01 6.54771447e-01 -2.02838376e-01 1.52444348e-01 -9.48294044e-01 7.68067062e-01 4.51716518e+00 9.57685232e-01 -4.32132393e-01 3.97594512e-01 3.71735334e-01 3.12732220e-01 -5.28635383e-01 4.58035767e-02 -7.07533181e-01 6.41190648e-01 8.32751691e-01 -6.57673925e-02 -1.09010093e-01 7.17316687e-01 -3.82662341e-02 2.65311636e-02 -5.19243240e-01 7.04864502e-01 4.14667964e-01 -1.11059952e+00 3.53348441e-02 -4.83591974e-01 7.75337934e-01 -4.03080493e-01 -2.62803555e-01 9.64874148e-01 2.70831734e-01 -5.56915939e-01 1.10777724e-03 7.99306810e-01 1.44036010e-01 -1.04055655e+00 1.15878415e+00 5.75418830e-01 -9.32904541e-01 -2.21514165e-01 -5.91374516e-01 3.24731991e-02 4.08928365e-01 6.62357092e-01 -3.76753390e-01 7.80672729e-01 4.44025218e-01 3.89542907e-01 -7.97725379e-01 1.24515760e+00 -5.80700040e-01 9.13989246e-01 -4.55735112e-03 -7.28543922e-02 2.95400411e-01 -2.80350268e-01 2.17978433e-01 8.48206878e-01 2.51065847e-02 4.59361553e-01 8.15990567e-02 6.10540271e-01 -4.00641292e-01 4.85558480e-01 -2.54078627e-01 1.38606355e-02 4.45039421e-01 1.25846839e+00 -2.39857301e-01 -3.87529701e-01 -7.11187303e-01 9.39522386e-01 3.96216094e-01 2.81749249e-01 -5.77628732e-01 -1.04380429e+00 1.56260476e-01 -3.67790222e-01 4.05794144e-01 -1.73868518e-02 -2.44938537e-01 -1.41169381e+00 2.30959713e-01 -1.11124623e+00 6.99671149e-01 -5.71754575e-01 -1.59047055e+00 4.70784009e-01 -5.25885999e-01 -1.13856065e+00 -1.36487782e-01 -1.02611877e-01 -1.00810969e+00 8.78593624e-01 -1.58652234e+00 -8.21903467e-01 -3.41229796e-01 5.60607016e-01 1.01089799e+00 -1.96034908e-01 7.93775737e-01 6.59120739e-01 -7.88460672e-01 4.45213735e-01 1.53365806e-01 3.47728550e-01 8.99562895e-01 -1.22372890e+00 2.76708931e-01 8.76666903e-01 3.71620394e-02 7.30040371e-01 5.09728730e-01 -6.21828079e-01 -1.28871763e+00 -9.73676085e-01 1.06842864e+00 -3.67141068e-01 7.37663150e-01 -2.42204785e-01 -1.35676539e+00 3.12530518e-01 4.77195323e-01 -1.16208471e-01 9.94928300e-01 -4.64224406e-02 -2.74232686e-01 -2.11237058e-01 -1.21821201e+00 5.00388980e-01 5.33916593e-01 -4.66302484e-01 -1.33577681e+00 2.31107086e-01 1.04421532e+00 -1.42002538e-01 -8.92106950e-01 4.87041742e-01 -4.41284478e-02 -7.77958930e-01 6.97480381e-01 -8.74977350e-01 6.88422501e-01 -3.56818855e-01 -8.00527409e-02 -1.29811549e+00 -3.86352949e-02 -2.71669835e-01 -4.43642050e-01 1.77460074e+00 2.63902932e-01 -4.43496376e-01 7.73853660e-01 5.15850842e-01 -1.28103092e-01 -9.07013893e-01 -8.67280722e-01 -5.11981845e-01 3.65618430e-02 -1.49213642e-01 6.49379313e-01 9.55580950e-01 -2.39795849e-01 9.57374752e-01 -2.85646915e-01 -1.82103097e-01 4.45094883e-01 2.12396577e-01 9.10932064e-01 -1.09944999e+00 -1.67855784e-01 9.08638984e-02 -1.70756131e-01 -1.16582608e+00 2.04032846e-02 -7.04785526e-01 2.23620623e-01 -1.92169785e+00 1.49704814e-02 -1.99651241e-01 -2.30065614e-01 7.10511506e-02 -7.25949585e-01 -9.58786234e-02 7.12566748e-02 7.57434918e-03 -8.59251022e-01 1.12626290e+00 1.31884730e+00 -1.95790231e-01 -1.94014087e-01 6.47144914e-02 -6.68205202e-01 7.47234225e-01 9.44075465e-01 -3.40130061e-01 -5.87682128e-01 -4.88586992e-01 1.64176658e-01 1.28240893e-02 1.35728586e-02 -9.49972391e-01 3.65858495e-01 -3.99008170e-02 9.22450796e-02 -6.48734391e-01 2.86036819e-01 -7.81791210e-01 -5.34088016e-01 3.69259775e-01 -3.30254704e-01 -1.42037436e-01 -1.76141217e-01 7.29236126e-01 -5.24234235e-01 -8.38918805e-01 6.12875044e-01 -1.75989434e-01 -9.34564888e-01 3.19327235e-01 -7.99367353e-02 7.25710392e-01 8.51135254e-01 1.32949427e-01 -4.94517952e-01 -3.60599250e-01 -5.71062326e-01 7.48939812e-01 -1.27020895e-01 5.04104555e-01 7.88807034e-01 -1.50586462e+00 -9.10897255e-01 -6.60869479e-02 3.71291846e-01 2.17559487e-01 7.25613475e-01 6.83395386e-01 -3.18425894e-01 1.52824879e-01 7.20390081e-02 -1.10231228e-01 -8.26707423e-01 7.96176434e-01 -8.45304802e-02 -4.40302789e-01 -2.91653603e-01 7.92498887e-01 -1.77236110e-01 -9.64746892e-01 1.18489034e-01 2.42173359e-01 -6.27365768e-01 4.75585699e-01 4.96870786e-01 4.05674696e-01 6.13189377e-02 -5.68002164e-01 3.57743278e-02 2.15982690e-01 -1.57275587e-01 2.85932049e-02 1.29094553e+00 -2.54890651e-01 -2.18098611e-01 4.53725874e-01 1.14806104e+00 1.73726201e-01 -7.96533406e-01 -6.62650049e-01 2.77724326e-01 -2.86254853e-01 -4.34014469e-01 -5.39502323e-01 -8.58068287e-01 1.19094324e+00 2.51195014e-01 2.21000239e-01 1.19884741e+00 -1.51928738e-01 1.50302815e+00 6.58640921e-01 1.09267615e-01 -1.36926937e+00 3.03560495e-01 8.26804638e-01 7.06393778e-01 -1.31616521e+00 -2.84832269e-01 -2.25378558e-01 -7.97008395e-01 8.69185925e-01 9.64436591e-01 -7.09021986e-02 4.68225509e-01 -4.04987216e-01 2.39611864e-01 -1.54278859e-01 -6.52497888e-01 -6.03666961e-01 1.20782264e-01 3.73796254e-01 1.64074093e-01 -4.35841113e-01 -9.69423234e-01 1.14173293e+00 -9.89588797e-02 -4.71450500e-02 4.54277009e-01 1.02606511e+00 -7.59731412e-01 -1.15217197e+00 -2.28306994e-01 5.95766485e-01 -4.35757905e-01 -1.28929272e-01 -3.22704852e-01 4.33672845e-01 3.86761218e-01 1.43274641e+00 -2.18353510e-01 -4.76879388e-01 6.24683857e-01 5.60685813e-01 -1.51332676e-01 -9.77443397e-01 -7.63634026e-01 -4.66672868e-01 1.98633641e-01 -1.11472011e-01 -4.44222122e-01 -2.49389067e-01 -1.32220781e+00 1.45088106e-01 -5.28625131e-01 7.22934663e-01 3.31679910e-01 1.19324577e+00 3.63206387e-01 6.27542078e-01 7.96526253e-01 1.46211475e-01 -9.27724898e-01 -1.14742434e+00 -2.54680395e-01 8.08568895e-01 5.56013063e-02 -4.01451916e-01 -4.33127642e-01 5.00627831e-02]
[11.032135963439941, 8.046451568603516]
6a5b80ad-8380-434c-aed4-1cc5dfb05b5d
shakkil-an-automatic-diacritization-system
null
null
https://aclanthology.org/W17-1311
https://aclanthology.org/W17-1311.pdf
SHAKKIL: An Automatic Diacritization System for Modern Standard Arabic Texts
This paper sheds light on a system that would be able to diacritize Arabic texts automatically (SHAKKIL). In this system, the diacritization problem will be handled through two levels; morphological and syntactic processing levels. The adopted morphological disambiguation algorithm depends on four layers; Uni-morphological form layer, rule-based morphological disambiguation layer, statistical-based disambiguation layer and Out Of Vocabulary (OOV) layer. The adopted syntactic disambiguation algorithms is concerned with detecting the case ending diacritics depending on a rule based approach simulating the shallow parsing technique. This will be achieved using an annotated corpus for extracting the Arabic linguistic rules, building the language models and testing the system output. This system is considered as a good trial of the interaction between rule-based approach and statistical approach, where the rules can help the statistics in detecting the right diacritization and vice versa. At this point, the morphological Word Error Rate (WER) is 4.56{\%} while the morphological Diacritic Error Rate (DER) is 1.88{\%} and the syntactic WER is 9.36{\%}. The best WER is 14.78{\%} compared to the best-published results, of (Abandah, 2015); 11.68{\%}, (Rashwan, et al., 2015); 12.90{\%} and (Metwally, Rashwan, {\&} Atiya, 2016); 13.70{\%}.
['Sameh Alansary', 'Amany Fashwan']
2017-04-01
null
null
null
ws-2017-4
['morphological-disambiguation']
['natural-language-processing']
[-1.17136724e-01 3.40924352e-01 2.63476104e-01 -1.59091994e-01 -3.21300119e-01 -6.04413807e-01 6.17329061e-01 7.65077412e-01 -6.45769536e-01 7.05681980e-01 -1.09399088e-01 -7.72091627e-01 -4.70276177e-01 -1.06741726e+00 -2.69485801e-01 -6.67607844e-01 6.21232670e-03 6.61211014e-01 2.89787591e-01 -6.90157890e-01 4.49718177e-01 6.72765017e-01 -1.69076264e+00 2.52534628e-01 9.90349054e-01 5.35402417e-01 1.77186906e-01 6.69558167e-01 -3.81747812e-01 4.52730477e-01 -9.01701450e-01 -3.46683145e-01 7.55747184e-02 -4.08062488e-01 -1.07681894e+00 -2.21543938e-01 -8.88341442e-02 -1.51245501e-02 4.69917864e-01 1.23245430e+00 2.94540435e-01 1.35831490e-01 1.10383022e+00 -5.60248613e-01 -4.38123941e-01 8.12143862e-01 -3.35201621e-01 1.67976618e-01 5.23320496e-01 -1.60168484e-01 7.73832500e-01 -8.16577554e-01 7.00214803e-01 1.09867501e+00 1.78132534e-01 2.97162712e-01 -7.38715649e-01 -6.05937541e-01 -9.75140855e-02 3.15933049e-01 -1.34291685e+00 4.04205844e-02 3.21669102e-01 -5.86362064e-01 9.67637658e-01 2.90093809e-01 3.43297273e-01 4.30125266e-01 6.40348867e-02 3.36555719e-01 1.60166192e+00 -1.14257717e+00 1.24242328e-01 2.39536121e-01 6.12878382e-01 4.70427990e-01 6.27796292e-01 -1.99206114e-01 -3.05540841e-02 2.47549504e-01 2.51834333e-01 -6.59425676e-01 2.12665945e-01 7.53518462e-01 -5.47790051e-01 8.11089098e-01 -1.18459523e-01 1.08292913e+00 -4.93693024e-01 -5.81058145e-01 4.95997012e-01 2.77328908e-01 -3.08520291e-02 2.70548165e-01 -5.15416861e-01 -1.73373744e-01 -1.07001328e+00 3.02183390e-01 8.76735687e-01 6.33756518e-01 6.32722497e-01 3.12405527e-01 2.71786541e-01 6.98037505e-01 6.43119395e-01 7.79097557e-01 6.05011642e-01 -2.19958827e-01 4.13401872e-01 8.21301162e-01 1.79649249e-01 -9.36966598e-01 -4.37500864e-01 1.06629305e-01 -3.29638034e-01 4.56687868e-01 9.23345625e-01 -4.25785959e-01 -1.02425659e+00 1.30890560e+00 3.54613721e-01 -6.70538187e-01 3.88989240e-01 6.26633465e-01 9.65676844e-01 1.00143993e+00 4.57324922e-01 -3.52267087e-01 1.75947595e+00 -1.69547856e-01 -1.05683768e+00 5.10702841e-03 5.95108032e-01 -1.43569624e+00 1.03326666e+00 7.82916546e-01 -1.23161411e+00 -4.93102640e-01 -1.22401166e+00 2.95246065e-01 -7.85173833e-01 5.15884399e-01 1.77323237e-01 9.46606517e-01 -8.86829376e-01 2.29358330e-01 -6.97529912e-01 -5.83222687e-01 -4.08705652e-01 3.96675140e-01 -1.91431329e-01 2.57221103e-01 -1.26836085e+00 1.27728307e+00 1.06316328e+00 2.50108927e-01 -1.82039291e-01 -1.50335012e-02 -8.08264077e-01 -2.58478463e-01 2.58306146e-01 3.14837605e-01 7.53092170e-01 -1.06061387e+00 -1.50200212e+00 1.16791844e+00 -2.62419321e-02 -2.27439642e-01 2.53111243e-01 -8.14379379e-02 -7.10586548e-01 2.51793504e-01 -1.74960978e-02 8.63211155e-02 1.79526523e-01 -1.27496064e+00 -8.10789287e-01 -6.30726337e-01 -8.86209458e-02 7.16045424e-02 -8.80004019e-02 6.81453109e-01 2.96735521e-02 -7.33257353e-01 1.98355287e-01 -7.48847425e-01 2.45513722e-01 -1.10039818e+00 -2.38955989e-01 -4.69226658e-01 5.95857441e-01 -1.38484180e+00 1.72481549e+00 -1.81069827e+00 -1.84136778e-01 6.20683610e-01 -2.70317465e-01 9.05538201e-01 4.79376554e-01 5.74574590e-01 -7.77165517e-02 2.45637912e-02 -2.15736508e-01 3.54785115e-01 1.23947777e-01 2.09393501e-01 2.13617101e-01 1.27232105e-01 2.29836285e-01 2.62606263e-01 -6.09138846e-01 -5.02139509e-01 3.45766187e-01 2.17145666e-01 -1.12283908e-01 -8.97877067e-02 -4.63958643e-02 3.83479893e-02 -3.89045537e-01 6.61042035e-01 7.50629485e-01 6.19425237e-01 6.70393050e-01 -2.08826512e-01 -7.30058253e-01 2.63844162e-01 -1.70514822e+00 7.10660338e-01 -4.63362098e-01 3.16705018e-01 4.20135632e-02 -1.16709197e+00 1.42093670e+00 4.48388159e-01 1.88341036e-01 -6.44435644e-01 7.44976103e-01 8.06364536e-01 3.37446392e-01 -5.74954987e-01 4.47444886e-01 -1.76902369e-01 -4.21103053e-02 2.44079620e-01 1.02017552e-01 -1.54869556e-01 7.76673377e-01 -1.83754086e-01 4.49576795e-01 3.30651283e-01 7.05975771e-01 -6.76895857e-01 9.53941584e-01 1.80348516e-01 2.29074821e-01 1.78346738e-01 1.27138551e-02 -7.19425008e-02 5.26843071e-01 -1.69916794e-01 -8.32007825e-01 -9.08317983e-01 -4.72062349e-01 9.54617679e-01 -1.11536376e-01 -2.52940565e-01 -1.21560657e+00 -3.61498505e-01 -3.94974709e-01 9.22221363e-01 -3.22353125e-01 2.42270038e-01 -8.09850335e-01 -8.52271914e-01 6.33291543e-01 1.63074248e-02 5.04132092e-01 -1.43688190e+00 -6.50710940e-01 2.53805876e-01 -7.31229335e-02 -8.96521807e-01 5.55030942e-01 3.48203003e-01 -7.42427349e-01 -1.15496397e+00 -1.00980915e-01 -8.21278095e-01 3.77947450e-01 -4.50026304e-01 8.07073057e-01 3.71405721e-01 -1.35484949e-01 -2.20069498e-01 -7.90414691e-01 -8.74121487e-01 -1.00290346e+00 -1.00998528e-01 -1.93410173e-01 -4.06758636e-01 8.57163548e-01 -1.08777314e-01 -1.04207426e-01 7.29237944e-02 -1.11398470e+00 -5.06843686e-01 6.15803242e-01 4.94233727e-01 4.95550334e-01 -4.54241969e-02 5.35281897e-01 -9.30384398e-01 4.89361167e-01 -2.25365326e-01 -7.38195539e-01 1.86584309e-01 -7.63929427e-01 5.42412838e-03 8.35242629e-01 4.35812661e-04 -1.22579968e+00 -3.65707010e-01 -7.49546766e-01 6.51233137e-01 -7.43643999e-01 5.00207245e-01 -5.45569658e-01 2.19406754e-01 7.55088806e-01 -5.40137524e-03 -1.12317860e-01 -4.77225333e-01 -2.93519963e-02 8.76011610e-01 9.56055000e-02 -5.23500323e-01 7.18935549e-01 2.06779111e-02 -6.24146871e-03 -1.03708518e+00 -5.24922311e-01 -2.55159408e-01 -7.99221992e-01 -3.39487940e-01 1.08948886e+00 -3.84572387e-01 -7.65004754e-01 4.11763549e-01 -1.02155173e+00 -2.15341285e-01 -1.63110316e-01 6.26940370e-01 -1.96771890e-01 5.79835296e-01 -5.92644274e-01 -1.04971981e+00 -3.79263550e-01 -1.20179403e+00 4.59915012e-01 3.60758662e-01 -4.38548237e-01 -1.01313305e+00 -1.91590935e-01 3.48403841e-01 1.05357571e-02 4.09070730e-01 1.12237012e+00 -1.07419860e+00 2.39830837e-01 -1.59832284e-01 -1.75987199e-01 5.99429727e-01 3.91997136e-02 4.39527988e-01 -7.65947640e-01 1.82544068e-01 -1.69848412e-01 -1.49003575e-02 1.85512573e-01 1.54801682e-01 3.13847572e-01 -2.43904352e-01 2.91460097e-01 -1.35780066e-01 1.59370315e+00 7.61051178e-01 7.48262584e-01 7.92934835e-01 1.70761526e-01 6.64446950e-01 1.14641011e+00 4.48484302e-01 3.17592025e-01 6.09208763e-01 2.37435341e-01 3.01359594e-01 -2.26108432e-01 2.10816532e-01 6.13334656e-01 8.09201777e-01 -2.93544799e-01 -1.94085985e-01 -1.19957936e+00 5.23194194e-01 -1.36571777e+00 -7.69838512e-01 -7.99839914e-01 2.29255223e+00 1.00970829e+00 3.42029870e-01 3.06629628e-01 8.25668991e-01 8.13379169e-01 -1.50575981e-01 6.37865484e-01 -1.37660754e+00 -1.24293417e-01 9.68866527e-01 3.74471903e-01 8.27429414e-01 -9.69744205e-01 1.23237514e+00 4.10774183e+00 9.39434707e-01 -1.12525523e+00 4.04271483e-02 7.46706575e-02 5.35830259e-01 -9.47257727e-02 -9.83293727e-03 -1.18211162e+00 6.24346018e-01 1.15046370e+00 1.31147787e-01 1.37202349e-02 3.33550185e-01 4.25841093e-01 -7.01569259e-01 -3.57287586e-01 5.56407213e-01 2.05137432e-01 -8.24763656e-01 1.71461925e-01 -3.39818634e-02 5.10211587e-01 -3.15360188e-01 -3.96592796e-01 1.70534000e-01 3.44882041e-01 -9.58821058e-01 8.44869733e-01 5.14473379e-01 4.36491489e-01 -9.31137562e-01 1.32042158e+00 3.18448424e-01 -8.88333499e-01 9.41207483e-02 -2.44515613e-01 -2.04870448e-01 8.48313123e-02 5.02254248e-01 -7.65251219e-01 9.20054674e-01 6.07871890e-01 -1.72887191e-01 -4.60794836e-01 6.38523579e-01 -5.94173789e-01 9.76676106e-01 -6.02539241e-01 -4.81770486e-01 5.57905853e-01 -6.75410986e-01 5.76664209e-01 1.59095562e+00 3.44243497e-01 2.71909356e-01 -1.32789249e-02 3.63591075e-01 5.93321621e-01 9.62488115e-01 -2.09352553e-01 1.87375441e-01 4.81482595e-01 9.74012077e-01 -1.14714909e+00 -3.57677519e-01 -3.53313200e-02 5.99057972e-01 -9.50574502e-02 4.75102998e-02 -5.41914105e-01 -8.76156211e-01 1.75630942e-01 1.45603374e-01 3.26200962e-01 -2.69191146e-01 -4.71601844e-01 -5.12755215e-01 1.11639753e-01 -9.93536055e-01 6.11182809e-01 -2.80645043e-01 -7.04640210e-01 6.86311245e-01 2.69120663e-01 -7.37567425e-01 -3.45097959e-01 -1.29023671e+00 -3.51645947e-01 1.25310171e+00 -1.15140104e+00 -1.14032459e+00 -7.06818420e-03 2.38292187e-01 3.29823464e-01 -2.83049822e-01 1.08246386e+00 3.34901839e-01 -4.86153752e-01 5.69023073e-01 4.76271361e-02 2.83698320e-01 4.94925648e-01 -1.38856399e+00 -4.81487066e-01 1.13976705e+00 -1.89337507e-01 5.20182788e-01 9.26819980e-01 -6.83427453e-01 -8.00476074e-01 -5.20905018e-01 1.52263653e+00 -3.47244024e-01 7.32945859e-01 3.85692641e-02 -8.58240306e-01 3.11134279e-01 3.92525434e-01 -5.60177505e-01 7.00828791e-01 -1.94248796e-01 4.27815616e-02 5.28362580e-02 -1.34877217e+00 6.87321901e-01 1.45155370e-01 -2.93100234e-02 -8.71440172e-01 6.70199990e-02 9.18524980e-04 -3.14428180e-01 -1.21544957e+00 1.50372878e-01 3.91911119e-01 -1.03973913e+00 4.92970973e-01 -5.11347592e-01 2.98487395e-01 -3.81156117e-01 -2.84407157e-02 -9.13265944e-01 1.45494521e-01 -4.73334640e-01 4.14206356e-01 1.48880827e+00 7.30433702e-01 -5.79537928e-01 3.38437080e-01 2.40788534e-01 -1.62577629e-01 -4.35590923e-01 -7.66028762e-01 -4.99219388e-01 3.94869447e-01 -5.23572922e-01 3.33109140e-01 9.06722844e-01 1.84736431e-01 1.40878662e-01 3.58221114e-01 2.61512607e-01 1.50499627e-01 -3.13154846e-01 3.18118006e-01 -1.12056994e+00 -1.13518178e-01 -7.48661518e-01 -6.28294766e-01 -1.05307981e-01 -3.01330201e-02 -6.63986325e-01 -1.93354607e-01 -1.57673514e+00 -6.40850246e-01 -5.46971381e-01 5.36314957e-02 4.88789409e-01 -1.44135013e-01 2.52517819e-01 2.65244663e-01 -2.08928958e-01 1.09794907e-01 -1.41214222e-01 8.82733703e-01 3.23727041e-01 -3.36618870e-01 -7.58876354e-02 -3.94050986e-01 8.96336794e-01 1.01349735e+00 -1.51029676e-01 -2.81025711e-02 -1.45948827e-01 5.82108915e-01 -2.42548600e-01 -1.09163389e-01 -6.70267999e-01 -1.43886358e-01 -3.64743501e-01 4.38416563e-02 -4.77258652e-01 -2.08164603e-01 -8.62336636e-01 -1.29771113e-01 6.73182070e-01 1.64753988e-01 5.05284727e-01 4.45049644e-01 -3.00196946e-01 -2.53239423e-01 -9.93274927e-01 9.43732381e-01 -1.18449554e-01 -7.59997487e-01 -4.45972860e-01 -7.70606160e-01 8.25142115e-02 1.26796377e+00 -6.59991264e-01 3.00448611e-02 8.67377222e-02 -1.01295793e+00 -1.65484488e-01 3.69583219e-02 -1.20046481e-01 1.48686975e-01 -7.41849959e-01 -6.92096531e-01 -1.37474481e-03 -1.31834140e-02 -3.19281250e-01 4.99894768e-02 8.82127881e-01 -1.28639114e+00 2.80225128e-01 -3.82683337e-01 1.34427696e-01 -1.31566334e+00 2.57626712e-01 7.89082274e-02 -4.01072711e-01 -2.86857374e-02 5.75916409e-01 -5.16764581e-01 -2.58833587e-01 -4.75358889e-02 -2.51353532e-01 -9.92379844e-01 6.06292605e-01 3.98657471e-01 7.54656971e-01 5.93146443e-01 -1.07128382e+00 -4.06844318e-01 4.81901497e-01 1.53589219e-01 -3.21347624e-01 9.97427583e-01 -6.56056628e-02 -4.48580861e-01 5.28243840e-01 5.84244251e-01 6.36095524e-01 -2.18983099e-01 1.64795697e-01 4.32038128e-01 -1.82305183e-02 -1.74773663e-01 -1.17804623e+00 -2.33904138e-01 8.12207997e-01 5.65434396e-01 6.35491729e-01 9.95726764e-01 -3.62932682e-01 5.30791819e-01 3.55196863e-01 1.07719958e-01 -1.71674943e+00 -6.57216132e-01 9.57595706e-01 5.56985497e-01 -7.81033635e-01 -1.46392435e-01 -6.25345170e-01 -5.40481091e-01 1.51824093e+00 4.25679564e-01 -1.97271362e-01 8.71625423e-01 4.15140688e-01 2.87841856e-01 -2.34035730e-01 -1.37654729e-02 -7.17928708e-01 2.63869077e-01 5.12214720e-01 9.40033138e-01 4.68187720e-01 -1.60467362e+00 8.35085511e-01 -6.57564044e-01 -2.71729559e-01 5.80085874e-01 7.83468008e-01 -7.27157652e-01 -1.41554344e+00 -8.98423672e-01 2.20300108e-01 -8.39719832e-01 -1.85173199e-01 -4.23681736e-01 1.34283507e+00 6.06768429e-01 1.24054682e+00 -9.39129665e-02 -8.17949623e-02 5.39012969e-01 3.65171492e-01 5.40632665e-01 -6.52861953e-01 -1.09892750e+00 1.38661250e-01 4.78872925e-01 6.61447644e-02 -4.72358555e-01 -8.35825026e-01 -1.80060601e+00 -3.45051378e-01 -2.01157197e-01 6.58231258e-01 8.41055214e-01 1.48682773e+00 -4.13719237e-01 3.22074473e-01 2.07393259e-01 -2.43174732e-01 -3.14828038e-01 -1.11992526e+00 -5.49176097e-01 3.49101692e-01 -3.38249117e-01 -6.58512115e-01 -2.03709289e-01 1.03432804e-01]
[10.39285659790039, 10.234641075134277]
d8f40842-559e-4333-a866-c0ffa2b352d3
constrained-few-shot-class-incremental
2203.16588
null
https://arxiv.org/abs/2203.16588v1
https://arxiv.org/pdf/2203.16588v1.pdf
Constrained Few-shot Class-incremental Learning
Continually learning new classes from fresh data without forgetting previous knowledge of old classes is a very challenging research problem. Moreover, it is imperative that such learning must respect certain memory and computational constraints such as (i) training samples are limited to only a few per class, (ii) the computational cost of learning a novel class remains constant, and (iii) the memory footprint of the model grows at most linearly with the number of classes observed. To meet the above constraints, we propose C-FSCIL, which is architecturally composed of a frozen meta-learned feature extractor, a trainable fixed-size fully connected layer, and a rewritable dynamically growing memory that stores as many vectors as the number of encountered classes. C-FSCIL provides three update modes that offer a trade-off between accuracy and compute-memory cost of learning novel classes. C-FSCIL exploits hyperdimensional embedding that allows to continually express many more classes than the fixed dimensions in the vector space, with minimal interference. The quality of class vector representations is further improved by aligning them quasi-orthogonally to each other by means of novel loss functions. Experiments on the CIFAR100, miniImageNet, and Omniglot datasets show that C-FSCIL outperforms the baselines with remarkable accuracy and compression. It also scales up to the largest problem size ever tried in this few-shot setting by learning 423 novel classes on top of 1200 base classes with less than 1.6% accuracy drop. Our code is available at https://github.com/IBM/constrained-FSCIL.
['Abbas Rahimi', 'Abu Sebastian', 'Luca Benini', 'Giovanni Cherubini', 'Geethan Karunaratne', 'Michael Hersche']
2022-03-30
null
http://openaccess.thecvf.com//content/CVPR2022/html/Hersche_Constrained_Few-Shot_Class-Incremental_Learning_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Hersche_Constrained_Few-Shot_Class-Incremental_Learning_CVPR_2022_paper.pdf
cvpr-2022-1
['few-shot-class-incremental-learning']
['methodology']
[ 1.65991649e-01 7.24022975e-03 -4.08124536e-01 -3.61621737e-01 -5.52125156e-01 -5.37178278e-01 4.10781443e-01 3.08374286e-01 -6.77330315e-01 8.12709510e-01 -2.25925326e-01 -7.10907355e-02 -2.34069094e-01 -9.56312239e-01 -8.01800311e-01 -8.10159683e-01 -2.48158127e-01 4.21275973e-01 4.99753654e-01 7.70319477e-02 1.03873901e-01 6.25468314e-01 -1.82540822e+00 2.79795676e-01 5.73297799e-01 1.18138075e+00 1.28430933e-01 5.63211441e-01 -1.56739876e-01 4.69810307e-01 -3.37523848e-01 -3.28142822e-01 3.70746166e-01 1.62132178e-02 -7.87481606e-01 2.49188952e-02 7.00692415e-01 -1.97959855e-01 -7.07595050e-01 8.69885504e-01 3.64186347e-01 3.72220784e-01 3.04273903e-01 -1.15187919e+00 -6.86129212e-01 5.84917307e-01 -3.93450886e-01 5.02332151e-01 -2.64358550e-01 1.49592802e-01 8.89086127e-01 -1.15614557e+00 7.49303758e-01 8.23459089e-01 5.17616391e-01 7.40779936e-01 -1.24600947e+00 -8.68225098e-01 5.48516273e-01 4.79120076e-01 -1.45272064e+00 -4.34831113e-01 4.22004104e-01 -3.07897747e-01 1.26457798e+00 3.88820946e-01 6.87117994e-01 9.44374859e-01 1.80004090e-01 7.12479413e-01 5.30760407e-01 -3.57327133e-01 5.07628858e-01 3.87070954e-01 6.74748540e-01 8.21098387e-01 4.73927408e-01 -5.80465160e-02 -6.48981273e-01 -1.67373255e-01 2.75836229e-01 3.96408647e-01 -2.42497444e-01 -6.22975647e-01 -9.72439647e-01 8.61319423e-01 5.47093689e-01 5.36908388e-01 4.22160625e-02 2.57243030e-02 4.94180799e-01 4.82714921e-01 4.01785344e-01 4.63960320e-01 -7.85738826e-01 -1.56810097e-02 -7.96236217e-01 7.61928409e-02 4.86424625e-01 8.96836340e-01 8.77548695e-01 1.19827665e-01 1.18656099e-01 8.17924798e-01 -2.87613660e-01 6.01912498e-01 9.54088926e-01 -7.19579995e-01 3.74499470e-01 7.60795653e-01 -3.57022285e-01 -9.99195874e-01 -4.26202267e-01 -8.24564099e-01 -9.24133182e-01 1.38280720e-01 -2.71734409e-02 1.26977235e-01 -1.02657700e+00 1.79599547e+00 4.71048474e-01 2.69088894e-01 -1.08490095e-01 3.67146343e-01 6.05653048e-01 7.51823485e-01 -2.55179018e-01 -3.76602829e-01 9.83141005e-01 -9.35753763e-01 -3.60405028e-01 -3.98790419e-01 5.60253203e-01 -2.88965583e-01 1.20114172e+00 4.79499012e-01 -1.09925461e+00 -5.49628019e-01 -1.33253932e+00 -2.03840286e-02 -6.81542695e-01 -8.63314644e-02 8.33236337e-01 6.96973145e-01 -7.88710535e-01 6.11013830e-01 -1.13296640e+00 2.53807437e-02 7.31684566e-01 4.62987274e-01 -5.48151195e-01 -2.37041876e-01 -7.74750948e-01 6.13132238e-01 7.81853259e-01 -1.12572931e-01 -6.43527627e-01 -9.35788512e-01 -7.24089622e-01 3.30706120e-01 3.34688067e-01 -4.66469884e-01 9.40859675e-01 -9.51618016e-01 -1.22359681e+00 5.59694886e-01 -2.03675821e-01 -4.60706919e-01 2.21996993e-01 -3.04730207e-01 -5.29588938e-01 1.74964085e-01 -2.02834308e-01 5.11353254e-01 8.84185910e-01 -8.10550690e-01 -8.48115683e-01 -4.98085111e-01 -9.03365165e-02 8.15975145e-02 -1.11343884e+00 -6.30342543e-01 -4.90045756e-01 -6.49409831e-01 2.95263946e-01 -1.02536917e+00 -9.11549851e-02 1.98525503e-01 7.60229900e-02 -2.55282313e-01 1.00324726e+00 -5.34864366e-02 1.32307589e+00 -2.28694415e+00 1.98782206e-01 1.60547987e-01 5.59185028e-01 6.41670227e-01 -3.32351536e-01 1.79215595e-02 -1.52770668e-01 -7.27741942e-02 -2.29070961e-01 -1.92924365e-01 -1.71169207e-01 2.86685467e-01 -5.39741814e-01 3.30478877e-01 5.03692441e-02 8.50551784e-01 -9.14481342e-01 -8.38510916e-02 1.06758431e-01 4.60181385e-01 -7.12349474e-01 -9.13230553e-02 -3.23858224e-02 -2.67185748e-01 -8.21259245e-02 4.15444881e-01 7.14161992e-01 -6.13783956e-01 2.18270048e-01 -6.50948361e-02 1.49515450e-01 1.79727376e-01 -1.33285761e+00 1.63626683e+00 -4.55509245e-01 4.83313054e-01 -4.86174792e-01 -1.04463840e+00 7.17863500e-01 -4.27019298e-02 2.95581669e-01 -7.15009451e-01 -7.85289630e-02 1.69936836e-01 -1.91996843e-01 -1.04706585e-01 3.30359280e-01 1.26181552e-02 8.14867690e-02 5.05729973e-01 5.48474431e-01 3.70258301e-01 4.25765753e-01 3.19768369e-01 1.17799127e+00 -4.48112488e-01 2.08681628e-01 -1.25997430e-02 3.44344020e-01 -2.29819924e-01 7.74005830e-01 7.72647679e-01 3.45032066e-02 2.74456233e-01 6.23822697e-02 -9.67377484e-01 -9.16936696e-01 -1.28863418e+00 -3.24197352e-01 1.17277765e+00 -3.76816392e-02 -5.91067374e-01 -4.47191298e-01 -7.64603972e-01 1.20022684e-01 6.31858885e-01 -7.22039521e-01 -6.55872703e-01 -6.65666819e-01 -7.95525789e-01 1.39614478e-01 5.58088064e-01 3.99769962e-01 -7.98763156e-01 -7.83862174e-01 3.41076404e-01 2.70096332e-01 -8.56070518e-01 -4.42127079e-01 4.46860552e-01 -1.15337384e+00 -1.25820065e+00 -4.93004262e-01 -8.96193922e-01 7.91719377e-01 5.06453931e-01 9.29250062e-01 7.98320696e-02 -7.12584972e-01 2.83178031e-01 -3.01118881e-01 -1.39543846e-01 1.10656410e-01 5.22887409e-01 2.62545913e-01 -2.21521072e-02 5.25664508e-01 -7.72929668e-01 -5.18515348e-01 -4.64098230e-02 -1.02497089e+00 1.53947901e-02 5.22466362e-01 9.86074507e-01 7.19899654e-01 2.87613273e-01 6.00746989e-01 -1.10245836e+00 1.34062111e-01 -5.73055267e-01 -6.23473883e-01 2.69087315e-01 -9.81526196e-01 1.20631255e-01 7.33986676e-01 -9.57094789e-01 -6.94877923e-01 1.87847629e-01 1.32768825e-01 -5.34701705e-01 2.17669427e-01 2.35061124e-01 7.34139234e-03 -4.02131863e-03 7.78551817e-01 5.18470466e-01 -2.23608986e-01 -4.51008439e-01 5.54154217e-01 5.23465276e-01 4.92509514e-01 -3.76958489e-01 8.90846014e-01 3.84625942e-01 -2.73305357e-01 -9.08007264e-01 -9.07334387e-01 -3.14107567e-01 -8.01090896e-01 9.24961120e-02 2.28676215e-01 -7.92059958e-01 -5.39953351e-01 3.72090638e-01 -6.53132439e-01 -3.71569723e-01 -6.39589846e-01 3.91473323e-01 -2.36354142e-01 1.33249506e-01 -5.30430317e-01 -4.40787464e-01 -5.65686822e-01 -8.13103795e-01 4.38878536e-01 2.13769436e-01 4.41021137e-02 -7.00399876e-01 6.81151152e-02 6.38966262e-02 6.04549289e-01 5.44774048e-02 1.20984936e+00 -5.55395663e-01 -6.61235571e-01 -3.64964902e-01 -5.52138314e-04 4.35784429e-01 1.69354931e-01 -4.46757555e-01 -9.39853668e-01 -7.81730592e-01 -1.70692399e-01 -4.95410055e-01 1.16612566e+00 -1.34537533e-01 1.58866143e+00 -6.61549449e-01 -4.36903864e-01 7.43111312e-01 1.37551105e+00 2.69772679e-01 4.18908060e-01 2.74042428e-01 4.85339969e-01 5.46537526e-02 1.86687082e-01 5.23882329e-01 2.12282404e-01 5.02108991e-01 2.29413137e-01 2.90148556e-01 -2.34061018e-01 -2.86512729e-02 1.04530863e-01 1.13801527e+00 3.03049535e-01 -1.47698279e-02 -8.44584465e-01 6.30914390e-01 -1.68120396e+00 -9.76626158e-01 4.53667939e-01 2.52378058e+00 1.09255898e+00 4.54074502e-01 -1.38079673e-01 4.45679635e-01 3.49264354e-01 4.71311025e-02 -1.02833319e+00 -1.78447813e-01 -1.21150009e-01 5.87396085e-01 3.69777173e-01 4.83183026e-01 -1.08340609e+00 8.79485607e-01 5.58238363e+00 7.59009123e-01 -1.39592481e+00 2.15103671e-01 6.58916831e-01 -8.87775183e-01 -8.31071064e-02 -1.76376715e-01 -1.09796298e+00 3.69918674e-01 1.07378721e+00 -3.10291141e-01 5.46136558e-01 1.06467915e+00 -6.50016844e-01 1.77618831e-01 -1.07066894e+00 1.25001550e+00 2.11091563e-01 -1.68960869e+00 2.70979702e-01 -1.66552275e-01 6.79882169e-01 2.76664644e-01 3.30356061e-01 5.89920163e-01 2.02080794e-02 -7.27229536e-01 5.21026909e-01 3.91233236e-01 9.38996792e-01 -1.00545192e+00 3.56610864e-01 3.32754314e-01 -1.13374639e+00 -4.29168463e-01 -6.89301193e-01 1.27914995e-01 -3.71544152e-01 7.50883639e-01 -5.42330623e-01 8.94001946e-02 9.84815538e-01 6.78975761e-01 -8.24369490e-01 1.02335501e+00 9.09732729e-02 6.54924452e-01 -4.83458400e-01 1.73258349e-01 1.82919398e-01 2.76547074e-01 2.49396503e-01 1.05428708e+00 2.23178908e-01 3.24475259e-01 7.23118633e-02 4.28439736e-01 -4.32092786e-01 -3.67428199e-03 -4.30519164e-01 -2.38745585e-02 7.44554281e-01 1.08170545e+00 -6.18889809e-01 -4.83568817e-01 -3.57792377e-01 1.06161356e+00 6.81521356e-01 1.76740289e-01 -4.56533313e-01 -7.10570753e-01 6.88650727e-01 1.78736463e-01 5.50204873e-01 -1.88014582e-01 -1.94474533e-01 -1.36944771e+00 2.51882881e-01 -8.05558562e-01 6.60764098e-01 -2.66300976e-01 -1.04136860e+00 1.01270914e+00 -2.27416798e-01 -1.03231490e+00 -8.41371119e-02 -6.69044554e-01 -1.51756555e-01 3.50762933e-01 -1.48975945e+00 -7.23309934e-01 -2.83216804e-01 6.03614390e-01 6.68332100e-01 -5.05922616e-01 1.00838816e+00 4.25359428e-01 -6.43189907e-01 1.04448676e+00 4.49949712e-01 -9.82609838e-02 3.96294028e-01 -8.61978531e-01 4.52471673e-01 7.12886810e-01 4.94457394e-01 6.25362098e-01 2.49492928e-01 -3.75425875e-01 -1.38230944e+00 -1.34413171e+00 9.91991460e-01 -3.11241478e-01 4.50244188e-01 -6.22318447e-01 -1.37296057e+00 7.15259492e-01 -3.13760817e-01 5.92878401e-01 7.60243356e-01 2.55300552e-01 -9.07896280e-01 -4.55401272e-01 -1.02592206e+00 3.71007621e-01 1.13497949e+00 -4.21245694e-01 -5.29340744e-01 5.42898715e-01 8.74658227e-01 -3.43511760e-01 -7.24302292e-01 3.17019790e-01 5.61555624e-01 -6.10243559e-01 1.09794247e+00 -8.49910796e-01 5.74295130e-03 -1.96658000e-02 -2.47151941e-01 -1.01285541e+00 -6.45679116e-01 -2.44834080e-01 -7.23064005e-01 7.99764991e-01 5.49327910e-01 -7.12018073e-01 9.21023011e-01 5.88670909e-01 1.32912040e-01 -1.06639540e+00 -1.03555799e+00 -1.13030195e+00 2.37319052e-01 -2.36019820e-01 5.99303246e-01 1.04516077e+00 -1.92104191e-01 3.47309649e-01 -2.71370858e-01 1.08191088e-01 5.91952622e-01 2.19985098e-01 5.78764737e-01 -1.36126900e+00 -3.99291813e-01 -4.06655014e-01 -5.28210700e-01 -8.42753410e-01 5.59830926e-02 -1.23807132e+00 -4.39056128e-01 -9.63192642e-01 4.42791939e-01 -7.35106647e-01 -7.77840614e-01 9.79749441e-01 -1.71476707e-01 2.47163087e-01 3.09332997e-01 2.44720042e-01 -7.46154666e-01 6.91148639e-01 5.28515339e-01 -2.15050265e-01 -3.23675364e-01 -9.21902135e-02 -5.28566539e-01 6.07467711e-01 9.06598687e-01 -7.51750648e-01 -5.83339453e-01 -5.75822592e-01 2.69424111e-01 -3.54944289e-01 2.56984662e-02 -1.29298699e+00 3.78776073e-01 -1.65692225e-01 6.93699718e-01 -5.32300234e-01 4.15732443e-01 -8.01093161e-01 -4.94560301e-02 6.10475302e-01 -4.48723882e-01 7.75361294e-03 4.03784484e-01 6.80312157e-01 5.35397716e-02 -2.29515210e-01 1.02203095e+00 -3.38472016e-02 -8.29874992e-01 6.34993196e-01 3.62545215e-02 1.78179190e-01 1.15061939e+00 -1.53661728e-01 -3.55516911e-01 2.29757786e-01 -7.22591996e-01 3.23946811e-02 2.08907098e-01 7.71650136e-01 8.28081369e-01 -1.37017357e+00 -4.61553454e-01 5.87702155e-01 3.07189077e-01 -5.73980398e-02 2.95543969e-01 2.04261318e-01 -2.47532576e-01 3.83723587e-01 -1.38224259e-01 -4.38693196e-01 -1.27545667e+00 9.08176363e-01 1.06487073e-01 -2.16703773e-01 -9.81199682e-01 9.85257268e-01 1.89210605e-02 -5.96799552e-01 5.29540777e-01 1.71952918e-02 1.06855161e-01 -4.27586883e-02 1.08109128e+00 4.03149009e-01 3.93903106e-01 -2.44670942e-01 -3.84153068e-01 2.90432453e-01 -6.88134491e-01 3.01209331e-01 1.72172403e+00 1.10921189e-02 5.52232489e-02 6.43784106e-01 1.49689078e+00 -3.08510095e-01 -1.27793348e+00 -8.45547557e-01 9.55876485e-02 -5.29687583e-01 2.15780854e-01 -8.20187032e-01 -1.34699535e+00 8.45957160e-01 1.10820448e+00 -3.08079571e-01 1.23124838e+00 -1.36295229e-01 1.00791967e+00 8.02799344e-01 4.65035081e-01 -1.13433743e+00 3.53011489e-01 5.01778424e-01 7.72664845e-01 -9.82816994e-01 1.08140104e-01 -1.97369736e-02 -2.79000401e-01 1.22514367e+00 6.95326030e-01 -1.17846459e-01 7.79128373e-01 1.73989788e-01 -2.69937843e-01 -1.11082578e-02 -1.09944999e+00 1.24083400e-01 3.91811639e-01 4.03440565e-01 -4.14710306e-03 2.80533042e-02 8.89961943e-02 5.80037415e-01 -1.88031942e-01 -9.34358046e-04 2.95843124e-01 1.06718290e+00 -7.76794612e-01 -1.03138685e+00 7.74749741e-02 7.47740865e-01 -1.53041929e-01 -1.11533336e-01 1.07136220e-01 6.41428173e-01 1.55977309e-01 6.00727677e-01 2.73329943e-01 -4.00484622e-01 2.59303451e-01 2.92533457e-01 3.81099492e-01 -7.83306777e-01 -2.66544938e-01 -3.73710811e-01 -5.62183976e-01 -6.82575643e-01 5.76531738e-02 -4.02739674e-01 -1.20918393e+00 -3.88336092e-01 -3.35338891e-01 1.27461314e-01 4.59193051e-01 6.90021336e-01 6.32704079e-01 4.04354364e-01 7.31721938e-01 -5.25988400e-01 -6.63335323e-01 -6.07370317e-01 -4.84908223e-01 1.95871592e-01 4.48992997e-01 -5.76462686e-01 -4.15042996e-01 6.76481575e-02]
[9.817824363708496, 3.383467674255371]
59b2f1e4-0a8f-4a09-9842-74ba83b04fc9
multi-feature-data-fusion-based-load
2301.13774
null
https://arxiv.org/abs/2301.13774v1
https://arxiv.org/pdf/2301.13774v1.pdf
Multi Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model
We propose a forecasting technique based on multi-feature data fusion to enhance the accuracy of an electric vehicle (EV) charging station load forecasting deep-learning model. The proposed method uses multi-feature inputs based on observations of historical weather (wind speed, temperature, and humidity) data as multiple inputs to a Long Short-Term Memory (LSTM) model to achieve a robust prediction of charging loads. Weather conditions are significant influencers of the behavior of EV drivers and their driving patterns. These behavioral and driving patterns affect the charging patterns of the drivers. Rather than one prediction (step, model, or variables) made by conventional LSTM models, three charging load (energy demand) predictions of EVs were made depending on different multi-feature inputs. Data fusion was used to combine and optimize the different charging load prediction results. The performance of the final implemented model was evaluated by the mean absolute prediction error of the forecast. The implemented model had a prediction error of 3.29%. This prediction error was lower than initial prediction results by the LSTM model. The numerical results indicate an improvement in the performance of the EV load forecast, indicating that the proposed model could be used to optimize and improve EV load forecasts for electric vehicle charging stations to meet the energy requirements of EVs.
['Ameena S. Al Sumaiti', 'Zhibo Zhang', 'Prince Aduama']
2023-01-31
null
null
null
null
['load-forecasting']
['miscellaneous']
[-3.66637588e-01 -2.93518215e-01 5.82871288e-02 -8.44540238e-01 -1.74887076e-01 -2.86341697e-01 7.91635573e-01 1.40475318e-01 -3.26310724e-01 7.50119805e-01 6.62532449e-02 -5.31782985e-01 -2.24532232e-01 -1.04709649e+00 -7.04872787e-01 -8.02812755e-01 -2.00832427e-01 6.01746380e-01 -3.01035583e-01 -4.76398021e-01 1.22308359e-01 7.30564177e-01 -1.98655713e+00 4.30026025e-01 9.91435468e-01 1.18874896e+00 8.53977203e-01 4.84844416e-01 -5.16784489e-01 6.27912223e-01 -6.05055928e-01 3.60129327e-01 -8.42140093e-02 2.25959823e-01 -1.73374623e-01 -7.58804560e-01 -3.19381714e-01 -1.77729666e-01 6.35816306e-02 7.21245229e-01 3.36277455e-01 2.92592436e-01 5.39444923e-01 -1.40687644e+00 -1.47497609e-01 6.12705290e-01 2.59815007e-01 1.35887787e-01 -1.90000489e-01 -1.93817034e-01 2.10592195e-01 -7.08632052e-01 -5.01634851e-02 9.12289321e-01 7.43683875e-01 1.34637251e-01 -8.23162556e-01 -9.48247135e-01 3.26537639e-02 6.52913749e-01 -1.06017220e+00 -2.37374708e-01 8.43997717e-01 -7.83866763e-01 1.42170727e+00 4.41143662e-01 9.15393353e-01 6.59626067e-01 9.63287711e-01 3.33042234e-01 1.04549408e+00 -2.07956329e-01 3.44916403e-01 6.15469813e-01 3.12808156e-01 -1.15447402e-01 -2.70662401e-02 5.58802426e-01 2.03243330e-01 -7.47028291e-02 -4.52197820e-01 3.17154735e-01 3.61505032e-01 5.09797096e-01 -6.36834383e-01 8.68231535e-01 4.13331568e-01 7.57320881e-01 -7.69111276e-01 5.58598116e-02 4.90877956e-01 3.10029864e-01 7.66051471e-01 9.93486941e-02 -8.65496516e-01 -1.31173477e-01 -1.14152300e+00 1.92768306e-01 6.36231124e-01 2.94880390e-01 8.59447777e-01 6.91341519e-01 -7.27078691e-02 5.94907641e-01 3.57246876e-01 1.24414861e+00 7.06319392e-01 -2.50613630e-01 1.37727693e-01 4.66686696e-01 3.69807154e-01 -1.02583063e+00 -8.55723858e-01 -5.16198397e-01 -8.25167716e-01 3.13456744e-01 -3.28757197e-01 -5.97706854e-01 -9.05035079e-01 1.44524372e+00 -1.30090758e-01 7.94209018e-02 2.30741903e-01 4.39031124e-01 6.96303368e-01 1.44521916e+00 5.21605372e-01 -2.15262607e-01 8.41584504e-01 -6.00710690e-01 -1.23487973e+00 -1.39225155e-01 8.57757866e-01 -5.74766994e-01 1.21449403e-01 2.03784958e-01 -7.65279830e-01 -9.79591966e-01 -1.12749946e+00 4.64423507e-01 -1.16515946e+00 2.76840001e-01 3.37321699e-01 2.91411608e-01 -1.02755427e+00 7.58592844e-01 -5.79179049e-01 1.34782167e-02 -2.69417822e-01 5.97628176e-01 1.66594654e-01 6.18664443e-01 -1.80167079e+00 1.67298567e+00 6.00662291e-01 5.99568367e-01 -5.47228217e-01 -9.27154422e-01 -7.12003946e-01 1.45071685e-01 -5.98142982e-01 -1.78844616e-01 1.05570734e+00 -1.03405714e+00 -1.41835392e+00 -7.65820146e-02 -5.12924194e-01 -7.64542818e-01 2.04426020e-01 1.08925000e-01 -1.24809098e+00 -6.83515310e-01 -4.40132916e-01 2.80769289e-01 4.80808526e-01 -1.20994282e+00 -1.05483878e+00 -1.30353376e-01 -6.05470896e-01 -9.90145355e-02 -2.33296037e-01 -1.98229119e-01 6.51014686e-01 -2.30157062e-01 -5.05361795e-01 -9.07778084e-01 -1.42328784e-01 -9.82144415e-01 2.03866169e-01 -5.54632246e-01 1.41910744e+00 -1.08809245e+00 1.10825086e+00 -2.06082153e+00 -3.60656470e-01 5.50300837e-01 -3.01278174e-01 4.38494623e-01 1.45201549e-01 4.51339781e-01 -3.86502534e-01 -1.43921763e-01 3.47116917e-01 -4.15322781e-01 7.90198222e-02 5.44344366e-01 -5.24873018e-01 4.02200848e-01 -1.33465216e-01 9.82442796e-01 -5.04898667e-01 1.78756207e-01 1.01471746e+00 9.64893341e-01 2.77849883e-01 2.64216602e-01 -1.94741711e-01 2.06100136e-01 -3.70877713e-01 1.25773670e-02 9.62674022e-01 5.24620235e-01 -1.82897583e-01 -4.07483786e-01 -6.49293840e-01 2.71850452e-02 -8.41419876e-01 7.63142347e-01 -1.03550720e+00 9.59160268e-01 -2.36565724e-01 -1.09663260e+00 1.42972946e+00 3.65283996e-01 8.04506004e-01 -1.15227854e+00 3.81109655e-01 2.98480660e-01 -8.38457346e-02 -5.43171465e-01 6.86131001e-01 -5.16384207e-02 -2.50646863e-02 1.33019969e-01 -1.26081601e-01 2.49574646e-01 -4.68372442e-02 -4.51930732e-01 7.22590536e-02 -1.14496395e-01 -5.55711746e-01 -6.50538802e-01 6.44382119e-01 -9.17823389e-02 5.68987012e-01 1.75615087e-01 3.21107388e-01 -3.56075525e-01 -1.13151908e-01 -9.74386990e-01 -1.22952843e+00 -4.65154380e-01 -5.40649593e-01 1.09505665e+00 -1.43577248e-01 8.48456174e-02 -3.68173480e-01 1.19741209e-01 1.45749211e-01 1.58907807e+00 -7.86386490e-01 -2.48305500e-01 -5.37028193e-01 -9.69775558e-01 1.46918386e-01 5.73324859e-01 1.03962883e-01 -1.09224701e+00 -5.76731920e-01 5.65487981e-01 -2.37091128e-02 -9.20003653e-01 3.20409834e-01 6.11799181e-01 -6.81979656e-01 -3.53166133e-01 -3.60537857e-01 -5.32545090e-01 4.11028951e-01 -4.02522951e-01 9.28901017e-01 -1.01207107e-01 3.03572804e-01 -4.25211750e-02 -9.72036645e-02 -1.10150027e+00 -7.25424051e-01 1.18251061e-02 2.29325652e-01 4.10887692e-03 5.63286960e-01 -3.54106873e-01 -3.07373941e-01 3.34725350e-01 -5.89499652e-01 2.24268794e-01 3.06345046e-01 3.50931108e-01 4.23345089e-01 3.37027013e-01 1.02418470e+00 -2.15669855e-01 6.28420472e-01 -8.72002661e-01 -9.76492643e-01 2.72606134e-01 -1.10549259e+00 5.13151176e-02 9.04697120e-01 -2.36009762e-01 -1.16845107e+00 3.13151516e-02 -4.59970146e-01 -4.11427468e-01 -2.38444701e-01 4.65276539e-01 7.30434507e-02 -1.32519484e-01 -1.62486613e-01 4.81303960e-01 -1.10920265e-01 -5.60531020e-01 -1.86968073e-01 6.93594992e-01 2.65057713e-01 4.53574024e-02 4.52475488e-01 -1.05432190e-01 7.45462105e-02 -6.97479963e-01 -7.52429515e-02 1.11861983e-02 -3.92338008e-01 -8.02772403e-01 8.67233336e-01 -1.08764243e+00 -8.92076492e-01 6.84269249e-01 -1.15083086e+00 -3.33935142e-01 -1.00897968e-01 5.74653268e-01 -3.54604423e-02 -4.35376316e-01 -1.51093528e-01 -1.19325626e+00 -7.61370182e-01 -1.24826527e+00 6.04943693e-01 3.10106426e-01 -9.58359689e-02 -1.38496768e+00 8.52736924e-03 -1.55794591e-01 1.20091891e+00 3.94241244e-01 9.40509677e-01 -7.17700660e-01 2.88919538e-01 -5.67223489e-01 2.39464402e-01 5.60001075e-01 9.56391625e-04 2.22855017e-01 -1.14266932e+00 -2.49048159e-01 9.85378623e-02 4.31976169e-01 5.80900669e-01 6.36720538e-01 1.23598015e+00 -2.06827581e-01 -5.46431363e-01 4.17229235e-01 1.68566179e+00 8.47671628e-01 4.57597017e-01 3.66025329e-01 4.72079009e-01 4.15706933e-01 4.15725172e-01 5.33851802e-01 6.66021585e-01 4.25186634e-01 5.84008932e-01 -3.15560728e-01 2.99524844e-01 -3.94732738e-03 4.69897479e-01 9.50746953e-01 4.52041365e-02 -2.60461628e-01 -9.60566700e-01 6.30321503e-01 -1.61976957e+00 -1.06431341e+00 -4.49250579e-01 1.94568741e+00 4.89349803e-03 1.79227427e-01 -1.39952943e-01 3.07557404e-01 5.77813506e-01 6.19260669e-02 -4.92798805e-01 -1.48832059e+00 -1.41637668e-01 7.12883696e-02 9.50373113e-01 6.20595932e-01 -8.13033819e-01 3.30442578e-01 6.40942955e+00 6.70255065e-01 -1.62294137e+00 4.67244387e-02 5.74239254e-01 -3.99196111e-02 -6.81825101e-01 -4.28876162e-01 -1.03625679e+00 1.02959085e+00 1.86900508e+00 -4.28362042e-01 4.71890002e-01 7.41827786e-01 8.60692799e-01 -1.41245872e-01 -7.15425491e-01 6.71693146e-01 -2.20741928e-01 -1.30181861e+00 -1.72825664e-01 1.40919343e-01 8.12866449e-01 6.85090482e-01 3.31042334e-02 5.76324105e-01 1.13672018e-01 -9.91701484e-01 5.81199944e-01 1.30158865e+00 2.42423058e-01 -1.21219611e+00 1.30530858e+00 5.37371159e-01 -1.24098969e+00 -6.11335456e-01 -2.04990387e-01 -3.05959374e-01 4.85079676e-01 8.42408657e-01 -6.45014286e-01 5.77450395e-01 9.22657251e-01 5.65204263e-01 -2.62854099e-01 5.34905851e-01 6.33847356e-01 6.08484089e-01 -6.07237339e-01 -3.35288227e-01 3.57251853e-01 -2.65345067e-01 2.24202469e-01 1.22314358e+00 6.95781648e-01 -1.36441901e-01 3.29675293e-03 6.11246288e-01 3.93576145e-01 3.25993188e-02 -4.83324647e-01 1.90385431e-01 1.77057758e-01 1.29306996e+00 5.69387563e-02 -7.57122874e-01 -1.95897773e-01 7.06348419e-02 -3.54768425e-01 3.93979043e-01 -1.09019780e+00 -3.38443995e-01 8.40201437e-01 1.87103197e-01 4.01168466e-01 4.09579091e-02 -5.05382538e-01 -4.87395823e-01 -1.22899018e-01 -4.54380512e-02 -5.03342971e-02 -8.58215272e-01 -9.78031158e-01 8.60189855e-01 1.34560168e-01 -1.06603014e+00 -7.74756610e-01 -4.35759902e-01 -1.14494491e+00 1.31296384e+00 -1.83901179e+00 -9.61739004e-01 -2.58853167e-01 4.33317572e-01 4.22089159e-01 -3.56100619e-01 1.02065217e+00 5.14402688e-01 -4.51326162e-01 2.16707140e-01 8.89085293e-01 -4.74472880e-01 9.01111513e-02 -9.02763069e-01 2.19070241e-01 4.62202609e-01 -7.42162347e-01 -1.79610208e-01 1.06905413e+00 -6.67514205e-01 -1.38991475e+00 -1.39222133e+00 1.35687006e+00 1.31090656e-01 3.86790305e-01 -2.67941952e-01 -8.57601345e-01 5.29012918e-01 6.63687885e-01 -2.35145152e-01 5.90836287e-01 -2.55687416e-01 6.82967186e-01 -6.67151034e-01 -1.39431357e+00 -1.56527981e-01 -1.92020863e-01 -1.14207968e-01 -5.18419623e-01 1.90804482e-01 3.03594440e-01 5.06698620e-04 -1.28351820e+00 8.65596652e-01 6.65683627e-01 -5.80635846e-01 5.68696380e-01 -1.93635687e-01 -2.16071561e-01 -1.37966603e-01 -2.11090565e-01 -1.71897125e+00 -6.26378000e-01 9.61301401e-02 -2.04671428e-01 1.03916574e+00 6.41175568e-01 -1.06797576e+00 7.39807561e-02 1.02057052e+00 -3.51544708e-01 -8.43742609e-01 -9.28103030e-01 -4.12712246e-01 2.46041358e-01 -7.71620393e-01 1.22901881e+00 6.33303940e-01 -2.42693231e-01 -2.89965689e-01 -4.63358551e-01 2.74380177e-01 3.26130778e-01 2.54008621e-01 3.39530528e-01 -1.40987062e+00 3.29300016e-01 -4.12309051e-01 -3.23205650e-01 -6.79525137e-02 5.18779516e-01 -8.44579041e-01 -2.21591592e-01 -1.80983210e+00 -3.51989925e-01 -5.25812805e-01 -8.52662206e-01 6.07293189e-01 3.35068762e-01 -6.68271706e-02 3.06900233e-01 -2.16632381e-01 1.27299696e-01 7.41632044e-01 5.64472198e-01 -2.23708928e-01 -2.40880683e-01 2.87421465e-01 4.45545353e-02 6.44907534e-01 1.16740763e+00 -3.29529226e-01 -2.77399749e-01 -5.90965211e-01 4.32951748e-01 -8.58847331e-03 1.37288675e-01 -1.27240205e+00 2.58894116e-01 -3.50158960e-02 9.98415589e-01 -1.30330956e+00 2.25900635e-01 -1.21111763e+00 9.18489635e-01 7.42493689e-01 4.59627695e-02 5.40847540e-01 7.52275586e-01 -5.85145988e-02 -2.19920918e-01 1.43184597e-02 3.59495252e-01 4.75151539e-01 -1.01607549e+00 6.82590827e-02 -9.91843879e-01 -9.68851805e-01 1.29457343e+00 -2.08998039e-01 5.68884127e-02 -2.23004222e-01 -8.19327712e-01 5.98074615e-01 -2.07727447e-01 9.32502985e-01 3.23649198e-01 -1.38280308e+00 -7.93837309e-01 5.48956215e-01 -2.33835012e-01 -5.79847097e-01 5.66562772e-01 5.24198353e-01 -9.13749039e-02 6.81564808e-01 -3.66009861e-01 -5.82063198e-01 -9.66292918e-01 5.02763748e-01 7.62491643e-01 -8.48615766e-02 -2.59474933e-01 1.86417148e-01 -4.77939814e-01 -4.97678757e-01 -1.12042457e-01 -5.72582603e-01 -8.03620040e-01 4.20162946e-01 5.07420003e-01 6.25423133e-01 6.20368659e-01 -9.44736719e-01 -3.49176049e-01 5.73766947e-01 3.72562200e-01 3.67211282e-01 1.81286263e+00 -1.85409188e-01 -3.71451005e-02 8.19250405e-01 1.37199366e+00 -4.87092912e-01 -7.62355328e-01 2.29106516e-01 -2.59077728e-01 1.04406267e-01 7.98443139e-01 -1.27438128e+00 -1.36543047e+00 6.76039934e-01 1.29156208e+00 3.34813565e-01 1.28750420e+00 -4.83016253e-01 1.14417470e+00 1.64361700e-01 1.75224096e-01 -1.38301837e+00 -1.38318157e+00 6.04137719e-01 7.35906184e-01 -1.15807700e+00 -3.79404813e-01 7.03384399e-01 -4.48142231e-01 1.33437145e+00 2.87596703e-01 -9.21802968e-02 1.22126710e+00 7.54384995e-01 5.00074811e-02 6.35296851e-02 -9.46570992e-01 2.64029026e-01 4.94248331e-01 1.05874144e-01 1.11366376e-01 5.87097526e-01 -3.22437912e-01 8.92535865e-01 -2.82382101e-01 3.72851759e-01 1.01244502e-01 4.88165766e-01 -4.11005974e-01 -7.81510174e-01 -3.96845579e-01 7.71973610e-01 -3.02578479e-01 2.36204982e-01 4.40734595e-01 3.42083633e-01 6.77838981e-01 1.12461388e+00 5.86212456e-01 -7.76529789e-01 4.48520452e-01 1.97070330e-01 -2.95567691e-01 4.56385940e-01 -8.38027179e-01 -3.72396618e-01 -6.57963753e-02 -4.15240347e-01 -1.48830354e-01 -4.79973465e-01 -1.36270809e+00 -6.58759356e-01 -2.15481758e-01 4.66517657e-01 1.77517140e+00 1.28483808e+00 4.21155453e-01 8.78845692e-01 1.26029861e+00 -1.25599742e+00 -1.42736778e-01 -1.05020678e+00 -4.05666828e-01 6.43980876e-02 5.16186297e-01 -6.01844966e-01 -5.22827327e-01 -3.61428291e-01]
[6.208680629730225, 2.7830095291137695]
437377e8-569f-4362-a68f-1d1d9dd25518
a-novel-light-field-coding-scheme-based-on
2210.01447
null
https://arxiv.org/abs/2210.01447v2
https://arxiv.org/pdf/2210.01447v2.pdf
A Novel Light Field Coding Scheme Based on Deep Belief Network & Weighted Binary Images for Additive Layered Displays
Light-field displays create an immersive experience by providing binocular depth sensation and motion parallax. Stacking light attenuating layers is one approach to implement a light field display with a broader depth of field, wide viewing angles and high resolution. Due to the transparent holographic optical element (HOE) layers, additive layered displays can be integrated into augmented reality (AR) wearables to overlay virtual objects onto the real world, creating a seamless mixed reality (XR) experience. This paper proposes a novel framework for light field representation and coding that utilizes Deep Belief Network (DBN) and weighted binary images suitable for additive layered displays. The weighted binary representation of layers makes the framework more flexible for adaptive bitrate encoding. The framework effectively captures intrinsic redundancies in the light field data, and thus provides a scalable solution for light field coding suitable for XR display applications. The latent code is encoded by H.265 codec generating a rate-scalable bit-stream. We achieve adaptive bitrate decoding by varying the number of weighted binary images and the H.265 quantization parameter, while maintaining an optimal reconstruction quality. The framework is tested on real and synthetic benchmark datasets, and the results validate the rate-scalable property of the proposed scheme.
['Mansi Sharma', 'Sally Khaidem']
2022-10-04
null
null
null
null
['mixed-reality']
['computer-vision']
[ 5.47734022e-01 -3.32449198e-01 -1.23727195e-01 -1.92096919e-01 -2.04450503e-01 -1.88267678e-01 2.06739604e-01 -4.30424482e-01 -1.93177402e-01 6.93221569e-01 5.16176999e-01 9.39990976e-04 -1.39817461e-01 -9.06114757e-01 -4.25507754e-01 -8.30449820e-01 1.21055387e-01 -6.41459882e-01 4.30144727e-01 -6.58306330e-02 4.27133292e-01 4.06336635e-01 -2.05418468e+00 4.95519102e-01 9.41081285e-01 1.51360214e+00 1.13422847e+00 8.37177515e-01 -7.71317780e-02 1.14231861e+00 -1.62776589e-01 -3.20248842e-01 3.72188270e-01 7.46507198e-02 2.34664872e-01 -7.58861238e-03 6.84840679e-01 -1.04023612e+00 -7.03674912e-01 1.19081843e+00 7.79878676e-01 -3.77714634e-02 8.62851813e-02 -7.71802485e-01 -1.06143463e+00 -1.68076485e-01 -5.48671067e-01 1.70043737e-01 8.50683331e-01 2.64176041e-01 5.39530337e-01 -8.48442078e-01 5.12591839e-01 1.07482374e+00 2.79876202e-01 6.43680573e-01 -9.73221421e-01 -6.31885946e-01 -3.24118167e-01 3.05980980e-01 -1.21652043e+00 -5.55699229e-01 7.74933696e-01 -3.58500451e-01 9.37467515e-01 6.26302660e-01 1.06898022e+00 5.33495486e-01 7.83692777e-01 3.23420137e-01 1.33286035e+00 -3.44770432e-01 3.39959741e-01 9.74181816e-02 9.32346135e-02 7.65860915e-01 5.46873271e-01 3.50572824e-01 -7.80801713e-01 -4.50006574e-02 1.33559620e+00 6.08565509e-01 -9.37299669e-01 -1.76938549e-01 -1.09987295e+00 2.49530599e-01 6.42514884e-01 -2.30145231e-02 -3.88806790e-01 3.67648959e-01 -8.45619291e-02 -1.41610146e-01 2.83982098e-01 3.59310582e-02 9.37690064e-02 -3.21284719e-02 -4.43630576e-01 -2.06670478e-01 1.71588197e-01 9.12087083e-01 6.55862749e-01 2.27779955e-01 -3.45336467e-01 9.12910998e-01 7.27863789e-01 8.32021415e-01 5.97027481e-01 -1.26196945e+00 3.86430591e-01 4.56921607e-01 3.06917489e-01 -1.00589895e+00 -1.85810745e-01 -7.90615901e-02 -9.99728858e-01 6.27169192e-01 -2.85554260e-01 1.77383587e-01 -8.13545465e-01 1.27982199e+00 1.72916412e-01 3.31966698e-01 4.55949083e-02 1.10704148e+00 1.25650799e+00 9.96222854e-01 -4.51657385e-01 -3.90931189e-01 1.37063754e+00 -4.84844148e-01 -1.38522017e+00 -1.18407318e-02 9.38817486e-02 -6.32238328e-01 1.26284635e+00 7.25654721e-01 -1.42104220e+00 -7.35020936e-01 -1.40276551e+00 -4.80955690e-01 2.45650843e-01 1.40459221e-02 7.59757400e-01 9.56735909e-01 -1.15888345e+00 -3.25517505e-02 -5.20196915e-01 3.26528549e-01 1.33245170e-01 3.57272863e-01 -1.56890497e-01 -4.72766966e-01 -8.71989369e-01 3.53463411e-01 3.96707691e-02 1.43272281e-01 -2.10520387e-01 -8.04613173e-01 -7.92473197e-01 6.06082380e-02 -2.13626534e-01 -9.92397130e-01 8.54528904e-01 -2.67816186e-01 -1.97147369e+00 4.63154882e-01 -1.83917552e-01 -5.80731146e-02 1.26070241e-02 -1.16359472e-01 -6.64398789e-01 3.89795512e-01 -4.04952884e-01 5.52470326e-01 8.45879793e-01 -1.22242713e+00 -6.88533425e-01 -5.78939021e-01 2.63481647e-01 4.04616386e-01 -5.56991339e-01 -1.07296996e-01 -2.70634890e-01 -2.55317539e-01 4.31530029e-01 -4.68319297e-01 -1.22904159e-01 4.51657414e-01 3.46848601e-03 3.51751029e-01 7.22082555e-01 -4.51884717e-01 1.48774183e+00 -2.31746507e+00 -4.09987479e-01 -3.39174569e-01 6.79986656e-01 5.16680218e-02 3.56754988e-01 7.30304718e-02 3.43586087e-01 -5.02489448e-01 3.01712692e-01 -2.62580454e-01 -2.81785399e-01 4.76696193e-02 -2.95280576e-01 4.39387739e-01 -6.25586450e-01 6.72546744e-01 -8.04185569e-01 -2.66384542e-01 6.75148189e-01 8.90870631e-01 -9.19642925e-01 2.56788880e-01 7.49369115e-02 3.46190125e-01 -1.66796267e-01 7.35464871e-01 1.18121052e+00 -3.38256955e-01 -8.65159277e-03 -5.26718915e-01 -3.70013148e-01 2.10696146e-01 -1.50569248e+00 1.66646969e+00 -7.48263180e-01 8.20977747e-01 2.33894199e-01 3.35142136e-01 1.24434292e+00 3.69037241e-02 3.26153904e-01 -1.42410874e+00 -6.83975592e-02 1.67730585e-01 -5.82813680e-01 -6.41546547e-01 1.08942831e+00 -1.72900617e-01 4.65897352e-01 -1.38602639e-02 -3.20846885e-01 -9.77637097e-02 -2.89411724e-01 -1.19182125e-01 1.11729050e+00 -1.15770563e-01 4.48524803e-02 -7.96059817e-02 3.40501368e-01 -8.85844469e-01 5.23898959e-01 3.69358867e-01 7.65196681e-02 6.64599299e-01 -6.18560493e-01 -6.03548229e-01 -1.00975120e+00 -1.36454153e+00 -4.29777443e-01 8.74546647e-01 9.98794794e-01 -3.88854474e-01 -1.07726038e-01 4.30472583e-01 -2.25850746e-01 5.85094333e-01 -5.18753938e-02 -3.06888968e-02 -3.15109193e-01 -3.85911435e-01 -1.46169528e-01 1.77312374e-01 1.05544138e+00 -6.65623069e-01 -1.16142440e+00 3.32710817e-02 -2.39019558e-01 -1.19846463e+00 -7.43949190e-02 -2.01068148e-01 -9.24081087e-01 -5.11205673e-01 -8.00587952e-01 -5.92153370e-01 2.12681890e-01 9.02423084e-01 8.46913517e-01 -3.17552567e-01 -3.40235919e-01 5.15163481e-01 -1.38381779e-01 -1.03400074e-01 1.00754164e-01 -9.63052452e-01 6.15616366e-02 2.04783931e-01 1.10267019e-02 -5.95978558e-01 -1.34909427e+00 1.34401903e-01 -9.75126684e-01 6.09210849e-01 2.60720789e-01 4.30425495e-01 7.03939676e-01 -1.71196803e-01 -5.97859062e-02 -2.79352248e-01 5.19443750e-01 -1.12507202e-01 -8.66550565e-01 -3.16184270e-03 -3.34396005e-01 -3.03941905e-01 5.38764238e-01 -2.11676627e-01 -1.55277479e+00 -2.10952967e-01 -1.50892869e-01 -3.49618345e-01 1.88479334e-01 -1.11819901e-01 -2.04255924e-01 -5.36322713e-01 6.40295863e-01 2.90863842e-01 -3.59406441e-01 -4.44106132e-01 4.28028196e-01 1.15550876e+00 6.69668317e-01 7.25765377e-02 1.20542966e-01 8.46237302e-01 9.09763277e-02 -9.93644953e-01 -1.22063667e-01 -4.83746260e-01 3.72622944e-02 -6.38770700e-01 9.73595917e-01 -1.15444100e+00 -1.13958812e+00 2.49270469e-01 -1.23008645e+00 -1.07573286e-01 -2.91227132e-01 8.88081074e-01 -6.73330009e-01 3.86893153e-01 -7.08913565e-01 -1.01354456e+00 -2.15981618e-01 -1.27727246e+00 1.15787339e+00 4.04604286e-01 4.37698305e-01 -6.14948452e-01 2.28377432e-01 4.00015622e-01 3.44303131e-01 6.16559796e-02 6.09740674e-01 1.00450003e+00 -1.16858971e+00 6.56309575e-02 -5.12610912e-01 2.14680731e-01 1.97483212e-01 -3.12950552e-01 -1.25683320e+00 -8.62678811e-02 3.13546062e-01 -1.45205677e-01 6.87559783e-01 5.85157573e-01 1.25660682e+00 -4.17229295e-01 -6.88271001e-02 1.18662357e+00 1.87877750e+00 5.19595563e-01 1.45190632e+00 1.52890459e-01 7.10475385e-01 6.79971501e-02 3.76376987e-01 8.03252935e-01 4.13031936e-01 8.35737646e-01 6.97144926e-01 -7.96127021e-02 -4.82883692e-01 -2.33714715e-01 3.69754493e-01 1.00771368e+00 -1.41432002e-01 -4.52003419e-01 -4.10621583e-01 4.61084992e-02 -1.31531060e+00 -1.16858053e+00 -3.81199390e-01 2.30447388e+00 7.51095176e-01 -1.23517185e-01 -5.17463386e-01 2.83439338e-01 7.02905595e-01 2.26630688e-01 -3.74378234e-01 -4.44555521e-01 -2.18503773e-01 4.55174744e-02 6.57846153e-01 6.40442014e-01 -4.11876559e-01 2.08938852e-01 5.66203642e+00 8.31611037e-01 -1.34773457e+00 1.63140729e-01 1.57283485e-01 -3.53112727e-01 -7.79662192e-01 -4.51037914e-01 -8.06780040e-01 8.13720822e-01 5.71445882e-01 9.68531519e-02 5.01042902e-01 6.42810822e-01 2.33275235e-01 -3.31082374e-01 -6.80164814e-01 1.87155473e+00 -7.19964579e-02 -1.65676415e+00 -1.91088840e-02 2.87176430e-01 8.06369781e-01 -3.80343050e-02 5.09371638e-01 -4.46247220e-01 9.80923325e-02 -5.40068984e-01 6.48605406e-01 9.11219478e-01 1.49919271e+00 -1.92568853e-01 1.76483914e-01 1.81611568e-01 -1.11000776e+00 -4.24273819e-01 -7.61542916e-01 -3.32728624e-01 4.12671119e-01 8.68799269e-01 -4.13930237e-01 3.66345733e-01 9.74174142e-01 5.69626212e-01 -2.20713183e-01 1.36045790e+00 3.75036865e-01 1.65203571e-01 -4.30705190e-01 -1.22164771e-01 -3.81370366e-01 -3.24984014e-01 5.30990005e-01 8.95955503e-01 6.80824041e-01 4.45999891e-01 -2.09391847e-01 6.06252968e-01 1.46577716e-01 -6.93373308e-02 -8.82694244e-01 4.81268853e-01 3.15219909e-01 1.01639915e+00 -3.88068348e-01 -1.64290681e-01 -5.65144002e-01 8.21874797e-01 -2.33356416e-01 3.39443505e-01 -5.50785184e-01 -3.32588434e-01 5.51591635e-01 5.12839019e-01 2.00193033e-01 -4.12648320e-01 -6.79777443e-01 -1.18374407e+00 2.06807300e-01 -3.57950211e-01 -9.82370377e-02 -1.65640485e+00 -8.71914387e-01 5.74287653e-01 -3.38920027e-01 -1.69477594e+00 2.31325835e-01 -4.31793332e-01 5.53802140e-02 7.74628520e-01 -1.71744788e+00 -7.95217454e-01 -9.75547552e-01 6.72936559e-01 2.66079009e-01 1.45541318e-02 5.95216215e-01 6.33011699e-01 -9.45202187e-02 1.92556202e-01 5.30877769e-01 -6.72760725e-01 3.78373235e-01 -8.64097714e-01 -4.28110175e-02 8.17877114e-01 -1.59723610e-01 5.41606665e-01 5.40366769e-01 -7.16549635e-01 -1.87887180e+00 -9.47888792e-01 2.37065047e-01 -6.57766983e-02 2.73644198e-02 -5.63218713e-01 -6.28485501e-01 2.30575308e-01 2.52116710e-01 1.64799497e-01 8.24336529e-01 -6.05459452e-01 -2.82297373e-01 -4.73800272e-01 -1.40516937e+00 6.08000517e-01 1.22708046e+00 -6.62529767e-01 -1.33615479e-01 2.30497614e-01 9.69790399e-01 -5.67112088e-01 -6.79662168e-01 5.93488932e-01 8.65212321e-01 -1.74637341e+00 1.10760927e+00 5.19822419e-01 5.52026987e-01 -5.06023824e-01 -6.70121968e-01 -7.73827434e-01 -6.83440328e-01 -7.90400386e-01 -5.08962572e-01 7.51980662e-01 -3.54543328e-01 -7.45897233e-01 6.10531390e-01 5.26306868e-01 -2.89577186e-01 -5.36665499e-01 -9.35754240e-01 -4.56970841e-01 -1.11331570e+00 -6.07254028e-01 6.76514030e-01 5.45755684e-01 -1.53891072e-01 1.15312979e-01 -5.16769409e-01 2.24797234e-01 7.63291121e-01 -4.95257601e-02 5.33814490e-01 -1.11466265e+00 -4.94573295e-01 1.91040093e-03 -8.89618039e-01 -1.78575301e+00 -6.07723475e-01 -5.63302517e-01 -6.96910024e-02 -1.66042745e+00 6.05896451e-02 -6.24272168e-01 -1.09630339e-01 -1.81061342e-01 3.14123482e-02 9.19571936e-01 3.88764441e-01 3.56587768e-01 -5.93580365e-01 7.53184974e-01 1.67253256e+00 3.97497378e-02 -4.94069010e-01 -1.14068165e-01 -4.68791276e-01 6.50617778e-01 3.18244427e-01 2.49722630e-01 -7.84747064e-01 -8.73765826e-01 7.39050925e-01 5.09762466e-01 6.08473241e-01 -1.36919546e+00 4.37602311e-01 -2.85444688e-02 4.70100343e-01 -5.06493568e-01 9.33810592e-01 -1.07416117e+00 4.05259490e-01 3.44884753e-01 -5.48778102e-02 -1.84465960e-01 4.44805548e-02 7.05358088e-01 1.14862546e-01 -6.30534440e-02 7.48484969e-01 2.27763712e-01 -9.05838430e-01 2.03888610e-01 -6.36898652e-02 -5.14588952e-01 9.18588996e-01 -9.09971535e-01 -5.69754124e-01 -4.54222053e-01 -2.75217623e-01 -4.69877332e-01 6.85325444e-01 3.99036184e-02 1.24617708e+00 -1.58931875e+00 -1.82193846e-01 8.38789523e-01 1.51477620e-01 -1.94568262e-01 7.35682905e-01 2.65748471e-01 -9.97808993e-01 2.98239380e-01 -5.61445296e-01 -8.72333765e-01 -1.19708478e+00 4.35576141e-01 1.12837337e-01 2.91296244e-01 -9.51694727e-01 7.86835432e-01 7.01420307e-01 2.90157318e-01 1.98009983e-01 -5.56542695e-01 -3.37888688e-01 -5.69546223e-01 1.23695934e+00 6.25219882e-01 1.99789986e-01 -2.99358934e-01 -2.12102141e-02 7.96050191e-01 3.39763939e-01 -1.93518728e-01 1.15586925e+00 -7.19654083e-01 1.41739845e-02 4.11879003e-01 1.15359175e+00 4.19825226e-01 -1.34863114e+00 -1.05649374e-01 -1.00877845e+00 -1.27859712e+00 7.47733593e-01 -6.33267283e-01 -9.12848890e-01 9.36728895e-01 1.25171828e+00 3.03633809e-01 1.57371271e+00 -3.85327280e-01 9.08845603e-01 1.53380275e-01 8.35244358e-01 -6.34631872e-01 7.66449869e-02 8.85672197e-02 7.05610454e-01 -7.45153069e-01 -8.34636912e-02 -5.23308337e-01 -3.22499186e-01 1.08857310e+00 3.61999214e-01 2.78981049e-02 5.52106321e-01 5.70366442e-01 -1.27217799e-01 -1.79797575e-01 -6.62233591e-01 6.43791556e-02 1.03343822e-01 7.99185574e-01 3.31730187e-01 3.28259766e-02 -7.52239525e-02 1.65705696e-01 -1.34146750e-01 5.63602567e-01 7.11274624e-01 7.90048242e-01 -7.80595958e-01 -5.04795134e-01 -5.07503867e-01 5.41214466e-01 -2.86694080e-01 -2.10537151e-01 4.81596917e-01 -8.91811922e-02 3.59998614e-01 8.78445029e-01 2.30481759e-01 -6.62469923e-01 1.99288741e-01 -6.27775192e-01 8.99163663e-01 -3.81462961e-01 -8.93970430e-02 1.82225257e-01 -4.00146067e-01 -8.19501281e-01 -3.47283632e-01 8.40374604e-02 -1.01869726e+00 -3.74835998e-01 -2.32116506e-01 -3.83629262e-01 8.28931451e-01 3.06763142e-01 6.69702888e-01 5.05887568e-01 7.24254906e-01 -9.71506655e-01 1.50709987e-01 -4.99766022e-01 -8.89631867e-01 6.27988130e-02 6.74064338e-01 -7.02955782e-01 -1.58424363e-01 9.91704389e-02]
[10.125919342041016, -2.592113494873047]
4c5a9282-ae75-48db-9750-a2bfa6e1a178
evaluation-guidelines-to-deal-with-implicit
null
null
https://aclanthology.org/2021.unimplicit-1.3
https://aclanthology.org/2021.unimplicit-1.3.pdf
Evaluation Guidelines to Deal with Implicit Phenomena to Assess Factuality in Data-to-Text Generation
Data-to-text generation systems are trained on large datasets, such as WebNLG, Ro-toWire, E2E or DART. Beyond traditional token-overlap evaluation metrics (BLEU or METEOR), a key concern faced by recent generators is to control the factuality of the generated text with respect to the input data specification. We report on our experience when developing an automatic factuality evaluation system for data-to-text generation that we are testing on WebNLG and E2E data. We aim to prepare gold data annotated manually to identify cases where the text communicates more information than is warranted based on the in-put data (extra) or fails to communicate data that is part of the input (missing). While analyzing reference (data, text) samples, we encountered a range of systematic uncertainties that are related to cases on implicit phenomena in text, and the nature of non-linguistic knowledge we expect to be involved when assessing factuality. We derive from our experience a set of evaluation guidelines to reach high inter-annotator agreement on such cases.
['Michael Elhadad', 'Roy Eisenstadt']
null
null
null
null
acl-unimplicit-2021-8
['data-to-text-generation']
['natural-language-processing']
[ 1.82669014e-01 8.91272843e-01 1.48823380e-01 -4.57491487e-01 -1.29280543e+00 -8.34040344e-01 1.25638866e+00 5.51374614e-01 -4.38237965e-01 1.45102787e+00 9.16826844e-01 -5.64461291e-01 -8.05105940e-02 -6.77745819e-01 -5.51540315e-01 -5.92910983e-02 5.48497379e-01 9.19073522e-01 -6.29236400e-02 -2.74500519e-01 4.28989559e-01 -6.58180267e-02 -1.44438016e+00 6.91908598e-01 1.17041147e+00 4.65300053e-01 -2.46984586e-02 5.91464043e-01 -7.11395562e-01 9.73717928e-01 -1.26577485e+00 -6.30343735e-01 2.46174284e-03 -6.83168530e-01 -1.37418187e+00 -7.91145861e-02 3.77333939e-01 2.32053787e-01 3.41361493e-01 9.24967289e-01 6.25902653e-01 -1.54619813e-01 9.30976272e-01 -1.25333047e+00 -5.51194489e-01 1.34394634e+00 1.96412086e-01 1.44311920e-01 6.31480396e-01 2.59327322e-01 8.98284376e-01 -8.47436666e-01 1.08584630e+00 1.28912532e+00 4.48256046e-01 6.20027542e-01 -1.06083035e+00 -4.10396487e-01 -2.61240602e-01 -1.92013457e-01 -1.27770865e+00 -7.47344673e-01 2.23980919e-01 -6.16738915e-01 9.82757092e-01 4.25247252e-01 1.31584272e-01 1.41197824e+00 6.15080893e-02 3.02760035e-01 1.22647774e+00 -9.43175018e-01 1.99888289e-01 5.11300564e-01 -1.30323589e-01 1.71858028e-01 5.50693452e-01 -5.21576926e-02 -7.19167709e-01 -3.42362106e-01 1.83995217e-01 -1.15453196e+00 -2.06431165e-01 5.18718004e-01 -1.31399131e+00 7.33728528e-01 -2.20603332e-01 6.10567510e-01 -4.40826356e-01 2.02999879e-02 5.30318201e-01 8.71810168e-02 6.33616149e-01 8.98057222e-01 -6.05513215e-01 -5.91244698e-01 -1.05037558e+00 7.17888415e-01 1.35593867e+00 1.29787672e+00 3.81994158e-01 -5.68403192e-02 -5.51499367e-01 6.81614339e-01 2.65170217e-01 3.03953439e-01 6.87770665e-01 -6.43840134e-01 1.05562365e+00 5.46581209e-01 6.44665480e-01 -6.31067038e-01 -9.26290900e-02 -1.31657779e-01 -3.69260430e-01 1.04319014e-01 4.63377118e-01 -4.93966341e-01 -6.95273340e-01 1.44713259e+00 6.03056177e-02 -7.37708390e-01 5.14082909e-01 5.44976354e-01 1.01698053e+00 4.63061184e-01 3.90739948e-01 -3.35368484e-01 1.19451559e+00 -1.26864091e-01 -1.06341219e+00 -1.14703208e-01 1.01918733e+00 -1.22727847e+00 1.14021409e+00 2.79117048e-01 -8.84616792e-01 -4.13046420e-01 -8.80802989e-01 -1.49102643e-01 -7.16084778e-01 6.68876022e-02 2.63735592e-01 6.64712012e-01 -7.20358789e-01 5.64718723e-01 -2.67044693e-01 -5.66432059e-01 -3.50512043e-02 -3.41852367e-01 -2.43252262e-01 2.12172300e-01 -1.72107124e+00 1.13397849e+00 1.10813463e+00 -3.85839082e-02 -4.81934756e-01 -7.02087045e-01 -7.12815225e-01 -3.40352416e-01 5.56066990e-01 -4.16739702e-01 1.46853888e+00 -6.71944916e-01 -9.06878710e-01 9.01023507e-01 -2.24547703e-02 -4.37622339e-01 9.26847219e-01 -1.07838787e-01 -9.60271478e-01 -3.73439431e-01 6.36146009e-01 5.49148858e-01 2.22375810e-01 -1.43233693e+00 -1.04465616e+00 3.43048722e-02 -1.50001734e-01 1.76448524e-01 3.52113247e-01 3.69249761e-01 1.84790194e-01 -6.95365846e-01 -3.69783729e-01 -6.78320944e-01 4.42231372e-02 -5.93679070e-01 -8.35400760e-01 -6.35825396e-01 7.76999593e-01 -7.99188733e-01 1.46786165e+00 -1.48905909e+00 -6.92681372e-01 6.28397614e-02 -2.28726175e-02 2.42554948e-01 6.90097548e-03 9.93157744e-01 -1.29069269e-01 1.02535570e+00 -1.03870444e-01 1.19522490e-01 2.82234490e-01 1.82471231e-01 -6.85611248e-01 -1.23207778e-01 3.34619910e-01 7.75955379e-01 -1.12232864e+00 -7.50401020e-01 -9.65103731e-02 3.26109678e-02 -4.78348769e-02 3.84533584e-01 -5.92781782e-01 1.34245127e-01 -3.81830305e-01 3.38130325e-01 2.50635237e-01 9.22828466e-02 -4.10588309e-02 -2.07792789e-01 -4.30292457e-01 1.06188786e+00 -1.14927745e+00 1.42536426e+00 -5.97902417e-01 6.41114116e-01 -3.26036394e-01 -1.51363909e-01 9.38286066e-01 7.08758652e-01 -2.62974445e-02 -4.69788939e-01 -1.31203473e-01 5.87595642e-01 9.33872759e-02 -6.84796095e-01 1.14169800e+00 -1.34995908e-01 -3.19823295e-01 7.75557816e-01 1.72846153e-01 -7.39717066e-01 7.98542321e-01 4.50752348e-01 9.14287865e-01 3.64604175e-01 3.94332260e-01 -4.84871000e-01 2.64783859e-01 5.06647289e-01 2.79615432e-01 7.96194792e-01 3.04944068e-01 5.93744516e-01 7.57449329e-01 -4.56133150e-02 -1.40991640e+00 -5.98124981e-01 -2.09245875e-01 4.34176058e-01 -3.34348321e-01 -7.69297779e-01 -7.29483843e-01 -9.20884848e-01 -3.09954107e-01 1.99110568e+00 -5.96897304e-01 2.41505399e-01 -1.48396328e-01 -6.08261466e-01 7.88683832e-01 1.13741383e-01 1.00102685e-01 -1.26394033e+00 -6.49291158e-01 6.43470824e-01 -6.95989072e-01 -1.08572733e+00 -3.65885794e-01 1.51684120e-01 -3.06165308e-01 -1.14501297e+00 -1.53846160e-01 -9.77653340e-02 5.61811388e-01 -5.12768269e-01 1.45400608e+00 -2.04558015e-01 1.66050270e-02 2.10137546e-01 -7.65668333e-01 -7.49214351e-01 -1.37941384e+00 1.47366792e-01 -3.55969191e-01 -5.41302264e-01 5.70992768e-01 -7.64098540e-02 -5.67555614e-02 2.34730810e-01 -1.20707846e+00 1.46551907e-01 3.88477415e-01 6.81678593e-01 2.18658820e-01 1.10571779e-01 6.61789894e-01 -1.43674827e+00 1.54273117e+00 -6.45525336e-01 -1.86659679e-01 4.62975770e-01 -8.86738956e-01 3.60207468e-01 4.91531193e-01 -1.10844478e-01 -1.34576666e+00 -5.89261889e-01 -1.32707998e-01 2.30258986e-01 -4.62893397e-01 9.03798521e-01 -3.43396038e-01 7.22576857e-01 1.08906198e+00 -9.40358490e-02 -4.26395833e-01 -2.73398131e-01 5.62279344e-01 1.03247344e+00 4.19481486e-01 -9.65734839e-01 6.24554455e-01 -2.74268329e-01 -6.31953657e-01 -5.00700891e-01 -8.45523655e-01 -1.94405839e-01 -6.07619643e-01 -3.02696407e-01 6.55566871e-01 -7.82741964e-01 6.33119233e-03 1.08454548e-01 -1.58938360e+00 -3.24723899e-01 -6.49379194e-01 2.08299607e-01 -4.17724997e-01 4.74237604e-03 -8.18034112e-02 -9.11372364e-01 -5.47636747e-01 -6.42935038e-01 8.61636102e-01 -2.02960297e-01 -1.10938585e+00 -1.11034346e+00 1.45735562e-01 4.26382363e-01 4.47095543e-01 4.60781246e-01 9.70570803e-01 -1.14325988e+00 3.90219651e-02 -3.25084507e-01 -4.61045690e-02 1.22739844e-01 4.05621082e-01 4.83605295e-01 -7.65946031e-01 2.72617429e-01 -1.55890420e-01 -6.74536109e-01 2.11849362e-01 -2.88523167e-01 8.53458583e-01 -9.73411739e-01 -8.13649893e-02 -3.99251342e-01 1.21643078e+00 1.21393658e-01 7.19581187e-01 2.23934084e-01 4.38892394e-01 1.17190719e+00 7.86075771e-01 4.52830493e-01 4.45391774e-01 5.86595953e-01 5.48958965e-02 1.80089504e-01 -2.52552539e-01 -7.60097742e-01 3.21288973e-01 6.26482368e-01 1.36982009e-01 -8.07016551e-01 -9.63445961e-01 8.09646547e-01 -1.68376982e+00 -1.12032306e+00 -5.36936581e-01 2.21386027e+00 1.42050099e+00 4.58510816e-01 -1.45677581e-01 5.63727058e-02 7.36651480e-01 1.08972313e-02 4.29881662e-02 -6.80146277e-01 -2.34698713e-01 1.60267204e-02 3.52668762e-01 5.97673714e-01 -6.16363227e-01 8.43013585e-01 6.25849581e+00 1.06124163e+00 -7.46747017e-01 2.05912143e-02 5.39055288e-01 1.72271118e-01 -9.13821638e-01 2.81037241e-01 -1.04653525e+00 6.98408961e-01 1.35112762e+00 -7.64634430e-01 -2.90957801e-02 5.22629440e-01 5.53314030e-01 -2.15869710e-01 -1.34064269e+00 4.05322194e-01 5.08809984e-02 -1.24097908e+00 2.85023630e-01 2.69085728e-02 6.32655680e-01 -2.57595658e-01 -6.11600637e-01 2.98865288e-01 9.00137603e-01 -1.04776847e+00 1.29011571e+00 4.75679874e-01 1.09106231e+00 -4.34467047e-01 1.03739214e+00 4.24542695e-01 -5.89560628e-01 6.48737431e-01 -9.39143002e-02 1.71122327e-01 4.91207659e-01 1.01253521e+00 -1.46166253e+00 6.82116032e-01 2.12415963e-01 4.91570793e-02 -5.52892983e-01 4.88514960e-01 -6.14967227e-01 6.39697313e-01 -1.91424727e-01 -4.46674764e-01 2.10056722e-01 9.34334993e-02 5.84505379e-01 1.53184032e+00 4.23075646e-01 3.72614488e-02 -6.66687191e-02 1.32214689e+00 -1.68726638e-01 2.70789683e-01 -7.83509851e-01 -4.67723936e-01 6.68766201e-01 1.26847064e+00 -4.43139553e-01 -5.18519998e-01 -1.67954639e-01 5.56297123e-01 1.50524125e-01 2.03901932e-01 -3.00766975e-01 -6.98662639e-01 5.44877574e-02 3.11172575e-01 -9.28073451e-02 8.94286186e-02 -2.12062687e-01 -8.63920450e-01 2.48022854e-01 -1.06367290e+00 2.37011880e-01 -1.04663444e+00 -1.49839771e+00 8.46159339e-01 2.92167068e-01 -1.18898773e+00 -9.35397625e-01 -2.47516483e-01 -5.93112171e-01 1.22619498e+00 -9.58488584e-01 -1.00121546e+00 -1.15649246e-01 9.27098691e-02 4.21941161e-01 1.18529219e-02 8.94630313e-01 4.27337922e-02 5.20780077e-03 2.95081228e-01 -4.11177039e-01 1.78172797e-01 8.55605185e-01 -1.55360663e+00 6.74516082e-01 9.69540715e-01 1.34721383e-01 6.89303696e-01 1.20161974e+00 -1.17886448e+00 -6.08287334e-01 -1.14387429e+00 1.71803808e+00 -8.51611495e-01 9.62797761e-01 -3.19415510e-01 -8.21978509e-01 4.81451690e-01 5.42629182e-01 -6.09230340e-01 8.05571318e-01 9.46050733e-02 -2.20131934e-01 3.36011559e-01 -1.26102495e+00 5.28919697e-01 7.79212713e-01 -5.35904050e-01 -1.21653080e+00 5.44977784e-01 6.42196655e-01 -5.99292576e-01 -8.02203000e-01 3.84906717e-02 4.02261540e-02 -5.07352293e-01 -6.00891039e-02 -8.24557483e-01 6.91750705e-01 -4.22022343e-01 7.92922266e-03 -1.75354278e+00 2.97205895e-01 -8.00627410e-01 3.60192031e-01 1.92361736e+00 1.09773684e+00 -4.12632704e-01 2.79030472e-01 1.33314991e+00 -3.65168512e-01 -3.27168871e-03 -9.70153272e-01 -7.24787533e-01 2.72479206e-01 -6.25608385e-01 6.53118134e-01 1.10632157e+00 3.60768348e-01 3.71676654e-01 -1.80840597e-01 -3.44604939e-01 2.85118520e-01 -4.28347319e-01 8.11914444e-01 -1.00595200e+00 2.86446840e-01 -2.21914619e-01 1.10594645e-01 -3.61612350e-01 -7.94688016e-02 -8.23514104e-01 4.07939821e-01 -1.87583005e+00 -3.73419304e-03 -4.68556404e-01 4.24120575e-01 5.97307980e-01 -2.06355825e-01 -3.58520120e-01 6.90183118e-02 7.99602270e-02 -2.88083106e-01 4.22315449e-01 1.07981384e+00 1.14321455e-01 -1.50155485e-01 -2.05782682e-01 -9.92991030e-01 4.88673717e-01 6.33078814e-01 -7.68232286e-01 -1.66919634e-01 -2.47664109e-01 5.46311080e-01 -8.77205804e-02 2.28348285e-01 -8.52845967e-01 1.36624575e-01 -3.52740914e-01 1.28856286e-01 -5.64050794e-01 -3.84387523e-01 -6.17928326e-01 3.85520905e-01 1.23425528e-01 -8.97956908e-01 8.31211880e-02 1.61995590e-01 -3.23500410e-02 -3.68285924e-01 -7.60509551e-01 1.71411082e-01 -3.83193970e-01 -4.55579191e-01 -5.60188256e-02 -6.61464036e-01 7.36764193e-01 6.29783213e-01 -4.29811180e-02 -7.62447834e-01 -3.64115089e-01 -3.32312912e-01 1.91406116e-01 3.18958372e-01 6.34505630e-01 2.35269859e-01 -1.32431948e+00 -1.25297582e+00 -3.28033477e-01 5.66192567e-01 -1.09299414e-01 -2.07467213e-01 2.62828559e-01 -5.34632742e-01 7.05504179e-01 -5.44766746e-02 8.39181542e-02 -8.36765826e-01 2.13313222e-01 2.19778389e-01 -4.56515938e-01 -2.71497130e-01 3.43647987e-01 -5.46307027e-01 -4.74954367e-01 -5.33597581e-02 -3.34227622e-01 -1.93235785e-01 3.37219179e-01 5.80817938e-01 3.99937332e-01 4.38408375e-01 -4.76967752e-01 -9.67616122e-03 -2.96117604e-01 -1.83817998e-01 -7.86251843e-01 8.84908795e-01 1.67527944e-02 -8.51860270e-02 7.27034926e-01 7.26598203e-01 4.65487361e-01 -7.51855671e-01 -4.72884662e-02 4.29304659e-01 -3.37105721e-01 -1.11785218e-01 -1.39226317e+00 -2.71396786e-01 4.74796087e-01 7.75272548e-02 7.97543585e-01 4.04174268e-01 9.89143625e-02 4.65485454e-01 3.23245257e-01 4.06052470e-01 -1.66235960e+00 -2.94813037e-01 6.39813066e-01 1.57575405e+00 -1.22867858e+00 -2.30454337e-02 -2.56690443e-01 -8.96296322e-01 1.16999960e+00 6.83857381e-01 6.34414792e-01 3.01729679e-01 3.11079860e-01 3.12226862e-01 -3.76517266e-01 -1.01993942e+00 -7.99269080e-02 2.76566386e-01 7.44688153e-01 1.04629958e+00 6.43210113e-02 -1.01713729e+00 4.99962628e-01 -8.81864548e-01 9.05732587e-02 9.31236684e-01 6.85376883e-01 -3.41163337e-01 -1.24628484e+00 -3.26708734e-01 7.31499970e-01 -7.22821176e-01 -4.57094371e-01 -9.16122079e-01 1.09834361e+00 2.64428586e-01 1.28538334e+00 -8.99938587e-03 -7.38442242e-02 4.63032097e-01 1.46097705e-01 9.75908190e-02 -1.08019543e+00 -8.56657565e-01 -1.42434463e-01 1.19884515e+00 -3.32440659e-02 -5.03949404e-01 -6.96533680e-01 -1.11269379e+00 -1.28671214e-01 -2.93513060e-01 8.23922217e-01 8.63889694e-01 1.22886598e+00 1.57988191e-01 2.87714183e-01 4.10857461e-02 -1.67435169e-01 -4.58578885e-01 -1.53767812e+00 -4.42544132e-01 6.08612895e-01 -2.16530502e-01 -1.87728807e-01 -5.22522807e-01 3.90854150e-01]
[11.715166091918945, 9.017182350158691]
add9762b-3762-45fe-82e5-d9fdcc6a7f44
causally-aware-intraoperative-imputation-for
null
null
http://openaccess.thecvf.com//content/CVPR2023/html/Li_Causally-Aware_Intraoperative_Imputation_for_Overall_Survival_Time_Prediction_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Li_Causally-Aware_Intraoperative_Imputation_for_Overall_Survival_Time_Prediction_CVPR_2023_paper.pdf
Causally-Aware Intraoperative Imputation for Overall Survival Time Prediction
Previous efforts in vision community are mostly made on learning good representations from visual patterns. Beyond this, this paper emphasizes the high-level ability of causal reasoning. We thus present a case study of solving the challenging task of Overall Survival (OS) time in primary liver cancers. Critically, the prediction of OS time at the early stage remains challenging, due to the unobvious image patterns of reflecting the OS. To this end, we propose a causal inference system by leveraging the intraoperative attributes and the correlation among them, as an intermediate supervision to bridge the gap between the images and the final OS. Particularly, we build a causal graph, and train the images to estimate the intraoperative attributes for final OS prediction. We present a novel Causally-aware Intraoperative Imputation Model (CAWIM) that can sequentially predict each attribute using its parent nodes in the estimated causal graph. To determine the causal directions, we propose a splitting-voting mechanism, which votes for the direction for each pair of adjacent nodes among multiple predictions obtained via causal discovery from heterogeneity. The practicability and effectiveness of our method are demonstrated by the promising result on liver cancer dataset of 361 patients with long-term observations.
['Yanwei Fu', 'Xiuzhong Yao', 'Dingxia Liu', 'Jiejun Chen', 'Qiaole Dong', 'Lingjie Kong', 'Litian Liang', 'Xuelin Qian', 'Xiang Li']
2023-01-01
null
null
null
cvpr-2023-1
['causal-inference', 'causal-discovery', 'causal-inference']
['knowledge-base', 'knowledge-base', 'miscellaneous']
[ 1.72196582e-01 4.62741941e-01 -8.52885723e-01 -5.04554510e-01 -5.67308009e-01 -1.41586557e-01 6.07279062e-01 3.08165282e-01 1.39049321e-01 8.59986901e-01 8.35714817e-01 -5.35753369e-01 -5.75226247e-01 -6.14658535e-01 -8.02388012e-01 -9.34765160e-01 -3.21127027e-01 1.99016362e-01 -3.06574047e-01 2.80305207e-01 1.64422020e-01 2.07458854e-01 -9.46030021e-01 4.89182949e-01 9.32791054e-01 9.39385831e-01 2.10867692e-02 5.71931839e-01 1.16195023e-01 1.44319010e+00 -7.44594932e-02 -3.49435776e-01 -1.07248202e-01 -5.73786139e-01 -6.56609535e-01 -5.96937612e-02 9.78854671e-02 -3.85734916e-01 -6.29735947e-01 6.74235821e-01 1.76796481e-01 -6.73777163e-01 9.26008284e-01 -1.62660635e+00 -5.41673243e-01 9.54820693e-01 -6.41567051e-01 1.96541339e-01 3.84668894e-02 1.18497536e-01 9.63948071e-01 -7.31268227e-01 5.49198151e-01 7.98814535e-01 6.55329108e-01 2.98629582e-01 -1.27829599e+00 -7.62561321e-01 4.16384786e-01 5.17315090e-01 -1.09930170e+00 -2.49492660e-01 7.69156754e-01 -7.70808518e-01 3.18473518e-01 3.86235267e-01 8.05632412e-01 1.08091950e+00 8.79456699e-01 5.18172681e-01 1.25185633e+00 -4.23998713e-01 -2.94471513e-02 -1.46563724e-01 1.20498404e-01 1.06487107e+00 5.51382359e-03 5.15089929e-01 -8.89805138e-01 -3.24183404e-01 8.39737773e-01 3.74849141e-01 -5.42775929e-01 -4.10556138e-01 -1.66290331e+00 8.36446822e-01 9.45005357e-01 -4.28975224e-02 -5.29279888e-01 4.01186019e-01 -6.46696538e-02 7.70636350e-02 6.02175184e-02 6.34386092e-02 -3.90688211e-01 5.58159709e-01 -6.74697876e-01 -4.98350829e-01 6.69422626e-01 7.20082223e-01 3.90538514e-01 -4.95423138e-01 -5.05964577e-01 3.63809556e-01 7.23475695e-01 -5.09419478e-03 2.90034831e-01 -7.09149241e-01 -4.75151353e-02 6.79671049e-01 -7.23534077e-02 -9.17299747e-01 -5.48399031e-01 -5.29560924e-01 -1.29217839e+00 1.40488490e-01 3.38958621e-01 -3.20139378e-02 -9.34931517e-01 1.73067045e+00 1.95931911e-01 6.32584512e-01 -7.21820369e-02 8.26396048e-01 9.40996349e-01 2.32027680e-01 5.66825569e-01 -7.54912674e-01 1.31641984e+00 -7.98041284e-01 -7.88414240e-01 -1.27763942e-01 5.07959247e-01 -5.40473998e-01 6.03956938e-01 1.81010097e-01 -4.67355758e-01 -6.76912861e-03 -9.31769669e-01 2.13716671e-01 2.88147807e-01 5.27601719e-01 1.01656651e+00 2.45142207e-02 -8.13101530e-01 4.65688854e-01 -1.02007973e+00 -1.40137255e-01 5.49404383e-01 3.45112771e-01 -4.51268315e-01 -1.25675723e-01 -9.80368257e-01 8.16610813e-01 1.36754304e-01 4.12803590e-01 -1.19216740e+00 -1.10286462e+00 -5.71242213e-01 -1.38722241e-01 2.68088937e-01 -1.41677690e+00 8.25942934e-01 -1.03183508e+00 -1.03489649e+00 6.82280540e-01 -4.47309911e-01 -3.04894656e-01 5.96075475e-01 1.29337355e-01 -1.64956808e-01 -2.82972939e-02 7.82610290e-03 4.51634884e-01 7.09597170e-01 -1.59010112e+00 -5.43303609e-01 -6.12366676e-01 -1.10157259e-01 1.33089975e-01 -2.88824648e-01 -3.89120340e-01 -3.28732818e-01 -6.54206157e-01 2.61380106e-01 -9.27831829e-01 -6.30508244e-01 4.08882350e-01 -6.84983015e-01 -9.93055701e-02 3.13637584e-01 -7.58896708e-01 1.22718334e+00 -1.97852862e+00 2.16108456e-01 1.31679833e-01 7.03140557e-01 -7.21201420e-01 2.90168107e-01 5.68411350e-02 -4.38482374e-01 3.50410193e-02 -1.64513469e-01 -2.04279557e-01 -5.42193770e-01 4.05855566e-01 -3.27180296e-01 6.29330456e-01 1.45621195e-01 9.84804571e-01 -9.00128603e-01 -9.25285041e-01 8.82706866e-02 3.20554763e-01 -4.51121509e-01 5.13873875e-01 6.85722977e-02 8.48325133e-01 -5.09971619e-01 4.90244389e-01 3.40281069e-01 -7.32424080e-01 5.15089333e-01 -5.41048348e-01 7.06619676e-03 -1.16871454e-01 -6.06181622e-01 1.78025174e+00 -5.50844848e-01 3.37363333e-01 -2.59736925e-01 -7.74343967e-01 6.83542907e-01 2.14523599e-01 6.47753716e-01 -4.68701869e-01 -2.12061163e-02 -3.20960395e-02 3.72586362e-02 -5.77106357e-01 -2.86894977e-01 -4.48676497e-01 1.62821844e-01 2.03066707e-01 -1.39143124e-01 2.05014363e-01 -3.46062005e-01 3.60917300e-01 1.11304379e+00 -3.08790598e-02 6.82362258e-01 -2.03445151e-01 4.02323902e-01 3.76269281e-01 8.53477955e-01 6.71316862e-01 -1.71183720e-01 6.90953493e-01 1.10575402e+00 -7.18843162e-01 -6.15160167e-01 -1.24898005e+00 -3.44799727e-01 5.37247658e-01 3.95741880e-01 -2.54343480e-01 -1.53488487e-01 -1.07774210e+00 1.86282620e-02 7.93232679e-01 -1.23727393e+00 -2.88263261e-01 -4.92765546e-01 -1.19753373e+00 -1.90710519e-02 6.99047208e-01 -9.17536318e-02 -6.16463125e-01 -1.77396119e-01 7.01876776e-03 -3.78481716e-01 -6.86710656e-01 -8.87152702e-02 1.90542758e-01 -1.00617599e+00 -1.47941840e+00 -3.93220663e-01 -5.76205194e-01 1.04806781e+00 8.10816977e-03 1.08705842e+00 4.40471768e-01 -4.34501439e-01 5.67612313e-02 8.66508335e-02 -3.35062742e-01 -4.16507959e-01 -4.56489414e-01 -2.04146117e-01 1.27716571e-01 6.47739545e-02 -4.08148915e-01 -1.12672341e+00 3.98718446e-01 -2.76985466e-01 6.94159448e-01 9.91031408e-01 1.27530169e+00 8.04502070e-01 -1.61403015e-01 3.98928136e-01 -1.00311160e+00 -4.26405780e-02 -9.55213845e-01 -2.20809713e-01 4.67476040e-01 -1.07750571e+00 9.70634073e-02 4.20927435e-01 -1.75608948e-01 -1.23445857e+00 3.56800437e-01 3.19224983e-01 -4.58604574e-01 2.76153479e-02 8.27168226e-01 1.51720196e-01 3.04850996e-01 5.38429320e-01 7.84721505e-03 2.62465596e-01 -1.00699186e-01 2.82068282e-01 3.62655312e-01 4.89622176e-01 -2.75250107e-01 4.83865589e-01 6.39527261e-01 3.79290015e-01 -1.01527691e-01 -1.04877806e+00 -2.21683234e-01 -6.46833301e-01 -3.43721896e-01 7.98491538e-01 -1.13055265e+00 -9.16107297e-01 1.06972717e-01 -1.05240023e+00 -2.36846387e-01 1.90109108e-02 7.64606953e-01 -6.00752115e-01 7.62678832e-02 -5.89168131e-01 -4.29050028e-01 -9.74477753e-02 -1.28331625e+00 8.27869475e-01 9.54905450e-02 -1.55530095e-01 -1.02911663e+00 1.77835170e-02 3.80206883e-01 5.39188795e-02 4.02799845e-01 1.42402220e+00 -1.57165721e-01 -9.59074020e-01 -1.13644108e-01 -5.08155286e-01 -4.57716823e-01 1.05804555e-01 2.32215941e-01 -6.57453716e-01 -1.46290669e-02 -2.08182856e-01 5.61532862e-02 1.05402410e+00 8.43669593e-01 1.41521776e+00 -2.99959272e-01 -8.16554546e-01 6.59550667e-01 1.50841331e+00 -3.08096819e-02 4.25952673e-01 2.42162988e-01 8.49846900e-01 6.37036443e-01 6.33897960e-01 5.38147986e-01 8.20925415e-01 4.93584067e-01 9.62369919e-01 -4.00800556e-01 -4.76633817e-01 -6.36331081e-01 -1.06174424e-01 5.71105301e-01 -2.83721030e-01 -1.45622015e-01 -1.09781146e+00 4.55750227e-01 -2.16526628e+00 -5.25352836e-01 -5.81408560e-01 2.09185004e+00 8.11336875e-01 -1.85357451e-01 -4.82679367e-01 -3.25025350e-01 6.04369760e-01 -1.15287147e-01 -4.34400558e-01 2.23063603e-01 2.03687176e-01 -4.54756796e-01 4.87420470e-01 5.53287268e-01 -1.00707507e+00 3.07918400e-01 6.32146311e+00 4.50164735e-01 -8.81604433e-01 1.33929238e-01 1.25988591e+00 1.67969957e-01 -5.70181310e-01 3.69946212e-01 -4.38195020e-01 2.32330680e-01 5.79565585e-01 -2.49062166e-01 7.27551654e-02 4.36148196e-01 5.53714156e-01 -3.08450282e-01 -1.39443195e+00 6.87645137e-01 1.09126329e-01 -1.70396352e+00 1.75175697e-01 6.03991598e-02 6.34955347e-01 -2.64173239e-01 -1.55268744e-01 -1.79131672e-01 5.53818882e-01 -1.38750398e+00 4.17908490e-01 1.03452194e+00 9.46022987e-01 -3.63241613e-01 9.11692858e-01 4.00789917e-01 -7.69751370e-01 -3.56259257e-01 6.13071695e-02 8.09091851e-02 -5.13265617e-02 7.49525130e-01 -1.14032948e+00 7.53381073e-01 6.92146897e-01 1.05501485e+00 -4.20137823e-01 9.34592009e-01 -6.62352622e-01 6.06885850e-01 1.61187157e-01 2.86262900e-01 -3.20788532e-01 2.25375980e-01 1.87922910e-01 8.24651539e-01 3.38690609e-01 3.89029860e-01 -3.07654180e-02 7.95075238e-01 1.61113627e-02 2.17647273e-02 -3.75610292e-01 2.69646078e-01 1.79923296e-01 1.25906587e+00 -5.68955004e-01 -9.92921516e-02 -4.88584816e-01 5.58294296e-01 4.53758270e-01 2.55914897e-01 -8.99520457e-01 5.26207626e-01 3.25536251e-01 1.50316700e-01 -2.46620938e-01 4.00711857e-02 -1.03159511e+00 -1.11964428e+00 -2.75875032e-01 -3.83838534e-01 9.05964851e-01 -8.34511757e-01 -1.43605530e+00 3.57694864e-01 -1.79125309e-01 -1.49319720e+00 -8.23841840e-02 -4.06627685e-01 -6.98180795e-01 8.55579317e-01 -1.77715516e+00 -1.46354163e+00 -8.36733162e-01 5.81895649e-01 3.98071557e-01 9.05422121e-02 9.26418185e-01 -1.47725284e-01 -7.70850003e-01 3.43494564e-01 -3.68894249e-01 2.03687683e-01 8.52416873e-01 -1.22078097e+00 -5.27189434e-01 6.62983298e-01 -1.19975790e-01 5.67776084e-01 7.09694445e-01 -7.79764473e-01 -1.44310248e+00 -9.95775819e-01 9.54521298e-01 -5.98141074e-01 9.43588316e-01 1.41424656e-01 -5.71008682e-01 8.10550272e-01 1.68248579e-01 4.43967998e-01 9.23358500e-01 3.15061301e-01 -3.17825407e-01 -1.43469959e-01 -6.93760574e-01 5.66504180e-01 9.15544450e-01 3.58511880e-02 -5.90532124e-01 2.90904969e-01 5.04064441e-01 -2.88571596e-01 -1.11809409e+00 8.05228233e-01 6.65091157e-01 -1.02960086e+00 1.08197248e+00 -5.86649776e-01 1.22739065e+00 -4.98812258e-01 9.89355817e-02 -1.34812176e+00 -4.62625772e-01 -1.28983036e-01 -2.53273360e-02 8.60632479e-01 6.62412405e-01 -2.12034792e-01 8.94519031e-01 6.99464560e-01 -1.32415161e-01 -9.06533420e-01 -1.03608942e+00 4.49521691e-02 -1.47562042e-01 -2.79505849e-01 3.13764304e-01 1.13737261e+00 6.59531355e-02 2.79430121e-01 -5.35323739e-01 6.64597869e-01 8.42245162e-01 6.04506731e-01 4.54148293e-01 -1.14487374e+00 -3.58852953e-01 -2.17228532e-01 -3.51308078e-01 -5.38731337e-01 6.97707385e-02 -8.70025396e-01 1.39226504e-02 -1.77364409e+00 9.59571004e-01 -8.24629545e-01 -6.68118000e-01 7.75960505e-01 -5.94342470e-01 8.24497193e-02 -8.75225812e-02 6.63100302e-01 -2.13976696e-01 4.40978706e-01 1.40617597e+00 -2.45775342e-01 1.43772662e-01 -2.03394936e-03 -7.94560552e-01 9.13003325e-01 3.17593277e-01 -7.30993927e-01 -3.83049220e-01 -2.40186125e-01 1.93739206e-01 9.50796723e-01 7.70594716e-01 -3.30818534e-01 5.82726777e-01 -5.55686176e-01 7.85151482e-01 -4.59911287e-01 -3.42525281e-02 -9.29792762e-01 4.92011428e-01 8.43805313e-01 -5.29880345e-01 -1.68213665e-01 -3.28741223e-01 1.11475849e+00 -4.41909790e-01 1.78240672e-01 5.62424302e-01 -1.67047270e-02 -7.86678910e-01 5.62080860e-01 1.03136115e-01 -3.59887809e-01 1.33674479e+00 3.16589624e-02 -5.08369803e-01 -1.43390849e-01 -1.03200877e+00 4.22270060e-01 1.21259168e-01 3.07333976e-01 7.34239161e-01 -1.32149923e+00 -9.24013734e-01 1.14123218e-01 4.13142204e-01 -6.89750388e-02 5.91652632e-01 1.53050506e+00 -2.21145317e-01 3.80184688e-02 -5.58510274e-02 -7.86418498e-01 -1.16379559e+00 7.17541575e-01 3.57205510e-01 -3.55254620e-01 -6.45183861e-01 7.76904583e-01 8.04106057e-01 1.35305226e-01 1.39358327e-01 7.97533989e-02 -5.33266664e-01 1.17791578e-01 3.39015156e-01 1.08050257e-02 -3.80913205e-02 -2.19602644e-01 -4.78777796e-01 3.22943658e-01 7.01217353e-02 3.23979527e-01 1.44965672e+00 -1.66144714e-01 -4.33564067e-01 4.78434920e-01 8.53691936e-01 -1.68428719e-01 -1.57899511e+00 -1.51420668e-01 -1.56418577e-01 -6.25979006e-01 3.56836557e-01 -1.15566432e+00 -1.19409370e+00 6.00959182e-01 6.24959648e-01 -3.62752944e-01 1.20425153e+00 3.34073573e-01 1.85978457e-01 -3.82952601e-01 1.62434816e-01 -2.59170264e-01 2.40740716e-03 -1.94417626e-01 1.12938583e+00 -1.58563590e+00 1.79724336e-01 -8.21234643e-01 -7.37417936e-01 1.37215531e+00 5.04288912e-01 5.40071838e-02 7.81753659e-01 5.38092554e-01 2.48469606e-01 -2.91853309e-01 -1.14865696e+00 2.47937694e-01 3.72980535e-01 3.60497952e-01 5.00064731e-01 5.39978683e-01 -3.64762068e-01 6.66410804e-01 1.01119481e-01 2.52698332e-01 5.42234659e-01 3.64655793e-01 2.72849407e-02 -8.69872034e-01 -2.02034414e-01 7.30153084e-01 -4.05435473e-01 -2.52946258e-01 -2.08892897e-01 6.31873071e-01 5.84426075e-02 8.72518957e-01 2.22608019e-02 -3.75490695e-01 2.52774090e-01 -2.53723174e-01 2.46505514e-01 -2.78916419e-01 -1.20113440e-01 -9.08225402e-02 1.86214849e-01 -6.86516345e-01 -4.55373168e-01 -8.11077297e-01 -1.18357277e+00 3.03587988e-02 -9.20009091e-02 -1.37934819e-01 5.88275492e-01 9.57556546e-01 1.61532357e-01 7.46986032e-01 9.58901227e-01 -2.76513547e-01 -3.19178432e-01 -5.54812610e-01 -2.76381910e-01 3.11255544e-01 6.47954881e-01 -8.24413359e-01 -5.02369821e-01 3.21355790e-01]
[8.588251113891602, 5.538060188293457]
6216a043-cf80-4f2e-a441-af33faef3e19
enhancing-robustness-of-pre-trained-language
null
null
https://openreview.net/forum?id=3FIjaX458P
https://openreview.net/pdf?id=3FIjaX458P
Enhancing Robustness of Pre-trained Language Model with Lexical Simplification
For both human readers and pre-trained language models (PrLMs), lexical diversity may lead to confusion and inaccuracy when understanding the underlying semantic meanings of given sentences. By substituting complex words with simple alternatives, lexical simplification (LS) is a recognized method to reduce such lexical diversity. In this paper, we leverage a novel improved LS approach which can enhance robustness of PrLMs, resulting in improved performances in downstream tasks. A rule-based simplification process is applied to a given sentence. PrLMs are encouraged to predict the real label of the given sentence with auxiliary inputs from the simplified version. Using strong PrLMs (BERT and ELECTRA) as baselines, our approach can still further improve the performance in various text classification tasks.
['Anonymous']
2021-11-16
null
null
null
acl-arr-november-2021-11
['lexical-simplification']
['natural-language-processing']
[ 5.63163579e-01 4.06696230e-01 -9.62480828e-02 -6.03349209e-01 -6.86124504e-01 -3.39438438e-01 6.28353417e-01 5.29517293e-01 -7.15617657e-01 7.77268410e-01 5.61017990e-01 -3.10969055e-01 4.06122476e-01 -6.56511128e-01 -4.53077585e-01 -2.34770238e-01 7.52756715e-01 1.82515189e-01 4.51145172e-02 -5.04003167e-01 3.02439928e-01 1.28870383e-01 -1.26804101e+00 7.09910750e-01 1.31121409e+00 4.41898853e-01 5.56863308e-01 3.60691756e-01 -6.77221596e-01 8.84705722e-01 -7.90358961e-01 -8.23182285e-01 2.43025497e-02 -5.12098789e-01 -8.30762744e-01 -2.13850155e-01 1.51322827e-01 -5.71904555e-02 -1.69309407e-01 1.02810729e+00 4.59719121e-01 3.83167833e-01 7.66114414e-01 -6.52019203e-01 -6.74800694e-01 1.35016763e+00 -4.93736178e-01 1.46244630e-01 3.71347904e-01 -3.43158394e-02 1.13733828e+00 -1.03136790e+00 5.83422005e-01 1.78712118e+00 7.68302739e-01 6.49495125e-01 -1.39153743e+00 -6.54838920e-01 7.74214327e-01 2.50223398e-01 -1.31421053e+00 -6.47324979e-01 6.25635028e-01 1.74494125e-02 1.36570859e+00 3.31282437e-01 3.67926687e-01 1.18151665e+00 2.23397002e-01 9.21023011e-01 1.01450944e+00 -8.66105258e-01 -1.62572060e-02 2.83481598e-01 4.02448654e-01 3.38782191e-01 2.18218774e-01 -5.63794434e-01 -5.67184865e-01 5.03045879e-02 -1.30260751e-01 3.67968678e-02 -1.98525667e-01 3.04522485e-01 -9.47659850e-01 9.67299998e-01 4.75664496e-01 2.18412146e-01 -3.16560239e-01 -3.27092081e-01 4.74493593e-01 3.87952745e-01 6.35954261e-01 9.42686439e-01 -4.89038885e-01 8.18738714e-02 -9.15907979e-01 3.71630549e-01 7.48116016e-01 8.47635865e-01 5.36416829e-01 -2.17697188e-01 -5.22001863e-01 1.19252861e+00 2.07824335e-01 5.09096384e-01 6.34783983e-01 -7.83607721e-01 6.88687623e-01 6.99590504e-01 -1.29650429e-01 -8.93582344e-01 -5.32615781e-01 -6.12575650e-01 -8.10275853e-01 -2.50712633e-01 1.65000811e-01 7.07033649e-02 -8.22068810e-01 1.83329654e+00 2.05201611e-01 -3.52463275e-01 2.96649545e-01 4.38077569e-01 8.72606099e-01 8.02649796e-01 5.63047588e-01 -2.94521421e-01 1.17201746e+00 -1.12258351e+00 -8.40010643e-01 -6.48743331e-01 1.16487241e+00 -9.41135287e-01 1.53145874e+00 2.46658891e-01 -8.85703444e-01 -4.40338761e-01 -1.07341802e+00 -4.98163640e-01 -3.45848799e-01 -4.18324582e-02 2.47936428e-01 3.71708393e-01 -9.02166128e-01 6.60791337e-01 -5.00985920e-01 -4.25204962e-01 4.94749933e-01 8.50718282e-03 1.99621897e-02 -4.10632640e-01 -1.53518951e+00 1.30210817e+00 3.71940702e-01 -1.75571889e-01 -1.70738980e-01 -7.44514883e-01 -8.75294685e-01 1.64612278e-01 4.68221009e-01 -7.71737099e-01 1.48277080e+00 -9.69205260e-01 -1.49993682e+00 9.17065203e-01 -5.21856248e-01 -5.32425284e-01 3.73873681e-01 -3.79959524e-01 -2.76122004e-01 -2.37219945e-01 4.31660533e-01 8.48660052e-01 8.75131011e-01 -9.83153284e-01 -5.97842574e-01 -5.70401363e-02 5.15278019e-02 5.73836684e-01 -2.36795858e-01 1.04016565e-01 -5.98253310e-02 -9.83613491e-01 1.32929489e-01 -8.98966074e-01 -2.05950484e-01 -3.15261841e-01 -5.11278033e-01 -5.52598715e-01 3.35288405e-01 -9.15837646e-01 1.57804644e+00 -2.09247446e+00 1.68272406e-01 -9.59958881e-02 2.22102404e-01 5.65727711e-01 -3.83230716e-01 3.40138137e-01 1.95210353e-01 4.11159068e-01 -3.19731832e-01 -7.72648573e-01 -5.44807911e-02 3.17765355e-01 -5.63553393e-01 -1.42634049e-01 3.87020528e-01 1.14199233e+00 -8.46287191e-01 -4.04670566e-01 9.82660502e-02 1.81756780e-01 -5.24295211e-01 2.40708720e-02 -2.90801436e-01 1.56881660e-01 -1.37447283e-01 2.04825968e-01 5.39045572e-01 -1.06538087e-01 7.23663270e-02 4.29391861e-02 1.66261703e-01 1.12939644e+00 -7.87232399e-01 1.47816920e+00 -8.77250671e-01 6.12496436e-01 -4.13706183e-01 -7.36456275e-01 7.12722063e-01 -7.88250193e-02 -2.96089321e-01 -9.08456564e-01 6.90921843e-02 4.63218312e-04 2.72050261e-01 -4.04378980e-01 5.34003019e-01 -3.44995558e-01 -1.44626498e-01 6.97898567e-01 -2.85191447e-01 -1.87956393e-01 1.96929887e-01 4.04041767e-01 9.53080356e-01 -2.12865938e-02 7.41552353e-01 -2.55751312e-01 5.69789708e-01 -4.68692444e-02 6.10001624e-01 1.10231185e+00 -4.31848653e-02 3.56885970e-01 3.83088320e-01 -1.74911752e-01 -9.16040182e-01 -9.13522363e-01 -6.97724000e-02 1.43017864e+00 -8.07506889e-02 -7.72955596e-01 -5.98224580e-01 -7.89048910e-01 8.17650706e-02 1.61969614e+00 -3.36696148e-01 -4.71103966e-01 -6.38430595e-01 -6.47304356e-01 6.40187979e-01 4.63694185e-01 3.02915275e-01 -1.00926006e+00 -2.50732929e-01 3.60628456e-01 -4.87658054e-01 -1.10406554e+00 -4.32685852e-01 1.28457099e-01 -7.89248586e-01 -5.77648103e-01 -3.98730487e-01 -6.01022780e-01 6.39684737e-01 4.85671520e-01 1.21102583e+00 1.97615668e-01 3.96426320e-01 -4.54467982e-01 -5.35021782e-01 -7.40021467e-01 -9.36817288e-01 4.49823439e-01 -5.55341132e-02 -3.33432287e-01 5.49389005e-01 -1.48630500e-01 -1.81643456e-01 -4.89536598e-02 -8.25154543e-01 5.53376377e-01 5.67412019e-01 8.22075665e-01 3.48899126e-01 -1.95005089e-01 8.21771204e-01 -1.40026891e+00 9.68717396e-01 -3.16548258e-01 -2.37641372e-02 3.72129470e-01 -8.21369052e-01 4.16194439e-01 9.59993303e-01 -5.13286173e-01 -1.32461870e+00 -3.65614712e-01 -4.23254102e-01 1.56017095e-01 -9.20089521e-03 8.16613555e-01 -2.09904864e-01 4.02736366e-01 8.22277248e-01 3.40899155e-02 -1.18800007e-01 -7.33124077e-01 5.08174598e-01 8.43126237e-01 1.70014948e-01 -2.76975811e-01 4.12498355e-01 1.70464208e-03 -2.85259157e-01 -7.00664759e-01 -1.51685309e+00 -2.67518967e-01 -5.51497936e-01 2.00741470e-01 3.46837580e-01 -1.05110586e+00 -5.40820509e-02 4.26934630e-01 -1.50079262e+00 -1.54746488e-01 -1.39105678e-01 2.54763931e-01 9.40059870e-02 3.47253740e-01 -5.20751536e-01 -5.60263872e-01 -3.24125201e-01 -9.47474122e-01 9.68361616e-01 1.83770046e-01 -8.69195461e-01 -1.02880478e+00 -3.32649916e-01 3.18867236e-01 4.64585215e-01 -3.16597402e-01 1.45351291e+00 -9.59154487e-01 -8.07947107e-03 -2.07348868e-01 -9.23068747e-02 5.33056378e-01 2.27951795e-01 -7.22558424e-02 -1.00950348e+00 4.43149433e-02 1.78601548e-01 -2.81647712e-01 1.18016696e+00 2.78010458e-01 8.91386986e-01 -4.95711237e-01 -4.24089044e-01 3.83506298e-01 7.73139238e-01 -3.39821614e-02 4.09933984e-01 3.41379791e-01 7.90975392e-01 7.46595562e-01 5.18968523e-01 1.56982347e-01 6.62933469e-01 4.82820779e-01 -2.87559927e-01 -6.63203448e-02 -4.22288120e-01 -4.41041797e-01 5.30581117e-01 1.13826954e+00 5.56423426e-01 -4.18412119e-01 -7.97317684e-01 1.50011063e-01 -1.74381566e+00 -6.64049566e-01 -1.43937469e-01 1.90339518e+00 1.35911894e+00 4.48297292e-01 -3.70249718e-01 7.94767663e-02 7.71785021e-01 2.29146421e-01 -6.21094584e-01 -5.94496310e-01 -5.78450203e-01 1.42614454e-01 2.07785681e-01 7.45063245e-01 -9.15872335e-01 1.36290324e+00 6.32443619e+00 9.96475816e-01 -1.09091687e+00 1.54392451e-01 6.37540758e-01 -2.00719833e-01 -4.66668367e-01 -2.20936444e-02 -1.05948126e+00 3.88177186e-01 9.32348490e-01 -5.50289452e-01 4.58898395e-01 5.73721766e-01 4.28502411e-01 -2.38839954e-01 -1.18978369e+00 8.40343893e-01 3.16717684e-01 -1.10862899e+00 6.18348479e-01 -5.30272305e-01 7.09660530e-01 -5.86828999e-02 -1.13493845e-01 7.03331113e-01 2.46009976e-01 -9.99371827e-01 6.95013404e-01 4.90943909e-01 4.61266071e-01 -7.25505531e-01 8.43457997e-01 6.63596272e-01 -7.75941491e-01 1.61411718e-01 -5.02268434e-01 -5.75528026e-01 1.29529387e-01 5.81821024e-01 -9.25906837e-01 3.01398456e-01 2.77634144e-01 9.05114055e-01 -1.01866567e+00 5.03494561e-01 -7.66699255e-01 7.41094768e-01 -2.58537561e-01 -3.27912658e-01 5.11209629e-02 9.73668322e-02 5.80404460e-01 1.45199358e+00 -5.89333735e-02 1.03917144e-01 7.61136264e-02 7.82100081e-01 -3.88002813e-01 5.39516568e-01 -6.35753512e-01 -1.41260400e-01 6.50771618e-01 1.06541729e+00 -6.52909160e-01 -6.35703862e-01 -5.34436285e-01 1.07902551e+00 6.77884459e-01 3.14489633e-01 -4.85759377e-01 -4.90651160e-01 6.36598349e-01 -3.32158641e-03 6.81690276e-02 1.15527175e-01 -8.86247873e-01 -1.34311020e+00 -3.25063840e-02 -9.93596077e-01 4.01862919e-01 -7.52505898e-01 -1.46602833e+00 5.51847279e-01 -1.57070592e-01 -7.66606092e-01 -2.40252495e-01 -4.68031079e-01 -5.02787113e-01 1.15624666e+00 -1.59953606e+00 -9.02724802e-01 1.09841503e-01 5.13628533e-04 1.02762115e+00 -7.84897655e-02 7.93358028e-01 -4.45938297e-02 -5.86095810e-01 8.45453322e-01 3.14735249e-02 -3.26947793e-02 9.38458443e-01 -1.10248375e+00 7.17527032e-01 1.00291407e+00 7.72864372e-02 8.45963478e-01 8.11369717e-01 -8.54480505e-01 -6.49307430e-01 -1.37473524e+00 1.54910660e+00 -5.10684788e-01 4.58530217e-01 -5.27116537e-01 -1.39671075e+00 6.31518304e-01 2.12427944e-01 -8.50029290e-01 8.77117991e-01 2.96980768e-01 -3.21995318e-01 1.28440320e-01 -7.95836091e-01 1.11938667e+00 1.13173175e+00 -6.63126409e-01 -1.24318433e+00 3.69460106e-01 1.15482140e+00 -3.01024020e-01 -3.57449293e-01 1.50571689e-01 2.76849866e-01 -5.59451520e-01 7.01731086e-01 -8.26663792e-01 5.48373640e-01 -5.94836324e-02 4.47305664e-02 -1.76342237e+00 -4.05249983e-01 -3.68710995e-01 7.95029253e-02 1.36128390e+00 6.44254863e-01 -6.32232785e-01 3.01503595e-02 8.93648505e-01 -2.24145085e-01 -6.96935296e-01 -6.76007271e-01 -6.95449591e-01 3.98895562e-01 -6.74496949e-01 5.98627388e-01 8.18087935e-01 1.41078487e-01 9.73245144e-01 1.55136921e-02 -1.18497550e-01 2.15555653e-01 -1.74940109e-01 4.56526011e-01 -1.22244859e+00 -6.70801802e-03 -7.02733159e-01 5.43984212e-03 -1.20429349e+00 7.87780643e-01 -1.32537663e+00 1.10121109e-01 -1.48533285e+00 1.77307084e-01 -3.08641136e-01 -2.73042321e-01 5.54484963e-01 -8.52901340e-01 3.39926705e-02 4.82696116e-01 2.69043624e-01 -6.70455337e-01 7.33557642e-01 1.07417440e+00 -1.78390577e-01 -2.61494875e-01 6.79536238e-02 -1.11925423e+00 9.02750611e-01 7.48782814e-01 -8.64307880e-01 -2.81334609e-01 -6.83715701e-01 4.02274460e-01 -4.67582911e-01 1.08763333e-02 -5.22278428e-01 7.77570978e-02 -2.66764332e-02 2.54079670e-01 -3.54582459e-01 -8.47275481e-02 -2.60798395e-01 -2.46039674e-01 5.73332906e-01 -9.29271996e-01 1.94949299e-01 2.88533747e-01 2.96422005e-01 -1.46884233e-01 -6.30595088e-01 8.23172688e-01 -8.17073584e-02 -5.35567522e-01 -4.38573778e-01 -5.25999844e-01 2.98957109e-01 6.23074234e-01 7.16267899e-02 -3.12240630e-01 -4.23124760e-01 -5.74819565e-01 2.98782974e-01 4.60960656e-01 5.91004014e-01 4.58390921e-01 -1.12156641e+00 -8.75604272e-01 1.73689350e-01 1.50305048e-01 8.42475891e-02 4.30243555e-03 7.10859716e-01 -2.51018554e-01 5.61335623e-01 1.48664936e-01 -2.54342228e-01 -1.20343781e+00 4.45467561e-01 1.64821416e-01 -3.54361624e-01 -6.02389753e-01 9.58123505e-01 3.67817849e-01 -5.18649936e-01 1.81881547e-01 -6.26925886e-01 -3.27892512e-01 1.17983222e-01 6.06542766e-01 3.08242589e-01 2.25229084e-01 -6.21622324e-01 -3.37809533e-01 1.06194422e-01 -6.47642434e-01 7.68809542e-02 1.06967902e+00 -6.90442502e-01 -8.82284045e-02 6.97105587e-01 9.58065152e-01 1.27377078e-01 -9.20956492e-01 -7.07249939e-01 3.76601875e-01 -2.13377461e-01 1.23916164e-01 -1.08350968e+00 -4.42371219e-01 8.32311094e-01 -8.52367058e-02 -8.32618475e-02 9.91317570e-01 2.39002220e-02 8.90568376e-01 8.35285962e-01 -7.12987706e-02 -1.24992001e+00 -1.88548580e-01 8.97710860e-01 9.35944200e-01 -1.35456371e+00 -6.41018003e-02 -5.92774689e-01 -9.95536983e-01 1.04908979e+00 4.77834910e-01 2.26628825e-01 3.47238511e-01 1.09988533e-01 3.52617562e-01 3.45608890e-01 -1.06428719e+00 -1.43409029e-01 2.77173698e-01 4.37708557e-01 7.52562284e-01 4.33632471e-02 -6.24534905e-01 9.88631904e-01 -4.15966809e-01 -3.47788334e-01 5.84897578e-01 7.65255094e-01 -5.48729181e-01 -1.13896751e+00 -1.96823433e-01 8.10790300e-01 -2.11928830e-01 -7.96171546e-01 -5.47327101e-01 5.43410718e-01 -3.79595123e-02 1.14386797e+00 -1.15492895e-01 -1.93160549e-01 5.10660112e-01 5.54307461e-01 1.54246390e-01 -1.15536165e+00 -6.46886587e-01 -3.82483862e-02 2.14089468e-01 -3.16567332e-01 -1.96759656e-01 -8.82561564e-01 -1.52886117e+00 -3.01490307e-01 -2.15431407e-01 -1.19911015e-01 3.11894327e-01 1.38748908e+00 5.00161588e-01 5.23505986e-01 4.41543877e-01 -4.36352700e-01 -8.76388431e-01 -1.24843943e+00 -2.88295686e-01 7.29719639e-01 1.59015700e-01 -5.60031712e-01 -2.71870017e-01 7.43730664e-02]
[11.16778564453125, 9.200353622436523]
94a0779f-9501-4288-827a-5324a07312c2
open-domain-question-answering-over-virtual-1
null
null
https://openreview.net/forum?id=tKTRPNNc7A3
https://openreview.net/pdf?id=tKTRPNNc7A3
Open Domain Question Answering over Virtual Documents: A Unified Approach for Data and Text
Due to its potential for a universal interface over both data and text, data-to-text generation is becoming increasingly popular. However, few prior work has focused on its application to downstream tasks, e.g. using the converted data for grounding or reasoning. In this work, we bridge this gap and use the data-to-text method as a means for encoding structured knowledge for knowledge-intensive applications, i.e. open-domain question answering (ODQA). Specifically, we propose a verbalizer-retriever-reader framework for ODQA over data and text where verbalized tables from Wikipedia and graphs from Wikidata are used as augmented knowledge sources. We show that our Unified Data and Text QA, UDT-QA. can effectively benefit from the expanded knowledge index, leading to large gains over text-only baselines. Notably, our approach sets the single-model state-of-the-art on Natural Questions. Furthermore, our analyses indicate that verbalized knowledge is preferred for answer reasoning for both adapted and hot-swap settings.
['Anonymous']
2021-11-16
null
null
null
acl-arr-november-2021-11
['data-to-text-generation']
['natural-language-processing']
[ 4.52833949e-03 8.68156374e-01 -8.33984837e-02 -1.82731345e-01 -1.62402773e+00 -9.35836077e-01 6.87182665e-01 4.41888779e-01 -2.96584636e-01 9.21051860e-01 7.73265541e-01 -7.17151344e-01 -1.17828809e-01 -1.09888601e+00 -1.00411701e+00 8.69894400e-02 5.18783629e-01 1.20999968e+00 3.59106123e-01 -8.33251595e-01 -4.10571992e-02 -2.99357533e-01 -1.26196945e+00 7.72727072e-01 1.44797349e+00 7.44479120e-01 6.19481131e-02 5.00469744e-01 -8.59706819e-01 1.29793465e+00 -5.63225269e-01 -1.13309550e+00 5.99943437e-02 -4.07960892e-01 -1.68110979e+00 -4.38435882e-01 7.51946151e-01 -2.83132762e-01 -2.47216418e-01 5.99311829e-01 5.41883171e-01 1.70038834e-01 6.62398577e-01 -1.01606810e+00 -1.16534889e+00 1.24632597e+00 -1.59073453e-02 4.57469858e-02 7.90338993e-01 5.37927486e-02 1.52469110e+00 -8.54996741e-01 9.04261827e-01 1.46521080e+00 3.61987293e-01 6.29790545e-01 -1.20179200e+00 -3.83147523e-02 1.30245268e-01 5.27850688e-01 -9.43681777e-01 -4.96260971e-01 3.06416392e-01 -1.81741491e-01 1.41406536e+00 2.86279440e-01 1.71087682e-01 1.00579596e+00 -3.16932559e-01 1.07636368e+00 8.54860723e-01 -7.55059004e-01 -1.10063255e-01 1.14211932e-01 2.57194340e-01 7.04609156e-01 4.34707671e-01 -5.85732758e-01 -6.84627116e-01 4.45523672e-02 3.12948644e-01 -6.35534763e-01 -3.80739927e-01 -2.72107422e-01 -1.21580732e+00 8.41533303e-01 3.90841037e-01 -1.43590808e-01 -4.06468511e-01 5.84369823e-02 4.41632718e-01 5.90125740e-01 5.55313170e-01 1.05986881e+00 -9.41980422e-01 -4.07785982e-01 -5.89492619e-01 8.32270026e-01 1.29698884e+00 1.25192320e+00 6.00102186e-01 -4.82497603e-01 -7.05294371e-01 8.82372618e-01 1.82007149e-01 7.98312128e-01 1.30732894e-01 -1.09752524e+00 1.19373381e+00 8.43583286e-01 2.40427390e-01 -5.81161022e-01 -2.08765641e-01 -1.24644123e-01 -1.71852782e-01 -4.72471952e-01 7.89152920e-01 -2.67642915e-01 -7.86616862e-01 1.77988148e+00 4.26613003e-01 -4.04466182e-01 7.17300475e-01 5.78573942e-01 1.41722250e+00 6.84056997e-01 6.50460422e-02 1.92005128e-01 1.75046313e+00 -1.10599244e+00 -9.58224237e-01 -4.66093451e-01 1.05741894e+00 -4.89868939e-01 1.55444658e+00 1.30508050e-01 -1.28127003e+00 -1.61790952e-01 -6.28156424e-01 -8.34765613e-01 -7.55551040e-01 -1.99676260e-01 4.18359488e-01 3.34042519e-01 -1.07161081e+00 9.32338759e-02 -6.80389404e-01 -5.99474311e-01 3.12402785e-01 -2.54706949e-01 -8.81028697e-02 -6.15179300e-01 -1.61243582e+00 1.31182802e+00 4.59075987e-01 -9.99277756e-02 -4.85561818e-01 -1.02287686e+00 -1.03920805e+00 -8.76200665e-03 9.24097955e-01 -1.30009103e+00 1.77662861e+00 -7.65383095e-02 -1.35845900e+00 7.53956497e-01 -1.34936169e-01 -6.49064124e-01 1.98114291e-01 -6.28177106e-01 -2.45661184e-01 9.69326943e-02 4.01823729e-01 7.04078555e-01 3.19342792e-01 -1.14234209e+00 -4.88414139e-01 -3.95742625e-01 6.56837404e-01 5.02228796e-01 -1.98683366e-01 -7.41922259e-02 -5.52498102e-01 -4.85536575e-01 -5.89132383e-02 -5.97972572e-01 1.98561281e-01 -2.99733967e-01 -6.88786685e-01 -5.25899649e-01 3.46241981e-01 -1.22593069e+00 1.58676684e+00 -1.40410125e+00 3.68684411e-01 6.46879838e-04 1.74623936e-01 1.52043372e-01 -1.62163630e-01 9.68446732e-01 4.22906548e-01 2.23888323e-01 -2.60412723e-01 -1.89334482e-01 5.32255948e-01 4.65672672e-01 -7.34788358e-01 -5.64974964e-01 4.79515225e-01 1.55883777e+00 -1.03568709e+00 -7.41456330e-01 -3.44203979e-01 -4.21515666e-02 -7.37597704e-01 3.79985750e-01 -1.09852004e+00 1.48497194e-01 -5.74174941e-01 5.35324514e-01 1.82399854e-01 -4.47052240e-01 5.03348261e-02 -2.08418593e-01 2.79470950e-01 1.05971670e+00 -8.46267462e-01 2.14130211e+00 -7.46750295e-01 4.07539159e-01 -1.41688630e-01 -2.94209599e-01 5.36431551e-01 2.45987624e-01 -2.60609269e-01 -9.51522946e-01 -2.43267760e-01 2.98998982e-01 -1.32868513e-01 -7.13268757e-01 8.96215498e-01 9.30358544e-02 -2.19096258e-01 5.80353439e-01 1.73050508e-01 -6.08565629e-01 5.66479981e-01 1.01428521e+00 1.28480780e+00 4.47744310e-01 3.17366235e-02 -9.29832533e-02 2.47119218e-01 6.46012902e-01 -1.73169076e-01 8.24487984e-01 5.63722908e-01 1.48702592e-01 4.54703718e-01 2.70844489e-01 -6.86590672e-01 -1.07683027e+00 -5.61153702e-03 1.35085785e+00 -1.07346199e-01 -7.08528876e-01 -9.64155853e-01 -8.00384402e-01 2.62003303e-01 1.38646245e+00 -4.94349808e-01 -1.22486152e-01 -6.46266401e-01 -2.04589561e-01 9.49847877e-01 7.48982906e-01 4.41621393e-01 -1.02041769e+00 -3.40874046e-01 3.53492320e-01 -8.50438416e-01 -1.18283093e+00 -1.91591129e-01 3.96411084e-02 -7.41143823e-01 -1.04127300e+00 -4.68683302e-01 -5.09339809e-01 1.39100164e-01 6.22129887e-02 1.98929369e+00 -7.76441023e-02 2.66545683e-01 8.35334361e-01 -7.63549685e-01 -5.53041279e-01 -6.11361563e-01 4.45674539e-01 -5.68851173e-01 -5.20006597e-01 3.85471344e-01 -2.56298691e-01 -4.18661803e-01 -5.81294261e-02 -9.59182739e-01 3.42957109e-01 4.42885786e-01 6.35154188e-01 3.48975569e-01 -6.21617377e-01 7.93996036e-01 -1.14662731e+00 1.10343719e+00 -6.56151950e-01 -4.15264755e-01 7.37704456e-01 -5.90886176e-01 6.69657826e-01 4.31573898e-01 2.33368874e-01 -1.56004548e+00 -7.06812620e-01 -1.08994290e-01 1.63911149e-01 2.57570535e-01 1.16601002e+00 -2.98124909e-01 4.52908128e-01 9.89165783e-01 -8.18362758e-02 -1.23487137e-01 -5.70329010e-01 1.43387127e+00 6.14142120e-01 7.53052235e-01 -1.21010256e+00 8.02305579e-01 1.15392052e-01 -3.04692954e-01 -3.23443651e-01 -1.23542988e+00 -4.33849007e-01 -4.10506278e-01 7.41869360e-02 1.00285053e+00 -1.04657376e+00 -3.34987760e-01 1.17037311e-01 -1.42587507e+00 -6.61104560e-01 -5.41624546e-01 -1.83029115e-01 -4.99083191e-01 2.52206475e-01 -7.36072958e-01 -4.53845471e-01 -6.52281523e-01 -7.43717909e-01 1.19159877e+00 8.85788072e-03 -4.01461840e-01 -1.25894868e+00 2.57282227e-01 9.00941372e-01 4.11305100e-01 1.71495266e-02 1.54931653e+00 -1.00623310e+00 -8.99232209e-01 9.24448669e-02 -4.23858047e-01 5.47442958e-02 -1.15185559e-01 -3.71205002e-01 -9.15150821e-01 6.82191923e-02 -6.08454585e-01 -1.15077949e+00 6.90935194e-01 -1.10699587e-01 7.47333229e-01 -5.30499637e-01 -5.30014262e-02 1.78559408e-01 1.16017747e+00 -3.11488301e-01 7.28245080e-01 4.80820537e-01 7.38380790e-01 8.53468597e-01 7.25786924e-01 1.45136699e-01 1.30213451e+00 7.29689777e-01 2.85453767e-01 1.43173635e-01 -5.80278277e-01 -6.96317554e-01 1.36762664e-01 9.34148908e-01 2.63608158e-01 -5.65069735e-01 -1.26490951e+00 8.39298368e-01 -1.87953126e+00 -7.77765632e-01 -3.85252208e-01 1.83423638e+00 1.47558808e+00 -1.50047228e-01 -1.88509047e-01 -4.18227047e-01 8.40400979e-02 -1.86762959e-02 -4.77163315e-01 -2.16023549e-01 -2.68423826e-01 6.08033717e-01 1.70170218e-01 6.36516988e-01 -5.44924200e-01 1.15060282e+00 5.52062321e+00 8.38204324e-01 -2.98629433e-01 1.40837088e-01 9.11612511e-02 1.15986161e-01 -7.85034299e-01 7.89227039e-02 -8.84855211e-01 -5.09963520e-02 1.08922064e+00 -4.07969296e-01 4.37442809e-01 5.93766093e-01 -3.14768851e-01 -1.19487010e-01 -1.33872056e+00 6.83660090e-01 1.75282791e-01 -1.49338281e+00 6.53570831e-01 -2.92035043e-01 6.75616801e-01 -6.66674748e-02 -1.20280743e-01 9.65051293e-01 8.81110489e-01 -9.75799441e-01 8.30297112e-01 5.37841260e-01 8.31236601e-01 -4.23517644e-01 8.12563717e-01 3.00646454e-01 -1.08345222e+00 1.54997230e-01 -9.73145887e-02 7.05620423e-02 3.39854777e-01 1.82879701e-01 -9.66921926e-01 1.09922945e+00 5.03492653e-01 3.40840220e-01 -8.54925454e-01 5.39591908e-01 -6.00294113e-01 7.06961572e-01 -2.35764444e-01 -1.29422054e-01 2.14092791e-01 9.44533199e-02 2.95922965e-01 1.14510453e+00 1.19598992e-01 2.29123056e-01 1.14844069e-01 1.05177200e+00 -4.21349317e-01 2.52652407e-01 -5.38591146e-01 -1.65077522e-01 7.56080985e-01 9.27553296e-01 -2.67236698e-02 -6.42519474e-01 -6.14286959e-01 9.31888640e-01 8.49205792e-01 4.03197169e-01 -4.87306446e-01 -7.00517893e-01 3.63428742e-01 -4.51730080e-02 3.34112734e-01 5.52791581e-02 -2.25781694e-01 -1.34154713e+00 2.76796997e-01 -1.33633900e+00 9.22121823e-01 -1.25544822e+00 -1.46631014e+00 5.77910960e-01 4.07187790e-01 -6.67459369e-01 -7.86393225e-01 -7.00020134e-01 -1.91099674e-01 1.09880757e+00 -1.68788445e+00 -1.33231890e+00 -3.48414958e-01 7.04189301e-01 5.09987831e-01 1.18312635e-01 9.33040082e-01 6.60227686e-02 -2.03925923e-01 5.43405294e-01 4.12480831e-02 3.75361949e-01 8.63215208e-01 -1.75917375e+00 7.42335379e-01 9.23904419e-01 4.29543674e-01 8.50918829e-01 6.52365386e-01 -8.49628747e-01 -1.71692038e+00 -1.11782050e+00 1.08985364e+00 -1.35190296e+00 1.06003499e+00 -4.18783128e-01 -1.17782879e+00 9.48120534e-01 6.33178055e-01 -5.26454449e-01 6.03417158e-01 4.70771939e-01 -6.54279470e-01 7.60849789e-02 -7.98187137e-01 8.23018670e-01 1.06473386e+00 -7.52344370e-01 -1.27555716e+00 4.71705824e-01 1.37006378e+00 -9.02967215e-01 -1.04876471e+00 1.13850921e-01 9.31820050e-02 -4.06492025e-01 8.62836421e-01 -9.79992390e-01 7.35426307e-01 -2.83898920e-01 -3.58780712e-01 -1.63502336e+00 6.84375018e-02 -6.70976281e-01 -5.49657464e-01 1.41322219e+00 1.06988049e+00 -5.47041893e-01 4.81538206e-01 7.85575986e-01 -5.59754372e-01 -6.23403788e-01 -8.94307971e-01 -6.87247992e-01 4.04172778e-01 -5.06899416e-01 7.62266576e-01 7.89145410e-01 3.74323815e-01 8.45358610e-01 1.74598977e-01 5.71958497e-02 3.04185539e-01 1.57442793e-01 1.04530621e+00 -9.86346006e-01 -3.47956508e-01 -3.41756456e-02 3.24482381e-01 -1.45561826e+00 1.13058105e-01 -1.24704194e+00 5.12764715e-02 -2.45835876e+00 2.62854695e-02 -3.21070135e-01 2.76040643e-01 5.99659979e-01 -5.11572778e-01 -2.60071337e-01 2.17954382e-01 -1.31527007e-01 -9.03371036e-01 6.93814754e-01 1.40586782e+00 9.96650849e-03 1.27421925e-02 -5.09593308e-01 -1.11203635e+00 2.28228092e-01 4.50011611e-01 -1.42678618e-01 -8.00006568e-01 -1.05988848e+00 6.91217959e-01 3.15729350e-01 3.50620985e-01 -6.33058548e-01 3.42117637e-01 1.70703419e-02 -3.12554777e-01 -4.30070490e-01 3.56969327e-01 -4.77773160e-01 -4.55623567e-01 -1.01512820e-01 -6.49424374e-01 3.50993723e-01 4.64737713e-01 4.82073247e-01 -3.50662172e-01 -1.80750296e-01 1.36393122e-02 -2.10313797e-01 -6.47538066e-01 -2.41010152e-02 -8.34088847e-02 1.25480568e+00 2.90455937e-01 1.40351668e-01 -1.21226215e+00 -7.64840305e-01 -2.72012770e-01 6.60281003e-01 1.81062058e-01 3.75959426e-01 4.11631823e-01 -1.21861041e+00 -9.74536240e-01 -3.92683208e-01 6.97417915e-01 3.15561533e-01 1.21015511e-01 7.20527589e-01 -3.75830233e-01 9.26056921e-01 1.40181616e-01 -2.20525563e-01 -9.41192567e-01 4.28782016e-01 1.83411181e-01 -7.04923689e-01 -3.38649958e-01 8.84190738e-01 -2.39775732e-01 -8.58113050e-01 6.37364089e-02 -7.67563701e-01 -1.64492637e-01 1.31288916e-01 4.98980731e-01 3.66827190e-01 4.91217583e-01 -7.55937099e-02 -2.19703466e-02 7.17727020e-02 -2.18296900e-01 -4.33496088e-01 1.09550869e+00 -2.51155078e-01 -2.74547756e-01 3.20447862e-01 6.86442137e-01 1.73982129e-01 -6.85712457e-01 -6.41879618e-01 3.71921778e-01 -1.34515166e-01 -1.49855047e-01 -1.51436949e+00 -3.86724651e-01 6.91650271e-01 -2.06886098e-01 2.72468686e-01 8.21495533e-01 4.58757073e-01 9.72951472e-01 1.08125734e+00 4.52210188e-01 -8.16097140e-01 1.71313107e-01 1.05007064e+00 1.14540470e+00 -1.14784229e+00 -2.86753535e-01 -5.27856052e-01 -9.39490795e-01 7.72599638e-01 8.91622305e-01 5.99794388e-01 -4.50063385e-02 -1.39605314e-01 3.50501120e-01 -5.89713156e-01 -1.17874074e+00 -5.93208432e-01 6.06314898e-01 9.39317167e-01 5.38380682e-01 -1.88117102e-01 1.69197083e-01 7.32459486e-01 -6.34439349e-01 -1.79787949e-01 4.17774260e-01 1.06060135e+00 -3.65114152e-01 -1.03492963e+00 -2.01735049e-01 6.59285426e-01 -2.00032875e-01 -7.82159388e-01 -5.62545478e-01 9.73300695e-01 -3.43562871e-01 1.22355962e+00 -1.51804462e-01 8.34045559e-02 7.98254788e-01 5.68334341e-01 6.43850565e-01 -9.83196616e-01 -6.56201422e-01 -7.48967052e-01 9.51600194e-01 -4.90297526e-01 -1.47127226e-01 -4.19723570e-01 -1.34229386e+00 -3.01210821e-01 -2.57716417e-01 4.03596520e-01 2.44181916e-01 9.79454339e-01 6.45003736e-01 5.19816577e-01 -3.17678243e-01 1.16587877e-02 -7.43682146e-01 -1.12230849e+00 -1.70383036e-01 6.11533999e-01 7.81100616e-02 -5.21498084e-01 -1.93405021e-02 1.05807833e-01]
[10.792928695678711, 7.979024410247803]
013b84f8-2f16-4b8e-9a53-e14652108a37
forecasting-crude-oil-price-using-event
2111.09111
null
https://arxiv.org/abs/2111.09111v1
https://arxiv.org/pdf/2111.09111v1.pdf
Forecasting Crude Oil Price Using Event Extraction
Research on crude oil price forecasting has attracted tremendous attention from scholars and policymakers due to its significant effect on the global economy. Besides supply and demand, crude oil prices are largely influenced by various factors, such as economic development, financial markets, conflicts, wars, and political events. Most previous research treats crude oil price forecasting as a time series or econometric variable prediction problem. Although recently there have been researches considering the effects of real-time news events, most of these works mainly use raw news headlines or topic models to extract text features without profoundly exploring the event information. In this study, a novel crude oil price forecasting framework, AGESL, is proposed to deal with this problem. In our approach, an open domain event extraction algorithm is utilized to extract underlying related events, and a text sentiment analysis algorithm is used to extract sentiment from massive news. Then a deep neural network integrating the news event features, sentimental features, and historical price features is built to predict future crude oil prices. Empirical experiments are performed on West Texas Intermediate (WTI) crude oil price data, and the results show that our approach obtains superior performance compared with several benchmark methods.
['Xiaohong Huang', 'Jiangwei Liu']
2021-11-14
null
null
null
null
['topic-models']
['natural-language-processing']
[-3.74092042e-01 -4.59938109e-01 -2.56253392e-01 -3.32156181e-01 -4.35521632e-01 -3.80881488e-01 8.78436625e-01 1.21207476e-01 -3.63378555e-01 6.43771291e-01 7.72555351e-01 -3.76550734e-01 7.94583857e-02 -1.36869621e+00 -3.17909688e-01 -7.52530634e-01 -3.61484855e-01 7.64469579e-02 -5.79973981e-02 -3.68649364e-01 5.92032790e-01 3.10365826e-01 -1.12264776e+00 -1.10321030e-01 6.85022056e-01 1.21217382e+00 5.68967722e-02 1.34395152e-01 -5.41408777e-01 1.09329402e+00 -7.06893146e-01 -3.33299756e-01 3.59969646e-01 -1.56484529e-01 -4.34569925e-01 -1.16008602e-01 -6.88666463e-01 -5.58749318e-01 -5.21041036e-01 1.29412282e+00 4.42759693e-01 -3.07516754e-02 4.06444788e-01 -8.41994464e-01 -8.17268252e-01 1.10825980e+00 -9.12314534e-01 5.94972789e-01 -1.30991144e-02 -1.45963311e-01 1.18183720e+00 -1.12159562e+00 2.95634419e-01 1.06995881e+00 3.58991146e-01 -2.57259846e-01 -6.11884177e-01 -1.06172025e+00 3.64510745e-01 2.44023681e-01 -8.33048284e-01 -2.35845610e-01 1.20507479e+00 -4.78769481e-01 8.59469295e-01 -3.16749290e-02 9.05121088e-01 8.13765049e-01 9.15924191e-01 8.23827028e-01 1.03478098e+00 -1.38656065e-01 2.47785076e-01 -6.36437386e-02 1.00442301e-02 -1.22980498e-01 1.35834053e-01 3.14093113e-01 -2.53532290e-01 -1.23367764e-01 4.15529966e-01 5.61474919e-01 -1.83281317e-01 4.12666559e-01 -1.17508268e+00 1.20188630e+00 2.99550235e-01 4.39806491e-01 -8.68201494e-01 -3.38161021e-01 7.26626039e-01 4.66174066e-01 1.22398424e+00 2.72512496e-01 -7.61232972e-01 -1.08601674e-01 -9.33280110e-01 7.45371103e-01 1.02765179e+00 5.43147326e-01 3.41000229e-01 3.68188709e-01 2.42213503e-01 4.85478431e-01 2.42920250e-01 8.24875534e-01 8.51958454e-01 -6.86677918e-02 6.31426334e-01 5.27995050e-01 2.24137172e-01 -1.64103556e+00 -5.44205368e-01 -5.20411551e-01 -8.32040191e-01 5.21903634e-02 2.75553968e-02 -6.05860531e-01 -4.86486942e-01 1.13661528e+00 3.42354961e-02 1.13181792e-01 4.20941472e-01 8.23571086e-01 9.06596959e-01 1.30586183e+00 2.83589005e-01 -6.03358448e-01 1.50373721e+00 -4.83752012e-01 -1.00684702e+00 2.93113906e-02 6.91915751e-02 -9.75663543e-01 3.84559005e-01 3.84608388e-01 -8.50195885e-01 -2.28592992e-01 -8.04277360e-01 2.68566757e-01 -7.76060939e-01 -1.28368230e-03 6.28956437e-01 6.55010715e-02 -1.94875091e-01 4.56660658e-01 -6.66398525e-01 2.06582814e-01 2.28760689e-01 2.58488525e-02 2.07850918e-01 4.19356704e-01 -1.81582904e+00 9.24532354e-01 6.86508715e-01 4.42944646e-01 -5.08107901e-01 -5.45100093e-01 -8.20211351e-01 3.46545696e-01 4.19118613e-01 -2.80010123e-02 1.17643297e+00 -6.24093711e-01 -1.34468043e+00 2.74554808e-02 -7.45814815e-02 -6.35186851e-01 1.88163429e-01 -1.85338303e-01 -9.63699937e-01 -1.98047355e-01 3.29375640e-02 -1.71931133e-01 5.97572982e-01 -5.44562459e-01 -1.26452804e+00 -4.47630197e-01 -8.01470876e-02 4.26784083e-02 -3.72861743e-01 5.06695092e-01 1.61974534e-01 -1.15551972e+00 -5.49670495e-02 -5.06480753e-01 -3.79163235e-01 -1.14995468e+00 -1.55068308e-01 -6.53330028e-01 9.68057871e-01 -1.04060531e+00 1.38984537e+00 -2.06221414e+00 -2.90922876e-02 3.74512166e-01 1.92489892e-01 -1.45657137e-01 2.96765089e-01 5.62510848e-01 -2.73645371e-01 5.28603569e-02 -3.36452238e-02 4.19285715e-01 1.71761483e-01 1.11332022e-01 -1.28839743e+00 3.35092425e-01 3.18794578e-01 8.21368158e-01 -7.91082919e-01 -2.09732965e-01 1.65892899e-01 2.65261799e-01 -9.25048441e-02 9.56701264e-02 -4.43286151e-01 7.34543055e-02 -9.66091692e-01 7.04288065e-01 7.19372392e-01 -1.84520304e-01 -8.64880010e-02 -2.53907919e-01 -7.41329253e-01 1.99577004e-01 -8.49682748e-01 1.04872429e+00 -2.84458399e-01 4.31202501e-01 -4.06787157e-01 -1.16737902e+00 1.16799664e+00 6.08393729e-01 6.85052454e-01 -8.69554758e-01 5.20082951e-01 3.67150307e-01 -5.11720590e-02 -5.87877989e-01 8.14848959e-01 -2.84808636e-01 -2.77246594e-01 3.07484657e-01 -3.37468356e-01 1.30634144e-01 4.17416632e-01 1.12662315e-02 5.34375846e-01 4.40741256e-02 3.74625832e-01 -1.82856575e-01 4.37069625e-01 2.84516454e-01 9.98689950e-01 -7.53345154e-03 -1.99923310e-02 1.15104266e-01 6.11026466e-01 -1.12383592e+00 -1.02076459e+00 -4.43919122e-01 -3.12674344e-01 9.22468901e-01 8.71498436e-02 -3.60222101e-01 -1.89582512e-01 -4.33292150e-01 -1.04054278e-02 6.83266819e-01 -6.09932899e-01 3.51838261e-01 -6.47870958e-01 -1.37150681e+00 -4.65785488e-02 3.39109153e-01 7.50264347e-01 -1.23245907e+00 -4.52758878e-01 7.54143894e-01 -1.72730699e-01 -8.31740081e-01 -8.48213434e-02 -4.09755968e-02 -6.18006051e-01 -8.69095922e-01 -9.14477348e-01 -6.21791244e-01 2.02174485e-01 -7.06920447e-03 9.86755431e-01 -5.04358768e-01 1.68655112e-01 -5.20356715e-01 -4.60409194e-01 -1.13398361e+00 -2.79773623e-02 1.59510985e-01 -2.11390182e-02 -7.69982785e-02 9.56248879e-01 -5.17008722e-01 -6.56491995e-01 -2.17554539e-01 -9.06460643e-01 -3.16018797e-02 7.29202032e-01 7.04570532e-01 1.89717680e-01 8.95696998e-01 8.82913470e-01 -7.45619059e-01 8.18754077e-01 -9.84566450e-01 -9.99546409e-01 -7.75172859e-02 -8.55882704e-01 -1.28167704e-01 7.52382576e-01 -1.19409546e-01 -1.33729315e+00 -2.84465104e-01 -1.10348821e-01 -1.00288659e-01 -1.69630032e-02 1.43416429e+00 2.22915873e-01 5.87015510e-01 -6.06267415e-02 4.97398376e-01 -2.37664476e-01 -5.14350474e-01 -5.76973110e-02 6.64388001e-01 5.30031443e-01 -2.89881527e-01 1.16686964e+00 3.16145569e-01 -3.75878304e-01 -4.65402842e-01 -1.02551675e+00 -1.12476669e-01 -1.81837678e-01 -1.06224991e-01 8.30483973e-01 -1.30147874e+00 -5.66330016e-01 6.41484559e-01 -1.11320329e+00 5.12711346e-01 4.22264040e-02 8.09252799e-01 2.27594748e-01 6.85100779e-02 -7.93370605e-01 -8.09556246e-01 -4.83941495e-01 -1.17888832e+00 5.53454518e-01 6.34635925e-01 -2.54517123e-02 -1.10210812e+00 2.06127465e-01 -2.27254361e-01 7.11644471e-01 5.41106403e-01 7.59743869e-01 -1.00947213e+00 -3.47798675e-01 -3.05683702e-01 -2.60936826e-01 9.02260765e-02 4.66031075e-01 4.71211299e-02 -5.97966254e-01 -1.35549232e-01 3.58752608e-01 -1.51013769e-02 7.72572756e-01 5.15298903e-01 8.09134185e-01 -6.33103728e-01 -1.40316114e-01 3.95479769e-01 1.31712282e+00 7.90816367e-01 3.73277605e-01 9.06938076e-01 3.34875584e-01 4.81463104e-01 5.40613115e-01 9.61528003e-01 5.96073985e-01 -9.98759344e-02 1.98676407e-01 -1.98157296e-01 8.47814858e-01 -2.11220458e-02 4.28319752e-01 1.17928088e+00 -3.35409194e-01 7.50178099e-02 -8.16487253e-01 5.53358197e-01 -1.64204311e+00 -1.23955655e+00 1.44125551e-01 1.37877989e+00 8.24982285e-01 3.74292910e-01 -3.82358655e-02 1.19934797e-01 4.78382230e-01 7.23786294e-01 -4.67184305e-01 -1.06228694e-01 -3.29385459e-01 1.57455713e-01 6.90884054e-01 -4.99978177e-02 -1.34880602e+00 7.31144845e-01 5.41714764e+00 7.18185961e-01 -1.43483007e+00 -2.22524434e-01 8.60495687e-01 1.93035826e-02 -4.26765651e-01 -1.61120389e-02 -8.26127172e-01 9.49823797e-01 8.46522868e-01 -7.06539690e-01 1.68234274e-01 9.43859637e-01 6.17172241e-01 1.38551816e-01 -4.11691934e-01 6.04839206e-01 -1.76186845e-01 -1.47846842e+00 9.50469002e-02 2.12306514e-01 5.80633223e-01 2.74844736e-01 1.27023220e-01 3.43502194e-01 6.88880086e-01 -7.08569646e-01 6.31704628e-01 6.20801210e-01 1.19751267e-01 -1.28902340e+00 1.18941665e+00 2.10910529e-01 -1.60716248e+00 -2.24193707e-01 -4.92310107e-01 -4.35611159e-01 3.61472309e-01 9.96202409e-01 -2.36239836e-01 7.87796021e-01 8.11778903e-01 1.19522035e+00 -1.29765689e-01 5.27667642e-01 -1.03246719e-01 7.97348797e-01 -1.64509341e-01 -1.67627841e-01 6.85854673e-01 -5.61049938e-01 3.13085884e-01 9.45988953e-01 4.82981294e-01 4.69379485e-01 4.36687917e-01 5.03726721e-01 -1.35830175e-02 4.36151445e-01 -5.26895225e-01 -2.24262357e-01 3.71777207e-01 1.08639681e+00 -5.85597217e-01 -5.88529706e-01 -1.01558650e+00 1.55765012e-01 -2.18146816e-01 4.07915771e-01 -7.51009166e-01 -9.59593475e-01 6.66062057e-01 -3.62298548e-01 2.92329967e-01 -2.52954304e-01 -1.83168337e-01 -1.52098513e+00 -1.10173851e-01 -7.37385690e-01 3.57081622e-01 -3.93316329e-01 -1.43604124e+00 4.64820296e-01 -4.94376943e-02 -1.31271923e+00 -3.84326130e-01 -4.63021904e-01 -1.05309105e+00 1.06871235e+00 -2.14307022e+00 -6.62536442e-01 2.78107524e-01 3.54076803e-01 8.58260334e-01 -7.19214737e-01 4.49191898e-01 5.26148640e-02 -8.37068319e-01 -3.70647073e-01 4.03216124e-01 8.17764699e-01 3.41943979e-01 -1.05800962e+00 7.00169384e-01 9.12019193e-01 -1.73056498e-01 5.64323425e-01 7.50265956e-01 -8.66725564e-01 -1.50505674e+00 -1.16403437e+00 1.34079957e+00 6.22437894e-02 1.28771007e+00 1.02162339e-01 -8.70446146e-01 7.77508974e-01 6.10402405e-01 -1.59187332e-01 6.06821716e-01 -4.36967500e-02 -1.37455061e-01 -2.60878325e-01 -6.90831482e-01 4.40519929e-01 3.09787858e-02 -6.68283030e-02 -1.09191573e+00 2.55149990e-01 7.79446661e-01 -3.41152489e-01 -1.21460879e+00 4.60427105e-01 5.44989586e-01 -4.38541144e-01 7.40153313e-01 -4.75159466e-01 9.27604437e-01 -2.12715834e-01 9.22978222e-02 -1.59891891e+00 -4.87679273e-01 -3.29009324e-01 1.02684423e-01 1.20624328e+00 4.01587784e-01 -8.81931067e-01 4.43645835e-01 6.81426108e-01 1.33603856e-01 -5.64901233e-01 -5.52740932e-01 -2.93245405e-01 2.14868754e-01 -2.86054313e-01 1.24219406e+00 1.30237782e+00 2.04077229e-01 2.98333466e-01 -5.77402771e-01 3.55071306e-01 3.46199811e-01 8.38474214e-01 6.07407331e-01 -1.24031782e+00 6.17005005e-02 -6.20675623e-01 1.26887262e-02 -7.49516487e-01 1.41868025e-01 -6.05253279e-01 -3.32792878e-01 -1.40824139e+00 1.48264132e-02 -1.34477645e-01 -5.88136852e-01 2.95032799e-01 -1.54192552e-01 -2.61311322e-01 1.10419858e-02 5.24789512e-01 -1.91342935e-03 6.92177474e-01 1.04989767e+00 -3.46016377e-01 -2.16552377e-01 -1.43140748e-01 -5.63168883e-01 1.04624903e+00 9.59989488e-01 -2.51812011e-01 4.07545753e-02 -3.33318293e-01 7.54176199e-01 2.11423799e-01 -1.43301383e-01 -6.55599117e-01 2.79560477e-01 -4.37454015e-01 7.70484269e-01 -1.21209967e+00 -3.07003409e-01 -8.49379718e-01 1.94433242e-01 4.25612092e-01 -1.84252709e-01 5.92373729e-01 1.75476202e-03 4.73984748e-01 -8.43795061e-01 7.01268539e-02 1.61949024e-01 -4.01173800e-01 -9.72914100e-01 5.76312423e-01 -6.94940150e-01 -9.20836180e-02 8.54914844e-01 2.99540877e-01 -2.96091795e-01 -1.13481186e-01 -5.59517503e-01 5.57399929e-01 -2.43804708e-01 5.71510911e-01 4.94080633e-01 -1.34011579e+00 -1.28781831e+00 2.04223678e-01 -8.33961442e-02 8.73444825e-02 2.20695846e-02 5.62003911e-01 -4.21633214e-01 4.69968408e-01 1.34675443e-01 -1.04062825e-01 -6.82061851e-01 5.09684324e-01 -2.16976389e-01 -5.18236518e-01 -8.61084878e-01 4.10144717e-01 7.95023143e-02 1.24808632e-01 -9.49258208e-02 -5.25449514e-01 -7.92963505e-01 7.62197793e-01 7.88994551e-01 -4.49370630e-02 -1.52831286e-01 -6.74936414e-01 9.46126953e-02 5.00263929e-01 -4.30315912e-01 1.36383548e-01 1.91282976e+00 -1.26199067e-01 -3.04394394e-01 5.81957042e-01 9.84742522e-01 1.88370600e-01 -8.84429932e-01 -6.53898954e-01 4.75211978e-01 -3.37619096e-01 3.51187646e-01 -5.46949446e-01 -1.50172043e+00 5.08144557e-01 8.49749073e-02 7.15071142e-01 1.16923499e+00 -1.73552781e-01 1.34880054e+00 3.23115885e-01 2.30242267e-01 -1.17809689e+00 -5.61004341e-01 7.19327331e-01 8.42059731e-01 -1.22761083e+00 1.35974899e-01 1.48187250e-01 -4.14870232e-01 1.40578473e+00 -1.70607381e-02 -4.18996423e-01 1.16811490e+00 5.22097290e-01 1.73986778e-01 -2.15250671e-01 -7.79613733e-01 1.16994068e-01 -9.21426117e-02 -1.48978278e-01 6.16125882e-01 1.43353820e-01 -4.61500704e-01 1.02741802e+00 -6.99919224e-01 8.00455287e-02 3.42774451e-01 9.61288035e-01 -6.42513156e-01 -8.58941674e-01 -4.44662571e-01 7.51823366e-01 -1.15551341e+00 -3.04532170e-01 1.99574277e-01 8.06866229e-01 -1.29148632e-01 7.39990890e-01 4.16633219e-01 -3.36140245e-01 2.53449559e-01 -1.47896903e-02 -5.45190871e-01 -2.02956796e-01 -6.56926334e-01 4.74972069e-01 -7.75075555e-02 -2.13993058e-01 -6.26333773e-01 -8.10594618e-01 -1.25202143e+00 -5.48383236e-01 -2.86338896e-01 5.70406258e-01 6.30212784e-01 1.22188544e+00 3.68026011e-02 6.24402821e-01 1.28066695e+00 -7.68855929e-01 -5.40399790e-01 -1.04672754e+00 -8.66364181e-01 3.03742737e-01 2.81358302e-01 -4.93106008e-01 -5.21713376e-01 1.23783283e-01]
[4.420652389526367, 4.2763800621032715]
678fb346-a9a0-4c60-920e-ce7a31bbffb4
artificial-color-constancy-via-googlenet-with
1811.08456
null
https://arxiv.org/abs/1811.08456v2
https://arxiv.org/pdf/1811.08456v2.pdf
Artificial Color Constancy via GoogLeNet with Angular Loss Function
Color Constancy is the ability of the human visual system to perceive colors unchanged independently of the illumination. Giving a machine this feature will be beneficial in many fields where chromatic information is used. Particularly, it significantly improves scene understanding and object recognition. In this paper, we propose transfer learning-based algorithm, which has two main features: accuracy higher than many state-of-the-art algorithms and simplicity of implementation. Despite the fact that GoogLeNet was used in the experiments, given approach may be applied to any CNN. Additionally, we discuss design of a new loss function oriented specifically to this problem, and propose a few the most suitable options.
['Oleksii Sidorov']
2018-11-20
null
null
null
null
['color-constancy']
['computer-vision']
[ 5.03537850e-03 -5.00522137e-01 -8.85299221e-02 -4.23331022e-01 -3.18547860e-02 -4.67326164e-01 5.57179928e-01 -3.03572983e-01 -6.40250027e-01 8.65176499e-01 -5.70556045e-01 -3.12129378e-01 4.81350161e-02 -6.60258174e-01 -5.96019506e-01 -8.07550311e-01 1.14856593e-01 -1.32655606e-01 3.69419664e-01 -2.92547107e-01 4.59897757e-01 8.43563855e-01 -1.80004275e+00 8.98709223e-02 9.07557368e-01 1.21266592e+00 3.25431287e-01 5.16265392e-01 -2.38146245e-01 7.82267153e-01 -5.67837238e-01 -3.31347317e-01 4.38607782e-01 -6.27096415e-01 -6.39217138e-01 1.67258009e-02 7.21374512e-01 1.37952762e-02 3.46264802e-02 1.22042727e+00 2.90899694e-01 4.00017530e-01 6.31091595e-01 -1.39493823e+00 -9.60468709e-01 -1.58926964e-01 -5.50662279e-01 2.37883776e-01 1.74679130e-01 7.74253309e-02 8.49391103e-01 -8.12808216e-01 4.21839714e-01 9.84307885e-01 5.34776628e-01 6.48215473e-01 -9.73471344e-01 -5.25267065e-01 2.19204769e-01 7.53287256e-01 -1.18703568e+00 -1.55648785e-02 1.01002121e+00 -3.04062605e-01 7.68551886e-01 4.30136025e-01 8.51209700e-01 7.08146572e-01 2.61990607e-01 6.83849871e-01 1.69178343e+00 -6.83779538e-01 2.73342878e-01 4.31451917e-01 -2.29808226e-01 7.27687836e-01 1.86238289e-01 6.49278983e-02 -5.19496620e-01 2.99622118e-01 7.30195999e-01 -8.56356323e-02 -3.98931116e-01 -5.98826766e-01 -9.34549570e-01 6.32125735e-01 1.03650320e+00 3.39291632e-01 -1.28081918e-01 1.91919580e-01 2.51396224e-02 3.14527661e-01 3.78351837e-01 5.12994766e-01 -4.71215039e-01 7.44533837e-02 -7.03814685e-01 -1.04088716e-01 4.61031795e-01 7.14206874e-01 9.96019185e-01 2.73778439e-01 1.14055075e-01 7.89417684e-01 1.84779435e-01 2.63580501e-01 4.37936276e-01 -7.69546509e-01 -1.28242835e-01 5.08101046e-01 4.42419052e-02 -8.04966748e-01 -4.33011502e-01 -3.63574147e-01 -7.88517952e-01 9.42086577e-01 4.49930310e-01 1.61145136e-01 -1.15045285e+00 1.62977219e+00 1.00615479e-01 8.75665322e-02 -2.11512014e-01 1.24003899e+00 7.92338848e-01 4.54511583e-01 7.30586413e-04 1.15240000e-01 1.15486813e+00 -1.05424881e+00 -6.03510976e-01 -1.45860344e-01 -4.85857539e-02 -1.06189239e+00 1.34032798e+00 6.71659529e-01 -7.06668615e-01 -7.66175091e-01 -1.20890701e+00 -1.81075171e-01 -8.31176877e-01 2.40218967e-01 1.02812243e+00 1.04570651e+00 -1.29379404e+00 6.25143647e-01 -3.73982102e-01 -6.64420187e-01 3.40328783e-01 2.34465554e-01 -2.82128990e-01 -1.90937102e-01 -8.80271554e-01 1.35815120e+00 4.87166137e-01 1.98036686e-01 -5.90582728e-01 -2.99603581e-01 -5.32795072e-01 -2.86560394e-02 1.14853740e-01 -6.44327939e-01 1.09581757e+00 -1.46598983e+00 -1.77067685e+00 9.31225955e-01 -2.18644828e-01 -2.30301365e-01 6.73884511e-01 -2.08291307e-01 -5.53415120e-01 5.44887781e-02 -3.48908454e-01 7.28982866e-01 9.78874743e-01 -1.29667604e+00 -5.86919844e-01 -7.28551000e-02 2.46307895e-01 2.18714535e-01 -3.77693504e-01 -1.89066559e-01 -5.58638275e-01 -3.31546128e-01 3.97396274e-02 -8.44297230e-01 -1.50533412e-02 4.93897647e-01 -1.82052001e-01 -2.19234750e-01 8.57960880e-01 -4.44533467e-01 6.59666181e-01 -2.23911929e+00 -1.80630371e-01 2.42833331e-01 -1.02124482e-01 3.62310231e-01 -1.70202732e-01 2.40808964e-01 -2.24263251e-01 -5.96133210e-02 -2.73347139e-01 -1.34237334e-01 -2.41311952e-01 4.02424671e-02 -2.92547569e-02 7.15266228e-01 2.84886748e-01 8.13963056e-01 -6.96587503e-01 -3.28960747e-01 6.05204582e-01 5.73327303e-01 -2.07858384e-01 1.68106407e-01 -7.65368938e-02 4.81131405e-01 -7.99776092e-02 5.71937323e-01 9.87105489e-01 -1.65535603e-02 -1.81448936e-01 -3.08281273e-01 -4.14277107e-01 -9.62383449e-02 -1.14171410e+00 1.54998028e+00 -3.93240243e-01 1.11720073e+00 -1.69846609e-01 -8.71140778e-01 8.66621077e-01 -1.65479049e-01 2.52775013e-01 -9.28386152e-01 8.29799622e-02 1.14522271e-01 1.38154507e-01 -3.92670155e-01 4.43855822e-01 -2.27872983e-01 6.79033816e-01 6.14841841e-02 5.57199419e-02 -2.98696518e-01 2.50748515e-01 -9.04275998e-02 4.70730454e-01 3.71241570e-01 4.46666896e-01 -3.32616121e-01 6.52086914e-01 1.96208656e-02 4.57019120e-01 4.92633671e-01 -4.67882991e-01 5.41933477e-01 8.77069682e-02 -6.08945251e-01 -8.49507391e-01 -1.00563884e+00 -2.26145461e-01 1.15106153e+00 4.98259097e-01 1.05543151e-01 -5.06939173e-01 -2.31976300e-01 -1.34943753e-01 5.91812730e-01 -8.14552963e-01 -2.02828515e-02 -1.82118341e-01 -6.22871697e-01 1.98373467e-01 4.15777415e-01 8.99592102e-01 -1.17424619e+00 -8.53372931e-01 -2.57230967e-01 7.81989172e-02 -9.29990292e-01 -1.38776451e-01 2.39053652e-01 -8.81265402e-01 -1.30225027e+00 -8.10383797e-01 -8.76362443e-01 5.36190033e-01 6.45344436e-01 1.06338680e+00 1.93233520e-01 -4.49967355e-01 3.61360669e-01 -3.66197228e-01 -6.73530996e-01 5.92723079e-02 -1.25961944e-01 -2.89567322e-01 2.12491706e-01 5.26346803e-01 -6.94203302e-02 -7.11600363e-01 1.32172005e-02 -8.66923094e-01 5.26311025e-02 6.22571409e-01 6.51471078e-01 4.50661302e-01 4.24143150e-02 1.44690678e-01 -9.69273150e-01 5.26270747e-01 1.51819345e-02 -6.72990263e-01 3.57088059e-01 -8.34345520e-01 -2.01934785e-01 7.18487382e-01 -2.40531608e-01 -1.22954261e+00 2.29477286e-01 1.21949419e-01 -2.44677857e-01 -2.50291795e-01 2.45075017e-01 -1.59789339e-01 -6.84185207e-01 6.34813726e-01 1.28177017e-01 -1.40962094e-01 -3.75742197e-01 4.87523824e-01 3.17277730e-01 5.14641821e-01 -2.19309390e-01 7.90956795e-01 5.66240609e-01 2.33658686e-01 -1.06119323e+00 -5.23058355e-01 -6.15103543e-01 -6.16371036e-01 -5.36329865e-01 8.85870099e-01 -6.91926897e-01 -8.00773680e-01 6.83147728e-01 -1.07112348e+00 -1.77588508e-01 1.32537438e-02 4.42110062e-01 -6.41223609e-01 1.57221705e-01 -2.77347475e-01 -8.86906445e-01 -9.04904120e-03 -9.63966548e-01 3.63165349e-01 7.44857788e-01 3.89957368e-01 -1.21607006e+00 3.07544470e-02 -2.08630309e-01 6.90124035e-01 2.69380748e-01 8.09604883e-01 -9.09481123e-02 -5.87773919e-01 7.83645362e-02 -5.76331139e-01 7.29466617e-01 3.67901057e-01 3.47266108e-01 -1.49052763e+00 -2.18676388e-01 -1.12758420e-01 -2.56542921e-01 1.17186320e+00 5.49447954e-01 1.44098961e+00 2.17988431e-01 -4.89227213e-02 7.52434671e-01 1.96423090e+00 3.82612854e-01 8.68127882e-01 7.14568377e-01 6.16975129e-01 5.77137351e-01 5.15863299e-01 1.41400412e-01 1.49898067e-01 4.70053792e-01 8.14384043e-01 -6.70207977e-01 -4.04357612e-01 9.40780789e-02 4.33071367e-02 3.33477736e-01 -3.82867545e-01 -2.56497152e-02 -6.82003856e-01 3.10588926e-01 -1.60726595e+00 -9.41620588e-01 -3.40484679e-01 2.18936825e+00 6.38135314e-01 4.35040221e-02 1.83109313e-01 1.36353523e-01 7.35948145e-01 4.37461175e-02 -5.67661703e-01 -6.90643907e-01 -5.08232117e-01 3.08130622e-01 6.13803804e-01 3.37320179e-01 -1.14499855e+00 1.03940940e+00 6.85399914e+00 5.55809736e-01 -1.63165474e+00 -6.73300177e-02 5.22261024e-01 3.24667245e-01 -1.18680507e-01 -1.05005160e-01 -2.44022369e-01 2.40905136e-01 3.86577129e-01 -6.69242069e-02 7.62099385e-01 8.62874627e-01 -2.72130650e-02 -4.26751643e-01 -1.08270538e+00 1.25375700e+00 2.79895067e-01 -1.06275833e+00 -4.21696641e-02 -3.53311032e-01 7.90732265e-01 3.64703801e-03 5.49581885e-01 -3.98695134e-02 -1.91136867e-01 -1.08645868e+00 6.48787677e-01 5.97654104e-01 7.86855996e-01 -7.95671284e-01 5.44552505e-01 -7.47177973e-02 -1.03067768e+00 -5.16598462e-04 -6.87882304e-01 -2.46982053e-01 -2.58050472e-01 6.11049056e-01 -7.34627128e-01 5.24338067e-01 9.76444066e-01 6.57712460e-01 -9.10740852e-01 1.78543901e+00 -3.44141930e-01 3.62180680e-01 -7.59223253e-02 -4.38417643e-01 3.16637337e-01 -3.94105643e-01 8.88386667e-02 1.34854841e+00 2.38204435e-01 -2.01559246e-01 -9.98607725e-02 9.85499263e-01 4.77987379e-02 1.93757474e-01 -6.87384546e-01 2.73139089e-01 2.06518963e-01 1.43880427e+00 -8.92962754e-01 -2.08088845e-01 -6.73208416e-01 1.28895092e+00 3.13787431e-01 6.52604520e-01 -7.31301486e-01 -7.22599983e-01 6.38997078e-01 -1.88833743e-01 3.41542900e-01 -2.67493725e-01 -5.46142340e-01 -9.81170416e-01 -4.86284345e-02 -6.20948434e-01 1.01470232e-01 -1.14107299e+00 -1.30995154e+00 7.36587226e-01 -1.74861908e-01 -1.56045198e+00 1.57617018e-01 -1.34444582e+00 -7.30635703e-01 1.01590359e+00 -2.14313912e+00 -1.04230738e+00 -6.70984387e-01 8.56981814e-01 3.96176696e-01 -8.04370567e-02 7.51410604e-01 2.90186137e-01 -2.77872503e-01 3.96381348e-01 7.39308819e-02 2.54344218e-03 1.12292206e+00 -1.53103876e+00 1.75175831e-01 1.07052910e+00 2.91223347e-01 5.63925385e-01 8.33181500e-01 -9.47006792e-03 -1.18628883e+00 -9.15278435e-01 5.04111707e-01 -1.58457398e-01 3.65045637e-01 -1.76084206e-01 -7.62983382e-01 3.56632859e-01 5.22879362e-01 1.39809204e-02 6.41640604e-01 1.98310763e-01 -5.12630641e-01 -3.88215542e-01 -1.12151575e+00 5.65774202e-01 5.91499627e-01 -5.46929538e-01 -4.21596259e-01 1.69732019e-01 2.92552054e-01 -4.14541215e-01 -2.40757808e-01 1.03377655e-01 6.09869540e-01 -1.39129853e+00 6.65316880e-01 -5.06424546e-01 1.48073390e-01 -4.82767105e-01 -1.29963905e-01 -1.64925373e+00 -5.43986499e-01 -2.45191798e-01 1.60506964e-01 9.49598908e-01 3.58406305e-01 -7.77563334e-01 6.32173300e-01 5.53676367e-01 -6.77866936e-02 -3.31979364e-01 -8.79895031e-01 -9.72808242e-01 8.82952437e-02 -4.27103341e-01 3.70152473e-01 9.76732433e-01 -2.84371495e-01 8.99883732e-02 -4.89571661e-01 8.94356370e-02 5.85535884e-01 1.56449899e-01 6.10749006e-01 -1.36526787e+00 2.01473553e-02 -5.64127922e-01 -5.89562595e-01 -7.17355609e-01 1.35465795e-02 -6.50648475e-01 6.04417734e-02 -1.56399822e+00 1.71027049e-01 -3.78946453e-01 -7.44638085e-01 5.20962119e-01 -1.76527739e-01 7.52617359e-01 5.12804925e-01 -1.36046354e-02 -4.57218677e-01 5.35992205e-01 1.47824776e+00 -2.01310307e-01 -1.09908089e-01 9.87072755e-03 -5.88082910e-01 6.95482552e-01 1.28826821e+00 -1.15841120e-01 -3.36553514e-01 -4.79011744e-01 1.60189942e-01 -7.87730932e-01 4.30740386e-01 -1.18777788e+00 2.63153136e-01 -2.55134225e-01 7.36708999e-01 -3.01191628e-01 5.51381290e-01 -1.00403321e+00 -1.60912007e-01 5.43168545e-01 -2.02323478e-02 1.47757649e-01 3.61438185e-01 3.16117078e-01 -3.78184885e-01 -2.40222022e-01 1.25087869e+00 -1.93798125e-01 -1.45403051e+00 1.87131986e-01 -1.37160450e-01 -2.76094466e-01 1.12044024e+00 -5.27180791e-01 -4.23938006e-01 -4.16171193e-01 -2.87875742e-01 -2.70045877e-01 5.96089602e-01 4.94570553e-01 6.54359281e-01 -1.34814084e+00 -4.53538120e-01 2.71975785e-01 3.52336258e-01 -5.06657243e-01 1.13024386e-02 6.39088988e-01 -8.80136013e-01 5.10528386e-01 -9.29179788e-01 -4.96785581e-01 -1.22482848e+00 7.26307571e-01 4.65979904e-01 4.59768623e-01 -3.99309337e-01 9.09634173e-01 1.40208185e-01 -2.23034859e-01 2.85484195e-01 -4.49250340e-01 -3.81634027e-01 -2.90803432e-01 5.24764538e-01 4.14449781e-01 2.75121391e-01 -3.77571940e-01 -4.88402784e-01 7.62626946e-01 1.06148899e-01 2.27939915e-02 1.10908353e+00 -8.39323923e-02 -3.39852571e-01 7.44245350e-01 1.14382660e+00 -2.09591582e-01 -1.29247046e+00 -1.53619060e-02 -1.78216979e-01 -8.72386992e-01 1.70798108e-01 -1.02492595e+00 -1.19514716e+00 1.13391459e+00 1.16408038e+00 3.18812728e-01 1.58525491e+00 -3.59481543e-01 2.38160923e-01 4.37659323e-01 3.11163753e-01 -1.17212987e+00 9.16932151e-02 4.10137236e-01 7.10603893e-01 -1.41116488e+00 4.40874547e-02 -3.66802871e-01 -7.77976453e-01 1.36258912e+00 8.93720150e-01 -2.92080939e-01 5.64140260e-01 -1.77358910e-01 4.26776737e-01 1.66904137e-01 -4.20127630e-01 -5.41914582e-01 6.24876142e-01 1.05625057e+00 7.60344744e-01 1.16876923e-02 -3.65571707e-01 -2.52172351e-01 -1.20584898e-01 -6.02607504e-02 5.83374500e-01 7.23582268e-01 -6.36566877e-01 -1.07644355e+00 -3.53256434e-01 2.45070800e-01 -2.35719725e-01 -1.05730660e-01 -6.51763439e-01 9.64065790e-01 3.31917971e-01 9.92629647e-01 -5.11747524e-02 -2.10339084e-01 2.28584468e-01 -2.11047336e-01 7.99374282e-01 -2.78228998e-01 -2.26193383e-01 -1.49108738e-01 -3.65125746e-01 -6.59486115e-01 -8.46082270e-01 -2.82461613e-01 -1.01319683e+00 -3.88004899e-01 -1.67443827e-01 -6.02710955e-02 9.97746944e-01 6.54739678e-01 -5.40460423e-02 4.26262766e-01 6.50505960e-01 -8.92262101e-01 -9.84223261e-02 -8.70145559e-01 -8.77859473e-01 4.39731210e-01 4.32033211e-01 -7.76397347e-01 -2.78989673e-01 6.77514747e-02]
[10.37661075592041, -2.489915132522583]
0301ecb9-45bd-4dcb-a920-2475e17da4d5
augmenting-neural-response-generation-with
1811.01063
null
https://arxiv.org/abs/1811.01063v2
https://arxiv.org/pdf/1811.01063v2.pdf
Augmenting Neural Response Generation with Context-Aware Topical Attention
Sequence-to-Sequence (Seq2Seq) models have witnessed a notable success in generating natural conversational exchanges. Notwithstanding the syntactically well-formed responses generated by these neural network models, they are prone to be acontextual, short and generic. In this work, we introduce a Topical Hierarchical Recurrent Encoder Decoder (THRED), a novel, fully data-driven, multi-turn response generation system intended to produce contextual and topic-aware responses. Our model is built upon the basic Seq2Seq model by augmenting it with a hierarchical joint attention mechanism that incorporates topical concepts and previous interactions into the response generation. To train our model, we provide a clean and high-quality conversational dataset mined from Reddit comments. We evaluate THRED on two novel automated metrics, dubbed Semantic Similarity and Response Echo Index, as well as with human evaluation. Our experiments demonstrate that the proposed model is able to generate more diverse and contextually relevant responses compared to the strong baselines.
['Osmar Zaiane', 'Nouha Dziri', 'Ehsan Kamalloo', 'Kory W. Mathewson']
2018-11-02
augmenting-neural-response-generation-with-1
https://aclanthology.org/W19-4103
https://aclanthology.org/W19-4103.pdf
ws-2019-8
['open-domain-dialog']
['natural-language-processing']
[ 5.24143934e-01 4.15004641e-01 2.23528758e-01 -7.27570832e-01 -1.31208181e+00 -6.03216410e-01 1.12676144e+00 -1.55145526e-01 -1.90623134e-01 1.22605586e+00 1.11177826e+00 -4.05688062e-02 2.63666362e-01 -6.45854175e-01 -3.52290481e-01 -3.34902942e-01 3.80100489e-01 8.01121473e-01 -6.65505007e-02 -9.27252948e-01 4.48747009e-01 -1.78090364e-01 -1.34648550e+00 1.06909013e+00 1.04631412e+00 5.65603375e-01 1.77743003e-01 1.06838572e+00 -1.83330476e-01 1.27150118e+00 -9.85311568e-01 -6.98896646e-01 -3.19993228e-01 -1.07432830e+00 -1.32047987e+00 -1.40764296e-01 1.90161139e-01 -2.20373526e-01 -2.08565399e-01 2.83655524e-01 8.52952778e-01 4.03560430e-01 5.93641579e-01 -8.45488131e-01 -6.97145522e-01 1.01155782e+00 5.66936173e-02 -2.45991368e-02 1.07259858e+00 2.30374381e-01 1.22980201e+00 -9.91653681e-01 9.03303623e-01 1.52944505e+00 5.57471931e-01 1.05019855e+00 -1.25128329e+00 -3.49707246e-01 -2.34503355e-02 -1.74415231e-01 -6.96321011e-01 -5.51740885e-01 6.99635923e-01 -2.18676224e-01 1.17154777e+00 4.67154592e-01 7.49229416e-02 1.99362171e+00 -7.58709833e-02 9.98387694e-01 1.17960763e+00 -3.80280018e-01 -2.69690212e-02 2.01984107e-01 -1.13968357e-01 5.94182983e-02 -5.74829996e-01 -8.33208412e-02 -8.37469697e-01 -1.91067174e-01 3.67558748e-01 -3.60746175e-01 -3.12351137e-01 4.41817969e-01 -1.23825932e+00 9.04038012e-01 3.68295491e-01 1.86507598e-01 -6.90456450e-01 -9.76448804e-02 6.12562776e-01 5.14188170e-01 7.80525088e-01 8.00876558e-01 -3.14203054e-01 -5.22228956e-01 -6.14352345e-01 8.02927554e-01 1.27444351e+00 9.19350147e-01 5.59809506e-01 5.10028861e-02 -9.01159108e-01 1.27931547e+00 -1.60428628e-01 3.46169233e-01 5.80757558e-01 -8.94870102e-01 6.93188071e-01 5.29263854e-01 3.26169401e-01 -9.72733796e-01 -2.37430573e-01 -1.60499617e-01 -9.52102721e-01 -5.49892783e-01 1.06906466e-01 -6.33191288e-01 -3.08469206e-01 1.79932272e+00 4.45436649e-02 -1.97534427e-01 4.36325669e-01 8.95891666e-01 1.26357067e+00 9.26970899e-01 1.29968092e-01 -1.01970993e-01 9.89518046e-01 -1.32671213e+00 -7.70148814e-01 -1.39680848e-01 5.70202589e-01 -8.55239034e-01 1.14132023e+00 1.02579162e-01 -1.47757590e+00 -6.82797194e-01 -5.22179723e-01 -1.39560133e-01 -3.33287641e-02 -1.70701638e-01 4.17707771e-01 1.59712717e-01 -1.25455105e+00 3.96196485e-01 -8.00889656e-02 -4.08376455e-01 -1.68220401e-01 3.22967134e-02 -2.58414984e-01 1.37560755e-01 -1.66360724e+00 9.22824979e-01 3.41836847e-02 -9.59690008e-03 -8.04049194e-01 -5.50508499e-01 -8.19172740e-01 -1.07942104e-01 2.41322219e-01 -9.10179496e-01 1.90265548e+00 -1.04527307e+00 -2.06249452e+00 7.45537698e-01 -2.72315800e-01 -5.64783633e-01 5.58022439e-01 -2.43550524e-01 -2.28337586e-01 1.61170661e-01 -9.86055285e-03 8.83015275e-01 4.23612028e-01 -1.03690159e+00 -3.85653794e-01 1.85134828e-01 2.69198000e-01 4.75181103e-01 -4.14371304e-02 3.17131430e-01 6.84709623e-02 -8.49256873e-01 -6.57765031e-01 -9.06316578e-01 -4.16978538e-01 -1.02684462e+00 -5.19429743e-01 -6.35544777e-01 2.43708387e-01 -7.29941070e-01 1.15766466e+00 -1.67296541e+00 3.76213670e-01 -2.66392022e-01 -9.32334214e-02 2.81033933e-01 -5.83778501e-01 1.27051568e+00 1.71035647e-01 1.09104365e-01 -2.72639126e-01 -5.64433753e-01 1.85827702e-01 -2.76326891e-02 -5.11613905e-01 -3.40143472e-01 4.57288474e-01 1.20864296e+00 -1.13464117e+00 -1.36961147e-01 -1.43824533e-01 4.51287895e-01 -7.81609476e-01 1.00259304e+00 -6.23599887e-01 6.79091454e-01 -4.57008839e-01 9.91292000e-02 2.04233617e-01 -2.03174070e-01 2.66376764e-01 3.73725623e-01 -6.04549609e-02 1.06228280e+00 -4.02002603e-01 1.81727421e+00 -8.87305498e-01 4.66149092e-01 1.19403377e-03 -4.73044336e-01 1.30716193e+00 5.77061474e-01 1.38778329e-01 -8.43758881e-01 -6.10799566e-02 2.38649786e-01 -2.27054238e-01 -6.28960073e-01 1.13596833e+00 -1.37366340e-01 -6.67288959e-01 9.67545092e-01 1.35286778e-01 -2.85493135e-01 1.67822585e-01 6.34016573e-01 1.16894245e+00 1.60904840e-01 1.83487847e-01 -8.33486766e-02 7.17684865e-01 -2.52643805e-02 3.08658004e-01 9.22116160e-01 2.37493649e-01 8.62973154e-01 5.00433207e-01 -2.65205860e-01 -1.01138639e+00 -5.94316542e-01 4.37804043e-01 1.43703938e+00 -2.38980934e-01 -4.33953434e-01 -9.87849712e-01 -7.22127914e-01 -3.50157082e-01 7.43210733e-01 -4.73040193e-01 1.69208348e-02 -7.17912436e-01 -4.40982550e-01 6.75806344e-01 4.17423785e-01 3.92662376e-01 -1.65730476e+00 -1.50169060e-01 6.55083239e-01 -9.35159326e-01 -1.15102124e+00 -7.37757206e-01 -3.33947808e-01 -3.26217115e-01 -6.58646286e-01 -7.83774078e-01 -7.25389123e-01 1.94136545e-01 1.72014892e-01 1.55942464e+00 -1.63616315e-02 6.64138570e-02 2.18106404e-01 -9.25561011e-01 -3.01477939e-01 -1.00943553e+00 5.45247555e-01 -2.26905078e-01 2.01756895e-01 3.60846192e-01 -5.51864803e-01 -5.73390186e-01 2.68640757e-01 -7.44807780e-01 3.94453615e-01 5.12195826e-01 1.05353689e+00 -1.02236763e-01 -1.03239143e+00 1.38688111e+00 -1.27356684e+00 1.48551273e+00 -6.49412096e-01 1.76386535e-01 1.43723279e-01 -2.24742845e-01 -1.48911902e-03 8.63560617e-01 -4.30002436e-02 -1.60850143e+00 -3.72766584e-01 -4.65276033e-01 3.40779662e-01 -3.56043160e-01 4.13991362e-01 9.13314447e-02 4.63886887e-01 9.00843561e-01 2.46192560e-01 -9.22737792e-02 -4.96526033e-01 5.09320855e-01 1.23776782e+00 5.68888903e-01 -7.11857259e-01 2.66586602e-01 -1.13122731e-01 -7.57554591e-01 -6.19767010e-01 -8.85397375e-01 -5.15296757e-01 -3.23136985e-01 -3.35043162e-01 7.95799673e-01 -9.27205682e-01 -8.00484240e-01 4.67154831e-01 -1.67705786e+00 -5.92889965e-01 -6.99115470e-02 1.04089148e-01 -7.95131445e-01 1.22233123e-01 -1.08800590e+00 -9.17124569e-01 -8.29760671e-01 -7.10616529e-01 1.08693647e+00 1.41132936e-01 -8.41431439e-01 -1.01024520e+00 4.70394969e-01 6.41071558e-01 7.95961559e-01 3.60685676e-01 6.23855472e-01 -9.94761407e-01 -3.73932123e-01 2.12388635e-02 -6.86104298e-02 3.06375504e-01 -1.88475490e-01 -3.00051302e-01 -9.56145346e-01 -4.87752818e-02 -1.70518175e-01 -1.00199223e+00 7.92340636e-01 -2.04884425e-01 8.40236843e-01 -8.81345689e-01 6.59493282e-02 8.94391835e-02 9.95286167e-01 6.52931333e-02 6.75638258e-01 -4.54734601e-02 3.28476250e-01 1.11467850e+00 5.43676794e-01 5.35073519e-01 7.96798050e-01 7.77169049e-01 1.42848849e-01 -1.15749389e-01 -1.12270869e-01 -5.84893525e-01 6.12423301e-01 1.35658741e+00 -2.34990455e-02 -7.09905922e-01 -6.20915830e-01 6.52298629e-01 -2.04425097e+00 -1.27460277e+00 -3.53447288e-01 1.76571691e+00 1.21044862e+00 -1.61686733e-01 2.78440654e-01 -4.07252342e-01 6.34443641e-01 2.97851950e-01 -9.30974782e-02 -1.16628575e+00 -3.24884236e-01 4.26781714e-01 -3.56941998e-01 6.99963808e-01 -5.48856020e-01 1.02609539e+00 6.42274189e+00 4.40077603e-01 -8.20314169e-01 3.64073142e-02 6.01580858e-01 -8.61049863e-04 -7.37411737e-01 -2.30788827e-01 -7.30903745e-01 3.78746659e-01 1.31985092e+00 -3.67350727e-01 3.04073304e-01 6.19645357e-01 4.79760617e-01 3.31537545e-01 -1.10930598e+00 4.27015752e-01 3.50566417e-01 -1.49400306e+00 2.62204558e-01 -3.67812246e-01 1.00485468e+00 -1.32653356e-01 -1.62595883e-01 7.38049150e-01 8.67809713e-01 -1.17714727e+00 3.52159709e-01 6.16802752e-01 6.41391695e-01 -6.89773798e-01 1.00751913e+00 4.82644379e-01 -6.31631613e-01 4.54735123e-02 -2.27227900e-02 -2.46536121e-01 5.86977720e-01 2.22466215e-01 -1.25136197e+00 7.43019462e-01 2.38798410e-01 7.12871671e-01 -1.58221960e-01 5.48257470e-01 -4.22261804e-01 6.13350153e-01 2.78057575e-01 -5.09012401e-01 5.60582101e-01 -4.60667834e-02 5.16313255e-01 1.73622847e+00 1.26018792e-01 3.93809289e-01 2.95527697e-01 8.56476307e-01 -4.25974190e-01 2.86255330e-01 -5.54891646e-01 -2.26265416e-02 5.95096290e-01 1.27578509e+00 7.64763951e-02 -3.63885731e-01 -2.16119215e-01 1.10072637e+00 4.57498044e-01 4.64063197e-01 -5.81304252e-01 -5.15926361e-01 5.94919384e-01 -4.19017524e-02 -1.95678733e-02 1.61033630e-01 -1.04887728e-02 -1.08212125e+00 -6.01762310e-02 -1.41935635e+00 2.77225465e-01 -8.83014858e-01 -1.64342606e+00 1.10250008e+00 -2.46931478e-01 -9.21315312e-01 -1.09624541e+00 -1.15483217e-01 -7.90146947e-01 1.25240159e+00 -1.43156707e+00 -1.15456855e+00 -1.69291168e-01 3.95769387e-01 1.19365430e+00 -1.84667692e-01 1.07802081e+00 1.26693070e-01 -2.51720607e-01 7.46767402e-01 -2.62541294e-01 1.18428364e-01 1.04083085e+00 -1.22512257e+00 6.97156608e-01 3.66797984e-01 -3.01046282e-01 6.96114361e-01 8.08074176e-01 -4.27119225e-01 -8.62482786e-01 -1.13087511e+00 1.63938570e+00 -5.60669482e-01 3.90972883e-01 -6.59319997e-01 -9.34389114e-01 5.35614550e-01 9.91530418e-01 -1.01948798e+00 8.44253838e-01 1.92154303e-01 -1.95805594e-01 2.33063877e-01 -8.39024901e-01 6.70367777e-01 1.05691254e+00 -5.86045742e-01 -8.80304635e-01 5.05170166e-01 1.09903634e+00 -3.69790524e-01 -7.36978292e-01 3.28342468e-01 3.67935419e-01 -1.15890408e+00 6.44693911e-01 -8.31988394e-01 1.02011561e+00 3.74792010e-01 1.50476053e-01 -1.71001458e+00 -2.91148990e-01 -1.36221361e+00 1.36694953e-01 1.48229945e+00 6.95706069e-01 -3.82155627e-01 5.83369374e-01 4.72962379e-01 -5.47414184e-01 -6.76789403e-01 -4.96612519e-01 -3.16047221e-01 6.78834990e-02 7.14308321e-02 7.46800780e-01 9.05072570e-01 4.93248701e-01 1.06936014e+00 -8.16880405e-01 -5.63451707e-01 2.70397980e-02 2.10480824e-01 1.08541048e+00 -9.51907098e-01 -3.47314119e-01 -4.73792851e-01 2.78931379e-01 -1.39647293e+00 3.97485286e-01 -8.50121260e-01 4.49668318e-01 -1.60286713e+00 1.59316719e-01 -2.68792361e-01 1.59874991e-01 1.65379047e-01 -4.06717747e-01 1.11324161e-01 -2.14429684e-02 -2.58525554e-02 -7.57263243e-01 7.90864229e-01 1.30634892e+00 1.16287731e-01 -2.38305166e-01 8.20718706e-02 -9.11995471e-01 2.40990251e-01 7.65307188e-01 -3.74800026e-01 -3.85191560e-01 -4.34164375e-01 3.54415894e-01 6.63648427e-01 1.19303063e-01 -4.08031851e-01 2.45437562e-01 -2.26575360e-01 -2.22911671e-01 -4.79248226e-01 3.41018379e-01 1.02941260e-01 -1.28962189e-01 1.13315554e-02 -1.27648687e+00 2.45907322e-01 -1.68041810e-01 4.55695957e-01 -4.80238527e-01 -3.53778303e-02 3.66060466e-01 -4.18897063e-01 -3.32885206e-01 7.45654851e-02 -6.28288388e-01 3.54222178e-01 5.60350537e-01 6.52663857e-02 -4.81084585e-01 -1.12617970e+00 -3.91238123e-01 4.12022948e-01 1.62079498e-01 9.35013294e-01 6.36867344e-01 -1.28578830e+00 -1.52057910e+00 -1.05908193e-01 2.87066698e-01 -1.36892647e-01 5.66254199e-01 5.07682621e-01 -1.95887297e-01 7.16987073e-01 -5.57286404e-02 -2.84290254e-01 -1.04567289e+00 2.20815316e-01 1.49580672e-01 -6.58263803e-01 -3.53677988e-01 1.00663972e+00 9.16648656e-02 -9.80168104e-01 6.98576421e-02 1.43098697e-01 -4.65571672e-01 1.54888984e-02 7.14916527e-01 1.81519911e-01 7.41427392e-03 -5.81160724e-01 6.53342307e-02 -1.77394792e-01 -2.11450517e-01 -4.13277447e-01 1.27780879e+00 -2.28537083e-01 -2.06440642e-01 3.37192982e-01 1.02529955e+00 5.68160303e-02 -1.00036931e+00 -4.22652513e-01 1.03678979e-01 -3.27378958e-01 -7.63005435e-01 -1.10294056e+00 -3.28321338e-01 8.80191922e-01 -4.67339337e-01 5.20409644e-01 7.62451470e-01 -1.83052108e-01 1.29160821e+00 3.64348471e-01 2.63884753e-01 -1.13046610e+00 5.82065880e-01 1.00405538e+00 1.34060681e+00 -1.15051746e+00 -7.44037330e-01 -2.11863697e-01 -1.17503619e+00 9.29655850e-01 9.43643630e-01 -2.49731317e-02 -1.52505741e-01 -3.11250314e-02 3.31205994e-01 1.09522454e-01 -1.62753332e+00 -2.81947330e-02 1.09606251e-01 5.64931154e-01 9.50209022e-01 -2.19402649e-02 -4.66815591e-01 5.83506644e-01 -5.83443642e-01 -1.40553012e-01 7.65571058e-01 4.44093138e-01 -2.88917840e-01 -1.37155890e+00 1.39934018e-01 5.49868271e-02 -4.89586174e-01 -2.30950132e-01 -1.05894423e+00 2.71961600e-01 -6.52552247e-01 1.43295503e+00 -1.20726429e-01 -5.34427941e-01 4.98396337e-01 2.08669394e-01 -2.24672649e-02 -9.45248485e-01 -1.34958792e+00 -2.88550526e-01 9.44369555e-01 -4.25827622e-01 -4.66108382e-01 -5.49688339e-01 -9.08726513e-01 -4.11800981e-01 -1.66603830e-02 6.54393375e-01 4.08494234e-01 8.60348463e-01 6.67171657e-01 6.10924244e-01 1.12033463e+00 -7.68365324e-01 -7.68271148e-01 -1.50842452e+00 1.06136061e-01 8.42367232e-01 2.21912518e-01 9.21499208e-02 -8.34282935e-02 -8.40973109e-02]
[12.551469802856445, 8.276959419250488]
ffdee8cf-80bd-45fe-80eb-46c6837bf457
bi-lstm-neural-networks-for-chinese
null
null
https://aclanthology.org/W16-4919
https://aclanthology.org/W16-4919.pdf
Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis
Grammatical Error Diagnosis for Chinese has always been a challenge for both foreign learners and NLP researchers, for the variousity of grammar and the flexibility of expression. In this paper, we present a model based on Bidirectional Long Short-Term Memory(Bi-LSTM) neural networks, which treats the task as a sequence labeling problem, so as to detect Chinese grammatical errors, to identify the error types and to locate the error positions. In the corpora of this year{'}s shared task, there can be multiple errors in a single offset of a sentence, to address which, we simutaneously train three Bi-LSTM models sharing word embeddings which label Missing, Redundant and Selection errors respectively. We regard word ordering error as a special kind of word selection error which is longer during training phase, and then separate them by length during testing phase. In NLP-TEA 3 shared task for Chinese Grammatical Error Diagnosis(CGED), Our system achieved relatively high F1 for all the three levels in the traditional Chinese track and for the detection level in the Simpified Chinese track.
['Shen Huang', 'Houfeng Wang']
2016-12-01
null
null
null
ws-2016-12
['grammatical-error-detection']
['natural-language-processing']
[-4.56489511e-02 -2.07171783e-01 3.82555991e-01 -5.02986789e-01 -6.53885663e-01 -2.05225706e-01 -3.93295914e-01 1.68688774e-01 -7.50573814e-01 8.49041998e-01 2.38037631e-01 -7.69122839e-01 2.03135282e-01 -5.88728845e-01 -6.63504541e-01 -2.92050868e-01 2.88144685e-02 4.76279318e-01 1.73548430e-01 -2.08696380e-01 4.25702304e-01 3.51836532e-02 -1.03307819e+00 5.93237400e-01 1.62241161e+00 6.53489888e-01 8.00146878e-01 7.06202745e-01 -6.63612306e-01 7.67583728e-01 -9.79442537e-01 -4.82761294e-01 -5.34173250e-01 -4.95029926e-01 -1.23603272e+00 -4.69112486e-01 1.55473188e-01 -2.30721205e-01 3.24576497e-02 1.38298631e+00 7.59303629e-01 -4.58617993e-02 3.36281627e-01 -7.78985262e-01 -1.15525079e+00 8.58752906e-01 -3.89582030e-02 5.59108317e-01 2.04773992e-01 -3.97352457e-01 8.64698887e-01 -1.15237713e+00 6.12619936e-01 1.20623553e+00 8.95719528e-01 9.01212692e-01 -4.81434762e-01 -6.73644841e-01 3.74998271e-01 6.18348420e-01 -1.24686801e+00 -1.47408769e-01 2.12085739e-01 -2.12120607e-01 1.62873030e+00 1.37935132e-01 3.58189911e-01 1.00492108e+00 6.38071179e-01 8.79519343e-01 7.07965434e-01 -9.00560915e-01 -2.51822412e-01 -5.32600135e-02 5.81022501e-01 6.23865783e-01 2.54023168e-02 -7.65751600e-02 -3.91973436e-01 4.15623099e-01 1.64242119e-01 -5.17270975e-02 -3.71461332e-01 9.84323740e-01 -8.92570555e-01 6.49276614e-01 1.75889000e-01 8.49831223e-01 1.58450138e-02 1.30190670e-01 4.67566788e-01 6.56427622e-01 5.99151790e-01 1.26539111e-01 -9.93186831e-01 -3.28645051e-01 -4.95781183e-01 1.31331682e-01 6.06695950e-01 1.31969190e+00 4.03237522e-01 2.01653495e-01 -3.74313086e-01 9.86122787e-01 5.02093971e-01 2.64745712e-01 1.20409167e+00 -1.23586036e-01 7.72639990e-01 5.91562033e-01 -1.12690657e-01 -8.92355680e-01 -4.54216033e-01 -4.63877171e-01 -6.90174103e-01 -1.13306023e-01 1.29705817e-01 -4.80724514e-01 -9.55399871e-01 1.68407702e+00 -1.01798631e-01 2.48635523e-02 4.50620539e-02 6.03999197e-01 1.15606523e+00 9.18042362e-01 2.65906930e-01 -5.66304140e-02 1.28648055e+00 -1.05475855e+00 -1.17094457e+00 -3.82379115e-01 1.43904626e+00 -1.01101518e+00 1.16325629e+00 3.85860354e-01 -1.10559678e+00 -6.25617921e-01 -1.02521253e+00 -4.36100721e-01 -6.70150161e-01 3.79464656e-01 1.82386003e-02 6.36655688e-01 -9.73393917e-01 9.02639806e-01 -6.64140522e-01 -2.47083277e-01 -7.75986835e-02 2.08726823e-01 -3.30325454e-01 -2.52847701e-01 -1.57932281e+00 1.33964050e+00 7.51822472e-01 6.01123095e-01 -3.18325132e-01 -4.11457628e-01 -8.12794685e-01 1.32490218e-01 -8.07267725e-02 -7.54236653e-02 1.22487116e+00 -1.00292063e+00 -1.07696688e+00 9.16738629e-01 -5.22303522e-01 -1.09266862e-01 9.85961854e-02 -4.62508708e-01 -1.04831076e+00 -6.75657094e-01 9.61814448e-02 2.68825710e-01 1.03349350e-01 -6.50570095e-01 -9.64632928e-01 -5.06642163e-01 -5.51163614e-01 2.01861754e-01 -1.77202597e-01 7.75867283e-01 -1.33934438e-01 -8.03287923e-01 1.89253867e-01 -4.65762734e-01 9.13384184e-02 -5.98595917e-01 -3.11851412e-01 -9.60262954e-01 7.37586021e-01 -1.42159843e+00 2.02374077e+00 -2.20080042e+00 7.17736781e-02 -1.56322882e-01 -1.91301852e-01 5.87781012e-01 -2.01454133e-01 4.38466758e-01 -9.22660679e-02 6.91372395e-01 -2.45834008e-01 -4.38847065e-01 -6.89285919e-02 3.84035766e-01 1.53763369e-02 1.05454944e-01 4.99544650e-01 8.75797451e-01 -9.14737642e-01 -4.36787546e-01 -3.58415782e-01 -2.34883302e-03 -1.96371585e-01 4.53450590e-01 -3.57516892e-02 1.89830005e-01 -1.67365178e-01 6.13717735e-01 8.13679814e-01 1.41571611e-01 1.22786343e-01 3.30571651e-01 -3.44568998e-01 7.71601081e-01 -1.21780682e+00 1.68904185e+00 -4.92351443e-01 3.64217222e-01 -2.88541079e-01 -7.57024169e-01 1.02545309e+00 5.32480419e-01 -3.38045627e-01 -8.21078777e-01 7.55663216e-02 7.76437461e-01 4.09143776e-01 -9.79475498e-01 5.50892591e-01 -2.84971651e-02 -8.11442174e-03 4.09398824e-01 3.15547556e-01 4.55037385e-01 1.13614202e-01 -1.96370944e-01 1.01067746e+00 2.82724231e-01 -1.52681470e-02 -4.61156666e-01 5.97840488e-01 -7.44027495e-02 1.00719571e+00 5.44288278e-01 -8.34069923e-02 6.35528028e-01 2.38411248e-01 -5.54017365e-01 -6.48682952e-01 -6.02129221e-01 -1.49012521e-01 1.07584453e+00 -1.64862171e-01 -2.78391719e-01 -6.42451108e-01 -8.37301016e-01 -2.51742274e-01 8.20833802e-01 -3.53732228e-01 -1.83997050e-01 -1.21310771e+00 -6.63901627e-01 9.12393510e-01 5.67119658e-01 4.39894676e-01 -1.64541984e+00 -1.68229133e-01 5.90239942e-01 -2.82396853e-01 -7.49975026e-01 -7.67895997e-01 4.27596122e-01 -6.28470302e-01 -9.93445635e-01 -3.27903897e-01 -1.66564357e+00 6.77355945e-01 -3.41499984e-01 1.21370709e+00 9.03612256e-01 -1.86396614e-01 -4.62360770e-01 -8.74650300e-01 -6.02324843e-01 -4.31545496e-01 6.21335953e-02 -1.83706984e-01 -4.44493771e-01 8.87743652e-01 -6.56255037e-02 -3.71383876e-02 6.82260608e-03 -5.98859370e-01 -2.13723317e-01 3.11261952e-01 1.16938460e+00 3.14011186e-01 -1.22735120e-01 6.71247602e-01 -9.43251729e-01 8.46817374e-01 -5.12276828e-01 -2.21114054e-01 6.59293890e-01 -5.56366980e-01 1.96051858e-02 6.43068612e-01 -1.51816025e-01 -1.10200810e+00 -5.56582153e-01 -8.71065140e-01 2.91263163e-01 -6.71871230e-02 9.10175979e-01 -3.50900948e-01 3.52988951e-02 3.36835086e-01 3.04241002e-01 -2.57286340e-01 -8.14302742e-01 -1.52190194e-01 1.12921965e+00 4.45132703e-02 -5.83836913e-01 -1.56408161e-01 -7.50111997e-01 -7.27911770e-01 -5.25357068e-01 -6.52271509e-01 -1.18657373e-01 -6.54913187e-01 5.26558682e-02 1.01992238e+00 -6.77271247e-01 -5.25464714e-01 8.47799361e-01 -2.01454782e+00 -1.83816314e-01 2.87062675e-01 5.41219115e-01 2.40071878e-01 4.19761360e-01 -1.05395198e+00 -5.68182111e-01 -5.33824861e-01 -1.24384224e+00 7.57824779e-01 8.95478278e-02 -8.29476118e-02 -1.16231704e+00 -3.64119709e-02 -2.98423260e-01 4.59060252e-01 -2.21097693e-01 1.40617907e+00 -7.92849243e-01 -2.66429603e-01 -2.99271122e-02 -2.40994409e-01 7.71733820e-01 -1.63655624e-01 -1.00051813e-01 -6.75730705e-01 -1.27535433e-01 5.35387918e-02 -2.64131993e-01 8.12803388e-01 2.08413109e-01 1.32063949e+00 -1.91908196e-01 -8.78601074e-02 6.95366085e-01 1.44341934e+00 6.90902770e-01 7.89862573e-01 2.46578008e-01 6.90555751e-01 6.06345475e-01 5.17595232e-01 -1.06295690e-01 3.71335894e-01 3.78114760e-01 1.57759294e-01 1.78194389e-01 -1.97951600e-01 -3.04361343e-01 4.09841210e-01 1.62770283e+00 1.58294201e-01 -7.89882481e-01 -1.02869213e+00 7.31370866e-01 -1.66215706e+00 -5.25984049e-01 -6.75228119e-01 1.91238415e+00 1.05117643e+00 -2.08767414e-01 -6.02308452e-01 1.00361302e-01 1.07614434e+00 -2.51884282e-01 5.51956519e-02 -1.15811694e+00 -1.92251489e-01 5.88431299e-01 2.39809647e-01 6.61338031e-01 -7.61973083e-01 1.28087997e+00 6.18691444e+00 1.09144461e+00 -1.04920125e+00 5.05527735e-01 5.64004779e-01 4.27542239e-01 -5.13215482e-01 -5.93519025e-02 -1.43419433e+00 8.84316027e-01 1.07010722e+00 9.51278657e-02 6.86294138e-02 3.89619291e-01 5.03624566e-02 8.36759731e-02 -8.88829589e-01 5.84453344e-01 3.19385380e-01 -1.03643978e+00 -5.45474142e-02 -4.03596669e-01 3.91409546e-01 1.29480690e-01 -4.77692544e-01 6.80135608e-01 2.26913825e-01 -1.31258452e+00 4.86593872e-01 2.45989457e-01 8.18483949e-01 -7.55553246e-01 1.12140429e+00 4.84830946e-01 -9.11498189e-01 -1.19319344e-02 -8.56647134e-01 -3.53851497e-01 2.67903149e-01 5.05086601e-01 -1.50985569e-01 5.73040485e-01 8.31644058e-01 7.36483216e-01 -4.77450818e-01 9.93136525e-01 -6.06330991e-01 7.52107620e-01 4.59003076e-02 -6.06003821e-01 2.11044759e-01 -1.25704855e-01 1.37935221e-01 1.56216753e+00 9.77065563e-01 -2.32254267e-02 -1.16750859e-02 7.01332033e-01 -1.57994583e-01 4.51165825e-01 -3.89419824e-01 9.70538408e-02 6.74961686e-01 7.50722468e-01 -1.51708320e-01 -4.89870831e-02 -3.32684398e-01 1.21563745e+00 9.30995822e-01 1.70169830e-01 -6.36775911e-01 -1.14117241e+00 2.74954110e-01 -4.64471459e-01 2.18254551e-01 -1.00084081e-01 -3.68851185e-01 -1.22571659e+00 3.14625710e-01 -8.11339974e-01 3.26522410e-01 -5.58612525e-01 -1.26763284e+00 8.94726932e-01 -6.89446986e-01 -9.56562042e-01 2.41905134e-02 -9.93071198e-01 -1.02649426e+00 1.44976056e+00 -1.63312817e+00 -1.11903667e+00 4.23455313e-02 3.43283653e-01 7.63378322e-01 -2.25122839e-01 1.06885171e+00 9.25321817e-01 -9.39770579e-01 1.01614285e+00 1.47129014e-01 4.22305346e-01 7.50358224e-01 -1.24929690e+00 4.82070029e-01 1.09791505e+00 -3.59055810e-02 6.16167963e-01 2.97895610e-01 -9.11244810e-01 -9.14622128e-01 -1.07968235e+00 2.20489240e+00 -1.57654777e-01 4.08956736e-01 -2.73090184e-01 -1.18279505e+00 8.81774187e-01 2.72598296e-01 -3.76364589e-02 5.33513188e-01 3.53360862e-01 2.09377378e-01 -4.35925182e-03 -9.16234195e-01 2.14232638e-01 1.19978964e+00 -2.52699316e-01 -8.08292508e-01 3.73450398e-01 1.19037986e+00 -7.15685487e-01 -6.35538340e-01 3.61423612e-01 1.66711852e-01 -7.50820637e-01 1.60632759e-01 -9.01628911e-01 6.21875107e-01 -2.05379158e-01 3.25978845e-02 -1.55353391e+00 -4.32246864e-01 1.36584719e-03 3.37397784e-01 1.38846529e+00 8.40481997e-01 -5.54047644e-01 2.65093565e-01 1.74493402e-01 -1.12101436e+00 -8.71457458e-01 -1.16001260e+00 -7.22250938e-01 4.93889719e-01 -5.00114262e-01 7.04327941e-01 9.37621355e-01 1.12052828e-01 -7.84332976e-02 -3.99411231e-01 1.44776553e-01 -2.51161933e-01 -3.55207443e-01 -1.15838133e-01 -8.87764633e-01 -2.41192952e-01 -3.58629704e-01 -1.83019131e-01 -1.23599005e+00 2.79251754e-01 -1.00864720e+00 4.90380943e-01 -1.41471791e+00 -2.71758556e-01 -6.73996449e-01 -3.79444093e-01 4.06766325e-01 -6.48674488e-01 -2.57354885e-01 -1.09482609e-01 -2.93691218e-01 -2.65838385e-01 4.79274064e-01 9.18313980e-01 1.74804106e-01 3.69659439e-02 -1.64166510e-01 -4.44355488e-01 4.73859012e-01 6.04552031e-01 -7.09985852e-01 1.72159791e-01 -1.60946906e+00 6.24759316e-01 2.46803984e-02 -2.04455122e-01 -8.36221159e-01 3.04446757e-01 8.24792758e-02 3.18175644e-01 -7.01485038e-01 -4.44138855e-01 -6.65959835e-01 -3.50368172e-01 7.47792304e-01 -1.85613677e-01 9.20962393e-01 3.27346206e-01 1.07671410e-01 -5.69539130e-01 -1.01444256e+00 4.38769937e-01 -4.37437177e-01 -9.22998488e-01 2.33151779e-01 -4.68239754e-01 2.62959331e-01 6.94056392e-01 -1.00934871e-01 -4.36369151e-01 3.07798684e-01 -7.15160191e-01 5.82932532e-01 -2.69077659e-01 5.65491259e-01 8.27919722e-01 -1.33590710e+00 -9.24023151e-01 6.38147414e-01 1.27039716e-01 5.80433384e-02 4.59994137e-01 6.27840817e-01 -9.93952811e-01 2.02379107e-01 -1.27414674e-01 -1.96760952e-01 -1.23033810e+00 6.72228485e-02 5.31387508e-01 -3.87902528e-01 -3.33197594e-01 1.56805122e+00 -5.07404566e-01 -8.93075943e-01 4.34856981e-01 -4.43696201e-01 -5.46964347e-01 -2.62234032e-01 6.80269241e-01 3.84335995e-01 5.51337183e-01 -3.99047852e-01 -3.11379611e-01 4.37289864e-01 -2.15747267e-01 3.44805896e-01 1.10934806e+00 -2.67497182e-01 -6.34697676e-01 5.23264825e-01 1.15638196e+00 -9.79037583e-02 -2.79119223e-01 -1.62256435e-01 5.59678614e-01 -3.46588999e-01 -6.26016408e-02 -1.04963779e+00 -7.59917438e-01 1.36788213e+00 6.85643077e-01 -1.60933599e-01 7.11446881e-01 -3.90917361e-01 1.29012179e+00 2.08349273e-01 2.07245320e-01 -1.39578009e+00 -4.43908513e-01 1.29664361e+00 8.11269879e-01 -1.28326082e+00 -7.83043206e-01 -1.79651126e-01 -3.98897201e-01 1.39549315e+00 1.05456805e+00 -2.17407197e-01 7.75840402e-01 1.66144326e-01 1.92942888e-01 6.49840310e-02 -6.70607388e-01 7.87226483e-02 1.84991032e-01 3.93169075e-01 1.08562112e+00 -6.32688254e-02 -1.13735294e+00 8.43542457e-01 -8.20492804e-02 -6.00799918e-02 4.66605693e-01 9.47150648e-01 -7.95481563e-01 -1.49709368e+00 5.39452061e-02 4.74460989e-01 -7.98420489e-01 -6.23389482e-01 6.61006942e-02 4.94351625e-01 8.47692907e-01 1.02443314e+00 3.71118188e-01 -3.80178988e-01 4.09309983e-01 3.46938044e-01 2.94354230e-01 -9.73944008e-01 -9.44112897e-01 -3.04960936e-01 2.87292242e-01 -3.45679432e-01 1.05587438e-01 -3.51584136e-01 -1.44070148e+00 -2.30518982e-01 -5.52030146e-01 2.51199305e-01 6.70920312e-01 1.42712128e+00 2.18373224e-01 7.39955842e-01 2.44693980e-01 -1.84694882e-02 -6.60273135e-01 -1.50812459e+00 -7.21700609e-01 4.09543693e-01 1.63366780e-01 -1.87874690e-01 -2.95889437e-01 -3.59745204e-01]
[11.039663314819336, 10.784902572631836]
b5fd0148-32c8-4842-b3ef-f856c1a4b1a4
cooperative-task-and-motion-planning-for
2203.02475
null
https://arxiv.org/abs/2203.02475v1
https://arxiv.org/pdf/2203.02475v1.pdf
Cooperative Task and Motion Planning for Multi-Arm Assembly Systems
Multi-robot assembly systems are becoming increasingly appealing in manufacturing due to their ability to automatically, flexibly, and quickly construct desired structural designs. However, effectively planning for these systems in a manner that ensures each robot is simultaneously productive, and not idle, is challenging due to (1) the close proximity that the robots must operate in to manipulate the structure and (2) the inherent structural partial orderings on when each part can be installed. In this paper, we present a task and motion planning framework that jointly plans safe, low-makespan plans for a team of robots to assemble complex spatial structures. Our framework takes a hierarchical approach that, at the high level, uses Mixed-integer Linear Programs to compute an abstract plan comprised of an allocation of robots to tasks subject to precedence constraints and, at the low level, builds on a state-of-the-art algorithm for Multi-Agent Path Finding to plan collision-free robot motions that realize this abstract plan. Critical to our approach is the inclusion of certain collision constraints and movement durations during high-level planning, which better informs the search for abstract plans that are likely to be both feasible and low-makespan while keeping the search tractable. We demonstrate our planning system on several challenging assembly domains with several (sometimes heterogeneous) robots with grippers or suction plates for assembling structures with up to 23 objects involving Lego bricks, bars, plates, or irregularly shaped blocks.
['Brian C. Williams', 'Sven Koenig', 'Caitlin Mueller', 'Andreas Hofmann', 'Chuchu Fan', 'Dawei Sun', 'Caelan Garrett', 'Yijiang Huang', 'Jiaoyang Li', 'Jingkai Chen']
2022-03-04
null
null
null
null
['multi-agent-path-finding']
['playing-games']
[ 2.29013234e-01 3.54044557e-01 -8.06553811e-02 1.31260514e-01 -2.55478501e-01 -9.92075384e-01 9.25221220e-02 4.56842482e-01 1.38590336e-01 1.00461042e+00 -2.86087424e-01 -3.13228220e-01 -1.05963194e+00 -7.73795307e-01 -6.59813106e-01 -4.68623519e-01 -5.63503385e-01 1.21190250e+00 3.27767491e-01 -4.65708196e-01 3.82504702e-01 1.01564705e+00 -1.46088398e+00 1.04345709e-01 5.41141152e-01 7.54180253e-01 1.00389397e+00 7.26083934e-01 2.56309271e-01 6.34852648e-01 -3.74019384e-01 3.21288019e-01 3.85302722e-01 9.22705308e-02 -1.23062849e+00 6.97909832e-01 -4.72889543e-01 -1.63636938e-01 3.53726178e-01 4.86471862e-01 -1.40449807e-01 2.29864120e-01 6.58922136e-01 -1.80795324e+00 -1.89384490e-01 5.26701808e-01 -5.49913466e-01 -3.94102424e-01 4.73027647e-01 1.08873226e-01 8.86624455e-01 -3.87276351e-01 6.92617118e-01 1.18794155e+00 2.81545192e-01 9.34153050e-02 -1.10805440e+00 1.18932232e-01 2.98404843e-01 -3.65239561e-01 -1.17420971e+00 -1.96141332e-01 4.33485091e-01 -4.13299918e-01 1.26132941e+00 1.66806251e-01 4.23296303e-01 1.64171979e-01 8.84001732e-01 1.96344435e-01 6.36433780e-01 -4.27443206e-01 4.20053482e-01 -4.11918819e-01 -3.84081513e-01 5.45332849e-01 3.91743422e-01 -3.26280683e-01 1.18574895e-01 -6.57611042e-02 8.85120511e-01 1.26935259e-01 6.05674312e-02 -7.66512930e-01 -1.34853446e+00 5.49182236e-01 2.61607230e-01 3.28952998e-01 -7.46326685e-01 3.54994357e-01 2.29344919e-01 1.36827394e-01 -2.16716468e-01 1.16254842e+00 -6.99054539e-01 3.46354991e-02 -2.92605340e-01 6.50161326e-01 1.12859607e+00 1.40571165e+00 5.07965624e-01 -4.05574501e-01 3.39299530e-01 5.93437850e-01 7.27046728e-02 1.14593869e-02 -5.12368679e-01 -1.28963852e+00 8.17601085e-01 4.47185606e-01 8.13351214e-01 -8.09186220e-01 -6.89798534e-01 1.56391039e-01 -4.05019611e-01 4.89833862e-01 1.41921833e-01 -2.38087371e-01 -7.32861102e-01 1.34929979e+00 4.07662243e-01 -7.93639481e-01 7.68160746e-02 8.24048758e-01 -2.52771109e-01 8.30878913e-01 -1.43384352e-01 -5.67333400e-01 1.40844762e+00 -1.19277024e+00 -5.40583968e-01 -3.45680058e-01 5.63064635e-01 -8.59782755e-01 3.84601772e-01 5.02105236e-01 -1.52722979e+00 -2.64927447e-01 -1.12631047e+00 2.12182447e-01 -5.02404869e-02 -1.08117171e-01 6.71649933e-01 1.17567867e-01 -1.10960782e+00 8.73661637e-01 -8.56126070e-01 -3.27653706e-01 -1.86372712e-01 7.96033263e-01 -4.77150410e-01 -5.06572902e-01 -5.06771564e-01 1.20692050e+00 4.12149280e-01 2.97291011e-01 -7.79542685e-01 -2.38041937e-01 -8.13919961e-01 6.99257255e-02 1.12797379e+00 -5.88180363e-01 1.43409026e+00 -3.94050986e-01 -1.45388377e+00 5.29536344e-02 3.62099826e-01 2.67829239e-01 1.66417018e-01 1.41400948e-01 8.78944546e-02 1.67601317e-01 3.95137995e-01 6.63402021e-01 4.97160703e-01 -1.55555093e+00 -8.48986089e-01 -8.58853385e-02 4.75686401e-01 5.64441383e-01 2.70451754e-01 -3.38328406e-02 -3.19231778e-01 -3.55255529e-02 3.54225457e-01 -1.34706163e+00 -9.90847468e-01 -2.97291279e-01 -5.53799212e-01 -4.06249166e-01 4.71043855e-01 -2.38505334e-01 6.69273555e-01 -1.75782633e+00 8.37124944e-01 4.34270859e-01 -1.43248647e-01 -5.08827329e-01 -1.98870555e-01 1.21519041e+00 2.74394095e-01 -1.27532572e-01 -8.89104307e-02 -2.00254634e-01 4.28523608e-02 7.99345791e-01 7.93997645e-02 3.68934005e-01 1.98114887e-01 4.05161202e-01 -9.88541663e-01 -1.84830606e-01 1.63313925e-01 -4.52668399e-01 -6.06040478e-01 9.20446366e-02 -4.42384392e-01 1.93675175e-01 -8.14349294e-01 8.11508000e-01 4.92891461e-01 4.57475968e-02 7.26122439e-01 1.31752729e-01 -8.33079875e-01 5.19651808e-02 -1.36631513e+00 1.55035913e+00 -4.71119136e-01 -1.54160097e-01 9.88075614e-01 -7.44153082e-01 7.76894391e-01 1.59725368e-01 9.91085947e-01 -7.42534399e-02 1.71488840e-02 4.11446214e-01 6.47744313e-02 -3.54001373e-01 9.02835786e-01 -9.87736806e-02 -5.16235888e-01 3.98526967e-01 -4.37581629e-01 -9.88385916e-01 5.60115218e-01 -1.42168969e-01 1.43078697e+00 9.45849940e-02 2.93192327e-01 -5.20350695e-01 2.21290618e-01 5.44514477e-01 6.40425324e-01 5.79900801e-01 2.12952867e-01 1.47761077e-01 5.83545685e-01 -3.44722927e-01 -1.23874509e+00 -9.12196398e-01 3.05082709e-01 8.02307546e-01 7.56167829e-01 9.03460160e-02 -2.28147730e-01 -2.73319244e-01 5.98572679e-02 5.12202263e-01 -1.29920647e-01 2.76536644e-01 -8.28949451e-01 -1.71680197e-01 -3.37152123e-01 4.51121211e-01 -2.14297801e-01 -1.00665069e+00 -1.12095010e+00 8.23555946e-01 7.86944553e-02 -1.14559281e+00 -4.88429755e-01 7.23836184e-01 -7.18603194e-01 -1.23834395e+00 -3.23370337e-01 -1.23270929e+00 1.22771037e+00 6.69577718e-01 6.98511422e-01 2.21591279e-01 -3.80945355e-01 3.45029950e-01 -4.99220222e-01 -2.93917090e-01 -4.82864857e-01 8.71341452e-02 1.61017120e-01 -7.98536777e-01 -8.35834086e-01 -4.63679403e-01 -1.78513542e-01 7.32870460e-01 -7.63695896e-01 2.49704465e-01 8.57173860e-01 4.73368645e-01 6.58169627e-01 1.12194645e+00 5.49158812e-01 -2.91362137e-01 6.77433491e-01 -5.10005593e-01 -6.65911376e-01 5.12290061e-01 -1.81027964e-01 -1.19674526e-01 7.59447575e-01 -2.32701302e-01 -8.20485651e-01 4.60089207e-01 3.76949459e-01 -2.64437586e-01 -9.20243561e-02 7.10393429e-01 -1.21263631e-01 -4.67579551e-02 -7.33841211e-02 -4.55562204e-01 2.35414639e-01 -1.57055914e-01 2.93809950e-01 1.80012628e-01 3.62428695e-01 -9.82910812e-01 6.06010675e-01 1.31776601e-01 7.09929943e-01 -5.71502626e-01 -2.76266113e-02 -3.02740633e-01 -7.77717829e-01 -2.68908590e-01 7.20902205e-01 -3.60373735e-01 -1.09260881e+00 3.17951627e-02 -1.24191940e+00 -5.63915372e-01 -1.76510245e-01 2.39279389e-01 -1.08018053e+00 6.74725324e-02 -6.40072048e-01 -1.01168430e+00 1.54785857e-01 -1.43276393e+00 9.96485949e-01 -1.29093945e-01 -5.62893808e-01 -4.10975307e-01 -2.13366970e-01 1.50582626e-01 2.69557506e-01 6.44430697e-01 1.15618050e+00 -8.66706371e-02 -9.96114850e-01 6.45837486e-02 9.85151082e-02 -2.90693253e-01 5.74033856e-01 7.47348517e-02 3.37677538e-01 -4.23668504e-01 -2.82692432e-01 -2.54446298e-01 -3.24060917e-01 4.95245129e-01 6.13183975e-01 -5.41901708e-01 -7.95814097e-01 -2.86584139e-01 1.47458458e+00 7.54651785e-01 3.53506655e-01 4.00033176e-01 3.74533951e-01 1.32542634e+00 1.32331753e+00 4.76716131e-01 4.66844380e-01 9.87970710e-01 8.62235308e-01 2.57404238e-01 5.31569839e-01 2.04419196e-01 2.23931909e-01 6.32605791e-01 -2.52106667e-01 -5.13569474e-01 -9.49000120e-01 8.16177726e-01 -2.02655673e+00 -7.50271499e-01 -2.03409374e-01 1.84031963e+00 3.79193515e-01 1.81820184e-01 1.33436784e-01 2.19263181e-01 6.54543102e-01 -4.19556648e-01 -2.73157567e-01 -1.00047839e+00 6.05984390e-01 -1.30195469e-01 8.75321329e-01 4.41670358e-01 -9.42321777e-01 5.00720441e-01 5.81874275e+00 3.42259854e-01 -3.70808750e-01 -2.69652456e-01 1.17862999e-01 -1.57683805e-01 -6.19098879e-02 1.86317712e-01 -4.59878504e-01 1.63890228e-01 5.28683662e-01 1.20840736e-01 8.22849154e-01 9.24244761e-01 2.23935261e-01 -5.26365280e-01 -1.29925752e+00 2.91887701e-01 -4.73904103e-01 -1.32667065e+00 -4.67982501e-01 2.77138740e-01 8.10135901e-01 -4.47798371e-01 -2.85938829e-01 -1.38364866e-01 8.22659314e-01 -7.96166122e-01 1.28882992e+00 9.97407362e-02 4.02176857e-01 -1.00030243e+00 5.02587616e-01 6.64014757e-01 -1.51620936e+00 -5.25433540e-01 -1.22399926e-01 -4.96915728e-01 1.00264585e+00 2.75643826e-01 -1.11513627e+00 1.01384282e+00 5.12669384e-01 1.49069224e-02 5.59584379e-01 8.83179963e-01 -6.54010847e-02 -6.11094177e-01 -4.84613359e-01 -3.63110214e-01 4.33144152e-01 -3.23350996e-01 3.69687378e-01 5.28068960e-01 4.96547103e-01 4.67500925e-01 1.03527629e+00 5.78974247e-01 6.04455352e-01 -3.15919161e-01 -7.72060096e-01 -2.58567352e-02 7.25077868e-01 1.18654311e+00 -1.45468295e+00 2.64022887e-01 -4.74880673e-02 5.03232121e-01 9.00838599e-02 5.50827682e-02 -7.91808009e-01 -4.95304644e-01 6.90153718e-01 8.44786465e-02 2.99319983e-01 -1.00914633e+00 -4.29338455e-01 1.84279624e-02 1.42892212e-01 -4.91539299e-01 2.68657207e-02 -9.32050586e-01 -9.94609535e-01 3.56133491e-01 3.45761597e-01 -1.07335436e+00 -5.22381902e-01 -5.88155925e-01 -4.25742477e-01 6.43380165e-01 -1.18696690e+00 -1.08880925e+00 1.30618513e-01 -3.79129834e-02 8.24283421e-01 1.72431678e-01 4.54739243e-01 -8.43535066e-02 -4.70691592e-01 -4.70007300e-01 -2.39432916e-01 -7.18869567e-01 6.14519082e-02 -9.29498076e-01 -2.49936711e-02 5.79187274e-01 -7.97927678e-01 5.99263191e-01 9.00537252e-01 -9.91504967e-01 -2.11999130e+00 -8.94535840e-01 6.27624869e-01 -1.79453015e-01 6.71706557e-01 -1.56279281e-01 -1.97605476e-01 8.05595994e-01 1.62900493e-01 -6.28069460e-01 6.34629726e-02 -5.08702314e-03 7.55772650e-01 1.29703790e-01 -1.24033189e+00 7.26492465e-01 1.07874835e+00 3.63965124e-01 -4.48043048e-01 6.71109021e-01 8.41916859e-01 -6.65944874e-01 -1.00034106e+00 6.11454487e-01 3.53128195e-01 -2.99991310e-01 9.04101074e-01 -3.67436081e-01 5.35334587e-01 -5.63832521e-01 -6.83642700e-02 -1.30523431e+00 -7.96532452e-01 -8.83565605e-01 4.64938819e-01 1.03726733e+00 5.34921467e-01 -4.00812984e-01 7.12318778e-01 9.01486337e-01 -9.47881222e-01 -1.03270304e+00 -1.06232953e+00 -1.04629314e+00 -2.92540312e-01 7.50172660e-02 6.18673503e-01 7.38833845e-01 3.55666757e-01 2.62653708e-01 -2.92797953e-01 5.88039935e-01 1.82285830e-01 3.31237674e-01 6.00550413e-01 -1.09801304e+00 -2.88815737e-01 -1.98581606e-01 1.09116761e-02 -8.37112248e-01 -2.58382335e-02 -5.03928244e-01 8.07082713e-01 -2.09427142e+00 -3.41556549e-01 -1.36927485e+00 4.61830050e-01 7.59943306e-01 5.74352384e-01 -6.06413484e-01 4.20240670e-01 3.49668115e-01 -5.67999244e-01 1.98852509e-01 1.55730546e+00 8.45938027e-02 -5.46992838e-01 6.39868304e-02 -5.27732611e-01 3.78994107e-01 7.38760591e-01 -2.84181118e-01 -5.29784203e-01 -4.82902229e-01 3.89548868e-01 8.57363045e-01 -1.94525093e-01 -8.00385416e-01 4.86585051e-01 -8.91889751e-01 -1.78675011e-01 -5.76447606e-01 6.42162859e-01 -1.32376516e+00 8.02680254e-01 8.42277527e-01 -2.63579842e-02 7.72730470e-01 1.28553510e-01 5.25164366e-01 1.31271750e-01 -5.99553764e-01 2.98494577e-01 -3.51846844e-01 -5.81842184e-01 4.62654466e-03 -7.20218480e-01 -7.67269254e-01 1.80170417e+00 -3.16603154e-01 -3.61766130e-01 7.67014250e-02 -5.45375228e-01 8.54559183e-01 6.10283315e-01 4.68481272e-01 3.73199522e-01 -9.35215771e-01 -2.76798427e-01 -3.03518981e-01 -3.08733135e-01 4.47789460e-01 3.05487126e-01 7.45113075e-01 -9.45620835e-01 6.18984282e-01 -6.58246040e-01 -3.65398675e-01 -9.75206077e-01 9.04762208e-01 -3.00884813e-01 -6.38258040e-01 -4.16062832e-01 5.86172283e-01 -7.22656865e-03 -3.13753933e-01 -2.50441581e-01 -7.08890975e-01 8.38592798e-02 -1.15210809e-01 -7.41644006e-04 6.73352301e-01 1.35685578e-01 -2.18209669e-01 -5.65311134e-01 5.44903576e-01 6.76261187e-02 -2.22050935e-01 1.54214072e+00 -2.30319515e-01 -5.33951402e-01 7.26925731e-02 3.99791986e-01 -4.80122529e-02 -1.17471623e+00 5.23501396e-01 1.89493611e-01 -3.17054391e-01 -5.02730489e-01 -5.72817802e-01 -6.63643122e-01 -7.09246024e-02 -4.66848433e-01 6.70784116e-01 9.14135993e-01 2.23544851e-01 5.06312013e-01 5.03741562e-01 1.26297164e+00 -1.24015522e+00 3.19513887e-01 5.89919150e-01 1.11894071e+00 -4.56991673e-01 2.66554445e-01 -1.13942587e+00 -6.93002164e-01 1.19093668e+00 6.32305503e-01 -6.51374385e-02 2.08842441e-01 7.91725516e-01 -5.98180711e-01 -2.83004612e-01 -8.10687840e-01 -1.12293391e-02 -4.61277187e-01 4.68411207e-01 -1.77113846e-01 2.24088743e-01 -4.23487961e-01 1.43735275e-01 -3.43457386e-02 -2.50611395e-01 8.36478233e-01 1.76000428e+00 -8.55121672e-01 -1.17745686e+00 -6.90120101e-01 3.24289054e-01 3.73040996e-02 6.11169577e-01 -1.28630519e-01 1.08361828e+00 2.65061200e-01 1.36318660e+00 3.33384752e-01 -9.45713446e-02 6.97910786e-01 -4.63682026e-01 6.50234878e-01 -1.05589020e+00 -3.84641200e-01 2.62566302e-02 7.65339971e-01 -4.50515807e-01 -2.53475815e-01 -8.69385302e-01 -1.64342213e+00 9.25304135e-04 -3.11645955e-01 2.87085056e-01 8.38007271e-01 9.96343553e-01 3.43614161e-01 8.09778988e-01 7.66600490e-01 -1.50192523e+00 -4.92322147e-01 -4.38507825e-01 -7.47778893e-01 -1.76766038e-01 -9.64296460e-02 -1.11140442e+00 3.24224055e-01 -2.92529762e-01]
[4.922003269195557, 1.530883550643921]
b7fcbf43-2839-49dc-ae7e-4000744b7a91
predicting-the-future-a-jointly-learnt-model-1
1912.07148
null
https://arxiv.org/abs/1912.07148v1
https://arxiv.org/pdf/1912.07148v1.pdf
Predicting the Future: A Jointly Learnt Model for Action Anticipation
Inspired by human neurological structures for action anticipation, we present an action anticipation model that enables the prediction of plausible future actions by forecasting both the visual and temporal future. In contrast to current state-of-the-art methods which first learn a model to predict future video features and then perform action anticipation using these features, the proposed framework jointly learns to perform the two tasks, future visual and temporal representation synthesis, and early action anticipation. The joint learning framework ensures that the predicted future embeddings are informative to the action anticipation task. Furthermore, through extensive experimental evaluations we demonstrate the utility of using both visual and temporal semantics of the scene, and illustrate how this representation synthesis could be achieved through a recurrent Generative Adversarial Network (GAN) framework. Our model outperforms the current state-of-the-art methods on multiple datasets: UCF101, UCF101-24, UT-Interaction and TV Human Interaction.
['Harshala Gammulle', 'Clinton Fookes', 'Sridha Sridharan', 'Simon Denman']
2019-12-16
predicting-the-future-a-jointly-learnt-model
http://openaccess.thecvf.com/content_ICCV_2019/html/Gammulle_Predicting_the_Future_A_Jointly_Learnt_Model_for_Action_Anticipation_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Gammulle_Predicting_the_Future_A_Jointly_Learnt_Model_for_Action_Anticipation_ICCV_2019_paper.pdf
iccv-2019-10
['action-anticipation']
['computer-vision']
[ 4.74690586e-01 6.92130685e-01 -5.74285798e-02 -4.26834434e-01 -4.17035133e-01 -2.44699255e-01 1.36533642e+00 -5.12419462e-01 -2.06580162e-01 6.77526534e-01 9.15754616e-01 7.17637539e-02 2.26929069e-01 -4.75867689e-01 -9.30740774e-01 -3.40836316e-01 -3.76558155e-01 2.76316971e-01 4.02473286e-02 5.16277775e-02 4.85910736e-02 3.68332744e-01 -1.67935729e+00 8.14354897e-01 4.33805585e-01 9.42362905e-01 2.20560044e-01 8.67457509e-01 3.32749426e-01 1.49346089e+00 -1.75182149e-01 -4.28267598e-01 1.19966954e-01 -5.61655521e-01 -8.47890079e-01 2.50066578e-01 -1.53463008e-02 -7.39540994e-01 -9.26301539e-01 3.08122456e-01 3.29374671e-01 5.70412993e-01 7.87118018e-01 -1.58064711e+00 -9.99140024e-01 5.33794284e-01 -3.86080183e-02 -1.76989153e-01 8.79688680e-01 8.62958789e-01 8.22343767e-01 -6.42355204e-01 1.28296065e+00 1.43709278e+00 3.97487879e-01 1.18197787e+00 -1.03707898e+00 -4.40162867e-01 5.34451723e-01 6.52482152e-01 -6.82882309e-01 -4.39098269e-01 9.58589673e-01 -5.25251806e-01 1.32897985e+00 -8.42289105e-02 1.14754236e+00 2.02748680e+00 4.87759084e-01 1.38933659e+00 8.20948958e-01 -1.42590076e-01 2.45190352e-01 -5.59597373e-01 -5.18378019e-01 3.72033715e-01 -8.99242461e-01 7.90739238e-01 -7.01455951e-01 2.80946881e-01 7.85156906e-01 2.40970209e-01 -9.92535055e-02 -3.75922203e-01 -1.56753862e+00 5.77014208e-01 4.60052520e-01 6.07349537e-02 -9.34983730e-01 9.74261105e-01 6.27718270e-01 1.70603707e-01 3.82527083e-01 2.49214068e-01 -2.05650434e-01 -5.22066772e-01 -7.73393214e-01 4.81628835e-01 4.11258727e-01 8.09605002e-01 2.09349126e-01 3.42673391e-01 -7.63887644e-01 1.01345688e-01 4.43278342e-01 1.90528229e-01 5.57414234e-01 -1.38022542e+00 3.36045325e-01 2.14660183e-01 3.96668136e-01 -5.80849409e-01 -2.27112964e-01 1.76929221e-01 -5.13885319e-01 4.12830710e-01 2.22521752e-01 -1.72707379e-01 -1.24794865e+00 1.94558382e+00 1.01877496e-01 9.40846264e-01 4.24615502e-01 6.72057688e-01 7.36423612e-01 7.68407285e-01 6.80323362e-01 -1.61357984e-01 7.82615960e-01 -1.26881099e+00 -8.31067443e-01 -4.80464071e-01 4.78879571e-01 -4.67109650e-01 7.48826981e-01 2.24060223e-01 -1.19278228e+00 -1.00270116e+00 -7.50863433e-01 -7.58625120e-02 2.69698519e-02 1.78858042e-02 9.77664411e-01 -1.25494137e-01 -1.22046757e+00 8.98625970e-01 -1.18846476e+00 -4.22511041e-01 5.17194390e-01 1.57924294e-01 -4.81259674e-01 6.29725540e-03 -1.26514542e+00 1.03722405e+00 3.48052263e-01 1.65261909e-01 -1.65819740e+00 -5.73201239e-01 -1.00610232e+00 -1.88504849e-02 -1.09201610e-01 -9.88772392e-01 1.22981584e+00 -1.18458283e+00 -1.66189396e+00 7.32383370e-01 -9.79294702e-02 -1.20245481e+00 8.41509819e-01 -5.60881674e-01 -4.80782837e-01 2.81787097e-01 -2.52009451e-01 1.29998648e+00 9.87618864e-01 -1.01503229e+00 -2.89703131e-01 -1.53285293e-02 3.84388447e-01 2.63137639e-01 5.90404235e-02 -2.08221853e-01 -1.68569684e-01 -6.32007122e-01 -4.60929155e-01 -1.11618328e+00 -6.15591764e-01 2.42887363e-01 -1.35648593e-01 -2.44461522e-01 9.56820309e-01 -6.03077292e-01 8.10878575e-01 -2.12731838e+00 3.69267225e-01 -4.19024527e-01 -1.43587040e-02 1.43696845e-01 -5.88221014e-01 7.47718513e-01 -4.12895709e-01 -1.57198519e-01 2.46819422e-01 -6.72426820e-01 3.22364688e-01 3.84596020e-01 -8.54211628e-01 4.16010052e-01 1.88900515e-01 1.48338199e+00 -1.03134608e+00 -2.48445228e-01 7.50471771e-01 8.68164480e-01 -5.57030261e-01 7.03767359e-01 -7.18668938e-01 9.74921405e-01 -5.82329094e-01 2.75414199e-01 1.00077605e-02 -1.99967325e-02 2.14273706e-01 -2.49603167e-02 1.46650165e-01 8.56580138e-02 -4.67013031e-01 2.14664483e+00 -5.75439274e-01 6.14556074e-01 -8.41873944e-01 -8.73240292e-01 8.39413822e-01 7.17201114e-01 5.74595630e-01 -7.40525067e-01 -3.95667627e-02 -2.90177464e-01 -3.20055276e-01 -7.62930632e-01 3.34472358e-01 -2.03670442e-01 -9.74333212e-02 3.85118157e-01 1.56791374e-01 -4.24680673e-02 -1.16258837e-01 1.83923975e-01 1.15599215e+00 1.19438851e+00 1.02133892e-01 5.66429019e-01 2.78020054e-01 -2.41107062e-01 4.76936638e-01 5.10122597e-01 -5.21144450e-01 6.69064701e-01 5.92900515e-01 -7.91928172e-01 -9.39852417e-01 -1.28693998e+00 6.52612209e-01 9.70925808e-01 -9.45532992e-02 -2.86181748e-01 -5.28528869e-01 -8.56089413e-01 -2.46571437e-01 1.42893839e+00 -1.09731603e+00 -4.59461510e-01 -7.23309815e-01 1.85338840e-01 2.11459011e-01 1.07330358e+00 2.48507306e-01 -2.01811385e+00 -1.09484828e+00 2.41230026e-01 -2.96162277e-01 -1.17459691e+00 -2.57988155e-01 -2.97135115e-01 -7.58323967e-01 -8.56333554e-01 -7.45485485e-01 -4.63918209e-01 3.02859545e-01 -4.01803106e-01 1.20819843e+00 -1.69284895e-01 -1.89127773e-01 9.79937136e-01 -5.72865784e-01 -1.77078336e-01 -4.83883560e-01 -6.55930400e-01 -7.91382268e-02 1.16079167e-01 -1.26464339e-02 -9.28939998e-01 -8.71994078e-01 -2.57079720e-01 -7.93520212e-01 5.18220842e-01 3.07478577e-01 9.01798248e-01 5.33963919e-01 -4.79890823e-01 4.88087147e-01 -6.19396269e-01 1.11340776e-01 -4.78326946e-01 -2.68058255e-02 3.41299772e-01 -1.26263395e-01 8.42801630e-02 6.68152034e-01 -6.71829820e-01 -1.49496198e+00 5.71069837e-01 -2.90829152e-01 -8.86773109e-01 -3.47306132e-01 1.54242381e-01 2.90672891e-02 5.14471829e-01 3.37034583e-01 4.15728331e-01 -1.53953239e-01 -1.10070139e-01 8.63237321e-01 -2.86763324e-03 7.77581573e-01 -2.26358920e-01 4.22703356e-01 6.53604150e-01 -2.03050803e-02 -2.72313029e-01 -6.75454319e-01 8.29556808e-02 -8.50507319e-01 -7.21634984e-01 1.34520471e+00 -1.00036335e+00 -8.77031446e-01 4.03339416e-01 -1.51455021e+00 -7.42940187e-01 -6.70410097e-01 5.28279722e-01 -1.59710014e+00 1.65042594e-01 -3.77481252e-01 -1.05516005e+00 -1.52210444e-01 -1.07537639e+00 1.17318654e+00 4.83593605e-02 -6.80475593e-01 -1.13794959e+00 9.63976160e-02 1.75741166e-01 2.97210254e-02 1.03403556e+00 6.11532986e-01 -3.76704246e-01 -8.36822510e-01 -2.11000562e-01 3.39910626e-01 1.81060880e-02 -3.25766265e-01 9.47963260e-03 -9.25761342e-01 1.02554378e-03 -2.45067224e-01 -7.19172418e-01 1.04870319e+00 6.37696683e-01 1.14694834e+00 -2.67983496e-01 -4.17382449e-01 5.64770222e-01 1.15901649e+00 4.04806703e-01 1.32178974e+00 2.08101988e-01 5.39934099e-01 6.70992732e-01 9.94367361e-01 7.82710195e-01 5.00224590e-01 6.68179870e-01 8.59072983e-01 1.80382624e-01 -3.24202955e-01 -8.17725778e-01 7.19760060e-01 1.42877042e-01 -2.77603120e-01 -4.94409502e-01 -6.55108631e-01 8.62146616e-01 -2.33391619e+00 -1.50967705e+00 3.98443758e-01 1.63473690e+00 4.70873803e-01 3.98302712e-02 5.04757389e-02 -1.03447437e-01 2.72711873e-01 7.06816196e-01 -7.44789302e-01 -7.27169096e-01 2.38440052e-01 1.35645509e-01 -9.74043757e-02 1.05888031e-01 -1.05444098e+00 1.15525389e+00 6.76749992e+00 4.81382519e-01 -8.74465287e-01 7.44197071e-02 6.18995607e-01 -8.53694901e-02 -5.32246768e-01 1.65940329e-01 -2.24290237e-01 2.21680015e-01 1.12147403e+00 -1.29803628e-01 4.71125871e-01 7.88438380e-01 3.26796085e-01 2.00785741e-01 -1.49187636e+00 7.56840765e-01 8.83781177e-04 -1.50819290e+00 1.33298546e-01 -2.97284514e-01 6.83304846e-01 -1.46965027e-01 3.83210778e-01 5.54757893e-01 5.97992301e-01 -1.28309536e+00 9.77376223e-01 1.27341270e+00 8.42651844e-01 -6.45870447e-01 1.60504878e-01 3.38561863e-01 -1.15697491e+00 -4.71046865e-01 1.28467008e-01 -2.76056945e-01 7.61732757e-01 -3.75951901e-02 -6.27972782e-01 2.85888463e-01 4.32968646e-01 1.34332860e+00 -3.14343989e-01 4.86408263e-01 -7.46719420e-01 2.59223223e-01 2.98735619e-01 1.64839745e-01 4.12974447e-01 2.06846222e-01 4.37541991e-01 8.75691414e-01 3.24503720e-01 3.53272520e-02 7.96665698e-02 7.33613074e-01 2.49588430e-01 -5.03943086e-01 -9.42047358e-01 -5.24473071e-01 3.94876562e-02 7.91720867e-01 -3.06547225e-01 -4.60661709e-01 -2.57466376e-01 1.44229805e+00 4.35959041e-01 5.76624691e-01 -1.25193417e+00 2.47535959e-01 7.92505741e-01 -5.16580045e-02 6.55016601e-01 -1.96031287e-01 5.45893535e-02 -1.17923963e+00 -2.45576560e-01 -6.36488736e-01 2.31126711e-01 -1.22089779e+00 -8.69097948e-01 7.69443274e-01 2.43283249e-02 -1.50065899e+00 -1.32742202e+00 -3.46498579e-01 -8.80043805e-01 4.05369997e-01 -1.16283894e+00 -1.87238479e+00 6.79186359e-02 5.53514838e-01 8.44537675e-01 -1.67548895e-01 9.98349786e-01 -4.15521294e-01 -2.13261582e-02 2.19976723e-01 -2.75171489e-01 -2.34183758e-01 3.53576690e-01 -1.05762982e+00 8.84075880e-01 7.65661180e-01 3.07395071e-01 1.67467892e-01 1.05183315e+00 -6.96985960e-01 -1.30706155e+00 -1.26358581e+00 9.40210044e-01 -5.47801197e-01 6.64970875e-01 -2.51502037e-01 -3.36073607e-01 1.29972935e+00 4.68648851e-01 2.55030245e-01 3.12991202e-01 -3.92516434e-01 -1.81473985e-01 3.18663687e-01 -1.08386719e+00 1.03361309e+00 1.54068780e+00 -6.02577746e-01 -7.26769269e-01 4.25513923e-01 9.12124991e-01 -4.06644732e-01 -7.00105786e-01 4.17879373e-01 1.02961612e+00 -1.14354396e+00 1.34359419e+00 -9.25342500e-01 1.13771427e+00 8.73398781e-02 -1.01757333e-01 -1.36505580e+00 -2.70662218e-01 -8.57970297e-01 -6.23965025e-01 1.03057945e+00 -9.17262435e-02 -1.02181897e-01 7.08562613e-01 8.26009095e-01 -2.59136260e-01 -8.47770512e-01 -8.93252611e-01 -6.40164256e-01 -1.97433785e-01 -8.00298333e-01 5.79114497e-01 4.21950668e-01 -1.14605598e-01 -1.08934060e-01 -1.06324983e+00 -2.72345901e-01 3.48638326e-01 2.93978572e-01 8.17076385e-01 -6.61429584e-01 -4.49183434e-01 6.06750548e-02 -6.46051764e-01 -1.04065096e+00 8.43404651e-01 -5.86309910e-01 1.47973999e-01 -1.82398498e+00 -1.12090960e-01 3.94923687e-01 -3.14301103e-01 6.21305108e-01 2.22500175e-01 5.73221855e-02 6.61653936e-01 -1.09534435e-01 -8.17684829e-01 1.22919917e+00 1.71446788e+00 -3.52548733e-02 9.55648627e-03 -1.95822507e-01 -1.57113418e-01 8.59061897e-01 2.92971462e-01 -2.65225977e-01 -6.84533775e-01 -4.39235657e-01 -1.45865589e-01 6.87372327e-01 8.08012903e-01 -1.12947607e+00 1.47449514e-02 -3.57374519e-01 7.25368321e-01 -5.43274224e-01 9.11565244e-01 -7.91326463e-01 5.22130847e-01 7.35047460e-01 -7.40496218e-01 -4.71233204e-02 9.31951478e-02 9.78356600e-01 -1.52607545e-01 3.86809647e-01 4.11604822e-01 -2.29609102e-01 -1.31401694e+00 3.48511428e-01 -4.61057484e-01 -1.90703988e-01 1.43239343e+00 -3.10788184e-01 -4.43247445e-02 -7.59900033e-01 -1.32591486e+00 2.36237630e-01 2.38997012e-01 7.42730319e-01 9.61897075e-01 -1.63406491e+00 -5.27282357e-01 1.01709157e-01 4.14257012e-02 -7.13067412e-01 7.14054048e-01 7.08596826e-01 -1.33573651e-01 3.13137084e-01 -7.77807534e-01 -3.62051278e-01 -1.03364658e+00 9.24046576e-01 5.59797650e-03 -5.28932810e-01 -9.76992607e-01 8.50892842e-01 5.23746073e-01 -7.23408461e-02 2.49635622e-01 -1.56581774e-02 -4.69145447e-01 -1.71264216e-01 4.77380544e-01 1.30397066e-01 -8.58927131e-01 -7.64205039e-01 -3.53008747e-01 1.72745213e-01 2.07592860e-01 -3.92240375e-01 1.55708826e+00 -2.52382904e-01 4.87813473e-01 5.05544305e-01 1.02236319e+00 -7.27795899e-01 -2.04192185e+00 1.80354431e-01 -2.55521804e-01 -4.01333094e-01 -3.77601832e-01 -8.49671006e-01 -1.03793466e+00 1.11476064e+00 6.05254948e-01 -3.51418346e-01 1.33250237e+00 -5.82756251e-02 1.03565419e+00 1.03931084e-01 3.55086893e-01 -9.64396834e-01 5.46146274e-01 4.76368397e-01 1.36857831e+00 -9.21152651e-01 -2.14634791e-01 -3.78202498e-02 -1.36085451e+00 1.08720028e+00 7.07423449e-01 -5.33380210e-01 5.09466708e-01 -1.88309904e-02 -1.35204017e-01 -2.56572403e-02 -1.42252409e+00 -1.85219109e-01 4.94368583e-01 9.32229877e-01 4.35244620e-01 1.49236675e-02 -1.63085192e-01 5.24529040e-01 2.74678841e-02 5.69412827e-01 3.06222707e-01 7.18827963e-01 2.41016373e-01 -1.05883455e+00 2.64709860e-01 1.31155401e-01 -2.79895812e-01 5.07036857e-02 -2.31579572e-01 7.40827024e-01 1.41067922e-01 6.70346081e-01 1.73404381e-01 -6.76115692e-01 1.86873466e-01 2.19404757e-01 7.27367461e-01 -4.40162957e-01 -4.90884513e-01 -1.29907057e-01 2.80391335e-01 -1.32049131e+00 -7.49911606e-01 -8.09713423e-01 -1.36234486e+00 8.87216032e-02 4.14947182e-01 -5.62812865e-01 2.48980328e-01 1.18845558e+00 3.58503759e-01 8.34363937e-01 4.18773502e-01 -1.35126162e+00 -3.57736170e-01 -7.89348900e-01 -3.45467359e-01 8.03963602e-01 1.89078540e-01 -8.25415552e-01 -1.05899647e-01 6.06863737e-01]
[7.863069534301758, 0.33628591895103455]
c3607514-25bf-4122-abb7-82d67bfc7104
knowledge-and-data-driven-services-for-energy
2103.07248
null
https://arxiv.org/abs/2103.07248v1
https://arxiv.org/pdf/2103.07248v1.pdf
Knowledge- and Data-driven Services for Energy Systems using Graph Neural Networks
The transition away from carbon-based energy sources poses several challenges for the operation of electricity distribution systems. Increasing shares of distributed energy resources (e.g. renewable energy generators, electric vehicles) and internet-connected sensing and control devices (e.g. smart heating and cooling) require new tools to support accurate, datadriven decision making. Modelling the effect of such growing complexity in the electrical grid is possible in principle using state-of-the-art power-power flow models. In practice, the detailed information needed for these physical simulations may be unknown or prohibitively expensive to obtain. Hence, datadriven approaches to power systems modelling, including feedforward neural networks and auto-encoders, have been studied to leverage the increasing availability of sensor data, but have seen limited practical adoption due to lack of transparency and inefficiencies on large-scale problems. Our work addresses this gap by proposing a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs). The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality when compared with traditional machine-learning models with similar accuracy. Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services for a distribution system operator participating in an energy flexibility market.
['Seshu Tirupathi', 'Mark Purcell', 'Robert Gormally', 'Bradley Eck', 'Francesco Fusco']
2021-03-12
null
null
null
null
['physical-simulations']
['miscellaneous']
[-2.87081778e-01 2.18555629e-01 -2.97929257e-01 -2.24697903e-01 -2.06020996e-01 -7.25283325e-01 8.06922972e-01 1.92570686e-01 2.48643294e-01 1.10988796e+00 -7.33369738e-02 -6.32491291e-01 -6.67327642e-01 -1.28555191e+00 -5.16413808e-01 -8.78779829e-01 -4.34992015e-01 7.76422679e-01 -4.74074632e-01 -2.07854155e-02 -3.01609579e-02 6.65148497e-01 -1.14161503e+00 -4.58788931e-01 8.49206269e-01 1.11781466e+00 2.64937580e-01 4.40458715e-01 -5.83482720e-02 5.67956507e-01 -3.84088755e-01 4.31190521e-01 2.93398827e-01 -4.77289379e-01 -4.21799570e-01 -3.63854855e-01 -6.12419009e-01 -4.53199208e-01 -4.59921926e-01 1.23852372e+00 4.35981363e-01 1.23134732e-01 5.05359054e-01 -1.56892538e+00 -5.04508197e-01 9.94241655e-01 -2.63158649e-01 4.73454222e-02 -1.19069539e-01 3.62605691e-01 9.68673646e-01 -2.70417482e-01 -1.39254762e-03 7.13753283e-01 4.78406906e-01 6.01722971e-02 -1.53035533e+00 -5.81710637e-01 -3.97346839e-02 4.38841194e-01 -1.37661469e+00 -1.85009822e-01 1.17290819e+00 -3.59283805e-01 1.42567384e+00 2.07837731e-01 1.13277483e+00 7.64544547e-01 2.23081261e-01 2.66844004e-01 1.24570155e+00 -3.68771940e-01 8.27827930e-01 1.88862965e-01 -3.60444069e-01 1.82076797e-01 5.50253332e-01 4.81073558e-01 -4.70182240e-01 -9.99401659e-02 5.68746865e-01 -6.11322969e-02 -2.40510181e-01 -6.65384829e-01 -5.78120768e-01 9.52543557e-01 6.91699743e-01 5.51106930e-01 -4.32868093e-01 3.07545424e-01 1.78779870e-01 1.19353145e-01 3.89751196e-01 2.73094624e-01 -7.75272787e-01 -1.77196175e-01 -1.27564025e+00 4.79208268e-02 1.19645178e+00 7.73492277e-01 8.12444150e-01 6.98998392e-01 5.38425267e-01 2.61260837e-01 6.61836445e-01 7.68110931e-01 3.49370867e-01 -7.40444005e-01 1.74120650e-01 5.94015539e-01 7.16674253e-02 -7.31491327e-01 -8.56201470e-01 -4.52979743e-01 -1.41892362e+00 3.89048994e-01 1.32010490e-01 -5.56706309e-01 -6.92899704e-01 1.54666209e+00 1.67302474e-01 -2.15608656e-01 -5.93043342e-02 8.99276674e-01 5.01704179e-02 9.41444755e-01 8.45677853e-02 -1.51554197e-01 1.04356503e+00 -2.24801496e-01 -5.84200680e-01 -9.69741493e-02 5.10162413e-01 -3.20099294e-02 3.11100155e-01 4.52348292e-01 -9.71557915e-01 -2.26066515e-01 -1.15060413e+00 4.49080199e-01 -8.70985806e-01 -1.25785649e-01 7.53099203e-01 7.65246749e-01 -1.20760989e+00 9.02734637e-01 -1.06472874e+00 -3.82751167e-01 4.81703013e-01 2.60674834e-01 3.56166735e-02 2.32888564e-01 -1.43783796e+00 1.38938975e+00 6.74474657e-01 4.14964944e-01 -7.42727160e-01 -1.05297744e+00 -8.52206409e-01 5.89977384e-01 3.43110263e-01 -7.06217825e-01 1.02323604e+00 -5.33084989e-01 -1.81182611e+00 -4.00944829e-01 4.64550912e-01 -8.17075312e-01 3.09825748e-01 2.94523388e-01 -6.06154323e-01 3.65931803e-04 -4.09867883e-01 2.16262147e-01 5.65806210e-01 -9.40605342e-01 -2.35729203e-01 -1.73050553e-01 -2.80300498e-01 3.55695896e-02 -2.21432135e-01 -4.99408692e-01 7.35697329e-01 -2.20683396e-01 -1.50964767e-01 -7.57411540e-01 -4.86070842e-01 -3.06719929e-01 -5.54093182e-01 -2.26206869e-01 1.13247073e+00 -8.35239828e-01 8.71989369e-01 -1.45083880e+00 9.86982211e-02 7.95682609e-01 -3.08133401e-02 6.11582622e-02 4.67630625e-01 1.02522373e+00 -2.80198187e-01 2.46534213e-01 -2.81017512e-01 1.41685173e-01 6.26486123e-01 5.25590837e-01 -1.84965387e-01 3.33913445e-01 1.88120857e-01 9.97351646e-01 -7.73081899e-01 7.99979791e-02 1.01433539e+00 5.68363070e-01 -3.44955213e-02 -4.54493538e-02 -5.73795795e-01 4.10332739e-01 -6.02249205e-01 2.88313955e-01 4.73525882e-01 -6.93876028e-01 7.17097700e-01 -2.90371776e-01 -1.96642876e-02 3.08047354e-01 -1.26968181e+00 1.64590669e+00 -8.24762404e-01 4.04497474e-01 2.43014425e-01 -1.43124723e+00 6.10623121e-01 2.37018064e-01 8.08850467e-01 -9.05177295e-01 4.40034736e-03 2.75107026e-02 1.42921329e-01 4.08034772e-02 3.63715887e-01 -2.73536265e-01 8.00863951e-02 6.37175620e-01 1.90400943e-01 -6.05083644e-01 2.36734897e-01 2.34268740e-01 1.00023806e+00 2.57675320e-01 5.03654242e-01 -7.31968760e-01 6.96669146e-02 7.98799172e-02 3.50434512e-01 3.45854610e-01 2.51876205e-01 -6.00397401e-02 2.66802430e-01 -4.29459721e-01 -1.10549641e+00 -8.87875974e-01 -2.56455570e-01 2.27803349e-01 -3.49201500e-01 -3.14265072e-01 -5.77076018e-01 -4.48300093e-01 4.07891780e-01 1.28716981e+00 -1.50001898e-01 -1.54556697e-02 -1.95084065e-01 -1.16045761e+00 -1.17847577e-01 5.09272218e-01 2.27266192e-01 -7.70680308e-01 -7.81644940e-01 5.29629409e-01 5.68213463e-01 -8.41696203e-01 2.98404604e-01 6.14894986e-01 -6.35499299e-01 -1.03880048e+00 -3.05476636e-01 1.37946278e-01 6.07969880e-01 -3.99498075e-01 1.33268821e+00 -2.52798140e-01 -3.85295063e-01 2.61025399e-01 5.27199917e-02 -4.32484806e-01 -5.14176548e-01 1.93117961e-01 2.85938680e-01 -4.53531712e-01 1.23849928e-01 -1.20074916e+00 -7.38332808e-01 -6.58204332e-02 -8.59818935e-01 1.35878876e-01 6.61849082e-01 6.64963901e-01 2.71985590e-01 8.79616141e-01 1.01745498e+00 -6.09142303e-01 6.04371846e-01 -8.48199606e-01 -1.62532580e+00 1.85303718e-01 -1.44359589e+00 2.31778055e-01 1.02916563e+00 1.24403790e-01 -7.42441654e-01 5.21128401e-02 2.88564533e-01 -2.88442403e-01 -2.20623851e-01 9.46489394e-01 -2.74694145e-01 -1.63697332e-01 -1.33100124e-02 2.18772888e-01 -1.37878373e-01 -4.76764441e-01 6.75569654e-01 3.87791872e-01 1.91500202e-01 -4.84083980e-01 1.23470974e+00 7.69909546e-02 6.02103233e-01 -7.15438366e-01 -1.13346249e-01 1.45333186e-01 -4.87771600e-01 -1.31059304e-01 3.79153222e-01 -9.62806821e-01 -8.19425166e-01 4.49318498e-01 -8.01715314e-01 -4.37151879e-01 -7.67001987e-01 5.07792115e-01 -3.80066305e-01 9.77597907e-02 -2.63505667e-01 -1.11015773e+00 -3.86729479e-01 -8.40247512e-01 4.20751452e-01 4.03921366e-01 -1.57172278e-01 -1.36583090e+00 7.58621395e-02 -2.74401307e-01 1.07754314e+00 3.00789595e-01 1.36940026e+00 -5.97137868e-01 -9.87853765e-01 2.00003777e-02 -1.64838091e-01 5.26577294e-01 3.37943941e-01 -1.65664002e-01 -8.68525803e-01 -5.49212635e-01 -1.81552134e-02 -1.56877100e-01 1.11235373e-01 5.03450096e-01 1.08921814e+00 -6.96491480e-01 -3.11290354e-01 2.57125974e-01 1.81210577e+00 1.28289357e-01 1.61550269e-01 -2.81170875e-01 5.70560634e-01 3.14185530e-01 -2.34560236e-01 6.09034836e-01 7.07651258e-01 3.30683678e-01 5.53623617e-01 4.31447886e-02 1.51531458e-01 -3.91374528e-01 -5.36210798e-02 1.12035728e+00 1.94339931e-01 -3.25426757e-01 -1.05932045e+00 5.26472270e-01 -1.70918965e+00 -7.51245320e-01 2.90403098e-01 2.05415392e+00 6.21219277e-01 1.98083848e-01 -2.01801747e-01 1.76900283e-01 2.66056299e-01 1.16016723e-01 -1.03491640e+00 -4.05649930e-01 -4.16312106e-02 3.30197334e-01 9.44766581e-01 3.14512402e-01 -4.40903962e-01 6.96855858e-02 6.16218996e+00 7.70719647e-01 -9.84935582e-01 4.03071530e-02 7.99831986e-01 -5.39204851e-02 -5.39584816e-01 2.81005025e-01 -3.87052268e-01 7.74095893e-01 1.69816935e+00 -6.86035872e-01 1.15375125e+00 7.42401421e-01 6.44646466e-01 -5.20159781e-01 -1.23087454e+00 7.78021276e-01 -3.56170982e-01 -1.49098778e+00 -3.04583937e-01 4.37014103e-01 8.56489539e-01 6.57216132e-01 -3.84265721e-01 1.05996303e-01 1.10741651e+00 -1.13146186e+00 5.80215275e-01 7.15761721e-01 4.76537019e-01 -7.95823634e-01 5.65936446e-01 4.69310910e-01 -1.13840389e+00 -2.25426063e-01 -2.34470442e-02 -2.45101660e-01 5.34430981e-01 1.22313130e+00 -6.93438590e-01 1.13760614e+00 8.73869479e-01 5.95210791e-01 2.17052419e-02 7.14421451e-01 -1.41210511e-01 8.69584858e-01 -1.07005203e+00 -2.40195349e-01 -9.58117656e-03 -5.41641057e-01 1.88115478e-01 5.43547869e-01 5.70059299e-01 -1.12182647e-01 2.15375736e-01 1.40630722e+00 -1.67436779e-01 -5.52758694e-01 -6.91112578e-01 -2.40832239e-01 6.40338898e-01 1.55255377e+00 -4.96975362e-01 -1.50184229e-01 -5.34277856e-01 1.20288596e-01 -1.14788532e-01 5.68592131e-01 -5.56889951e-01 -1.53825611e-01 5.78459024e-01 1.67704463e-01 3.70483279e-01 -4.83986616e-01 -2.94266403e-01 -7.73721457e-01 -1.27811253e-01 -5.32145441e-01 1.03409410e-01 -9.31800544e-01 -1.71818614e+00 -2.92048678e-02 3.76763701e-01 -7.60273397e-01 -1.01689756e+00 -5.85203707e-01 -6.38305008e-01 1.45990002e+00 -2.08082294e+00 -9.16573584e-01 1.36942208e-01 2.34709650e-01 2.10306589e-02 -3.67960110e-02 1.06303489e+00 -3.86187397e-02 -4.81082290e-01 -2.21016034e-01 6.79985344e-01 -8.64647515e-03 -3.06640863e-01 -1.50185704e+00 3.50540727e-01 7.34814167e-01 2.14841604e-01 3.58152902e-04 6.10894442e-01 -5.79085588e-01 -2.05373311e+00 -9.19364035e-01 4.29906636e-01 -1.34361044e-01 1.13707745e+00 -4.41434443e-01 -7.84637272e-01 4.10235256e-01 7.99160600e-01 2.51816571e-01 4.93578553e-01 -3.92525420e-02 3.59852798e-02 -2.44265512e-01 -1.35608792e+00 -2.07880978e-03 3.80967081e-01 -6.39382303e-01 -3.00261855e-01 4.37851638e-01 -4.46204059e-02 -7.66575942e-03 -1.26485884e+00 3.53989989e-01 1.79713085e-01 -5.81146181e-01 6.85686827e-01 -2.35943884e-01 -1.76583529e-01 -5.29495955e-01 5.92871197e-02 -2.05293465e+00 -2.45999455e-01 -8.97033274e-01 -7.42332101e-01 1.15976155e+00 2.96936065e-01 -9.85581219e-01 7.41860926e-01 8.71414363e-01 2.32772350e-01 -4.83865142e-01 -1.39666212e+00 -7.54586041e-01 3.95546466e-01 -4.07843292e-01 1.11259437e+00 1.13285351e+00 5.30237615e-01 1.01999447e-01 9.76217985e-02 6.00759149e-01 7.99793541e-01 3.33032846e-01 1.87822104e-01 -1.24660504e+00 -3.13375503e-01 -5.08735180e-01 -3.39467317e-01 -3.96989346e-01 5.82159236e-02 -8.62632394e-01 -2.83050209e-01 -1.84274113e+00 -5.73502034e-02 -5.57913125e-01 -5.62864304e-01 6.92541540e-01 5.41142344e-01 -3.04061353e-01 1.08116217e-01 -5.70747443e-02 1.66892763e-02 8.38163078e-01 3.76006871e-01 -2.11019114e-01 3.04832548e-01 -2.45582312e-01 -2.72664130e-01 5.81125081e-01 1.16702545e+00 -2.75572628e-01 -6.82392716e-01 -1.56097114e-01 5.49176157e-01 1.84591204e-01 5.41962028e-01 -1.05631948e+00 5.68526089e-01 -1.53686926e-01 6.13879919e-01 -6.20704770e-01 7.84493051e-03 -1.43231928e+00 7.99083829e-01 5.36055624e-01 2.10249662e-01 3.22310120e-01 2.92157322e-01 5.67037046e-01 3.25462557e-02 2.41487995e-02 3.02185923e-01 -1.36300683e-01 -4.35503215e-01 1.31759614e-01 -4.26820248e-01 -2.06806675e-01 9.01979148e-01 1.46915764e-01 -4.85295087e-01 -6.04422510e-01 -5.15125453e-01 5.85910618e-01 2.17021689e-01 4.30546284e-01 6.41831243e-03 -1.20341611e+00 -6.55490041e-01 2.92947263e-01 -4.35125917e-01 1.16876267e-01 1.81569874e-01 3.54498833e-01 -1.14969328e-01 7.91493952e-01 -1.26175247e-02 -5.47728240e-01 -1.23653427e-01 3.14436555e-01 6.40600324e-01 -5.16995847e-01 -6.37856305e-01 -1.21449888e-01 -5.03165960e-01 -3.70294183e-01 -3.18060756e-01 -6.60452306e-01 3.47675741e-01 4.06778883e-03 7.66132772e-02 4.76794213e-01 4.42870945e-01 -1.54916838e-01 -1.85964748e-01 1.31373286e-01 4.52011704e-01 2.11141899e-01 1.60178030e+00 -1.57112330e-01 -1.07513458e-01 3.99148434e-01 7.45225549e-01 -5.92696667e-01 -1.37943244e+00 -1.17562220e-01 1.60767585e-01 -4.27596457e-03 6.97203755e-01 -1.41781449e+00 -1.54846716e+00 6.73610449e-01 6.06235087e-01 1.05183101e+00 1.06581068e+00 -2.53108859e-01 3.97294700e-01 4.85470772e-01 8.47951114e-01 -1.38100064e+00 -9.30819631e-01 -4.06678692e-02 4.52737242e-01 -9.17478859e-01 3.15160811e-01 2.13593274e-01 9.60212201e-02 1.04636145e+00 1.56440306e-02 1.15180731e-01 1.21646643e+00 7.94408798e-01 -3.62294585e-01 -1.56207889e-01 -7.66992629e-01 2.33974814e-01 -6.66773841e-02 5.95459163e-01 -2.05904290e-01 4.69438761e-01 2.49344274e-01 4.66961950e-01 -2.44548067e-01 2.51484752e-01 3.90762329e-01 9.96532917e-01 -9.35375877e-03 -1.05683160e+00 -2.96440553e-02 8.03512216e-01 -1.17002375e-01 -1.79134458e-01 2.97783524e-01 8.03900063e-01 -2.84813970e-01 8.64313424e-01 7.24750310e-02 1.43297389e-01 1.37279451e-01 2.01323986e-01 2.77908534e-01 -2.54788429e-01 -2.47231305e-01 -3.22801292e-01 5.68165153e-04 -4.91567373e-01 -2.19717547e-01 -8.14793587e-01 -1.23744345e+00 -4.77549970e-01 -4.23301578e-01 4.75666046e-01 1.23275650e+00 9.50836301e-01 4.91747439e-01 7.55750000e-01 7.98501432e-01 -1.11063778e+00 -9.27229285e-01 -9.95408356e-01 -1.07860398e+00 -2.42629126e-01 1.17164187e-01 -4.77324963e-01 -5.22822380e-01 -3.91353607e-01]
[6.003544330596924, 2.741778612136841]
93fbf9ea-de41-49a4-b60a-f8168d17f3b5
learning-efficient-explainable-and
2101.07429
null
https://arxiv.org/abs/2101.07429v1
https://arxiv.org/pdf/2101.07429v1.pdf
Learning Efficient, Explainable and Discriminative Representations for Pulmonary Nodules Classification
Automatic pulmonary nodules classification is significant for early diagnosis of lung cancers. Recently, deep learning techniques have enabled remarkable progress in this field. However, these deep models are typically of high computational complexity and work in a black-box manner. To combat these challenges, in this work, we aim to build an efficient and (partially) explainable classification model. Specially, we use \emph{neural architecture search} (NAS) to automatically search 3D network architectures with excellent accuracy/speed trade-off. Besides, we use the convolutional block attention module (CBAM) in the networks, which helps us understand the reasoning process. During training, we use A-Softmax loss to learn angularly discriminative representations. In the inference stage, we employ an ensemble of diverse neural networks to improve the prediction accuracy and robustness. We conduct extensive experiments on the LIDC-IDRI database. Compared with previous state-of-the-art, our model shows highly comparable performance by using less than 1/40 parameters. Besides, empirical study shows that the reasoning process of learned networks is in conformity with physicians' diagnosis. Related code and results have been released at: https://github.com/fei-hdu/NAS-Lung.
['Weidong Han', 'Fei Gao', 'Fuhao Shen', 'Hanliang Jiang']
2021-01-19
null
null
null
null
['pulmonary-nodules-classification', 'lung-nodule-classification']
['medical', 'medical']
[-1.35094807e-01 2.81119794e-01 -4.81489748e-01 -4.00175333e-01 -7.11763978e-01 -1.08923621e-01 1.82457328e-01 -3.71706694e-01 -1.19740717e-01 3.59094799e-01 1.14880867e-01 -6.55388474e-01 -2.95241505e-01 -6.67830288e-01 -6.73325777e-01 -6.82447255e-01 4.33639467e-01 4.83666599e-01 2.73845047e-01 1.47180498e-01 -1.45820588e-01 4.81564134e-01 -9.89217162e-01 5.00959337e-01 9.16746736e-01 1.14623904e+00 3.54242951e-01 5.64072132e-01 1.97872743e-02 1.21003342e+00 -9.30362791e-02 -5.09953082e-01 1.46841444e-02 -3.27742338e-01 -1.03776610e+00 -1.29323557e-01 8.71513784e-02 -3.81372213e-01 -6.89542294e-01 9.04245794e-01 5.47528386e-01 -1.56844124e-01 7.27073014e-01 -8.49227130e-01 -7.39192784e-01 4.73287076e-01 -4.18330878e-01 2.10433900e-01 -1.32893860e-01 7.77386576e-02 1.05364656e+00 -1.00988030e+00 1.87634572e-01 8.10434103e-01 7.97684312e-01 7.38573194e-01 -6.15158319e-01 -7.58560479e-01 1.09561816e-01 4.09136713e-01 -1.40022004e+00 -1.50510386e-01 7.46169090e-01 -1.83205977e-01 8.95896733e-01 4.32070106e-01 5.40172398e-01 1.27007115e+00 2.14232370e-01 1.03325534e+00 5.48126578e-01 -2.29972929e-01 -1.05797820e-01 2.81839609e-01 -6.67856559e-02 1.12374759e+00 2.52612263e-01 6.24006167e-02 -1.13354780e-01 8.13279673e-02 8.36150467e-01 4.41153198e-01 -3.32877666e-01 -2.34293014e-01 -1.07003546e+00 8.37396443e-01 1.07074773e+00 4.01074260e-01 -3.39983702e-01 2.70240247e-01 1.19296692e-01 -1.72886238e-01 2.59844184e-01 2.96379983e-01 -4.51296180e-01 2.26178929e-01 -6.94025099e-01 -2.69086901e-02 6.73903167e-01 7.71785319e-01 8.93542394e-02 -1.83002114e-01 -4.01629359e-01 1.02056015e+00 4.97655302e-01 2.34901607e-01 6.61385596e-01 -7.18961895e-01 4.87726778e-01 7.09517896e-01 -2.87829995e-01 -7.64983773e-01 -6.96038425e-01 -9.38658118e-01 -1.42575407e+00 -6.20447583e-02 3.84501591e-02 5.92609197e-02 -9.63537574e-01 1.34602809e+00 2.75086224e-01 2.39819139e-01 -1.36675820e-01 9.29285169e-01 1.06315219e+00 2.13472441e-01 5.01547866e-02 1.73271120e-01 1.46977341e+00 -1.55694413e+00 -4.60722208e-01 -1.45568430e-01 6.53672576e-01 -6.04784667e-01 1.09392631e+00 2.33696371e-01 -1.09418178e+00 -6.43911898e-01 -8.00961018e-01 -2.06691802e-01 -4.26272079e-02 5.55074513e-01 6.43396318e-01 4.21758562e-01 -8.38578463e-01 4.61473107e-01 -1.18789184e+00 -2.23475754e-01 7.96844065e-01 4.68112081e-01 -2.99985409e-02 -6.77100569e-02 -1.06874752e+00 7.87688255e-01 3.43501896e-01 3.02278429e-01 -9.43182051e-01 -6.45182073e-01 -5.34434557e-01 2.14751944e-01 4.14598912e-01 -1.07894838e+00 1.49365616e+00 -6.42219841e-01 -1.41562068e+00 7.26879478e-01 -1.19889066e-01 -5.41046441e-01 5.85969567e-01 -2.72043556e-01 -1.52791470e-01 1.16555966e-01 -1.49722219e-01 7.59332418e-01 5.83680153e-01 -8.21457863e-01 -5.29482722e-01 -1.00859888e-01 2.61539742e-02 2.53678381e-01 -5.33163011e-01 -2.11035267e-01 -9.12048101e-01 -7.64845431e-01 9.98778641e-02 -1.12073159e+00 -4.04111564e-01 2.94413120e-01 -6.74269438e-01 -3.73848349e-01 5.91854155e-01 -6.89257741e-01 1.38821650e+00 -1.95909595e+00 7.31084347e-02 1.25112399e-01 4.42724824e-01 3.13173503e-01 2.42870852e-01 -1.62758172e-01 -1.22074626e-01 2.92106390e-01 -1.67330056e-01 -4.10155058e-01 -1.82723161e-02 3.37501228e-01 4.30343524e-02 3.09872359e-01 2.63093352e-01 1.19036531e+00 -3.49190414e-01 -7.77786016e-01 2.62321442e-01 5.62036097e-01 -7.74324238e-01 3.35118264e-01 -2.40271166e-01 4.97219563e-01 -8.35157871e-01 8.27872455e-01 4.25417989e-01 -9.73680615e-01 3.98773402e-02 -2.11174041e-01 3.31707537e-01 3.53618413e-01 -6.38210654e-01 1.55344927e+00 -6.28851116e-01 3.15627098e-01 -2.08551571e-01 -1.06891549e+00 6.85722649e-01 5.09293675e-01 4.41114068e-01 -4.95182455e-01 2.54656851e-01 2.45501891e-01 2.07817882e-01 -7.06242025e-01 -1.67401478e-01 1.38753772e-01 3.49073768e-01 1.98547825e-01 -2.83020079e-01 1.17976107e-01 -2.17522964e-01 -2.39426166e-01 1.10655594e+00 -1.10914335e-01 4.78923887e-01 -6.38486352e-04 7.38112092e-01 -7.90308937e-02 4.50549811e-01 6.22430801e-01 -2.17024416e-01 7.43458807e-01 3.96032214e-01 -4.78472888e-01 -8.15000534e-01 -6.94184184e-01 -2.83982486e-01 6.78776920e-01 8.61394778e-02 -2.26019293e-01 -6.88826799e-01 -1.07012272e+00 -8.88578147e-02 6.42559409e-01 -7.49827266e-01 -2.02363476e-01 -8.01451087e-01 -7.56544113e-01 5.82571268e-01 1.09286821e+00 6.89436316e-01 -1.12235940e+00 -3.80711883e-01 -2.84578949e-02 -1.84088215e-01 -1.01547265e+00 -3.94541889e-01 2.12513238e-01 -9.37382162e-01 -1.16143239e+00 -8.50508392e-01 -9.23482955e-01 8.61463845e-01 2.28083998e-01 1.12680554e+00 4.07707304e-01 -5.11186481e-01 -9.15475190e-03 -2.04433948e-01 -3.63545507e-01 -1.91419870e-01 5.81209362e-01 -3.00238192e-01 -4.98704374e-01 3.57802629e-01 -3.09604317e-01 -8.84899855e-01 5.14271677e-01 -7.05408990e-01 4.32341963e-01 1.13474870e+00 1.11472738e+00 9.53819931e-01 2.14666262e-01 1.29964724e-01 -8.01726699e-01 3.06681305e-01 -6.64023817e-01 -3.56402427e-01 2.31332466e-01 -6.29718661e-01 1.64041221e-01 7.18037724e-01 -2.87781060e-01 -1.06483912e+00 1.18122309e-01 -6.72652960e-01 -7.16100752e-01 -2.89977908e-01 4.99338180e-01 2.40265839e-02 -1.83703378e-02 5.94078124e-01 1.16945930e-01 -1.14340216e-01 -6.48058653e-01 -9.86526236e-02 7.23382890e-01 2.77792394e-01 -1.67224437e-01 8.74479055e-01 4.20406908e-01 2.16273367e-02 -3.27425212e-01 -1.43241715e+00 -2.93747485e-01 -4.38309669e-01 1.75006866e-01 1.00355864e+00 -9.89072740e-01 -7.35203922e-01 2.29525849e-01 -8.67768228e-01 -4.34605569e-01 1.49576124e-02 6.72665477e-01 -3.44187528e-01 1.19705640e-01 -7.26646841e-01 -4.41835850e-01 -6.67246759e-01 -1.24267578e+00 9.23715472e-01 3.39314520e-01 -1.22737832e-01 -1.01594555e+00 -1.94378018e-01 7.23026872e-01 5.82668841e-01 -9.78389084e-02 8.29678178e-01 -8.95672321e-01 -7.36469746e-01 -2.03581527e-01 -4.62917835e-01 2.97271907e-01 1.50090456e-01 -1.68764204e-01 -9.12748694e-01 -1.31647676e-01 1.07891420e-02 -3.38434339e-01 1.07090342e+00 5.03223062e-01 2.16966271e+00 -3.10247391e-01 -7.28120685e-01 9.22940433e-01 1.11172521e+00 6.74594790e-02 4.54114258e-01 2.76683122e-01 7.91089773e-01 1.76280379e-01 4.70118433e-01 1.89600840e-01 4.25189346e-01 5.26327908e-01 8.30833495e-01 -3.08561623e-01 -2.35900477e-01 -2.24290311e-01 -1.33256450e-01 7.02709377e-01 -1.94881648e-01 -4.21820045e-01 -1.12390244e+00 2.67305493e-01 -1.75225854e+00 -8.06505442e-01 -6.27077650e-03 1.67151415e+00 7.34159291e-01 4.01038557e-01 -2.25325212e-01 -8.17401558e-02 3.71356070e-01 1.33591443e-01 -6.57868743e-01 -3.63653265e-02 3.44502300e-01 1.71471059e-01 3.61711890e-01 3.58920246e-01 -1.31004703e+00 5.99835634e-01 5.74454355e+00 9.18210864e-01 -1.24180233e+00 1.66429743e-01 9.14031923e-01 -1.41539425e-01 -2.89461017e-01 -4.92434293e-01 -8.74876022e-01 3.50730181e-01 6.61706269e-01 3.46260637e-01 2.56104201e-01 1.07850480e+00 5.77123947e-02 4.00232911e-01 -9.97484684e-01 9.02028143e-01 3.25049050e-02 -1.43733668e+00 -9.44453552e-02 9.75935161e-02 6.04811072e-01 3.53121132e-01 3.06556344e-01 4.50316548e-01 7.95541033e-02 -1.48096502e+00 3.02022785e-01 6.15630329e-01 8.20154011e-01 -5.77188373e-01 1.04619420e+00 5.93795121e-01 -1.28075278e+00 -2.61063486e-01 -4.52745885e-01 4.23836797e-01 -2.51957566e-01 5.39694667e-01 -1.15461075e+00 6.21029019e-01 8.70545983e-01 7.10852087e-01 -6.14151418e-01 1.06062818e+00 -5.19621015e-01 7.78614461e-01 -2.76623189e-01 -1.51429459e-01 2.82960117e-01 1.84082761e-01 1.48120254e-01 1.03343642e+00 4.68853146e-01 5.71771972e-02 1.60496756e-02 1.00629950e+00 -4.14299071e-01 -3.25552933e-02 -2.61987776e-01 -2.25463472e-02 2.29408085e-01 1.30727923e+00 -4.15783107e-01 -9.41678286e-02 -5.52192748e-01 9.63341653e-01 4.55623955e-01 -1.80775095e-02 -1.36311042e+00 -6.56113476e-02 3.38607997e-01 1.05141230e-01 5.46496749e-01 2.67040044e-01 -3.00511390e-01 -9.57922935e-01 1.16569459e-01 -8.36627185e-01 4.46857721e-01 -7.46907234e-01 -1.18589056e+00 7.98453450e-01 -3.79441231e-01 -1.33912861e+00 -1.43719137e-01 -8.63370895e-01 -7.77126670e-01 6.56859338e-01 -1.63986719e+00 -1.29425693e+00 -7.17862189e-01 5.04801452e-01 7.26357758e-01 -1.97240844e-01 8.76194060e-01 3.84140372e-01 -7.96842039e-01 8.39030802e-01 8.03518146e-02 3.20859075e-01 6.27531648e-01 -1.20252264e+00 2.59132236e-01 3.65351349e-01 8.82850736e-02 3.27255070e-01 1.92468509e-01 -3.85146111e-01 -1.14007664e+00 -1.42384720e+00 6.79020822e-01 -3.49226028e-01 4.98763233e-01 6.89323852e-03 -9.92470622e-01 7.35199332e-01 8.02164972e-02 3.63883853e-01 6.93411946e-01 5.62824570e-02 -1.25670612e-01 -1.18786938e-01 -8.32963586e-01 5.66655815e-01 1.06992853e+00 -3.72629642e-01 -3.84447783e-01 5.69587648e-01 8.68526399e-01 -7.59780407e-01 -8.82585287e-01 7.98534989e-01 5.32831490e-01 -9.35182631e-01 1.16131306e+00 -4.84564006e-01 6.82976902e-01 -1.42668590e-01 7.80311972e-02 -8.94862592e-01 -6.74509048e-01 -4.73117121e-02 -3.88511479e-01 5.93314350e-01 6.86116874e-01 -4.92794424e-01 1.18982577e+00 3.78944486e-01 -3.36736739e-01 -1.71294975e+00 -6.27295434e-01 -3.86062920e-01 2.11537883e-01 -3.24094325e-01 3.83713543e-01 6.41919971e-01 -4.28512573e-01 1.68462083e-01 -2.60816097e-01 2.64995247e-01 4.40097272e-01 1.41961485e-01 3.39813173e-01 -1.02375007e+00 -6.58823431e-01 -6.28045917e-01 1.28422201e-01 -1.20037699e+00 1.16012722e-01 -1.06134439e+00 -1.67367086e-01 -1.73701513e+00 5.36955714e-01 -4.72957134e-01 -5.68759084e-01 7.46847868e-01 -3.62188935e-01 2.34843530e-02 -1.59086779e-01 4.23184603e-01 -6.60858750e-01 5.29645085e-01 1.45401573e+00 -2.18056947e-01 8.01035687e-02 5.33297896e-01 -8.82624447e-01 9.60524857e-01 1.14865112e+00 -4.88457888e-01 -3.31010789e-01 -5.81300974e-01 7.70668536e-02 1.60287824e-02 5.39948463e-01 -1.00796163e+00 4.20508415e-01 -2.78852787e-02 7.58669198e-01 -9.32978868e-01 3.45303327e-01 -9.40943897e-01 1.47811010e-01 9.22064483e-01 -4.48673338e-01 -3.32149267e-01 5.01850508e-02 4.18326586e-01 -2.42052168e-01 -3.77523035e-01 8.96983802e-01 -1.59409463e-01 -2.50523508e-01 7.37440705e-01 -4.83035222e-02 -2.01074496e-01 9.60385084e-01 8.84245634e-02 -2.39418462e-01 -1.58489138e-01 -5.75178146e-01 4.61187601e-01 1.71995059e-01 1.06186226e-01 5.83152831e-01 -1.30774319e+00 -6.08367085e-01 1.78096160e-01 -2.22824458e-02 5.48349738e-01 4.66121644e-01 1.22409105e+00 -7.26894259e-01 8.26072752e-01 2.29491249e-01 -6.42644644e-01 -1.19728458e+00 5.64197838e-01 8.16538155e-01 -7.56774187e-01 -6.59639716e-01 1.07665551e+00 4.01253045e-01 -5.34214199e-01 5.72382271e-01 -4.08150911e-01 -2.49409780e-01 -4.39208299e-01 3.51041943e-01 1.23755880e-01 7.82294385e-03 -3.08805751e-03 -4.44337010e-01 3.95287037e-01 -3.58191252e-01 5.46940684e-01 1.30952787e+00 2.25629419e-01 1.67482868e-01 -1.36091143e-01 1.12913239e+00 -1.27114147e-01 -1.10564971e+00 -2.45837778e-01 -1.61245212e-01 -3.18742879e-02 1.30602986e-01 -8.73668075e-01 -1.28514910e+00 1.00391090e+00 6.31572187e-01 3.65996324e-02 1.27569509e+00 2.97498763e-01 8.00084114e-01 6.15903318e-01 -3.15641820e-01 -5.89444935e-01 2.79002875e-01 4.01934952e-01 9.58687842e-01 -1.54613340e+00 -7.17711076e-03 -4.33527619e-01 -7.32984185e-01 1.05402231e+00 9.32152569e-01 1.42848268e-02 8.72375488e-01 2.92050391e-01 -6.10482506e-02 -1.77697793e-01 -1.01010621e+00 -5.32647558e-02 6.16489291e-01 1.05053753e-01 6.30362272e-01 -1.53608993e-02 7.90530592e-02 9.67802882e-01 -1.06722146e-01 6.01673089e-02 -1.59595877e-01 6.15876734e-01 -4.79943126e-01 -9.91794646e-01 -2.13542506e-01 6.02061272e-01 -7.37982094e-01 -2.32765004e-01 -2.85051554e-01 9.40683544e-01 3.54594178e-02 4.77579296e-01 -7.90748522e-02 -3.53578061e-01 1.58996105e-01 -7.79840201e-02 2.17059642e-01 -4.12149906e-01 -4.33864325e-01 7.11091533e-02 -4.17955406e-02 -5.44501722e-01 -2.87470877e-01 -2.94687361e-01 -1.39331198e+00 -7.52034113e-02 -3.91515255e-01 -1.21619552e-02 3.51329535e-01 7.54255712e-01 3.23727757e-01 1.08020294e+00 6.42416000e-01 -3.97755653e-01 -8.97490978e-01 -9.30884540e-01 -1.52803525e-01 1.00358985e-02 1.49448812e-01 -5.26161849e-01 -3.79845738e-01 -2.68444538e-01]
[15.304022789001465, -2.1139957904815674]
ca631b2c-16d6-45cb-a89a-e6a209b29aee
chatgpt-vision-and-challenges
2305.15323
null
https://arxiv.org/abs/2305.15323v1
https://arxiv.org/pdf/2305.15323v1.pdf
ChatGPT: Vision and Challenges
Artificial intelligence (AI) and machine learning have changed the nature of scientific inquiry in recent years. Of these, the development of virtual assistants has accelerated greatly in the past few years, with ChatGPT becoming a prominent AI language model. In this study, we examine the foundations, vision, research challenges of ChatGPT. This article investigates into the background and development of the technology behind it, as well as its popular applications. Moreover, we discuss the advantages of bringing everything together through ChatGPT and Internet of Things (IoT). Further, we speculate on the future of ChatGPT by considering various possibilities for study and development, such as energy-efficiency, cybersecurity, enhancing its applicability to additional technologies (Robotics and Computer Vision), strengthening human-AI communications, and bridging the technological gap. Finally, we discuss the important ethics and current trends of ChatGPT.
['Rupinder Kaur', 'Sukhpal Singh Gill']
2023-05-08
null
null
null
null
['ethics']
['miscellaneous']
[-1.29167646e-01 5.67642689e-01 -3.34644943e-01 6.79619983e-02 4.85394657e-01 -4.04374152e-01 7.14725494e-01 -1.58996448e-01 -3.70838463e-01 7.06463754e-01 2.26366609e-01 -4.30317640e-01 -2.10789770e-01 -9.54125822e-01 -2.87559837e-01 -5.81085443e-01 2.04070985e-01 4.19793695e-01 -4.21061143e-02 -2.81623572e-01 1.49197519e-01 9.69306752e-02 -1.66806233e+00 -1.89831838e-01 1.09671009e+00 8.87186348e-01 4.78596151e-01 3.93240809e-01 -3.61106455e-01 9.49280620e-01 -7.46278048e-01 -6.11368597e-01 -4.04675044e-02 -1.87088832e-01 -1.20877194e+00 -3.26823860e-01 -4.29700553e-01 -1.43542662e-01 -4.06603068e-01 7.86547840e-01 3.13894808e-01 -2.59041926e-03 1.30679131e-01 -1.87757504e+00 -1.12838387e+00 7.98922539e-01 -1.99655548e-01 -4.18914288e-01 5.13467968e-01 2.83835679e-01 7.37360895e-01 -1.88281715e-01 8.02374601e-01 1.39282823e+00 4.07253474e-01 7.06012964e-01 -4.15834546e-01 -4.50446814e-01 -1.67370830e-02 7.02816069e-01 -1.00792205e+00 -3.20630409e-02 5.47426581e-01 -1.75468907e-01 1.08522522e+00 3.51696193e-01 1.04087913e+00 1.25039089e+00 4.84691948e-01 8.50462854e-01 8.73441756e-01 -8.86344254e-01 3.47036093e-01 4.77907479e-01 5.01047261e-03 5.86324275e-01 2.81199723e-01 -1.73994362e-01 -2.91546404e-01 -1.39934331e-01 6.95613384e-01 9.63170454e-02 2.66683310e-01 -6.73312098e-02 -1.56219077e+00 6.12645209e-01 3.22745919e-01 7.21845746e-01 -4.60569888e-01 1.47087514e-01 3.84833694e-01 1.10566214e-01 4.06509377e-02 5.20215154e-01 -2.94155657e-01 -6.99262738e-01 7.97341242e-02 -1.61235675e-01 1.13293743e+00 1.05129242e+00 4.24298167e-01 -6.63404018e-02 1.36573583e-01 5.86628497e-01 5.74433625e-01 6.04708672e-01 3.00954849e-01 -1.64884984e+00 8.24989527e-02 7.32993245e-01 -4.82528098e-03 -8.73491168e-01 -4.56376821e-01 1.72612950e-01 -6.67088449e-01 -4.14936878e-02 3.03730130e-01 -5.12704909e-01 -3.92096281e-01 1.15818059e+00 5.23072541e-01 -7.19804317e-02 1.52602181e-01 6.94005847e-01 1.05711305e+00 7.68426001e-01 1.97018817e-01 -8.46378654e-02 1.61801541e+00 -1.00562727e+00 -1.18638194e+00 -1.53912678e-01 6.66187227e-01 -3.98654521e-01 1.09464705e+00 5.71190000e-01 -8.09715629e-01 -3.98357987e-01 -6.72175109e-01 -2.11623684e-01 -7.54222035e-01 -6.53054863e-02 9.85481620e-01 1.14429367e+00 -9.11295474e-01 2.35087529e-01 -8.17507625e-01 -1.18934035e+00 1.60028085e-01 3.56732994e-01 2.07838211e-02 3.24310781e-03 -1.23226416e+00 1.22583818e+00 3.49270552e-01 -2.76140511e-01 -2.82127798e-01 -2.29208931e-01 -3.33929360e-01 -2.49057174e-01 4.55262542e-01 -1.00007069e+00 1.15724254e+00 -4.86628562e-01 -1.90538061e+00 7.73119926e-01 1.73078611e-01 -5.85251868e-01 2.58193791e-01 -4.03462052e-01 -6.53008521e-01 1.31439269e-01 -4.20113504e-02 7.71495759e-01 1.55673534e-01 -8.94121051e-01 -8.18803251e-01 -4.63437021e-01 4.06498134e-01 5.47391996e-02 -7.29452252e-01 1.50763273e-01 -3.54451448e-01 2.47739941e-01 -4.64447409e-01 -1.14877963e+00 -3.55230719e-01 2.47000545e-01 -7.27633089e-02 -7.14915156e-01 1.27045107e+00 -3.18913877e-01 8.10236096e-01 -2.16997576e+00 -1.21111833e-02 -2.56512105e-01 4.30092484e-01 3.02775025e-01 1.25902697e-01 8.94779027e-01 8.61148477e-01 2.90391445e-01 4.46185261e-01 1.38889119e-01 1.34901434e-01 7.25696027e-01 4.62515838e-02 7.11736232e-02 -2.90523976e-01 1.04795039e+00 -1.06865585e+00 -5.93213975e-01 5.34228623e-01 5.20537257e-01 -1.76951557e-01 -5.12862811e-03 -2.14453042e-01 7.34042704e-01 -9.86999154e-01 6.63678646e-01 3.55185926e-01 -2.16739014e-01 4.46849048e-01 2.38864750e-01 -5.90453148e-01 1.20814078e-01 -5.66417158e-01 1.70065272e+00 -6.50863886e-01 6.46639228e-01 2.21230060e-01 -1.05255651e+00 9.85052466e-01 5.84255338e-01 5.30231118e-01 -7.63152421e-01 4.96695071e-01 1.54770434e-01 3.69811314e-03 -1.25187302e+00 3.74326080e-01 4.16261852e-01 1.30204754e-02 5.89965224e-01 -1.27969131e-01 -1.66453511e-01 -1.54117882e-01 1.90164655e-01 1.03896058e+00 2.60369569e-01 5.08940458e-01 -4.79593500e-02 2.35647753e-01 1.90066740e-01 3.03055197e-01 7.65378475e-01 -7.72017777e-01 -2.07181975e-01 9.32697281e-02 -4.81907874e-01 -7.53797591e-01 -7.53227651e-01 1.24895878e-01 1.08494925e+00 5.70643187e-01 -5.08663237e-01 -9.38427806e-01 -5.20816624e-01 -1.58689946e-01 9.49825823e-01 -1.13666855e-01 -2.22484648e-01 -3.07759434e-01 -4.72140640e-01 6.14604354e-01 3.17009658e-01 1.23189187e+00 -1.41218102e+00 -1.15426385e+00 6.08132146e-02 -4.69403684e-01 -1.56329143e+00 3.57649118e-01 -1.47726322e-02 -9.27019477e-01 -5.41153908e-01 -2.10284546e-01 -9.00999963e-01 1.67476252e-01 6.26541138e-01 8.82657528e-01 2.59053856e-01 -3.43468487e-01 8.95231128e-01 -6.28559649e-01 -1.05026126e+00 -4.07811582e-01 5.27534485e-02 3.87880355e-01 -4.22511160e-01 6.45931304e-01 -7.71625102e-01 -4.37661648e-01 3.80757809e-01 -3.65636498e-01 6.01554401e-02 6.40363336e-01 3.38697016e-01 -2.72149503e-01 1.71736002e-01 5.88357031e-01 -4.54861760e-01 5.77986062e-01 -5.46419382e-01 1.06756762e-01 3.21679890e-01 -5.72456419e-01 -3.10927540e-01 4.84064788e-01 -3.99904460e-01 -1.33434641e+00 -3.36469024e-01 7.33481795e-02 8.01100060e-02 -4.46701825e-01 3.81652564e-01 -3.41047317e-01 -1.94271341e-01 7.05967367e-01 4.39127870e-02 3.03750604e-01 -3.46502423e-01 5.86509347e-01 1.43719149e+00 2.95807958e-01 -5.51212966e-01 5.76599717e-01 7.36638486e-01 -4.07943249e-01 -1.31749010e+00 -3.61413330e-01 -5.51187843e-02 -3.73367488e-01 -6.29998028e-01 1.16183758e+00 -4.06571031e-01 -1.35615456e+00 3.33024055e-01 -1.27876556e+00 -1.47146493e-01 -2.85043299e-01 7.77401328e-01 -1.67113110e-01 3.44525695e-01 -6.62597299e-01 -1.26528668e+00 -5.08645356e-01 -8.50777447e-01 6.31833076e-01 6.39963686e-01 -3.93927753e-01 -9.10422623e-01 -1.58390939e-01 1.09917521e+00 5.28258741e-01 -1.09753832e-01 6.69206500e-01 -3.22558969e-01 -5.73819101e-01 -1.38276353e-01 -1.74112186e-01 1.54431596e-01 1.13768101e-01 5.67369722e-02 -1.00712705e+00 1.56290308e-01 3.04448605e-01 -1.43999010e-01 6.10288046e-02 3.11853081e-01 9.56703007e-01 -3.89601886e-01 -9.29384530e-01 3.36027481e-02 9.16221976e-01 8.90659571e-01 9.25144613e-01 6.77319646e-01 4.94245917e-01 8.93837512e-01 8.30937862e-01 4.80570823e-01 7.17538357e-01 3.01272303e-01 6.88816249e-01 2.05146372e-01 2.53084421e-01 -9.51060429e-02 2.95239419e-01 1.15979373e+00 -9.87668157e-01 -3.07850957e-01 -1.06779754e+00 2.87450910e-01 -2.04468274e+00 -7.55955756e-01 -2.50059456e-01 1.73588526e+00 1.46831602e-01 -7.59307295e-02 1.74202427e-01 -4.18853685e-02 7.93993115e-01 -2.04176366e-01 -4.72662002e-01 -6.52600408e-01 1.60973713e-01 -3.00405711e-01 2.20007390e-01 -1.35526150e-01 -7.70877063e-01 9.74061251e-01 7.15186977e+00 5.21781325e-01 -9.39408720e-01 3.47681522e-01 3.46752346e-01 3.77772093e-01 6.01239875e-03 6.28852025e-02 -4.56576228e-01 4.21601713e-01 1.06590819e+00 -4.07694072e-01 8.29868734e-01 1.14147437e+00 3.18038315e-01 -1.97997734e-01 -6.74076140e-01 9.37426567e-01 -1.37637854e-01 -1.21584117e+00 -1.69831723e-01 3.95857990e-01 2.98290223e-01 2.52017647e-01 -1.46262586e-01 2.81314403e-01 5.29731810e-01 -6.75219119e-01 5.23081481e-01 3.16972323e-02 1.73126936e-01 -6.30388021e-01 7.68046081e-01 5.52819848e-01 -9.98525321e-01 -5.16522706e-01 -4.51157808e-01 -9.05060410e-01 2.72064731e-02 4.00703222e-01 -6.46600962e-01 8.70925069e-01 1.19547665e+00 6.09181106e-01 -1.27681822e-01 8.63409877e-01 -1.57097965e-01 3.85578990e-01 -3.47848475e-01 -8.48704517e-01 8.83912370e-02 -7.15761304e-01 5.70769727e-01 7.59769380e-01 3.12630892e-01 3.32492709e-01 1.05461881e-01 8.87875199e-01 1.89838871e-01 -2.92088926e-01 -9.69755411e-01 -3.52726758e-01 8.89759481e-01 1.37946391e+00 -8.30987215e-01 -3.20622295e-01 -7.44007349e-01 8.43831182e-01 -1.96348652e-01 1.70161933e-01 -9.54306602e-01 -5.11818886e-01 6.01922095e-01 -3.12347233e-01 -2.58017808e-01 -3.82200927e-01 -4.25725818e-01 -8.60593438e-01 -3.83824445e-02 -6.75134897e-01 8.49369243e-02 -8.96621168e-01 -1.10981882e+00 5.00677228e-01 -1.09001987e-01 -1.22462118e+00 1.16369523e-01 -4.37367857e-01 -6.92322016e-01 -1.38786301e-01 -8.87477934e-01 -1.30668056e+00 -3.84771675e-01 2.51563907e-01 2.40823328e-01 -1.34342790e-01 1.05691659e+00 1.06453665e-01 -4.36578542e-01 1.35308430e-01 2.71033973e-01 -1.83836401e-01 3.68899614e-01 -6.59011185e-01 4.31510806e-01 2.33519539e-01 -1.20512679e-01 5.47440112e-01 6.64087653e-01 -5.32812417e-01 -2.15407014e+00 -6.41234577e-01 9.34126019e-01 -5.20141780e-01 8.42198670e-01 -4.14844841e-01 -3.08956623e-01 8.12619627e-01 6.74346209e-01 -5.43828487e-01 4.84677494e-01 1.83446273e-01 4.49019596e-02 -9.82290506e-02 -1.46440160e+00 9.32113409e-01 1.38852406e+00 -4.57183838e-01 -5.35278678e-01 3.30127269e-01 1.11044884e+00 4.20091376e-02 -8.66174459e-01 -2.56897181e-01 8.82566750e-01 -8.41070831e-01 8.85176003e-01 -1.53214440e-01 7.25043640e-02 -3.08828475e-03 1.04203373e-01 -1.04532516e+00 -3.09297383e-01 -9.97465491e-01 -5.08553861e-03 1.29281545e+00 -5.91232143e-02 -1.17201388e+00 7.12848067e-01 8.89292717e-01 -3.12139213e-01 -2.28149831e-01 -9.78911340e-01 -9.85698044e-01 -5.65166585e-02 -5.24364650e-01 5.69864631e-01 1.05994987e+00 1.09705842e+00 4.43325549e-01 -4.30984885e-01 -2.36818478e-01 4.04516131e-01 -2.83493668e-01 7.47166932e-01 -1.78790593e+00 -5.53141697e-04 -6.10001720e-02 -5.49765706e-01 -8.24158370e-01 -2.70257324e-01 -5.89986265e-01 -2.78889984e-01 -1.98792875e+00 -1.34361079e-02 -1.83860987e-01 1.09830983e-01 4.97166693e-01 3.48123252e-01 -1.27990127e-01 4.64600027e-01 1.47903383e-01 -8.50174546e-01 4.56579626e-01 1.51525307e+00 -9.41127986e-02 -4.04988766e-01 -2.21943617e-01 -8.76040876e-01 8.32213998e-01 1.10877383e+00 -8.89237076e-02 -3.05625856e-01 -4.93500173e-01 5.82465604e-02 -4.85521220e-02 2.60804057e-01 -1.18662715e+00 4.66363192e-01 -3.87358904e-01 -3.53628024e-02 2.63673086e-02 3.64223003e-01 -1.25390172e+00 2.40903318e-01 7.31212258e-01 1.42024234e-01 -2.36440063e-01 -1.12913482e-01 4.65575337e-01 2.75986701e-01 -6.67971224e-02 3.66331637e-01 -3.13400924e-01 -6.61996067e-01 -3.56422931e-01 -1.13840878e+00 -5.29842556e-01 1.39985824e+00 -5.20134032e-01 -6.84103131e-01 -2.89000183e-01 -3.86725545e-01 4.94008124e-01 2.56018072e-01 7.36983657e-01 2.86976188e-01 -8.84881616e-01 -8.42493325e-02 -7.17907026e-02 -1.25971749e-01 -4.19256002e-01 2.02831179e-01 8.92677963e-01 -4.85217035e-01 6.05145633e-01 -5.72453976e-01 -3.86693925e-01 -1.33157539e+00 7.68176973e-01 -1.26354367e-01 2.06048816e-01 -8.89279485e-01 3.52311969e-01 1.26121808e-02 -6.56249464e-01 7.60298610e-01 -1.37524992e-01 -5.23113668e-01 -3.94162059e-01 5.88036597e-01 9.11355615e-01 -4.00057673e-01 -1.14603914e-01 -5.69654167e-01 4.62152451e-01 2.71844268e-01 -4.92560454e-02 1.29024732e+00 -6.07306778e-01 -4.93943870e-01 5.45767307e-01 5.58308482e-01 -4.95401710e-01 -5.09169638e-01 1.55213490e-01 1.21188231e-01 -2.06362233e-01 -4.58786860e-02 -8.24537516e-01 -1.00423491e+00 7.30207682e-01 7.01293528e-01 7.07338214e-01 8.18882942e-01 2.39608079e-01 9.88211811e-01 9.06084180e-01 1.01831412e+00 -1.49261022e+00 9.35702547e-02 3.84492844e-01 4.84538227e-01 -1.11018956e+00 -1.30498976e-01 -6.66462004e-01 -7.11561680e-01 1.19617093e+00 6.70769453e-01 3.17097574e-01 8.09888363e-01 2.05752075e-01 1.60885558e-01 -3.36500376e-01 -6.78951204e-01 -6.34164289e-02 -6.14782453e-01 1.22883904e+00 3.35673511e-01 1.86203346e-01 -5.08830786e-01 4.64093685e-01 -3.44507396e-01 5.18510699e-01 6.06060982e-01 1.41721272e+00 -6.06255531e-01 -1.07791710e+00 -6.05662167e-01 2.44976535e-01 -3.26958239e-01 3.92582029e-01 -7.61688590e-01 6.43368065e-01 3.43196988e-01 1.57644522e+00 -2.50103101e-02 -9.04710412e-01 1.35463417e-01 -2.61366256e-02 1.21073715e-01 -1.55052796e-01 -6.73840702e-01 -2.84961462e-01 4.44276780e-01 -2.83047706e-01 -6.29071832e-01 -4.14929450e-01 -1.52556622e+00 -8.39120805e-01 -3.81297946e-01 4.49749917e-01 1.03754878e+00 1.23021746e+00 6.99550927e-01 4.47909296e-01 2.82679498e-01 -7.63401866e-01 1.90176651e-01 -8.02022278e-01 -5.22606730e-01 -4.24798071e-01 -3.88011426e-01 -4.57272172e-01 -1.93841845e-01 -2.78356653e-02]
[9.266037940979004, 6.437495231628418]
2944ba86-4799-49ef-bdb5-f8d8d0d10131
rolling-shutter-camera-synchronization-with
1902.11084
null
http://arxiv.org/abs/1902.11084v1
http://arxiv.org/pdf/1902.11084v1.pdf
Rolling Shutter Camera Synchronization with Sub-millisecond Accuracy
A simple method for synchronization of video streams with a precision better than one millisecond is proposed. The method is applicable to any number of rolling shutter cameras and when a few photographic flashes or other abrupt lighting changes are present in the video. The approach exploits the rolling shutter sensor property that every sensor row starts its exposure with a small delay after the onset of the previous row. The cameras may have different frame rates and resolutions, and need not have overlapping fields of view. The method was validated on five minutes of four streams from an ice hockey match. The found transformation maps events visible in all cameras to a reference time with a standard deviation of the temporal error in the range of 0.3 to 0.5 milliseconds. The quality of the synchronization is demonstrated on temporally and spatially overlapping images of a fast moving puck observed in two cameras.
['Jiri Matas', 'Matej Smid']
2019-02-28
null
null
null
null
['video-synchronization']
['computer-vision']
[ 4.55751002e-01 -5.20542324e-01 6.88881949e-02 -3.44865881e-02 -3.20943624e-01 -7.27997482e-01 6.53257012e-01 3.21711779e-01 -7.96173096e-01 6.56122148e-01 -3.84647280e-01 1.32128909e-01 1.27448022e-01 -3.69007498e-01 -7.55404949e-01 -4.70866323e-01 -2.98693299e-01 5.08300737e-02 9.68681514e-01 4.70568873e-02 1.86678678e-01 6.93990409e-01 -1.57321417e+00 1.65747240e-01 1.10454656e-01 9.59062755e-01 3.27925414e-01 1.09327030e+00 4.60743606e-01 6.94474518e-01 -7.69719064e-01 7.36197233e-02 5.78862429e-01 -3.74642998e-01 -3.48744132e-02 2.80518949e-01 5.70208669e-01 -7.63634861e-01 -5.85706234e-01 5.92823446e-01 -1.22525757e-02 5.81878908e-02 3.92575115e-02 -1.24419832e+00 3.87974262e-01 -1.76463977e-01 -7.75588810e-01 6.12702131e-01 9.38022017e-01 1.38757616e-01 -4.52760048e-02 -3.67253274e-01 9.18292344e-01 4.15332168e-01 7.63296723e-01 2.60099974e-02 -9.67523932e-01 -5.37385762e-01 -2.37884134e-01 2.67694086e-01 -1.41886258e+00 -4.83842164e-01 2.20718935e-01 -5.69569886e-01 9.61284578e-01 2.11343035e-01 8.76679361e-01 5.97634673e-01 6.58521771e-01 -3.89113337e-01 1.20553243e+00 -4.51541513e-01 1.13105968e-01 1.31543159e-01 -6.31658360e-02 3.59598309e-01 4.81217086e-01 3.74514073e-01 -9.18987930e-01 -1.02810115e-01 8.66042495e-01 2.71721900e-01 -4.66899037e-01 -1.23112239e-01 -1.57908154e+00 2.25521743e-01 -3.02142709e-01 2.00117812e-01 -2.27903605e-01 1.56798527e-01 3.87062043e-01 4.11154866e-01 2.07731441e-01 1.96065098e-01 -6.90530241e-02 -4.28336233e-01 -1.05324423e+00 -9.76322219e-02 7.67723501e-01 1.03033555e+00 4.76711661e-01 -1.35390505e-01 4.34961617e-01 -7.51462877e-02 -1.78681955e-01 7.02802658e-01 1.44656181e-01 -8.99045587e-01 4.29070473e-01 9.20919627e-02 4.22263145e-01 -8.87593925e-01 -3.00728112e-01 4.39461023e-01 -3.45753849e-01 7.57021844e-01 7.68531382e-01 -2.17375606e-01 -4.64760274e-01 9.85163093e-01 4.20104802e-01 4.62732285e-01 -2.12725326e-01 9.53878760e-01 3.42500061e-01 7.73228943e-01 -6.34282172e-01 -7.78500080e-01 1.33944392e+00 -2.34188974e-01 -8.65171909e-01 -7.90685192e-02 1.59727968e-02 -1.15156400e+00 4.44012254e-01 6.65829182e-01 -1.00423348e+00 -5.49866676e-01 -1.34740770e+00 3.13602477e-01 -9.42266081e-03 1.40891507e-01 -1.36269003e-01 4.93201762e-01 -7.54749358e-01 5.50906539e-01 -9.99155879e-01 -5.96818566e-01 -4.80761021e-01 1.85305059e-01 -6.68984532e-01 2.52587777e-02 -8.60180914e-01 9.25403655e-01 1.94052622e-01 7.73075745e-02 -6.21538877e-01 -5.97273350e-01 -5.59226394e-01 -1.98488787e-01 3.55885744e-01 -2.77389437e-01 1.14477503e+00 -1.23386467e+00 -1.71270406e+00 9.10202801e-01 -2.32174799e-01 -5.50513923e-01 8.14402759e-01 -5.55399120e-01 -5.84554315e-01 6.99773312e-01 2.47635916e-02 -2.05595165e-01 8.98017645e-01 -7.18504310e-01 -6.07551277e-01 -2.07180157e-01 -3.41142118e-02 2.26217210e-01 1.78447366e-01 5.08561611e-01 -5.02996504e-01 -2.11702675e-01 9.41942260e-02 -9.06189203e-01 4.53909896e-02 2.89818551e-02 1.10615015e-01 7.97676504e-01 9.93233323e-01 -4.20054555e-01 1.02944493e+00 -2.20014191e+00 -2.90382773e-01 5.79562693e-05 -1.94715545e-01 7.23088533e-02 4.18913126e-01 8.16810369e-01 -5.16722240e-02 -5.09169221e-01 6.79456368e-02 -2.05998998e-02 -6.64103270e-01 3.10962019e-03 -4.21688467e-01 1.10794902e+00 -5.12620449e-01 -1.00705288e-01 -7.86088109e-01 -2.42773816e-01 4.50718850e-01 3.53062868e-01 1.97499618e-01 3.98899555e-01 2.34410077e-01 3.04136992e-01 1.72595412e-01 3.49076062e-01 7.67867148e-01 2.09393993e-01 1.42993659e-01 8.32690205e-03 -7.98806489e-01 3.45757119e-02 -1.45238686e+00 1.34440517e+00 -2.85607018e-02 1.34357429e+00 -2.25312263e-02 -1.83922365e-01 7.35717416e-01 5.01237392e-01 6.30711973e-01 -6.84444487e-01 -7.33040124e-02 4.50458005e-02 -2.98300177e-01 -5.80120146e-01 8.52869570e-01 -1.54853866e-01 1.26416013e-01 6.18325591e-01 -2.70395279e-01 -1.02880366e-01 5.48946440e-01 2.05533653e-01 1.10455644e+00 -6.22779480e-05 5.78366578e-01 2.28248984e-02 5.86209558e-02 1.13870159e-01 5.42996645e-01 4.97881562e-01 -1.10503040e-01 7.98601151e-01 3.37340564e-01 -5.72403371e-01 -1.15302455e+00 -7.79972315e-01 1.85851771e-02 4.94971186e-01 8.03155661e-01 -6.80256367e-01 -5.76049745e-01 -5.45303039e-02 -3.77796263e-01 2.15728760e-01 -4.59978491e-01 1.69469863e-01 -7.45217264e-01 -1.40999824e-01 4.25180376e-01 3.50547642e-01 4.52458441e-01 -5.91696143e-01 -1.66814101e+00 -4.23509516e-02 -5.40487021e-02 -1.62928581e+00 -4.70395416e-01 -5.93888201e-02 -9.14479077e-01 -1.52132809e+00 -4.50809360e-01 -1.22965887e-01 6.22264087e-01 7.96807408e-01 9.27049756e-01 -1.15285613e-01 -3.13649029e-01 6.74334407e-01 -3.73124659e-01 -2.77237117e-01 -3.76441240e-01 -6.05962336e-01 2.83149123e-01 4.63470034e-02 2.41285503e-01 -9.88114104e-02 -2.76123315e-01 6.20113552e-01 -9.78366613e-01 1.25117406e-01 -1.56715408e-01 3.61431241e-01 4.23232764e-01 -6.92261234e-02 -3.19209427e-01 -3.16292733e-01 9.68055278e-02 -1.83685735e-01 -1.31006455e+00 1.08677894e-01 -2.37379923e-01 -6.30253851e-01 6.89890802e-01 -4.59120840e-01 -9.51094151e-01 3.63027841e-01 8.33117545e-01 -4.85672712e-01 -4.48285073e-01 -1.41651388e-02 3.39947701e-01 2.94139329e-02 6.14747941e-01 -5.90412365e-03 -3.42590436e-02 1.84437111e-01 4.56277244e-02 1.48544073e-01 8.40103567e-01 1.28868431e-01 8.08974624e-01 9.88363922e-01 1.07507192e-01 -1.36034262e+00 4.69277576e-02 -6.73985541e-01 -7.80673325e-01 -7.44605243e-01 8.16567183e-01 -9.66826260e-01 -6.01689577e-01 8.32422793e-01 -1.19448650e+00 -2.48759076e-01 -3.37236434e-01 1.00205278e+00 -4.22694683e-01 5.19851625e-01 -5.73018134e-01 -5.01639068e-01 1.64336503e-01 -7.10591614e-01 6.62571728e-01 6.45388007e-01 -2.04124585e-01 -7.06659794e-01 3.84126991e-01 -1.00304842e-01 3.79579552e-02 4.29164112e-01 -3.04393023e-01 -2.33347137e-02 -8.38981628e-01 -6.49063051e-01 2.01737761e-01 1.14963070e-01 1.84190199e-01 6.43943310e-01 -8.37302029e-01 -3.34426790e-01 3.35668027e-01 2.68805087e-01 4.69134092e-01 6.25156701e-01 1.46699041e-01 6.70097172e-02 -5.09117603e-01 5.96295416e-01 1.60958374e+00 6.34208620e-01 7.99852729e-01 6.55375242e-01 2.86981076e-01 3.16256434e-01 9.54771042e-01 6.16169572e-01 -2.55599320e-01 9.36560631e-01 2.75514096e-01 -1.04279011e-01 1.82661235e-01 2.41732113e-02 7.41112828e-01 2.49151781e-01 -4.91052479e-01 -1.64683640e-01 -7.51346111e-01 4.59050596e-01 -1.45864010e+00 -1.43696547e+00 -6.13570929e-01 2.89303637e+00 8.82108808e-02 5.69886379e-02 2.59917937e-02 1.18499726e-01 1.00689578e+00 2.47490361e-01 -9.16424543e-02 -4.62440223e-01 -6.76054284e-02 -1.11571804e-01 1.14822578e+00 5.47246039e-01 -8.84531140e-01 4.47912604e-01 6.65865898e+00 -1.00511394e-01 -1.23235536e+00 -1.15271822e-01 -7.10985884e-02 -4.85534042e-01 3.11647624e-01 4.69525874e-01 -7.49571204e-01 8.60523105e-01 1.02538979e+00 -3.68357241e-01 2.52379596e-01 4.27963734e-01 5.04028499e-01 -1.12930250e+00 -1.03565788e+00 1.02609611e+00 2.96039045e-01 -1.15821183e+00 -7.45448470e-01 1.10855894e-02 6.01103008e-01 -2.88504176e-02 -4.17102695e-01 -6.17804408e-01 -2.83702523e-01 -6.41094327e-01 8.26469183e-01 7.23618567e-01 1.01215684e+00 -6.78092778e-01 5.60189605e-01 4.10507768e-01 -1.34619677e+00 9.24051628e-02 -2.80922115e-01 -4.83991414e-01 7.02903688e-01 4.23947215e-01 -9.52845454e-01 4.15250927e-01 8.27570975e-01 4.68512028e-01 -3.43017608e-01 1.23881114e+00 -1.22694977e-01 3.39308470e-01 -8.09816837e-01 2.92958975e-01 -1.65342763e-01 -4.95669305e-01 7.52977908e-01 1.20335495e+00 7.09790826e-01 4.24675107e-01 -1.86035201e-01 9.69539508e-02 4.34921086e-01 -4.63946640e-01 -1.00034308e+00 3.79511118e-01 5.71638167e-01 9.78430748e-01 -9.44446504e-01 -3.99180084e-01 -5.50794423e-01 1.14258134e+00 -5.94400227e-01 2.48775437e-01 -1.06038845e+00 -8.05750906e-01 4.17272329e-01 5.76185405e-01 3.24749112e-01 -5.65175116e-01 1.31177604e-01 -9.70729709e-01 3.34320158e-01 -4.27727193e-01 3.13146621e-01 -9.56252694e-01 -5.10175943e-01 5.90243220e-01 4.10037041e-01 -1.82516730e+00 -3.73054713e-01 -1.57391459e-01 -7.02766478e-01 5.64477682e-01 -1.01748157e+00 -5.76357424e-01 -7.22714007e-01 7.15983808e-01 3.94250095e-01 -4.03923541e-02 5.37819088e-01 1.87911510e-01 -2.40355000e-01 -9.76295248e-02 2.80762494e-01 -2.22361624e-01 9.91897643e-01 -7.96853542e-01 2.32502460e-01 1.39845693e+00 1.04762353e-01 2.22245365e-01 1.08288860e+00 -5.25878251e-01 -1.28849041e+00 -3.79542291e-01 9.79977489e-01 -2.00391129e-01 4.94494915e-01 -2.21845731e-01 -7.82912076e-01 7.45194018e-01 6.39192104e-01 2.44874269e-01 3.84149402e-01 -5.72527826e-01 9.06387419e-02 -4.29064244e-01 -8.86494100e-01 -1.35323077e-01 2.71046638e-01 -6.25425935e-01 -5.25883794e-01 2.38905966e-01 4.43340763e-02 -8.99607062e-01 -4.56656396e-01 1.67068299e-02 8.85354578e-01 -1.57115686e+00 5.90410531e-01 1.95371166e-01 -6.82214797e-02 -7.21709847e-01 9.57171768e-02 -9.17550862e-01 1.45032808e-01 -1.09897220e+00 3.64447057e-01 9.26231563e-01 -2.73847908e-01 -6.95102036e-01 3.12709630e-01 5.22385538e-01 1.18923008e-01 9.89409238e-02 -1.15087390e+00 -8.83513153e-01 -9.88471806e-01 -3.03768545e-01 -1.02350101e-01 7.52308905e-01 3.85627866e-01 -4.43611220e-02 -6.93959236e-01 5.00882924e-01 5.31985998e-01 1.51205257e-01 1.04079068e+00 -1.08291638e+00 -3.02762866e-01 3.07844937e-01 -6.51158273e-01 -8.11088324e-01 -4.38770175e-01 6.05825894e-02 4.75343280e-02 -1.05644715e+00 5.44323102e-02 2.55198658e-01 1.43453926e-01 -2.00439513e-01 2.11733133e-01 1.73599347e-01 4.02227908e-01 2.59480566e-01 -3.11144024e-01 -2.45011687e-01 3.41005951e-01 5.11359930e-01 -2.01063335e-01 8.12098756e-02 5.14479458e-01 9.33161438e-01 5.83426178e-01 -6.80368781e-01 -3.38741183e-01 -3.38209659e-01 3.17867875e-01 5.74984014e-01 5.55103421e-01 -1.47823119e+00 6.31801665e-01 -7.69155100e-02 4.16964740e-01 -6.10468805e-01 4.60026175e-01 -1.20311940e+00 1.02316105e+00 4.88598168e-01 4.51050960e-02 6.73971295e-01 3.59921724e-01 7.15992808e-01 -3.21725070e-01 -2.95522183e-01 9.24951375e-01 -1.88828349e-01 -8.88180435e-01 -4.81780246e-02 -7.68223107e-01 -3.79232347e-01 1.66804278e+00 -8.03670228e-01 -3.11021626e-01 -4.24813628e-01 -3.83857280e-01 -2.67976165e-01 1.04527378e+00 6.10740706e-02 7.26016700e-01 -9.85582530e-01 -2.56447375e-01 3.78246009e-01 -1.37517035e-01 -4.16252136e-01 3.42600018e-01 1.12686753e+00 -1.23408973e+00 1.92130774e-01 -4.59087282e-01 -8.82813752e-01 -1.98524356e+00 3.59061271e-01 3.69014442e-01 2.03195512e-01 -8.22568357e-01 3.76380384e-01 -1.35654882e-01 7.29918897e-01 -2.81699747e-03 -4.80122894e-01 1.30398497e-01 1.05603240e-01 8.45986903e-01 7.60235846e-01 4.39224727e-02 -7.31514335e-01 -4.75180715e-01 9.71504450e-01 1.71627104e-01 -4.24718618e-01 9.85979080e-01 -4.29949671e-01 1.17566973e-01 7.62003422e-01 8.53272915e-01 4.12646621e-01 -1.65711570e+00 2.30439827e-01 -2.51447797e-01 -1.07851291e+00 -3.26848030e-01 -1.93839505e-01 -7.10299373e-01 6.17229462e-01 7.93809891e-01 3.27229589e-01 1.33067989e+00 -1.96971744e-01 5.17085731e-01 1.58719480e-01 4.87976909e-01 -1.15444934e+00 -3.00143808e-01 3.27247441e-01 4.22569066e-01 -8.39209199e-01 4.84223127e-01 -2.31888250e-01 -7.12782383e-01 1.70128167e+00 1.62585407e-01 -1.37219653e-01 1.34697691e-01 8.06077123e-01 2.55336940e-01 -2.63917036e-02 -6.76429987e-01 4.13782038e-02 -2.61495173e-01 5.65468311e-01 3.54612917e-01 -1.39750078e-01 -3.22452605e-01 -3.09630662e-01 1.87111586e-01 2.22736135e-01 1.22679734e+00 1.18310928e+00 -4.78870928e-01 -6.55403972e-01 -8.36335659e-01 -2.46913448e-01 -2.56294042e-01 3.07845026e-01 -2.31744707e-01 1.18906760e+00 8.21397528e-02 1.00178754e+00 4.50528294e-01 -2.20330298e-01 5.47773540e-01 -2.53756106e-01 5.66921175e-01 -2.25556642e-01 -5.49779534e-01 2.69394606e-01 3.84555086e-02 -1.06971622e+00 -7.69092500e-01 -9.35855627e-01 -1.19863462e+00 -4.39430892e-01 -1.44581407e-01 2.94830606e-05 5.80339789e-01 5.27278483e-01 5.24776541e-02 1.15496237e-02 6.47648633e-01 -8.67238343e-01 2.78549105e-01 -6.18946671e-01 -8.29023600e-01 2.27719709e-01 6.11959279e-01 -2.25221485e-01 -5.37561953e-01 8.42459142e-01]
[8.71487808227539, -1.9046692848205566]
4be7c459-449e-4f30-8323-feafddce5351
enhancing-early-lung-cancer-detection-on
2208.14742
null
https://arxiv.org/abs/2208.14742v1
https://arxiv.org/pdf/2208.14742v1.pdf
Enhancing Early Lung Cancer Detection on Chest Radiographs with AI-assistance: A Multi-Reader Study
Objectives: The present study evaluated the impact of a commercially available explainable AI algorithm in augmenting the ability of clinicians to identify lung cancer on chest X-rays (CXR). Design: This retrospective study evaluated the performance of 11 clinicians for detecting lung cancer from chest radiographs, with and without assistance from a commercially available AI algorithm (red dot, Behold.ai) that predicts suspected lung cancer from CXRs. Clinician performance was evaluated against clinically confirmed diagnoses. Setting: The study analysed anonymised patient data from an NHS hospital; the dataset consisted of 400 chest radiographs from adult patients (18 years and above) who had a CXR performed in 2020, with corresponding clinical text reports. Participants: A panel of readers consisting of 11 clinicians (consultant radiologists, radiologist trainees and reporting radiographers) participated in this study. Main outcome measures: Overall accuracy, sensitivity, specificity and precision for detecting lung cancer on CXRs by clinicians, with and without AI input. Agreement rates between clinicians and performance standard deviation were also evaluated, with and without AI input. Results: The use of the AI algorithm by clinicians led to an improved overall performance for lung tumour detection, achieving an overall increase of 17.4% of lung cancers being identified on CXRs which would have otherwise been missed, an overall increase in detection of smaller tumours, a 24% and 13% increased detection of stage 1 and stage 2 lung cancers respectively, and standardisation of clinician performance. Conclusions: This study showed great promise in the clinical utility of AI algorithms in improving early lung cancer diagnosis and promoting health equity through overall improvement in reader performances, without impacting downstream imaging resources.
['Simon Rasalingham', 'George Pearse', 'Jordan Smith', 'Liliana Garcia-Mondragon', 'Paul Williams', 'Tom Naunton Morgan', 'Qaiser Malik', 'Amanda Stockham', 'Stephanie Patterson', 'Jackson J. Pat', 'James Hoare', 'David Doyne', 'Richard Dittrich', 'Matthew Tam', 'Tom Dyer', 'Nicole Tay', 'Gaetan Dissez']
2022-08-31
null
null
null
null
['lung-cancer-diagnosis']
['medical']
[ 4.17726129e-01 4.10857320e-01 -3.15309554e-01 -1.18911207e-01 -1.50892305e+00 -7.67514467e-01 2.63844490e-01 4.96615499e-01 -6.35769367e-01 6.27503097e-01 5.15111506e-01 -1.13858223e+00 -6.75552905e-01 -5.94659686e-01 -2.97522873e-01 -7.11567819e-01 3.60816747e-01 1.16619158e+00 3.53324205e-01 8.15052986e-01 -3.03101867e-01 8.43256474e-01 -6.49678349e-01 6.96037173e-01 3.11742485e-01 6.58789277e-01 3.34738016e-01 1.40855730e+00 2.79001147e-01 1.60087311e+00 -3.26310366e-01 -3.74486387e-01 4.70357597e-01 -7.01244950e-01 -7.91855216e-01 -2.37521902e-02 3.10108244e-01 -5.82236528e-01 -3.41222316e-01 -1.29738569e-01 7.45354652e-01 -3.52531105e-01 8.78606021e-01 -6.24368131e-01 -3.88403803e-01 5.72819471e-01 -1.01808719e-01 6.35199606e-01 3.20448786e-01 7.99508691e-01 8.29644084e-01 -5.60021937e-01 2.96372950e-01 4.88902211e-01 1.11528766e+00 6.40897036e-01 -8.06102693e-01 -7.12703586e-01 -7.39204705e-01 -1.12577580e-01 -1.16580331e+00 -8.04276764e-02 -3.82741570e-01 -4.68339294e-01 1.15797663e+00 1.09437144e+00 8.77847672e-01 5.31612277e-01 1.88113198e-01 9.09885466e-02 1.22489822e+00 -4.89459306e-01 8.77106860e-02 3.88378829e-01 -1.92956045e-01 4.54926640e-01 5.19423127e-01 3.08033645e-01 6.07218221e-02 -8.49487841e-01 8.53221297e-01 3.60786080e-01 -3.27259988e-01 3.17142248e-01 -1.66906834e+00 6.89982831e-01 5.65607667e-01 4.02857035e-01 -5.37569225e-01 1.95365146e-01 4.16420430e-01 2.71673482e-02 -6.64071217e-02 4.09617692e-01 -1.90753967e-01 1.15808006e-02 -1.00757360e+00 -1.48566052e-01 6.40732169e-01 6.16963744e-01 -2.44970396e-01 -3.68887097e-01 -4.77898479e-01 5.73015034e-01 2.78704762e-01 8.58188152e-01 7.76525378e-01 -7.96370924e-01 4.09782976e-01 7.01589048e-01 4.98928390e-02 -4.18435335e-01 -6.89108133e-01 -2.70692110e-01 -8.93023551e-01 -1.63551256e-01 3.75863224e-01 -1.59610629e-01 -1.09004891e+00 8.03538322e-01 -4.95174490e-02 -1.83307111e-01 2.94246245e-02 8.66346955e-01 5.28708518e-01 3.10984880e-01 5.65782130e-01 -4.46409166e-01 1.62901509e+00 -6.85010910e-01 -2.62802988e-01 -5.97212687e-02 1.20147216e+00 -6.93106055e-01 7.60785997e-01 2.36686796e-01 -1.22150052e+00 -4.17412251e-01 -3.02762508e-01 2.54405528e-01 1.72388002e-01 6.04176641e-01 5.97083867e-02 9.69376922e-01 -1.03877842e+00 3.33337873e-01 -1.26607800e+00 -5.06526470e-01 6.30306840e-01 7.43491769e-01 -4.35088247e-01 -1.19594574e-01 -6.85453594e-01 1.01861417e+00 3.81767154e-01 -1.94370180e-01 -4.79918510e-01 -1.18710256e+00 5.24568255e-04 3.14431451e-02 4.25159037e-01 -1.36206365e+00 1.59223628e+00 -6.95833027e-01 -5.88070214e-01 1.07158244e+00 -7.02603608e-02 -6.94200456e-01 8.93492758e-01 -1.05516344e-01 -1.25331730e-01 4.97116655e-01 3.64937752e-01 3.41084093e-01 1.90030202e-01 -8.27167749e-01 -1.02898347e+00 -3.34012508e-01 -7.69861639e-01 3.63332540e-01 -7.48862624e-02 3.39760393e-01 6.70792311e-02 -5.62813222e-01 -3.88227344e-01 -1.16507471e+00 -5.67635357e-01 1.83031157e-01 -1.68301508e-01 -9.74896923e-02 6.26223445e-01 -9.65622663e-01 1.25405908e+00 -1.72811115e+00 -6.53915524e-01 4.37729329e-01 7.62946367e-01 4.19316530e-01 8.15935791e-01 4.79156494e-01 -2.47018293e-01 5.27940035e-01 -5.63330114e-01 3.02666366e-01 -4.33161348e-01 1.21238962e-01 3.72703448e-02 4.05652791e-01 2.92276919e-01 1.23915446e+00 -7.77359188e-01 -8.63441944e-01 5.79044759e-01 3.76970261e-01 -2.43580669e-01 5.10335982e-01 3.73733222e-01 6.18643403e-01 -3.78402889e-01 5.05013227e-01 9.03615132e-02 -7.41313696e-01 2.45953441e-01 4.41674620e-01 -1.47225231e-01 1.81065530e-01 -8.12938452e-01 6.20056987e-01 -4.63894993e-01 4.03157443e-01 -2.32721537e-01 -1.69246122e-01 7.00193822e-01 1.11034620e+00 6.48620963e-01 -1.56102493e-01 -4.13115174e-02 5.66466570e-01 5.50146699e-01 -5.50481677e-01 -5.37420094e-01 -6.37789786e-01 5.95605314e-01 1.00366437e+00 -7.51996338e-01 -4.51611996e-01 -3.94085109e-01 2.89725512e-01 1.70394278e+00 -7.05988586e-01 7.60710716e-01 -1.05560564e-01 5.52335978e-01 7.86838770e-01 -2.41649881e-01 1.12761712e+00 -2.71463424e-01 9.00737643e-01 5.35875410e-02 -2.65474886e-01 -1.26995313e+00 -1.10445273e+00 -4.50196683e-01 6.56793952e-01 -1.00142527e+00 -1.11209758e-01 -3.04898202e-01 -6.90635681e-01 1.06840243e-03 6.54211938e-01 -6.58046365e-01 -7.22384965e-03 -8.08148861e-01 -7.46053696e-01 7.97254920e-01 1.12232518e+00 1.90771222e-01 -1.02107310e+00 -1.28062487e+00 3.95682186e-01 5.72441742e-02 -6.59198701e-01 -3.10105622e-01 2.80635476e-01 -1.02059233e+00 -1.29449224e+00 -1.47886860e+00 -4.41766769e-01 5.74364007e-01 1.61034450e-01 1.14792907e+00 7.11127102e-01 -9.86098409e-01 8.19279492e-01 -6.86703250e-02 -7.40620792e-01 -8.51034343e-01 3.37469764e-02 -1.78737998e-01 -8.11437190e-01 4.18987781e-01 7.28410929e-02 -1.09570754e+00 3.73704433e-01 -1.00069046e+00 -1.04439221e-01 1.14478397e+00 6.93006933e-01 5.85393429e-01 -1.86173722e-01 4.37113941e-01 -1.30524302e+00 4.88879055e-01 -6.06763065e-01 4.24335599e-02 1.51129395e-01 -8.99618506e-01 -4.77074713e-01 7.97892809e-01 -6.32684454e-02 -1.12868893e+00 2.05755442e-01 7.59286061e-02 -5.36705218e-02 -3.00399542e-01 2.39841715e-01 8.12066972e-01 1.42225355e-01 1.15459347e+00 5.29127419e-02 4.43323925e-02 -1.13804281e-01 -5.96815608e-02 1.06387424e+00 5.50365925e-01 -7.66309798e-02 9.05321240e-01 5.69980741e-01 2.86891133e-01 -4.13740128e-01 -6.19602919e-01 -1.24406970e+00 -8.11926246e-01 2.95736156e-02 1.06139231e+00 -1.01274896e+00 -1.76820830e-01 -1.31271333e-01 -4.35763955e-01 -2.92084485e-01 -7.85723746e-01 9.91170108e-01 -4.06963527e-01 2.60925204e-01 -4.26357180e-01 -7.13590682e-01 -8.45779955e-01 -9.72801685e-01 1.05828893e+00 -1.28096506e-01 -7.63832927e-01 -1.21738112e+00 4.01134312e-01 4.02079016e-01 6.51662707e-01 1.69856653e-01 9.32307482e-01 -1.05296767e+00 -4.18694466e-01 -5.13132691e-01 -5.84884048e-01 7.22767562e-02 5.60239971e-01 1.91569731e-01 -7.11802125e-01 -2.65767694e-01 2.20619425e-01 -2.03700513e-01 4.95278507e-01 5.71765661e-01 1.03571463e+00 -5.00629008e-01 -7.65719354e-01 1.90517634e-01 1.64496994e+00 6.08044922e-01 2.67861068e-01 3.21140558e-01 6.41685605e-01 2.56340772e-01 6.33820891e-02 1.99615851e-01 -1.77785710e-01 1.10009708e-01 -7.44100958e-02 -3.73031944e-01 -2.43171468e-01 -4.20439802e-02 -3.26839179e-01 5.12193799e-01 -6.26577556e-01 -1.72765300e-01 -1.78959191e+00 6.61989331e-01 -1.18579769e+00 -6.93608999e-01 -8.34900618e-01 2.03688002e+00 6.71813190e-01 -4.28080149e-02 5.01207352e-01 2.58794725e-01 6.32881045e-01 -5.37962019e-01 -2.37614706e-01 -4.97305542e-01 4.30660307e-01 5.98338604e-01 1.04985750e+00 5.52493073e-02 -4.94799525e-01 -7.72189349e-02 7.17631197e+00 3.61524701e-01 -8.83708477e-01 8.29789117e-02 1.02506030e+00 -1.60338894e-01 -2.94907745e-02 -1.28523529e-01 -4.00273323e-01 1.90734684e-01 1.47695267e+00 -3.06313127e-01 -2.87231594e-01 6.83589220e-01 4.03348625e-01 -3.18139046e-01 -1.15755856e+00 3.45433235e-01 -2.96468347e-01 -1.51785970e+00 -6.95846900e-02 2.31523648e-01 7.85200715e-01 1.35773286e-01 -3.50738391e-02 -2.36798406e-01 3.56913000e-01 -1.41776216e+00 1.24524795e-01 5.30533791e-01 1.50870025e+00 -3.60008329e-01 1.18012357e+00 3.96754712e-01 -9.54681873e-01 -1.45651639e-01 -2.16263399e-01 3.54061946e-02 -9.08821225e-02 1.77631721e-01 -2.12146473e+00 5.34828663e-01 6.01587951e-01 -3.12717482e-02 -7.06952095e-01 1.00979233e+00 1.71139985e-01 1.52310228e+00 -6.79818511e-01 1.24111697e-02 4.48035270e-01 3.41817260e-01 8.46186355e-02 1.53434134e+00 1.94374427e-01 9.71663058e-01 -4.41985816e-01 3.97504419e-01 7.80597404e-02 3.95568699e-01 -5.07221937e-01 5.91333359e-02 4.37032819e-01 1.17164981e+00 -1.00536060e+00 -6.73118114e-01 -7.02250302e-01 3.99884611e-01 -2.57662207e-01 -2.89373010e-01 -8.16381693e-01 3.59818749e-02 -6.13054037e-01 1.04776025e+00 5.24105169e-02 6.92967534e-01 -6.44523144e-01 -1.05255492e-01 -2.81945109e-01 -9.94718552e-01 8.84713531e-01 -8.29501629e-01 -1.04891801e+00 5.24788797e-01 6.96125180e-02 -1.00831640e+00 -3.91778588e-01 -6.08046651e-01 -8.13861728e-01 1.03462851e+00 -8.35779965e-01 -9.23425257e-01 -4.42034334e-01 8.98398757e-02 2.66467363e-01 -4.98862602e-02 8.38751853e-01 -1.87514782e-01 -4.28086668e-02 3.56322110e-01 3.42343122e-01 1.93016440e-01 6.82854950e-01 -1.58630228e+00 1.25819907e-01 1.18218653e-01 -3.43964636e-01 5.54759860e-01 -8.19073915e-02 -8.11057687e-01 -8.36114824e-01 -1.33094203e+00 8.63607764e-01 -1.21625853e+00 4.25017208e-01 5.19997120e-01 -8.37083280e-01 9.89515483e-01 -4.46429178e-02 -6.94282651e-02 1.19908166e+00 -8.12107503e-01 2.55638033e-01 4.52470630e-01 -1.33174181e+00 1.63600206e-01 7.17482388e-01 -4.45923269e-01 -7.40780175e-01 7.41501331e-01 2.23943502e-01 -2.95670211e-01 -1.33874452e+00 5.23661137e-01 5.45143366e-01 -8.65132272e-01 1.10288835e+00 -7.05543041e-01 4.60324377e-01 -5.48445880e-02 2.93250352e-01 -6.15636885e-01 -6.80633545e-01 -2.15747803e-01 4.58263457e-01 5.47146499e-01 5.26716709e-01 -6.44705474e-01 1.05847061e+00 1.21198416e+00 8.01537037e-02 -9.72350895e-01 -9.79318738e-01 -2.35076398e-01 3.78433704e-01 -1.14768267e-01 1.98880643e-01 5.36848843e-01 -3.42890084e-01 -8.49619582e-02 3.31173003e-01 -1.29149090e-02 8.21953416e-02 -5.05562186e-01 4.66982514e-01 -8.20668995e-01 -6.43591285e-01 -3.54313850e-01 -2.70709276e-01 -1.74600840e-01 -8.30657244e-01 -1.08015108e+00 -4.08670396e-01 -2.08827972e+00 8.66761446e-01 -5.63695312e-01 -1.08471125e-01 4.28559214e-01 -7.11122811e-01 1.70944378e-01 3.41560543e-01 1.00118041e+00 7.57398456e-02 -5.73573649e-01 1.06558001e+00 2.75156081e-01 9.20731947e-02 5.88005900e-01 -7.27592349e-01 5.11529863e-01 7.17993140e-01 -1.05462182e+00 -1.87672094e-01 -1.39665186e-01 2.03348068e-03 3.77709448e-01 8.38693440e-01 -1.28404069e+00 2.91301310e-01 -6.43362030e-02 9.38615203e-01 -6.27682567e-01 -3.03283721e-01 -1.26201880e+00 9.09497023e-01 1.48145521e+00 -4.14433450e-01 4.32535142e-01 3.47118378e-01 6.60761535e-01 2.27265000e-01 -4.08796102e-01 7.30871618e-01 -7.14748085e-01 1.86983109e-01 -1.40706934e-02 -6.81162119e-01 9.14455801e-02 1.32260191e+00 -5.09220719e-01 -2.55493611e-01 -3.16933483e-01 -7.19066560e-01 -1.69183299e-01 4.05952454e-01 -5.30928552e-01 1.88969687e-01 -9.84820426e-01 -1.14075494e+00 -3.72895569e-01 -2.10087523e-02 4.18440819e-01 2.42063147e-03 1.29509306e+00 -1.25429749e+00 1.05696762e+00 2.24808723e-01 -6.72481537e-01 -1.45278955e+00 5.26488960e-01 6.44335985e-01 -7.52820790e-01 -7.69252419e-01 9.93318021e-01 3.37069929e-01 -1.08145244e-01 -1.32374272e-01 -4.39751506e-01 4.15834069e-01 -4.09309834e-01 3.28296572e-01 6.37899518e-01 2.04966620e-01 -4.55642432e-01 -5.17587125e-01 4.80804890e-01 -3.48271638e-01 -9.09093842e-02 9.96193409e-01 9.86577123e-02 1.99640021e-01 4.05180961e-01 9.83940244e-01 2.12115854e-01 -5.47071636e-01 -3.88226169e-03 1.94167520e-03 -3.56213629e-01 -1.21532314e-01 -1.25159800e+00 -5.78931689e-01 7.14296937e-01 7.64442146e-01 2.66720682e-01 1.06301606e+00 4.09831256e-01 5.54801941e-01 3.31576049e-01 -4.06637996e-01 -5.79115868e-01 -5.13656111e-03 -6.46033347e-01 6.24367356e-01 -1.27397287e+00 5.06490290e-01 -2.02359006e-01 -9.12200212e-01 1.26118636e+00 1.79113224e-01 2.92787906e-02 3.67575794e-01 1.93845406e-01 2.86473781e-01 -4.58389461e-01 -9.83912289e-01 1.47964999e-01 1.72559813e-01 5.98461628e-01 6.59390926e-01 4.55922544e-01 -3.20628047e-01 4.26742196e-01 -3.56183127e-02 2.65605479e-01 2.68983990e-01 1.10017574e+00 -5.08640170e-01 -6.07324421e-01 -8.37633312e-01 1.41573906e+00 -1.00559056e+00 -2.06050321e-01 -9.62640762e-01 1.31329691e+00 1.71702355e-01 5.16505182e-01 7.58576319e-02 3.52982014e-01 3.82108897e-01 8.36588070e-02 -1.67352101e-03 -7.96343327e-01 -1.26114011e+00 -1.18908986e-01 1.37563571e-01 1.13776952e-01 -4.45675820e-01 -8.89134228e-01 -1.36894953e+00 -8.99297744e-02 -6.91136599e-01 2.98180312e-01 2.05260724e-01 5.53008914e-01 1.25423953e-01 7.06033349e-01 5.30724883e-01 2.90401816e-01 -8.35126758e-01 -8.30328166e-01 -1.40949577e-01 1.03108594e-02 2.36150116e-01 6.91488311e-02 -8.49068344e-01 2.39199534e-01]
[15.491170883178711, -2.0266013145446777]
13ff6911-0f5a-452e-bccc-72e03a8327c3
eeg-synthetic-data-generation-using
2303.06068
null
https://arxiv.org/abs/2303.06068v1
https://arxiv.org/pdf/2303.06068v1.pdf
EEG Synthetic Data Generation Using Probabilistic Diffusion Models
Electroencephalography (EEG) plays a significant role in the Brain Computer Interface (BCI) domain, due to its non-invasive nature, low cost, and ease of use, making it a highly desirable option for widespread adoption by the general public. This technology is commonly used in conjunction with deep learning techniques, the success of which is largely dependent on the quality and quantity of data used for training. To address the challenge of obtaining sufficient EEG data from individual participants while minimizing user effort and maintaining accuracy, this study proposes an advanced methodology for data augmentation: generating synthetic EEG data using denoising diffusion probabilistic models. The synthetic data are generated from electrode-frequency distribution maps (EFDMs) of emotionally labeled EEG recordings. To assess the validity of the synthetic data generated, both a qualitative and a quantitative comparison with real EEG data were successfully conducted. This study opens up the possibility for an open\textendash source accessible and versatile toolbox that can process and generate data in both time and frequency dimensions, regardless of the number of channels involved. Finally, the proposed methodology has potential implications for the broader field of neuroscience research by enabling the creation of large, publicly available synthetic EEG datasets without privacy concerns.
['Francesco Fumagalli', 'Cesare M. Dalbagno', 'Giulio Tosato']
2023-03-06
null
null
null
null
['synthetic-data-generation', 'eeg', 'synthetic-data-generation', 'eeg']
['medical', 'methodology', 'miscellaneous', 'time-series']
[ 2.98308372e-01 -1.50449753e-01 4.98837352e-01 -3.36527050e-01 -4.85426903e-01 -2.83281654e-01 3.54396492e-01 3.83363038e-01 -6.62592292e-01 1.09727049e+00 -2.62281727e-02 2.95618977e-02 -2.91114479e-01 -6.21072888e-01 -4.79655057e-01 -9.60066617e-01 -1.59223944e-01 9.57579166e-02 -4.57132667e-01 1.85303181e-01 2.78083622e-01 6.50312424e-01 -1.59627926e+00 3.03888358e-02 1.17600369e+00 1.15158057e+00 2.59139985e-01 -6.20919541e-02 3.62201124e-01 7.46255666e-02 -7.77263343e-01 -4.57635671e-01 1.10475002e-02 -2.68242776e-01 -3.03319544e-01 -4.20942232e-02 -2.58530289e-01 -7.14893118e-02 -1.63122803e-01 1.14094341e+00 8.60027194e-01 1.22048959e-01 6.12990439e-01 -1.37109184e+00 -5.35857201e-01 9.20637622e-02 -4.37895417e-01 2.24530309e-01 3.13813031e-01 1.08844660e-01 4.33001995e-01 -7.74981916e-01 2.95019686e-01 4.83208597e-01 3.41381192e-01 3.43177617e-01 -1.51331758e+00 -1.20966327e+00 -1.95885524e-01 4.96739984e-01 -1.55368507e+00 -3.71276647e-01 9.39719915e-01 -6.34544611e-01 6.93684757e-01 7.67864138e-02 1.03112042e+00 1.76326013e+00 6.08989537e-01 2.42501363e-01 1.75370228e+00 -1.61686391e-01 7.08510280e-01 3.95554096e-01 1.61114827e-01 3.73301492e-03 2.83151180e-01 9.85851958e-02 -8.03740203e-01 -3.92855287e-01 5.53765297e-01 -1.92534581e-01 -5.78074157e-01 -2.22195402e-01 -1.29701889e+00 5.71220398e-01 1.76232800e-01 4.23050821e-01 -9.78079975e-01 -3.52832258e-01 4.35999036e-01 3.64220925e-02 6.34524047e-01 4.59741205e-01 -2.34727308e-01 -3.69566262e-01 -1.07321215e+00 2.87884533e-01 4.74242270e-01 5.76697052e-01 3.49097937e-01 1.30045667e-01 9.63773504e-02 7.20253110e-01 3.04957223e-03 3.45153302e-01 7.23478377e-01 -6.70179546e-01 6.20614141e-02 3.64462107e-01 1.44488424e-01 -1.02834845e+00 -5.10650575e-01 -4.98865217e-01 -1.22980988e+00 9.79612023e-02 2.84213796e-02 -3.29741091e-01 -3.83884758e-01 1.82688928e+00 -1.53502151e-01 2.54723519e-01 -8.71155113e-02 7.78279185e-01 4.80597943e-01 4.47121918e-01 2.91257590e-01 -3.24052483e-01 1.36450648e+00 -8.59883614e-03 -8.62349093e-01 -7.96578899e-02 -4.74148653e-02 -3.68839115e-01 1.11897290e+00 8.68114710e-01 -8.03012788e-01 -2.96684951e-01 -1.08045936e+00 4.02032286e-01 -3.25141340e-01 1.31538093e-01 5.89133799e-01 8.18339884e-01 -1.02846336e+00 4.19146270e-01 -9.10942078e-01 -1.41198188e-01 6.98512793e-01 6.73812926e-01 -7.46283233e-01 1.53426349e-01 -1.27699709e+00 9.70128655e-01 4.64496166e-01 1.94949210e-01 -4.81692404e-01 -5.85529447e-01 -6.05024099e-01 1.57190353e-01 -2.73994803e-01 -3.78420562e-01 5.25997460e-01 -8.21721673e-01 -1.36229122e+00 5.51587641e-01 7.16212997e-03 -4.61283505e-01 2.82290459e-01 -1.47266807e-02 -4.64699745e-01 1.46030992e-01 -6.60268916e-03 7.51408517e-01 7.83670664e-01 -8.43239129e-01 -1.11279294e-01 -6.81246400e-01 -4.81651366e-01 -9.01233852e-02 -5.87456524e-01 -3.84374075e-02 1.34385675e-01 -8.10193062e-01 -1.50589913e-01 -7.76263654e-01 1.79276973e-01 -2.51312762e-01 -2.65893698e-01 -3.80014777e-02 3.72893780e-01 -9.13392007e-01 7.35727191e-01 -2.23198438e+00 1.51747450e-01 5.30570030e-01 9.20530707e-02 1.23310052e-01 4.36066203e-02 1.57507360e-01 -4.10504818e-01 -1.26096159e-01 -4.51543629e-01 -5.77249527e-02 -1.70360953e-01 -3.61027718e-01 -2.69363429e-02 6.67461157e-01 3.28469723e-01 6.36657476e-01 -6.04273379e-01 6.11893013e-02 3.93629223e-01 8.92061472e-01 -3.33712429e-01 2.67285913e-01 3.50060523e-01 9.21245813e-01 8.33228417e-03 2.01150894e-01 7.15906203e-01 1.58518732e-01 -9.68599990e-02 -1.99037179e-01 -1.21183857e-01 -2.83453967e-02 -1.10604799e+00 1.53961456e+00 -3.86696219e-01 8.59575510e-01 -2.64988951e-02 -9.37249243e-01 1.02770174e+00 6.59616470e-01 5.96777976e-01 -7.76522636e-01 4.34973270e-01 1.01950854e-01 1.99774399e-01 -5.21831930e-01 5.02043851e-02 -3.16785127e-01 2.23121896e-01 5.47284544e-01 2.02837944e-01 -8.54822323e-02 -2.73662135e-02 -1.20615229e-01 7.91187167e-01 6.14364706e-02 1.10401653e-01 -5.51132739e-01 2.39401057e-01 -3.98777068e-01 3.18290353e-01 2.15459764e-01 -1.05230980e-01 3.19777429e-01 4.02291924e-01 -1.93919446e-02 -8.07881474e-01 -8.54081452e-01 -6.52846277e-01 2.37562492e-01 -8.07052925e-02 -5.95487691e-02 -1.13475049e+00 4.25382443e-02 -3.20181936e-01 9.66488659e-01 -6.61134481e-01 -3.67876351e-01 1.09724037e-01 -1.20188940e+00 4.42051053e-01 3.36215138e-01 4.55002099e-01 -1.22965622e+00 -7.97490716e-01 3.50932270e-01 -5.09559393e-01 -1.03214681e+00 1.26955345e-01 2.26786166e-01 -6.90193355e-01 -8.59896004e-01 -8.70183051e-01 -4.58935678e-01 6.12620354e-01 -1.53865248e-01 4.83580977e-01 -4.18024361e-01 -3.16809922e-01 2.12775871e-01 -9.73285958e-02 -6.67264700e-01 -1.12755168e-02 -1.26921728e-01 4.03294683e-01 2.52699792e-01 7.39500999e-01 -1.07823229e+00 -7.57617652e-01 1.76226526e-01 -9.29755330e-01 1.55681759e-01 5.62157929e-01 7.25028455e-01 4.34973747e-01 4.19493049e-01 1.17136633e+00 -4.66174453e-01 1.29311597e+00 -5.61583340e-01 -4.48911548e-01 -2.36245878e-02 -5.52682579e-01 -2.44367987e-01 5.50064504e-01 -4.03442264e-01 -1.04561257e+00 -2.15742692e-01 -3.83941591e-01 -9.01166582e-04 -5.32295108e-01 5.16550422e-01 -2.88682193e-01 -1.93738177e-01 6.88927472e-01 2.81794101e-01 8.95804688e-02 -2.22716257e-01 -1.45218566e-01 9.00602579e-01 4.79536474e-01 -2.93991864e-01 2.94979602e-01 2.18134001e-01 -2.05962151e-01 -1.03543675e+00 -5.31231761e-02 -6.48455834e-03 -6.66400909e-01 -2.89566934e-01 8.48004103e-01 -8.34283233e-01 -7.08087802e-01 7.63128638e-01 -1.00111783e+00 1.31313847e-02 2.00668752e-01 8.03494871e-01 -3.99974257e-01 1.93065614e-01 -2.33002707e-01 -7.81351805e-01 -5.46389878e-01 -1.36508691e+00 5.75001419e-01 3.23434323e-02 -6.83015645e-01 -6.37256682e-01 -2.13239089e-01 2.34720007e-01 3.95751268e-01 3.98067921e-01 1.17712092e+00 -5.85809648e-01 -1.10334486e-01 -5.28143048e-01 -1.47589818e-01 6.85718656e-01 2.25247920e-01 -2.85001695e-01 -1.28978240e+00 -2.08154961e-01 5.26500165e-01 -3.05622935e-01 8.30819160e-02 4.50463593e-01 1.33160079e+00 1.34274699e-02 6.03684448e-02 2.97557354e-01 1.16760325e+00 3.50177139e-01 7.30170071e-01 2.85875171e-01 1.72687113e-01 7.23532975e-01 1.19894169e-01 5.85846245e-01 2.47641906e-01 3.68532330e-01 1.05157405e-01 4.62711081e-02 3.52797091e-01 1.86623260e-01 3.00418045e-02 6.26774192e-01 -1.67944685e-01 -1.41081493e-02 -8.46447527e-01 4.09817606e-01 -1.32140958e+00 -7.79314339e-01 3.09848748e-02 2.42117214e+00 6.40513241e-01 -5.52565651e-03 1.07481390e-01 6.83353007e-01 6.34474695e-01 -5.52167535e-01 -4.90665883e-01 -2.35562772e-01 -1.66337505e-01 6.05506182e-01 3.29996310e-02 -8.46285149e-02 -6.56259358e-01 1.03718072e-01 5.70594788e+00 6.05020761e-01 -1.41163135e+00 1.82835355e-01 7.44703531e-01 -3.06014359e-01 -1.74163848e-01 -6.45955503e-01 -9.47800130e-02 8.66680026e-01 1.31493139e+00 -4.38675314e-01 7.84633994e-01 4.04692024e-01 6.98139727e-01 -4.52071816e-01 -1.05551672e+00 1.34047139e+00 -3.92477922e-02 -1.17351735e+00 -3.65487367e-01 1.89920560e-01 4.22943026e-01 -1.03611737e-01 1.78778231e-01 -7.31463134e-02 -5.52218497e-01 -1.09372222e+00 7.72702515e-01 5.24162173e-01 8.26976359e-01 -1.03236246e+00 9.60608840e-01 5.46336889e-01 -4.26523209e-01 -3.06731034e-02 -1.37512401e-01 -1.29712028e-02 8.67193192e-02 7.01947272e-01 -5.64049482e-01 3.51927578e-01 8.02257895e-01 3.10065895e-01 -3.96723419e-01 1.21507037e+00 -1.14879705e-01 5.96782029e-01 -2.68162340e-01 1.67516712e-02 -2.26006016e-01 -4.76276010e-01 3.15095276e-01 9.94079232e-01 6.51836276e-01 1.16647929e-01 -5.58668792e-01 1.07686305e+00 -7.10753128e-02 1.76949665e-01 -5.26572406e-01 -1.84573233e-01 5.35172760e-01 1.27856290e+00 -8.06443393e-01 1.44306079e-01 -3.60587507e-01 9.36672330e-01 2.10326836e-01 3.72488022e-01 -6.64915860e-01 -5.93667984e-01 4.23739314e-01 9.51057896e-02 -3.24188113e-01 -1.54439867e-01 -7.55507290e-01 -1.07343626e+00 3.02544415e-01 -9.47108090e-01 -1.04670219e-01 -8.04148078e-01 -1.32640636e+00 1.03373802e+00 1.83786958e-01 -1.06074834e+00 -9.92954224e-02 -4.90003139e-01 -4.84828562e-01 1.22432303e+00 -1.22566152e+00 -6.46134734e-01 -4.64256734e-01 6.08488262e-01 1.14455171e-01 -1.52604014e-01 1.33432519e+00 5.31784177e-01 -6.95641458e-01 2.76481628e-01 7.43199438e-02 -3.07684392e-01 4.39117163e-01 -8.06538284e-01 1.54936418e-01 6.57524765e-01 -8.45604390e-02 7.94931531e-01 7.03512728e-01 -4.20441121e-01 -1.10906243e+00 -8.03333223e-01 5.40549099e-01 -1.02521017e-01 4.99950111e-01 -6.14009082e-01 -1.06005633e+00 1.95894703e-01 3.98425460e-01 -4.51623946e-01 1.14581990e+00 -1.56501397e-01 3.57086003e-01 -1.13920704e-01 -1.47889984e+00 5.06116569e-01 4.00152504e-01 -4.92629945e-01 -6.32423520e-01 2.17060611e-01 -1.36009678e-01 7.93251470e-02 -1.06781662e+00 2.87969530e-01 4.05432075e-01 -9.86910880e-01 5.35956562e-01 3.03961560e-02 8.63779560e-02 9.97220725e-02 2.16223180e-01 -1.74705398e+00 -1.95691660e-01 -5.79420865e-01 1.16689160e-01 1.20276618e+00 2.65595913e-01 -8.38209450e-01 6.36417508e-01 1.30448842e+00 2.15204179e-01 -8.29758942e-01 -1.11208236e+00 -4.14392024e-01 -9.60643739e-02 -6.97989762e-01 6.41199708e-01 6.01449311e-01 3.95266145e-01 7.82486871e-02 -2.74956763e-01 2.96808649e-02 5.46436667e-01 -2.98027486e-01 2.53159016e-01 -1.43123376e+00 1.87256739e-01 -2.18953311e-01 -6.19035482e-01 -1.77465856e-01 3.92022818e-01 -8.58611524e-01 -5.04182912e-02 -1.39970911e+00 8.28507915e-02 -2.69204587e-01 -5.03313482e-01 2.91037440e-01 -1.24232555e-02 5.25963962e-01 -1.77425474e-01 -5.39150229e-03 2.12221175e-01 8.15648675e-01 8.32954764e-01 1.41921356e-01 -2.68759191e-01 -4.73366072e-03 -8.39568555e-01 6.39555037e-01 9.49915588e-01 -4.55649257e-01 -6.87111259e-01 -1.94884688e-01 -6.30686507e-02 -2.71027610e-02 3.12200934e-01 -1.17671764e+00 5.13648503e-02 2.61870444e-01 7.70843208e-01 -1.66791856e-01 5.63593328e-01 -9.65001523e-01 4.33846593e-01 1.22904219e-02 -1.21860333e-01 2.00995013e-01 5.02923429e-01 4.71191257e-01 -2.15988725e-01 -1.01517767e-01 8.78316224e-01 1.53216839e-01 -2.82900214e-01 2.12963283e-01 -9.03778851e-01 -2.93256462e-01 1.33377445e+00 -4.24064189e-01 1.02363542e-01 -4.15367395e-01 -7.18503177e-01 -1.94506809e-01 2.38568977e-01 3.63410801e-01 7.98140585e-01 -1.04395533e+00 -5.23283839e-01 7.25885808e-01 2.03413819e-03 -4.11578000e-01 4.95709866e-01 1.12883329e+00 -2.31265992e-01 2.61742145e-01 -7.93777227e-01 -3.05166066e-01 -8.67632210e-01 2.71034509e-01 1.54769104e-02 5.16279638e-01 -8.21524024e-01 6.60658717e-01 -1.44962948e-02 4.01146635e-02 4.70407993e-01 -4.94983345e-02 -2.81227499e-01 1.88022748e-01 6.31675959e-01 3.86856467e-01 5.65786302e-01 -5.83525836e-01 -3.58377457e-01 -2.02612489e-01 1.59616277e-01 -3.61985356e-01 1.69946516e+00 3.19207162e-02 -3.66179347e-01 3.35202724e-01 8.27402353e-01 -1.77563950e-01 -1.11363220e+00 3.93047780e-01 -1.41998917e-01 -4.19139594e-01 2.95865059e-01 -8.46944571e-01 -9.80062246e-01 1.08859491e+00 9.41648722e-01 -7.54253985e-03 1.30442631e+00 -4.99469787e-01 5.32787681e-01 1.34302750e-01 6.69377625e-01 -1.04102492e+00 -2.20134065e-01 -1.52549878e-01 9.41043913e-01 -8.31981242e-01 -2.35516399e-01 -2.07817983e-02 -8.80943179e-01 9.62203145e-01 3.61470550e-01 -4.59361598e-02 7.79363811e-01 3.03059906e-01 -8.78871605e-02 -1.66474000e-01 -4.28743899e-01 5.63068032e-01 2.78260291e-01 8.49208295e-01 5.29922247e-01 1.57250389e-02 -4.77042586e-01 1.16725338e+00 -3.66581291e-01 3.52803051e-01 4.24954861e-01 7.01658607e-01 8.63468349e-02 -1.12758946e+00 -3.36277634e-01 9.21940804e-01 -5.19628286e-01 -1.48601562e-01 -1.60716668e-01 4.72343326e-01 1.96821973e-01 1.14823318e+00 -1.21953532e-01 -3.26795161e-01 3.14553887e-01 3.80449325e-01 4.46571171e-01 -4.04501647e-01 -5.05114615e-01 -3.26799788e-02 -1.77820921e-01 -1.09923296e-01 -3.47291470e-01 -7.22431004e-01 -9.63653922e-01 -1.40773058e-01 -2.83489406e-01 3.81610751e-01 1.08584201e+00 9.95059669e-01 7.61979818e-01 4.28952426e-01 4.54744309e-01 -9.81583774e-01 -1.49027258e-01 -1.19407809e+00 -8.10904086e-01 3.72904718e-01 1.71061512e-02 -8.93386126e-01 -2.03576803e-01 -1.17283147e-02]
[13.158992767333984, 3.3995816707611084]
875127b1-529f-4bcb-b7d9-1f7f795af58f
deep-linear-networks-dynamics-low-rank-biases
2106.15933
null
https://arxiv.org/abs/2106.15933v2
https://arxiv.org/pdf/2106.15933v2.pdf
Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity
The dynamics of Deep Linear Networks (DLNs) is dramatically affected by the variance $\sigma^2$ of the parameters at initialization $\theta_0$. For DLNs of width $w$, we show a phase transition w.r.t. the scaling $\gamma$ of the variance $\sigma^2=w^{-\gamma}$ as $w\to\infty$: for large variance ($\gamma<1$), $\theta_0$ is very close to a global minimum but far from any saddle point, and for small variance ($\gamma>1$), $\theta_0$ is close to a saddle point and far from any global minimum. While the first case corresponds to the well-studied NTK regime, the second case is less understood. This motivates the study of the case $\gamma \to +\infty$, where we conjecture a Saddle-to-Saddle dynamics: throughout training, gradient descent visits the neighborhoods of a sequence of saddles, each corresponding to linear maps of increasing rank, until reaching a sparse global minimum. We support this conjecture with a theorem for the dynamics between the first two saddles, as well as some numerical experiments.
['Berfin Şimşek', 'Clément Hongler', 'Franck Gabriel', 'François Ged', 'Arthur Jacot']
2021-06-30
null
null
null
null
['l2-regularization']
['methodology']
[-2.69956768e-01 3.18866551e-01 -9.39975455e-02 9.21790488e-03 -4.37300980e-01 -4.24385577e-01 1.73857868e-01 1.46842986e-01 -6.89297616e-01 7.33819187e-01 -2.43715674e-01 -4.32197273e-01 -7.48786986e-01 -8.41770947e-01 -9.93147194e-01 -1.25013292e+00 -8.52231324e-01 4.27396983e-01 2.74377197e-01 -5.82713962e-01 6.72451556e-02 2.07017958e-01 -1.15329909e+00 -2.09728763e-01 6.93737090e-01 1.30011451e+00 -2.00649008e-01 4.43515897e-01 -3.06720704e-01 1.25130206e-01 -3.85688633e-01 -2.79257566e-01 7.75182545e-01 -6.59378171e-01 -4.54252332e-01 -4.67449009e-01 3.91285241e-01 3.54147494e-01 -1.29488930e-01 1.70266259e+00 2.66962379e-01 2.49682918e-01 6.25554264e-01 -1.07552218e+00 -3.85236889e-01 7.79683709e-01 -9.33337927e-01 4.90500927e-01 -2.80938476e-01 7.43776038e-02 8.70671928e-01 -5.80773473e-01 6.82910919e-01 8.11339200e-01 8.94573331e-01 4.51278687e-01 -1.29047227e+00 -9.02463436e-01 3.36353809e-01 -2.89555013e-01 -1.72264993e+00 -2.04026699e-01 7.52702773e-01 -5.79090953e-01 6.39365494e-01 -2.00467348e-01 7.47461617e-01 4.97666985e-01 4.77380723e-01 1.40095010e-01 1.07622957e+00 -3.00977945e-01 4.45039809e-01 1.31581992e-01 4.74994302e-01 1.05720508e+00 2.62909710e-01 -7.21864253e-02 -4.99397367e-01 -4.90698069e-02 7.52211332e-01 -2.91552335e-01 -4.77458566e-01 -3.18935663e-01 -5.86722314e-01 9.04758990e-01 7.10977435e-01 6.04812622e-01 -1.68611348e-01 4.99294609e-01 -4.89300452e-02 6.74008310e-01 2.90815085e-01 2.40509123e-01 -3.08407158e-01 -5.51369153e-02 -9.72882926e-01 1.50612608e-01 7.17992187e-01 8.13433349e-01 1.04598045e+00 1.88428432e-01 4.01331574e-01 6.31782174e-01 1.97916716e-01 6.70167327e-01 2.23302841e-01 -9.49753940e-01 6.09711766e-01 6.07977629e-01 9.51159894e-02 -8.98973286e-01 -5.77162325e-01 -8.26380849e-01 -1.33020878e+00 3.92971724e-01 1.22299302e+00 -3.62517297e-01 -6.84450388e-01 2.34040904e+00 -2.08569244e-01 -6.74567819e-02 -5.67606650e-02 7.09310532e-01 2.74114728e-01 6.15489185e-01 -2.80223638e-01 -7.89831579e-01 1.18340707e+00 -3.41179460e-01 -2.80109316e-01 -2.85187930e-01 4.37781036e-01 -4.06939894e-01 1.25923300e+00 1.81681633e-01 -1.44551849e+00 -1.39718845e-01 -1.06856441e+00 6.10723794e-01 -2.54537582e-01 -5.73380530e-01 2.07907483e-01 5.14794409e-01 -1.32293487e+00 9.32683408e-01 -1.01924515e+00 -7.70158470e-02 4.16830868e-01 5.93437195e-01 -3.17692399e-01 -1.30628087e-02 -1.11317611e+00 5.32509089e-01 -1.53373526e-02 3.01700085e-01 -3.99076253e-01 -7.59832025e-01 -4.80247945e-01 7.49593452e-02 1.83528066e-01 -3.01417649e-01 8.40654314e-01 -9.37446773e-01 -1.04657149e+00 6.37068272e-01 -3.53402793e-01 -5.86629868e-01 5.05415618e-01 1.62357524e-01 -2.03645036e-01 -2.20099937e-05 3.12386304e-02 3.36024255e-01 6.56631529e-01 -1.13453388e+00 -2.48850107e-01 -6.90069854e-01 -1.58101037e-01 7.40486979e-02 -4.28849488e-01 -2.93705404e-01 -8.01500008e-02 -1.05475605e-01 5.74437201e-01 -1.07368064e+00 -3.20827991e-01 -2.07605198e-01 -2.89161742e-01 -1.06971070e-01 5.06659091e-01 -1.14789195e-01 1.44828796e+00 -2.17628694e+00 2.53839884e-02 7.94663966e-01 5.89593828e-01 6.51209280e-02 1.58452362e-01 2.82329768e-01 -1.18356653e-01 2.45362982e-01 -3.56016159e-01 -1.08906105e-01 -1.12611920e-01 6.43861219e-02 -5.85543886e-02 8.33800614e-01 -2.82355636e-01 5.37559628e-01 -6.34326339e-01 4.29494642e-02 -3.62549633e-01 5.02708256e-01 -6.15184426e-01 -4.02143538e-01 -1.19777024e-01 1.43189743e-01 -3.59126478e-01 3.90149653e-02 6.78750455e-01 -5.07285953e-01 -1.80451348e-02 -7.11766556e-02 -5.39135456e-01 -8.31147805e-02 -1.47299862e+00 9.87608433e-01 -5.92237264e-02 7.33490229e-01 5.18118382e-01 -1.32693791e+00 8.97545695e-01 5.92248477e-02 5.75116038e-01 -5.77360749e-01 3.12248796e-01 5.13455987e-01 4.14191157e-01 2.79472588e-04 2.64527742e-02 -6.83608115e-01 -5.56478910e-02 4.41241264e-01 7.37787690e-03 1.55275553e-01 3.86079133e-01 2.23794147e-01 1.39722407e+00 -6.78808570e-01 -8.03720504e-02 -1.03378320e+00 3.68349195e-01 -1.40411586e-01 5.48269987e-01 8.64056706e-01 -2.08416507e-01 3.95008564e-01 1.35368490e+00 -3.49722594e-01 -1.07629752e+00 -1.23279846e+00 -2.75395244e-01 8.19944024e-01 4.29592758e-01 -3.57366800e-01 -1.09674478e+00 -1.88793078e-01 -1.11321427e-01 3.57046872e-01 -8.66009951e-01 -3.60401690e-01 -8.96366656e-01 -1.13987291e+00 3.15536410e-01 2.65368998e-01 9.87084389e-01 -9.63200569e-01 -5.94679296e-01 5.64925000e-02 1.80640668e-01 -7.34601438e-01 -6.57662630e-01 6.72142804e-01 -9.65288579e-01 -8.34922016e-01 -7.51016974e-01 -7.09421992e-01 9.24857795e-01 -2.36863837e-01 9.69406784e-01 -7.18000531e-02 -1.11644544e-01 4.03075963e-02 2.74386555e-01 -8.22548866e-02 -2.22623542e-01 1.70896381e-01 2.39457473e-01 -2.14323744e-01 -1.07321665e-02 -8.76179934e-01 -9.60529625e-01 4.48594391e-01 -7.52832890e-01 -4.68973219e-01 2.56300002e-01 5.54517806e-01 7.08628416e-01 4.01838094e-01 3.54239374e-01 -4.96482044e-01 7.88099468e-01 -3.99830788e-01 -8.96762908e-01 -8.33101720e-02 -7.01751471e-01 4.38227087e-01 1.06118298e+00 -5.90338051e-01 -3.69637609e-01 -1.58511370e-01 -7.31550679e-02 -5.16735792e-01 3.02224606e-01 5.14437437e-01 1.98363483e-01 -1.42791927e-01 9.31276381e-01 1.85783297e-01 1.53122246e-01 -4.03211683e-01 1.84859872e-01 6.69320896e-02 4.71677512e-01 -4.36064243e-01 7.86209762e-01 5.51515758e-01 2.53143132e-01 -9.43894684e-01 -7.44258881e-01 1.94086030e-01 -3.73511881e-01 -2.36738354e-01 6.39543474e-01 -5.08078218e-01 -9.71673131e-01 3.36037904e-01 -5.82287848e-01 -6.13048792e-01 -7.56845713e-01 3.40244085e-01 -5.19965410e-01 -3.41735855e-02 -6.51272714e-01 -7.69641697e-01 -2.57330716e-01 -1.01637721e+00 2.25315645e-01 4.68330175e-01 3.61839086e-02 -1.11518002e+00 7.91184381e-02 -2.75762469e-01 6.16116226e-01 1.25322789e-01 1.25007212e+00 -4.17159081e-01 -3.64121944e-01 -3.11562598e-01 -1.61376536e-01 3.59072447e-01 -2.45636672e-01 -1.50787592e-01 -1.73078209e-01 -4.09600526e-01 2.86184281e-01 7.83876479e-02 9.48720336e-01 8.72972727e-01 4.44063574e-01 -5.92571378e-01 -3.05934012e-01 6.09478176e-01 1.57704902e+00 3.25852066e-01 4.82419103e-01 1.64406464e-01 1.37054205e-01 2.43891388e-01 -2.67120063e-01 2.67236948e-01 -1.84407365e-02 3.58335018e-01 2.97176450e-01 7.38296472e-03 9.52866673e-02 -5.78222983e-02 4.57472980e-01 7.01046646e-01 -4.50513065e-02 1.03384480e-01 -1.13173783e+00 3.90821606e-01 -1.52548695e+00 -7.39707887e-01 1.14213414e-02 2.44452024e+00 9.53904808e-01 8.38620365e-01 2.83639103e-01 -4.33935337e-02 7.08298564e-01 2.66970366e-01 -6.71699882e-01 -2.62328327e-01 -2.76858985e-01 5.21900296e-01 7.65101135e-01 8.68007720e-01 -5.60349405e-01 8.82546425e-01 5.49618053e+00 9.86191332e-01 -1.28861284e+00 8.02896544e-03 7.65645504e-01 -3.52039576e-01 -2.79317200e-01 3.67644392e-02 -1.01192129e+00 7.56381452e-01 7.86284328e-01 -2.11735144e-01 3.79072905e-01 7.22913861e-01 1.77358478e-01 -3.88361275e-01 -6.66942716e-01 7.28053749e-01 -3.17791671e-01 -1.44051063e+00 -4.88366157e-01 3.99706632e-01 8.65687072e-01 2.04353422e-01 2.65250474e-01 1.00850957e-02 6.95969522e-01 -1.09759879e+00 5.17576873e-01 1.65031120e-01 8.56981814e-01 -9.16596651e-01 3.93051833e-01 6.44309998e-01 -1.48184741e+00 -2.74166852e-01 -3.75796318e-01 -7.29086576e-03 2.23160461e-01 9.00220156e-01 -1.89293191e-01 -2.03361243e-01 9.17840064e-01 2.93529958e-01 -2.71729738e-01 7.71584749e-01 1.93639040e-01 3.66132706e-01 -9.35152709e-01 -8.79036933e-02 5.40206492e-01 -5.70115507e-01 4.70340908e-01 9.25084412e-01 5.27589977e-01 3.75234723e-01 -2.12346371e-02 8.85960460e-01 -1.63986310e-01 5.67516834e-02 -5.49159944e-01 9.73970443e-02 3.92566234e-01 7.94076324e-01 -1.23340321e+00 -1.16158696e-02 6.16469160e-02 4.37126547e-01 4.91531700e-01 4.88707155e-01 -5.71534991e-01 -6.31664038e-01 7.89559841e-01 6.67340875e-01 3.10667336e-01 -5.91403604e-01 -4.45692390e-01 -1.03166711e+00 1.70333952e-01 -4.15547192e-01 3.37507486e-01 -1.44905478e-01 -9.67502177e-01 9.06397939e-01 9.40706730e-02 -9.05626953e-01 -1.56603366e-01 -4.96504843e-01 -7.57897973e-01 6.68359339e-01 -8.73764515e-01 -1.27346888e-01 4.65735793e-02 8.26718628e-01 -1.64528027e-01 -2.17219323e-01 3.82914305e-01 1.57392547e-01 -6.32451773e-01 7.10575104e-01 4.87228811e-01 1.53036371e-01 7.15908855e-02 -9.05183077e-01 -3.84881496e-02 6.46031439e-01 1.00677587e-01 8.08560967e-01 1.01198971e+00 -5.90166152e-01 -1.01028037e+00 -4.77969080e-01 6.41501725e-01 8.50983858e-02 8.14584255e-01 -4.11921322e-01 -1.08326674e+00 5.24319470e-01 1.07655607e-01 3.58149976e-01 3.59186023e-01 -8.22539330e-02 -2.54996449e-01 -3.69309843e-01 -1.25185239e+00 7.95309842e-01 1.04095531e+00 -1.95186287e-01 6.56447858e-02 1.24932058e-01 3.22940975e-01 -2.38724694e-01 -8.26936066e-01 4.74406481e-01 4.25930023e-01 -1.24224496e+00 7.13693976e-01 -4.04795885e-01 1.62312850e-01 -4.75042723e-02 -1.73005953e-01 -1.21679640e+00 1.08215781e-02 -8.93683970e-01 2.42366232e-02 6.32623792e-01 7.70465016e-01 -7.94384241e-01 1.18963408e+00 2.84395099e-01 -3.21055937e-04 -9.92554903e-01 -1.69482005e+00 -9.44792151e-01 8.17434430e-01 -3.47716391e-01 -1.94996715e-01 5.97902298e-01 9.83067676e-02 2.24897303e-02 9.28139836e-02 1.26293926e-02 7.04027236e-01 -1.60331935e-01 2.34665852e-02 -1.03471065e+00 -3.12738240e-01 -1.00168288e+00 -2.22917616e-01 -1.24613440e+00 -9.39083844e-02 -7.60935485e-01 1.61647186e-01 -1.10229170e+00 1.16295055e-01 -7.59031832e-01 -3.05537194e-01 2.79729992e-01 3.86978298e-01 3.05587649e-01 1.57824233e-01 1.62427902e-01 -3.26162338e-01 2.95691818e-01 1.03792942e+00 2.47331977e-01 -5.16779363e-01 1.36639416e-01 -7.19554543e-01 1.13834536e+00 7.28830218e-01 -6.19480431e-01 -2.83205748e-01 -1.57691777e-01 7.94500768e-01 3.16259861e-01 1.12968974e-01 -1.09740746e+00 3.69682014e-01 4.19847332e-02 1.88436676e-02 -2.19823912e-01 3.28274041e-01 -4.87617970e-01 1.04808602e-02 6.18363798e-01 -4.85561937e-01 2.81686962e-01 3.91721055e-02 4.33469445e-01 -5.16059399e-02 -3.28406304e-01 1.40817797e+00 -1.60555184e-01 1.00538246e-01 2.39019394e-01 -4.67548043e-01 5.90076447e-01 9.04912412e-01 -6.46791235e-02 -2.16296867e-01 -6.77148759e-01 -1.01102507e+00 2.81449050e-01 2.66096622e-01 -7.49537572e-02 1.98227063e-01 -1.14176583e+00 -3.42127740e-01 4.71941441e-01 -4.37701970e-01 2.03790382e-01 2.41353452e-01 9.98965681e-01 -3.80976796e-01 -1.59046836e-02 1.75136551e-01 -7.19158053e-01 -7.77413249e-01 -2.23189709e-04 9.62962091e-01 -3.38329256e-01 -4.17206079e-01 1.18019426e+00 -4.02689315e-02 5.51116168e-02 4.07857925e-01 -3.51224452e-01 5.07943742e-02 8.78193080e-02 2.35310689e-01 3.29911709e-01 -1.01777494e-01 -4.59391028e-01 -2.06549570e-01 9.83388841e-01 1.57130398e-02 -4.47063208e-01 1.23268628e+00 8.81062001e-02 -2.93333620e-01 4.16817695e-01 1.54243493e+00 3.02115418e-02 -1.54496336e+00 -2.71340221e-01 6.55291155e-02 -3.92937660e-03 -2.92523205e-01 -3.77819926e-01 -1.40380478e+00 9.18405175e-01 7.24340260e-01 5.63882709e-01 7.71403134e-01 3.71392578e-01 5.00985742e-01 4.24349576e-01 2.18508184e-01 -1.26787567e+00 3.97026479e-01 9.43128526e-01 6.06523871e-01 -8.30603480e-01 -3.33214432e-01 3.18447985e-02 -4.35393929e-01 9.14008558e-01 6.33303881e-01 -7.05075443e-01 1.34102726e+00 5.72530985e-01 -4.38644551e-02 -1.97160944e-01 -6.68937862e-01 1.99997649e-01 7.74671659e-02 3.44162360e-02 3.04256529e-01 -2.75627434e-01 -3.63486022e-01 7.19006538e-01 -7.01504648e-01 -2.56757647e-01 3.23393881e-01 7.02224433e-01 -8.03139925e-01 -9.13438499e-01 -3.73343565e-02 5.61417401e-01 -3.09820056e-01 -1.64682508e-01 -2.43513156e-02 1.08977723e+00 2.56892979e-01 4.72080231e-01 4.79231715e-01 -1.76876739e-01 2.94152498e-01 3.56129289e-01 4.45644319e-01 -1.31402761e-01 -5.33925772e-01 3.47998351e-01 -4.27176952e-01 -4.79887784e-01 6.13088459e-02 -7.24853754e-01 -1.71070492e+00 -5.78469992e-01 -5.53722903e-02 4.44250703e-01 4.94098455e-01 9.28153753e-01 5.01774736e-02 2.36516297e-02 5.65758944e-01 -4.47860718e-01 -6.41728938e-01 -6.12996399e-01 -9.48661864e-01 1.09335437e-01 4.88328367e-01 -4.46265340e-01 -9.86916542e-01 -3.85862768e-01]
[7.743269443511963, 3.7522168159484863]
7e2bfb10-0bad-4ff8-a00e-97235662b96c
dual-stream-time-delay-neural-network-with
2303.1102
null
https://arxiv.org/abs/2303.11020v2
https://arxiv.org/pdf/2303.11020v2.pdf
Dual-stream Time-Delay Neural Network with Dynamic Global Filter for Speaker Verification
The time-delay neural network (TDNN) is one of the state-of-the-art models for text-independent speaker verification. However, it is difficult for conventional TDNN to capture global context that has been proven critical for robust speaker representations and long-duration speaker verification in many recent works. Besides, the common solutions, e.g., self-attention, have quadratic complexity for input tokens, which makes them computationally unaffordable when applied to the feature maps with large sizes in TDNN. To address these issues, we propose the Global Filter for TDNN, which applies log-linear complexity FFT/IFFT and a set of differentiable frequency-domain filters to efficiently model the long-term dependencies in speech. Besides, a dynamic filtering strategy, and a sparse regularization method are specially designed to enhance the performance of the global filter and prevent it from overfitting. Furthermore, we construct a dual-stream TDNN (DS-TDNN), which splits the basic channels for complexity reduction and employs the global filter to increase recognition performance. Experiments on Voxceleb and SITW databases show that the DS-TDNN achieves approximate 10% improvement with a decline over 28% and 15% in complexity and parameters compared with the ECAPA-TDNN. Besides, it has the best trade-off between efficiency and effectiveness compared with other popular baseline systems when facing long-duration speech. Finally, visualizations and a detailed ablation study further reveal the advantages of the DS-TDNN.
['Xiaodan Lin', 'Yangfu Li']
2023-03-20
null
null
null
null
['text-independent-speaker-verification', 'speaker-verification']
['speech', 'speech']
[-7.16058165e-02 -3.39386225e-01 2.20938735e-02 -4.96912032e-01 -7.90561140e-01 -2.97998846e-01 2.82099247e-01 -3.66368771e-01 -4.07599479e-01 3.90171289e-01 4.27876800e-01 -5.33446133e-01 -7.72270858e-02 -9.82560813e-02 -3.75764906e-01 -8.83906901e-01 -2.56604124e-02 -2.11698234e-01 -6.81543946e-02 -2.41583362e-02 -6.72407374e-02 3.15014631e-01 -1.49466169e+00 -9.29124653e-02 1.18964362e+00 1.15528941e+00 2.68909991e-01 3.83363962e-01 -6.24764487e-02 3.69156510e-01 -8.49790454e-01 -3.01261038e-01 6.93968013e-02 -3.40581983e-01 -2.82796115e-01 -2.33274773e-01 3.97558421e-01 -3.49855483e-01 -6.55324459e-01 9.95595038e-01 1.01522195e+00 3.56417209e-01 4.36746329e-01 -1.07277715e+00 -5.57210565e-01 7.16498077e-01 -4.82618779e-01 4.81253266e-01 7.02632889e-02 3.67306359e-02 8.92379999e-01 -1.09216273e+00 -6.10613264e-02 1.46210539e+00 8.69879067e-01 6.61820173e-01 -9.82299030e-01 -1.03669751e+00 4.72404957e-01 4.25748825e-01 -1.47848785e+00 -1.02172816e+00 8.15427005e-01 -4.97719683e-02 9.93820429e-01 3.79749924e-01 2.76126057e-01 1.15071249e+00 -4.67032902e-02 8.74543548e-01 7.68891633e-01 -4.20822889e-01 5.76759577e-02 -7.29029179e-02 3.98140222e-01 3.23367923e-01 -1.43090263e-01 3.50823671e-01 -8.98275614e-01 -4.20199893e-02 4.72632825e-01 -1.53887287e-01 -5.63329637e-01 2.69096762e-01 -8.88230443e-01 6.03608489e-01 2.33295828e-01 3.04023862e-01 -2.31858447e-01 -1.25112996e-01 6.09120727e-01 2.65198141e-01 6.07446969e-01 -9.95153934e-02 -4.06140983e-01 -3.14224303e-01 -1.12310135e+00 -9.55850258e-03 5.35613239e-01 8.02404463e-01 2.67956913e-01 8.09598148e-01 -3.07814062e-01 1.14668465e+00 4.89354670e-01 7.46675849e-01 7.65972376e-01 -3.65735441e-01 5.85915267e-01 1.80932298e-01 -3.05411279e-01 -7.97163606e-01 -2.36540452e-01 -9.26490247e-01 -1.09207582e+00 -2.30956033e-01 2.94943184e-01 -2.30572984e-01 -9.57542956e-01 1.97626317e+00 1.81633264e-01 4.77492183e-01 1.53267950e-01 1.01761055e+00 8.58412623e-01 7.68687189e-01 -4.36358992e-03 -3.92897785e-01 1.34597254e+00 -9.03653324e-01 -1.18498957e+00 -3.11048657e-01 2.90372312e-01 -7.64897168e-01 1.01976156e+00 2.80686736e-01 -9.06164467e-01 -7.36476481e-01 -1.15372646e+00 2.80311406e-02 -1.22788966e-01 3.31063449e-01 3.24531138e-01 9.74863529e-01 -8.91152382e-01 3.03576648e-01 -8.26522589e-01 -8.20790902e-02 2.32665569e-01 3.52964669e-01 -6.02356941e-02 -4.00600135e-02 -1.44306147e+00 6.87154174e-01 1.72733739e-02 5.56087613e-01 -7.86601126e-01 -7.37576842e-01 -8.95611286e-01 3.21679890e-01 1.48381099e-01 -1.02802515e-01 1.27309096e+00 -6.84524715e-01 -1.92239106e+00 1.98520899e-01 -8.44243288e-01 -4.70803380e-01 2.97440350e-01 -2.65143216e-01 -9.45006311e-01 -5.73825203e-02 -2.50827491e-01 2.31125101e-01 1.12148654e+00 -6.70420468e-01 -4.72405165e-01 -3.67303252e-01 -3.72447968e-01 1.80100024e-01 -8.06506455e-01 2.28634298e-01 -6.29328132e-01 -9.25030947e-01 3.06172311e-01 -7.84142792e-01 4.47744206e-02 -3.25793058e-01 -5.07945597e-01 -3.36794049e-01 1.03543985e+00 -1.14831269e+00 1.65937960e+00 -2.63844252e+00 3.17341997e-03 1.40465304e-01 -7.08375052e-02 5.72654366e-01 -2.11540774e-01 1.80370659e-01 -9.67522264e-02 -9.15644318e-02 -9.24270973e-02 -7.60637701e-01 2.06584305e-01 5.91229927e-03 -3.89441907e-01 6.20920599e-01 4.43867557e-02 6.30669475e-01 -3.10927033e-01 -2.57665753e-01 7.63726979e-02 8.18852067e-01 -3.87064755e-01 1.33550212e-01 1.66256845e-01 3.85019988e-01 -1.26321837e-01 5.06946266e-01 9.24425662e-01 8.91178846e-02 8.78280252e-02 -2.18845159e-01 -2.46173948e-01 8.05590928e-01 -1.26048553e+00 1.55926919e+00 -4.92204517e-01 7.17475593e-01 4.17514026e-01 -8.91834617e-01 9.58927035e-01 6.85513616e-01 7.42304474e-02 -7.64252722e-01 2.42223144e-01 3.32321614e-01 1.02317721e-01 -2.51772523e-01 2.68683612e-01 -1.64342239e-01 1.32611379e-01 3.14595580e-01 -4.10425011e-03 4.54421043e-01 -1.68182880e-01 3.95537680e-03 6.76647842e-01 -3.73973906e-01 -8.43726546e-02 -2.33037934e-01 7.52175927e-01 -7.37783790e-01 1.01844418e+00 4.49820608e-01 -2.33843297e-01 5.75337708e-01 1.19343504e-01 -1.29974872e-01 -4.56671894e-01 -8.02777827e-01 -1.81420624e-01 1.07830775e+00 -5.93834296e-02 -3.03320616e-01 -8.13125014e-01 -3.77042115e-01 -4.93533090e-02 6.48425519e-01 -2.47288242e-01 -2.08774477e-01 -7.06353247e-01 -5.94936430e-01 8.11332226e-01 5.98887384e-01 6.87018752e-01 -7.23984897e-01 -8.58192593e-02 3.46179038e-01 -3.62101555e-01 -1.04808748e+00 -1.10104549e+00 2.54731476e-01 -7.03578651e-01 -5.04574895e-01 -8.11443508e-01 -8.37922335e-01 4.41913694e-01 4.65636820e-01 4.63027567e-01 -2.45180186e-02 1.91614464e-01 -1.23537980e-01 -2.28992328e-01 -3.93771708e-01 -1.21136300e-01 2.10400537e-01 4.42301869e-01 3.64420801e-01 4.31777000e-01 -5.66245854e-01 -4.92546111e-01 4.99196440e-01 -5.80210209e-01 -3.95222634e-01 5.20895481e-01 1.13946378e+00 3.10542017e-01 1.90375343e-01 9.34571385e-01 -3.08736056e-01 7.01071441e-01 -1.26809657e-01 -5.71413815e-01 1.55922756e-01 -6.11919880e-01 -5.17366864e-02 7.17715919e-01 -7.71988511e-01 -1.23799217e+00 -9.86119136e-02 -3.38414282e-01 -6.34882808e-01 1.75435394e-01 6.83834314e-01 -5.90347767e-01 4.45967317e-02 3.55360448e-01 5.99864364e-01 1.61423311e-01 -7.43042111e-01 1.02232128e-01 1.00572968e+00 4.08946514e-01 -2.50794172e-01 8.10088277e-01 1.22072086e-01 -6.31831646e-01 -1.06938541e+00 -5.94797671e-01 -5.25279164e-01 -2.18701124e-01 1.06003180e-01 4.07847255e-01 -1.01335335e+00 -9.09034491e-01 8.12914252e-01 -1.12420475e+00 -5.89899048e-02 5.97974882e-02 7.75574028e-01 6.22099563e-02 3.93491894e-01 -7.06296206e-01 -1.16506112e+00 -6.59310579e-01 -1.06198215e+00 6.24652088e-01 3.22176814e-01 -1.81193203e-02 -7.93824852e-01 -3.23239505e-01 2.19350293e-01 9.87908006e-01 -5.46085358e-01 6.97574079e-01 -6.26597524e-01 -4.19778705e-01 -4.17171232e-02 -6.14517145e-02 6.99836731e-01 1.54975295e-01 -2.36465961e-01 -1.47519755e+00 -6.22995675e-01 3.13998312e-01 1.34941697e-01 8.77090991e-01 7.02756166e-01 1.11397147e+00 -3.94775033e-01 -3.28015178e-01 8.10027957e-01 8.45405877e-01 4.81477618e-01 4.55738366e-01 -1.58842161e-01 4.92115855e-01 4.03524250e-01 4.44340438e-01 3.28927666e-01 3.60889703e-01 7.69659221e-01 -1.62120253e-01 -1.97800383e-01 -2.88475573e-01 -2.38243535e-01 6.00335181e-01 1.47209287e+00 1.72686040e-01 -3.15768719e-01 -7.62233794e-01 5.18843353e-01 -1.52051735e+00 -9.47376966e-01 1.57928988e-01 2.26144910e+00 7.10308611e-01 9.09672901e-02 9.45330858e-02 5.20204961e-01 7.88157582e-01 3.42376769e-01 -8.08307350e-01 -2.59088635e-01 -3.11956257e-01 1.56832933e-01 1.53725430e-01 5.06430328e-01 -9.62350905e-01 6.78062379e-01 5.94791508e+00 1.09521878e+00 -1.64557481e+00 3.35728616e-01 5.04264116e-01 -2.04867929e-01 -5.78953400e-02 -3.19214165e-01 -1.14640188e+00 5.60282052e-01 1.31384254e+00 -3.04977030e-01 4.50273961e-01 6.69382811e-01 4.94962305e-01 3.38614136e-01 -8.98018062e-01 1.20761979e+00 2.22514018e-01 -8.95062149e-01 -4.23184544e-01 6.29331246e-02 2.74058491e-01 3.36954817e-02 2.65735775e-01 5.53427994e-01 -9.16343331e-02 -9.69177127e-01 8.92788351e-01 5.90586476e-02 9.33417857e-01 -8.02797019e-01 6.70276701e-01 2.94929653e-01 -1.49521685e+00 -2.56719142e-01 -3.19098562e-01 1.51899874e-01 2.56554663e-01 7.19761312e-01 -6.45862699e-01 5.44400156e-01 6.63502753e-01 5.88657379e-01 -1.39724046e-01 1.07711029e+00 -1.58574909e-01 1.01696849e+00 -4.33078349e-01 -4.35300618e-02 -3.26435417e-02 1.04954116e-01 5.99155486e-01 1.29436111e+00 5.02111137e-01 -4.11817878e-02 -1.06158525e-01 6.18158877e-01 -5.88505715e-02 1.15696592e-02 -1.16202258e-01 2.80268062e-02 8.65720868e-01 8.68452251e-01 -7.12573305e-02 -1.10628031e-01 -3.85109365e-01 7.25215495e-01 2.22666457e-01 7.75086522e-01 -9.44391966e-01 -7.14916289e-01 9.55342770e-01 -6.14567287e-02 5.60884535e-01 -3.39735448e-01 -2.76170731e-01 -1.17551386e+00 3.25882971e-01 -1.19137156e+00 2.04029903e-01 -1.36542559e-01 -1.29362774e+00 1.01092935e+00 -4.34870988e-01 -1.34355891e+00 -1.56663939e-01 -2.81173944e-01 -6.39347196e-01 1.31220090e+00 -1.86754775e+00 -9.08311963e-01 -6.86643273e-02 7.50973344e-01 6.25128925e-01 -1.92326024e-01 8.35355282e-01 7.19963908e-01 -1.06605029e+00 1.32452154e+00 2.27974370e-01 1.50344551e-01 6.73300147e-01 -7.22041488e-01 5.05235791e-01 1.14825654e+00 2.41769068e-02 9.78638887e-01 4.45559144e-01 -3.30891848e-01 -1.57183313e+00 -1.02966714e+00 9.35179055e-01 1.82853505e-01 2.57008135e-01 -7.14266598e-01 -1.24265909e+00 4.50129569e-01 1.86897352e-01 9.71719902e-03 6.60843968e-01 3.14597845e-01 -6.12170756e-01 -4.95572954e-01 -8.07297885e-01 3.75936896e-01 9.38460529e-01 -8.31860065e-01 -5.26441157e-01 -6.93465471e-02 7.44481862e-01 -4.75785047e-01 -4.92462873e-01 2.04452842e-01 6.29042327e-01 -8.53489101e-01 9.02146459e-01 -1.25892684e-01 -3.56185436e-01 -3.72881353e-01 -1.44195512e-01 -1.43402255e+00 -2.61311769e-01 -9.89257216e-01 -1.37655541e-01 1.66603827e+00 5.12749076e-01 -9.82961774e-01 5.06988764e-01 4.87021238e-01 -4.19856250e-01 -5.37214339e-01 -1.40115047e+00 -1.15340960e+00 -1.75174654e-01 -6.17486656e-01 7.07309663e-01 8.05685282e-01 4.45373394e-02 3.06022555e-01 -4.56782401e-01 4.62179810e-01 5.31608522e-01 -4.31973301e-02 4.84509975e-01 -1.00392151e+00 -2.48064488e-01 -3.86139989e-01 -1.35664776e-01 -1.72158480e+00 3.27344537e-01 -6.87084913e-01 2.29290619e-01 -1.15585434e+00 -2.08782554e-01 -5.45737922e-01 -5.10090232e-01 3.97163868e-01 -3.19424421e-01 -2.66093135e-01 1.36176631e-01 1.48141816e-01 -1.18438810e-01 9.01440740e-01 9.93163049e-01 -2.05281943e-01 -4.70120579e-01 1.67205840e-01 -6.77217126e-01 3.35841030e-01 6.77401364e-01 -4.53734249e-01 -4.52727914e-01 -5.36073208e-01 -6.39066160e-01 1.69524521e-01 -5.22778071e-02 -9.81798530e-01 6.00271344e-01 2.11841002e-01 1.22660950e-01 -7.52839088e-01 6.70962155e-01 -6.07134283e-01 1.53156966e-02 3.47862571e-01 -2.11044818e-01 -1.27021745e-01 4.18008059e-01 4.66878384e-01 -6.89623237e-01 1.56842023e-01 8.20728779e-01 5.15950978e-01 -3.32934231e-01 3.19885105e-01 -4.69053835e-01 -1.25603378e-01 4.75398242e-01 -1.08563758e-01 -2.76301742e-01 -5.41723013e-01 -3.31933051e-01 1.53035700e-01 -2.16706619e-01 5.17981231e-01 6.24135196e-01 -1.32758868e+00 -7.55360484e-01 6.82441831e-01 -2.71043599e-01 -1.50382027e-01 6.97724462e-01 9.65449691e-01 1.67970732e-01 7.69346952e-01 2.46629685e-01 -6.24918878e-01 -1.39640248e+00 2.14430004e-01 4.35006499e-01 1.39476806e-02 -5.89655161e-01 1.11321986e+00 2.56689698e-01 -2.87298143e-01 7.98711479e-01 -4.91704971e-01 -9.25978050e-02 9.30687711e-02 7.94457495e-01 1.78615123e-01 3.71840864e-01 -7.48089075e-01 -6.14116907e-01 4.39201683e-01 -2.80181885e-01 -1.02006480e-01 1.23816514e+00 -3.25455785e-01 1.45961344e-01 2.75068969e-01 1.14891279e+00 2.30581358e-01 -1.26371098e+00 -5.70077062e-01 -1.56053588e-01 -3.12215149e-01 4.28525180e-01 -7.16695726e-01 -1.26002204e+00 1.19390571e+00 6.50990844e-01 1.53073519e-01 1.34316051e+00 -4.25695211e-01 1.03318369e+00 6.48689792e-02 2.05209777e-02 -8.43158662e-01 -1.78027585e-01 7.19276726e-01 9.56404805e-01 -8.80828142e-01 -3.88066471e-01 -3.72801393e-01 -4.66756552e-01 1.00025797e+00 4.86937165e-01 3.89547884e-01 8.22085440e-01 3.97364974e-01 4.33558315e-01 3.38204741e-01 -7.08613038e-01 1.36920691e-01 4.46389407e-01 3.40574861e-01 4.14828390e-01 2.35913936e-02 -9.03380215e-02 9.98508036e-01 -3.12972009e-01 -3.24304312e-01 -1.63754786e-03 6.22279227e-01 -1.84822902e-01 -1.06656289e+00 -4.99953866e-01 1.87239930e-01 -4.61826950e-01 -3.13660830e-01 9.85822603e-02 4.41293329e-01 -1.98222205e-01 1.39757454e+00 -4.32078503e-02 -5.40523469e-01 5.21583617e-01 3.43906820e-01 -7.86584914e-02 -2.28308976e-01 -6.89662755e-01 5.74892640e-01 -3.52977812e-02 -3.70614320e-01 -1.96552083e-01 -7.13969350e-01 -1.23565328e+00 -3.26484054e-01 -8.18935931e-01 2.22447887e-01 8.60504150e-01 8.77597511e-01 6.74053669e-01 7.29007542e-01 7.54502416e-01 -5.88922918e-01 -8.12336087e-01 -1.42786443e+00 -6.39610171e-01 9.03962329e-02 7.47920930e-01 -6.18483424e-01 -7.32657492e-01 -1.57276377e-01]
[14.572232246398926, 5.974699020385742]
8aefd15d-b744-4448-80ac-670d508e0456
fault-detection-and-localization-in-active
2204.0569
null
https://arxiv.org/abs/2204.05690v1
https://arxiv.org/pdf/2204.05690v1.pdf
Fault Detection and Localization in Active Distribution Networks using Optimally Placed Phasor Measurements Units
This paper introduces an algorithm able to detect and localize the occurrance of a fault in an Active Distribution Network, using the measurements collected by Phasor Measurement Units (PMUs). First, a basic algorithm that works under the assumption that all grid buses are equipped with a PMU is designed. Then, formal observability conditions that allow detection and localization with a reduced number of PMUs are provided. Based on these conditions, the algorithm is extended to perform correctly when not all network buses are monitored. Moreover, an Optimal Positioning Algorithm, always based on the observability conditions, is designed. This algorithm allows the user to customize the fault localization resolution. The approach is validated through simulations carried out on a benchmark active distribution network.
['Federico Silvestro', 'Giacomo-Piero Schiapparelli', 'Bruno Gabriele', "Fabio D'Agostino", 'Francesco Conte']
2022-04-12
null
null
null
null
['fault-localization']
['computer-code']
[-2.21916869e-01 3.25888023e-02 9.52363536e-02 9.08819884e-02 -1.62752554e-01 -7.86148846e-01 4.03425872e-01 7.15936720e-01 1.53445944e-01 1.04811895e+00 -5.71375787e-01 -1.27935663e-01 -5.01445055e-01 -1.08656085e+00 -2.93851376e-01 -8.28427315e-01 -5.36357462e-01 5.73994398e-01 1.67724475e-01 -1.68325529e-01 5.73777966e-02 1.00475645e+00 -9.14828539e-01 -4.75678414e-01 1.04192042e+00 7.00415432e-01 3.30356181e-01 3.23073596e-01 5.77941656e-01 4.66780573e-01 -1.39561105e+00 5.83930910e-01 2.47359663e-01 -4.46331590e-01 -6.39562428e-01 4.51096416e-01 -5.32024801e-01 -3.67475301e-01 -6.54400885e-02 1.37100077e+00 3.41884255e-01 1.97247192e-01 6.40953600e-01 -1.42315459e+00 3.17956716e-01 8.81716728e-01 -1.45871341e-01 4.23425108e-01 7.59439707e-01 -9.68214124e-02 9.01137054e-01 -4.33801502e-01 4.33500558e-01 5.18699050e-01 2.26049677e-01 -3.12330991e-01 -1.29303515e+00 -1.07468273e-02 -1.02021888e-01 5.14173269e-01 -1.69849694e+00 3.59981030e-01 7.91869164e-01 -2.58794665e-01 8.15866411e-01 5.17374694e-01 9.58227932e-01 2.45097011e-01 4.07397091e-01 3.39951128e-01 8.96841645e-01 -5.94692647e-01 7.27026761e-01 -4.95118648e-02 2.18807682e-01 7.70337731e-02 8.02527189e-01 -4.40525144e-01 2.03284368e-01 -2.32133344e-01 5.61443329e-01 -1.48076624e-01 -8.80790889e-01 -5.77897489e-01 -7.52660155e-01 5.91688752e-01 3.54088038e-01 1.12681925e+00 -4.67935920e-01 -3.13806057e-01 2.89069742e-01 3.81108612e-01 1.69705778e-01 5.39727271e-01 -1.52091414e-01 -6.86154217e-02 -8.72782350e-01 -1.29745618e-01 1.16783559e+00 7.90612936e-01 7.45650828e-01 4.55308557e-01 5.68086565e-01 -4.94025685e-02 5.87549992e-02 5.12515485e-01 3.28951448e-01 -1.77592710e-01 5.49515001e-02 7.76563048e-01 4.52501804e-01 -9.11114872e-01 -7.18859196e-01 -9.72373962e-01 -5.44978499e-01 5.30840576e-01 2.16711000e-01 -4.93141681e-01 -1.37476116e-01 1.18957424e+00 2.70246834e-01 1.33840993e-01 1.29090697e-02 6.07804596e-01 -2.20722556e-01 6.84653699e-01 -7.37021685e-01 -6.12651527e-01 1.18457401e+00 -1.58328712e-01 -1.00601506e+00 2.90527344e-01 8.34878683e-01 -4.98079717e-01 2.99713552e-01 7.11213827e-01 -9.54265296e-01 -4.86074507e-01 -1.59486890e+00 8.67091954e-01 -3.65766466e-01 3.36585164e-01 -1.73716471e-01 7.98446238e-01 -9.56591547e-01 6.41222775e-01 -8.01268518e-01 -4.06888247e-01 -4.16026801e-01 4.63794708e-01 -3.40416819e-01 2.69836634e-01 -1.10966182e+00 1.20107186e+00 9.08915222e-01 6.47066593e-01 -8.39588702e-01 -1.88433021e-01 -6.85968280e-01 3.96752357e-01 1.89665332e-01 -3.63741010e-01 8.10831666e-01 -9.09930229e-01 -1.29168594e+00 -9.83404219e-02 5.29512204e-02 -8.85692000e-01 6.44760907e-01 1.88459679e-01 -8.05645704e-01 6.78834260e-01 1.23121329e-01 -4.69241053e-01 4.58823323e-01 -1.10276258e+00 -7.19027817e-01 2.20818613e-02 1.73507452e-01 -4.38432768e-03 -2.10568279e-01 -3.27026784e-01 2.61482298e-01 -1.13782860e-01 1.78974614e-01 -4.13429677e-01 -2.93715626e-01 -8.44064474e-01 -5.97369850e-01 -8.50868374e-02 9.56178010e-01 -5.46758533e-01 1.22155952e+00 -1.98727584e+00 1.67120874e-01 1.11546254e+00 -1.32979043e-02 1.13132499e-01 4.56974030e-01 1.14286053e+00 -4.75564033e-01 -4.43061113e-01 -1.40842721e-01 2.44408939e-02 6.65826276e-02 4.16538864e-01 1.38749750e-02 9.48199511e-01 -2.12224320e-01 1.85108289e-01 -8.69407117e-01 6.52862787e-02 8.72010589e-01 8.32948685e-02 -1.00030944e-01 6.44352734e-02 9.63933319e-02 6.25663936e-01 -3.10616314e-01 2.36907989e-01 8.20484638e-01 -1.12864651e-01 5.53024173e-01 -7.62199610e-02 -4.01386350e-01 1.10271528e-01 -1.93736267e+00 1.02333188e+00 -5.06496012e-01 4.58434761e-01 2.09359169e-01 -1.44952595e+00 9.91012394e-01 8.26264560e-01 8.84266078e-01 -1.50234506e-01 2.04031691e-01 4.69735950e-01 1.66561022e-01 -1.59689680e-01 -5.62408157e-02 5.63093305e-01 9.67308953e-02 4.44450289e-01 2.04469711e-01 -4.18010764e-02 1.06328905e+00 -4.10415092e-03 1.03582764e+00 -3.17359507e-01 7.62392223e-01 -7.31968999e-01 1.02596736e+00 -1.42981201e-01 5.44450700e-01 4.05712038e-01 3.48536104e-01 -4.79098149e-02 8.33846331e-01 -6.26318306e-02 -7.02742934e-01 -9.85827804e-01 -4.76702571e-01 -1.53487250e-01 1.32341564e-01 -5.56790471e-01 -9.49809492e-01 -7.02762485e-01 -1.39392242e-01 8.04723680e-01 -5.67448616e-01 4.91911992e-02 -4.40158337e-01 -8.09578001e-01 -7.14126450e-04 6.46851808e-02 5.46462178e-01 -3.40697169e-01 -7.20275581e-01 4.90561724e-01 1.96078151e-01 -6.92849874e-01 3.78373832e-01 3.60214144e-01 -5.91482222e-01 -1.41873872e+00 -4.51477915e-01 -7.70275295e-01 1.25265527e+00 -3.99574637e-02 7.39213586e-01 2.58670330e-01 6.17453828e-03 2.19446033e-01 -5.35425782e-01 1.48943052e-01 -5.02998412e-01 1.09126352e-01 1.37455702e-01 7.73907686e-03 -9.30062756e-02 -7.21279204e-01 -2.16657683e-01 5.33728600e-01 -9.97956038e-01 -4.54409719e-01 3.36171538e-01 6.67007029e-01 1.01823501e-01 9.56077158e-01 8.08142841e-01 -5.59243262e-01 4.37530100e-01 -5.22546113e-01 -1.35595179e+00 1.59647986e-01 -5.70399880e-01 -3.36228490e-01 1.20837820e+00 1.78176165e-03 -5.50365746e-01 1.67285018e-02 -4.21736479e-01 2.45470256e-01 -5.34509063e-01 6.76357508e-01 -9.24209058e-01 -4.24804330e-01 3.83799076e-01 1.37783289e-01 -3.72659594e-01 -5.24883449e-01 4.00049947e-02 4.75199997e-01 1.80096492e-01 2.87524331e-02 1.11184955e+00 4.02434468e-01 5.28204918e-01 -1.05011690e+00 -5.90377487e-02 -3.35230798e-01 -8.60396028e-01 -4.67961907e-01 2.28387013e-01 -4.87392336e-01 -8.34748626e-01 2.46617883e-01 -9.95500922e-01 1.69707090e-01 -4.04131234e-01 7.02925920e-01 -2.94580370e-01 7.25998044e-01 -5.05114198e-01 -7.39659190e-01 6.44539893e-02 -1.35509706e+00 2.95764506e-01 8.51047784e-02 -2.13708833e-01 -1.50755501e+00 -8.71732980e-02 -3.49570006e-01 2.01856438e-03 3.39434862e-01 5.66436470e-01 -1.08437479e+00 -7.06022024e-01 -6.44519389e-01 3.80224258e-01 6.27390563e-01 5.79762220e-01 2.58316542e-03 -3.47435653e-01 -7.47550845e-01 3.56606007e-01 7.32280314e-01 -2.27146357e-01 2.34851941e-01 3.52339000e-01 -2.54526705e-01 -5.47921777e-01 2.47124359e-01 1.78728604e+00 5.51551104e-01 2.32443273e-01 4.21772480e-01 1.33452833e-01 7.97109157e-02 6.27097964e-01 5.30693948e-01 -2.36051939e-02 7.06719100e-01 7.14765012e-01 -1.46275237e-01 5.46289742e-01 2.99990594e-01 2.54879504e-01 7.89609015e-01 2.09840789e-01 -4.91274446e-01 -6.28459752e-01 5.13315976e-01 -1.66147399e+00 -6.41015291e-01 -5.79626739e-01 2.12755489e+00 8.46139267e-02 3.67596954e-01 1.89681694e-01 1.07689929e+00 8.10791850e-01 -5.91163263e-02 -3.79983149e-02 -2.64530480e-01 -3.90539765e-01 1.92055270e-01 6.05644584e-01 9.09804881e-01 -7.17375636e-01 -1.79496199e-01 5.46254873e+00 6.39678597e-01 -1.00910163e+00 1.72107980e-01 -2.82263234e-02 4.72578317e-01 2.24587526e-02 2.10577950e-01 -6.17023408e-01 7.89519489e-01 8.60671043e-01 -5.31318247e-01 -1.24722635e-02 8.27866912e-01 5.77458024e-01 -6.57872021e-01 -9.68911469e-01 4.66059148e-01 8.20719227e-02 -7.22906351e-01 -2.47144446e-01 8.11321381e-03 7.82573998e-01 -3.44621718e-01 -5.27008951e-01 -5.46731651e-01 -3.87917049e-02 -3.50059450e-01 4.29189384e-01 3.36644143e-01 -2.00574338e-01 -1.17937338e+00 1.23053622e+00 4.51771289e-01 -1.11933768e+00 -2.14492336e-01 -9.05049294e-02 -3.48938912e-01 8.67398858e-01 1.05358040e+00 -1.30363238e+00 1.65776026e+00 1.73450887e-01 6.27328813e-01 -3.48208129e-01 1.64067996e+00 -9.44723308e-01 6.58668876e-01 -6.85361207e-01 1.22441957e-02 7.36950934e-02 -5.19075155e-01 7.60516107e-01 9.18324232e-01 5.76140940e-01 -4.58371818e-01 2.05797657e-01 6.09183013e-01 6.31466448e-01 2.01598406e-01 -5.22165000e-01 7.93249190e-01 6.90441549e-01 1.17428625e+00 -1.03385425e+00 -3.32786292e-01 -1.84464499e-01 8.59675348e-01 -4.41515803e-01 4.94440854e-01 -5.67687869e-01 -6.01408899e-01 2.91975886e-01 -9.94042829e-02 4.99003679e-02 -4.04548466e-01 -1.24232076e-01 -8.80981028e-01 6.65027276e-02 -4.32606608e-01 3.44578236e-01 -6.74761593e-01 -8.50797713e-01 5.23250401e-01 3.08938354e-01 -1.50424004e+00 -9.12267208e-01 -5.08083344e-01 -8.21298957e-01 1.07731485e+00 -1.14961112e+00 -5.86137831e-01 2.83709671e-02 4.21078980e-01 2.20699772e-01 2.03392670e-01 7.34342039e-01 5.31326771e-01 -9.87804830e-01 -3.46898213e-02 2.78456569e-01 1.87225938e-01 -3.05371463e-01 -1.52911043e+00 -3.14354658e-01 1.63837647e+00 7.29137883e-02 4.00721461e-01 1.16659844e+00 -5.37227511e-01 -1.13549924e+00 -5.80152571e-01 8.20158958e-01 2.01348528e-01 8.21905017e-01 -3.57733190e-01 -5.59429288e-01 9.78435218e-01 7.85610497e-01 -2.25251094e-01 2.88867980e-01 -5.21983862e-01 7.49704182e-01 -3.60149175e-01 -1.21702516e+00 3.11177492e-01 -3.57335508e-02 -2.27624580e-01 -6.98927522e-01 6.52719676e-01 -2.19928071e-01 -4.43501562e-01 -1.36328971e+00 3.07839990e-01 -3.24814677e-01 -7.39515245e-01 6.06331587e-01 2.56721258e-01 -7.53857911e-01 -1.00009584e+00 3.49587500e-01 -1.89063776e+00 -1.31842971e-01 -8.03099751e-01 1.05457837e-02 1.14621139e+00 2.34434053e-01 -1.36304283e+00 3.59035611e-01 -2.35408425e-01 -1.03064448e-01 -2.20711187e-01 -1.31347489e+00 -8.08496237e-01 -5.51265180e-01 1.13012433e-01 9.01552796e-01 1.04157996e+00 6.70690358e-01 1.11824155e-01 5.30769303e-02 1.00829709e+00 4.91884381e-01 8.93352628e-02 3.75622720e-01 -1.27555346e+00 -3.28206241e-01 -1.72910064e-01 -9.51323867e-01 -7.47457027e-01 1.11674666e-01 -3.41164351e-01 -3.77923667e-01 -1.74891210e+00 -8.97337854e-01 -8.24733004e-02 -6.80891499e-02 2.30409727e-01 2.63919294e-01 1.02158487e-01 -5.13756946e-02 2.66264891e-03 -1.17553838e-01 1.56091467e-01 4.53393221e-01 2.60943949e-01 1.93546280e-01 5.16856134e-01 4.98480320e-01 6.35348916e-01 1.07093894e+00 -4.81680073e-02 -5.11711299e-01 1.06235191e-01 2.28815958e-01 2.79525280e-01 4.75225709e-02 -1.49088156e+00 2.78861523e-01 3.06949168e-01 4.27576333e-01 -9.49273586e-01 1.47866115e-01 -1.56435633e+00 6.23790562e-01 1.01560104e+00 3.89784276e-01 6.02343142e-01 -1.39231443e-01 -9.45899170e-03 -4.21444237e-01 -9.25557733e-01 4.95534033e-01 2.20903680e-01 -6.66236222e-01 -4.68417406e-01 -1.08160150e+00 -8.48597527e-01 1.54551172e+00 -2.14400321e-01 -1.97585389e-01 -3.31908166e-01 -1.07181072e+00 3.97655040e-01 5.35433412e-01 -3.39944869e-01 1.27302304e-01 -9.94870186e-01 -3.59952569e-01 3.07304382e-01 -1.76474422e-01 -3.94122750e-01 2.36792430e-01 1.06117570e+00 -8.69795203e-01 7.49096036e-01 -1.81636572e-01 -5.97085178e-01 -9.73080635e-01 6.40137553e-01 7.00633883e-01 -1.19723089e-01 -4.06418115e-01 -1.46936595e-01 -7.84949660e-01 2.47877970e-01 -2.63169199e-01 -5.64463973e-01 -4.58754241e-01 3.21904480e-01 3.88990819e-01 7.10310936e-01 7.46771455e-01 -5.42446673e-01 -1.46663934e-01 2.15847209e-01 5.85793853e-01 -5.57385907e-02 1.09584296e+00 -5.01763344e-01 -4.63013738e-01 3.89684349e-01 8.47592175e-01 4.05975401e-01 -1.02764845e+00 3.37469816e-01 3.85567248e-02 -2.67929852e-01 -1.65264666e-01 -4.24621969e-01 -1.09443247e+00 3.91049206e-01 3.02978963e-01 1.28914142e+00 1.22254586e+00 -6.66497946e-01 2.40187868e-02 1.54024825e-01 7.82124877e-01 -8.21690917e-01 -7.15239882e-01 1.19813479e-01 3.05967420e-01 -1.03164077e-01 -5.96492738e-03 -7.09784508e-01 2.45459169e-01 1.51271451e+00 1.76738709e-01 -4.50078964e-01 7.10648000e-01 6.20308518e-01 -2.82004267e-01 4.55988236e-02 -2.08119929e-01 -3.22723538e-01 -2.79910475e-01 5.42661786e-01 5.18915765e-02 1.58593029e-01 -1.03173554e+00 2.23824363e-02 -1.93997905e-01 1.33933919e-02 1.08741188e+00 1.07840991e+00 -4.10548121e-01 -1.28278017e+00 -7.68964112e-01 1.74989522e-01 -3.25861037e-01 4.29689497e-01 1.49312332e-01 1.21516275e+00 2.30196208e-01 1.24896944e+00 5.51708192e-02 1.20672107e-01 5.71686327e-01 -1.71004623e-01 2.86939383e-01 -6.43815398e-01 -5.07690489e-01 -2.18571108e-02 1.32513210e-01 -8.42113271e-02 -1.83681801e-01 -6.25255764e-01 -1.30075097e+00 -2.83419546e-02 -7.26262748e-01 1.22541165e+00 5.29378831e-01 1.13730848e+00 -1.78011328e-01 7.17673540e-01 1.14848745e+00 -6.26499414e-01 -4.45971102e-01 -1.10258174e+00 -1.32659876e+00 -1.67364955e-01 2.86721528e-01 -6.24431551e-01 -6.39070988e-01 -4.58144575e-01]
[5.985929489135742, 2.5238261222839355]
6d94cba8-a180-462e-8b81-3fb886bdf06a
protein-complex-invariant-embedding-with
2305.0948
null
https://arxiv.org/abs/2305.09480v3
https://arxiv.org/pdf/2305.09480v3.pdf
Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer
Antibodies are crucial proteins produced by the immune system in response to foreign substances or antigens. The specificity of an antibody is determined by its complementarity-determining regions (CDRs), which are located in the variable domains of the antibody chains and form the antigen-binding site. Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling. Moreover, the common iterative refinement strategies lead to an inefficient inference. In this paper, we propose a \textit{simple yet effective} model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner. To achieve this, we decouple the antibody CDR design problem into two stages: (i) geometric modeling of protein complex structures and (ii) sequence-structure co-learning. We develop a novel macromolecular structure invariant embedding, typically for protein complexes, that captures both intra- and inter-component interactions among the backbone atoms, including C$\alpha$, N, C, and O atoms, to achieve comprehensive geometric modeling. Then, we introduce a simple cross-gate MLP for sequence-structure co-learning, allowing sequence and structure representations to implicitly refine each other. This enables our model to design desired sequences and structures in a one-shot manner. Extensive experiments are conducted to evaluate our results at both the sequence and structure level, which demonstrate that our model achieves superior performance compared to the state-of-the-art antibody CDR design methods.
['Stan Z. Li', 'Zhangyang Gao', 'Cheng Tan']
2023-04-21
null
null
null
null
['specificity']
['natural-language-processing']
[ 3.89909387e-01 -2.61673242e-01 -1.55583382e-01 -2.95253485e-01 -4.72334474e-01 -6.95713103e-01 2.41073206e-01 3.04640502e-01 -1.84119582e-01 8.89230847e-01 5.43305054e-02 -6.99237883e-01 2.29644701e-01 -6.89417601e-01 -9.37636018e-01 -9.67485070e-01 7.76952365e-03 5.84386468e-01 8.33440870e-02 -3.37865084e-01 3.95647109e-01 8.67327213e-01 -1.21275663e+00 3.02540630e-01 9.33036029e-01 4.94900227e-01 3.23911875e-01 5.84774852e-01 -4.29443419e-01 8.43903899e-01 -3.06429505e-01 -2.09523767e-01 -9.72359478e-02 -5.57966828e-01 -6.09914303e-01 -1.86461583e-01 1.11259744e-01 3.50280106e-02 -1.55706719e-01 7.65391767e-01 5.80769300e-01 -3.65298018e-02 9.39034283e-01 -5.07031322e-01 -9.88790810e-01 9.28388759e-02 -7.37351716e-01 -1.80603057e-01 5.34551620e-01 3.63363743e-01 1.11797500e+00 -9.78718579e-01 8.43870759e-01 1.35647035e+00 6.97783172e-01 6.65182889e-01 -1.67886782e+00 -7.13317752e-01 3.34188998e-01 2.19235420e-01 -1.37048280e+00 -9.99338180e-02 9.39181328e-01 -6.55788898e-01 1.31738448e+00 1.94322541e-02 6.51446819e-01 9.50009525e-01 8.33710730e-01 3.98317993e-01 1.01149929e+00 -2.46178180e-01 2.44855866e-01 -3.32324713e-01 2.88251281e-01 9.32319164e-01 1.56393275e-02 3.61575335e-01 -2.40789041e-01 -5.36658108e-01 7.71174490e-01 3.61578882e-01 -1.21269338e-01 -8.01486433e-01 -6.51143193e-01 1.18163693e+00 7.10224032e-01 1.49974581e-02 -3.63391638e-01 -1.47318572e-01 -3.27417627e-02 1.62286639e-01 3.25196539e-03 4.40941006e-01 -5.28686047e-01 3.84700358e-01 -3.93211424e-01 4.28584367e-01 7.04327345e-01 9.28430140e-01 8.84008408e-01 -2.55510867e-01 2.82571018e-02 7.05414712e-01 4.39194739e-01 1.69465214e-01 -4.73953150e-02 -1.98706374e-01 -1.12684108e-02 7.86038041e-01 6.87931105e-02 -9.23536241e-01 -7.14136660e-01 -2.60022223e-01 -9.44416523e-01 1.84646919e-01 2.00035930e-01 2.30157375e-02 -1.11523986e+00 1.86202025e+00 4.54283744e-01 4.69026975e-02 -5.73785119e-02 8.36645842e-01 7.94144928e-01 6.47571206e-01 2.71030158e-01 -2.94106752e-01 1.41476476e+00 -1.02114010e+00 -4.42121774e-01 9.53095853e-02 5.82160056e-01 -7.73315549e-01 7.41718888e-01 1.97779387e-02 -9.32386756e-01 -6.78710520e-01 -1.32214332e+00 -9.18767303e-02 -2.94301391e-01 -4.80177104e-01 6.54460073e-01 3.57580155e-01 -5.38086236e-01 4.64100987e-01 -7.10672259e-01 2.42362976e-01 2.60677397e-01 6.67138159e-01 -3.17573845e-01 -5.24411574e-02 -1.16494572e+00 1.08076775e+00 2.73787171e-01 -1.14082903e-01 -9.63641047e-01 -8.41948211e-01 -8.19826126e-01 -1.39501810e-01 2.85827219e-01 -9.84444916e-01 8.79939675e-01 -7.02565432e-01 -1.40389693e+00 6.92386448e-01 -4.77330059e-01 -2.26133212e-01 5.82594983e-03 1.71355426e-01 -2.30655894e-01 -1.36923522e-01 -2.69616365e-01 7.48087645e-01 6.58103228e-01 -1.24258745e+00 -3.96998197e-01 -5.50731182e-01 5.11983298e-02 9.55814868e-02 5.80619752e-01 -2.82240044e-02 -2.72224814e-01 -7.32596517e-01 -1.63387544e-02 -9.90454733e-01 -6.82501435e-01 -2.32399493e-01 -2.47205436e-01 -1.89885437e-01 4.12977666e-01 -4.10884827e-01 1.00873482e+00 -1.72874522e+00 7.38579929e-01 4.78035241e-01 5.72471559e-01 3.74219716e-01 -1.84953839e-01 7.10319817e-01 -3.91931683e-01 -1.55729949e-01 -3.44828337e-01 2.49140292e-01 -2.17144057e-01 7.20742717e-02 -1.04506835e-01 4.35472131e-01 4.15485114e-01 1.18110120e+00 -6.62875235e-01 -1.78115666e-01 2.21990183e-01 7.77356386e-01 -7.76814997e-01 4.41598117e-01 -6.08866572e-01 8.16861629e-01 -6.19283497e-01 6.22146845e-01 8.63009334e-01 -5.66821218e-01 8.09875786e-01 -3.24731559e-01 -2.61393450e-02 2.09181815e-01 -8.20364237e-01 1.52583861e+00 -1.15442060e-01 -1.50299296e-01 -1.30809382e-01 -7.40565181e-01 1.06926084e+00 1.62338931e-02 3.85576516e-01 -8.98874044e-01 8.54808465e-02 1.17483795e-01 2.80355722e-01 -1.40132397e-01 -1.15131430e-01 -4.22424167e-01 3.33709791e-02 3.98726255e-01 -1.12302944e-01 1.68533668e-01 -6.09776303e-02 -3.16523500e-02 9.91769135e-01 2.97230601e-01 4.58171010e-01 -1.55387402e-01 9.60344136e-01 2.84457533e-03 5.88838816e-01 3.50701869e-01 1.79708540e-01 3.87886494e-01 5.57485759e-01 -7.61054099e-01 -1.43254757e+00 -1.04615462e+00 -6.36698604e-02 1.03730679e+00 2.27582708e-01 -1.17556781e-01 -8.44010890e-01 -5.61683714e-01 2.94632167e-01 2.40871742e-01 -6.13548338e-01 -3.42178643e-01 -9.13476110e-01 -8.05502295e-01 1.80934787e-01 4.58169043e-01 -1.51771754e-01 -1.03802013e+00 -2.09686249e-01 6.61057651e-01 3.82251799e-01 -5.37547469e-01 -8.99381280e-01 4.87767637e-01 -7.15711474e-01 -1.33826447e+00 -6.89515948e-01 -1.20252514e+00 8.02881837e-01 1.18730247e-01 9.24572706e-01 1.95392013e-01 -4.76545513e-01 -3.93164814e-01 -3.35768498e-02 -1.10249169e-01 -3.51608515e-01 -1.15756346e-02 8.01872984e-02 -1.77554309e-01 6.81995392e-01 -6.74302995e-01 -8.47318411e-01 4.13312584e-01 -7.65277982e-01 9.97450501e-02 8.85728896e-01 1.14456749e+00 1.10731554e+00 -3.79276544e-01 4.58011717e-01 -1.18474615e+00 7.15851009e-01 -2.05277026e-01 -7.21735716e-01 3.63058865e-01 -5.82032025e-01 6.90299571e-01 8.93157363e-01 -4.12509173e-01 -7.28125632e-01 3.36981505e-01 -5.32239854e-01 -2.13655174e-01 -4.94908020e-02 4.44299787e-01 -3.27143937e-01 -5.10276198e-01 4.34893727e-01 4.98256773e-01 2.86851615e-01 -5.77949166e-01 3.36219490e-01 4.19040680e-01 2.67084301e-01 -7.17102468e-01 6.62398875e-01 1.54126465e-01 1.84625939e-01 -7.55239367e-01 -6.20021641e-01 -2.33208209e-01 -6.80707574e-01 3.76905292e-01 8.32084298e-01 -7.55316913e-01 -1.17444766e+00 3.22180420e-01 -1.15418077e+00 2.24584024e-02 3.56966674e-01 3.25734496e-01 -6.36042595e-01 6.28907859e-01 -8.24601471e-01 -3.83044243e-01 -4.22860831e-01 -1.58745348e+00 8.42725337e-01 4.51683514e-02 -2.47199550e-01 -8.06873262e-01 5.60776472e-01 3.37148994e-01 2.18857586e-01 3.11168492e-01 1.63714588e+00 -6.35006011e-01 -7.47139931e-01 1.65822729e-01 -3.11327159e-01 -8.70052576e-02 1.36986986e-01 -2.10998207e-01 -3.91934216e-01 -5.93991756e-01 -2.00586721e-01 -2.67857790e-01 7.54996419e-01 2.57536560e-01 8.68756592e-01 -2.32311115e-01 -5.38155615e-01 7.39008248e-01 1.39605415e+00 8.00293863e-01 5.98945796e-01 6.73291013e-02 8.83517087e-01 6.15577340e-01 4.42340046e-01 1.78272679e-01 2.22582921e-01 7.88203716e-01 2.83954620e-01 -2.30463728e-01 1.40856057e-01 -4.23028499e-01 1.17413774e-01 8.44365597e-01 5.24071120e-02 4.78263721e-02 -7.64341474e-01 6.32529259e-02 -1.73440695e+00 -7.39560664e-01 -7.61871114e-02 1.86754751e+00 1.12762964e+00 1.42686293e-01 2.01374412e-01 -3.45404088e-01 5.72757363e-01 6.48897439e-02 -9.79845285e-01 -4.12689090e-01 -6.00356273e-02 6.49978757e-01 4.86390293e-01 7.41457224e-01 -7.75325477e-01 8.02324831e-01 6.93955946e+00 6.94033921e-01 -9.93568778e-01 -2.86541611e-01 4.25544828e-01 6.42484277e-02 -6.36879444e-01 8.74801278e-02 -8.76530290e-01 5.10687411e-01 8.02855611e-01 4.27480340e-01 4.61438954e-01 5.40645838e-01 -5.10396846e-02 4.98393059e-01 -1.14646184e+00 9.70365405e-01 -2.10148543e-01 -1.88632202e+00 3.03396046e-01 1.27868950e-01 6.84048772e-01 -3.76669645e-01 -1.20438254e-02 1.38234094e-01 4.16754067e-01 -1.45018721e+00 3.05684507e-01 5.82099557e-01 7.20508337e-01 -1.13127613e+00 4.52829450e-01 1.76420510e-01 -1.34194171e+00 1.26986563e-01 -4.26041663e-01 1.06827393e-01 2.04830214e-01 2.42977783e-01 -4.84915316e-01 3.63091707e-01 1.45758629e-01 4.18966293e-01 -1.33765668e-01 4.32401866e-01 -1.92749560e-01 -9.55327451e-02 1.78720102e-01 -3.93521219e-01 4.01416689e-01 -6.29073918e-01 1.96367830e-01 9.86048639e-01 -3.34417582e-01 4.81081873e-01 3.73359889e-01 9.71548796e-01 -8.45071226e-02 1.37062356e-01 -3.65970641e-01 -5.91845177e-02 4.55851823e-01 8.33920658e-01 -3.24626982e-01 3.83490659e-02 -6.21592283e-01 7.12763488e-01 6.63627505e-01 4.16518807e-01 -9.82848704e-01 -6.33525550e-01 1.13832963e+00 6.37417287e-02 6.51899397e-01 -2.95575202e-01 4.55390252e-02 -7.81665742e-01 -1.14166796e-01 -1.37531233e+00 1.41398787e-01 -2.93330759e-01 -1.34027719e+00 3.86868834e-01 -4.95891750e-01 -5.99760354e-01 5.92440665e-02 -1.00219059e+00 -2.58720756e-01 1.24552023e+00 -1.49986207e+00 -1.13186824e+00 2.89038897e-01 3.90959918e-01 2.40632564e-01 -2.82276154e-01 8.63084316e-01 2.66045064e-01 -5.71566463e-01 7.51119137e-01 3.40748131e-01 -1.68809816e-01 4.12852436e-01 -1.02714097e+00 6.73135221e-01 1.85431108e-01 -2.29222238e-01 1.14505553e+00 6.65685475e-01 -8.69387627e-01 -1.80196941e+00 -8.75376225e-01 7.09600747e-01 -4.69647706e-01 4.44312036e-01 -5.55109501e-01 -1.16490698e+00 4.88888741e-01 -1.50083631e-01 -4.73701119e-01 1.09833014e+00 1.28126055e-01 -5.49333274e-01 2.34092250e-01 -1.09823060e+00 8.29341829e-01 1.22190535e+00 -6.38720393e-01 -7.62718201e-01 1.39171004e-01 1.08182180e+00 -2.91118711e-01 -9.45295930e-01 4.77500111e-01 8.40494573e-01 -9.00634944e-01 1.30483842e+00 -1.16707003e+00 1.59386799e-01 -5.07644117e-01 -1.32310957e-01 -1.00590110e+00 -8.10759962e-01 -5.63010931e-01 -3.96686107e-01 5.22530138e-01 6.99185193e-01 -6.01484239e-01 1.02407098e+00 1.27878025e-01 -1.31934896e-01 -1.09797943e+00 -6.80842340e-01 -4.57727730e-01 2.68371940e-01 9.46795717e-02 9.52712595e-01 6.39966607e-01 -1.30435973e-01 9.41864610e-01 -4.35630739e-01 -3.12054455e-02 5.99692643e-01 4.94724035e-01 7.27673829e-01 -1.10444605e+00 -5.29996216e-01 -4.92299497e-01 -1.89762980e-01 -1.40987515e+00 1.45549521e-01 -8.63694549e-01 -1.52524218e-01 -1.21366215e+00 4.68321204e-01 -4.36583757e-01 -3.97843599e-01 8.03654566e-02 -2.34048471e-01 -2.53995359e-01 -1.97322890e-01 1.30543306e-01 -3.73768598e-01 6.74170911e-01 1.48014808e+00 -3.38263065e-01 -2.77754068e-01 -2.75331974e-01 -8.42133105e-01 3.84938121e-01 5.24939835e-01 -3.70501518e-01 -2.49379382e-01 -1.14421435e-01 2.56795198e-01 2.11330056e-01 -7.57327974e-02 -5.17205238e-01 -2.37656869e-02 -4.25276905e-01 4.94256854e-01 -7.71033049e-01 3.44110548e-01 -8.03314507e-01 5.35468519e-01 8.68809104e-01 -1.67569607e-01 2.42481485e-01 5.35204113e-02 7.03764617e-01 7.19204843e-02 4.84352447e-02 1.01760757e+00 -1.61720425e-01 -2.53033012e-01 5.81428587e-01 -4.65938538e-01 -2.48764858e-01 1.02285373e+00 -2.72454351e-01 -1.00849234e-01 5.10277674e-02 -6.05856776e-01 2.26423681e-01 7.98875213e-01 3.29284400e-01 8.25604618e-01 -1.20445776e+00 -4.76480275e-01 5.71566105e-01 2.72867739e-01 -1.72398582e-01 2.95795530e-01 5.32250226e-01 -8.77397358e-01 8.03056717e-01 -4.21966761e-01 -6.27459228e-01 -1.26164961e+00 1.15596414e+00 3.64768773e-01 -4.20783013e-01 -3.37034285e-01 7.84410715e-01 6.46569490e-01 -7.76811123e-01 2.05776557e-01 -9.48329549e-03 -1.58700794e-01 -1.74193472e-01 6.36604726e-01 -1.16620518e-01 -2.21745186e-02 -6.72679424e-01 -5.25479794e-01 9.91667271e-01 -6.66239679e-01 4.89983797e-01 1.24547064e+00 1.74569786e-01 -1.38160586e-01 -1.52302282e-02 1.32453191e+00 -1.37333915e-01 -1.34647393e+00 -4.15135920e-01 -1.65969599e-02 -1.90998748e-01 -5.18952727e-01 -6.41472280e-01 -5.58133364e-01 7.54204452e-01 7.03060567e-01 -4.18472707e-01 7.46820569e-01 9.61026177e-03 1.05025721e+00 3.98883700e-01 5.91443181e-01 -7.24215090e-01 1.72269732e-01 6.70986712e-01 5.58065176e-01 -9.00947750e-01 -5.03178462e-02 -2.66017616e-01 -4.76012200e-01 8.72068048e-01 4.80013609e-01 -1.24572910e-01 4.32909459e-01 1.94539219e-01 5.83719369e-03 -3.90684843e-01 -9.38560545e-01 -1.48872912e-01 2.83156395e-01 6.38586581e-01 7.80246675e-01 3.19489725e-02 -4.88753647e-01 4.44190830e-01 2.00148642e-01 -3.02068502e-01 -2.49024749e-01 1.10917199e+00 -6.71810329e-01 -1.68121850e+00 -3.13920081e-01 1.44804254e-01 -3.11809152e-01 -5.33654168e-02 -8.31534803e-01 4.78104442e-01 -6.03228062e-03 6.25459790e-01 -9.26070958e-02 -5.03153563e-01 5.17321050e-01 9.99834165e-02 8.52611840e-01 -5.31058371e-01 -6.02646470e-01 1.98021233e-01 -3.00262243e-01 -3.25300843e-01 -1.21576965e-01 -2.86837399e-01 -1.51627612e+00 -5.73870122e-01 -2.74391383e-01 3.64059299e-01 2.31653526e-01 7.25055754e-01 6.71184182e-01 5.96975565e-01 7.80567348e-01 -6.38802350e-01 -6.16548896e-01 -6.03843629e-01 -4.45934623e-01 3.10834706e-01 4.03130800e-01 -7.92894602e-01 2.14169934e-01 -2.40663469e-01]
[4.746662616729736, 5.65386438369751]
7129cb15-ad1f-44b0-aad5-241814e79bd0
190511807
1905.11807
null
https://arxiv.org/abs/1905.11807v1
https://arxiv.org/pdf/1905.11807v1.pdf
Artificial Consciousness and Security
This paper describes a possible way to improve computer security by implementing a program which implements the following three features related to a weak notion of artificial consciousness: (partial) self-monitoring, ability to compute the truth of quantifier-free propositions and the ability to communicate with the user. The integrity of the program could be enhanced by using a trusted computing approach, that is to say a hardware module that is at the root of a chain of trust. This paper outlines a possible approach but does not refer to an implementation (which would need further work), but the author believes that an implementation using current processors, a debugger, a monitoring program and a trusted processing module is currently possible.
['Andrew Powell']
2019-05-11
null
null
null
null
['computer-security']
['miscellaneous']
[-1.54824957e-01 4.26495463e-01 2.55371273e-01 -4.28842723e-01 -1.33376449e-01 -6.10983670e-01 9.32207704e-01 4.91600305e-01 -7.55399823e-01 6.56784475e-01 -1.22233313e-02 -7.92284071e-01 2.26039529e-01 -1.09637260e+00 -3.83178681e-01 -4.12813693e-01 -2.48525083e-01 2.34337121e-01 8.74620736e-01 -6.53334618e-01 3.20302248e-01 4.45661873e-01 -1.42059255e+00 1.08964965e-01 4.60254699e-01 7.36064732e-01 -4.79831070e-01 6.68225765e-01 1.87661737e-01 1.00347829e+00 -4.82848138e-01 -2.59576350e-01 1.43525019e-01 -3.47850293e-01 -8.68422449e-01 -2.12049693e-01 -2.41020784e-01 -4.17278528e-01 3.01590234e-01 1.30089569e+00 -1.57877043e-01 -3.79080653e-01 -1.94458496e-02 -1.44329500e+00 5.61080277e-02 6.94885135e-01 8.29575881e-02 -7.76933655e-02 5.92703879e-01 2.81490833e-01 2.64903069e-01 7.28188977e-02 3.20509315e-01 9.48856831e-01 4.83816803e-01 3.16959202e-01 -1.02094710e+00 -3.99783939e-01 -3.62058282e-01 -1.22241504e-01 -1.30697691e+00 -2.47236952e-01 3.04354399e-01 -1.44095197e-01 1.01187837e+00 3.45224410e-01 6.14933074e-01 6.80110633e-01 7.71012664e-01 -1.17208466e-01 2.00377011e+00 -8.41884971e-01 6.92265272e-01 1.01229525e+00 8.01958382e-01 7.92344630e-01 8.31963301e-01 3.57727557e-01 -1.86898574e-01 -6.57865942e-01 5.88932753e-01 -5.51641762e-01 -3.96224350e-01 -2.76717693e-01 -1.20386064e+00 6.44453466e-01 -1.20961882e-01 8.37924719e-01 -3.22198182e-01 2.41297245e-01 7.46834934e-01 6.75380111e-01 -2.07387716e-01 4.77724463e-01 -3.93642604e-01 -3.67671788e-01 -7.49060750e-01 9.65312049e-02 1.51399851e+00 2.84000307e-01 5.54904401e-01 1.41676113e-01 5.65843642e-01 -8.02215159e-01 7.95780540e-01 4.11371976e-01 4.21205312e-01 -9.36740339e-01 -3.03093940e-01 6.38591886e-01 3.98126036e-01 -6.68817997e-01 -1.98812246e-01 1.04199201e-01 -6.34912699e-02 1.12691164e+00 3.13574910e-01 -2.74370760e-01 -3.03565890e-01 1.54837680e+00 4.02843565e-01 3.40580568e-02 4.57163960e-01 7.55739570e-01 2.96168774e-01 4.71431375e-01 6.63472563e-02 -1.97308764e-01 1.68155038e+00 -1.67146564e-01 -7.74562359e-01 2.78249890e-01 3.86654168e-01 -3.44229132e-01 6.37409747e-01 9.13859725e-01 -1.18265116e+00 -6.43367246e-02 -1.62773490e+00 2.37555161e-01 -5.73131740e-01 -6.44606888e-01 9.90272462e-01 1.36230230e+00 -1.45096684e+00 5.30781090e-01 -9.91371632e-01 -3.36808383e-01 -5.88560164e-01 7.12890625e-01 -5.66991091e-01 5.34567833e-01 -1.47818553e+00 1.41980672e+00 7.56227076e-01 -3.06593746e-01 -1.08947027e+00 3.29869121e-01 -9.40577447e-01 -2.12538019e-02 5.21765724e-02 -6.97958827e-01 9.06568885e-01 -1.11976600e+00 -1.92058980e+00 9.72890317e-01 3.16891402e-01 -8.72369945e-01 3.75165105e-01 2.12523505e-01 -5.92770219e-01 3.46043140e-01 -3.92144859e-01 4.82999347e-03 7.96368182e-01 -1.18947041e+00 -4.50149924e-01 -5.42643487e-01 7.46254146e-01 -3.45157117e-01 -9.27492455e-02 5.31023204e-01 3.66421849e-01 2.10790455e-01 4.75123897e-02 -9.51407790e-01 -2.06920236e-01 -5.90696275e-01 6.88931569e-02 2.12115988e-01 4.17847902e-01 -2.95596689e-01 7.88941562e-01 -2.02445078e+00 -3.46270710e-01 6.27872109e-01 4.73880135e-02 2.85023093e-01 4.87659693e-01 4.78105605e-01 -1.07012443e-01 2.77762294e-01 7.74120912e-02 1.06429242e-01 4.41599399e-01 2.09893018e-01 -4.12366569e-01 8.23627830e-01 -2.30658382e-01 4.30348545e-01 -9.00358379e-01 -3.94366324e-01 2.76536942e-01 4.86948460e-01 -1.51023418e-02 -2.31690824e-01 -1.75940260e-01 2.22552970e-01 -6.28867745e-01 2.83297211e-01 4.83613312e-01 6.09206334e-02 5.16551912e-01 3.36065978e-01 -6.36106670e-01 5.48223913e-01 -1.57182872e+00 1.17551637e+00 -1.20532073e-01 -1.26849353e-01 6.22538388e-01 -4.93801594e-01 8.16259027e-01 1.01982665e+00 -1.06900074e-01 -4.50666338e-01 7.56181359e-01 3.36489767e-01 -1.39547437e-02 -2.26981893e-01 6.44191682e-01 -4.39563066e-01 -2.75603741e-01 9.92809832e-01 -1.96586251e-01 -2.10878626e-01 -3.62810373e-01 3.85210037e-01 1.05124974e+00 3.44538242e-01 5.52000642e-01 -6.48807526e-01 9.52202976e-01 6.71764836e-02 3.88291031e-01 6.22902930e-01 -4.82140094e-01 -4.83568043e-01 6.01557136e-01 -4.14662808e-01 -8.79356861e-01 -6.29596651e-01 -3.51609513e-02 5.39727986e-01 2.05518126e-01 -5.97784996e-01 -9.88791287e-01 -4.20526952e-01 -5.34233987e-01 7.97978044e-01 -3.25448036e-01 -2.48097450e-01 -2.63600588e-01 -3.50180417e-01 7.48312950e-01 9.48861986e-02 5.80212355e-01 -8.03247929e-01 -1.40229475e+00 1.41989738e-01 3.41927618e-01 -7.62000024e-01 4.44326282e-01 5.82508802e-01 -1.03953040e+00 -7.17527628e-01 4.98795778e-01 -3.07600141e-01 5.39930820e-01 9.06135812e-02 7.43913054e-01 5.87088764e-01 5.06450653e-01 6.23481691e-01 -4.59787220e-01 -5.83950222e-01 -8.04634213e-01 -6.39409661e-01 2.58207738e-01 -3.12193900e-01 3.13220769e-01 -6.54340446e-01 -1.48082480e-01 -1.03369929e-01 -9.45532501e-01 -3.22276562e-01 1.78554341e-01 5.21682978e-01 -7.25595132e-02 3.69087338e-01 6.78356662e-02 -7.51238108e-01 5.36883950e-01 -3.74571718e-02 -1.12634349e+00 4.75627705e-02 -7.92025268e-01 2.21866429e-01 5.48760355e-01 1.16061736e-02 -8.46036375e-01 1.62586212e-01 -6.01382777e-02 3.75546515e-01 -2.89697319e-01 4.37693819e-02 -5.65537512e-01 -6.81411982e-01 5.31813800e-01 2.56990731e-01 3.16645443e-01 1.01746030e-01 2.51888365e-01 5.13369858e-01 5.33937931e-01 -8.24680448e-01 7.05784440e-01 6.89161122e-01 2.17237622e-01 -3.04230630e-01 8.62949118e-02 -5.82059957e-02 -1.88851297e-01 -6.15062453e-02 5.50703764e-01 -8.52656186e-01 -1.39142239e+00 2.63313502e-01 -1.14976013e+00 -1.27394930e-01 -1.59292355e-01 6.08662903e-01 -4.37161863e-01 9.09007370e-01 -8.40889931e-01 -1.07116735e+00 -5.10853171e-01 -1.15092921e+00 4.63459373e-01 1.58080831e-01 -3.24083537e-01 -7.39466369e-01 2.16143057e-01 3.25928420e-01 4.67859834e-01 3.93092811e-01 5.89810193e-01 -7.94641197e-01 -5.83961546e-01 -6.39078259e-01 3.77134532e-01 5.73695898e-01 -3.88808608e-01 2.30080262e-01 -1.08085477e+00 -4.41591650e-01 9.71595943e-01 -3.10100883e-01 1.41862497e-01 -2.90645897e-01 1.36026844e-01 -3.64375293e-01 -4.65497188e-02 -5.21749025e-04 1.77728045e+00 2.30205044e-01 1.01539445e+00 7.13301003e-01 -1.28492966e-01 4.18725014e-01 5.44229329e-01 4.02801692e-01 5.39806664e-01 3.34365070e-01 6.75153852e-01 1.95151761e-01 5.78376293e-01 2.20726565e-01 6.94032013e-01 6.36819541e-01 -2.10404664e-01 5.37440240e-01 -7.72266090e-01 1.81355819e-01 -1.55938792e+00 -1.02040172e+00 -7.31617093e-01 2.47337770e+00 7.19959736e-01 5.70582986e-01 7.75962397e-02 4.89466012e-01 5.39733171e-01 -3.39697689e-01 2.40550563e-01 -1.10966659e+00 4.00607437e-01 3.46472204e-01 5.68965733e-01 8.81272912e-01 -8.12286675e-01 7.28154540e-01 7.20355606e+00 1.08242547e-02 -1.11067128e+00 6.06305242e-01 -7.62436017e-02 6.24625444e-01 -3.32879364e-01 9.02689874e-01 -6.19179368e-01 4.91739064e-01 1.46510327e+00 -2.11849183e-01 4.54562396e-01 8.08437765e-01 1.96966946e-01 -6.11403167e-01 -7.57708549e-01 1.06569275e-01 8.47763717e-02 -7.25190401e-01 -4.17931139e-01 2.60407865e-01 1.05848931e-01 -1.05173990e-01 -4.02203321e-01 2.79654264e-02 5.02032995e-01 -6.36499107e-01 9.29055512e-01 6.02900207e-01 1.32702768e-01 -9.87465382e-01 1.12177062e+00 5.61889112e-01 -6.38876557e-01 1.67439654e-01 -9.38983783e-02 -4.56714988e-01 -8.29064324e-02 2.70967245e-01 -5.16154945e-01 6.75442576e-01 4.17540103e-01 -5.54494262e-01 -4.22535598e-01 7.15443611e-01 -4.86596316e-01 4.17171270e-01 -5.50157845e-01 -1.25866517e-01 1.95173264e-01 -2.75780886e-01 4.80705440e-01 9.74675000e-01 -3.18955518e-02 3.18288505e-01 -1.91713832e-02 5.94870567e-01 7.25301921e-01 -2.15058506e-01 -5.25151968e-01 2.86986351e-01 2.25296885e-01 1.31880379e+00 -9.43111300e-01 -6.40522957e-01 -4.47824568e-01 7.32947350e-01 -4.16064799e-01 -3.29041302e-01 -7.32634485e-01 -3.71674985e-01 1.68551087e-01 1.71772778e-01 2.94303410e-02 -5.39792120e-01 -2.45218948e-01 -1.21413243e+00 -2.18790621e-01 -1.30308688e+00 1.53784111e-01 -7.56789148e-01 -5.79103887e-01 7.48716176e-01 -9.90017131e-02 -5.98329961e-01 -1.63732216e-01 -5.82637608e-01 -6.22634590e-01 8.38354647e-01 -1.15306234e+00 -1.28525150e+00 2.55372208e-02 9.50251758e-01 -7.83508480e-01 1.70419570e-02 1.40512395e+00 -2.36095890e-01 8.04499835e-02 1.71463236e-01 -6.30985856e-01 -9.43296701e-02 4.25705522e-01 -1.29331934e+00 -4.62271385e-02 1.24142551e+00 -1.99161232e-01 1.30246282e+00 1.26493609e+00 -5.43524683e-01 -1.88880146e+00 -2.59059280e-01 1.15787208e+00 -5.30363023e-01 1.01270938e+00 -2.97189564e-01 -9.34756517e-01 8.21698904e-01 8.72433126e-01 -2.88612813e-01 6.50711119e-01 -1.02563456e-01 -3.51821333e-01 -2.70505339e-01 -1.52861059e+00 1.63207054e-01 -3.61560620e-02 -7.63822377e-01 -1.03711724e+00 2.36815922e-02 6.57698512e-01 -1.20219007e-01 -1.04501617e+00 -2.20365766e-02 4.66744959e-01 -1.37128890e+00 3.68608117e-01 -4.97163162e-02 -5.37385106e-01 -8.91619325e-01 -4.42294180e-02 -5.48989296e-01 9.37621072e-02 -9.50815082e-01 5.61671704e-02 1.27539384e+00 1.13216192e-01 -1.32378054e+00 4.57926512e-01 1.10489893e+00 2.09713995e-01 2.29250729e-01 -1.03553796e+00 -4.38890308e-01 -1.33342683e-01 -5.07453442e-01 7.57306457e-01 1.00086212e+00 1.11986399e+00 1.64965943e-01 -5.53498929e-03 5.24083257e-01 4.81077224e-01 -5.39986901e-02 5.36101758e-01 -1.07319772e+00 -6.27422333e-01 6.67214906e-03 -8.76388967e-01 -7.06058741e-02 9.60082635e-02 -5.93414545e-01 -5.76680005e-02 -1.11532640e+00 -2.09393608e-03 -1.18885010e-01 -3.75505000e-01 6.98665261e-01 4.30425972e-01 -5.10905124e-03 7.70489052e-02 -7.66761974e-02 -6.79583311e-01 1.21240299e-02 4.81563538e-01 3.36999804e-01 2.31668159e-01 -2.47019649e-01 -8.83898973e-01 7.19976366e-01 7.06825733e-01 -6.70699656e-01 -2.56704599e-01 2.03191623e-01 5.75859129e-01 3.29062819e-01 6.12492144e-01 -1.26746941e+00 5.94256699e-01 -8.42658356e-02 -1.24403931e-01 7.09313005e-02 2.35107809e-01 -1.33798647e+00 5.69992304e-01 1.16513383e+00 1.81905970e-01 3.67497861e-01 1.24411382e-01 2.45044798e-01 -9.54841897e-02 -7.58676589e-01 6.84493423e-01 -5.55723190e-01 -5.83192468e-01 -5.23340344e-01 -9.66120660e-01 -1.01527333e+00 1.33408773e+00 -8.19278359e-02 -4.83131021e-01 -2.24539697e-01 -4.60877299e-01 -6.95784315e-02 1.28140628e+00 -3.21948707e-01 2.96590179e-01 -5.57254851e-01 -2.66468227e-01 5.55448346e-02 -1.32763937e-01 -8.49586129e-01 -4.15128976e-01 6.81113660e-01 -7.78097332e-01 4.00475264e-01 -5.46569407e-01 -1.31157264e-02 -1.36857402e+00 9.57105219e-01 3.80065888e-01 -1.19915836e-01 -4.02154922e-01 9.66677740e-02 -6.62438989e-01 1.99988578e-02 -1.40415803e-01 -1.86090946e-01 -2.58907288e-01 -5.55299461e-01 1.01658022e+00 -3.67324837e-02 9.82404053e-02 -5.62093258e-01 -5.97719312e-01 8.42453688e-02 3.36153418e-01 -7.76929319e-01 1.05869985e+00 -1.26860946e-01 -1.06092334e+00 4.71180320e-01 3.41407478e-01 4.06106263e-01 -4.51722980e-01 3.05424541e-01 1.12821966e-01 -2.35026330e-01 2.65465438e-01 -8.02091420e-01 -4.58046615e-01 6.19486928e-01 7.61642098e-01 4.68850762e-01 1.13704860e+00 -5.44698417e-01 2.73805469e-01 2.83618063e-01 1.34915185e+00 -8.35227251e-01 -4.54597890e-01 4.74252105e-01 3.04449022e-01 -8.20545197e-01 2.95407236e-01 -2.45857790e-01 -6.59856319e-01 1.27147830e+00 3.36888433e-01 -2.67511368e-01 6.12231076e-01 9.50064659e-01 6.04530913e-04 -3.25353324e-01 -8.48943353e-01 -1.36454791e-01 -6.68252289e-01 5.92132807e-01 2.00131729e-01 3.52191746e-01 -1.21446824e+00 4.03892964e-01 1.11520685e-01 4.29194570e-01 1.17302942e+00 1.35797358e+00 -7.21739888e-01 -1.57692766e+00 -8.88233900e-01 -3.75668705e-01 -8.49510252e-01 -3.35572474e-02 -3.89169574e-01 8.44598114e-01 4.12973583e-01 1.15733266e+00 -4.04416502e-01 -4.34676230e-01 -1.68277770e-02 2.27688223e-01 6.46944046e-01 -5.67059398e-01 -1.27813148e+00 -2.27799937e-01 4.64041442e-01 -5.90934694e-01 -4.80902046e-01 -4.35511678e-01 -1.47295856e+00 -7.52400458e-01 -2.86240548e-01 5.57155013e-01 1.12345707e+00 8.81088436e-01 2.30247490e-02 5.46832792e-02 4.11499739e-01 -2.79455125e-01 -5.79957187e-01 -5.17408967e-01 -8.97072554e-01 -1.60491377e-01 1.21808305e-01 -1.17408752e-01 -3.90224308e-01 -1.08440451e-01]
[5.791286945343018, 4.796272277832031]
02609003-d21f-4760-9de2-6285c276b8d8
heart-rate-estimation-from-face-videos-for
2006.00825
null
https://arxiv.org/abs/2006.00825v1
https://arxiv.org/pdf/2006.00825v1.pdf
Heart Rate Estimation from Face Videos for Student Assessment: Experiments on edBB
In this study we estimate the heart rate from face videos for student assessment. This information could be very valuable to track their status along time and also to estimate other data such as their attention level or the presence of stress that may be caused by cheating attempts. The recent edBBplat, a platform for student behavior modelling in remote education, is considered in this study1. This platform permits to capture several signals from a set of sensors that capture biometric and behavioral data: RGB and near infrared cameras, microphone, EEG band, mouse, smartwatch, and keyboard, among others. In the experimental framework of this study, we focus on the RGB and near-infrared video sequences for performing heart rate estimation applying remote photoplethysmography techniques. The experiments include behavioral and physiological data from 25 different students completing a collection of tasks related to e-learning. Our proposed face heart rate estimation approach is compared with the heart rate provided by the smartwatch, achieving very promising results for its future deployment in e-learning applications.
['Javier Hernandez-Ortega', 'Ruben Tolosana', 'Roberto Daza', 'Julian Fierrez', 'Aythami Morales']
2020-06-01
null
null
null
null
['heart-rate-estimation']
['medical']
[-1.80269882e-01 -1.08210199e-01 2.67734319e-01 -4.13982034e-01 -6.84229508e-02 -4.57858622e-01 -1.71265051e-01 1.79159790e-01 -4.05704796e-01 6.61144853e-01 -1.45951018e-01 -4.91937548e-02 -1.64413527e-01 -4.65804040e-01 -1.77939713e-01 -7.86840439e-01 4.37937409e-01 -3.02566528e-01 -3.62834036e-01 6.00378923e-02 6.36508107e-01 7.88419604e-01 -2.11572289e+00 -1.24377139e-01 6.62393689e-01 9.10052359e-01 -1.51905149e-01 1.01481450e+00 2.13101164e-01 8.17133486e-01 -9.46166098e-01 -2.10846942e-02 -3.41599762e-01 -4.49653178e-01 -2.75181442e-01 -2.81886995e-01 6.27824664e-01 -3.95311683e-01 -5.81097149e-04 8.22770655e-01 1.14277279e+00 3.44144821e-01 -1.49491668e-01 -1.33932805e+00 1.12588607e-01 3.31973672e-01 -2.96721101e-01 6.66226327e-01 1.00870812e+00 1.17534727e-01 -3.73235308e-02 -4.64147896e-01 1.05980873e-01 6.90811813e-01 6.88905120e-01 7.59249747e-01 -9.93560910e-01 -1.14143157e+00 -4.67555106e-01 7.02645540e-01 -1.48142886e+00 -5.96064270e-01 9.35008943e-01 -2.94943035e-01 6.88250303e-01 4.78789777e-01 1.15558255e+00 1.27181649e+00 1.96061507e-01 7.37485215e-02 1.64635992e+00 -4.71045643e-01 4.87699509e-01 8.66707861e-01 4.86510068e-01 6.47389472e-01 1.40329584e-01 -2.52567768e-01 -1.16567028e+00 -5.61728701e-02 6.57208979e-01 1.98883209e-02 -6.02237701e-01 3.35415214e-01 -8.53744388e-01 1.06891267e-01 -3.24349046e-01 6.27037287e-01 -4.83615816e-01 1.04245439e-01 -6.39304966e-02 4.88071501e-01 3.51301342e-01 1.36372810e-02 -3.32337260e-01 -9.11737680e-01 -9.37800169e-01 -3.39468956e-01 1.02730179e+00 5.55329919e-01 4.39224064e-01 -8.77524726e-03 -7.30690137e-02 3.88257176e-01 6.31532550e-01 4.71230358e-01 8.34636807e-01 -7.91604757e-01 -2.28829049e-02 5.93696892e-01 4.40070294e-02 -6.24648333e-01 -5.54061651e-01 7.25782290e-02 -1.79683939e-01 2.20603764e-01 4.33580220e-01 -3.02348286e-01 -8.88115242e-02 1.33816040e+00 7.18107104e-01 1.11902976e+00 -1.65677220e-01 8.20604622e-01 1.35960186e+00 3.46527845e-01 9.55753699e-02 -6.73161626e-01 1.76235497e+00 -1.40958384e-01 -1.20980668e+00 3.94715101e-01 3.78653675e-01 -8.39470208e-01 1.00233257e+00 7.59596169e-01 -1.03235269e+00 -6.66754484e-01 -7.18238711e-01 2.22091213e-01 -3.41743022e-01 1.85684897e-02 2.61847228e-01 1.73825097e+00 -1.16930521e+00 7.72392035e-01 -8.96465600e-01 -4.91355091e-01 -1.19124800e-01 3.14565659e-01 -2.49262094e-01 3.09832215e-01 -7.87780643e-01 6.68206215e-01 -3.66149545e-01 1.51069194e-01 -5.15040457e-01 -1.06360435e+00 -4.55688179e-01 3.77619892e-01 -1.06203079e-01 -1.47409663e-01 1.00451744e+00 -5.86199701e-01 -2.36846089e+00 9.28200364e-01 -1.09817214e-01 2.19805166e-01 1.90505803e-01 -2.05299139e-01 -4.52902019e-01 1.95770770e-01 -9.23209846e-01 -5.97672649e-02 6.29478037e-01 -3.84645522e-01 1.58612326e-01 -9.25445497e-01 -3.46021354e-01 2.77893037e-01 -7.41537690e-01 1.86369926e-01 2.66712159e-01 7.18838274e-02 -1.34195223e-01 -7.80865967e-01 5.60127974e-01 -4.05368119e-01 1.29385546e-01 -1.61030054e-01 8.36717844e-01 -7.06495523e-01 1.10341322e+00 -1.96123564e+00 -2.82454818e-01 3.13314587e-01 5.84099162e-03 3.46363813e-01 2.99842060e-01 1.34268820e-01 -3.27237576e-01 1.59742627e-02 5.55005431e-01 -9.73911136e-02 -1.03617184e-01 -9.37439129e-03 1.73008621e-01 8.82398725e-01 -5.85665405e-01 3.10007632e-01 -3.66897225e-01 -4.01989251e-01 7.33092368e-01 1.05013859e+00 -3.47924866e-02 6.17652833e-01 8.52807283e-01 6.87704504e-01 -2.76237905e-01 6.39222980e-01 6.43112302e-01 4.11793530e-01 -7.91317672e-02 1.01109043e-01 -4.67472851e-01 1.40853956e-01 -1.26209474e+00 1.62954915e+00 -6.89934492e-01 7.80955553e-01 1.86792210e-01 -8.75043273e-01 1.28139567e+00 1.04337776e+00 7.77060628e-01 -8.37389886e-01 5.65249681e-01 -1.62043095e-01 -2.08321661e-01 -1.20852804e+00 -2.17044987e-02 -2.59837117e-02 5.53306580e-01 6.26378000e-01 2.16150343e-01 -1.19819313e-01 -2.61632174e-01 -3.20519477e-01 9.47522819e-01 3.01284432e-01 3.14920843e-01 -3.52814347e-01 1.07799351e+00 -8.89875829e-01 3.77558857e-01 1.45934016e-01 -7.56990552e-01 3.01928427e-02 4.04769242e-01 -4.20951396e-01 -1.51829794e-01 -4.27751422e-01 -2.71651089e-01 9.62834239e-01 -2.28210837e-01 -1.43912643e-01 -1.17193413e+00 -3.61750200e-02 -3.76398772e-01 6.61623597e-01 -4.48057830e-01 -2.68526495e-01 -8.40435736e-03 -5.72002947e-01 3.77038747e-01 1.18834212e-01 2.62328953e-01 -1.20884478e+00 -1.28780305e+00 1.72598869e-01 -3.32811505e-01 -9.99926865e-01 -3.56120504e-02 1.04130097e-01 -1.17910576e+00 -1.11244309e+00 -4.64393884e-01 -2.35947236e-01 2.45600373e-01 1.35138065e-01 1.02371120e+00 2.59228736e-01 -7.22599745e-01 1.26561189e+00 -2.45141193e-01 -7.81940222e-01 -1.55103644e-02 -2.34067366e-01 1.23286553e-01 2.31379643e-01 9.85155523e-01 -1.02097440e+00 -9.02960718e-01 2.32533202e-01 -3.29607964e-01 -6.87586486e-01 -7.90864527e-02 -1.91774502e-01 1.46691129e-01 -3.62469226e-01 4.26045477e-01 -5.51078022e-01 6.76139832e-01 -3.81826371e-01 -6.95711851e-01 1.96621314e-01 -6.83437705e-01 -4.91786212e-01 2.17784345e-01 -5.47862768e-01 -9.90088999e-01 -7.15276152e-02 -9.72081870e-02 -1.94710180e-01 -9.29200888e-01 3.46775004e-03 -1.27323404e-01 -4.91016597e-01 7.26999998e-01 2.97726579e-02 -9.67119634e-03 -4.64029163e-01 -5.86216331e-01 9.59130526e-01 3.56664300e-01 -3.73164684e-01 1.89230055e-01 -6.22229129e-02 5.86819090e-02 -1.22372830e+00 -5.23219049e-01 -6.76880717e-01 -7.05891967e-01 -1.04025447e+00 7.79306114e-01 -1.10373938e+00 -1.94673145e+00 5.53917885e-01 -7.66666472e-01 -2.19442219e-01 4.19827513e-02 1.00613451e+00 -3.73528481e-01 7.25581571e-02 -5.94624460e-01 -1.50821853e+00 -5.44308841e-01 -6.76676631e-01 5.85964262e-01 1.01498282e+00 -1.41546831e-01 -1.20056033e+00 3.90850574e-01 1.08656716e+00 5.51924765e-01 3.69971305e-01 5.37031852e-02 -2.99640357e-01 -1.01384692e-01 -3.37717354e-01 7.04386950e-01 1.47012293e-01 -1.42821521e-01 1.96179166e-01 -1.65068436e+00 -1.98086873e-01 6.10925674e-01 -3.30060601e-01 -9.15190428e-02 4.49918240e-01 1.28761351e+00 1.13035038e-01 2.64581740e-01 4.40463871e-01 1.48899162e+00 2.38598928e-01 9.34451044e-01 -7.59614110e-02 3.89621139e-01 6.67785585e-01 2.83663720e-01 8.46024513e-01 2.56722212e-01 4.92197394e-01 3.85226399e-01 2.25563288e-01 3.14709485e-01 4.69847471e-01 7.63850451e-01 9.80564237e-01 -6.96666718e-01 5.85186221e-02 -7.38985658e-01 -3.57762948e-02 -1.24333358e+00 -1.21259511e+00 -7.75650322e-01 2.72153831e+00 6.34330034e-01 -5.88817000e-01 2.67086089e-01 6.28222823e-01 8.31776381e-01 -4.81841117e-01 -3.04177552e-01 -9.65071797e-01 6.83717668e-01 9.16204572e-01 1.29836261e-01 2.16544449e-01 -3.64763618e-01 9.76563394e-02 5.77546597e+00 -1.34679064e-01 -1.37800837e+00 2.47607008e-01 5.76287687e-01 -3.54279399e-01 4.04025912e-02 -4.65253532e-01 -7.11528897e-01 5.91210067e-01 1.96875238e+00 -2.24602409e-02 7.23818541e-01 6.50462806e-01 6.62544847e-01 -6.05235338e-01 -9.66775537e-01 1.46153212e+00 4.20840323e-01 -4.54057336e-01 -1.09010243e+00 1.01960845e-01 2.08277881e-01 -5.02657950e-01 -1.42361149e-01 1.82237953e-01 -5.20978451e-01 -1.03366411e+00 5.46118841e-02 9.34386969e-01 4.95112717e-01 -9.95690882e-01 6.62362456e-01 3.64672005e-01 -8.73465776e-01 -7.69728655e-03 -1.44652605e-01 -3.69155288e-01 -7.13109672e-01 5.69679499e-01 -6.12998903e-01 -3.08562256e-02 7.44919240e-01 4.79248792e-01 -5.25147080e-01 1.11832345e+00 -1.84115946e-01 8.40294003e-01 -2.48490512e-01 -2.94219315e-01 -5.79770744e-01 -3.25324476e-01 -6.99217618e-03 7.38412976e-01 8.82853866e-01 4.87355679e-01 -5.23436427e-01 9.13829863e-01 7.26141557e-02 2.52173156e-01 -4.99719739e-01 3.27048838e-01 5.03110170e-01 1.98175514e+00 -7.59831488e-01 -9.08325464e-02 -4.79483098e-01 5.45596242e-01 -4.20981914e-01 3.08898568e-01 -1.02209592e+00 -5.87862551e-01 7.97506332e-01 1.98042467e-01 -4.18572158e-01 8.62649232e-02 -1.62072286e-01 -1.17770660e+00 -2.22987920e-01 -4.66654956e-01 1.06594600e-01 -1.08243835e+00 -4.71281826e-01 4.57448885e-02 -2.41310567e-01 -9.27016795e-01 2.17588514e-01 -4.39085066e-01 -1.05539846e+00 1.04356456e+00 -1.50725448e+00 -1.72009066e-01 -1.14727700e+00 1.16677725e+00 1.68658227e-01 1.73828855e-01 9.28611755e-01 5.50554991e-01 -1.08141160e+00 4.96810406e-01 -4.21979070e-01 -3.23163331e-01 9.56070542e-01 -1.24147618e+00 -6.09000325e-01 5.86204767e-01 -3.15908790e-02 4.37056094e-01 6.29671097e-01 -2.90899854e-02 -1.85774612e+00 -3.67267579e-01 7.94381261e-01 -6.28377020e-01 4.42890115e-02 -2.57572681e-01 -7.79525876e-01 3.95365447e-01 2.68575549e-01 4.17657018e-01 1.39836323e+00 -7.41386563e-02 2.47275025e-01 -5.43660343e-01 -1.55034196e+00 -1.66579425e-01 2.47834593e-01 -6.58737600e-01 -3.45564485e-01 1.18175589e-01 -3.50702077e-01 -3.62950534e-01 -1.52278197e+00 -2.97631741e-01 8.52581143e-01 -1.45663631e+00 7.19694138e-01 -1.57423899e-01 5.61979748e-02 5.80850579e-02 4.88138378e-01 -1.17076254e+00 2.52330095e-01 -8.92001212e-01 -2.57635087e-01 1.55366695e+00 -3.58681530e-01 -5.50118864e-01 9.43316102e-01 1.33505225e+00 2.33617321e-01 4.96919602e-02 -8.88240814e-01 -1.88140020e-01 -4.52405572e-01 -2.72554338e-01 3.05826217e-01 1.00244820e+00 7.89334834e-01 4.94415574e-02 -9.63863954e-02 1.61446586e-01 6.34323657e-01 -2.53719151e-01 7.60515511e-01 -1.73542917e+00 1.40477881e-01 -3.77247967e-02 -8.11213374e-01 1.03162136e-02 -5.88128751e-04 -3.46805453e-01 -1.25549033e-01 -9.41618562e-01 1.34886444e-01 3.71892720e-01 -6.19625092e-01 3.14628303e-01 -9.03743804e-02 4.79110241e-01 -1.14668451e-01 -5.41484118e-01 -1.05823226e-01 1.55528471e-01 1.05700469e+00 6.27364099e-01 -5.45484841e-01 9.12749097e-02 -3.51702899e-01 3.90894055e-01 7.11345375e-01 -4.77770865e-01 -5.71232796e-01 3.31792384e-01 1.62268415e-01 8.57178569e-01 3.13200146e-01 -1.47436774e+00 3.35981399e-01 -9.90308728e-03 7.44446397e-01 3.97276245e-02 2.77960241e-01 -1.26655447e+00 1.96089000e-01 6.85303688e-01 -2.12425485e-01 6.05512075e-02 1.76281780e-01 1.18860669e-01 3.79565358e-03 -3.50265294e-01 7.98151851e-01 -1.19572788e-01 -9.69764292e-02 -9.14255679e-02 -8.36851478e-01 -3.38472664e-01 1.26772261e+00 -5.09933352e-01 -3.74754399e-01 -4.27382678e-01 -8.80655646e-01 -3.15564156e-01 -6.88912198e-02 2.18963951e-01 4.72413123e-01 -1.08531201e+00 -3.11620355e-01 5.27966440e-01 -2.41233975e-01 -5.95824957e-01 5.40394247e-01 1.45166922e+00 -4.88678932e-01 7.34514296e-02 -7.90332913e-01 -5.94100177e-01 -2.13710284e+00 2.24502817e-01 5.38988233e-01 3.45621079e-01 -3.54548991e-01 5.04849613e-01 -8.30294192e-01 3.68060917e-02 5.65627813e-01 -3.37067634e-01 -9.43536639e-01 2.64327466e-01 1.01994932e+00 9.81663465e-01 4.66728866e-01 -1.92697346e-01 -4.54914123e-01 6.40379608e-01 7.12687254e-01 6.13103099e-02 1.41832530e+00 -4.97038633e-01 -9.68813896e-02 7.53832281e-01 8.11789393e-01 1.19951211e-01 -8.34391356e-01 3.00042242e-01 -1.51336297e-01 -4.39374179e-01 4.53260243e-01 -7.32896745e-01 -1.21263969e+00 1.25681365e+00 1.42012417e+00 2.29623228e-01 1.45429170e+00 -7.88550317e-01 2.59230286e-01 3.96378309e-01 1.11074850e-01 -1.31550300e+00 1.69369057e-01 -3.97708043e-02 2.60876209e-01 -8.55316460e-01 -9.42619219e-02 -8.35540220e-02 -2.80386955e-01 1.74659979e+00 7.71850646e-01 1.04541577e-01 7.55409956e-01 5.64853430e-01 2.50620306e-01 -1.45537764e-01 -7.75706172e-01 7.18839839e-02 2.63686441e-02 5.09942293e-01 1.18982172e+00 -2.77216405e-01 -3.02469492e-01 3.49769711e-01 -1.97531521e-01 5.46475172e-01 1.34749591e+00 7.26773202e-01 -4.17790860e-01 -6.56319380e-01 -9.43684161e-01 6.48107976e-02 -8.17719102e-01 3.51376235e-01 -3.78816575e-01 3.84590834e-01 1.55323356e-01 1.42155516e+00 1.17058486e-01 -2.31919110e-01 4.78692204e-01 9.03336406e-01 7.50674248e-01 -3.20483029e-01 -1.17373288e+00 -5.69831990e-02 -4.31719989e-01 -8.23855698e-01 -8.98073614e-01 -7.36935914e-01 -8.90272737e-01 -6.54388666e-01 -3.09230149e-01 1.21950597e-01 1.50332725e+00 6.29552007e-01 1.64787322e-01 7.52378821e-01 7.80661166e-01 -7.11792886e-01 6.00912757e-02 -1.23040760e+00 -9.47180331e-01 2.47888640e-01 2.20733672e-01 -3.27610224e-01 -2.95494288e-01 1.51753291e-01]
[13.600967407226562, 2.7526755332946777]
4ce5c463-422c-412a-998b-9de606821f93
evolutionary-multi-objective-algorithms-for
2303.01695
null
https://arxiv.org/abs/2303.01695v1
https://arxiv.org/pdf/2303.01695v1.pdf
Evolutionary Multi-Objective Algorithms for the Knapsack Problems with Stochastic Profits
Evolutionary multi-objective algorithms have been widely shown to be successful when utilized for a variety of stochastic combinatorial optimization problems. Chance constrained optimization plays an important role in complex real-world scenarios, as it allows decision makers to take into account the uncertainty of the environment. We consider a version of the knapsack problem with stochastic profits to guarantee a certain level of confidence in the profit of the solutions. We introduce the multi-objective formulations of the profit chance constrained knapsack problem and design three bi-objective fitness evaluation methods that work independently of the specific confidence level required. We evaluate our approaches using well-known multi-objective evolutionary algorithms GSEMO and NSGA-II. In addition, we introduce a filtering method for GSEMO that improves the quality of the final population by periodically removing certain solutions from the interim populations based on their confidence level. We show the effectiveness of our approaches on several benchmarks for both settings where the knapsack items have fixed uniform uncertainties and uncertainties that are positively correlated with the expected profit of an item.
['Frank Neumann', 'Aneta Neumann', 'Kokila Perera']
2023-03-03
null
null
null
null
['combinatorial-optimization']
['methodology']
[ 1.40742078e-01 -2.59841889e-01 -4.18001376e-02 -2.33212382e-01 -5.04947722e-01 -6.96848214e-01 -8.39030668e-02 4.69638169e-01 -6.05826974e-01 1.22398698e+00 -3.28920960e-01 -3.06203868e-02 -9.77634728e-01 -9.70153809e-01 -8.27058733e-01 -1.05463672e+00 -2.80658733e-02 8.16513181e-01 1.28023490e-01 -2.10926831e-01 5.31616509e-01 3.25837791e-01 -1.68479669e+00 -5.75780496e-02 1.23977840e+00 1.21895254e+00 6.06105253e-02 5.77380776e-01 1.84736073e-01 -2.52092659e-01 -9.68969345e-01 -3.98620129e-01 3.01381320e-01 -1.14488788e-01 -1.56484023e-01 1.02386121e-02 -5.95640123e-01 3.43742251e-01 8.36987257e-01 1.03964603e+00 5.43456137e-01 3.80461365e-01 6.02966249e-01 -1.58780885e+00 -1.90532863e-01 8.26414406e-01 -5.83117545e-01 2.40415949e-02 1.49365693e-01 -7.66088143e-02 7.35073984e-01 -3.60448986e-01 2.30583653e-01 9.18021619e-01 3.24428916e-01 1.11049727e-01 -1.02887011e+00 -2.72649735e-01 1.63743660e-01 9.37845334e-02 -1.28729892e+00 6.22765459e-02 1.43635362e-01 -1.21917963e-01 7.12875724e-01 5.39978981e-01 5.67296386e-01 2.18017578e-01 7.41098106e-01 3.59289944e-01 1.01129925e+00 -4.87721384e-01 9.30664718e-01 2.29786947e-01 -1.66570172e-01 -3.04469652e-02 1.00615895e+00 2.57532865e-01 -4.30068076e-01 -3.34279031e-01 -2.34001815e-01 -2.46398374e-01 -4.00152951e-01 -5.58441579e-01 -6.82883859e-01 1.00519955e+00 9.96439159e-02 -2.26116739e-02 -6.37685716e-01 1.45100072e-01 -1.20866057e-02 -2.23231502e-02 2.40323037e-01 7.73152292e-01 -5.14912605e-01 -1.46656600e-03 -7.26303697e-01 3.08193564e-01 7.73700714e-01 7.38288283e-01 3.95711465e-03 7.91295767e-02 -2.75681198e-01 2.89353549e-01 3.16545159e-01 4.90187347e-01 4.33394350e-02 -5.71468771e-01 3.53399426e-01 3.90234947e-01 7.82428205e-01 -7.51817286e-01 -1.05750687e-01 -8.34098577e-01 -1.02941163e-01 4.99251366e-01 1.61836118e-01 -2.29756370e-01 -8.02745223e-01 1.39907348e+00 4.41111028e-01 -1.55288145e-01 1.36312544e-01 7.24003136e-01 -5.26307411e-02 7.13223100e-01 -1.23476706e-01 -6.73971057e-01 7.97946334e-01 -6.27764404e-01 -6.94059968e-01 -2.37398781e-02 -9.06917304e-02 -5.54377794e-01 4.93276566e-01 6.81434512e-01 -1.17095959e+00 1.61314219e-01 -1.27874446e+00 1.01431406e+00 -4.53310788e-01 -1.23153642e-01 4.20501262e-01 1.19000244e+00 -5.55407405e-01 4.89821225e-01 -5.21610677e-01 2.91811317e-01 1.07450850e-01 6.11286879e-01 1.45457670e-01 -1.95069648e-02 -9.25378561e-01 9.66510773e-01 6.65929377e-01 4.77021635e-01 -4.03221488e-01 -6.32901728e-01 -5.78698874e-01 6.29500926e-01 9.58502471e-01 -5.22784650e-01 8.83068681e-01 -6.48606658e-01 -1.39618039e+00 1.02616623e-01 2.28454664e-01 -2.78914809e-01 5.16420603e-01 1.76324978e-01 -1.25970840e-01 -2.54237860e-01 -2.14668199e-01 -9.84539688e-02 4.50158864e-01 -1.27131581e+00 -7.99406171e-01 -2.80849308e-01 9.28688571e-02 3.68589818e-01 -7.15946332e-02 9.87046286e-02 1.05885426e-02 -5.10454714e-01 -9.21732485e-02 -8.78044963e-01 -7.30342567e-01 -5.63899457e-01 -3.50408614e-01 4.14698243e-01 -7.71712558e-03 -1.89501673e-01 1.27892768e+00 -1.55396080e+00 5.35640419e-01 6.93727911e-01 -6.54847145e-01 2.12093838e-03 1.06678180e-01 4.12327170e-01 3.41507167e-01 2.69377589e-01 -4.23712432e-01 -8.58955309e-02 3.78273755e-01 3.81849021e-01 1.30156621e-01 2.63026297e-01 -3.93924713e-02 3.52418154e-01 -5.57391405e-01 1.31560877e-01 -9.80487242e-02 2.49002012e-03 -4.53864545e-01 -8.41520727e-02 -5.87601960e-01 -1.53284669e-01 -6.04631364e-01 8.38215947e-01 6.22627914e-01 1.42631620e-01 1.26727894e-01 2.50423670e-01 -3.40446800e-01 -4.52915400e-01 -1.78063309e+00 9.18868959e-01 -4.44256097e-01 -3.03661466e-01 2.91856408e-01 -8.44271660e-01 5.27528226e-01 -1.24260336e-01 3.68292034e-01 -1.19519964e-01 4.63214219e-01 3.65407884e-01 2.00866401e-01 7.69832954e-02 7.97887266e-01 -2.53806770e-01 -3.57672900e-01 4.22816217e-01 -2.01388061e-01 -3.62014353e-01 5.40756643e-01 -2.45585337e-01 5.40298164e-01 -9.51772556e-02 4.16223109e-01 -4.59178448e-01 3.94978017e-01 -5.34709878e-02 1.03257585e+00 6.88581467e-01 1.83793515e-01 5.11153638e-01 5.69631457e-01 5.38153723e-02 -5.90276778e-01 -7.73969769e-01 -6.09792117e-03 7.32246399e-01 4.42081302e-01 3.27735275e-01 -2.37385243e-01 -2.55264312e-01 4.76199299e-01 1.22152412e+00 -6.89671934e-01 -1.26197413e-01 -2.06236281e-02 -1.55331337e+00 -2.97567934e-01 3.24204117e-01 -6.89652488e-02 -6.16210520e-01 -8.58458519e-01 5.14242768e-01 3.15406471e-01 -6.61159515e-01 -2.17724949e-01 5.86834431e-01 -2.97015071e-01 -9.54138339e-01 -6.88716173e-01 -1.00863144e-01 8.01027179e-01 -1.23073533e-01 9.38319862e-01 -5.33551164e-02 -2.84732074e-01 2.44719028e-01 -3.29657853e-01 -7.68870413e-01 -3.22770536e-01 -2.20324248e-01 6.39994144e-02 1.99866556e-02 -2.64683783e-01 -2.14764193e-01 -8.56548697e-02 7.58218110e-01 -1.03336620e+00 -5.78845203e-01 2.79143393e-01 7.53272474e-01 9.04862404e-01 9.20268595e-01 7.81486392e-01 -3.68845791e-01 9.12165523e-01 -5.89808822e-01 -1.30391955e+00 9.49561119e-01 -7.73325682e-01 2.66910881e-01 4.07024443e-01 -5.77036500e-01 -1.05105639e+00 -9.23514441e-02 4.40736651e-01 1.20192450e-02 5.34832060e-01 9.73917842e-01 -4.26169872e-01 -3.79249364e-01 1.72732200e-03 -7.28719831e-02 -3.87498319e-01 -1.11397862e-01 -3.18071283e-02 1.87273115e-01 3.14084202e-01 -9.94668126e-01 6.05406582e-01 -9.31181596e-04 4.86099750e-01 4.48094420e-02 -5.30916631e-01 -7.45115206e-02 7.00940564e-02 -4.56236899e-01 3.72576833e-01 -2.78333873e-01 -1.08530283e+00 4.31222618e-01 -5.90934634e-01 1.06212065e-01 -3.26485932e-01 5.70878565e-01 -5.11936545e-01 7.59100989e-02 2.41369724e-01 -1.32439661e+00 -1.02705315e-01 -1.29909456e+00 3.51034582e-01 7.33270705e-01 2.24799931e-01 -7.78814554e-01 -1.98864210e-02 1.36691883e-01 5.43927968e-01 7.18650877e-01 7.77095199e-01 -6.48071706e-01 -4.47630078e-01 -3.19461763e-01 4.64741766e-01 1.89317152e-01 -1.41589344e-01 4.34283763e-01 -7.74118155e-02 -3.00538182e-01 8.20639208e-02 -1.18816577e-01 4.88630027e-01 7.80607522e-01 7.66177475e-01 -1.79674566e-01 -3.55698436e-01 3.37221831e-01 1.77408516e+00 7.21376777e-01 3.10220659e-01 6.57768130e-01 -3.33058715e-01 6.51131690e-01 1.19607532e+00 9.91795838e-01 1.93295106e-01 7.28347361e-01 7.43604720e-01 6.11697018e-01 9.06121314e-01 4.40767467e-01 8.75323936e-02 5.57733253e-02 -1.04526155e-01 -1.15811920e+00 -6.80348635e-01 5.18155098e-01 -1.97371733e+00 -8.46487582e-01 1.41007751e-01 2.61060977e+00 5.79273641e-01 3.22612315e-01 1.44063622e-01 3.05696368e-01 1.11904645e+00 -3.48539501e-01 -7.23169923e-01 -8.51698041e-01 -4.29732770e-01 1.15469761e-01 9.44177926e-01 4.48220998e-01 -6.50302231e-01 1.34587228e-01 5.45589352e+00 8.01976740e-01 -8.26301336e-01 -3.76557201e-01 8.75041068e-01 -6.91722751e-01 -5.31187356e-01 -1.43287018e-01 -8.75948071e-01 9.09701407e-01 7.34603763e-01 -7.90191054e-01 4.23720092e-01 4.87083375e-01 2.99358726e-01 -9.56037879e-01 -7.36833036e-01 2.11242124e-01 -1.23178683e-01 -1.30106616e+00 -5.08830309e-01 1.74878746e-01 1.27388024e+00 -6.77926421e-01 4.46667165e-01 -9.70208123e-02 5.12341082e-01 -9.96100664e-01 8.81881595e-01 7.29447067e-01 1.58376068e-01 -1.42791283e+00 1.15327811e+00 1.86113089e-01 -8.60409737e-01 -5.59950531e-01 -2.23362058e-01 1.97189495e-01 7.70196080e-01 9.90514338e-01 -3.47450316e-01 1.01566684e+00 6.96463645e-01 -4.70437497e-01 5.25089726e-02 1.76392913e+00 -2.04102486e-01 1.72419578e-01 -9.14585531e-01 -5.01441419e-01 1.47504002e-01 -3.37617576e-01 6.07008040e-01 2.76455700e-01 7.52486348e-01 1.26220226e-01 -1.45249022e-02 9.01150346e-01 3.54884177e-01 1.06186561e-01 1.82080835e-01 -1.14487305e-01 8.35255325e-01 8.87530386e-01 -9.77610350e-01 2.94511318e-01 1.72090352e-01 3.42813790e-01 -4.41490918e-01 4.61105630e-02 -1.06254542e+00 -5.31217754e-01 4.32452559e-01 -4.31605339e-01 7.61312723e-01 -4.10923623e-02 -5.66507936e-01 -5.60741067e-01 2.59344637e-01 -5.60844064e-01 5.20990849e-01 -4.39444214e-01 -1.04167378e+00 4.30422843e-01 1.34566709e-01 -8.46536934e-01 -3.41536373e-01 -6.13478541e-01 -7.23436058e-01 9.24425066e-01 -1.50258195e+00 -4.14734334e-01 5.22148758e-02 -9.09506455e-02 8.50985870e-02 -1.31109804e-01 4.91286278e-01 -6.66851178e-02 -7.17295110e-01 3.16749930e-01 7.27125049e-01 -9.33516741e-01 2.36411184e-01 -1.04229438e+00 -2.64075220e-01 9.98800576e-01 -6.52307510e-01 4.57048476e-01 1.24694550e+00 -8.75069380e-01 -1.46240175e+00 -6.16476178e-01 4.47558612e-01 8.59074965e-02 5.01130819e-01 -1.21374004e-01 -3.31594914e-01 1.54136438e-02 -4.22772169e-02 -4.06921841e-02 6.60059273e-01 -1.90718621e-01 4.51989233e-01 -1.44593224e-01 -1.73949814e+00 2.70463437e-01 3.83231431e-01 5.91869116e-01 -1.91299111e-01 9.16323140e-02 5.49781084e-01 -4.91191804e-01 -8.40485990e-01 6.78182006e-01 5.84992588e-01 -7.68909156e-01 7.76009798e-01 -4.35947269e-01 1.06413893e-01 -4.36216027e-01 -3.73008728e-01 -1.77829230e+00 -5.66125922e-02 -4.99158919e-01 1.92411244e-01 1.22875035e+00 7.32257724e-01 -8.53277802e-01 6.24594748e-01 1.01957369e+00 -1.86732765e-02 -9.88444686e-01 -1.16127121e+00 -1.10056961e+00 -6.19115606e-02 1.65264085e-02 9.05678988e-01 3.08572322e-01 -1.97940648e-01 -6.01694703e-01 -2.66137064e-01 4.72137153e-01 6.98867083e-01 4.60148871e-01 7.93925673e-02 -9.83386278e-01 -6.75845146e-01 -4.89548057e-01 -1.20078035e-01 1.42531529e-01 -1.44587532e-01 -1.64677233e-01 3.67476821e-01 -1.25220418e+00 1.26048580e-01 -6.40844345e-01 -4.23270017e-01 1.68267041e-01 -3.29718143e-01 -1.66934013e-01 2.91207910e-01 -5.40880144e-01 -4.98568088e-01 6.79179788e-01 6.25317872e-01 3.30463005e-03 -2.72602856e-01 6.58605814e-01 -7.65814543e-01 4.37778443e-01 7.81483114e-01 -7.57413566e-01 -4.48521137e-01 -1.20499924e-01 8.88165832e-01 2.81635821e-01 -2.73397237e-01 -8.17248881e-01 1.45084992e-01 -7.77854919e-01 8.83424208e-02 -7.14409888e-01 2.58318335e-01 -1.03438616e+00 8.40282500e-01 5.25932670e-01 -2.03282088e-01 3.52296710e-01 2.36990288e-01 6.10239565e-01 -8.57683346e-02 -9.00491118e-01 6.37480319e-01 1.40005767e-01 -2.17664793e-01 -8.59177858e-02 -4.24020559e-01 -2.60972291e-01 1.54958224e+00 -3.26628953e-01 -3.60224754e-01 -4.44109112e-01 -6.87467694e-01 8.25044870e-01 6.08226359e-01 1.06982484e-01 3.62549275e-01 -6.94091201e-01 -6.28641427e-01 -3.11241478e-01 -1.50316417e-01 -2.31279105e-01 1.49206236e-01 6.68616533e-01 -4.11822021e-01 4.12665159e-01 -3.17170203e-01 -1.40054286e-01 -1.11376512e+00 5.83979845e-01 2.53089309e-01 -4.05900270e-01 5.88446379e-01 1.01052368e+00 -4.83177871e-01 -1.01383410e-01 1.09385043e-01 -2.68482417e-01 -4.32887822e-02 3.00344884e-01 3.45548779e-01 7.27627695e-01 3.28455776e-01 -7.80911744e-02 -6.25391901e-01 3.26611519e-01 3.12113971e-01 -3.65075082e-01 1.67842126e+00 -4.32740711e-03 -5.84657118e-02 5.48981838e-02 2.69620329e-01 4.22828466e-01 -9.70514357e-01 3.52049500e-01 5.54977730e-02 -5.10531723e-01 9.19001102e-02 -1.48675597e+00 -1.03613389e+00 1.24815889e-01 1.29284695e-01 2.39856064e-01 1.44577074e+00 -5.41936517e-01 1.49035439e-01 1.19926743e-01 6.58107638e-01 -1.18887794e+00 -3.74115944e-01 9.92706344e-02 8.90499413e-01 -8.27685595e-01 4.62845385e-01 -4.65296239e-01 -7.60559499e-01 1.01634705e+00 3.50850105e-01 6.43071309e-02 2.56126076e-01 6.17813826e-01 -4.50686008e-01 4.08644527e-01 -8.30990672e-01 3.46906157e-03 2.73288548e-01 3.64412665e-01 -2.87378430e-01 2.29194149e-01 -9.47865129e-01 1.15601325e+00 1.72722235e-01 -1.87437832e-01 9.13833201e-01 1.29552758e+00 -5.48623621e-01 -1.09884882e+00 -8.73192728e-01 2.30864197e-01 -6.07888103e-01 5.63658439e-02 -1.82694271e-01 6.27637565e-01 1.87614650e-01 1.07750881e+00 -2.73925304e-01 7.69644678e-02 1.56164169e-01 -2.84990758e-01 5.76504290e-01 -4.84907836e-01 -7.42315710e-01 -2.64578350e-02 3.67814898e-01 -2.16970131e-01 -2.51768768e-01 -8.19808960e-01 -1.12536383e+00 -1.79510698e-01 -8.71777415e-01 7.67810822e-01 1.10238481e+00 7.65648723e-01 3.10660511e-01 6.13213658e-01 7.21020341e-01 -7.22237468e-01 -9.18913782e-01 -2.64723152e-01 -7.25529313e-01 -5.94027042e-01 -2.81210423e-01 -1.02485609e+00 -4.95621830e-01 -6.73951507e-01]
[5.661288261413574, 3.47473406791687]
101e2196-6eed-45b6-b401-bcfb57cc1da2
differentiable-spike-rethinking-gradient
null
null
http://proceedings.neurips.cc/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/c4ca4238a0b923820dcc509a6f75849b-Paper.pdf
Differentiable Spike: Rethinking Gradient-Descent for Training Spiking Neural Networks
Spiking Neural Networks (SNNs) have emerged as a biology-inspired method mimicking the spiking nature of brain neurons. This bio-mimicry derives SNNs' energy efficiency of inference on neuromorphic hardware. However, it also causes an intrinsic disadvantage in training high-performing SNNs from scratch since the discrete spike prohibits the gradient calculation. To overcome this issue, the surrogate gradient (SG) approach has been proposed as a continuous relaxation. Yet the heuristic choice of SG leaves it vacant how the SG benefits the SNN training. In this work, we first theoretically study the gradient descent problem in SNN training and introduce finite difference gradient to quantitatively analyze the training behavior of SNN. Based on the introduced finite difference gradient, we propose a new family of Differentiable Spike (Dspike) functions that can adaptively evolve during training to find the optimal shape and smoothness for gradient estimation. Extensive experiments over several popular network structures show that training SNN with Dspike consistently outperforms the state-of-the-art training methods. For example, on the CIFAR10-DVS classification task, we can train a spiking ResNet-18 and achieve 75.4% top-1 accuracy with 10 time steps.
['Shi Gu', 'Yongqing Hai', 'Shikuang Deng', 'Shanghang Zhang', 'Yufei Guo', 'Yuhang Li']
2021-12-01
null
https://openreview.net/forum?id=H4e7mBnC9f0
https://openreview.net/pdf?id=H4e7mBnC9f0
neurips-2021-12
['event-data-classification']
['computer-vision']
[ 2.44827494e-01 -2.14996964e-01 2.44479761e-01 -3.21669400e-01 4.65703830e-02 -2.38692015e-01 3.99722755e-01 -3.20796192e-01 -7.85526693e-01 1.07942319e+00 -5.18497825e-01 -1.03569575e-01 3.11065884e-03 -8.32096398e-01 -1.09764874e+00 -9.00087774e-01 -1.01312995e-01 -1.86732307e-01 5.57307899e-01 -3.56229097e-01 5.77253044e-01 5.99064887e-01 -1.56695390e+00 -5.74948527e-02 1.08257234e+00 1.24566233e+00 5.08381903e-01 2.07708716e-01 -1.96193591e-01 5.64887583e-01 -7.06420898e-01 -2.22062990e-01 4.81712788e-01 -6.74492002e-01 -1.42506897e-01 -5.90355515e-01 -7.51800602e-03 2.02402085e-01 -4.75174725e-01 1.20671058e+00 7.45143592e-01 2.01003277e-03 4.62418646e-01 -1.23395586e+00 -4.52962458e-01 7.12134898e-01 -1.28346384e-01 5.72604179e-01 -4.07737762e-01 3.03210199e-01 4.07259196e-01 -7.75952220e-01 5.13768375e-01 7.22162306e-01 9.03606832e-01 9.87842977e-01 -1.27694333e+00 -9.17246163e-01 -1.69179857e-01 4.90539670e-02 -1.42248714e+00 -3.89741242e-01 9.05322194e-01 -1.61468098e-03 1.03390872e+00 1.87230613e-02 1.19465053e+00 1.04409051e+00 4.73650277e-01 5.33445179e-01 1.31659210e+00 -3.44501585e-02 7.97403812e-01 -2.63095379e-01 1.30575240e-01 5.31186879e-01 5.03499210e-01 1.31582782e-01 -7.01914370e-01 -1.17860129e-03 1.00561011e+00 -1.03721447e-01 -4.81481344e-01 -1.46934539e-02 -8.60741019e-01 3.40344667e-01 8.70523274e-01 4.79763776e-01 -3.09394062e-01 7.49698341e-01 3.01032633e-01 1.72090098e-01 4.88184169e-02 5.35869837e-01 -1.37170106e-01 -2.78655410e-01 -1.07502174e+00 6.98712170e-02 7.23693728e-01 4.37274486e-01 7.54335880e-01 7.27608502e-01 -9.62238684e-02 1.02625084e+00 -1.86272487e-02 4.20417935e-01 7.50082076e-01 -7.55605936e-01 -3.20249563e-03 7.03443587e-01 -3.04614633e-01 -7.77555823e-01 -3.87567312e-01 -7.19174743e-01 -1.17639244e+00 4.10715759e-01 4.29010749e-01 -1.74956515e-01 -1.05516589e+00 1.92175841e+00 -1.94379762e-01 5.98771572e-01 -9.00371745e-02 9.30989027e-01 6.33762181e-01 6.89478159e-01 -3.01858112e-02 -8.74910727e-02 8.94838214e-01 -6.08430684e-01 -4.31545705e-01 -4.03711677e-01 3.60984921e-01 1.91942006e-02 9.55388784e-01 2.67842978e-01 -1.12686503e+00 -4.62589025e-01 -1.42061579e+00 2.19441563e-01 -5.63127458e-01 2.45048217e-02 6.58740640e-01 6.28588915e-01 -1.43701339e+00 1.23529959e+00 -9.87884521e-01 -1.81956619e-01 7.16810107e-01 7.27214515e-01 1.07517116e-01 3.15279543e-01 -1.02744913e+00 8.40245962e-01 4.62204844e-01 1.12528063e-01 -6.79479301e-01 -7.68775761e-01 -3.20768446e-01 8.11150968e-02 -2.65535086e-01 -6.30978346e-01 9.02212203e-01 -1.12796295e+00 -1.92055237e+00 7.53015637e-01 -4.69902679e-02 -8.06995332e-01 3.01835507e-01 4.66390312e-01 -2.29211539e-01 -2.21774340e-01 -4.36399341e-01 9.78673995e-01 5.79847872e-01 -9.43148196e-01 -1.55681968e-01 -2.20606133e-01 -2.65009016e-01 -1.68110147e-01 -6.06003523e-01 -3.53171498e-01 -9.99594703e-02 -7.01000929e-01 2.12336272e-01 -8.01143587e-01 -1.82545990e-01 2.90725648e-01 -1.28852408e-02 -2.44346619e-01 5.59706390e-01 -2.15729043e-01 1.04237831e+00 -2.21053219e+00 2.66657844e-02 2.61572659e-01 1.28714502e-01 4.20778692e-01 -1.43362150e-01 -1.59260575e-02 2.06774637e-01 -1.48445666e-01 -6.58837318e-01 -3.83330248e-02 -2.07512930e-01 3.53606403e-01 -1.73448071e-01 4.09442276e-01 3.16341043e-01 1.12721252e+00 -8.98442149e-01 -1.31524682e-01 -1.45401418e-01 7.45614946e-01 -6.18120968e-01 -3.81635502e-02 -6.81989565e-02 2.68342078e-01 -1.22957744e-01 5.24497509e-01 7.74286211e-01 -4.07695651e-01 -5.95421605e-02 -2.36862302e-01 -3.86333585e-01 2.45607585e-01 -8.24046552e-01 1.77329791e+00 -1.35023564e-01 8.16456258e-01 -8.06604624e-02 -1.37922764e+00 1.37407351e+00 -2.31537163e-01 4.25422281e-01 -9.78504777e-01 3.95822614e-01 8.13600779e-01 3.44666570e-01 5.17632905e-03 -1.85758397e-02 1.74355879e-02 3.68422329e-01 9.72309560e-02 1.92442343e-01 -3.83134745e-02 1.44704893e-01 -1.87015638e-01 1.30095887e+00 2.64456980e-02 -1.56727150e-01 -8.87085915e-01 4.04603690e-01 -2.74166286e-01 8.01648736e-01 6.57582819e-01 -2.06974640e-01 3.73647839e-01 2.31709436e-01 -4.86737728e-01 -9.21640754e-01 -9.83075976e-01 -4.11759764e-01 7.39184797e-01 2.89683372e-01 4.48073894e-02 -1.09762764e+00 -4.60794605e-02 -2.69713830e-02 4.48099732e-01 -5.61989069e-01 -4.56459910e-01 -8.68330181e-01 -1.12423360e+00 1.02675402e+00 5.23243725e-01 1.06791985e+00 -1.35803223e+00 -1.16306913e+00 4.44942474e-01 2.73452044e-01 -9.26835001e-01 -2.05901667e-01 8.42313528e-01 -1.13911641e+00 -6.25311375e-01 -8.14749300e-01 -9.78042722e-01 7.66411602e-01 -2.11147681e-01 9.68313098e-01 3.06455433e-01 -4.01046932e-01 -2.95842290e-01 6.26295581e-02 -3.07547867e-01 -1.13657169e-01 2.18486483e-03 9.60930064e-02 -2.73694098e-01 3.66738141e-01 -1.14303851e+00 -8.93174827e-01 4.42497693e-02 -8.33808362e-01 2.22848117e-01 5.01737535e-01 9.34954286e-01 7.82157063e-01 -4.16332990e-01 9.20107067e-01 -4.33898270e-01 6.63541377e-01 -3.33637804e-01 -7.19039679e-01 1.75470799e-01 -7.31334805e-01 4.63135779e-01 1.04643512e+00 -6.73226655e-01 -4.43048626e-01 1.42584555e-02 -3.18337232e-01 -2.80018777e-01 3.19556683e-01 2.88563699e-01 3.53287250e-01 -7.88044274e-01 8.71689975e-01 7.43751168e-01 1.54789025e-02 -1.09037772e-01 -3.93938780e-01 2.43765563e-01 5.90982974e-01 -5.09668052e-01 4.59049344e-01 4.19605553e-01 1.39932528e-01 -7.15940356e-01 -2.17799291e-01 1.21867537e-01 1.32076085e-01 -3.96547556e-01 4.78322715e-01 -4.59139466e-01 -1.02854443e+00 9.49884534e-01 -1.09331763e+00 -7.19904602e-01 -3.89982432e-01 1.79916590e-01 -4.53672409e-01 4.79708984e-02 -8.32421184e-01 -7.60262907e-01 -7.15763867e-01 -9.38175142e-01 4.13049668e-01 6.56641781e-01 2.19025850e-01 -6.91444159e-01 6.98046312e-02 -6.51694000e-01 1.02382886e+00 3.04812938e-01 7.37272799e-01 -3.39190811e-01 -4.67548847e-01 2.54512221e-01 -2.72943258e-01 3.13967556e-01 8.32947120e-02 -6.48982748e-02 -1.06424534e+00 -3.88773590e-01 2.60825723e-01 -2.90676624e-01 1.06616056e+00 6.25680387e-01 1.45872176e+00 -6.08716086e-02 -3.29412937e-01 1.13164413e+00 1.78660738e+00 3.42783600e-01 8.94683599e-01 3.40374708e-01 3.18158120e-01 1.20695401e-02 -2.96625674e-01 4.21450227e-01 -6.82983771e-02 3.54948461e-01 5.84838748e-01 1.28200591e-01 -1.63922548e-01 -1.23062536e-01 3.72890592e-01 1.08396661e+00 -1.91470698e-01 -3.99431810e-02 -7.56386697e-01 2.52670854e-01 -1.61967921e+00 -6.92227960e-01 1.05325088e-01 2.21140933e+00 1.07172883e+00 3.91548336e-01 -4.54739593e-02 2.99530566e-01 7.96782851e-01 -2.07942769e-01 -1.20073533e+00 -2.90990531e-01 -5.78693330e-01 6.14645302e-01 7.63228476e-01 -7.14458749e-02 -4.44730580e-01 7.25847185e-01 6.05566025e+00 8.50872874e-01 -1.65070558e+00 -8.26463997e-02 6.30427778e-01 -6.86088130e-02 -2.52406180e-01 -3.07156742e-01 -8.63205135e-01 1.00119472e+00 1.16235924e+00 -2.30037495e-01 9.35321093e-01 6.56953871e-01 -3.57082151e-02 3.82190719e-02 -8.73958766e-01 1.32036042e+00 -3.45168591e-01 -1.77808475e+00 -7.97672570e-02 -7.82826245e-02 7.64204323e-01 4.24258769e-01 -3.10659762e-02 3.74355882e-01 -4.91536036e-02 -1.09161699e+00 7.23987520e-01 5.68144262e-01 7.18397677e-01 -6.81658447e-01 4.43582326e-01 3.70178699e-01 -1.13381517e+00 -3.19375962e-01 -7.00522006e-01 -7.21800551e-02 -1.09846286e-01 8.54427576e-01 -3.31274480e-01 -1.18283994e-01 8.85842144e-01 6.60031319e-01 -5.36608100e-01 1.48310876e+00 2.75471181e-01 5.66385388e-01 -6.77014470e-01 -7.62793243e-01 2.67972112e-01 -4.65333313e-01 3.83431911e-01 1.25826156e+00 6.46573603e-01 1.70987591e-01 -5.37529886e-01 1.42504263e+00 -4.76330906e-01 -1.43156245e-01 -4.90215540e-01 -1.49406821e-01 7.58959174e-01 1.06227779e+00 -1.14733791e+00 -1.77507102e-01 9.85632688e-02 9.53277111e-01 4.95897144e-01 3.12404633e-01 -8.05826008e-01 -6.88565135e-01 6.26991272e-01 8.85743797e-02 2.60487884e-01 -2.31825650e-01 -6.68692410e-01 -9.08389986e-01 1.91909254e-01 -4.75745410e-01 -2.32134879e-01 -5.29907763e-01 -1.04126620e+00 8.27650845e-01 -5.50438285e-01 -9.91423368e-01 -9.10981670e-02 -8.71537626e-01 -8.01673293e-01 5.58322549e-01 -1.57962644e+00 -2.96168804e-01 -4.85834897e-01 5.24499238e-01 3.08680594e-01 5.90404542e-03 5.42026103e-01 3.62078220e-01 -5.64146936e-01 7.54261851e-01 2.46854201e-01 3.56225632e-02 1.83331594e-01 -8.94954622e-01 6.44947410e-01 7.20852077e-01 -2.43543357e-01 5.20367503e-01 6.05967641e-01 -3.50311309e-01 -1.45943713e+00 -8.83591592e-01 5.11261880e-01 3.94456714e-01 4.86539155e-01 -4.14587557e-01 -1.19379032e+00 3.56917456e-02 1.41865471e-02 2.37500176e-01 1.88746423e-01 -7.39258111e-01 -1.39813617e-01 -4.77356106e-01 -1.37795246e+00 7.98335195e-01 1.55763757e+00 -2.11983562e-01 -1.33777678e-01 -5.41518703e-02 3.73085886e-01 -1.53098837e-01 -6.37163520e-01 7.11285770e-01 4.13243562e-01 -1.11238098e+00 7.63802826e-01 -7.17040971e-02 2.66536713e-01 -2.47538000e-01 -2.01361394e-03 -1.39184988e+00 -9.84885544e-02 -6.26877189e-01 -1.78197503e-01 8.50607693e-01 2.77536601e-01 -9.30182695e-01 9.85437751e-01 4.46343154e-01 -3.88277352e-01 -1.20468688e+00 -1.24126148e+00 -1.07224452e+00 2.08213896e-01 -1.15535222e-01 3.75897825e-01 5.71726084e-01 6.87848926e-02 -2.21181810e-01 1.26817673e-01 -3.64891320e-01 6.99928343e-01 -2.19695672e-01 1.11277558e-01 -1.40954435e+00 -1.31856859e-01 -9.39693511e-01 -6.30946815e-01 -1.25903654e+00 1.04892418e-01 -9.53592777e-01 4.07565683e-01 -1.30235136e+00 -1.31149292e-01 -6.63364112e-01 -7.73478031e-01 3.56042892e-01 1.04890667e-01 2.42114797e-01 -1.13783870e-02 1.69827446e-01 -1.51065201e-01 6.12026513e-01 1.08489215e+00 3.31490934e-02 -1.81345597e-01 -2.31626242e-01 -3.15368712e-01 4.10909355e-01 1.18806088e+00 -7.29855597e-01 -3.82654399e-01 -4.00643080e-01 3.24168533e-01 -3.06219697e-01 4.19291705e-01 -1.67737389e+00 7.40297019e-01 2.88895145e-02 4.64953810e-01 -2.13769406e-01 3.78926635e-01 -4.78742421e-01 2.13805258e-01 1.02537072e+00 -2.82586008e-01 7.69100338e-02 3.83374661e-01 3.69993120e-01 6.70819953e-02 -3.84822965e-01 1.18157804e+00 1.23635782e-02 -5.92565656e-01 2.60391504e-01 -5.32664418e-01 1.81828946e-01 6.44140780e-01 -6.86297297e-01 -3.97676706e-01 1.31996259e-01 -1.58425770e-03 -8.77247155e-02 4.47165459e-01 -4.88937274e-02 8.24077249e-01 -1.34889996e+00 -4.78613466e-01 4.54834223e-01 -3.90749812e-01 -1.98535025e-01 -1.06882036e-01 7.19536841e-01 -5.07023692e-01 1.90883547e-01 -7.90634155e-01 -6.84403241e-01 -3.53694856e-01 1.27025172e-01 8.31288755e-01 4.43354584e-02 -5.04529893e-01 1.13444924e+00 -2.52675205e-01 -2.75565118e-01 3.73132050e-01 -5.79670370e-01 1.06127068e-01 -5.75898051e-01 2.39247620e-01 3.47412497e-01 1.84972137e-01 5.01716025e-02 -4.61505324e-01 5.36185861e-01 3.92570615e-01 -2.77810134e-02 1.51559353e+00 4.25549477e-01 -2.91850567e-01 4.15444821e-01 1.10247564e+00 -6.10033154e-01 -1.63563800e+00 8.86587873e-02 1.40548468e-01 7.84764215e-02 -3.13091576e-02 -6.58593118e-01 -1.46655929e+00 7.39884555e-01 8.25944722e-01 1.28526747e-01 1.25368595e+00 -5.69209874e-01 1.03325081e+00 7.44898796e-01 6.56294167e-01 -1.22063136e+00 7.97215104e-02 6.73039198e-01 6.73357248e-01 -8.27269316e-01 -5.43896914e-01 -3.04661714e-03 -8.09566602e-02 1.30831480e+00 8.22412848e-01 -8.10069561e-01 8.10054421e-01 6.76717937e-01 -3.44829649e-01 -4.68700901e-02 -5.74769735e-01 1.14935406e-01 -1.30393147e-01 3.70614707e-01 2.50467092e-01 -1.88940734e-01 -6.61419809e-01 5.70158720e-01 -2.46763855e-01 5.35225093e-01 3.04929256e-01 1.00042748e+00 -5.87692380e-01 -7.44360566e-01 1.55811653e-01 5.79383075e-01 -3.90305251e-01 -3.84526789e-01 -1.44402996e-01 4.28986788e-01 -4.73384419e-03 5.09396315e-01 1.36026502e-01 -5.48351526e-01 2.59866327e-01 1.00199133e-01 7.06234515e-01 1.80914924e-02 -9.77953076e-01 -4.23742771e-01 -4.69985515e-01 -3.87603760e-01 -2.43762389e-01 -1.08625948e-01 -1.79281449e+00 -4.72634345e-01 -2.64338911e-01 1.83031484e-01 1.14956224e+00 8.17806721e-01 5.81414759e-01 6.20904326e-01 5.27359843e-01 -1.08674467e+00 -7.22977281e-01 -7.03425407e-01 -5.15460491e-01 1.99879825e-01 1.04271457e-01 -6.06088221e-01 -5.80273688e-01 -1.77930579e-01]
[8.201112747192383, 2.519321918487549]
70d61ba9-1e67-49cb-a3a2-22411e4dc0c3
fine-grained-visual-classification-using-self
2205.10529
null
https://arxiv.org/abs/2205.10529v1
https://arxiv.org/pdf/2205.10529v1.pdf
Fine-Grained Visual Classification using Self Assessment Classifier
Extracting discriminative features plays a crucial role in the fine-grained visual classification task. Most of the existing methods focus on developing attention or augmentation mechanisms to achieve this goal. However, addressing the ambiguity in the top-k prediction classes is not fully investigated. In this paper, we introduce a Self Assessment Classifier, which simultaneously leverages the representation of the image and top-k prediction classes to reassess the classification results. Our method is inspired by continual learning with coarse-grained and fine-grained classifiers to increase the discrimination of features in the backbone and produce attention maps of informative areas on the image. In practice, our method works as an auxiliary branch and can be easily integrated into different architectures. We show that by effectively addressing the ambiguity in the top-k prediction classes, our method achieves new state-of-the-art results on CUB200-2011, Stanford Dog, and FGVC Aircraft datasets. Furthermore, our method also consistently improves the accuracy of different existing fine-grained classifiers with a unified setup.
['Anh Nguyen', 'Quang D. Tran', 'Erman Tjiputra', 'Huy Tran', 'Tuong Do']
2022-05-21
null
null
null
null
['fine-grained-image-classification']
['computer-vision']
[-4.22012098e-02 -2.50332236e-01 -3.66856515e-01 -5.23400426e-01 -8.34496796e-01 -6.74537182e-01 5.67985177e-01 8.92581791e-02 -5.62724061e-02 4.61175591e-01 2.69125909e-01 -2.01416723e-02 -1.38965368e-01 -6.14237309e-01 -8.20260763e-01 -6.56164587e-01 3.04329604e-01 3.35717827e-01 6.00519180e-01 -9.30971131e-02 2.43894666e-01 6.28258884e-01 -1.86592579e+00 7.46149242e-01 7.88589776e-01 1.67920077e+00 2.06977502e-01 4.68498111e-01 3.81406844e-02 8.08695138e-01 -4.75175202e-01 -3.74320358e-01 1.84706405e-01 -8.39606002e-02 -1.05565488e+00 1.34421676e-01 9.41082597e-01 -4.76727873e-01 -1.42481970e-02 1.03934193e+00 1.18250296e-01 -7.86720514e-02 8.11499059e-01 -1.25794864e+00 -6.67749703e-01 3.45590532e-01 -6.09802663e-01 4.97211695e-01 -2.35765636e-01 1.11614630e-01 1.21146476e+00 -9.90048945e-01 2.10353836e-01 1.23290944e+00 6.80878580e-01 2.30246514e-01 -1.14868271e+00 -7.44946539e-01 6.82174623e-01 5.69240749e-01 -1.38548195e+00 -2.20545679e-01 7.93488741e-01 -6.59776092e-01 7.69288123e-01 1.18693203e-01 5.25935233e-01 9.60878372e-01 8.62546638e-02 7.71863282e-01 1.14993215e+00 -4.33091938e-01 -1.55192276e-03 -1.94589570e-02 5.84035993e-01 9.37169135e-01 1.08305804e-01 3.23105246e-01 -4.93805766e-01 5.05554080e-02 6.57530129e-01 8.18844661e-02 -1.00981645e-01 -6.45738959e-01 -1.16251111e+00 9.52803671e-01 8.24007452e-01 1.51810244e-01 -3.67595732e-01 4.69120704e-02 2.54591048e-01 7.49290064e-02 6.23964429e-01 5.77849627e-01 -6.05503261e-01 1.54278621e-01 -8.73042643e-01 1.05971247e-01 3.36277604e-01 8.41426730e-01 9.52322662e-01 -8.30265284e-02 -6.90509677e-01 7.98257589e-01 1.72565401e-01 4.36060764e-02 4.10918415e-01 -9.76713896e-01 2.77728915e-01 7.32299209e-01 -3.63922864e-02 -8.00311387e-01 -3.29169452e-01 -9.42033291e-01 -8.24944139e-01 4.24271584e-01 3.21352005e-01 2.43967593e-01 -1.16118288e+00 1.71036279e+00 2.94981927e-01 1.52162120e-01 -3.31003070e-01 9.66667235e-01 8.72854948e-01 4.14160848e-01 3.58880222e-01 3.25757265e-01 1.39864194e+00 -1.59980857e+00 -2.02655300e-01 -3.14965874e-01 3.40614706e-01 -4.92568612e-01 1.16451943e+00 1.40845865e-01 -6.46597087e-01 -1.12843871e+00 -1.29191744e+00 -1.43629402e-01 -4.81261194e-01 5.82024515e-01 5.98101020e-01 4.23006266e-01 -1.02345467e+00 6.71235859e-01 -5.52475512e-01 -1.37250155e-01 6.58205450e-01 1.19670101e-01 -4.33830470e-01 -1.16796844e-01 -9.64236259e-01 8.04207563e-01 3.90268654e-01 4.08013770e-03 -1.09559882e+00 -8.18109393e-01 -7.51508653e-01 3.53810847e-01 2.93320477e-01 -8.25084388e-01 1.17959332e+00 -9.21707928e-01 -1.17952657e+00 9.90075707e-01 4.39559035e-02 -3.97062808e-01 1.36213720e-01 -1.69138789e-01 7.61507917e-03 3.13304737e-02 2.69040912e-01 9.27108645e-01 1.16919363e+00 -1.16948807e+00 -1.12943244e+00 -5.39122880e-01 2.80966431e-01 4.94239964e-02 -2.34446943e-01 -2.07668796e-01 -4.08558667e-01 -9.99062121e-01 -1.37936801e-01 -6.90383852e-01 -1.21127054e-01 6.28234372e-02 -2.42614970e-01 -4.60096687e-01 5.46030641e-01 -3.94943744e-01 1.14661205e+00 -2.37392354e+00 9.59227532e-02 -1.00642078e-01 4.55313146e-01 2.28798449e-01 -3.55303437e-01 -1.05412878e-01 -9.43679959e-02 1.50563836e-01 6.59923255e-02 -1.46992043e-01 1.50747150e-01 -1.34753101e-02 -6.16925597e-01 1.94098860e-01 5.71572661e-01 1.06227028e+00 -6.38037086e-01 -4.16004896e-01 2.44141012e-01 1.01296313e-01 -6.79424107e-01 2.00341031e-01 -7.22404346e-02 3.11875552e-01 -6.22647583e-01 7.22797275e-01 6.25851154e-01 -6.96626484e-01 -2.00988185e-02 -6.40490174e-01 5.19757830e-02 9.64568853e-02 -6.47798479e-01 1.54759979e+00 -2.64795721e-01 3.84680718e-01 -1.53473288e-01 -1.19990528e+00 8.20219934e-01 -2.58883089e-01 4.95999772e-03 -7.48781323e-01 -2.94684563e-02 3.17292586e-02 5.89851663e-02 -2.87619364e-02 5.39523780e-01 -7.57539496e-02 -2.88840234e-01 1.69820324e-01 4.06431019e-01 1.49057299e-01 -8.35292693e-03 -1.32654801e-01 8.62756073e-01 2.71102190e-01 5.83473146e-01 -3.45464826e-01 3.16989362e-01 1.53199404e-01 5.09784222e-01 9.34949815e-01 -4.63822275e-01 5.42685032e-01 2.76003957e-01 -7.03796804e-01 -8.74253094e-01 -1.03628969e+00 -2.07119480e-01 1.71305501e+00 2.40440115e-01 -4.66645747e-01 -6.68651819e-01 -1.05384028e+00 1.77020788e-01 4.98778582e-01 -1.11600649e+00 -4.15857047e-01 -2.78758436e-01 -6.41022146e-01 3.15395415e-01 9.50313926e-01 6.27223551e-01 -1.00895154e+00 -5.07089615e-01 1.13107143e-02 -3.07819724e-01 -1.11366129e+00 -2.18785763e-01 6.18708551e-01 -7.91260362e-01 -1.04164863e+00 -4.30696487e-01 -8.31250489e-01 5.67860126e-01 4.78406250e-01 1.39078486e+00 3.73871997e-03 -2.58647770e-01 1.17241949e-01 -5.21713197e-01 -1.93722725e-01 -5.42928204e-02 2.82132864e-01 -2.96635866e-01 6.12138808e-02 2.96013802e-01 -2.25402266e-01 -5.65970957e-01 5.77736795e-01 -4.37713325e-01 6.88969567e-02 7.37961769e-01 1.15865588e+00 7.85326600e-01 2.85342690e-02 6.90797746e-01 -7.24900603e-01 1.46714583e-01 -2.60224015e-01 -5.27830720e-01 2.80977577e-01 -4.67084736e-01 3.48882049e-01 6.78241372e-01 -1.95376754e-01 -9.14413035e-01 8.38182792e-02 -1.97984546e-01 -6.39573812e-01 -3.43723863e-01 2.02690512e-01 -1.44005045e-01 -2.59163827e-01 5.72977245e-01 1.20327231e-05 -4.92107987e-01 -6.25123501e-01 4.53951359e-01 5.37086427e-01 5.13016522e-01 -6.23066902e-01 7.02043176e-01 3.51236671e-01 -1.32335857e-01 -3.18176866e-01 -1.48312521e+00 -4.18574840e-01 -8.76137912e-01 1.13847502e-01 8.30560803e-01 -1.11793363e+00 -4.09053594e-01 4.74341810e-01 -8.52124214e-01 -3.22518677e-01 -3.97988439e-01 5.62963411e-02 -5.34432471e-01 1.41101345e-01 -4.45548475e-01 -2.16249660e-01 -1.98453262e-01 -1.31819034e+00 1.45187712e+00 1.50203124e-01 -7.60841295e-02 -5.70033371e-01 -1.03916153e-01 5.27569473e-01 3.51712525e-01 -1.34514228e-01 1.16427672e+00 -5.56960881e-01 -7.77678728e-01 -5.60634732e-02 -5.65126896e-01 2.88351446e-01 2.25050766e-02 -1.96239457e-01 -1.23702109e+00 -2.73188651e-01 -3.82426947e-01 -7.79540122e-01 1.45813894e+00 3.59511048e-01 1.74354196e+00 -1.95579693e-01 -5.71318150e-01 8.41514051e-01 1.05739272e+00 -9.32868868e-02 4.74487752e-01 4.44713831e-01 6.03579581e-01 5.37180245e-01 1.02999640e+00 4.27913696e-01 4.00943995e-01 9.67911839e-01 7.16007710e-01 -3.75279412e-02 -3.97927165e-01 -2.77807087e-01 -8.54314044e-02 2.47819632e-01 5.87768108e-02 -1.33855596e-01 -6.13168836e-01 5.91461897e-01 -1.80290520e+00 -9.39049482e-01 4.15710747e-01 1.88707662e+00 7.59285748e-01 4.50876057e-02 4.92116176e-02 4.51094750e-03 7.21408963e-01 3.28243643e-01 -6.12454057e-01 -8.17342699e-02 -2.10858136e-02 3.46737832e-01 2.43811831e-01 1.35554343e-01 -1.64308095e+00 1.16769552e+00 6.38084412e+00 1.19834077e+00 -1.03388476e+00 6.60783127e-02 1.00829566e+00 6.85415119e-02 -3.86451429e-04 -2.19350681e-01 -1.27335835e+00 2.82272369e-01 5.18481016e-01 3.28401744e-01 2.37606466e-01 1.09759593e+00 -4.41877216e-01 2.19741926e-01 -1.19773376e+00 9.61709142e-01 1.29870087e-01 -1.54900146e+00 2.81482965e-01 -2.41098210e-01 6.87143087e-01 -4.11809841e-03 2.38532543e-01 6.67306840e-01 3.35657358e-01 -9.96018231e-01 1.02258694e+00 3.74689937e-01 9.92419660e-01 -6.15822375e-01 6.61914885e-01 3.36316496e-01 -1.28636587e+00 -3.26508373e-01 -4.41973925e-01 2.98558921e-02 -2.86460251e-01 2.62831390e-01 -6.59853578e-01 5.07870018e-01 1.12317848e+00 7.49148011e-01 -1.00044179e+00 9.52495694e-01 -2.87526399e-01 5.51471055e-01 -1.58754662e-02 2.29022577e-01 3.69883150e-01 4.05866086e-01 1.60750434e-01 1.03211272e+00 9.00584310e-02 -1.20598301e-01 4.49190646e-01 7.41514087e-01 -2.27436662e-01 -3.24022144e-01 -8.75410214e-02 4.17717099e-02 2.87610501e-01 1.54119992e+00 -5.56956232e-01 -3.49934161e-01 -3.47986639e-01 8.07000279e-01 9.38822448e-01 1.52653247e-01 -1.00538552e+00 -3.17881376e-01 8.45185876e-01 1.22087799e-01 9.64813828e-01 2.01041535e-01 -2.62303025e-01 -1.14345300e+00 -9.59594920e-02 -9.26110804e-01 6.05217934e-01 -8.20669353e-01 -1.57692170e+00 9.15357232e-01 -2.93973356e-01 -1.28208244e+00 -2.77497232e-01 -9.08246338e-01 -2.81486362e-01 7.44761109e-01 -1.78632975e+00 -1.46833122e+00 -7.54866302e-01 6.02589786e-01 6.47882640e-01 -1.46676019e-01 8.40251625e-01 1.83371186e-01 -3.13024342e-01 8.54176044e-01 -7.00465515e-02 1.08236097e-01 8.75614464e-01 -1.15726626e+00 3.63887072e-01 7.86119878e-01 1.73353210e-01 3.35890561e-01 2.25904211e-01 -4.64795113e-01 -7.69702792e-01 -1.46734822e+00 4.36614931e-01 -4.32981610e-01 7.29283869e-01 -2.77646452e-01 -7.63043582e-01 7.19134092e-01 1.20777935e-01 5.95578849e-01 6.46330357e-01 3.83790702e-01 -8.49051833e-01 -3.79601657e-01 -8.74386847e-01 2.22173944e-01 1.19075692e+00 -5.27430952e-01 -6.57195747e-01 6.05642870e-02 7.67404497e-01 -3.13533515e-01 -6.66502178e-01 7.43873954e-01 6.07646525e-01 -9.93484914e-01 1.20855367e+00 -1.11355102e+00 5.91674030e-01 -4.19639111e-01 -4.81713772e-01 -1.45911944e+00 -1.15291023e+00 3.86150815e-02 -1.04872547e-01 1.06291962e+00 3.19988281e-01 -4.05980527e-01 6.98985398e-01 7.18204305e-02 -5.26775897e-01 -8.20909739e-01 -8.50309849e-01 -5.33758402e-01 6.87388182e-02 -2.11480811e-01 6.66074455e-01 7.47019470e-01 -4.48979795e-01 4.70218569e-01 -3.77508759e-01 2.72373468e-01 6.03783786e-01 8.93635094e-01 7.27317393e-01 -1.47403038e+00 -3.64364564e-01 -5.92878640e-01 -5.55613816e-01 -1.25846076e+00 3.23358864e-01 -8.74032736e-01 1.08025275e-01 -1.33700931e+00 6.41255915e-01 -6.57678068e-01 -7.43916690e-01 8.19650948e-01 -3.77916187e-01 6.27034605e-01 3.28843445e-01 2.11268559e-01 -1.00864685e+00 6.20143771e-01 1.24508512e+00 -4.02416676e-01 2.49333009e-01 -1.19807638e-01 -1.13743520e+00 7.11812139e-01 6.42999411e-01 -2.59653747e-01 -1.86609641e-01 -2.96718478e-01 -1.88844711e-01 -3.25944394e-01 8.05848241e-01 -9.75249946e-01 2.62392871e-02 -9.26002637e-02 9.40245390e-01 -8.24910462e-01 4.00172412e-01 -7.10349202e-01 -1.89932004e-01 2.22270101e-01 -3.52196515e-01 -6.11359999e-02 4.02008921e-01 7.04416037e-01 -4.94638711e-01 -1.25748768e-01 1.07616913e+00 -9.37309116e-02 -1.26252866e+00 5.64360201e-01 -9.16526187e-03 1.62373960e-01 1.08578372e+00 -1.19557008e-01 -8.18477094e-01 6.32971153e-02 -7.77303874e-01 2.32204765e-01 4.61036354e-01 5.76665759e-01 3.92833084e-01 -1.54283845e+00 -5.90513945e-01 3.44336778e-01 5.81500828e-01 -1.99371010e-01 4.85490859e-01 6.43937230e-01 -7.04630241e-02 5.45230925e-01 -6.50093019e-01 -7.29422987e-01 -1.14613509e+00 8.64594221e-01 3.93795609e-01 -6.47790492e-01 -2.82654434e-01 9.29945946e-01 9.33924019e-01 -2.51364708e-01 1.80931523e-01 -3.84704590e-01 -4.53848541e-01 1.85852021e-01 5.38546503e-01 -2.09588706e-02 1.47917986e-01 -5.59451878e-01 -4.41126674e-01 7.18949676e-01 -4.07722265e-01 5.44363856e-01 1.35377359e+00 -2.07540199e-01 1.40535310e-01 1.70654476e-01 1.06411183e+00 -9.01987180e-02 -1.54770207e+00 -2.57630676e-01 -2.24755242e-01 -5.42967081e-01 1.55461147e-01 -1.22174835e+00 -1.13190436e+00 1.08777106e+00 5.32512307e-01 1.96767971e-02 1.40062392e+00 3.57520670e-01 3.71521711e-01 2.05783904e-01 3.83162111e-01 -7.41182089e-01 2.15979978e-01 6.12837732e-01 9.14737999e-01 -1.49297178e+00 -2.09968761e-01 -5.21684468e-01 -5.84254205e-01 1.03187644e+00 9.44610655e-01 -1.35423154e-01 5.15757263e-01 1.75757885e-01 -1.37177154e-01 -9.03817713e-02 -9.01547313e-01 -3.32861662e-01 7.07291365e-01 6.49021804e-01 2.96618074e-01 1.05411805e-01 3.29661906e-01 1.07904172e+00 -4.14354987e-02 -1.38136744e-01 -4.91624027e-02 5.55035591e-01 -7.07443357e-01 -8.36111128e-01 -1.47040561e-01 6.23837829e-01 -3.90436321e-01 -3.33881438e-01 -3.20807308e-01 6.62699819e-01 2.38296330e-01 7.43979037e-01 2.12107792e-01 -6.29602075e-01 1.75914496e-01 -1.30721461e-02 6.01643085e-01 -4.87701923e-01 -5.51181018e-01 -1.19352512e-01 1.18863016e-01 -8.70954156e-01 -3.28803182e-01 -3.89906526e-01 -6.52201116e-01 -1.93030555e-02 -2.60677218e-01 2.56422162e-02 1.59613729e-01 9.21840966e-01 6.88738346e-01 8.08392048e-01 5.50353348e-01 -8.80180299e-01 -7.57791042e-01 -9.54256177e-01 -5.30622840e-01 2.82874793e-01 4.68441039e-01 -1.23323846e+00 -2.44138107e-01 -8.40375051e-02]
[9.585640907287598, 2.0689191818237305]
1cb5b281-ac50-4e9e-80fa-403b05614bcf
graph-neural-networks-and-representation
2208.11203
null
https://arxiv.org/abs/2208.11203v1
https://arxiv.org/pdf/2208.11203v1.pdf
Graph Neural Networks and Representation Embedding for Table Extraction in PDF Documents
Tables are widely used in several types of documents since they can bring important information in a structured way. In scientific papers, tables can sum up novel discoveries and summarize experimental results, making the research comparable and easily understandable by scholars. Several methods perform table analysis working on document images, losing useful information during the conversion from the PDF files since OCR tools can be prone to recognition errors, in particular for text inside tables. The main contribution of this work is to tackle the problem of table extraction, exploiting Graph Neural Networks. Node features are enriched with suitably designed representation embeddings. These representations help to better distinguish not only tables from the other parts of the paper, but also table cells from table headers. We experimentally evaluated the proposed approach on a new dataset obtained by merging the information provided in the PubLayNet and PubTables-1M datasets.
['Simone Marinai', 'Emanuele Vivoli', 'Andrea Gemelli']
2022-08-23
null
null
null
null
['table-extraction']
['miscellaneous']
[ 7.43714571e-02 1.67977646e-01 -2.61123091e-01 -6.23840466e-02 -3.15575361e-01 -7.90928185e-01 7.02146232e-01 1.28175938e+00 -2.87470698e-01 1.14697552e+00 2.37615302e-01 -2.40310520e-01 -4.76357430e-01 -1.35474360e+00 -6.71326101e-01 -3.58845234e-01 -5.77058531e-02 4.78480726e-01 2.59640627e-02 -1.11145407e-01 5.65784395e-01 8.80863011e-01 -1.66173196e+00 4.55232948e-01 7.66323626e-01 1.18195331e+00 4.10756059e-02 4.02373374e-01 -8.91433179e-01 1.06097758e+00 -9.33037102e-01 -8.57480168e-01 -4.89765918e-03 -4.96027768e-02 -5.67451894e-01 -4.59002331e-02 6.19172812e-01 -5.30261686e-03 -4.68485147e-01 1.29879773e+00 1.52012154e-01 1.84952170e-02 9.61191297e-01 -1.25970995e+00 -7.97494650e-01 1.06883681e+00 -2.76687413e-01 1.65246323e-01 4.57597256e-01 -5.19065440e-01 1.08017397e+00 -6.78811073e-01 1.18283451e+00 1.31405377e+00 3.58414769e-01 1.57221537e-02 -9.48882282e-01 -3.44295144e-01 -1.71087056e-01 5.53032696e-01 -1.10277557e+00 -1.97448775e-01 7.77720690e-01 -5.25512040e-01 6.05374277e-01 4.78375256e-01 5.17150521e-01 9.44742501e-01 3.63921523e-01 4.38214302e-01 8.94646168e-01 -4.70880240e-01 1.48124292e-01 6.99438274e-01 4.66223836e-01 6.58138096e-01 1.26955211e+00 -8.29822838e-01 -4.57723349e-01 2.29684263e-01 4.51174468e-01 1.88235953e-01 -3.25127095e-01 -5.81823766e-01 -1.22986209e+00 6.77663863e-01 4.35160041e-01 6.57952905e-01 -2.91497558e-01 -2.85995245e-01 6.85417473e-01 1.01242870e-01 1.38060406e-01 5.40941000e-01 -1.13888100e-01 -2.43940596e-02 -7.46247947e-01 1.69721037e-01 9.31869566e-01 1.15074849e+00 6.75490081e-01 -1.52212560e-01 -3.89295608e-01 5.29346406e-01 8.30736682e-02 2.31816724e-01 3.95612657e-01 -2.41801456e-01 1.05681634e+00 1.25570703e+00 -1.49734676e-01 -1.66040874e+00 -5.55384517e-01 -4.83067393e-01 -1.21307826e+00 -6.42673001e-02 4.82715458e-01 3.10931653e-01 -7.45474935e-01 8.97018015e-01 2.13791847e-01 -8.94795537e-01 1.01730421e-01 3.34842384e-01 1.59228623e+00 8.89105022e-01 -2.53065318e-01 -2.35578585e-02 1.62621748e+00 -6.52445078e-01 -1.37262905e+00 5.74790478e-01 4.90747988e-01 -8.20879638e-01 7.48528838e-01 5.53113103e-01 -7.71135926e-01 -6.60409868e-01 -1.32070804e+00 -3.65153849e-01 -1.40060019e+00 4.68009412e-01 4.43859339e-01 5.07317007e-01 -8.73004496e-01 8.99973810e-01 -2.01586068e-01 -3.57999951e-01 6.50892258e-01 1.30783439e-01 -7.09819674e-01 -5.73254637e-02 -1.07141829e+00 9.09471810e-01 7.46250272e-01 2.37915218e-01 -1.44493487e-02 -5.22753060e-01 -9.36807215e-01 3.97849828e-01 7.18827307e-01 -1.84112400e-01 5.31437397e-01 6.14290200e-02 -8.02154481e-01 6.90998375e-01 1.17464989e-01 -5.55023193e-01 4.64898258e-01 2.27049086e-02 -5.26930809e-01 2.80955076e-01 -6.94414973e-02 1.80079684e-01 6.57465696e-01 -9.78620410e-01 -3.51606101e-01 -5.56158543e-01 -9.76691246e-02 -1.49388582e-01 -8.60415518e-01 -4.65679735e-01 -6.19664967e-01 -7.52315760e-01 -9.19182319e-03 -3.64375323e-01 1.35692269e-01 4.46768180e-02 -9.86788452e-01 -1.93531975e-01 7.21136630e-01 -8.94428432e-01 1.46724463e+00 -1.84625638e+00 6.04534708e-02 4.65934366e-01 6.74298942e-01 1.99529484e-01 3.34272921e-01 7.28247106e-01 3.61821800e-02 4.10254180e-01 -9.95052531e-02 8.70094374e-02 3.19272131e-02 -1.55616589e-02 -1.13792777e-01 1.45393729e-01 6.33321032e-02 7.30881631e-01 -3.51940811e-01 -8.12824786e-01 2.21188888e-01 5.22847414e-01 1.62610121e-03 -7.13419691e-02 -7.18808994e-02 -1.24555297e-01 -4.59538013e-01 7.37740934e-01 7.16064453e-01 -1.09342843e-01 2.61893421e-01 -4.02626246e-01 3.39863300e-02 2.99156308e-01 -1.49961734e+00 1.08221114e+00 -2.38680139e-01 1.01057613e+00 -3.34367186e-01 -1.03673184e+00 1.24517906e+00 -6.56695396e-04 1.23883232e-01 -5.80822527e-01 4.34553504e-01 6.26477376e-02 -1.06734328e-01 -2.60035008e-01 9.27598834e-01 5.71421146e-01 5.48737906e-02 6.56979755e-02 1.87246174e-01 -2.82790903e-02 1.05200875e+00 5.46209335e-01 6.17655635e-01 -2.24510819e-01 5.14294922e-01 -1.68428615e-01 9.61457193e-01 5.76458639e-03 -5.49651086e-02 6.35649502e-01 2.52154648e-01 3.32427144e-01 1.21972144e+00 -5.40316463e-01 -9.83864784e-01 -8.32878232e-01 -3.16135734e-01 3.35439175e-01 -1.84286803e-01 -7.35810757e-01 -8.16300750e-01 -6.94769144e-01 3.52331638e-01 4.69238371e-01 -8.88759971e-01 3.84387970e-02 -4.19534504e-01 -4.54541743e-01 1.67304084e-01 4.15413201e-01 2.72619069e-01 -1.13327360e+00 -4.18867290e-01 1.80679008e-01 1.17307464e-02 -1.24998963e+00 2.25394517e-02 5.13662159e-01 -9.98358488e-01 -1.23836339e+00 -7.03983665e-01 -6.54580951e-01 8.51604342e-01 -3.99441123e-02 1.14018130e+00 6.81192204e-02 -5.09736955e-01 2.39026584e-02 -3.44155848e-01 -5.83486378e-01 -5.68283796e-01 4.47454661e-01 -1.75446600e-01 6.02515829e-05 2.13932052e-01 -2.45438829e-01 1.78432360e-01 -6.87166750e-02 -1.09008372e+00 -1.30111754e-01 4.47057635e-01 5.67351222e-01 6.21506333e-01 4.34865236e-01 2.42814675e-01 -1.21346164e+00 9.44284976e-01 -1.25131398e-01 -1.03694320e+00 4.47749704e-01 -7.56811559e-01 4.84863102e-01 1.07990980e+00 5.71375266e-02 -6.53080344e-01 -3.03014457e-01 2.15463445e-01 1.38418199e-02 -3.61739472e-02 5.44143438e-01 -6.51755273e-01 1.69827446e-01 4.25280303e-01 1.51583984e-01 -1.50562048e-01 -8.48997772e-01 3.90142292e-01 6.97989464e-01 4.83821034e-01 -2.93285340e-01 1.07065845e+00 1.80210233e-01 5.84533095e-01 -9.38836157e-01 -3.77328962e-01 -3.25260580e-01 -9.78751719e-01 -2.49238804e-01 7.21912920e-01 -4.79765236e-01 -8.58242750e-01 5.80816828e-02 -1.04861367e+00 5.39372325e-01 -2.28564546e-01 3.04088593e-01 -8.31942782e-02 3.35730702e-01 -5.19457340e-01 -5.63931644e-01 -1.99984148e-01 -1.03742480e+00 4.88726616e-01 4.29516494e-01 -1.32933795e-01 -1.02180707e+00 -2.72260606e-01 1.41694337e-01 1.38717473e-01 3.83795589e-01 1.50232625e+00 -1.04847050e+00 -9.20448422e-01 -4.08272982e-01 -4.56362635e-01 9.23234597e-02 2.16212541e-01 4.24277425e-01 -7.92205274e-01 8.00383165e-02 -4.48838115e-01 7.66077340e-02 1.21867168e+00 5.60826883e-02 1.36999583e+00 -5.34068763e-01 -4.31369543e-01 4.66641963e-01 1.61263716e+00 3.81345928e-01 8.01722586e-01 8.16877604e-01 9.65950251e-01 7.89640725e-01 3.27131689e-01 3.99378330e-01 1.20207053e-02 5.15784979e-01 4.52090472e-01 1.52915806e-01 -1.07491255e-01 -3.76597166e-01 -1.56595886e-01 8.63678157e-01 5.97022416e-04 -6.36443734e-01 -7.38398135e-01 3.75145257e-01 -1.30454504e+00 -7.95862377e-01 -4.77021605e-01 2.06829548e+00 6.33580267e-01 4.85508651e-01 -5.00812978e-02 9.30581808e-01 7.42247045e-01 2.95426250e-01 -5.10721887e-03 -6.20078802e-01 -4.42712873e-01 1.86651260e-01 6.14953995e-01 2.19349954e-02 -1.26117873e+00 5.16057730e-01 5.14339542e+00 8.18527281e-01 -8.65679622e-01 -4.34532732e-01 4.90355968e-01 1.24106511e-01 -3.60189557e-01 -3.74168694e-01 -1.00453138e+00 3.00210565e-01 9.36343551e-01 -3.53745729e-01 9.85178575e-02 8.60779703e-01 -3.04423898e-01 -2.65276313e-01 -1.07112563e+00 1.24117923e+00 2.15974465e-01 -1.96365368e+00 7.37884820e-01 -4.50293012e-02 2.94364274e-01 -8.49779725e-01 2.56919891e-01 -4.16441076e-03 -2.37975121e-01 -1.13325047e+00 7.24819362e-01 5.77365696e-01 6.29373193e-01 -1.02432060e+00 1.10529459e+00 -2.19745874e-01 -1.09434772e+00 9.19669494e-02 -7.42818177e-01 -7.26273330e-03 -4.59946066e-01 8.61346126e-01 -9.82510686e-01 8.93459022e-01 7.85491049e-01 9.44816709e-01 -1.29035294e+00 1.15609455e+00 -1.47825405e-01 -1.93848944e-04 6.26495257e-02 -8.09514701e-01 1.21539796e-03 -3.71945798e-01 3.93899024e-01 1.24186814e+00 2.58323312e-01 -6.30826592e-01 -5.35842299e-01 8.36282492e-01 -7.45043635e-01 6.77348793e-01 -9.38879609e-01 -5.98540366e-01 3.17730188e-01 1.58242536e+00 -1.56518197e+00 -5.28680742e-01 -1.80577278e-01 4.02825058e-01 2.19255924e-01 1.43402725e-01 -3.35126549e-01 -1.23074603e+00 2.64510095e-01 3.23982090e-02 4.38902199e-01 -1.06714174e-01 -6.02811396e-01 -1.06546521e+00 4.68360186e-01 -7.16237307e-01 4.47016746e-01 -6.78608775e-01 -8.59694719e-01 8.98898482e-01 -7.08078295e-02 -1.31121075e+00 -1.57230690e-01 -1.07881463e+00 5.24681322e-02 6.81367457e-01 -1.23995721e+00 -6.28638983e-01 -2.76676476e-01 2.09449485e-01 2.81912506e-01 -4.13074881e-01 6.27729297e-01 3.99960160e-01 -7.28982389e-01 6.64278746e-01 7.76352704e-01 6.26215994e-01 6.30610943e-01 -1.48143315e+00 3.93922240e-01 6.24473512e-01 7.88637638e-01 6.93909585e-01 5.84209859e-01 -6.37921810e-01 -1.50960219e+00 -8.90920341e-01 1.12819767e+00 -6.07481599e-01 6.14590287e-01 -8.40696990e-01 -1.14972258e+00 2.42498949e-01 1.63819075e-01 -2.30751142e-01 3.00635278e-01 -4.93381023e-02 -4.00283456e-01 -4.13114578e-01 -1.09120655e+00 5.48693776e-01 5.08122861e-01 -4.78142411e-01 -5.71657479e-01 2.46867850e-01 5.69451749e-01 -3.51560473e-01 -8.19985449e-01 -1.02731682e-01 4.56020415e-01 -8.78287315e-01 8.35903406e-01 -4.93847936e-01 8.08405995e-01 -2.33620852e-01 4.94774170e-02 -1.10472763e+00 7.22422525e-02 -2.22931445e-01 -3.76250774e-01 1.59581304e+00 6.07471287e-01 -3.70946199e-01 6.84364557e-01 5.34841530e-02 3.27964455e-01 -5.09044170e-01 -7.29723454e-01 -8.26530397e-01 -8.10637176e-02 -1.06879130e-01 8.18623126e-01 7.48259723e-01 -7.29984492e-02 2.38795191e-01 -1.23622483e-02 -3.34826499e-01 6.46310508e-01 2.14749053e-02 6.70681477e-01 -1.86625266e+00 4.12212133e-01 -6.74794078e-01 -8.64485621e-01 -1.88025698e-01 -1.62990630e-01 -1.10337150e+00 -5.51388860e-01 -2.04273200e+00 1.17809288e-01 -1.35197848e-01 -3.10694993e-01 2.92767584e-01 1.09069824e-01 2.23324060e-01 4.27081198e-01 1.17270183e-02 -3.16852897e-01 2.14794442e-01 1.28462172e+00 -6.49617493e-01 -4.85928438e-04 -3.80766749e-01 -7.75105774e-01 5.03306508e-01 5.63070714e-01 -6.38705134e-01 -2.28790924e-01 5.56252189e-02 4.86807585e-01 -6.48791566e-02 5.46346093e-03 -1.28529823e+00 1.27341196e-01 8.76057297e-02 9.83162880e-01 -1.06879711e+00 -2.15359172e-03 -9.60032880e-01 -6.26351312e-02 3.36243480e-01 -4.43997025e-01 2.86666602e-01 4.61039305e-01 4.95874584e-01 -4.01675344e-01 -4.89666760e-01 3.54032755e-01 -1.02004178e-01 -4.58474487e-01 -3.53062265e-02 -4.49260384e-01 -6.04365729e-02 7.02165902e-01 -2.39478394e-01 -5.71427345e-01 -2.95671195e-01 -5.43577135e-01 -1.45533279e-01 4.41751212e-01 5.45040905e-01 5.95485687e-01 -1.21835434e+00 -3.50913256e-01 1.70371205e-01 3.04448277e-01 -2.14937016e-01 1.36775926e-01 3.32715958e-01 -1.05912590e+00 8.02914083e-01 -6.42147183e-01 -1.43311188e-01 -1.42361236e+00 1.02505338e+00 -2.28540614e-01 -5.70369124e-01 -6.89441502e-01 4.33392078e-01 -4.03724283e-01 -2.19976455e-01 7.75680959e-01 -7.33723760e-01 -1.15541303e+00 7.68705249e-01 7.14715421e-01 5.55431068e-01 5.58095574e-01 -4.65223789e-01 -3.85272741e-01 5.17920434e-01 -2.90249199e-01 2.02295586e-01 1.32643676e+00 1.18021756e-01 -3.85521024e-01 6.88648105e-01 1.32107115e+00 4.70260978e-01 -2.22074315e-01 -1.81876253e-02 3.14651877e-01 -3.25502098e-01 -1.42659351e-01 -7.36136138e-01 -9.56002772e-01 1.19171548e+00 3.73928338e-01 6.13353252e-01 8.44361246e-01 -3.24430406e-01 4.92533803e-01 9.22509789e-01 2.15509921e-01 -1.03511822e+00 -1.02668203e-01 2.28567734e-01 9.19053435e-01 -1.03056085e+00 6.20750129e-01 -5.80471992e-01 -3.52380127e-01 1.84197998e+00 2.45636493e-01 3.53839129e-01 3.70437622e-01 2.18611091e-01 3.05284951e-02 -1.71717882e-01 -3.85549098e-01 -6.95105689e-03 5.61927676e-01 8.52201343e-01 4.31034565e-01 -9.40644592e-02 -4.48989868e-01 7.01874375e-01 -3.51396590e-01 -2.45869756e-01 1.18546474e+00 8.00993621e-01 -3.39567274e-01 -1.19708645e+00 -8.34135890e-01 8.92618835e-01 -5.33987045e-01 -5.98090664e-02 -7.68576443e-01 1.07715642e+00 -5.26629724e-02 7.07831502e-01 1.92732945e-01 -2.09522828e-01 3.83140594e-01 1.02351986e-01 3.46352994e-01 -2.42221892e-01 -5.36796272e-01 -3.60403776e-01 3.74398194e-02 -1.59582421e-01 -1.88203663e-01 -3.69246989e-01 -1.16224623e+00 -4.11667973e-01 5.64471446e-02 4.58890915e-01 8.50763321e-01 4.79368508e-01 1.80614009e-01 1.11316586e+00 2.29457319e-01 -2.49490708e-01 -1.74918309e-01 -8.82134259e-01 -8.39019060e-01 2.57849902e-01 3.21174085e-01 -8.87540042e-01 -1.12398893e-01 1.10925063e-01]
[11.672059059143066, 2.91666579246521]
7fd55761-4c2a-457b-ab83-5e6711811f88
leveraging-smartphone-sensors-for-detecting
2208.01876
null
https://arxiv.org/abs/2208.01876v1
https://arxiv.org/pdf/2208.01876v1.pdf
Leveraging Smartphone Sensors for Detecting Abnormal Gait for Smart Wearable Mobile Technologies
Walking is one of the most common modes of terrestrial locomotion for humans. Walking is essential for humans to perform most kinds of daily activities. When a person walks, there is a pattern in it, and it is known as gait. Gait analysis is used in sports and healthcare. We can analyze this gait in different ways, like using video captured by the surveillance cameras or depth image cameras in the lab environment. It also can be recognized by wearable sensors. e.g., accelerometer, force sensors, gyroscope, flexible goniometer, magneto resistive sensors, electromagnetic tracking system, force sensors, and electromyography (EMG). Analysis through these sensors required a lab condition, or users must wear these sensors. For detecting abnormality in gait action of a human, we need to incorporate the sensors separately. We can know about one's health condition by abnormal human gait after detecting it. Understanding a regular gait vs. abnormal gait may give insights to the health condition of the subject using the smart wearable technologies. Therefore, in this paper, we proposed a way to analyze abnormal human gait through smartphone sensors. Though smart devices like smartphones and smartwatches are used by most of the person nowadays. So, we can track down their gait using sensors of these intelligent wearable devices.
['Ahmed Al Marouf', 'Md Shahriar Tasjid']
2022-08-03
null
null
null
null
['electromyography-emg']
['medical']
[ 1.51237011e-01 -3.50344747e-01 -1.80901721e-01 1.05928935e-01 3.96253586e-01 -1.88019246e-01 -2.13702247e-01 -2.20099941e-01 -3.94743532e-01 6.54686630e-01 3.20484310e-01 3.74846533e-02 2.33110234e-01 -1.09118080e+00 -4.35912162e-01 -5.30124724e-01 -1.42349349e-02 -1.85275570e-01 7.40261078e-01 -4.31253731e-01 2.78167665e-01 1.36301443e-01 -1.84045911e+00 -9.52227861e-02 7.25421369e-01 8.08852315e-01 2.87704647e-01 5.96052170e-01 2.45608360e-01 8.08155984e-02 -4.32694584e-01 6.96157143e-02 -1.18629411e-01 -5.26800871e-01 -2.87933201e-01 1.25478402e-01 -4.74901974e-01 -3.98490250e-01 1.05114855e-01 9.05035317e-01 6.30118787e-01 -2.61333752e-02 3.78772050e-01 -1.06337833e+00 -1.94645897e-01 6.76781982e-02 -6.28403783e-01 2.64149755e-01 1.07352257e+00 3.97586435e-01 1.58464108e-02 -3.73540998e-01 3.24570835e-01 9.22904134e-01 9.44327652e-01 4.93688077e-01 -5.16801357e-01 -4.04245764e-01 -4.05190855e-01 7.57603407e-01 -9.77272689e-01 -2.64964074e-01 7.14646220e-01 -4.34515715e-01 8.87278497e-01 2.26904228e-01 1.23553896e+00 1.23608255e+00 1.01220775e+00 3.40735555e-01 9.40047085e-01 -2.63053596e-01 2.58531302e-01 -4.61185724e-01 2.46886060e-01 6.19325042e-01 8.74020815e-01 -2.28447989e-01 -4.65502053e-01 1.56118855e-01 4.95838642e-01 4.35369849e-01 -5.22065818e-01 1.27063751e-01 -1.18181098e+00 9.28325504e-02 1.94908325e-02 4.16755319e-01 -5.81773043e-01 -4.71344665e-02 4.48601902e-01 1.17558613e-01 -9.09905210e-02 -1.81461155e-01 -2.75158137e-01 -9.36620772e-01 -4.34561342e-01 -3.93083729e-02 7.15159774e-01 3.81490976e-01 3.22456896e-01 1.06430590e-01 3.69674951e-01 4.58676010e-01 5.36900878e-01 8.11350465e-01 1.16056144e+00 -6.40405357e-01 4.62214649e-01 9.71991122e-01 7.58454427e-02 -1.32971072e+00 -7.25129724e-01 2.63155609e-01 -8.82506430e-01 1.01347096e-01 2.75147736e-01 -2.50972807e-01 -6.85025036e-01 1.25477409e+00 4.51699078e-01 2.76350617e-01 -2.27833778e-01 1.01999581e+00 6.69378877e-01 3.11618596e-01 -1.37604624e-01 -2.35634610e-01 1.76406157e+00 -1.12354971e-01 -9.71674681e-01 -3.53780001e-01 5.79343975e-01 -5.80456614e-01 1.34435022e+00 5.54690063e-01 -6.91225648e-01 -5.26570737e-01 -1.54899538e+00 2.45021045e-01 -5.23263872e-01 2.44798362e-02 9.10110250e-02 1.10966957e+00 -4.17994171e-01 8.09434175e-01 -1.47779226e+00 -1.14437270e+00 -1.73280925e-01 1.83262676e-01 -3.59000772e-01 9.52391997e-02 -1.26519489e+00 1.03392637e+00 6.76470920e-02 1.56855211e-01 4.01373953e-02 1.90202501e-02 -8.22250247e-01 -2.76849389e-01 6.67536855e-02 -7.03617692e-01 6.69943929e-01 -1.54629620e-02 -1.70162201e+00 6.61632359e-01 -1.86495721e-01 -2.61570632e-01 2.97267824e-01 -5.18296480e-01 -6.39303982e-01 1.36437356e-01 1.76927760e-01 -5.39958894e-01 6.66631401e-01 -3.26801509e-01 -3.00142169e-01 -8.35175812e-01 -6.20487809e-01 6.63061365e-02 -3.84882301e-01 -4.11370806e-02 2.34409720e-01 -1.58292100e-01 5.25295377e-01 -9.58806694e-01 2.67192751e-01 -4.29961652e-01 -4.63011712e-01 -2.13329755e-02 1.16544425e+00 -9.65154469e-01 1.45437443e+00 -1.91897142e+00 -1.57514483e-01 2.70689696e-01 -3.50011475e-02 3.94479305e-01 7.99187124e-01 4.76557940e-01 3.31461817e-01 8.42706710e-02 -2.59940743e-01 4.09328490e-01 -2.61394233e-01 3.40855837e-01 2.97070712e-01 6.97589457e-01 -3.66687745e-01 3.66032630e-01 -6.86500907e-01 -4.59112793e-01 3.05979729e-01 3.34004730e-01 -6.67696595e-02 3.70249548e-03 4.88013566e-01 6.50890052e-01 -5.76323509e-01 9.62289155e-01 2.80504197e-01 1.94811076e-01 3.36842537e-02 -3.68585587e-01 -1.20236196e-01 -4.89575090e-03 -1.47570109e+00 1.25996768e+00 -1.30871475e-01 1.53123975e-01 5.80007248e-02 -1.27246404e+00 9.16415870e-01 6.29792571e-01 4.54501063e-01 -7.85911798e-01 2.28529155e-01 5.07871389e-01 1.85402483e-02 -1.37500834e+00 -7.34025240e-02 1.54592752e-01 1.70608625e-01 3.73561889e-01 -3.67641419e-01 5.04850626e-01 4.04714584e-01 -4.77822065e-01 1.42030847e+00 4.48622078e-01 7.30634212e-01 -6.19375445e-02 5.81723154e-01 -2.05769703e-01 7.81515658e-01 2.07339615e-01 -2.78250754e-01 3.83353829e-01 -1.43704414e-01 -4.18984503e-01 -6.72642767e-01 -9.71871316e-01 7.26380870e-02 5.64073920e-01 2.94403374e-01 -4.15254295e-01 -7.05344141e-01 3.09938312e-01 3.46055217e-02 -2.02310726e-01 -1.13303207e-01 -6.01197958e-01 -9.04334247e-01 -9.08876836e-01 6.87055528e-01 7.22928584e-01 1.12551856e+00 -1.12220681e+00 -1.49909246e+00 6.20635509e-01 -3.78639877e-01 -1.14136565e+00 -1.32803211e-03 -3.54879290e-01 -1.22458649e+00 -1.25606990e+00 -6.14662826e-01 -4.34426248e-01 2.04075277e-01 1.95903555e-01 6.39160335e-01 4.01638120e-01 -4.17501062e-01 3.91233981e-01 -7.19834507e-01 -3.09772313e-01 1.77791044e-01 -6.05787449e-02 7.58592248e-01 -3.43986489e-02 4.80001748e-01 -1.08765948e+00 -9.58051324e-01 4.63213205e-01 -3.11084718e-01 -2.10229471e-01 4.50934857e-01 2.19929025e-01 3.58174920e-01 8.68194327e-02 1.86446249e-01 -1.76978707e-01 8.64043176e-01 -4.95436817e-01 9.07425806e-02 -3.70453894e-02 -2.93165475e-01 -3.83890450e-01 5.72675526e-01 -3.42872590e-01 -6.10329092e-01 -2.29453474e-01 -3.39331895e-01 2.83642381e-01 -5.34780443e-01 6.18256569e-01 -4.97844964e-01 1.78127691e-01 6.66796684e-01 1.79441378e-01 2.06123263e-01 -5.14286399e-01 -3.90746117e-01 1.00763953e+00 5.74538946e-01 -5.16413987e-01 3.35011095e-01 3.17644387e-01 2.46105403e-01 -1.27581620e+00 6.04779162e-02 -5.71345210e-01 -3.66708785e-01 -7.84748733e-01 1.21456599e+00 -4.45239097e-01 -1.32654977e+00 7.15805411e-01 -8.58774245e-01 2.70493422e-02 3.43079269e-01 1.03527129e+00 -5.50029099e-01 6.57636523e-01 -7.24145293e-01 -1.04092538e+00 -4.31263477e-01 -7.81654537e-01 8.20045710e-01 6.57945454e-01 -7.01139450e-01 -6.52499378e-01 2.08220258e-01 3.71316224e-01 3.13046724e-01 8.87478113e-01 3.04106832e-01 1.42733172e-01 1.52620718e-01 -4.20264781e-01 4.90948528e-01 1.31483683e-02 6.42997324e-01 1.16744466e-01 -5.15562057e-01 3.32031050e-03 2.67700016e-01 2.00384542e-01 4.17750984e-01 5.68623364e-01 8.37957561e-01 -3.46545070e-01 -6.51081622e-01 5.31644702e-01 1.19493139e+00 7.45565772e-01 1.22028935e+00 6.32061303e-01 8.17133963e-01 4.55249071e-01 6.41312480e-01 2.49100789e-01 2.33451992e-01 6.03251994e-01 1.83029354e-01 3.04129183e-01 2.70555735e-01 -1.20472685e-01 8.30867290e-01 1.11368144e+00 -1.04463267e+00 4.25632745e-02 -1.08709610e+00 2.49351084e-01 -1.86356890e+00 -1.16332769e+00 -6.70642138e-01 2.35819674e+00 4.50149655e-01 2.56059319e-01 4.79180068e-01 1.03895605e+00 8.93395841e-01 -3.88384819e-01 -6.16225719e-01 -3.50308299e-01 2.24547386e-01 2.51805812e-01 4.87722367e-01 -3.18903811e-02 -6.21335268e-01 1.79129094e-01 5.53088379e+00 8.69451985e-02 -1.29416597e+00 -4.17609811e-02 -1.64545104e-01 2.77157187e-01 3.47909808e-01 -2.35207960e-01 -5.42363942e-01 1.12801635e+00 8.18138301e-01 -2.21619591e-01 1.61005072e-02 7.76337147e-01 7.38930166e-01 -7.32837558e-01 -6.56519890e-01 1.07546341e+00 -1.48942485e-01 -6.68229699e-01 -4.72246855e-01 2.59954989e-01 -1.03687264e-01 -4.67525572e-01 -4.72413063e-01 -1.74634278e-01 -5.33484161e-01 -6.09288633e-01 -3.62354219e-02 8.59653234e-01 4.13481653e-01 -4.56990838e-01 1.00370324e+00 5.46661973e-01 -1.67136383e+00 8.49317089e-02 -1.86219767e-01 -7.94137120e-01 5.38964391e-01 1.03978264e+00 -2.16961414e-01 5.07765591e-01 1.03076828e+00 8.75591993e-01 -3.80482346e-01 1.07380736e+00 -2.28504777e-01 7.21267581e-01 -7.71522820e-01 -2.16251791e-01 -5.60146213e-01 -5.86987257e-01 6.79263711e-01 7.44431019e-01 9.72190082e-01 2.55224556e-01 -3.87653969e-02 4.26871210e-01 6.16066754e-01 1.22706510e-01 -9.53445971e-01 8.95969197e-02 2.64541626e-01 9.48062837e-01 -9.13562775e-01 -1.77542076e-01 -2.88199306e-01 9.52670217e-01 -6.87595010e-01 1.03446819e-01 -6.54905558e-01 -8.23927283e-01 5.34217179e-01 7.14410603e-01 -4.46494460e-01 -6.03622198e-01 -4.11008894e-01 -1.33187628e+00 6.93786085e-01 -4.59960997e-01 1.94397509e-01 -8.86050463e-01 -1.02949488e+00 -1.46842510e-01 -6.99576959e-02 -1.69530261e+00 -1.83689877e-01 -6.40531898e-01 -1.10611188e+00 6.88620150e-01 -5.54700434e-01 -4.72170442e-01 -7.38438666e-01 9.65738595e-01 3.00465137e-01 2.16090247e-01 6.72755420e-01 4.23214048e-01 -7.15563715e-01 7.71376342e-02 -4.08868015e-01 9.01645422e-02 6.62163198e-01 -8.67764235e-01 1.92776904e-01 9.40788925e-01 -6.42366111e-01 7.91682124e-01 7.69123375e-01 -1.18360841e+00 -1.58301997e+00 -2.52822697e-01 7.36825526e-01 2.40841391e-03 3.09883535e-01 1.64731979e-01 -8.95796299e-01 4.62022811e-01 -1.83366552e-01 -2.69917309e-01 7.89687693e-01 -2.59422004e-01 6.44585550e-01 -2.02601627e-01 -1.36628163e+00 6.12820148e-01 1.28312540e+00 -4.48540561e-02 -9.59776998e-01 1.36844693e-02 1.32447869e-01 -4.95265901e-01 -1.06691790e+00 4.93179888e-01 1.24727702e+00 -1.10816824e+00 8.67304981e-01 -1.92630842e-01 1.87953442e-01 -5.18134654e-01 5.55589348e-02 -1.23508120e+00 -1.24312200e-01 -1.63105071e-01 -3.25710863e-01 1.04323816e+00 -1.80261925e-01 -1.03808761e+00 8.81327033e-01 5.40467381e-01 -7.44734630e-02 -5.23208618e-01 -8.17542255e-01 -8.55443895e-01 -7.13060975e-01 -2.76003927e-01 5.45039356e-01 7.57463515e-01 8.57891083e-01 1.71682253e-01 -4.47351336e-01 6.57812506e-02 6.86857224e-01 -5.19596219e-01 7.64597118e-01 -1.34185112e+00 6.54502660e-02 1.31196275e-01 -1.26276863e+00 -6.34395838e-01 -5.97459197e-01 -1.56783834e-01 -3.31279188e-01 -2.05322719e+00 -3.94987404e-01 3.87105793e-01 3.14690113e-01 2.41617158e-01 -2.13078596e-02 1.87198639e-01 -2.29926363e-01 1.77128255e-01 -2.84869205e-02 1.33151636e-01 1.15756536e+00 1.87560439e-01 -5.00798523e-01 2.05060795e-01 -8.74459147e-02 1.01239753e+00 1.21928644e+00 -2.27825105e-01 -1.50045231e-01 -6.62628040e-02 4.76917237e-01 1.38251632e-01 3.29746604e-01 -1.65242255e+00 3.90332937e-01 -1.35423496e-01 6.47896349e-01 -4.56735551e-01 1.41218528e-01 -7.32253909e-01 4.63483304e-01 1.19781733e+00 7.50045657e-01 3.89418066e-01 -2.38167450e-01 2.77555585e-01 -1.04456969e-01 8.12147558e-02 5.08769989e-01 -3.87029201e-01 -7.66541719e-01 -2.00607091e-01 -1.07348442e+00 -1.90923050e-01 1.00707686e+00 -1.28757226e+00 -3.51632088e-01 -1.39147177e-01 -1.07060897e+00 1.75532624e-01 3.73181790e-01 8.69129673e-02 7.38873303e-01 -1.44910538e+00 -8.99266265e-03 3.34674627e-01 -1.69253703e-02 -3.13018620e-01 2.92640358e-01 1.32783306e+00 -7.88734615e-01 1.38548106e-01 -1.07388127e+00 -6.77859783e-01 -1.42584944e+00 4.30062078e-02 2.82887876e-01 2.29050331e-02 -9.80282068e-01 -7.69027919e-02 -8.52609396e-01 3.00668962e-02 -9.02465805e-02 -6.38076425e-01 -7.22718716e-01 -4.49680835e-02 5.75290978e-01 1.01146948e+00 2.43150219e-01 -5.14574647e-01 -7.23841786e-01 1.37836313e+00 7.96984076e-01 -1.29789770e-01 9.14640367e-01 -4.41832840e-01 2.12323647e-02 7.80757666e-01 6.93598330e-01 -3.76881585e-02 -4.73868489e-01 6.19349062e-01 -6.77714348e-02 -3.53121877e-01 -6.42567277e-01 -1.79331869e-01 -8.33056867e-01 8.00189793e-01 9.89215255e-01 5.11582971e-01 1.11339676e+00 -5.89691579e-01 1.38072753e+00 3.97567123e-01 1.03086746e+00 -1.48134053e+00 -7.77766109e-02 1.57956406e-01 4.48298067e-01 -9.17840123e-01 -7.97681436e-02 -4.37838465e-01 -3.15809369e-01 1.17017162e+00 5.47709823e-01 -3.56054425e-01 8.99005711e-01 3.65489244e-01 -8.80294740e-02 -3.52715813e-02 -1.81980848e-01 -3.90550047e-01 -1.25691205e-01 9.20002759e-01 5.30317724e-01 1.80971250e-01 -1.04964995e+00 7.65508652e-01 -4.28169906e-01 6.47325754e-01 6.65102363e-01 1.45544207e+00 -9.92948651e-01 -8.55101824e-01 -9.10145104e-01 6.92534447e-01 -5.66553295e-01 6.43879354e-01 -2.01616123e-01 5.96179962e-01 3.29244286e-01 1.24107587e+00 -1.64385036e-01 -8.79180312e-01 9.23222244e-01 3.27188611e-01 4.45287049e-01 -3.63321215e-01 -2.50483483e-01 -3.66719246e-01 5.55430651e-02 -8.49308550e-01 -7.07478225e-01 -5.09062946e-01 -1.44292533e+00 -6.03499115e-01 8.22908655e-02 -7.84798712e-02 6.72228456e-01 1.09726357e+00 2.18985919e-02 4.07909900e-01 2.56515592e-01 -8.50935638e-01 1.06254958e-01 -1.01081955e+00 -8.60154212e-01 4.75530922e-01 -3.98766957e-02 -1.11462998e+00 -4.71394598e-01 2.80661285e-01]
[7.1389360427856445, 0.5251425504684448]
148819fa-c85c-4ffa-b01f-26bd6f1f8fbf
refined-plane-segmentation-for-cuboid-shaped
2003.1287
null
https://arxiv.org/abs/2003.12870v1
https://arxiv.org/pdf/2003.12870v1.pdf
Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge Detection
Recent advances in the area of plane segmentation from single RGB images show strong accuracy improvements and now allow a reliable segmentation of indoor scenes into planes. Nonetheless, fine-grained details of these segmentation masks are still lacking accuracy, thus restricting the usability of such techniques on a larger scale in numerous applications, such as inpainting for Augmented Reality use cases. We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image. This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects. Our approach is motivated by logistics, where this assumption is valid and refined planes can be used to perform robust object detection without the need for supervised learning. Results for two baselines and our approach are reported on our own dataset, which we made publicly available. The results show a consistent improvement over the state-of-the-art. The influence of the prior segmentation and the edge detection is investigated and finally, areas for future research are proposed.
['Kai Furmans', 'Laura Dörr', 'Niels Ole Salscheider', 'Alexander Naumann']
2020-03-28
null
null
null
null
['robust-object-detection']
['computer-vision']
[ 6.47636771e-01 2.35277683e-01 1.78838581e-01 -5.14436126e-01 -7.42348075e-01 -4.61277664e-01 3.88680965e-01 1.96137633e-02 -5.31881452e-01 6.77176416e-01 -1.28073439e-01 -1.12156026e-01 -1.40050054e-02 -8.54627013e-01 -8.56348097e-01 -4.58031476e-01 7.38393236e-03 3.20703059e-01 7.06105769e-01 -8.21089223e-02 2.97226757e-01 7.97136724e-01 -1.66580307e+00 3.60821664e-01 6.76516294e-01 1.14537251e+00 1.83016077e-01 5.54190814e-01 -4.62040715e-02 5.14639430e-02 -5.05333483e-01 -4.46484566e-01 5.84590316e-01 -2.75514483e-01 -6.28743112e-01 7.37759233e-01 6.95661843e-01 -3.09233665e-01 3.84376012e-02 8.73080552e-01 1.47948042e-01 1.83569878e-01 4.03469443e-01 -9.32433784e-01 7.42186010e-02 -1.32662207e-01 -6.67388022e-01 -1.20084800e-01 4.70174044e-01 -2.43118629e-02 6.74295545e-01 -6.84262693e-01 8.85372818e-01 8.41776013e-01 7.84354150e-01 1.65387362e-01 -1.24505591e+00 -3.21222514e-01 3.85610372e-01 -1.09872051e-01 -1.30969238e+00 -4.44612533e-01 9.09175634e-01 -3.68300080e-01 1.00230074e+00 4.88772184e-01 7.66767204e-01 5.97482085e-01 1.79491658e-02 5.78209043e-01 1.34349608e+00 -6.39545023e-01 3.73462677e-01 1.68803513e-01 -8.58312547e-02 8.33925366e-01 3.70193273e-01 2.90655959e-02 -3.57908458e-01 1.28781930e-01 1.14283991e+00 -1.17432132e-01 -3.76402557e-01 -8.31074655e-01 -1.19720471e+00 5.35498023e-01 6.25240088e-01 3.06458235e-01 -5.69887817e-01 2.10518725e-02 1.28861004e-02 -1.46201491e-01 7.14989305e-01 4.59879577e-01 -4.76279259e-01 -1.10099234e-01 -1.39193666e+00 4.13266629e-01 4.68982548e-01 1.02781296e+00 9.09983695e-01 -4.29523140e-01 2.51947939e-01 5.34374356e-01 2.16489583e-01 1.33318394e-01 -1.37464076e-01 -1.27983654e+00 4.09632683e-01 5.16733766e-01 3.09613109e-01 -9.20683026e-01 -5.16700447e-01 -1.15421183e-01 -2.68112332e-01 5.61444163e-01 6.40079737e-01 5.37250638e-02 -1.19810367e+00 8.54806483e-01 5.90080321e-01 1.30715653e-01 -1.71098486e-01 9.39137459e-01 3.71847481e-01 3.84151518e-01 -4.02087390e-01 -8.87211133e-03 1.33288741e+00 -1.00201154e+00 -6.27983451e-01 -4.46312159e-01 4.01561141e-01 -9.52899337e-01 1.05905700e+00 8.56681228e-01 -1.07023048e+00 -2.93590754e-01 -1.09194803e+00 -1.80091769e-01 -2.93435127e-01 9.80383605e-02 1.01733983e+00 9.98640954e-01 -9.06892419e-01 6.74015939e-01 -1.14071703e+00 -5.14381230e-01 6.33767784e-01 6.84113264e-01 -5.84222496e-01 -2.20379576e-01 -2.91784495e-01 6.42334223e-01 3.68975848e-01 2.14268133e-01 -1.52410075e-01 -5.22654653e-01 -9.27693009e-01 -3.16442937e-01 7.20270038e-01 -7.22647309e-01 1.32550943e+00 -7.04496086e-01 -1.58441472e+00 1.01807535e+00 -2.37497702e-01 -3.98832053e-01 7.92036772e-01 -3.67169976e-01 1.32783324e-01 3.43426645e-01 8.71660262e-02 7.57683396e-01 6.19892716e-01 -1.52497971e+00 -9.02263522e-01 -4.51540828e-01 2.05981761e-01 1.30095318e-01 2.65062511e-01 -1.42276093e-01 -9.03810382e-01 -5.36607981e-01 6.60493553e-01 -9.27468181e-01 -5.62233388e-01 2.71382838e-01 -3.65504622e-01 2.86222577e-01 8.90871346e-01 -7.85876513e-01 8.30567300e-01 -2.07649970e+00 -6.06306046e-02 3.17143798e-01 -1.69790491e-01 -2.37112015e-01 2.92205632e-01 1.92381158e-01 5.25888465e-02 1.06472574e-01 -6.76223636e-01 -8.19742799e-01 -2.80890048e-01 1.27585799e-01 -9.94301364e-02 7.03935921e-01 2.07090855e-01 5.95262468e-01 -6.18483782e-01 -4.03098702e-01 7.29089320e-01 4.86214966e-01 -6.20121062e-01 8.72551054e-02 -2.67566234e-01 5.64589381e-01 -2.82538742e-01 7.42340147e-01 7.49206424e-01 1.06488496e-01 -1.03916124e-01 -2.54159570e-01 -2.50440300e-01 3.72853130e-01 -1.51774001e+00 1.91164291e+00 -4.46330577e-01 4.28748578e-01 4.22817737e-01 -5.70691168e-01 7.66628265e-01 5.32618947e-02 6.38130307e-01 -5.16461432e-01 4.57332507e-02 2.71011025e-01 -1.13628879e-01 -2.29748458e-01 7.93398619e-01 -1.42853051e-01 9.94479731e-02 8.70124027e-02 -1.69963852e-01 -9.26760077e-01 2.19050109e-01 -1.06090903e-01 7.38943219e-01 7.49586821e-01 2.42937863e-01 -1.47778749e-01 2.57454753e-01 3.55777413e-01 4.31124002e-01 4.21605915e-01 -1.11398920e-01 1.35412610e+00 1.24503866e-01 -3.37994784e-01 -9.94676888e-01 -7.11099684e-01 -4.30344939e-01 4.28462774e-01 3.68559003e-01 -3.24939102e-01 -1.13618207e+00 -7.30310321e-01 -8.88356864e-02 6.23344123e-01 -6.17420495e-01 4.93046492e-01 -6.15120292e-01 -6.87896669e-01 -1.86065957e-02 6.29494131e-01 6.86839044e-01 -9.24125075e-01 -1.00037348e+00 2.54182190e-01 -1.16493620e-01 -1.55786538e+00 -4.08324525e-02 1.97800666e-01 -1.28756762e+00 -1.15576816e+00 -7.22939551e-01 -2.65518218e-01 8.24464679e-01 2.69350886e-01 1.08254993e+00 6.60264492e-02 -3.58717918e-01 5.88928819e-01 -3.56837928e-01 -3.42013478e-01 1.50879294e-01 -6.50140196e-02 -1.38496548e-01 -1.70593366e-01 -2.66287588e-02 -4.00815755e-01 -6.90586209e-01 4.24087673e-01 -9.95485425e-01 2.38110438e-01 4.37398553e-01 3.38692367e-01 9.21266019e-01 1.44893661e-01 -2.08456293e-01 -1.08761299e+00 9.77622345e-02 1.13511652e-01 -9.46399629e-01 -1.17742114e-01 -3.63184184e-01 -5.81311360e-02 1.39147550e-01 5.30975647e-02 -1.04941034e+00 4.31191087e-01 -2.76712447e-01 -1.29787058e-01 -5.91933608e-01 6.71893656e-02 -1.75946206e-01 -4.53490257e-01 3.55484754e-01 -2.21736327e-01 -3.99161309e-01 -5.15543580e-01 3.52323711e-01 3.97116303e-01 6.06531322e-01 -5.09882390e-01 6.29205823e-01 9.40171182e-01 1.18695788e-01 -1.05674899e+00 -6.94544256e-01 -6.51421130e-01 -9.32411194e-01 -1.53642789e-01 9.52187598e-01 -5.28202116e-01 -2.71091163e-01 3.66975427e-01 -1.25703192e+00 -5.52832305e-01 -3.98082674e-01 4.26149666e-01 -7.42899477e-01 3.89349878e-01 -4.43191975e-01 -9.23864067e-01 1.93124875e-01 -1.26130533e+00 1.49774992e+00 3.38090092e-01 -2.32664138e-01 -8.02891076e-01 -1.56934351e-01 8.24057937e-01 8.40899497e-02 4.45668876e-01 4.64249253e-01 -9.88950580e-02 -1.04786181e+00 -1.74479708e-01 -9.67254117e-02 1.51237771e-01 2.14868456e-01 1.52204245e-01 -1.31327295e+00 5.82437851e-02 -4.09795046e-02 2.52245385e-02 7.25762010e-01 5.05256116e-01 1.06054473e+00 2.30218232e-01 -5.05342424e-01 7.43046463e-01 1.42733562e+00 5.73975779e-02 9.93803740e-01 8.43637705e-01 7.17739463e-01 8.38304102e-01 9.45166230e-01 1.78265184e-01 2.73811042e-01 8.87191355e-01 5.76960981e-01 -3.00730884e-01 -2.12092847e-01 4.37904410e-02 -1.64217085e-01 2.18041524e-01 -4.47697639e-01 -8.69731456e-02 -9.37944055e-01 5.17665625e-01 -1.59495223e+00 -4.28749442e-01 -4.03944761e-01 2.40660071e+00 4.14378673e-01 3.66586804e-01 9.50512365e-02 4.41911697e-01 2.99846947e-01 -4.82913181e-02 -1.64380163e-01 -3.00070256e-01 2.04251111e-01 4.16499794e-01 8.10219228e-01 7.32172012e-01 -1.42632687e+00 1.04521072e+00 6.66720390e+00 5.06431937e-01 -1.06979918e+00 -1.18158504e-01 7.54984617e-01 1.16976134e-01 4.97800335e-02 -6.66492945e-03 -6.72796667e-01 1.17798045e-01 5.04989684e-01 5.62638044e-01 2.12151051e-01 8.49714577e-01 2.39163980e-01 -8.83118391e-01 -9.41829085e-01 1.07903039e+00 8.09197035e-03 -1.09862375e+00 -5.50582349e-01 1.78244993e-01 8.98526311e-01 -6.99110553e-02 -1.55027419e-01 -5.38503677e-02 -6.69521540e-02 -7.73852587e-01 8.25640440e-01 4.51385647e-01 5.30404627e-01 -6.72571599e-01 7.17014909e-01 2.27625668e-01 -1.13374186e+00 3.01300317e-01 -2.29657888e-01 -2.11259693e-01 3.21544975e-01 7.63218284e-01 -8.25565636e-01 8.55752349e-01 8.66609216e-01 2.68804014e-01 -7.76415884e-01 1.36165380e+00 -2.60699540e-01 2.51552612e-01 -6.54495001e-01 3.99272710e-01 1.69691816e-01 -5.10532439e-01 2.12026268e-01 1.07255948e+00 2.45048419e-01 2.29185581e-01 2.37439021e-01 8.35424304e-01 1.70067683e-01 5.75099662e-02 -5.73524356e-01 2.11241156e-01 -1.06047597e-02 1.28622055e+00 -1.69911742e+00 -1.78436130e-01 -3.91691804e-01 1.31768036e+00 9.66528729e-02 3.37465227e-01 -5.09096801e-01 -2.32391685e-01 5.01534045e-01 5.82264066e-01 5.69989502e-01 -6.59256876e-01 -8.13706696e-01 -9.78675902e-01 2.82816350e-01 -7.57549047e-01 3.91258374e-02 -7.10022867e-01 -8.33690941e-01 5.58313549e-01 2.81622201e-01 -9.84313905e-01 -2.13894919e-01 -8.99471402e-01 -2.19990104e-01 6.06824517e-01 -1.49650300e+00 -1.16568255e+00 -4.93517935e-01 2.83007711e-01 6.42248511e-01 5.50115943e-01 8.67195070e-01 1.43492728e-01 -2.84689069e-01 1.19114861e-01 -1.33638248e-01 -3.04769836e-02 5.52296758e-01 -1.17882812e+00 5.84511518e-01 1.21887994e+00 3.12330455e-01 4.89938945e-01 7.27179468e-01 -8.87996972e-01 -1.13911664e+00 -8.28093767e-01 3.45833808e-01 -5.63652992e-01 1.12031497e-01 -5.97216845e-01 -7.26822615e-01 6.66809142e-01 -2.05833111e-02 3.09732735e-01 3.48908633e-01 -9.64716263e-03 1.26938000e-01 1.30223170e-01 -1.42029822e+00 5.50074816e-01 1.00898290e+00 -2.23344013e-01 -2.96800673e-01 1.64010823e-01 3.72086734e-01 -8.86292994e-01 -5.34193695e-01 6.19658113e-01 5.35145104e-01 -1.54322898e+00 9.06803489e-01 8.97025913e-02 1.61956057e-01 -5.40033102e-01 -1.30169496e-01 -9.16562498e-01 1.27734333e-01 -4.56051171e-01 -2.93874238e-02 9.23647523e-01 3.42738271e-01 -4.33974862e-01 1.31257892e+00 1.03306794e+00 -3.17824066e-01 -6.84504747e-01 -9.80999947e-01 -6.29840732e-01 -4.89270866e-01 -7.60210454e-01 2.61248648e-01 7.13308632e-01 -4.89096135e-01 -1.73424691e-01 1.74599260e-01 3.52955967e-01 5.70410430e-01 1.23437054e-01 9.56979334e-01 -1.15593398e+00 -3.04002345e-01 -3.02708656e-01 -6.56567931e-01 -1.09569609e+00 -2.70604074e-01 -3.38163167e-01 2.43831530e-01 -1.82290196e+00 -3.10296506e-01 -5.66085756e-01 2.90848196e-01 3.93075645e-01 -1.69332504e-01 8.10802162e-01 2.83418298e-01 -7.89462030e-02 -4.04974341e-01 3.63022357e-01 1.11463749e+00 7.79373646e-02 -4.19560790e-01 1.66327581e-01 -3.36876571e-01 1.05034769e+00 5.63664973e-01 -4.26126689e-01 -2.12951690e-01 -2.73392528e-01 -1.68288678e-01 -4.12335247e-01 3.83896321e-01 -1.37752652e+00 -2.41887067e-02 2.84417905e-02 5.71522593e-01 -7.09997475e-01 7.76450694e-01 -1.28525543e+00 5.48797287e-02 1.45460427e-01 3.52931321e-01 -2.64684130e-02 5.28771043e-01 3.19562763e-01 3.01138870e-02 -3.83906424e-01 5.74669480e-01 -2.81092912e-01 -6.14017785e-01 9.70350057e-02 -7.62466192e-02 -4.20050830e-01 1.20140862e+00 -8.40283036e-01 3.20579499e-01 -3.99080127e-01 -7.34142244e-01 -2.07735568e-01 9.97504890e-01 1.14449695e-01 7.42936969e-01 -8.43265533e-01 -3.26732814e-01 3.49043667e-01 -9.58799869e-02 5.38576543e-01 -6.02075607e-02 7.20254481e-01 -1.02589500e+00 3.82964760e-01 -8.51874873e-02 -7.90002823e-01 -1.34695363e+00 4.27608997e-01 3.61107141e-01 -1.83531821e-01 -9.10946310e-01 7.88613319e-01 1.40444070e-01 -3.48593771e-01 1.94936886e-01 -9.31681991e-01 1.63091004e-01 -2.98380047e-01 2.91238457e-01 4.28499371e-01 5.28827786e-01 -5.60051322e-01 -4.64063287e-01 8.13330114e-01 1.34271691e-02 -4.80102837e-01 1.30466080e+00 -1.60444558e-01 8.77611246e-03 4.45546359e-01 7.18316972e-01 3.08250546e-01 -1.54057229e+00 2.07921743e-01 5.85452318e-02 -8.45686316e-01 2.80990392e-01 -6.69113457e-01 -9.22539055e-01 8.29160571e-01 7.01079011e-01 5.17147407e-02 1.08809257e+00 -1.44649208e-01 6.02979600e-01 1.95946351e-01 8.58519793e-01 -9.52521563e-01 -2.59025127e-01 2.42778078e-01 7.17334867e-01 -1.22767079e+00 4.56843346e-01 -1.23133516e+00 -3.07613045e-01 1.18266761e+00 4.46350694e-01 -2.72895515e-01 4.01327461e-01 4.55946803e-01 1.79195404e-01 -2.49355569e-01 1.58207521e-01 -2.69242495e-01 3.95135760e-01 8.09226334e-01 4.79550421e-01 -1.54248089e-01 -1.55742884e-01 2.31565580e-01 -3.89631808e-01 -3.07359677e-02 4.60326195e-01 1.26244044e+00 -2.13786915e-01 -1.29953659e+00 -8.94055665e-01 1.97989941e-01 -5.34690797e-01 5.69918714e-02 -3.82198185e-01 1.10438704e+00 2.21786126e-01 9.36575294e-01 1.39491022e-01 -6.00227863e-02 6.33883536e-01 -1.40970379e-01 9.20850515e-01 -8.72867465e-01 -4.90762383e-01 2.44100466e-01 1.75499991e-01 -8.86446714e-01 -4.82136428e-01 -8.18473160e-01 -1.22083175e+00 1.53590858e-01 -5.17157733e-01 -2.17719659e-01 9.68125045e-01 8.69074285e-01 2.12858170e-01 6.07850611e-01 8.45431760e-02 -1.56741250e+00 2.38299996e-01 -7.03698695e-01 -4.14348155e-01 2.99545914e-01 1.82933226e-01 -7.66679823e-01 -6.49423227e-02 2.97195256e-01]
[8.694480895996094, -2.718822717666626]
82c6de55-91b3-4fd9-81ff-68391ee7567c
bits-and-pieces-understanding-information
2008.09535
null
https://arxiv.org/abs/2008.09535v2
https://arxiv.org/pdf/2008.09535v2.pdf
Bits and Pieces: Understanding Information Decomposition from Part-whole Relationships and Formal Logic
Partial information decomposition (PID) seeks to decompose the multivariate mutual information that a set of source variables contains about a target variable into basic pieces, the so called "atoms of information". Each atom describes a distinct way in which the sources may contain information about the target. In this paper we show, first, that the entire theory of partial information decomposition can be derived from considerations of elementary parthood relationships between information contributions. This way of approaching the problem has the advantage of directly characterizing the atoms of information, instead of taking an indirect approach via the concept of redundancy. Secondly, we describe several intriguing links between PID and formal logic. In particular, we show how to define a measure of PID based on the information provided by certain statements about source realizations. Furthermore, we show how the mathematical lattice structure underlying PID theory can be translated into an isomorphic structure of logical statements with a particularly simple ordering relation: logical implication. The conclusion to be drawn from these considerations is that there are three isomorphic "worlds" of partial information decomposition, i.e. three equivalent ways to mathematically describe the decomposition of the information carried by a set of sources about a target: the world of parthood relationships, the world of logical statements, and the world of antichains that was utilized by Williams and Beer in their original exposition of PID theory. We additionally show how the parthood perspective provides a systematic way to answer a type of question that has been much discussed in the PID field: whether a partial information decomposition can be uniquely determined based on concepts other than redundant information.
['Michael Wibral', 'Abdullah Makkeh', 'Aaron J. Gutknecht']
2020-08-21
null
null
null
null
['formal-logic']
['reasoning']
[ 1.95968315e-01 6.25845253e-01 -3.21374238e-01 -3.20936620e-01 -2.32225284e-01 -7.67251551e-01 9.61620450e-01 3.72607172e-01 -6.83114454e-02 6.82010472e-01 4.31924790e-01 -4.48440790e-01 -7.05452979e-01 -1.06074023e+00 -3.32897723e-01 -8.12239707e-01 -1.68731198e-01 6.94698036e-01 2.58441597e-01 -5.22803724e-01 3.34846556e-01 4.63193744e-01 -1.55877709e+00 3.40920955e-01 5.46543241e-01 8.71670365e-01 -1.11869723e-01 3.51946294e-01 -5.55132270e-01 1.22316515e+00 -3.79065692e-01 -3.35718334e-01 1.51011482e-01 -7.91114628e-01 -1.25109148e+00 -7.78344944e-02 -2.88873762e-01 6.24609962e-02 -3.00223511e-02 1.22487199e+00 -2.39720672e-01 -3.39057505e-01 7.36797392e-01 -1.42799366e+00 -4.39165622e-01 9.78796661e-01 -2.95787036e-01 1.11216821e-01 7.42130637e-01 -3.27504128e-01 1.37481952e+00 -4.15203720e-01 6.61263883e-01 1.43910027e+00 3.79895419e-01 1.78561881e-01 -1.49474216e+00 -2.07508445e-01 -7.96326622e-02 1.61468893e-01 -1.22816873e+00 -3.27389121e-01 8.10320914e-01 -6.18044376e-01 4.85167831e-01 7.39839792e-01 4.62973356e-01 3.73895735e-01 4.35911417e-01 5.30490398e-01 1.23311806e+00 -6.77293658e-01 1.94947734e-01 5.87451994e-01 8.03134143e-01 5.73959708e-01 8.97243679e-01 -4.83043268e-02 -5.08574188e-01 -1.82393551e-01 4.19102699e-01 -3.90859097e-01 -3.42770934e-01 -4.57127303e-01 -1.10129642e+00 7.35547483e-01 4.15210985e-02 7.58383572e-01 1.57413110e-02 -1.79534629e-01 2.51246840e-01 6.32747412e-01 6.44285679e-02 4.16178256e-01 -4.12833840e-01 2.98678011e-01 -2.56201088e-01 1.12867892e-01 1.37652671e+00 7.62320697e-01 9.95236099e-01 -4.76255745e-01 3.09174478e-01 2.20096707e-02 6.76440597e-01 4.21043068e-01 4.74952683e-02 -1.06499553e+00 4.00869131e-01 7.33962357e-01 2.28519946e-01 -1.18891799e+00 -4.53294814e-01 -1.40580028e-01 -6.52254581e-01 1.68220699e-01 7.14302540e-01 1.09406993e-01 7.37946332e-02 2.11471319e+00 -5.18315174e-02 -7.76989877e-01 2.98700750e-01 5.13989687e-01 6.21892273e-01 3.42574924e-01 -3.51259381e-01 -6.18419230e-01 1.40358567e+00 -5.93595169e-02 -8.85427594e-01 1.96665436e-01 5.27399302e-01 -3.49553734e-01 4.45531756e-01 4.47920322e-01 -1.29179037e+00 -1.67846233e-01 -1.12276947e+00 -5.26656536e-03 -4.26163793e-01 -5.46494484e-01 1.02953553e+00 7.80023158e-01 -1.16251493e+00 5.09828627e-01 -7.16018319e-01 -2.54718900e-01 -1.31179988e-01 2.93078989e-01 -2.84550101e-01 3.51406932e-01 -1.23555291e+00 9.83529508e-01 4.86505985e-01 5.40461279e-02 -4.45908129e-01 -4.04258609e-01 -6.92385256e-01 2.15297729e-01 5.48576415e-01 -7.39833653e-01 8.32171381e-01 -1.06654799e+00 -9.28763449e-01 9.80249941e-01 -3.82641286e-01 -3.05914700e-01 3.24415147e-01 4.07638073e-01 -3.87660980e-01 1.58579990e-01 2.69461483e-01 -1.06294908e-01 3.35272789e-01 -1.50742936e+00 -2.61202365e-01 -7.90968895e-01 6.27996624e-01 1.21881291e-02 2.00555492e-02 9.74771827e-02 -2.66888365e-03 -7.27600232e-02 7.91085422e-01 -5.32359600e-01 3.57876606e-02 -3.94693822e-01 -7.06288159e-01 -2.81830430e-01 2.62094200e-01 -4.50071283e-02 1.27479577e+00 -1.93055832e+00 2.38603458e-01 5.44529974e-01 5.85719168e-01 -4.76238966e-01 2.35803291e-01 8.90866578e-01 -5.57240427e-01 5.55928886e-01 -1.48573741e-01 2.14122877e-01 3.07728708e-01 1.92183658e-01 -4.56703305e-01 5.11156142e-01 1.07394844e-01 6.75016463e-01 -7.83862948e-01 -4.70488429e-01 -1.72733422e-02 3.07493985e-01 -4.21256125e-01 -3.40669155e-01 -2.35565335e-01 1.33258492e-01 -7.22203493e-01 3.79818439e-01 7.14686632e-01 -3.37075591e-01 6.29768550e-01 -1.64887786e-01 -4.13123727e-01 7.12817788e-01 -1.44701219e+00 1.05821979e+00 1.81010798e-01 5.41654825e-01 2.33572975e-01 -1.06619644e+00 7.33628035e-01 3.13828647e-01 6.55207098e-01 -3.98210078e-01 3.63432348e-01 -5.52591272e-02 2.01245204e-01 -2.12596416e-01 3.99973929e-01 -5.87709904e-01 -2.82112330e-01 8.79880846e-01 -7.69264773e-02 -3.88890244e-02 4.28599805e-01 4.82220113e-01 1.18141508e+00 -2.27958113e-01 6.36337340e-01 -6.97582483e-01 7.60876060e-01 1.83384940e-02 5.97272217e-01 6.76246464e-01 -1.46938488e-04 3.54067013e-02 1.23227322e+00 -2.59766817e-01 -6.71107173e-01 -1.48937976e+00 -5.50263047e-01 4.60655719e-01 4.09511268e-01 -7.42268026e-01 -4.63786244e-01 -1.80337399e-01 -9.49214697e-02 8.16090941e-01 -7.78566658e-01 1.20857812e-01 -1.25642285e-01 -8.50134552e-01 2.83193052e-01 -6.38848345e-04 4.47184563e-01 -5.98840952e-01 -7.14107513e-01 -9.46471095e-02 -3.94256651e-01 -7.16394722e-01 3.18268299e-01 4.60023791e-01 -9.01307106e-01 -1.34663057e+00 1.67682678e-01 -1.83984876e-01 6.42908633e-01 1.99271262e-01 1.21549690e+00 -4.81821783e-03 1.39565796e-01 6.38053358e-01 -1.80654541e-01 -5.24386704e-01 -7.80252934e-01 -6.05452657e-01 4.44796979e-02 -4.09852490e-02 5.86682081e-01 -6.71154141e-01 6.49015233e-03 1.93615869e-01 -1.17342889e+00 -3.44316848e-02 2.39133134e-01 4.27473694e-01 2.44331673e-01 6.00107074e-01 2.27404997e-01 -8.98925781e-01 4.65435117e-01 -6.01879418e-01 -4.63588417e-01 5.38150609e-01 -5.75246513e-01 6.87702358e-01 3.31535578e-01 4.14540857e-01 -1.26282227e+00 -4.16814685e-01 3.16784561e-01 4.15181845e-01 7.02989846e-02 7.90338874e-01 -6.28912747e-01 1.73629194e-01 4.64440286e-01 1.37063369e-01 1.04835108e-01 -4.37961400e-01 3.37280512e-01 3.48639131e-01 2.86214024e-01 -7.79043794e-01 6.99395776e-01 8.01842690e-01 5.35979271e-01 -6.89839721e-01 -6.64720833e-01 -3.53741109e-01 -8.17947507e-01 -1.02265058e-02 7.54088402e-01 -5.04217327e-01 -1.16127741e+00 8.68714228e-02 -1.35370481e+00 3.48579139e-01 -6.69626296e-01 3.23616773e-01 -9.03966010e-01 5.74566424e-01 -3.52979749e-01 -1.09848154e+00 4.47196752e-01 -8.87390316e-01 4.26356912e-01 -3.09796482e-01 -3.35192114e-01 -1.27854586e+00 1.86050683e-01 1.79068863e-01 8.51323381e-02 2.16167316e-01 1.26578009e+00 -7.95945704e-01 -8.47453713e-01 -8.84417370e-02 -1.75978750e-01 4.58382443e-02 2.40878135e-01 -1.09001629e-01 -8.33837211e-01 8.33625346e-02 8.34256947e-01 1.60477296e-01 8.54777515e-01 1.67546451e-01 2.63889402e-01 -4.97714370e-01 -3.25994611e-01 2.12449491e-01 1.97699273e+00 3.48292112e-01 6.72947407e-01 2.00854391e-01 2.29287833e-01 1.02930129e+00 2.16862082e-01 4.05929714e-01 4.49440956e-01 5.25001228e-01 2.31378391e-01 3.79515290e-01 1.40058100e-01 -1.56080469e-01 1.83582857e-01 6.56172395e-01 -3.42104077e-01 -2.20866799e-02 -8.93827379e-01 3.26257676e-01 -1.75008047e+00 -1.46291149e+00 -4.27860469e-01 2.42603827e+00 9.13717508e-01 1.73043817e-01 1.00307480e-01 4.07745570e-01 5.76859474e-01 4.55760397e-02 -4.91241068e-02 -4.36964482e-01 -4.24354970e-01 -2.42752388e-01 3.69488329e-01 1.00561345e+00 -6.45757377e-01 2.92559952e-01 7.20189476e+00 4.26118135e-01 -3.58885676e-01 1.00873234e-02 3.39988500e-01 3.42148662e-01 -1.01354897e+00 5.44475257e-01 -6.37358904e-01 3.41846645e-01 8.97054970e-01 -6.32035613e-01 2.26138890e-01 2.87093282e-01 3.50084342e-02 -6.60901785e-01 -1.42510498e+00 4.49775368e-01 -1.77774981e-01 -1.16002798e+00 1.41416341e-01 3.22850257e-01 5.31335831e-01 -3.65560144e-01 -2.68566102e-01 -4.52732503e-01 7.38232672e-01 -8.10047507e-01 8.20658863e-01 8.35423887e-01 4.16765183e-01 -5.08522630e-01 6.42247021e-01 5.53519070e-01 -1.14209008e+00 -1.59291804e-01 -1.56552851e-01 -5.42443871e-01 1.00572407e-01 7.51655281e-01 -3.67524534e-01 1.00720286e+00 2.38488495e-01 3.80659848e-01 -2.35287189e-01 5.10593474e-01 -8.17550570e-02 1.11909099e-01 -4.16699380e-01 8.09196010e-02 -1.25005469e-01 -5.38576066e-01 7.73640633e-01 9.40005362e-01 -2.28142180e-02 2.28792101e-01 -3.59264225e-01 1.40217221e+00 4.83585715e-01 -1.89239681e-01 -8.95124137e-01 -7.25743175e-02 3.09137464e-01 8.42158556e-01 -8.09206665e-01 -2.11688325e-01 -5.22534430e-01 2.72044450e-01 -1.47560656e-01 2.80200690e-01 -3.65869194e-01 -1.93300933e-01 5.34879386e-01 1.54152811e-01 7.76231512e-02 -1.28598645e-01 -5.84110737e-01 -1.21724439e+00 1.15747437e-01 -5.61158121e-01 3.63241941e-01 -4.90382552e-01 -1.19228768e+00 2.52544582e-01 4.60020602e-01 -9.96366143e-01 -4.22401488e-01 -6.67624295e-01 -5.52906871e-01 1.05734110e+00 -1.01373529e+00 -7.69017875e-01 2.44951695e-01 6.57778978e-01 -3.52678955e-01 1.02850504e-01 9.62018073e-01 -3.58607650e-01 -2.63504088e-01 2.48395689e-02 1.99744493e-01 8.42948407e-02 6.38149902e-02 -1.47441804e+00 -1.88439488e-01 7.86796391e-01 1.49983540e-01 1.00965130e+00 1.08769453e+00 -4.74143088e-01 -1.60347486e+00 -1.43958688e-01 1.50874710e+00 -8.45181704e-01 1.03140640e+00 -1.90961659e-01 -5.65371275e-01 9.06150401e-01 2.06163242e-01 -5.33141315e-01 7.92829990e-01 4.77749050e-01 -6.67436242e-01 -2.43917435e-01 -1.14707839e+00 3.48084867e-01 8.96100104e-01 -7.30574727e-01 -1.03157985e+00 6.85057789e-02 6.73395395e-01 3.14648092e-01 -8.24409723e-01 2.69899309e-01 6.24268591e-01 -1.62976742e+00 8.21227968e-01 -5.94078720e-01 4.44605649e-01 -3.99809659e-01 -5.21847963e-01 -7.33824134e-01 -4.23097134e-01 -5.00536382e-01 4.26619411e-01 1.16052723e+00 3.76219392e-01 -1.09964800e+00 3.89474779e-01 9.02513146e-01 2.02551588e-01 -4.56026435e-01 -9.29163575e-01 -8.60988677e-01 1.48552731e-01 -6.97137594e-01 4.84587938e-01 9.90212321e-01 1.00040030e+00 4.88998473e-01 2.87692249e-01 -2.04151511e-01 8.54678035e-01 1.83442295e-01 3.03306669e-01 -1.69684207e+00 -4.79513198e-01 -5.87172627e-01 -7.28272378e-01 -7.50307441e-01 4.91728224e-02 -1.08428097e+00 -1.72985896e-01 -1.39877880e+00 6.28302693e-01 -4.05194461e-01 -4.05511886e-01 3.31895441e-01 5.41728795e-01 -2.40858912e-01 4.74217445e-01 5.46946466e-01 -4.91048872e-01 8.30225423e-02 9.78834331e-01 -4.89194086e-03 -9.82669145e-02 -5.31776398e-02 -1.29615009e+00 9.62137401e-01 6.48539722e-01 -2.51373231e-01 -5.77018917e-01 -2.34350115e-02 9.97424662e-01 4.79405731e-01 5.04333913e-01 -6.52930021e-01 3.20014924e-01 -1.60384610e-01 -7.58129433e-02 -7.12194145e-01 1.56213731e-01 -9.92012739e-01 5.54215908e-01 4.81255352e-01 -4.88639802e-01 -1.09281071e-01 6.79382011e-02 3.67856830e-01 -1.79255635e-01 -5.81100523e-01 3.17185938e-01 -3.92141521e-01 -3.93288136e-01 -3.85059237e-01 -4.29021567e-01 -6.72334507e-02 7.09258437e-01 -1.79677293e-01 -5.56781471e-01 -3.81795615e-01 -8.37102830e-01 -7.87738562e-02 4.98166800e-01 -1.60911337e-01 3.62569928e-01 -1.27692211e+00 -4.67255414e-01 6.53614998e-02 -1.63579106e-01 -4.64473307e-01 -3.73094566e-02 1.12784374e+00 -5.04769869e-02 1.01483107e+00 -2.33926907e-01 -3.33154559e-01 -1.01097786e+00 7.86256075e-01 2.32300863e-01 -3.77675146e-01 -3.36942375e-01 3.57135504e-01 6.17174864e-01 1.95820332e-02 -1.40129209e-01 -3.07261884e-01 -1.10649526e-01 3.61172050e-01 6.34182870e-01 4.65740621e-01 -2.94590443e-01 -8.10632110e-01 -5.60996771e-01 5.57951927e-01 4.89325188e-02 -5.01613200e-01 1.04375362e+00 -5.43657422e-01 -9.75224435e-01 1.08253610e+00 1.12893534e+00 3.34118754e-01 -5.66492915e-01 -1.48327529e-01 2.23216802e-01 -2.36557081e-01 -2.85543412e-01 -8.34052682e-01 -4.89056319e-01 6.37828052e-01 -5.84945418e-02 1.05934072e+00 1.16845310e+00 5.57964921e-01 -1.89922735e-01 4.74073201e-01 6.13026142e-01 -6.09392107e-01 -4.89453435e-01 3.64253789e-01 1.10429382e+00 -9.43866134e-01 -6.81799874e-02 -7.05238938e-01 -1.95084810e-01 1.23927116e+00 -1.23967208e-01 1.76160946e-01 9.67065752e-01 5.54832518e-01 -3.71948510e-01 -5.70804954e-01 -8.71564567e-01 -3.58770967e-01 1.51899263e-01 5.09586155e-01 5.27333140e-01 2.57801503e-01 -7.98955500e-01 8.38323534e-01 -3.81935894e-01 -1.12401526e-02 7.34944701e-01 6.74498558e-01 -7.46633053e-01 -1.14782393e+00 -6.06658459e-01 1.35967791e-01 -4.37220126e-01 -2.88955923e-02 -8.02506626e-01 1.01549685e+00 2.88553387e-01 1.12947965e+00 1.17699139e-01 -4.59954947e-01 -1.19826838e-01 3.02897077e-02 6.75613940e-01 -4.66366202e-01 -2.00361293e-02 -1.92226171e-01 1.83579698e-01 -5.41977286e-01 -8.00920367e-01 -8.10324728e-01 -1.34861076e+00 -5.27090251e-01 -1.62498131e-01 5.20522058e-01 5.00998437e-01 1.21502650e+00 -2.53222436e-01 3.47587228e-01 4.50372338e-01 -3.73050958e-01 -5.95333219e-01 -5.68379939e-01 -1.12113309e+00 8.44386443e-02 4.91623998e-01 -5.50959289e-01 -7.87168562e-01 -1.89832628e-01]
[8.140904426574707, 5.843266010284424]
50a7bf86-7370-435d-885a-031138fbbf13
from-word-models-to-world-models-translating
2306.12672
null
https://arxiv.org/abs/2306.12672v2
https://arxiv.org/pdf/2306.12672v2.pdf
From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought
How does language inform our downstream thinking? In particular, how do humans make meaning from language--and how can we leverage a theory of linguistic meaning to build machines that think in more human-like ways? In this paper, we propose rational meaning construction, a computational framework for language-informed thinking that combines neural language models with probabilistic models for rational inference. We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought (PLoT)--a general-purpose symbolic substrate for generative world modeling. Our architecture integrates two computational tools that have not previously come together: we model thinking with probabilistic programs, an expressive representation for commonsense reasoning; and we model meaning construction with large language models (LLMs), which support broad-coverage translation from natural language utterances to code expressions in a probabilistic programming language. We illustrate our framework through examples covering four core domains from cognitive science: probabilistic reasoning, logical and relational reasoning, visual and physical reasoning, and social reasoning. In each, we show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings, while Bayesian inference with the generated programs supports coherent and robust commonsense reasoning. We extend our framework to integrate cognitively-motivated symbolic modules (physics simulators, graphics engines, and planning algorithms) to provide a unified commonsense thinking interface from language. Finally, we explore how language can drive the construction of world models themselves. We hope this work will provide a roadmap towards cognitive models and AI systems that synthesize the insights of both modern and classical computational perspectives.
['Joshua B. Tenenbaum', 'Jacob Andreas', 'Vikash K. Mansinghka', 'Noah D. Goodman', 'Alexander K. Lew', 'Gabriel Grand', 'Lionel Wong']
2023-06-22
null
null
null
null
['bayesian-inference', 'probabilistic-programming', 'relational-reasoning']
['methodology', 'methodology', 'natural-language-processing']
[ 1.16152711e-01 9.48243916e-01 2.97606569e-02 -6.96002901e-01 -5.15900433e-01 -6.77919865e-01 1.12674820e+00 7.38869160e-02 9.19247493e-02 2.56199598e-01 8.57650876e-01 -8.07045817e-01 -2.27384150e-01 -1.49316502e+00 -6.50634885e-01 -1.44388020e-01 2.86210358e-01 9.14122343e-01 1.47638038e-01 -5.34437656e-01 4.11882043e-01 2.77895927e-01 -1.39084649e+00 5.99538803e-01 8.63227069e-01 3.20595115e-01 1.60289988e-01 5.72391868e-01 -5.74289441e-01 1.61311710e+00 -2.65816730e-02 -4.70095098e-01 -3.27490777e-01 -3.97781461e-01 -1.13969004e+00 -5.87528169e-01 -2.70512164e-01 -2.76326612e-02 -3.84418294e-02 1.11198246e+00 -1.05555952e-01 1.31366909e-01 7.60243833e-01 -1.17552280e+00 -1.45813334e+00 1.37171125e+00 9.47069675e-02 -2.31732130e-01 8.69975150e-01 6.15832686e-01 8.64477813e-01 -4.78648543e-01 7.72238314e-01 2.16686153e+00 5.10860264e-01 7.69343376e-01 -1.58164668e+00 -1.24673702e-01 1.74526647e-01 1.88649744e-01 -1.16610944e+00 -1.96906433e-01 7.70445585e-01 -8.01213920e-01 1.23514152e+00 1.25612348e-01 1.04962218e+00 1.23328984e+00 3.28575075e-01 7.59249926e-01 1.42704070e+00 -7.48546124e-01 6.87399507e-01 7.42988810e-02 5.73528886e-01 9.40016568e-01 8.12359750e-02 4.45754796e-01 -7.44546533e-01 -4.19421375e-01 7.85643578e-01 -3.14267546e-01 3.10036749e-01 -2.63314843e-01 -1.41551101e+00 1.02743614e+00 3.58982533e-01 2.16450810e-01 -4.51010168e-01 1.04345000e+00 -6.27627522e-02 -3.25365961e-02 -5.32702543e-02 5.56304753e-01 -2.59197593e-01 -1.35597914e-01 -4.69365835e-01 7.60968208e-01 1.20395386e+00 9.53278184e-01 5.08314729e-01 9.40281674e-02 -2.35946611e-01 3.20417047e-01 1.21087551e+00 9.42027152e-01 3.12494487e-01 -1.57288706e+00 -2.84123003e-01 5.79467714e-01 8.16296265e-02 -9.15440321e-01 -4.23660040e-01 1.43019229e-01 -7.96534345e-02 2.96418399e-01 3.34167182e-01 -2.92873988e-03 -6.09163344e-01 2.09621978e+00 2.07890823e-01 -1.57183185e-01 3.90089273e-01 7.37037241e-01 6.57938242e-01 6.72504604e-01 6.58456266e-01 3.67593735e-01 1.84809160e+00 -2.82713443e-01 -2.11653784e-01 -5.42124867e-01 5.25485098e-01 -3.30033749e-01 1.66364014e+00 1.95813566e-01 -1.28466761e+00 2.16209572e-02 -7.43146241e-01 -4.17669475e-01 -4.48345661e-01 -3.40913236e-01 1.17604041e+00 7.28433669e-01 -1.41001821e+00 2.04168454e-01 -1.07430804e+00 -4.19065922e-01 3.69560838e-01 -2.43935987e-01 3.54241699e-01 3.34066041e-02 -1.27965581e+00 1.17446983e+00 5.64867377e-01 -4.16672766e-01 -1.02995610e+00 -4.03733224e-01 -1.06934917e+00 1.06158204e-01 3.06645721e-01 -1.53781044e+00 1.52715981e+00 -8.17373037e-01 -1.76949739e+00 9.49514627e-01 -1.94936380e-01 -5.95220387e-01 5.97193278e-02 3.59365605e-02 -8.18373635e-02 -1.35753363e-01 9.77503881e-02 9.70644414e-01 2.29219809e-01 -1.11957717e+00 2.17957124e-02 -3.32771569e-01 5.28133929e-01 1.04376949e-01 5.76290727e-01 2.79206157e-01 1.76872164e-01 -5.04106700e-01 1.60018981e-01 -8.36694062e-01 -2.67394334e-01 9.90563035e-02 -3.20667177e-01 -4.18538511e-01 -1.10176392e-01 -1.88818440e-01 6.29893243e-01 -1.82479501e+00 1.88934058e-01 2.79109955e-01 2.71106243e-01 -6.43794954e-01 3.13456729e-02 4.18805599e-01 5.21820672e-02 2.85970479e-01 -1.60063729e-01 1.33925766e-01 1.04562747e+00 4.91537511e-01 -1.11086166e+00 -7.40540624e-02 2.27639377e-01 1.45509696e+00 -1.08830392e+00 -3.44382793e-01 3.09550732e-01 5.34268320e-01 -1.03737772e+00 4.59210649e-02 -1.13308048e+00 7.73142237e-05 -6.70372903e-01 3.40523452e-01 1.06168509e-01 -4.15417522e-01 3.05251479e-01 3.59825879e-01 3.88128310e-02 8.14272523e-01 -9.12255883e-01 1.77537739e+00 -6.40240967e-01 3.92174274e-01 -4.57644612e-01 -2.85936594e-01 6.32732034e-01 -1.17806187e-02 -6.73631430e-01 -1.24989644e-01 9.36849713e-02 -9.41755027e-02 4.28485014e-02 -5.39483249e-01 2.46026278e-01 -7.77050614e-01 -5.14443874e-01 1.15137744e+00 -2.27524683e-01 -1.19084334e+00 -1.44997567e-01 4.34683621e-01 8.58561397e-01 7.71732271e-01 5.15507638e-01 -5.52166998e-01 1.84771493e-01 4.05384749e-01 1.32046774e-01 8.28619123e-01 1.20465308e-01 9.03627649e-02 5.71188569e-01 -6.33112252e-01 -8.06638658e-01 -1.67687249e+00 4.91233505e-02 1.41454279e+00 -6.72779158e-02 -4.01449114e-01 -1.06663275e+00 2.30720937e-01 -1.87812418e-01 2.08867931e+00 -4.16947633e-01 -2.75498748e-01 -2.34348595e-01 -6.89552307e-01 8.98287535e-01 5.50101042e-01 1.11784726e-01 -1.46707714e+00 -1.28992760e+00 1.34149730e-01 -5.48856445e-02 -7.03230202e-01 2.33884871e-01 -2.76536644e-02 -6.70475721e-01 -6.70002103e-01 1.52470589e-01 -2.54476964e-01 3.37566763e-01 -2.04975232e-01 1.46597731e+00 -6.31727353e-02 -7.37735480e-02 8.48511219e-01 -1.60281733e-02 -5.92625380e-01 -1.04846692e+00 -6.65414035e-01 -6.51893169e-02 -7.63101041e-01 6.69020712e-01 -8.97363484e-01 -8.25699121e-02 -3.33680302e-01 -8.74902844e-01 6.33406401e-01 1.30630076e-01 4.54746246e-01 1.80974633e-01 -3.43591064e-01 3.69082391e-02 -7.31663227e-01 1.00559390e+00 -5.69093108e-01 -4.60309029e-01 4.87344980e-01 -3.86486769e-01 7.04986453e-01 2.75219619e-01 -1.84103012e-01 -1.60852754e+00 -3.82179111e-01 9.80535969e-02 2.57926315e-01 -4.31620866e-01 7.13931501e-01 -6.47325814e-02 4.22001630e-01 9.82643545e-01 4.12800431e-01 -9.26476866e-02 1.39705434e-01 1.43327618e+00 1.38668478e-01 7.49068022e-01 -1.72004819e+00 5.54185927e-01 6.15781665e-01 -1.36408120e-01 -4.08307850e-01 -6.63776636e-01 5.02245843e-01 -2.31249079e-01 1.88737124e-01 1.12363744e+00 -7.89110482e-01 -1.00283980e+00 -5.90401925e-02 -1.51124609e+00 -5.52051544e-01 -6.07577860e-01 3.40927273e-01 -1.33918190e+00 1.35455295e-01 -6.81038857e-01 -1.08672750e+00 -1.98135644e-01 -1.12829220e+00 9.87937927e-01 1.92158267e-01 -1.05849612e+00 -1.18381810e+00 2.60349691e-01 1.36606991e-01 5.18338323e-01 2.54664533e-02 1.58884048e+00 -7.33479619e-01 -8.63363087e-01 4.67848629e-01 -1.38950139e-01 -3.14044684e-01 -5.02586603e-01 2.55398035e-01 -1.12632501e+00 8.17429423e-01 1.20246582e-01 -5.54758310e-01 4.07620370e-01 4.23675776e-01 7.04242706e-01 -3.94563645e-01 -2.82429576e-01 4.09840316e-01 1.16331553e+00 2.46651769e-01 6.66759312e-01 2.34630749e-01 3.11498582e-01 8.42361867e-01 -2.41407007e-02 2.10040048e-01 1.19490230e+00 1.71293125e-01 -9.11132097e-02 6.09066606e-01 -8.80593434e-02 -7.50541270e-01 5.62121391e-01 5.06314516e-01 -2.27458239e-01 2.45585993e-01 -1.55959392e+00 2.94753253e-01 -1.93660903e+00 -1.37319696e+00 2.13399697e-02 1.58979630e+00 1.37919986e+00 6.48080185e-02 -3.45694542e-01 -5.41624129e-01 2.54188508e-01 -1.88841242e-02 -3.70391905e-01 -7.55057156e-01 4.58997674e-02 3.79982263e-01 -2.27956906e-01 8.99462700e-01 -4.47321236e-01 1.29610205e+00 6.97624636e+00 5.88519216e-01 -5.28441131e-01 2.77085900e-01 5.11696279e-01 1.99013054e-01 -1.38331223e+00 5.46637237e-01 -2.81657785e-01 5.21147214e-02 1.35763788e+00 -4.81046170e-01 9.60441470e-01 9.82766390e-01 1.34359032e-01 -3.32871556e-01 -1.47508287e+00 8.41073930e-01 -1.26947060e-01 -1.72766638e+00 3.18963587e-01 -2.46292651e-01 3.45305949e-01 6.15926124e-02 -1.80505469e-01 4.27742273e-01 1.73472488e+00 -1.28672540e+00 1.57018447e+00 1.06913424e+00 3.03879470e-01 -4.31404471e-01 5.43853045e-02 6.11030817e-01 -7.83040583e-01 -8.52757227e-03 -2.56187707e-01 -5.00086486e-01 3.01003247e-01 5.18604577e-01 -4.92386341e-01 -4.79880944e-02 2.40682408e-01 1.06575787e-01 -2.11725309e-01 1.11907355e-01 -8.87902915e-01 4.25291508e-01 -4.33683753e-01 -4.39507127e-01 -3.48077007e-02 -5.36140874e-02 5.97866356e-01 1.19717276e+00 1.36957869e-01 4.02224869e-01 1.05404533e-01 2.32258058e+00 5.19288540e-01 -4.58013535e-01 -7.97587156e-01 -2.64796644e-01 6.49632990e-01 7.43951619e-01 -8.14848423e-01 -5.91487885e-01 -7.66438395e-02 3.73726457e-01 2.14437574e-01 3.01800221e-01 -8.18802714e-01 9.98981073e-02 6.44752443e-01 -2.17963561e-01 -5.46149671e-01 -3.92269075e-01 -7.11643934e-01 -1.28444886e+00 -5.62128544e-01 -8.15731347e-01 9.57271904e-02 -1.66112685e+00 -1.26956105e+00 3.52636814e-01 7.13714123e-01 -4.26527485e-02 -9.21518683e-01 -8.06836009e-01 -6.23251319e-01 9.47048604e-01 -7.50261486e-01 -1.53817284e+00 1.83399916e-01 2.24678010e-01 2.99363554e-01 1.00142486e-01 1.23206675e+00 -9.03759480e-01 5.29860593e-02 -2.64649361e-01 -6.04817152e-01 -1.07575506e-01 -1.02123566e-01 -1.35187483e+00 9.82858419e-01 7.22219408e-01 2.24898413e-01 1.51774919e+00 9.01621997e-01 -5.95677853e-01 -1.55973530e+00 -5.28488040e-01 8.03596795e-01 -1.16980791e+00 1.01681721e+00 -3.39238793e-01 -7.33724952e-01 1.13291502e+00 2.21253365e-01 -5.06787896e-01 8.02755177e-01 1.51133925e-01 -9.08377230e-01 6.70396149e-01 -1.26956213e+00 1.16365409e+00 1.18453109e+00 -1.06965685e+00 -1.54899395e+00 2.03421354e-01 1.19126010e+00 -2.31901914e-01 -4.17372346e-01 -4.00467545e-01 7.38532007e-01 -9.79485691e-01 1.18451715e+00 -6.29503608e-01 5.96687078e-01 -5.40005326e-01 -5.22714019e-01 -1.15462863e+00 -3.82790178e-01 -7.14112163e-01 1.01570994e-01 9.11616027e-01 2.31961712e-01 -8.48678350e-01 2.06558779e-01 1.47037995e+00 4.60573360e-02 -1.86349288e-01 -7.57679880e-01 -2.50377446e-01 5.47284126e-01 -1.48697340e+00 1.09098017e+00 6.64523363e-01 6.43341899e-01 4.00129229e-01 6.61490381e-01 -3.58386040e-02 6.17905319e-01 3.46404582e-01 3.95832717e-01 -1.15586925e+00 -6.97615266e-01 -7.20483065e-01 -1.23821415e-01 -6.95198119e-01 5.86633503e-01 -1.36773491e+00 2.98528820e-01 -1.68228352e+00 4.42177534e-01 -3.35629791e-01 4.45131272e-01 7.90486634e-01 1.06409989e-01 -4.84199196e-01 4.10800040e-01 1.43668309e-01 -2.45993674e-01 4.24326241e-01 8.48621547e-01 -1.98070444e-02 3.61406989e-02 -6.69544995e-01 -1.29835093e+00 1.54466236e+00 5.41993856e-01 -4.35657799e-01 -7.49919295e-01 -5.92524230e-01 1.17123616e+00 8.17053318e-02 1.08005345e+00 -7.27121353e-01 2.53738254e-01 -1.00461316e+00 4.84442525e-02 -2.74895374e-02 1.03454106e-01 -3.56500059e-01 3.08150172e-01 3.93247813e-01 -7.29365468e-01 -4.41213772e-02 2.04435021e-01 3.82121652e-01 6.03391230e-01 -2.27841303e-01 4.65450794e-01 -5.15061080e-01 -8.83305550e-01 -6.69154167e-01 -8.83204460e-01 2.31960773e-01 6.86458409e-01 1.30632594e-01 -6.55940890e-01 -4.03996557e-01 -8.90852690e-01 -5.48950583e-03 7.47775137e-01 1.23652942e-01 6.51878595e-01 -1.11937392e+00 -5.14680505e-01 -1.06422834e-01 9.05590728e-02 -1.71254948e-01 -5.00805900e-02 4.30900395e-01 -6.03377759e-01 4.06603992e-01 -7.70922378e-02 -3.95442218e-01 -4.33549613e-01 5.95395923e-01 3.67821962e-01 2.89058447e-01 -6.19880795e-01 1.01477182e+00 5.47474146e-01 -9.71021891e-01 -4.04873699e-01 -1.20827401e+00 1.92806736e-01 -5.66264510e-01 8.42040062e-01 1.22813892e-03 -8.39449346e-01 -3.44576985e-01 -4.92324620e-01 4.35145587e-01 6.31676078e-01 -7.05992997e-01 1.13536072e+00 -1.71331570e-01 -7.96408236e-01 8.86668742e-01 7.07977638e-02 7.77835166e-03 -9.39570725e-01 8.78752954e-03 1.96807280e-01 1.29734248e-01 -2.28714094e-01 -1.11576927e+00 6.34642839e-02 9.80591893e-01 9.59298834e-02 -3.92151647e-04 4.85293925e-01 6.22862339e-01 2.44565591e-01 7.82374918e-01 9.46257889e-01 -6.27584577e-01 -1.81173250e-01 7.32238293e-01 1.10259151e+00 -6.43900752e-01 -1.83240652e-01 -2.54946262e-01 -7.32671082e-01 1.28602839e+00 1.24158002e-01 -2.42707044e-01 5.02854168e-01 5.59231997e-01 -2.01564088e-01 -6.39975965e-01 -1.22600675e+00 -1.37358800e-01 4.71434556e-02 1.03024805e+00 5.31868756e-01 7.46231079e-01 1.27693444e-01 1.14750302e+00 -8.56815517e-01 5.89875042e-01 6.86592638e-01 9.68140244e-01 -6.78557158e-01 -8.49113703e-01 -8.35912526e-01 -1.85131490e-01 1.20260671e-01 -6.70153439e-01 -4.22372013e-01 5.12584150e-01 1.22383751e-01 9.23554361e-01 3.81919332e-02 -1.04134984e-01 -1.47961736e-01 6.30690157e-01 8.41814578e-01 -1.00810122e+00 -2.42828563e-01 -3.90564322e-01 2.59420872e-01 -7.01377332e-01 -3.27332526e-01 -5.64949751e-01 -2.11156631e+00 -7.79311538e-01 5.26056170e-01 -1.88248679e-01 3.94096375e-01 1.13152397e+00 2.72926122e-01 4.69543934e-01 -6.06373250e-01 -7.08644986e-01 -6.94060028e-01 -4.44317251e-01 -2.01863885e-01 -7.24809095e-02 -2.34973535e-01 -5.41609049e-01 -1.27532110e-01 4.45723176e-01]
[9.221184730529785, 7.233150005340576]
48f0b3b6-3325-4041-ae80-4af1c8b00924
armbench-an-object-centric-benchmark-dataset
2303.16382
null
https://arxiv.org/abs/2303.16382v1
https://arxiv.org/pdf/2303.16382v1.pdf
ARMBench: An Object-centric Benchmark Dataset for Robotic Manipulation
This paper introduces Amazon Robotic Manipulation Benchmark (ARMBench), a large-scale, object-centric benchmark dataset for robotic manipulation in the context of a warehouse. Automation of operations in modern warehouses requires a robotic manipulator to deal with a wide variety of objects, unstructured storage, and dynamically changing inventory. Such settings pose challenges in perceiving the identity, physical characteristics, and state of objects during manipulation. Existing datasets for robotic manipulation consider a limited set of objects or utilize 3D models to generate synthetic scenes with limitation in capturing the variety of object properties, clutter, and interactions. We present a large-scale dataset collected in an Amazon warehouse using a robotic manipulator performing object singulation from containers with heterogeneous contents. ARMBench contains images, videos, and metadata that corresponds to 235K+ pick-and-place activities on 190K+ unique objects. The data is captured at different stages of manipulation, i.e., pre-pick, during transfer, and after placement. Benchmark tasks are proposed by virtue of high-quality annotations and baseline performance evaluation are presented on three visual perception challenges, namely 1) object segmentation in clutter, 2) object identification, and 3) defect detection. ARMBench can be accessed at http://armbench.com
['Manikantan Nambi', 'Felipe Polido', 'Tyler Garaas', 'Vikedo Terhuja', 'Shiyang Lu', 'Fan Wang', 'Chaitanya Mitash']
2023-03-29
null
null
null
null
['defect-detection']
['computer-vision']
[-5.66906929e-02 -6.21392429e-01 2.62280367e-02 -3.01249772e-01 -2.38221258e-01 -1.06210172e+00 1.39952347e-01 3.80307466e-01 -4.32475321e-02 2.49265842e-02 -3.37893933e-01 1.28184959e-01 -3.54038566e-01 -4.95141566e-01 -1.02869332e+00 -4.81528938e-01 -2.37403542e-01 8.98706615e-01 3.05634856e-01 -3.77048463e-01 2.18719393e-01 1.04454291e+00 -1.48408234e+00 6.59356952e-01 2.25516379e-01 1.44389713e+00 7.25720167e-01 7.55922675e-01 -2.55408064e-02 4.66934800e-01 -9.07578588e-01 -2.02317879e-01 8.42626035e-01 2.48224884e-01 -4.08910811e-01 7.23017037e-01 2.24742353e-01 -7.39011705e-01 -4.98934835e-01 8.83991420e-01 2.01809376e-01 2.44031295e-01 6.43521190e-01 -1.78879690e+00 -7.26144850e-01 5.10811985e-01 -4.78117079e-01 1.13795258e-01 3.54387790e-01 7.53106594e-01 5.44960678e-01 -8.89406919e-01 7.94418752e-01 1.53984857e+00 1.69144616e-01 9.04812738e-02 -1.10319841e+00 -5.63424468e-01 3.81189108e-01 1.02985770e-01 -8.43244553e-01 1.26306806e-02 7.07120895e-01 -6.72039628e-01 6.09769762e-01 1.38695568e-01 6.98051751e-01 1.37698686e+00 3.81364077e-01 1.01965809e+00 8.12757969e-01 1.16996676e-01 2.01764807e-01 -5.67168044e-03 3.41852635e-01 4.38911527e-01 3.79910529e-01 -9.71853361e-02 -3.02814394e-01 8.19829032e-02 9.22355235e-01 3.06983054e-01 -4.34554406e-02 -1.03098810e+00 -1.85622525e+00 2.61784941e-01 4.00942713e-01 -3.88880253e-01 -5.44710040e-01 1.40163541e-01 6.11952186e-01 3.23869824e-01 -4.22532797e-01 6.72706306e-01 -6.23361290e-01 -3.89449969e-02 1.85091585e-01 5.97454727e-01 9.89870310e-01 2.18499851e+00 2.45936424e-01 -7.86632299e-02 -3.74767929e-01 5.13829172e-01 1.77480169e-02 6.01508260e-01 1.40995592e-01 -1.17964351e+00 7.83856213e-01 5.88342249e-01 7.15590417e-01 -8.65376532e-01 -4.49385166e-01 1.77508533e-01 -4.92159158e-01 3.42140645e-01 4.27005440e-01 2.52448648e-01 -1.12453282e+00 7.70695627e-01 4.66139257e-01 -6.66160882e-01 -6.63567632e-02 1.11313248e+00 9.42860007e-01 5.05469382e-01 -1.21671900e-01 2.57721841e-01 1.50693345e+00 -1.11498439e+00 -8.07331979e-01 5.40116280e-02 1.01431735e-01 -1.00719631e+00 1.18089545e+00 8.39622974e-01 -1.17107975e+00 -7.04309523e-01 -1.04727995e+00 2.00349819e-02 -8.25404167e-01 3.97433251e-01 7.49420404e-01 1.25812009e-01 -2.06460387e-01 3.15420061e-01 -8.07196081e-01 -1.48678228e-01 4.59115028e-01 3.88044208e-01 -6.05969250e-01 -5.02388000e-01 -2.47885525e-01 7.49726892e-01 4.44407642e-01 3.78293514e-01 -1.42662191e+00 -6.73894465e-01 -7.75922060e-01 -1.23055071e-01 8.79210711e-01 1.33500062e-02 1.43867040e+00 -2.58106202e-01 -9.87270653e-01 5.31753242e-01 5.94028234e-01 -8.02557468e-02 8.07114840e-01 -3.19462061e-01 -2.34325767e-01 1.59493953e-01 1.47665069e-02 7.73401201e-01 8.52037430e-01 -1.90730178e+00 -6.22342646e-01 -3.87041777e-01 2.35320732e-01 2.53688674e-02 3.50897580e-01 1.14925593e-01 -6.69842720e-01 -5.65043151e-01 1.46442920e-01 -1.07182300e+00 8.06421116e-02 3.44880104e-01 -6.69339418e-01 -2.21296754e-02 1.24577916e+00 -5.55682182e-01 2.41951868e-01 -2.34778309e+00 3.48419733e-02 -9.99018624e-02 -1.68581709e-01 -1.10180922e-01 -4.46731329e-01 5.05425930e-01 1.07125923e-01 -2.30908692e-01 2.76647627e-01 -5.18880226e-02 4.18237537e-01 2.50948787e-01 -4.31659073e-01 2.91397333e-01 3.92842084e-01 9.55517650e-01 -1.05904675e+00 -4.09058690e-01 3.34420443e-01 -1.94475934e-01 -2.15313196e-01 3.43102336e-01 -6.01383984e-01 3.26466113e-01 -3.85059685e-01 1.49621642e+00 9.43495750e-01 1.82400480e-01 1.44705614e-02 -7.02342868e-01 1.34414911e-01 -5.48197746e-01 -1.30478847e+00 1.82200634e+00 -1.42110243e-01 3.18756104e-01 4.57504064e-01 -6.10237539e-01 9.12391126e-01 -1.02501594e-01 6.19678915e-01 -4.45780605e-01 3.87065858e-01 -7.59008378e-02 1.63775340e-01 -8.64544809e-01 9.74095285e-01 8.73318613e-01 -5.21236777e-01 2.86072224e-01 -2.97121834e-02 -8.77937496e-01 8.24375927e-01 7.85014629e-02 1.09068346e+00 2.36988902e-01 -2.74213701e-01 -5.61056174e-02 -3.49823356e-01 5.63281655e-01 2.13863805e-01 7.42421925e-01 -3.71527851e-01 6.14649415e-01 5.77183425e-01 -5.41674137e-01 -9.97137725e-01 -1.45899677e+00 7.43338242e-02 9.41774249e-01 8.04851234e-01 1.69950813e-01 -2.32948974e-01 -5.77897549e-01 5.81779122e-01 5.93995452e-01 -5.81885159e-01 -1.71139300e-01 -6.21354342e-01 -4.20869410e-01 -8.33233520e-02 6.70340359e-01 4.35755849e-01 -1.42870617e+00 -1.12950444e+00 1.28277183e-01 5.55009469e-02 -1.55000794e+00 -5.19915283e-01 4.02960867e-01 -6.08595133e-01 -1.48669291e+00 -2.60717422e-01 -8.44256163e-01 8.84119570e-01 6.44130349e-01 1.11724877e+00 -3.22043777e-01 -1.06192589e+00 7.96408892e-01 -5.65526187e-01 -9.54938114e-01 -4.11928117e-01 -3.49394232e-01 1.12664692e-01 -3.11627895e-01 1.64183706e-01 1.28198147e-01 -5.74381053e-01 8.63618612e-01 -9.94822204e-01 -2.11279899e-01 7.84158170e-01 6.32328689e-01 6.81870103e-01 4.25789475e-01 1.75681025e-01 -3.47887546e-01 5.95496714e-01 -4.96251434e-01 -6.71549976e-01 3.83997828e-01 5.95024675e-02 -5.46419382e-01 2.76037037e-01 -9.49222863e-01 -8.21485400e-01 1.40330613e-01 9.15931344e-01 -9.45273340e-01 -4.40083027e-01 -3.77218835e-02 -4.08158123e-01 2.85514414e-01 3.18681479e-01 2.94606667e-03 1.30868763e-01 -3.34160268e-01 2.14893743e-01 6.69730842e-01 9.03235495e-01 -9.19576108e-01 5.22054970e-01 3.18683356e-01 -9.95066762e-02 -4.23103213e-01 -3.46515685e-01 -4.32084233e-01 -9.30355906e-01 -4.14573610e-01 6.60143733e-01 -7.90663481e-01 -1.13579988e+00 7.02289820e-01 -1.09933734e+00 -6.94005072e-01 -4.54688132e-01 4.06112015e-01 -6.26700044e-01 -1.07149586e-01 -6.90361202e-01 -5.74147701e-01 -2.97509264e-02 -1.43609917e+00 1.36296833e+00 -1.36048079e-01 5.04773594e-02 4.58005480e-02 -9.90905821e-01 5.46485364e-01 2.37735361e-01 6.62473798e-01 1.06892276e+00 -4.85020012e-01 -1.11391568e+00 -5.01181424e-01 -3.54641765e-01 2.70463735e-01 3.86011332e-01 1.55133694e-01 -3.55254352e-01 -5.03547311e-01 -2.97108144e-01 -5.50518632e-01 1.92041680e-01 -1.54054621e-02 1.69679272e+00 1.04816556e-01 -2.74476349e-01 1.69211298e-01 9.89839792e-01 7.27426946e-01 3.45686734e-01 7.78596178e-02 5.60766757e-01 7.84049153e-01 1.55407989e+00 7.59045541e-01 1.94652230e-01 7.11125195e-01 1.09008229e+00 4.18123215e-01 1.04191594e-01 2.85310566e-01 2.06388786e-01 3.12901586e-01 1.46209866e-01 -4.92331147e-01 -8.82745802e-01 5.61309457e-01 -1.75207412e+00 -4.47635442e-01 -7.66399316e-03 1.84031165e+00 3.10401797e-01 1.89540863e-01 1.45097241e-01 4.48634289e-03 5.99065483e-01 -4.30674165e-01 -1.09112597e+00 -6.28011450e-02 6.38767928e-02 -3.31340164e-01 6.68883324e-01 -3.18919927e-01 -1.09602141e+00 6.11593962e-01 5.30202007e+00 3.66171747e-01 -7.26477206e-01 -1.05194427e-01 2.57899851e-01 -4.89189804e-01 4.14775491e-01 -6.79881752e-01 -6.51775837e-01 5.47531009e-01 1.68635935e-01 2.30974644e-01 6.89124405e-01 1.09660351e+00 -1.05782650e-01 -3.27183992e-01 -1.59502375e+00 1.11083424e+00 1.63369849e-01 -9.65078890e-01 1.23951405e-01 -1.87572166e-01 4.77411091e-01 -1.38191462e-01 1.82992727e-01 4.51239109e-01 4.20750082e-01 -6.90512717e-01 1.39159226e+00 4.27095115e-01 5.16188323e-01 -4.68976736e-01 6.59605622e-01 1.38979182e-01 -1.12217367e+00 -5.70932925e-01 -3.23441148e-01 4.60110933e-01 4.38252650e-02 -4.68747541e-02 -7.23575532e-01 4.43143517e-01 1.23021543e+00 2.93923318e-01 -2.77597636e-01 1.03429449e+00 3.63299698e-01 -2.67346710e-01 -1.33645192e-01 -5.23245260e-02 1.13258362e-01 -2.31552050e-01 3.83994043e-01 9.02997255e-01 2.07824767e-01 9.51623097e-02 6.43882632e-01 8.69957149e-01 -2.54606064e-02 -3.08990836e-01 -5.85100055e-01 -2.89948106e-01 5.84873974e-01 1.30436146e+00 -1.00972545e+00 -6.02013133e-02 -2.04064444e-01 9.47523534e-01 -6.43596500e-02 3.20605963e-01 -1.01537609e+00 -5.30754983e-01 7.03724086e-01 5.24402298e-02 5.66691935e-01 -7.84813404e-01 6.13402501e-02 -6.20935082e-01 3.98966700e-01 -1.00488269e+00 -2.36180257e-02 -1.19572389e+00 -1.22228003e+00 2.07726538e-01 5.91943443e-01 -1.34571445e+00 2.91353673e-01 -1.26333761e+00 -1.36933982e-01 3.89841974e-01 -9.99204278e-01 -1.28696215e+00 -1.23106301e+00 4.26819384e-01 1.12972617e+00 -1.87334046e-01 5.05792975e-01 9.53573808e-02 -4.83231753e-01 7.10153803e-02 -5.81077933e-02 1.44856036e-01 6.07128561e-01 -1.13383782e+00 3.35003674e-01 6.45854101e-02 -3.66501421e-01 3.09908241e-01 4.62288976e-01 -6.96753919e-01 -2.38175082e+00 -1.25829232e+00 -4.38104928e-01 -8.37656856e-01 5.50748467e-01 -8.71655226e-01 -6.82895303e-01 8.58277977e-01 -4.98805977e-02 3.66469860e-01 5.28957509e-02 -6.06856465e-01 -1.15938172e-01 -1.77501827e-01 -1.54868662e+00 5.26199222e-01 1.25306976e+00 6.61144406e-02 -3.11216801e-01 9.11904156e-01 7.25220501e-01 -1.14802682e+00 -1.08679032e+00 4.29638535e-01 6.56168759e-01 -5.66495180e-01 1.14546955e+00 -8.04075837e-01 4.28887188e-01 -2.90595770e-01 -4.43690240e-01 -1.13133895e+00 -5.02381511e-02 -5.27238369e-01 -3.27135414e-01 9.17431712e-01 -2.41776854e-02 -2.89121360e-01 5.13514340e-01 8.00064981e-01 -4.13985729e-01 -8.15709412e-01 -2.71454930e-01 -1.16858804e+00 -4.65481132e-01 -2.65619040e-01 1.07996106e+00 5.23866057e-01 -3.40840042e-01 -4.37807590e-01 7.46251196e-02 4.57148284e-01 5.22576869e-01 4.75085229e-01 1.35814500e+00 -1.11367869e+00 3.38112451e-02 -1.73496529e-01 -4.71263200e-01 -8.21053982e-01 -2.05264078e-03 -5.65411806e-01 4.27518278e-01 -1.48794949e+00 1.59798592e-01 -7.51098216e-01 -2.78411508e-02 2.95602739e-01 4.07864302e-01 -1.64218143e-01 6.08108163e-01 2.58404255e-01 -6.04861677e-01 2.76597559e-01 1.58129728e+00 -7.30799854e-01 -1.37018248e-01 -4.22099531e-02 -6.28761798e-02 4.59061503e-01 7.43020058e-01 -3.18387561e-02 -2.68161505e-01 -6.65463090e-01 -2.86817521e-01 1.38086602e-01 5.36303580e-01 -8.92829239e-01 -6.01684526e-02 -4.55842018e-01 6.38066947e-01 -1.00782776e+00 9.00213420e-01 -1.36277461e+00 2.35411584e-01 5.21148145e-01 -1.66564286e-01 5.42485535e-01 3.16765606e-01 7.73697376e-01 2.84142494e-02 -2.45769829e-01 3.58609468e-01 -4.77110624e-01 -1.10081947e+00 4.54776794e-01 -1.00027084e-01 -3.32329005e-01 1.64960837e+00 -2.61709392e-01 -6.21936977e-01 8.03577974e-02 -8.83243322e-01 6.40272617e-01 5.64925373e-01 1.22867131e+00 6.93449140e-01 -1.14788616e+00 -3.59718859e-01 3.62632334e-01 5.55476964e-01 5.36652625e-01 2.18050465e-01 5.25020123e-01 -8.13493788e-01 1.51628181e-01 -6.84001744e-01 -8.23179364e-01 -9.86663461e-01 9.96992707e-01 -1.20910406e-01 1.13472588e-01 -6.05697155e-01 5.36894560e-01 1.45081177e-01 -4.41920042e-01 5.37276983e-01 -1.10001111e+00 2.98238844e-01 3.17609683e-02 1.64588153e-01 6.46808803e-01 1.42196536e-01 -2.73410439e-01 -1.08827248e-01 2.32023671e-01 -1.66155130e-01 4.69991326e-01 1.16838217e+00 1.45859033e-01 1.03275597e-01 5.09233594e-01 6.62337244e-01 -4.79727596e-01 -1.60794258e+00 -3.40962820e-02 -1.71839744e-01 -7.74747670e-01 -5.95697105e-01 -9.36737180e-01 -1.13536179e+00 5.58236659e-01 5.56704044e-01 4.05435339e-02 6.93161726e-01 5.19960076e-02 6.28245890e-01 1.03893960e+00 1.00511658e+00 -1.16812801e+00 6.72678232e-01 4.42470759e-01 1.64213157e+00 -1.56708181e+00 -1.66594014e-01 -6.35873735e-01 -9.09870207e-01 1.08510184e+00 1.16408801e+00 2.24305242e-02 4.06818271e-01 5.42827725e-01 -4.08151448e-02 -3.75830680e-01 -5.53163290e-01 1.77139729e-01 -2.16436058e-01 6.71336353e-01 -4.46977228e-01 3.02389115e-01 6.92438960e-01 4.55137104e-01 -1.34510487e-01 -2.67869055e-01 7.19360709e-01 1.64010906e+00 -1.07976049e-01 -4.06766027e-01 -5.21069884e-01 6.83761239e-01 1.37579963e-02 6.95127010e-01 -1.94725424e-01 1.11355639e+00 1.32660538e-01 9.33519542e-01 3.13166827e-01 -7.26295039e-02 1.03343499e+00 -3.65972012e-01 8.03133011e-01 -6.39001548e-01 -6.13139689e-01 -4.10890847e-01 -4.64221127e-02 -8.27942848e-01 6.52190447e-02 -8.57816398e-01 -1.17439306e+00 8.92827213e-02 -2.99870312e-01 -2.96370208e-01 1.31225491e+00 2.52823740e-01 4.55721617e-01 8.16716850e-01 3.70644152e-01 -1.58922791e+00 -9.37411726e-01 -1.03779459e+00 -9.59000647e-01 8.07086110e-01 1.67080000e-01 -1.06485629e+00 -2.12702230e-02 1.92302138e-01]
[5.836464881896973, -0.9153764247894287]
a417a357-e8bc-4f8f-88fb-3ac424882b43
scandeval-a-benchmark-for-scandinavian
2304.00906
null
https://arxiv.org/abs/2304.00906v1
https://arxiv.org/pdf/2304.00906v1.pdf
ScandEval: A Benchmark for Scandinavian Natural Language Processing
This paper introduces a Scandinavian benchmarking platform, ScandEval, which can benchmark any pretrained model on four different tasks in the Scandinavian languages. The datasets used in two of the tasks, linguistic acceptability and question answering, are new. We develop and release a Python package and command-line interface, scandeval, which can benchmark any model that has been uploaded to the Hugging Face Hub, with reproducible results. Using this package, we benchmark more than 100 Scandinavian or multilingual models and present the results of these in an interactive online leaderboard, as well as provide an analysis of the results. The analysis shows that there is substantial cross-lingual transfer among the Mainland Scandinavian languages (Danish, Swedish and Norwegian), with limited cross-lingual transfer between the group of Mainland Scandinavian languages and the group of Insular Scandinavian languages (Icelandic and Faroese). The benchmarking results also show that the investment in language technology in Norway, Sweden and Denmark has led to language models that outperform massively multilingual models such as XLM-RoBERTa and mDeBERTaV3. We release the source code for both the package and leaderboard.
['Dan Saattrup Nielsen']
2023-04-03
null
null
null
null
['cross-lingual-transfer', 'linguistic-acceptability']
['natural-language-processing', 'natural-language-processing']
[-8.84962261e-01 2.14172378e-01 1.65541083e-01 -5.45675635e-01 -1.09545279e+00 -1.06710196e+00 6.16711020e-01 1.39175355e-01 -9.99427855e-01 8.16092670e-01 6.53104007e-01 -8.98938239e-01 1.48841947e-01 -2.77363211e-01 -7.93796778e-01 -1.00696586e-01 1.27268359e-01 8.88115168e-01 1.61351323e-01 -9.13074553e-01 -3.88448417e-01 -4.01175350e-01 -1.18984544e+00 7.54397750e-01 9.48587894e-01 3.57815444e-01 9.68763307e-02 6.88062966e-01 -2.72162586e-01 7.81612635e-01 -5.69691718e-01 -9.86765027e-01 2.26437420e-01 -2.25069612e-01 -1.18324757e+00 -7.39376366e-01 6.86693251e-01 9.69204381e-02 1.94634512e-01 6.61613762e-01 8.16334605e-01 -7.60887051e-03 2.37941191e-01 -6.28568709e-01 -3.55020970e-01 1.10563529e+00 8.56820494e-02 6.81341067e-02 7.44689524e-01 1.16813980e-01 1.14469922e+00 -9.34255600e-01 9.74419653e-01 1.76694679e+00 1.02648342e+00 5.24852514e-01 -1.08497167e+00 -5.57542264e-01 2.52721012e-01 -1.80433430e-02 -1.02152872e+00 -6.19232774e-01 3.48035067e-01 -6.60016239e-01 1.36095309e+00 5.21067500e-01 3.75553966e-01 1.17571282e+00 3.26342694e-02 1.00813818e+00 1.42750490e+00 -6.56168520e-01 -2.11666226e-01 9.14532125e-01 6.68208748e-02 5.29543638e-01 1.43726915e-02 1.75475866e-01 -6.98334754e-01 -1.14127748e-01 -2.45013088e-02 -1.00306308e+00 -2.45665461e-01 -5.15250005e-02 -1.25015306e+00 7.81339943e-01 1.64116144e-01 4.93591070e-01 1.82596341e-01 -1.44987360e-01 1.22383296e+00 1.01349294e+00 8.03293824e-01 3.04953873e-01 -1.14811647e+00 -3.19408149e-01 -7.81334877e-01 3.15709531e-01 1.30064368e+00 6.61965251e-01 6.37156487e-01 2.02970311e-01 2.65417784e-01 1.32542443e+00 5.14130294e-01 3.97562712e-01 6.26590371e-01 -8.05799305e-01 9.99235392e-01 3.86258245e-01 9.55046117e-02 -2.97007620e-01 -4.38968331e-01 -1.92585662e-01 -2.35816926e-01 1.35267004e-01 6.65277541e-01 -5.21227419e-01 -6.15856469e-01 1.69336784e+00 4.33651179e-01 -7.25726664e-01 5.19893050e-01 8.29810500e-01 1.42230487e+00 5.50230980e-01 3.23421389e-01 1.04632907e-01 1.23829567e+00 -1.04076123e+00 -4.64558482e-01 -3.22779804e-01 1.26478612e+00 -1.15872502e+00 1.60701346e+00 3.08573306e-01 -1.38003421e+00 -8.04011941e-01 -7.71244526e-01 -4.11182016e-01 -7.72589862e-01 -6.56825900e-02 4.80338752e-01 8.60732913e-01 -1.40999317e+00 9.65607762e-02 -6.40502453e-01 -6.05643332e-01 -3.87087673e-01 2.90707022e-01 -7.36160874e-01 1.22619765e-02 -1.72426367e+00 1.07058990e+00 7.70716250e-01 -1.14372663e-01 -6.17831290e-01 -7.27899909e-01 -1.23686957e+00 -6.81740105e-01 -1.22252777e-01 -3.98231208e-01 1.47620583e+00 -1.36891234e+00 -1.55472362e+00 1.63460743e+00 1.02291033e-01 -3.64028960e-01 1.13056564e+00 -4.07975197e-01 -5.58319807e-01 -5.16277671e-01 2.02839240e-01 5.82759500e-01 -2.39533082e-01 -9.47557747e-01 -6.74501956e-01 -2.09413141e-01 4.10223603e-02 4.50354755e-01 -2.00135112e-02 8.06204617e-01 -3.06498826e-01 -5.08252919e-01 -3.03608298e-01 -5.99247634e-01 -9.28951278e-02 -9.19547975e-01 -1.88480243e-01 -5.14960945e-01 1.77562162e-01 -1.28934872e+00 1.18834019e+00 -2.11648607e+00 -4.28035036e-02 -1.24174982e-01 -4.34186012e-01 3.24834198e-01 -5.50272986e-02 7.67987847e-01 -3.20291556e-02 2.94838935e-01 -1.60281986e-01 -4.16377872e-01 9.81265232e-02 4.39464241e-01 -1.74297914e-01 3.78300428e-01 -6.59258440e-02 1.00135589e+00 -9.61181998e-01 -3.87338161e-01 2.43433729e-01 2.15024933e-01 -4.76442456e-01 -2.55984254e-02 -1.15173273e-01 5.87010980e-01 2.06124082e-01 4.21714902e-01 5.43965816e-01 6.21526718e-01 2.94326097e-01 4.53863025e-01 -4.39380914e-01 1.10348523e+00 -9.00210559e-01 1.75395727e+00 -9.59491849e-01 3.88164669e-01 6.61120832e-01 -4.80179995e-01 8.63891780e-01 5.78310072e-01 -1.45405218e-01 -8.25030148e-01 -1.22800700e-01 1.12311292e+00 1.98506817e-01 -4.65286642e-01 4.53184217e-01 -3.84008855e-01 -3.59178990e-01 1.37171045e-01 9.69718024e-02 -5.18536270e-01 3.98160636e-01 1.20588932e-02 6.18047357e-01 3.78228277e-01 2.47733295e-01 -8.76146197e-01 8.80383611e-01 8.47726613e-02 5.50578356e-01 4.98098046e-01 -1.48649022e-01 3.80902678e-01 3.32270920e-01 -7.42254794e-01 -8.97290051e-01 -1.13099158e+00 -3.96206439e-01 1.68839693e+00 -5.85440814e-01 -6.41922235e-01 -7.53929555e-01 -7.23337889e-01 1.27696857e-01 8.76956344e-01 -3.99706602e-01 2.67594427e-01 -8.66754055e-01 -5.83195925e-01 8.20262134e-01 2.63808668e-01 5.64415753e-01 -1.44173908e+00 -2.37248853e-01 2.69838989e-01 -1.31763250e-01 -8.99603009e-01 -1.51986718e-01 2.29921535e-01 -6.69014573e-01 -6.64646089e-01 -5.64258158e-01 -1.30205083e+00 -5.59838340e-02 -7.08852947e-01 1.76912367e+00 -3.21990669e-01 2.95052052e-01 3.01567167e-01 -1.56631753e-01 -7.65000045e-01 -9.59866107e-01 4.49597150e-01 -3.30743864e-02 -5.72117150e-01 6.41969979e-01 -7.28483424e-02 -1.41834468e-01 2.92991579e-01 -4.02163565e-01 -7.94261768e-02 2.82545667e-03 6.55844986e-01 3.20659906e-01 -6.43212795e-01 7.67143548e-01 -1.40824628e+00 5.96801400e-01 -5.25205851e-01 -4.54183906e-01 9.63527635e-02 -1.72697693e-01 -3.25700223e-01 6.30253375e-01 2.20531315e-01 -1.10432196e+00 -1.44529775e-01 -8.32675278e-01 3.72031093e-01 -1.89243972e-01 9.11013544e-01 -3.97410274e-01 4.17264670e-01 8.93019676e-01 -9.79831889e-02 -3.82076025e-01 -8.85791600e-01 6.03365958e-01 1.02897072e+00 4.20647502e-01 -6.89628303e-01 3.17019701e-01 1.02665372e-01 -9.63503540e-01 -1.02813458e+00 -5.07377744e-01 -5.71381330e-01 -7.33587980e-01 -1.54579163e-01 7.54266977e-01 -1.31653416e+00 -4.22848880e-01 5.60352445e-01 -1.26417983e+00 -7.94402838e-01 -4.94582295e-01 3.89133155e-01 -3.35528284e-01 2.15848871e-02 -9.03097749e-01 -7.96773076e-01 -3.22916567e-01 -1.00184977e+00 1.00082111e+00 -3.23014945e-01 -7.87450552e-01 -1.63758183e+00 5.21600723e-01 4.27235365e-01 1.97089940e-01 5.19109182e-02 1.08057010e+00 -8.61242354e-01 2.28946388e-01 -7.77739435e-02 1.22209013e-01 7.92542994e-01 -2.21522436e-01 -1.39828548e-01 -1.01534367e+00 -4.08783406e-01 -7.20577091e-02 -6.79108024e-01 9.63142812e-01 1.09557450e-01 5.33530191e-02 -1.15030803e-01 6.76670372e-02 6.26910388e-01 1.07346296e+00 -1.03899963e-01 2.29244158e-01 6.62340224e-01 5.91745377e-01 1.06618941e+00 3.96420360e-01 -3.19450796e-01 9.40495849e-01 4.21928883e-01 -1.08948752e-01 -1.05559692e-01 -2.21050203e-01 -3.47707391e-01 1.17904425e+00 1.74278271e+00 1.43917039e-01 4.15059067e-02 -1.36887038e+00 1.04343081e+00 -1.81204927e+00 -3.03658128e-01 -5.15504658e-01 2.31067848e+00 1.29639864e+00 5.75205125e-02 7.13751018e-02 -1.17201105e-01 3.76792550e-01 1.79264858e-01 -7.66501650e-02 -1.39446688e+00 -6.45499766e-01 2.95129746e-01 1.47443354e-01 1.18022573e+00 -1.05352342e+00 1.58410740e+00 6.83766270e+00 6.11893237e-01 -1.06365943e+00 3.71652961e-01 6.45723760e-01 -1.66753903e-01 -5.79087436e-01 -1.22923978e-01 -7.45145500e-01 1.61961451e-01 1.61613107e+00 -2.55379736e-01 2.82556415e-01 6.37348115e-01 3.37439030e-01 -8.98872390e-02 -1.13899660e+00 5.51785648e-01 -1.67833835e-01 -8.06203008e-01 -6.27907440e-02 -3.34721625e-01 8.75920773e-01 9.88819718e-01 -6.55805618e-02 7.89255202e-01 7.71069944e-01 -9.66177106e-01 1.22726202e+00 -5.95100895e-02 8.49055767e-01 -7.56874859e-01 1.05775166e+00 3.52291763e-01 -7.69267976e-01 1.74776793e-01 -3.58119935e-01 -2.33966425e-01 1.71026036e-01 4.71038133e-01 -7.11220562e-01 5.44534266e-01 1.09670317e+00 5.88622987e-01 -6.35271013e-01 5.90308130e-01 -5.29027164e-01 1.25969481e+00 -4.19322729e-01 1.36123687e-01 3.36752862e-01 -2.56313056e-01 5.60410857e-01 1.68703842e+00 -5.99934720e-02 -6.43956780e-01 2.92454422e-01 1.49141058e-01 -3.00777201e-02 1.14370608e+00 -5.67310154e-01 2.39341676e-01 -7.49471411e-02 9.51578081e-01 -8.02201703e-02 -3.27275455e-01 -6.16349638e-01 7.41645873e-01 5.26214123e-01 3.40580553e-01 -3.01373124e-01 -2.87304878e-01 5.52389622e-01 3.12255532e-01 -3.20024908e-01 -1.74038574e-01 -3.45097601e-01 -9.54305768e-01 2.21755266e-01 -1.37098706e+00 8.60014379e-01 -5.60354352e-01 -1.28866518e+00 9.59259987e-01 -1.75098330e-01 -5.00992417e-01 -6.19643450e-01 -1.00345802e+00 -2.82962650e-01 1.30493987e+00 -1.56740522e+00 -1.34242773e+00 3.76170963e-01 4.49090630e-01 4.40681219e-01 -4.84510750e-01 1.00777042e+00 4.63184506e-01 -2.83363402e-01 6.46059096e-01 3.08019787e-01 3.09238106e-01 1.15937877e+00 -1.63764977e+00 8.85064721e-01 2.96586603e-01 3.56414050e-01 5.99826157e-01 6.19881630e-01 -5.51796496e-01 -5.14309347e-01 -9.55555439e-01 1.65786958e+00 -7.98583150e-01 1.04572618e+00 -8.03113759e-01 -8.99111569e-01 9.01167750e-01 7.59368181e-01 -2.55179226e-01 7.10632563e-01 4.89420533e-01 -4.23359066e-01 -2.99905110e-02 -7.89281607e-01 5.37634492e-01 9.67817128e-01 -9.00205910e-01 -6.52704418e-01 5.37283063e-01 8.44693303e-01 -5.10782838e-01 -6.94719195e-01 2.20247164e-01 5.47443330e-01 -1.38541639e+00 4.34565753e-01 -1.06016564e+00 2.83853322e-01 6.59807101e-02 -2.36988410e-01 -1.71467757e+00 2.03277811e-01 -9.96343255e-01 6.21256769e-01 1.40119779e+00 1.05048537e+00 -1.18978179e+00 3.46027762e-01 3.28916341e-01 -3.53798777e-01 -2.12112173e-01 -1.40188110e+00 -8.51906717e-01 1.04647291e+00 -7.94757068e-01 2.37888902e-01 9.21366155e-01 -2.61137858e-02 5.45544624e-01 1.78722903e-01 -3.17984104e-01 -1.97321340e-01 -3.43511432e-01 8.03856850e-01 -1.10943270e+00 -4.43266064e-01 -3.58037591e-01 -3.05809855e-01 -5.85785806e-01 5.23993254e-01 -1.50413716e+00 -8.49154070e-02 -1.58490252e+00 -3.86261791e-01 -4.74431068e-01 -3.21940988e-01 4.02068287e-01 -1.18179977e-01 2.15586916e-01 1.58050463e-01 -2.51198793e-03 -3.14461261e-01 1.93619683e-01 9.36228514e-01 1.75232455e-01 -4.44241792e-01 -3.09121013e-02 -5.65200448e-01 1.02602530e+00 6.89417839e-01 -2.28314355e-01 -7.31109753e-02 -1.11337960e+00 6.82672977e-01 -4.63144362e-01 1.74791645e-02 -8.55902195e-01 -2.83445805e-01 4.21386808e-01 -9.25018340e-02 -2.41972670e-01 8.06230903e-02 -3.51688504e-01 -7.32027292e-02 4.96085703e-01 -2.50728935e-01 4.56025273e-01 7.82110095e-01 -2.69903839e-01 -6.29918575e-01 -4.83585224e-02 6.77175164e-01 -3.77210140e-01 -6.02879465e-01 -3.38074863e-01 -4.01081920e-01 7.44819343e-01 6.47361815e-01 1.60830971e-02 -2.75667667e-01 -4.06463265e-01 -7.85899341e-01 5.36157846e-01 3.89223605e-01 7.14850903e-01 -1.40151039e-01 -1.13428485e+00 -1.46292460e+00 3.17055464e-01 3.08628738e-01 -1.05215088e-01 6.85868412e-02 8.23930979e-01 -9.91940975e-01 7.35507071e-01 2.06910685e-01 -3.82752180e-01 -1.10453951e+00 9.81763154e-02 5.77734888e-01 -4.14029062e-01 -1.87571168e-01 1.27522016e+00 1.61769092e-01 -1.65070963e+00 -7.67200440e-02 -2.14969605e-01 -1.73491850e-01 3.63546699e-01 1.32816717e-01 2.46817917e-01 4.21590835e-01 -1.08526587e+00 -6.19430661e-01 3.20717961e-01 -9.34376493e-02 -5.81547737e-01 1.13030457e+00 2.40749400e-02 -4.89698321e-01 1.11077905e+00 1.17944777e+00 6.26657486e-01 -6.41453385e-01 8.57978389e-02 4.20254260e-01 2.16869846e-01 -7.69981891e-02 -1.38690186e+00 -5.78368425e-01 9.64214087e-01 2.58899987e-01 2.43608467e-03 5.92382073e-01 1.00968875e-01 6.31147206e-01 1.75317496e-01 4.95566010e-01 -1.42098296e+00 -8.59113753e-01 1.08148813e+00 1.24624932e+00 -1.20246172e+00 -4.96417910e-01 -2.76793778e-01 -8.75950336e-01 5.41539788e-01 5.07594705e-01 4.09883112e-02 7.35675693e-01 1.69286773e-01 1.10849190e+00 1.67488426e-01 -8.86542380e-01 -1.50124639e-01 4.37657416e-01 5.62657595e-01 1.27569723e+00 4.76587951e-01 -6.48723245e-01 8.45628202e-01 -1.12595463e+00 -3.96365345e-01 2.34456822e-01 5.50662339e-01 1.72587112e-02 -1.40346396e+00 -4.17146504e-01 1.14706814e-01 -7.41322756e-01 -5.67053854e-01 -8.90447497e-01 1.30277705e+00 3.39069247e-01 9.65725958e-01 7.58834109e-02 -1.45549804e-01 6.73682213e-01 5.87607026e-01 1.04855932e-01 -8.93459380e-01 -1.45522702e+00 1.59137875e-01 8.98719549e-01 -3.31250787e-01 -1.24044143e-01 -7.90506005e-01 -1.08433211e+00 -1.90642625e-01 2.19951719e-02 5.10114968e-01 7.35835433e-01 7.00129151e-01 6.78007379e-02 6.54052198e-02 5.35248555e-02 -4.45932567e-01 -3.05880129e-01 -1.13208103e+00 -3.89580369e-01 2.69430548e-01 1.09085143e-01 4.43934463e-03 -4.99360651e-01 -1.79830268e-01]
[10.907868385314941, 9.93319320678711]
72ae9124-123e-4673-a847-faa283beb9b9
non-linear-phase-retrieval-algorithms-for-x
2305.00334
null
https://arxiv.org/abs/2305.00334v1
https://arxiv.org/pdf/2305.00334v1.pdf
Non-Linear Phase-Retrieval Algorithms for X-ray Propagation-Based Phase-Contrast Tomography
X-ray phase-contrast tomography (XPCT) is widely used for high-contrast 3D micron-scale imaging using nearly monochromatic X-rays at synchrotron beamlines. XPCT enables an order of magnitude improvement in image contrast of the reconstructed material interfaces with low X-ray absorption contrast. The dominant approaches to 3D reconstruction using XPCT relies on the use of phase-retrieval algorithms that make one or more limiting approximations for the experimental configuration and material properties. Since many experimental scenarios violate such approximations, the resulting reconstructions contain blur, artifacts, or other quantitative inaccuracies. Our solution to this problem is to formulate new iterative non-linear phase-retrieval (NLPR) algorithms that avoid such limiting approximations. Compared to the widely used state-of-the-art approaches, we show that our proposed algorithms result in sharp and quantitatively accurate reconstruction with reduced artifacts. Unlike existing NLPR algorithms, our approaches avoid the laborious manual tuning of regularization hyper-parameters while still achieving the stated goals. As an alternative to regularization, we propose explicit constraints on the material properties to constrain the solution space and solve the phase-retrieval problem. These constraints are easily user-configurable since they follow directly from the imaged object's dimensions and material properties.
['Dilworth Parkinson', 'Jefferson A. Cuadra', 'Venkatesh Sridhar', 'Jean-Baptiste Forien', 'K. Aditya Mohan']
2023-04-29
null
null
null
null
['3d-reconstruction']
['computer-vision']
[ 5.88373542e-01 -5.85859716e-02 1.87687144e-01 -1.96073949e-01 -9.53264952e-01 -1.22297809e-01 4.05787885e-01 -4.62801792e-02 -5.46075165e-01 7.40080237e-01 -2.26877749e-01 -2.01643094e-01 -3.69075090e-01 -7.14738667e-01 -3.57097328e-01 -1.02202296e+00 2.35040024e-01 8.85812938e-01 5.41628897e-01 2.53200740e-01 5.61118066e-01 7.82818198e-01 -1.29704666e+00 -1.41923986e-02 6.51524007e-01 1.05440593e+00 4.05724794e-01 4.75050449e-01 5.18228486e-02 5.04987180e-01 -8.94609541e-02 2.20445380e-01 1.63175493e-01 -6.42792761e-01 -7.89814770e-01 3.73831749e-01 1.39277443e-01 -3.74770522e-01 -1.08489305e-01 1.10663986e+00 3.55975509e-01 -1.07993530e-02 8.50486517e-01 -6.51487172e-01 -3.77463073e-01 -1.74669236e-01 -9.16339159e-01 7.36582130e-02 5.09385288e-01 2.14988708e-01 5.63636839e-01 -7.89510369e-01 8.32929492e-01 7.60968089e-01 6.19984746e-01 5.61146736e-01 -1.39607680e+00 -3.61765772e-01 -3.44729125e-01 2.02531204e-01 -1.26099122e+00 -3.48556250e-01 9.35308039e-01 -4.82098728e-01 8.42822254e-01 6.11895859e-01 5.38150430e-01 5.90881407e-01 3.27080607e-01 1.09283730e-01 1.64290071e+00 -8.07082534e-01 4.03282136e-01 4.91852388e-02 1.96798876e-01 8.80599082e-01 3.27076435e-01 2.15719610e-01 -3.97891074e-01 -4.09594029e-01 1.06551325e+00 2.59620491e-02 -8.07594776e-01 -5.53376436e-01 -1.09200013e+00 2.72685260e-01 1.63556516e-01 3.73216778e-01 -4.64103937e-01 1.03409715e-01 -1.12688886e-02 1.90936148e-01 5.86786211e-01 9.49851871e-01 -8.60551223e-02 1.07142963e-01 -8.40091646e-01 2.60924727e-01 3.29663426e-01 6.88056886e-01 8.98270786e-01 -2.88844287e-01 1.67439118e-01 6.45681024e-01 4.97555584e-01 5.42571545e-01 1.70428663e-01 -1.08897281e+00 5.33077354e-03 2.97155738e-01 4.36010689e-01 -5.72164059e-01 -2.45917201e-01 -3.01002711e-01 -4.75969881e-01 6.13986552e-01 5.52589953e-01 2.79577523e-01 -1.06157291e+00 1.29372823e+00 4.94395524e-01 -1.58728175e-02 -1.82978272e-01 1.14430833e+00 5.35056591e-01 5.95873713e-01 -3.39427024e-01 -9.58480895e-01 1.26587391e+00 -4.65054482e-01 -8.56179655e-01 2.22189184e-02 1.30054489e-01 -1.02714574e+00 1.11789608e+00 4.12912905e-01 -1.45594108e+00 6.17676154e-02 -1.05205095e+00 1.89516723e-01 2.66842782e-01 -2.01018155e-01 3.76186401e-01 3.84828418e-01 -5.97201526e-01 9.85611081e-01 -1.06337643e+00 -4.65538613e-02 2.28527129e-01 3.57646823e-01 -2.46791691e-01 -1.07564494e-01 -3.47591847e-01 7.76185036e-01 -2.64767259e-01 4.49847206e-02 -6.28718510e-02 -1.05885530e+00 -3.16627771e-01 -2.45215341e-01 5.08921385e-01 -8.05946171e-01 1.21763515e+00 -3.11954081e-01 -1.86637473e+00 1.16722691e+00 -2.15780661e-01 6.75355121e-02 6.60158932e-01 -1.27734333e-01 1.13737114e-01 8.81140232e-01 -6.19987026e-02 -6.97675869e-02 7.26945937e-01 -1.78523326e+00 7.41026830e-03 -2.80552596e-01 -4.73613441e-01 1.19156830e-01 1.97018981e-01 1.81505084e-01 -4.89358425e-01 -1.93562835e-01 8.83607805e-01 -7.17993200e-01 -4.39499527e-01 5.07912517e-01 -4.61009920e-01 3.81600827e-01 1.04803085e+00 -3.02806377e-01 6.20518863e-01 -1.88092721e+00 3.29393893e-02 1.10335685e-01 4.50471729e-01 -6.03010170e-02 2.45298639e-01 5.52963674e-01 2.18681172e-02 -3.67155790e-01 -6.06055081e-01 -2.77548075e-01 -2.91554421e-01 4.87559997e-02 -8.37257877e-02 9.00797844e-01 -9.18172449e-02 6.41768396e-01 -7.80211091e-01 -5.20039856e-01 3.75613064e-01 6.26476407e-01 -6.56080425e-01 2.55158007e-01 -3.97665411e-01 9.53411996e-01 -6.02630675e-01 4.75551695e-01 9.51775849e-01 -6.16166830e-01 2.22481385e-01 -5.21516442e-01 -6.22650504e-01 2.04749674e-01 -8.87855351e-01 1.19115782e+00 -3.12385231e-01 4.15358484e-01 4.15574580e-01 -7.71194100e-01 3.91112268e-01 3.26458961e-01 9.08852816e-01 -8.63754272e-01 1.26190439e-01 4.97951388e-01 -2.92824805e-01 -6.05858326e-01 1.10928170e-01 -9.33270216e-01 4.06482935e-01 6.31233811e-01 -3.50868613e-01 -6.70646727e-01 -1.96661875e-01 -1.13331534e-01 1.07093167e+00 -5.36062829e-02 2.48773456e-01 -5.79026282e-01 3.90534818e-01 2.91941296e-02 3.62065226e-01 6.83746219e-01 2.37782061e-01 1.05981886e+00 2.92124927e-01 -4.23815519e-01 -1.26656258e+00 -1.06180704e+00 -6.37789667e-01 2.17807945e-02 2.52163231e-01 -1.70220658e-01 -6.81266487e-01 -1.34922713e-01 -4.13644671e-01 2.50994205e-01 -3.24300259e-01 1.86025530e-01 -8.32610250e-01 -1.12866092e+00 -1.75346106e-01 -3.55209387e-03 5.58770716e-01 -8.39564025e-01 -9.25736368e-01 1.11796498e-01 -1.68278053e-01 -1.24338138e+00 -5.49642835e-03 1.54122978e-01 -8.44197869e-01 -1.31681967e+00 -8.81778061e-01 -3.77316445e-01 1.07257915e+00 1.21041596e-01 1.03169954e+00 2.17882454e-01 -5.43418467e-01 5.07427514e-01 -1.32657498e-01 1.84421718e-01 -4.64406073e-01 -5.84390044e-01 8.66974965e-02 -2.12396711e-01 -1.12201571e-01 -9.27998483e-01 -8.44592988e-01 2.86256939e-01 -8.28237057e-01 2.83229172e-01 4.45807993e-01 8.94209385e-01 1.13431907e+00 2.06365839e-01 1.09875597e-01 -1.22534275e+00 2.88656950e-01 6.38098866e-02 -1.04306877e+00 -9.16127861e-02 -8.21256280e-01 1.76606312e-01 7.33306885e-01 -4.18365151e-01 -1.22289944e+00 -1.62455499e-01 -3.97260636e-01 -4.30271119e-01 -1.65693268e-01 2.37819746e-01 8.62265229e-02 -7.10022628e-01 6.02809250e-01 2.35607401e-01 -8.49332213e-02 -4.91677195e-01 -2.56977022e-01 2.91961014e-01 5.02113938e-01 -6.09294415e-01 8.62865329e-01 8.18564832e-01 4.77454245e-01 -1.33437955e+00 -8.54965746e-01 -4.40001607e-01 -3.01603973e-01 -3.58322591e-01 8.15126836e-01 -3.38671923e-01 -9.07968581e-01 4.53501701e-01 -8.13902736e-01 -3.80191416e-01 -4.20363009e-01 7.78306425e-01 -8.66055727e-01 6.97421789e-01 -8.66311669e-01 -7.64696598e-01 -1.76928937e-01 -1.27354062e+00 1.16913080e+00 -8.00174996e-02 -9.80650857e-02 -8.15620482e-01 7.69807175e-02 3.70319813e-01 4.64834511e-01 3.36377800e-01 1.28843045e+00 5.08054733e-01 -1.11119688e+00 1.03957675e-01 -3.10759723e-01 -6.91104233e-02 1.59119830e-01 -1.63740292e-01 -7.76548386e-01 -3.40484440e-01 8.87150645e-01 -1.13012366e-01 6.04019284e-01 7.75277972e-01 1.10984755e+00 -2.61385858e-01 -4.53605980e-01 9.02711630e-01 1.96217275e+00 1.51837170e-01 6.56950712e-01 2.31277049e-01 5.12808859e-01 5.21340013e-01 5.92088163e-01 4.07733411e-01 -3.21836174e-01 9.42232311e-01 2.42336169e-01 -1.43626302e-01 -1.45911381e-01 1.20314419e-01 -2.77801096e-01 7.84136891e-01 -4.08387065e-01 8.25023875e-02 -8.26716721e-01 1.52800545e-01 -1.39377749e+00 -8.84275794e-01 -5.31408310e-01 2.35510278e+00 9.98814583e-01 2.16937345e-02 -3.20036739e-01 2.97109187e-01 1.44204810e-01 -6.00786693e-02 -5.22170663e-01 2.51765370e-01 1.75481915e-01 4.07714367e-01 4.67055976e-01 9.29845273e-01 -6.62937105e-01 4.30961400e-01 7.12860584e+00 5.28808594e-01 -1.32733953e+00 1.74930260e-01 2.31784865e-01 -1.48326740e-01 -5.79437971e-01 -1.56051684e-02 -4.11285102e-01 3.77760321e-01 4.36844468e-01 1.05926529e-01 2.68548310e-01 3.05861890e-01 3.04217935e-01 -5.76232195e-01 -8.99787426e-01 1.04999256e+00 -3.58423054e-01 -1.55657148e+00 -1.85159609e-01 2.29199558e-01 6.03551149e-01 -1.18791029e-01 1.42155305e-01 -5.86083114e-01 -1.89001650e-01 -6.11015141e-01 5.45982897e-01 5.74647605e-01 1.09930956e+00 -5.06244481e-01 3.11462343e-01 2.21318766e-01 -7.23425806e-01 3.49528283e-01 -3.27265888e-01 1.47501454e-01 5.17003119e-01 1.05414999e+00 -4.20329273e-01 3.46732765e-01 7.37241149e-01 2.68946379e-01 3.50769721e-02 9.42157745e-01 9.14950445e-02 3.40447783e-01 -4.43791449e-01 2.53255069e-01 -9.16744489e-03 -6.32404625e-01 8.30127239e-01 7.70023763e-01 2.09377393e-01 7.26650894e-01 -8.47308636e-02 1.05744493e+00 2.19196007e-01 -1.34100527e-01 -4.20740664e-01 2.69193977e-01 8.61123204e-02 9.73683357e-01 -1.02915430e+00 -6.25778958e-02 -4.85901922e-01 8.72073948e-01 7.71360099e-02 6.89898908e-01 -4.00528729e-01 8.36431701e-03 3.98462981e-01 1.03549981e+00 6.80250227e-02 -4.33393091e-01 -2.56917149e-01 -1.11219156e+00 2.89275855e-01 -5.35220563e-01 -1.11318506e-01 -9.25513089e-01 -1.23260832e+00 5.48046052e-01 3.64030451e-01 -1.17337513e+00 -1.00512087e-01 -7.67652452e-01 -3.35841805e-01 8.35576832e-01 -1.78139913e+00 -8.49727869e-01 -1.17979690e-01 2.98884600e-01 1.51077121e-01 4.14114147e-01 8.08023572e-01 2.38119349e-01 1.22864067e-03 -1.21554978e-01 2.17291966e-01 -4.70062613e-01 5.01459777e-01 -1.12861121e+00 -2.34694406e-01 7.70653784e-01 -4.97250527e-01 6.10173762e-01 1.24457097e+00 -5.87439239e-01 -1.59907115e+00 -5.46028376e-01 4.88745093e-01 -1.31265327e-01 5.37555933e-01 -2.55408555e-01 -1.07041359e+00 5.82507133e-01 2.23913655e-01 2.18203053e-01 6.78136349e-01 -2.39544094e-01 9.40512717e-02 2.93523103e-01 -1.42118073e+00 4.43438351e-01 8.82485211e-01 -4.25188214e-01 -2.52610683e-01 5.39581180e-01 2.73515642e-01 -5.74273169e-01 -7.52484739e-01 4.56540138e-01 3.76294136e-01 -1.19440532e+00 1.06314015e+00 -1.51693448e-01 5.70072234e-01 -3.00664753e-01 -2.26699915e-02 -9.83472705e-01 -4.45749938e-01 -7.73251414e-01 2.06121296e-01 5.31186104e-01 2.16585025e-01 -7.41767704e-01 1.07893443e+00 6.35737121e-01 -3.79182577e-01 -8.77380788e-01 -9.99985754e-01 -6.50730312e-01 -1.32211030e-01 -1.61877170e-01 -1.96918994e-02 9.81787622e-01 -3.85265797e-02 2.65573353e-01 -1.41168624e-01 4.69826370e-01 1.26789498e+00 6.28523767e-01 2.05555633e-01 -1.30905235e+00 -6.05234146e-01 -1.41246080e-01 -9.68131647e-02 -1.14956164e+00 -1.70614794e-01 -4.04413372e-01 1.60996556e-01 -1.35166180e+00 3.76545101e-01 -9.80550885e-01 3.04181069e-01 9.27516669e-02 1.00482926e-01 4.86483961e-01 -2.76038617e-01 5.28471947e-01 -2.56539404e-01 5.59642553e-01 1.70850670e+00 1.60730213e-01 -1.87760547e-01 7.09959045e-02 -2.85601705e-01 8.05842340e-01 4.57064718e-01 -5.22281587e-01 -4.06282872e-01 -3.16478550e-01 4.20075536e-01 3.91314805e-01 3.55740160e-01 -9.59742844e-01 1.89209491e-01 -3.07887077e-01 2.69192517e-01 -6.73353553e-01 6.52536333e-01 -9.76406872e-01 5.75399697e-01 4.77689087e-01 8.85252506e-02 -4.25897062e-01 -9.73830596e-02 2.57234365e-01 -1.01443976e-01 -5.85650921e-01 1.37680054e+00 -5.79381704e-01 6.00758567e-02 1.87082797e-01 -7.14442909e-01 -2.43964776e-01 7.67351747e-01 -2.55099565e-01 -3.80431592e-01 -7.59154260e-02 -6.76382065e-01 -3.31808478e-01 1.07117140e+00 -5.28886795e-01 8.69835377e-01 -1.03853929e+00 -3.12326372e-01 3.32258880e-01 -1.30775988e-01 1.89283192e-01 3.04849923e-01 8.20929229e-01 -1.07731271e+00 3.28480244e-01 -1.35249510e-01 -7.32752442e-01 -1.32961881e+00 3.77135217e-01 6.33839011e-01 -5.21192312e-01 -1.13479412e+00 6.57696724e-01 2.57632643e-01 -2.54235953e-01 -4.38731432e-01 -3.32235813e-01 2.75755107e-01 -5.91307878e-01 5.56803703e-01 2.07630321e-01 2.49270663e-01 -3.47158372e-01 -1.17223807e-01 1.06061220e+00 -1.22425899e-01 -3.72590601e-01 1.74915445e+00 -2.22580567e-01 -1.55655965e-01 3.35605174e-01 9.85191107e-01 2.18699932e-01 -1.32911432e+00 -2.53943950e-01 -3.75988573e-01 -7.37262726e-01 3.05174977e-01 -4.25252616e-01 -9.34148550e-01 6.12497926e-01 3.08702499e-01 2.30478555e-01 1.21525943e+00 3.03643495e-01 6.67652547e-01 1.82824329e-01 5.71890473e-01 -7.92074084e-01 9.40755159e-02 -5.36674596e-02 7.06247091e-01 -9.93527114e-01 6.80527210e-01 -1.08418608e+00 1.62858710e-01 9.74914193e-01 3.14971566e-01 -5.73423281e-02 6.63150430e-01 5.27859688e-01 4.67030145e-02 -6.18411899e-01 -6.72851503e-01 1.28364801e-01 4.63901237e-02 6.95306718e-01 3.42840612e-01 -2.53947496e-01 -5.35549700e-01 -1.47490889e-01 1.43391229e-02 -1.66197941e-01 5.15475988e-01 1.16486323e+00 -5.23833334e-01 -1.24281430e+00 -5.91519117e-01 3.73548716e-01 -5.32245994e-01 1.65557742e-01 1.29840849e-02 7.19498217e-01 -4.88672853e-01 5.15739202e-01 1.53078428e-02 3.15643549e-01 4.03238654e-01 -2.50472814e-01 1.18163502e+00 -5.86592257e-01 -1.27923682e-01 4.13630009e-01 -1.05610311e-01 -6.01474941e-01 -7.21062243e-01 -7.84400046e-01 -1.41229630e+00 -1.88282326e-01 -5.28419316e-01 1.30608454e-01 4.36343819e-01 9.06303048e-01 -6.59385920e-02 3.68578017e-01 5.09042859e-01 -8.98507118e-01 -2.28009373e-01 -6.98296964e-01 -7.30435610e-01 3.99961829e-01 4.13704306e-01 -7.47701287e-01 -4.40341026e-01 -1.02210470e-01]
[12.878005027770996, -2.7746024131774902]
99adbda4-b322-4291-b603-bcfaf0f84ab1
analysis-of-convolutional-neural-networks-for
1708.03273
null
http://arxiv.org/abs/1708.03273v1
http://arxiv.org/pdf/1708.03273v1.pdf
Analysis of Convolutional Neural Networks for Document Image Classification
Convolutional Neural Networks (CNNs) are state-of-the-art models for document image classification tasks. However, many of these approaches rely on parameters and architectures designed for classifying natural images, which differ from document images. We question whether this is appropriate and conduct a large empirical study to find what aspects of CNNs most affect performance on document images. Among other results, we exceed the state-of-the-art on the RVL-CDIP dataset by using shear transform data augmentation and an architecture designed for a larger input image. Additionally, we analyze the learned features and find evidence that CNNs trained on RVL-CDIP learn region-specific layout features.
['Chris Tensmeyer', 'Tony Martinez']
2017-08-10
null
null
null
null
['document-image-classification']
['computer-vision']
[ 1.61037296e-01 -1.53781369e-01 -4.86287653e-01 -4.39492047e-01 -2.57245332e-01 -9.26545084e-01 9.08691525e-01 8.56694132e-02 -4.42486912e-01 6.29100651e-02 3.08473825e-01 -7.40330815e-01 -9.48267058e-02 -8.63219440e-01 -9.26278830e-01 -2.76386082e-01 -2.03706650e-03 3.15717518e-01 4.67859171e-02 -2.05595747e-01 7.56113648e-01 8.41373861e-01 -1.24162483e+00 1.12041891e+00 3.58728260e-01 1.02134705e+00 -1.33738324e-01 1.09714293e+00 -4.54024702e-01 8.64312112e-01 -1.00442123e+00 -2.16614738e-01 1.91024840e-01 -3.12137038e-01 -1.00693452e+00 1.17734604e-01 1.20721805e+00 -3.20435435e-01 -4.68250543e-01 4.74325716e-01 3.38110536e-01 -2.75436472e-02 8.32107663e-01 -1.05620933e+00 -1.57453156e+00 5.57612479e-01 -5.15275836e-01 4.30607647e-01 -3.68779339e-02 1.76506579e-01 9.69930649e-01 -9.09254313e-01 8.55553687e-01 1.25930715e+00 1.04563749e+00 1.74264044e-01 -1.36546171e+00 -4.50519741e-01 2.67386049e-01 9.52334628e-02 -1.23373818e+00 -3.05225968e-01 7.48913705e-01 -5.13999224e-01 1.25678289e+00 4.66088913e-02 5.09415209e-01 1.37840474e+00 2.46320695e-01 8.80200803e-01 9.77282524e-01 -7.74275541e-01 -4.65010107e-02 5.24421036e-03 4.63378727e-01 6.09910190e-01 4.40988690e-01 -1.58190727e-01 -5.14408529e-01 1.27546057e-01 8.84062827e-01 -1.12267256e-01 -1.32365987e-01 -2.46087939e-01 -9.77835298e-01 8.39904845e-01 5.68013370e-01 6.46967769e-01 2.69568134e-02 3.10207367e-01 7.36403584e-01 4.35435444e-01 4.85199302e-01 8.65373015e-01 -5.70073783e-01 -1.15433425e-01 -1.32143986e+00 3.18662822e-01 4.95192587e-01 9.41458464e-01 3.36136699e-01 1.79053217e-01 -3.49093556e-01 8.99252415e-01 -1.57525405e-01 2.13462532e-01 3.61622751e-01 -6.23162985e-01 6.28273726e-01 7.51400590e-01 -4.66473788e-01 -1.12586796e+00 -6.40309751e-01 -6.71616435e-01 -7.53330112e-01 2.39253193e-01 6.58388972e-01 1.26871556e-01 -1.22626257e+00 1.00374770e+00 -7.95417011e-01 -6.09607935e-01 -2.02731892e-01 7.45057821e-01 8.23443532e-01 5.20617485e-01 -9.00832266e-02 8.40448022e-01 1.19339144e+00 -1.31550705e+00 -3.15572381e-01 -4.20503378e-01 1.04122329e+00 -9.09685373e-01 1.52338028e+00 6.13525271e-01 -8.79388392e-01 -9.43535388e-01 -1.20405936e+00 -3.15946221e-01 -7.88520694e-01 7.16060758e-01 6.60693407e-01 1.01406872e+00 -1.06691515e+00 5.66031814e-01 -3.47876221e-01 -6.42975628e-01 7.79864669e-01 -2.21050922e-02 -3.72821808e-01 -2.77945340e-01 -6.07725859e-01 7.53724456e-01 3.06415766e-01 -5.56491017e-02 -5.57681859e-01 -6.97161615e-01 -4.94093120e-01 2.31579870e-01 3.79719585e-03 -8.74451101e-02 1.17288196e+00 -1.20067382e+00 -9.88013327e-01 1.00787687e+00 7.11287484e-02 -3.49472463e-01 2.19858259e-01 -5.44089526e-02 -4.42124724e-01 3.61681819e-01 -2.82217771e-01 7.36983359e-01 6.67945147e-01 -1.46325636e+00 -2.30109110e-01 -3.21624190e-01 2.59088129e-02 -3.17595154e-01 -6.12259328e-01 4.42869440e-02 -4.54648018e-01 -8.23114455e-01 -1.06484905e-01 -9.80388701e-01 3.33256662e-01 1.68322548e-01 -5.25156081e-01 4.10533734e-02 1.28178275e+00 -5.10723352e-01 8.70570540e-01 -2.07960963e+00 -2.96486825e-01 4.03958201e-01 -6.86908737e-02 5.20351350e-01 -7.06676424e-01 4.28430617e-01 -2.74151832e-01 8.04076791e-01 2.56840438e-01 -3.48823100e-01 -1.54222295e-01 2.29069288e-03 -3.22631478e-01 4.20050025e-01 5.24678826e-01 1.10688424e+00 -1.71787366e-01 -3.56565654e-01 3.15605402e-02 5.62463760e-01 -5.78372717e-01 -2.73251534e-01 -2.88185984e-01 -3.19047421e-02 -1.30959883e-01 7.19597518e-01 7.64148474e-01 -3.99251759e-01 1.69450372e-01 -4.54788446e-01 -2.14338258e-01 1.64461002e-01 -6.32370591e-01 1.70434201e+00 -3.12251538e-01 1.51422477e+00 -1.77870825e-01 -1.21288598e+00 9.97117639e-01 4.93302196e-03 1.99754350e-02 -9.50146198e-01 2.57664114e-01 -3.89435105e-02 2.44846344e-01 -4.28672016e-01 9.25967813e-01 6.16865516e-01 2.76558191e-01 5.05810738e-01 1.98164478e-01 -1.11329835e-02 2.14629844e-01 1.35959864e-01 1.13899779e+00 8.82695243e-02 -4.47622716e-01 -5.51473081e-01 2.93222994e-01 2.94169813e-01 -1.94829464e-01 1.10670698e+00 1.21490657e-01 1.09513128e+00 7.39125073e-01 -7.45538235e-01 -1.62264693e+00 -7.09215224e-01 -1.95051685e-01 1.25715292e+00 -5.34851253e-01 -4.63852137e-01 -7.93570697e-01 -7.89386630e-01 4.59269173e-02 5.58606803e-01 -1.08980596e+00 8.57023522e-02 -4.45072174e-01 -4.83020008e-01 1.09622765e+00 1.13990271e+00 5.34692943e-01 -1.02586138e+00 -5.05939484e-01 -1.62844181e-01 2.44434416e-01 -1.19292212e+00 -3.04354280e-01 5.45449436e-01 -9.52059567e-01 -1.10957956e+00 -7.15681732e-01 -8.68791223e-01 9.10537839e-01 4.33342665e-01 1.41471028e+00 5.95692754e-01 -5.04304409e-01 3.96710008e-01 -6.64937973e-01 -4.38531786e-01 -1.87850729e-01 7.92659044e-01 -6.48853719e-01 -4.80139911e-01 4.79884714e-01 3.60140391e-02 -4.35750395e-01 2.04635531e-01 -1.09965849e+00 -5.11628166e-02 7.15563357e-01 8.17208946e-01 1.06694728e-01 2.07910568e-01 7.57798478e-02 -1.08306658e+00 1.07168198e+00 3.00965589e-02 -2.80912340e-01 2.48927236e-01 -5.28245091e-01 5.92234023e-02 7.05537200e-01 -4.99490917e-01 -8.37154746e-01 -4.15988833e-01 9.58524793e-02 -2.05975607e-01 -4.30086315e-01 6.05599821e-01 2.86827475e-01 -1.89937681e-01 9.40240383e-01 1.82951167e-02 -7.62092322e-02 -4.51901823e-01 2.93008804e-01 5.57490170e-01 5.12615740e-01 -8.20566833e-01 6.10484898e-01 5.40994704e-01 -2.11665109e-02 -1.09888530e+00 -7.13535786e-01 -1.35229468e-01 -9.83321249e-01 -2.95407251e-02 9.48327124e-01 -5.03470182e-01 -5.43342233e-01 5.35940886e-01 -1.33083415e+00 -6.50123596e-01 -6.30700886e-02 1.16157614e-01 -1.73733339e-01 -1.19504862e-01 -8.61952722e-01 -4.90725875e-01 -9.41917300e-02 -1.09402335e+00 1.03194857e+00 1.26526868e-02 -3.93847853e-01 -9.68439519e-01 -1.14347413e-01 2.96958059e-01 7.89017141e-01 6.92297816e-02 1.34938693e+00 -6.65810764e-01 -4.22176361e-01 -2.63818115e-01 -8.05909574e-01 4.45549279e-01 -1.19774044e-01 6.88196659e-01 -1.09182763e+00 -3.40260774e-01 -7.28374541e-01 -5.45937240e-01 1.18446457e+00 6.42543018e-01 1.73405981e+00 -1.54248610e-01 -2.17407197e-01 6.79560781e-01 1.48329103e+00 2.12880149e-01 9.93856251e-01 9.58997846e-01 7.23955810e-01 5.71350992e-01 3.63520011e-02 6.79589137e-02 5.18992431e-02 3.70790184e-01 2.98016489e-01 -5.80829322e-01 -2.91092247e-01 -1.72687814e-01 -1.24845907e-01 2.99686819e-01 -1.31538182e-01 -6.76603794e-01 -1.29352033e+00 5.08956671e-01 -1.50458658e+00 -8.56936574e-01 -1.82915762e-01 1.49181294e+00 3.70706290e-01 4.86367255e-01 4.78157867e-03 3.51391405e-01 3.31707925e-01 4.33864981e-01 -8.69912878e-02 -8.25686276e-01 -5.47202647e-01 4.19041246e-01 7.55200744e-01 -4.91025560e-02 -1.01819229e+00 9.27047372e-01 7.97030497e+00 3.92128855e-01 -1.32898581e+00 -3.47648054e-01 1.04613459e+00 -1.71232829e-03 -5.47367036e-02 -2.29308695e-01 -7.05832124e-01 1.25640616e-01 9.06880021e-01 7.26267934e-01 2.70748854e-01 8.39116991e-01 6.29950687e-03 -8.34570602e-02 -1.12400305e+00 6.09983742e-01 4.44922030e-01 -1.94069815e+00 2.20417947e-01 2.75862604e-01 8.22164297e-01 -5.98321445e-02 5.40369213e-01 2.05462262e-01 1.21224545e-01 -1.59783888e+00 7.94788182e-01 4.95937020e-01 7.50455201e-01 -7.92291224e-01 7.38588214e-01 -2.00589493e-01 -8.91122580e-01 -1.45477384e-01 -3.72620016e-01 -5.66111058e-02 -3.86682689e-01 2.17858136e-01 -5.31840205e-01 6.49415255e-02 1.21177578e+00 5.58662057e-01 -1.41690946e+00 6.73014164e-01 3.56654339e-02 8.48915517e-01 2.58338749e-01 -8.34045708e-02 7.22616017e-01 1.11657128e-01 -1.73995778e-01 1.78818452e+00 4.97292429e-02 -4.43919569e-01 -1.21245049e-01 9.75103617e-01 -2.72079647e-01 -4.71170209e-02 -7.15047777e-01 -5.02196908e-01 2.45235831e-01 1.11348295e+00 -1.06620765e+00 -3.77958894e-01 -6.97305083e-01 7.62966871e-01 2.59177536e-01 5.77325046e-01 -4.64086175e-01 -4.90007162e-01 4.55140740e-01 3.44290912e-01 5.30283034e-01 -6.06024384e-01 -7.66755283e-01 -7.75288880e-01 -4.72450666e-02 -1.22987020e+00 6.09365888e-02 -1.18274033e+00 -1.12723887e+00 5.17441988e-01 -2.55412400e-01 -7.29721069e-01 8.31932425e-02 -1.37698233e+00 -8.08963597e-01 6.73899293e-01 -1.38226664e+00 -1.50895250e+00 -5.43292522e-01 3.37689668e-01 5.40354192e-01 -5.82386196e-01 8.61581802e-01 -2.00779978e-02 -4.97270018e-01 7.12755144e-01 4.18888807e-01 8.89105618e-01 8.56634080e-01 -1.10723960e+00 8.17570329e-01 6.94164097e-01 2.38133088e-01 9.30778146e-01 2.79860675e-01 -3.46185535e-01 -1.24510550e+00 -8.95391583e-01 4.58355457e-01 -4.56750512e-01 3.79354447e-01 -5.68589926e-01 -9.15284693e-01 9.65372503e-01 6.70347393e-01 8.64387751e-02 6.90516293e-01 4.54191506e-01 -9.77903962e-01 2.23684087e-01 -8.89144659e-01 5.85810721e-01 1.01620483e+00 -7.61735678e-01 -3.02083939e-01 1.18420064e-01 3.58501434e-01 -2.41100028e-01 -8.41814756e-01 1.49388105e-01 8.24459553e-01 -1.04613793e+00 1.13237023e+00 -1.01105392e+00 1.19851601e+00 1.44581990e-02 -1.92229584e-01 -1.34369576e+00 -6.29956901e-01 2.22871393e-01 2.58261740e-01 1.22667336e+00 6.80158079e-01 -3.92268538e-01 1.17889643e+00 2.84801036e-01 -1.70083717e-01 -5.55825412e-01 -1.95606038e-01 -9.63244677e-01 6.35632157e-01 -4.12052393e-01 4.46595579e-01 1.07133782e+00 -4.33160067e-01 2.19535962e-01 9.86589044e-02 -2.99842000e-01 1.99968338e-01 -8.01544189e-02 9.29721117e-01 -1.23493385e+00 -4.18259650e-02 -9.19141531e-01 -3.03844750e-01 -8.28499198e-01 2.96130151e-01 -7.07464993e-01 -2.26461321e-01 -1.70016789e+00 7.79297352e-02 -3.00386250e-01 -5.14217541e-02 6.57054186e-01 3.93612176e-01 3.11166942e-01 4.31541473e-01 1.31896392e-01 -3.21887016e-01 4.22240682e-02 1.33627391e+00 -6.31542265e-01 1.12598173e-01 -7.04100013e-01 -7.59784520e-01 5.38361132e-01 9.16396856e-01 -1.13307379e-01 -3.96833122e-01 -9.98338878e-01 2.78839231e-01 -6.97432280e-01 4.79181975e-01 -1.03997660e+00 1.40590370e-01 7.80233415e-04 1.37055051e+00 -8.49960923e-01 8.89555439e-02 -6.71494305e-01 -5.60255468e-01 3.06947857e-01 -9.37902927e-01 3.79096925e-01 6.86155796e-01 1.31999338e-02 -1.65328160e-01 -5.16609550e-01 6.47736371e-01 -2.46325508e-01 -6.08365417e-01 -1.44109815e-01 -7.90259659e-01 -1.12363917e-03 3.53809237e-01 -5.00526547e-01 -1.12038541e+00 -3.12654912e-01 -2.13725612e-01 -3.90963167e-01 6.48281455e-01 8.00112605e-01 4.32923824e-01 -1.14605963e+00 -6.23723567e-01 2.64432341e-01 3.78148049e-01 -1.34578779e-01 -7.87175372e-02 3.01107526e-01 -1.03906298e+00 1.00944650e+00 -4.91820902e-01 -5.51795602e-01 -1.26638436e+00 4.25360441e-01 1.99796408e-01 -2.16219828e-01 -5.29289663e-01 7.52286732e-01 -1.10253029e-01 -6.14652514e-01 2.04701275e-01 -6.11719310e-01 -4.89602499e-02 3.17949541e-02 4.20807689e-01 8.06851611e-02 4.05208647e-01 -4.61045414e-01 -2.06974223e-01 5.13964653e-01 -3.82624090e-01 -3.63011584e-02 1.36256981e+00 3.96272779e-01 1.35160610e-01 5.76951057e-02 1.57571173e+00 -1.91351488e-01 -9.50896323e-01 -5.57064451e-02 3.32154818e-02 -5.90232491e-01 3.17216992e-01 -9.25870955e-01 -1.22948492e+00 9.71287906e-01 6.62552834e-01 2.56883383e-01 8.97012353e-01 -3.38917077e-01 2.47530237e-01 7.31532693e-01 -2.21198797e-01 -1.52575076e+00 6.67019963e-01 7.78327048e-01 1.11578882e+00 -1.08487535e+00 1.96770445e-01 -4.49102633e-02 -5.16258359e-01 1.56039524e+00 8.00176620e-01 -3.24631512e-01 5.64324319e-01 4.92997199e-01 9.92202461e-02 -3.60186160e-01 -5.89598596e-01 1.49752200e-01 3.36144775e-01 8.27536762e-01 1.12163281e+00 -2.34008044e-01 1.47990271e-01 1.19366691e-01 -3.88406962e-01 -1.00667097e-01 4.90517646e-01 1.34935343e+00 -1.22367777e-01 -9.54208374e-01 -7.55496144e-01 7.71117866e-01 -3.82851094e-01 -3.35061014e-01 -1.01191199e+00 1.15235674e+00 -1.15080036e-01 8.07516456e-01 6.89568222e-01 -3.65948915e-01 3.96583945e-01 1.67482913e-01 6.33565784e-01 -4.51588064e-01 -8.94423425e-01 -2.63448238e-01 1.23103172e-01 -2.00719878e-01 -2.51503766e-01 -5.09916306e-01 -8.22744310e-01 -5.82361221e-01 -3.33099365e-01 -3.32429856e-01 9.11395967e-01 7.35359728e-01 3.60752970e-01 9.62151706e-01 1.15419455e-01 -9.84748304e-01 -1.34009019e-01 -1.13841319e+00 -4.51694787e-01 5.15763402e-01 1.23399198e-01 -2.42885649e-01 -6.44473825e-03 2.34993652e-01]
[11.516401290893555, 2.6286261081695557]
6d84a493-6a20-4347-b46d-07d0fe6cc266
transmomo-invariance-driven-unsupervised
2003.14401
null
https://arxiv.org/abs/2003.14401v2
https://arxiv.org/pdf/2003.14401v2.pdf
TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting
We present a lightweight video motion retargeting approach TransMoMo that is capable of transferring motion of a person in a source video realistically to another video of a target person. Without using any paired data for supervision, the proposed method can be trained in an unsupervised manner by exploiting invariance properties of three orthogonal factors of variation including motion, structure, and view-angle. Specifically, with loss functions carefully derived based on invariance, we train an auto-encoder to disentangle the latent representations of such factors given the source and target video clips. This allows us to selectively transfer motion extracted from the source video seamlessly to the target video in spite of structural and view-angle disparities between the source and the target. The relaxed assumption of paired data allows our method to be trained on a vast amount of videos needless of manual annotation of source-target pairing, leading to improved robustness against large structural variations and extreme motion in videos. We demonstrate the effectiveness of our method over the state-of-the-art methods. Code, model and data are publicly available on our project page (https://yzhq97.github.io/transmomo).
['Zhuoqian Yang', 'Wayne Wu', 'Wentao Zhu', 'Qiang Zhou', 'Chen Qian', 'Bolei Zhou', 'Chen Change Loy']
2020-03-31
transmomo-invariance-driven-unsupervised-1
http://openaccess.thecvf.com/content_CVPR_2020/html/Yang_TransMoMo_Invariance-Driven_Unsupervised_Video_Motion_Retargeting_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_TransMoMo_Invariance-Driven_Unsupervised_Video_Motion_Retargeting_CVPR_2020_paper.pdf
cvpr-2020-6
['motion-retargeting']
['computer-vision']
[ 2.12261543e-01 -1.24044232e-01 -3.10432673e-01 -9.87907127e-02 -7.54492581e-01 -7.74039030e-01 4.22845572e-01 -6.28210008e-01 -2.65495658e-01 5.01226366e-01 3.59625101e-01 1.29255325e-01 1.68509096e-01 -3.65465224e-01 -9.13525343e-01 -8.08237851e-01 -1.40237153e-01 -1.25902101e-01 3.36066574e-01 8.58719200e-02 1.08603045e-01 2.55261868e-01 -1.42082524e+00 2.27178127e-01 4.11119342e-01 7.29623556e-01 1.11254536e-01 1.00928986e+00 5.85999846e-01 8.50300491e-01 -3.30647081e-01 -3.00983489e-01 6.89537883e-01 -6.07775807e-01 -5.68256378e-01 3.26151937e-01 1.04074347e+00 -5.74946582e-01 -9.96609688e-01 9.05636728e-01 5.69187403e-01 2.96197742e-01 4.08386737e-01 -1.27802932e+00 -5.39416909e-01 1.16636895e-01 -6.37181163e-01 3.00661027e-01 6.70019984e-01 3.77517045e-01 6.57118917e-01 -7.93558240e-01 8.77410948e-01 9.54605818e-01 4.90612566e-01 6.70857191e-01 -1.19924033e+00 -7.38034010e-01 5.29654063e-02 3.65328878e-01 -1.43346739e+00 -8.58619809e-01 8.49957108e-01 -6.89935982e-01 4.91461784e-01 1.82980359e-01 6.32781386e-01 1.52264035e+00 2.19600827e-01 5.82055211e-01 5.38636744e-01 -1.92639157e-01 2.24285480e-02 1.05423797e-02 -3.40026170e-01 7.78516173e-01 7.14737847e-02 2.51075566e-01 -7.69413769e-01 9.25134867e-03 9.82347071e-01 1.61761362e-02 -7.27051139e-01 -8.76416504e-01 -1.54807961e+00 5.87763906e-01 1.76142782e-01 3.40587832e-02 -8.69064778e-02 2.43596420e-01 4.10243362e-01 2.29448184e-01 1.03867888e-01 8.79554302e-02 -2.81744242e-01 -2.78679758e-01 -8.90178978e-01 3.20788026e-01 4.71077055e-01 1.20988703e+00 6.02943480e-01 1.12172879e-01 -7.00527951e-02 3.94606501e-01 1.06578521e-01 6.31632566e-01 5.15538275e-01 -1.32697821e+00 6.27353430e-01 1.36012778e-01 1.81460261e-01 -1.19217098e+00 -3.84473428e-02 -8.58127251e-02 -6.79948747e-01 9.34606940e-02 4.97290581e-01 -3.09867173e-01 -6.60445869e-01 2.04361534e+00 3.97162199e-01 5.36700130e-01 -5.57347052e-02 1.06766844e+00 5.38606405e-01 5.20979166e-01 -3.73737067e-01 -2.87314266e-01 1.07551837e+00 -1.11070359e+00 -6.41522348e-01 -2.74791420e-01 5.18251061e-01 -8.42145443e-01 9.80844855e-01 1.26876995e-01 -1.20148182e+00 -7.03963876e-01 -1.02629292e+00 -1.50863841e-01 2.08043575e-01 1.70639724e-01 1.99235633e-01 5.16000390e-01 -9.24589157e-01 5.22324681e-01 -9.77324307e-01 -3.49279076e-01 2.01649308e-01 3.69133174e-01 -7.53998339e-01 -1.82003215e-01 -1.06755793e+00 4.49286282e-01 2.13851437e-01 -1.35141984e-03 -1.02233386e+00 -7.19342947e-01 -1.01797557e+00 -1.43911660e-01 6.02128804e-01 -9.21637893e-01 1.09716308e+00 -1.37832940e+00 -1.60929990e+00 6.78295791e-01 -2.42508963e-01 -9.04419925e-03 7.47595668e-01 -4.92208213e-01 -3.76371354e-01 6.35446429e-01 2.46975601e-01 5.78660548e-01 1.29619980e+00 -9.17128265e-01 -4.60774213e-01 -1.88229203e-01 7.42573366e-02 3.51621091e-01 -2.67269075e-01 -9.04654041e-02 -8.36113989e-01 -9.52881038e-01 -3.05127650e-01 -1.26921010e+00 6.44508004e-02 3.39307368e-01 -2.46149704e-01 4.73459363e-01 9.69461083e-01 -7.62487113e-01 1.09236431e+00 -2.50197005e+00 5.70744216e-01 -1.20914303e-01 1.30326986e-01 1.72963515e-01 -2.11207747e-01 4.29258883e-01 -2.70287812e-01 -2.55473763e-01 5.74288191e-03 -2.84338146e-01 -3.58722001e-01 -1.53739884e-01 -2.13709638e-01 8.60512793e-01 -5.55597693e-02 7.06452489e-01 -9.94975746e-01 -3.89566094e-01 2.19883412e-01 5.72586238e-01 -7.62425184e-01 6.50582671e-01 1.91663295e-01 8.81555676e-01 -2.22869456e-01 4.55447495e-01 5.72267056e-01 -2.31971815e-01 1.11677915e-01 -4.77911055e-01 1.22052111e-01 3.43103036e-02 -1.18177998e+00 1.90792012e+00 -1.95212364e-01 7.94345200e-01 3.76856327e-02 -6.25085652e-01 4.51090634e-01 5.04401624e-01 6.21531367e-01 -3.23210746e-01 4.45811264e-02 4.93313521e-02 -8.59174952e-02 -7.59240031e-01 4.37550485e-01 9.98268351e-02 -4.44233455e-02 3.47310215e-01 2.18782485e-01 3.64243895e-01 1.93227157e-01 3.05880487e-01 1.00164914e+00 4.61306363e-01 2.37443537e-01 -9.03868210e-03 5.00933051e-01 -4.15671319e-01 8.12489331e-01 5.06040990e-01 -4.05167729e-01 8.27861488e-01 2.69413888e-01 -3.31878096e-01 -1.28205562e+00 -1.36507726e+00 2.52565354e-01 9.50218737e-01 3.11668813e-01 -5.61958492e-01 -6.45191669e-01 -6.70459449e-01 -2.16023445e-01 2.99231023e-01 -6.85323834e-01 -3.09415460e-01 -7.81873703e-01 -1.63708583e-01 4.90494490e-01 6.00427568e-01 5.01581848e-01 -5.25912642e-01 -6.24240160e-01 -1.48265406e-01 -4.59392101e-01 -1.33570027e+00 -1.29224288e+00 -4.32744920e-01 -7.12112665e-01 -1.12819088e+00 -8.71604860e-01 -6.61581933e-01 6.76331103e-01 7.55219400e-01 7.13712752e-01 -1.56238422e-01 -2.22248122e-01 6.87974095e-01 -3.44949007e-01 3.65542322e-01 -2.65702784e-01 -1.93743780e-01 3.49117219e-01 4.07741874e-01 -4.32428122e-02 -6.32150769e-01 -9.02494669e-01 6.21889353e-01 -9.37961519e-01 3.36209834e-01 3.11784595e-01 6.99667394e-01 2.43091047e-01 -1.27959803e-01 1.20956577e-01 -6.15226626e-01 -1.72797829e-01 -5.31176150e-01 -3.88584614e-01 7.29416534e-02 -4.64716926e-02 -2.36467153e-01 6.23626709e-01 -6.78249002e-01 -9.61267889e-01 2.96248496e-01 2.77078092e-01 -1.02762806e+00 -8.40919912e-02 -6.35648891e-02 -4.06419337e-01 -1.16522722e-01 4.37689424e-01 2.66951263e-01 -4.73283045e-02 -2.33871579e-01 4.03475612e-01 4.10184830e-01 8.72622550e-01 -3.17060798e-01 1.02775109e+00 6.51869655e-01 -5.91855347e-02 -8.62253547e-01 -5.97095251e-01 -4.58875388e-01 -9.82305110e-01 -3.35506350e-01 9.67575371e-01 -1.21812248e+00 -4.76809561e-01 5.24210393e-01 -9.26618576e-01 -2.94864327e-01 -6.40628859e-02 6.69629812e-01 -7.86360085e-01 6.65529490e-01 -4.71708536e-01 -2.55572826e-01 9.37852636e-02 -1.17838717e+00 9.25234616e-01 1.57345444e-01 -2.54391462e-01 -1.07567132e+00 1.90316141e-01 5.37151873e-01 9.28419828e-02 2.37833038e-01 4.13025469e-01 -3.26725125e-01 -7.55482733e-01 -2.32756540e-01 1.19873732e-01 3.22069407e-01 5.10098338e-01 1.06415167e-01 -7.94752300e-01 -7.55539000e-01 1.01486137e-02 -1.22566499e-01 6.41611040e-01 3.89012903e-01 7.90906072e-01 -6.28908515e-01 -2.67198682e-01 1.04142296e+00 1.19122624e+00 2.68556010e-02 6.50985479e-01 3.04503560e-01 1.13475990e+00 5.27308106e-01 5.46576202e-01 3.98077190e-01 2.76508391e-01 1.06623018e+00 2.01455861e-01 1.36122882e-01 -2.32201904e-01 -4.10849869e-01 8.42919886e-01 6.19966567e-01 -2.71347106e-01 -2.97397107e-01 -5.17521083e-01 4.95272160e-01 -1.84198678e+00 -1.31038499e+00 1.68202668e-01 2.60122252e+00 5.38648725e-01 -1.63450822e-01 2.45313659e-01 -1.89923733e-01 8.67378592e-01 3.04779112e-01 -4.70895141e-01 1.75054640e-01 3.44515778e-02 -4.59489137e-01 5.20121276e-01 5.95158637e-01 -1.18780780e+00 7.23059893e-01 5.93905449e+00 5.18407881e-01 -1.24103260e+00 7.47325365e-03 3.32054198e-01 -6.32894278e-01 -4.74549495e-02 8.28464329e-02 -5.20746291e-01 7.13439941e-01 9.19705391e-01 -2.33064696e-01 5.24728954e-01 5.53938091e-01 3.19556326e-01 1.33932605e-01 -1.42454362e+00 1.07492197e+00 3.40557128e-01 -1.16718817e+00 6.16232082e-02 2.98849400e-02 7.89954841e-01 -3.75133038e-01 1.66213110e-01 9.02074277e-02 -2.52365321e-01 -7.89184213e-01 8.73783529e-01 4.31075335e-01 8.84785831e-01 -5.61196864e-01 5.00549912e-01 4.83933054e-02 -1.21870399e+00 -6.90324455e-02 -2.20349506e-01 3.79140712e-02 3.13771963e-01 2.29820177e-01 -4.91907716e-01 6.76032603e-01 6.77289724e-01 1.02494061e+00 -4.90280718e-01 7.77591050e-01 -1.39125973e-01 4.08169031e-01 -4.63452078e-02 8.80456150e-01 -1.72030255e-01 -1.55142263e-01 9.00341451e-01 1.09523189e+00 4.31376189e-01 2.41229143e-02 2.72741318e-01 4.41619515e-01 -5.32813929e-02 -2.06924789e-03 -8.62751126e-01 5.52984886e-02 4.00872529e-01 1.02561867e+00 -3.52716327e-01 -2.83566117e-01 -5.90841055e-01 1.44059312e+00 2.67253429e-01 5.00061989e-01 -1.05989695e+00 -1.48203984e-01 7.31533349e-01 2.82521188e-01 6.74502194e-01 -2.82099336e-01 2.49482676e-01 -1.65348470e+00 2.95148253e-01 -1.02550519e+00 3.99495840e-01 -6.70750022e-01 -1.00669158e+00 5.90108752e-01 2.02258945e-01 -1.83181441e+00 -4.82116818e-01 -3.47419828e-01 -6.86725080e-01 5.37957668e-01 -9.23308969e-01 -1.20704186e+00 -4.28481638e-01 8.64808738e-01 5.86341202e-01 -2.99238473e-01 4.70782191e-01 4.30120081e-01 -6.86853707e-01 7.92147875e-01 6.17315620e-02 3.19895357e-01 1.25002837e+00 -8.75235021e-01 2.16022879e-01 1.14364135e+00 7.27302954e-02 5.52038372e-01 7.51645267e-01 -5.70724487e-01 -1.47525477e+00 -1.10939968e+00 3.78619611e-01 -5.67740381e-01 5.92930853e-01 -4.58880395e-01 -7.56120265e-01 1.14989889e+00 2.71639794e-01 2.28556514e-01 8.37879539e-01 -3.70292515e-01 -6.22423232e-01 -1.40259534e-01 -7.55739510e-01 8.15090954e-01 1.05884635e+00 -5.98750234e-01 -4.39971805e-01 5.69361337e-02 6.35190427e-01 -5.41234076e-01 -7.96083212e-01 2.44322553e-01 8.05188537e-01 -1.26834798e+00 1.03638113e+00 -4.55826908e-01 4.92386281e-01 -5.02502501e-01 -2.65822828e-01 -1.14427388e+00 -4.40618783e-01 -1.00630403e+00 -3.82287771e-01 9.96408224e-01 -3.15842666e-02 -4.70600396e-01 6.00091338e-01 5.66799164e-01 1.33774616e-02 -4.37595546e-01 -9.59373116e-01 -8.61380816e-01 -1.68888286e-01 -1.02043934e-01 1.00115962e-01 9.56740439e-01 9.09017697e-02 2.76676863e-01 -9.56734717e-01 3.99722695e-01 6.85516655e-01 9.52405035e-02 1.09928489e+00 -5.35916626e-01 -7.18454480e-01 -8.97814557e-02 -7.48283803e-01 -1.30605292e+00 9.05941576e-02 -6.03814185e-01 -3.05974111e-02 -8.67347300e-01 3.61981869e-01 8.77256915e-02 -1.00227453e-01 3.33025068e-01 -2.80980051e-01 6.11609995e-01 4.73742127e-01 5.43731809e-01 -4.76153553e-01 6.90028191e-01 1.35861707e+00 1.35913575e-02 -2.05264419e-01 -4.71843854e-02 -4.87547666e-01 6.94517136e-01 6.12831712e-01 -4.49485540e-01 -6.48187995e-01 -6.04181588e-01 -9.41679254e-02 4.86663252e-01 6.08909369e-01 -1.04449880e+00 1.52054548e-01 -2.47099563e-01 5.02432883e-01 -8.06636661e-02 5.04362345e-01 -7.35563934e-01 4.78390396e-01 3.11728567e-01 -3.14026028e-01 6.33554086e-02 1.96433187e-01 7.95789123e-01 -7.13711157e-02 -3.93843390e-02 8.22037578e-01 1.63009614e-01 -5.66597104e-01 5.14831662e-01 -2.92630583e-01 3.22124623e-02 1.28026235e+00 -4.05042052e-01 -2.31455386e-01 -7.88949072e-01 -7.57983387e-01 -5.35781160e-02 9.98762548e-01 6.70216858e-01 6.12526178e-01 -1.47220123e+00 -6.75078869e-01 3.19450766e-01 6.13035820e-02 -1.76858291e-01 6.91416204e-01 1.06018102e+00 -4.65617299e-01 2.72157550e-01 -4.78888839e-01 -5.84447563e-01 -1.42953146e+00 8.46632421e-01 2.75023699e-01 2.60666758e-02 -8.19458008e-01 5.61706364e-01 7.23912239e-01 -1.34998849e-02 8.96254182e-03 1.34655178e-01 1.30327538e-01 -2.87556857e-01 7.68228412e-01 4.49343652e-01 -3.51065397e-01 -1.05065846e+00 -3.80048633e-01 8.26373637e-01 -2.48467162e-01 -1.18917443e-01 9.34307814e-01 -5.02467871e-01 3.38680804e-01 3.50969970e-01 1.49893951e+00 4.81325299e-01 -1.92882752e+00 -4.39803042e-02 -5.67204237e-01 -1.12909353e+00 -2.50876188e-01 -3.00767094e-01 -1.22696555e+00 6.69531584e-01 6.38151765e-01 -3.72523159e-01 1.22722697e+00 -1.42859653e-01 6.99049473e-01 1.28633499e-01 3.11264038e-01 -6.97397470e-01 4.00365978e-01 1.07966855e-01 7.73922324e-01 -1.17329705e+00 -1.08444337e-02 -4.80814993e-01 -7.68199146e-01 1.06346238e+00 5.70266664e-01 -2.94873923e-01 5.08773804e-01 7.61293694e-02 1.17024884e-01 9.94888544e-02 -7.23950088e-01 2.48281553e-01 4.39951956e-01 7.39429355e-01 3.59457254e-01 -1.65404558e-01 2.41522223e-01 1.61790431e-01 2.50669606e-02 3.24610062e-02 8.63881826e-01 9.21572208e-01 9.60963406e-03 -9.84475911e-01 -4.03103769e-01 -6.26086742e-02 -4.17275339e-01 1.21712871e-01 -1.14507101e-01 7.42198229e-01 5.85050229e-03 6.86850131e-01 1.23823501e-01 -5.19222856e-01 1.63778692e-01 -2.81432241e-01 6.80768967e-01 -4.51219290e-01 -9.23758894e-02 2.68027008e-01 -8.78486037e-03 -9.14351285e-01 -6.10203862e-01 -7.93871760e-01 -8.58083606e-01 -4.16476935e-01 7.38690421e-02 -5.25458790e-02 8.71018134e-03 7.12642908e-01 5.52992046e-01 2.50703931e-01 8.08624387e-01 -1.35214674e+00 -2.39444584e-01 -6.90868676e-01 -4.81951118e-01 7.31478930e-01 6.46999836e-01 -7.93055952e-01 -3.97640437e-01 6.48692846e-01]
[10.551694869995117, -0.9153048396110535]
ace2c9a1-014b-4f7f-ae26-d32679c074b6
boltzmann-tuning-of-generative-models
2104.05252
null
https://arxiv.org/abs/2104.05252v1
https://arxiv.org/pdf/2104.05252v1.pdf
Boltzmann Tuning of Generative Models
The paper focuses on the a posteriori tuning of a generative model in order to favor the generation of good instances in the sense of some external differentiable criterion. The proposed approach, called Boltzmann Tuning of Generative Models (BTGM), applies to a wide range of applications. It covers conditional generative modelling as a particular case, and offers an affordable alternative to rejection sampling. The contribution of the paper is twofold. Firstly, the objective is formalized and tackled as a well-posed optimization problem; a practical methodology is proposed to choose among the candidate criteria representing the same goal, the one best suited to efficiently learn a tuned generative model. Secondly, the merits of the approach are demonstrated on a real-world application, in the context of robust design for energy policies, showing the ability of BTGM to sample the extreme regions of the considered criteria.
['Michele Sebag', 'Victor Berger']
2021-04-12
null
null
null
null
['robust-design']
['miscellaneous']
[ 3.76580179e-01 4.23809260e-01 -6.82186931e-02 -5.93163520e-02 -9.81302142e-01 -1.14242941e-01 8.43904734e-01 6.75380602e-03 -5.55163920e-01 9.72086549e-01 -1.46962792e-01 2.56086327e-02 -7.17365980e-01 -9.39561129e-01 -4.87575114e-01 -1.26393986e+00 1.89952776e-01 8.58881295e-01 -2.37980098e-01 -1.73810989e-01 3.30507457e-01 5.94966471e-01 -1.69816351e+00 -2.66552985e-01 1.17439914e+00 7.43093371e-01 2.60009617e-01 2.62761950e-01 2.74725050e-01 3.75517718e-02 -6.06499195e-01 -1.89095214e-01 -3.63673158e-02 -5.74181080e-01 -5.22802055e-01 1.52748510e-01 -1.74965516e-01 4.15762365e-01 5.97612977e-01 1.00482082e+00 7.08994269e-01 5.34783602e-01 1.35255933e+00 -8.48219275e-01 -2.56408309e-03 4.50591773e-01 9.04341936e-02 -1.37633681e-02 5.72679490e-02 7.53357038e-02 9.56706464e-01 -8.00544977e-01 2.70574123e-01 1.05050302e+00 3.13230306e-02 5.24799645e-01 -1.75831449e+00 -2.10426852e-01 -5.00423089e-02 5.76184280e-02 -1.51077855e+00 -3.01122487e-01 8.29048455e-01 -6.42521083e-01 6.01103485e-01 3.18817616e-01 6.77285552e-01 9.79929745e-01 2.91554958e-01 5.09124517e-01 1.46550179e+00 -5.65973639e-01 1.07161403e+00 3.90109450e-01 -1.83544591e-01 1.55612588e-01 3.30570638e-01 4.11867499e-01 -3.55010986e-01 -4.14910406e-01 2.63280362e-01 -5.13171017e-01 -1.26210213e-01 -8.09054196e-01 -6.41073108e-01 1.07078350e+00 2.22457930e-01 5.98514915e-01 -5.56417525e-01 1.59646451e-01 8.73542428e-02 -8.37090090e-02 7.05126762e-01 5.01930594e-01 1.06618993e-01 -2.54050139e-02 -1.16720366e+00 5.04081607e-01 7.70683527e-01 4.98288035e-01 5.78638196e-01 4.43924218e-01 -2.94890463e-01 6.49814248e-01 6.08732641e-01 5.69358528e-01 3.32758695e-01 -1.99334472e-01 2.25834414e-01 1.79289952e-01 2.50617057e-01 -6.40041173e-01 -2.16662303e-01 -9.35136497e-01 -6.13479137e-01 5.43027043e-01 2.02438056e-01 -2.58172482e-01 -5.12393773e-01 1.75580049e+00 5.64446509e-01 -2.25941092e-01 -1.34439748e-02 7.75406063e-01 3.40971261e-01 6.90911531e-01 2.41627038e-01 -5.61707556e-01 9.34089601e-01 -8.61746073e-02 -4.87893909e-01 -6.31545931e-02 -2.27043871e-02 -5.60006797e-01 8.26453567e-01 6.00517154e-01 -1.14177740e+00 -6.32195175e-01 -9.85920012e-01 7.45646060e-01 -2.38979086e-01 2.86056697e-01 2.02064201e-01 8.95305932e-01 -8.10061574e-01 5.73068678e-01 -5.70743442e-01 -2.87046850e-01 -1.79652814e-02 3.94282192e-01 2.31490210e-01 2.96993613e-01 -1.12440181e+00 1.06818664e+00 7.09820390e-01 4.35647190e-01 -9.71702099e-01 -3.80200684e-01 -4.89932716e-01 3.10151190e-01 3.72466624e-01 -7.26959527e-01 8.47926319e-01 -1.08003390e+00 -1.92791057e+00 6.76566601e-01 1.43606782e-01 -3.65979880e-01 9.20149148e-01 -7.08569214e-02 -2.78075606e-01 -2.09368289e-01 -2.48031840e-01 3.26289415e-01 1.28947937e+00 -1.16407084e+00 -2.95836538e-01 -2.79670030e-01 -3.34201306e-01 1.03275344e-01 -1.37208879e-01 -2.24048138e-01 1.05222352e-01 -5.62799513e-01 -2.68345356e-01 -7.94960618e-01 -3.78902644e-01 -8.09781611e-01 -4.73116189e-01 -3.53443772e-01 1.57247841e-01 -2.52421588e-01 1.29099679e+00 -1.79949045e+00 8.61095011e-01 9.80813444e-01 -3.70926529e-01 2.02705994e-01 3.39879960e-01 7.89535820e-01 -2.81836949e-02 -1.42819896e-01 -5.27148068e-01 -1.24114066e-01 4.52701449e-01 3.13306153e-02 -3.61928821e-01 7.74712384e-01 2.70050734e-01 5.09643376e-01 -5.81115365e-01 -3.41518819e-01 4.94593501e-01 5.97106934e-01 -4.20689017e-01 2.88927019e-01 -5.81004798e-01 5.02796710e-01 -7.99397111e-01 6.88718036e-02 3.22407603e-01 2.10411385e-01 2.86879420e-01 1.33856937e-01 -2.97878414e-01 -2.29470566e-01 -1.44697964e+00 8.46027076e-01 -4.96439636e-01 3.55207846e-02 -2.47445107e-01 -1.27373433e+00 1.43696499e+00 2.23920658e-01 3.88740480e-01 -4.23113167e-01 4.92637962e-01 4.97045755e-01 -6.16030432e-02 -2.59216726e-01 2.34527186e-01 -3.83172512e-01 -1.51144519e-01 1.77970052e-01 1.74253032e-01 -4.92138207e-01 2.40416944e-01 -4.71538663e-01 2.38452703e-01 4.65778500e-01 7.34026372e-01 -7.29499340e-01 6.94010198e-01 -3.28789264e-01 2.34237805e-01 5.83587468e-01 2.54453003e-01 1.06184930e-01 5.17679453e-01 -9.94726568e-02 -9.09844279e-01 -1.00868249e+00 -3.31037045e-01 6.27061784e-01 -1.20803177e-01 1.39383331e-01 -8.81707847e-01 -3.33564043e-01 -1.38449505e-01 1.23729229e+00 -6.83804929e-01 -2.07485124e-01 -4.85518694e-01 -1.31028283e+00 -7.54775181e-02 -4.50760163e-02 1.39602080e-01 -1.13868129e+00 -1.17715764e+00 3.52703661e-01 1.32000938e-01 -3.95487130e-01 1.58191949e-01 5.03290594e-01 -9.50457513e-01 -8.07008266e-01 -1.04013908e+00 -2.78107554e-01 4.70458627e-01 -6.59385204e-01 1.24808693e+00 -4.54487413e-01 -2.45668113e-01 4.77146655e-01 -8.43123570e-02 -3.71244222e-01 -7.77417362e-01 2.61759400e-01 -1.55130506e-01 4.15881455e-01 2.01598302e-01 -4.85084772e-01 -2.52661854e-01 3.54021519e-01 -8.55123580e-01 -2.93950289e-01 5.98670185e-01 9.19910967e-01 7.37900078e-01 1.53350487e-01 8.70636880e-01 -7.92891800e-01 7.55977094e-01 -4.10912603e-01 -1.09097016e+00 2.75021493e-01 -8.78656328e-01 1.87920451e-01 5.53859890e-01 -2.89642006e-01 -1.07082999e+00 -4.88632806e-02 -2.74937183e-01 4.61703464e-02 -3.40972185e-01 1.96634099e-01 -6.02058470e-01 -1.18333921e-01 5.77949822e-01 3.54386806e-01 -2.39401713e-01 -5.43929040e-01 3.71924996e-01 1.38707355e-01 1.53680623e-01 -9.32004213e-01 7.80245245e-01 7.14441091e-02 4.54357982e-01 -1.04274011e+00 -3.02947760e-01 -2.00972199e-01 -4.02313143e-01 -6.06578410e-01 7.61108398e-01 -2.80907005e-01 -6.90939367e-01 5.90281971e-02 -5.91323197e-01 -2.83215672e-01 -6.49342895e-01 4.88327831e-01 -1.30110121e+00 -4.15591747e-02 9.82432291e-02 -1.41756392e+00 -2.74681598e-01 -1.18264270e+00 8.35596561e-01 3.42613369e-01 -1.83000863e-01 -1.04175770e+00 3.92611384e-01 -1.09200075e-01 2.86777288e-01 3.82856458e-01 1.24021304e+00 -6.16568148e-01 -5.30769050e-01 -9.79143083e-02 5.98972797e-01 3.67208034e-01 -1.63267851e-01 2.85916746e-01 -1.02460241e+00 -4.94383723e-01 1.24120235e-01 -1.11172929e-01 7.53561735e-01 6.80278838e-01 6.24973536e-01 -5.94479330e-02 -2.27131426e-01 2.42451340e-01 1.71177030e+00 3.33492130e-01 6.81381702e-01 3.65228772e-01 -6.93673193e-02 5.94995201e-01 9.31360304e-01 6.11743748e-01 -4.40981120e-01 1.11835551e+00 4.76409376e-01 -9.31142494e-02 3.38872284e-01 -2.78515983e-02 1.58689961e-01 3.38157237e-01 -1.37425348e-01 -3.69649380e-01 -5.90764940e-01 3.84235770e-01 -1.80393648e+00 -7.97491670e-01 2.33831242e-01 2.54113126e+00 3.67952764e-01 2.62036651e-01 5.07950485e-01 2.35194102e-01 8.49203646e-01 2.29630750e-02 -2.38863707e-01 -6.42265558e-01 1.56206544e-02 4.94671792e-01 2.45453283e-01 5.99307001e-01 -9.17057037e-01 3.25397730e-01 6.08715534e+00 1.18265235e+00 -9.37644720e-01 -9.48005319e-02 6.51665926e-01 1.21403128e-01 -3.82619202e-01 -2.57571749e-02 -9.00443017e-01 5.92085004e-01 9.18972313e-01 -1.65328667e-01 3.95768285e-01 7.40879714e-01 4.57229167e-01 -2.57809460e-01 -7.48397589e-01 6.07587576e-01 -8.22615102e-02 -8.34620714e-01 -1.95002870e-03 2.58475840e-01 7.39263296e-01 -5.54680109e-01 4.80494857e-01 4.70573902e-02 -1.10955708e-01 -1.05960596e+00 9.89767373e-01 8.85712922e-01 3.78338516e-01 -1.28997481e+00 6.95219338e-01 5.62102199e-01 -6.51705980e-01 -7.41942823e-02 -2.61272579e-01 4.09021497e-01 2.79411674e-01 8.45982015e-01 -8.23355436e-01 8.07817459e-01 2.14631215e-01 4.53291200e-02 -2.36416355e-01 1.31356788e+00 -2.33860016e-01 7.87398279e-01 -2.95896411e-01 -5.79352558e-01 3.23230058e-01 -6.01413965e-01 9.87416446e-01 1.24485862e+00 4.93907362e-01 -4.91662413e-01 -8.05797279e-02 1.29092062e+00 6.01736486e-01 5.61582863e-01 -4.55057800e-01 1.98635086e-02 8.12956318e-02 9.34746265e-01 -7.43120074e-01 -6.94868192e-02 4.04193848e-01 2.49781460e-01 9.46414843e-02 4.09688920e-01 -7.71382153e-01 -1.03644647e-01 1.56607375e-01 -6.78407922e-02 5.17465830e-01 4.72380891e-02 -1.22051284e-01 -6.68978095e-01 -2.63206542e-01 -8.84637773e-01 5.25397122e-01 -2.74408758e-01 -9.45545375e-01 6.18683219e-01 4.86467361e-01 -1.12124360e+00 -8.63308132e-01 -4.43135291e-01 -6.53732300e-01 1.23397362e+00 -1.15051699e+00 -6.49552941e-01 -3.14194560e-02 2.17799395e-01 4.39583778e-01 -2.01593637e-01 8.53803277e-01 1.03144258e-01 -4.82392311e-01 1.19525686e-01 5.55183351e-01 -7.73819447e-01 1.48126841e-01 -1.42465103e+00 -7.14369565e-02 8.10794652e-01 4.42387126e-02 4.75305498e-01 1.36084259e+00 -4.69602942e-01 -1.00063241e+00 -8.31077814e-01 7.31505811e-01 1.39100358e-01 2.41373345e-01 -2.50968426e-01 -6.60052598e-01 1.01050865e-02 3.56223807e-02 -4.97721553e-01 4.56758767e-01 -3.27257719e-03 3.72777164e-01 -7.71577656e-02 -1.15648639e+00 4.68460888e-01 2.95084566e-01 -1.02831505e-01 -3.70313227e-01 2.35495418e-01 -1.29490808e-01 -1.58923835e-01 -9.21767712e-01 4.21269119e-01 3.17218721e-01 -9.42588747e-01 9.96652007e-01 -4.59915876e-01 -2.03106478e-02 -2.65046209e-01 -2.16507297e-02 -1.63974345e+00 -1.84813827e-01 -8.91336858e-01 -9.21007395e-02 1.25505412e+00 2.46792138e-01 -8.26352119e-01 6.72318220e-01 2.35624254e-01 3.10432434e-01 -1.06317639e+00 -1.38396692e+00 -6.57022595e-01 6.43315315e-02 -2.31089488e-01 5.07025659e-01 2.20838696e-01 -4.21725154e-01 1.78051859e-01 -3.48841727e-01 -6.17621280e-02 7.84995079e-01 3.74236286e-01 6.55614734e-01 -1.16270578e+00 -7.32640207e-01 -6.44732118e-01 -4.23784375e-01 -5.52757263e-01 4.37632129e-02 -5.70869088e-01 2.87937373e-01 -1.18158722e+00 -1.65888280e-01 -4.74313498e-01 -3.30577046e-01 -4.06061918e-01 -9.02068689e-02 -1.31942272e-01 1.38486013e-01 -1.60880029e-01 -5.68470359e-02 9.17913377e-01 8.66530001e-01 -7.24042207e-02 -1.93661451e-01 8.77063453e-01 -4.65284169e-01 4.92922097e-01 7.30716765e-01 -4.36399460e-01 -6.64282680e-01 4.33737129e-01 3.45302492e-01 8.90465230e-02 5.52809775e-01 -9.33898211e-01 -3.53350550e-01 -2.31001407e-01 2.68422276e-01 -5.43604016e-01 3.43562156e-01 -8.90970826e-01 6.71424985e-01 5.45312047e-01 -4.80922639e-01 -1.89397573e-01 -9.67481956e-02 5.87852061e-01 -4.82440740e-02 -8.21640670e-01 1.10573089e+00 6.46054447e-02 -5.30171871e-01 -1.42503187e-01 -4.29569662e-01 1.20266929e-01 1.00747705e+00 -1.88950524e-01 2.89380819e-01 -3.00004721e-01 -9.75545943e-01 -1.19772039e-01 1.73198298e-01 -4.87786680e-02 3.52231085e-01 -1.00937247e+00 -6.77657783e-01 1.97380956e-04 6.80011958e-02 -4.40478981e-01 3.09287518e-01 6.82314873e-01 -6.16547018e-02 5.44799745e-01 1.68864522e-02 -6.57349408e-01 -9.11678135e-01 5.77348053e-01 6.91326618e-01 -3.06603789e-01 -5.40416777e-01 4.07278478e-01 1.25620827e-01 8.86647403e-02 1.00606628e-01 -1.80913627e-01 -5.49787104e-01 6.78428710e-02 7.92156905e-02 4.72469538e-01 4.15664405e-01 -5.73549092e-01 -2.44158417e-01 5.75974405e-01 7.61629999e-01 -3.41558099e-01 1.24724984e+00 1.01652607e-01 1.47303119e-01 4.65987086e-01 8.18021715e-01 -4.98833507e-03 -1.25928569e+00 9.34368148e-02 1.20683633e-01 -3.09353113e-01 5.58038689e-02 -7.47546017e-01 -6.31520450e-01 6.41424477e-01 7.07103729e-01 4.15898055e-01 1.07612884e+00 -2.69296288e-01 -6.43046424e-02 1.43468887e-01 5.24777472e-01 -1.29498827e+00 -2.85904080e-01 5.07203601e-02 9.64175224e-01 -5.99475265e-01 -2.74615437e-02 -1.92546010e-01 -4.26419050e-01 1.20796144e+00 1.48387998e-01 -2.84520477e-01 3.92692029e-01 1.31035214e-02 -3.70253056e-01 -4.71188761e-02 -5.26973724e-01 -3.41426253e-01 7.08543062e-01 5.09747207e-01 1.68945253e-01 2.79853225e-01 -8.38945031e-01 7.89568871e-02 8.11831355e-02 -9.21844617e-02 -4.86579118e-03 5.66946387e-01 -5.31055033e-01 -9.61455047e-01 -5.58348477e-01 2.11162955e-01 -1.67952687e-01 1.35051385e-01 -1.25024498e-01 9.58882987e-01 9.78636518e-02 8.65774035e-01 -4.02208060e-01 2.12783679e-01 4.11009580e-01 2.22940296e-01 5.69382608e-01 -4.29535091e-01 -6.15276337e-01 4.66297954e-01 1.05280399e-01 -3.54510307e-01 -4.70487922e-01 -7.62043238e-01 -6.09050572e-01 2.86838681e-01 -4.57114637e-01 6.37292445e-01 6.84044540e-01 1.02626598e+00 -2.09986284e-01 8.05157542e-01 6.31441474e-01 -9.37403381e-01 -9.16969538e-01 -6.41397893e-01 -7.51443028e-01 2.31227893e-02 1.82617549e-02 -9.81432676e-01 -3.82137954e-01 -4.68249261e-01]
[6.094314098358154, 3.6384620666503906]
2a148dfd-039b-4cad-8636-f939f9e7d5c7
evaluating-multilingual-bert-for-estonian
2010.00454
null
https://arxiv.org/abs/2010.00454v2
https://arxiv.org/pdf/2010.00454v2.pdf
Evaluating Multilingual BERT for Estonian
Recently, large pre-trained language models, such as BERT, have reached state-of-the-art performance in many natural language processing tasks, but for many languages, including Estonian, BERT models are not yet available. However, there exist several multilingual BERT models that can handle multiple languages simultaneously and that have been trained also on Estonian data. In this paper, we evaluate four multilingual models -- multilingual BERT, multilingual distilled BERT, XLM and XLM-RoBERTa -- on several NLP tasks including POS and morphological tagging, NER and text classification. Our aim is to establish a comparison between these multilingual BERT models and the existing baseline neural models for these tasks. Our results show that multilingual BERT models can generalise well on different Estonian NLP tasks outperforming all baselines models for POS and morphological tagging and text classification, and reaching the comparable level with the best baseline for NER, with XLM-RoBERTa achieving the highest results compared with other multilingual models.
['Kairit Sirts', 'Claudia Kittask', 'Kirill Milintsevich']
2020-10-01
null
null
null
null
['morphological-tagging']
['natural-language-processing']
[-5.91351151e-01 1.02411538e-01 -1.38555050e-01 -3.76064837e-01 -1.04182601e+00 -9.12714005e-01 7.70953357e-01 6.74416780e-01 -1.12607408e+00 9.64092374e-01 4.03614134e-01 -5.52382827e-01 1.24034442e-01 -3.91289115e-01 -4.31266904e-01 -1.43315375e-01 1.64939631e-02 1.12727439e+00 3.00514817e-01 -3.04616213e-01 -1.23323761e-01 2.54779249e-01 -5.16710579e-01 5.84431350e-01 8.35692823e-01 4.30686831e-01 4.57999140e-01 6.53082669e-01 -5.81769586e-01 8.93375695e-01 -6.16975844e-01 -9.75484133e-01 -1.34269744e-01 1.49551854e-01 -9.53699589e-01 -9.71452355e-01 3.85297835e-01 2.49977648e-01 -2.42890030e-01 7.96783149e-01 7.63296902e-01 -5.39686568e-02 7.10432708e-01 -7.43367076e-01 -7.26213336e-01 1.39166451e+00 -3.24883193e-01 3.31632972e-01 3.38407815e-01 -2.38572240e-01 1.12788212e+00 -9.10775304e-01 8.30977261e-01 1.61787581e+00 1.18510091e+00 4.39597517e-01 -1.09619999e+00 -5.70268512e-01 2.51350999e-01 -3.87575924e-02 -1.35013330e+00 -3.89414549e-01 2.51038998e-01 -2.77517557e-01 1.51216257e+00 -1.40083864e-01 1.78407565e-01 1.10184920e+00 7.33234048e-01 1.26748121e+00 1.33255637e+00 -8.13129127e-01 -2.28162676e-01 1.55413538e-01 2.94014335e-01 5.73339403e-01 8.49446356e-02 -6.26562536e-02 -3.91318500e-01 1.28767207e-01 4.85366940e-01 -5.25234103e-01 1.47415444e-01 3.44764143e-01 -1.43325818e+00 7.48242497e-01 1.58139676e-01 1.06250167e+00 -2.76831120e-01 -1.62498502e-03 8.58819783e-01 3.52772027e-01 7.62889981e-01 7.02796698e-01 -1.40222716e+00 -3.05263400e-01 -9.97168124e-01 -5.09004928e-02 1.06969392e+00 9.42504764e-01 3.92115682e-01 1.66506141e-01 -3.05630863e-01 1.23671317e+00 2.93647438e-01 7.79258907e-01 6.76488876e-01 -1.80557847e-01 1.01966798e+00 4.18757558e-01 -2.87146777e-01 -3.64772677e-01 -8.77002299e-01 -2.93701496e-02 -7.92732298e-01 -1.85450092e-01 5.23286402e-01 -5.63645065e-01 -9.30551291e-01 1.51061773e+00 -2.98300505e-01 -3.74171138e-01 4.99404758e-01 6.50140271e-02 1.30828249e+00 9.79088962e-01 7.67563820e-01 2.06702594e-02 1.37050641e+00 -1.18452001e+00 -7.13469744e-01 -5.11796415e-01 9.64328647e-01 -1.01801729e+00 1.00850213e+00 2.73606390e-01 -1.21169734e+00 -6.53611362e-01 -6.21864736e-01 -2.95298249e-01 -9.90894616e-01 6.06114805e-01 6.90601587e-01 7.77448356e-01 -1.34897363e+00 3.25553209e-01 -7.60687351e-01 -7.95686424e-01 -1.38508454e-01 5.44506848e-01 -6.95814371e-01 -4.72455136e-02 -1.42800450e+00 1.25955963e+00 9.60895717e-01 1.31332487e-01 -7.97733486e-01 -2.54781902e-01 -1.04625237e+00 -4.37943824e-02 -1.39925957e-01 -2.15999067e-01 1.48367643e+00 -5.10174215e-01 -1.37826705e+00 1.13327825e+00 -7.63298422e-02 -5.68324149e-01 2.00760588e-01 -3.25334549e-01 -6.77861989e-01 -2.17478842e-01 1.01915717e-01 1.06836307e+00 1.83226950e-02 -1.02222729e+00 -7.82793105e-01 -1.88879341e-01 1.07406095e-01 1.33723289e-01 -3.78696114e-01 6.99527562e-01 -3.68796825e-01 -6.27361178e-01 -6.48256600e-01 -7.50648916e-01 -3.72391403e-01 -7.82349586e-01 -3.02538514e-01 -7.06056058e-01 3.37655038e-01 -1.01512063e+00 1.22765672e+00 -1.87247336e+00 -1.98184818e-01 -3.84738564e-01 -3.61248821e-01 7.70117402e-01 -4.72517520e-01 8.43394876e-01 1.21915050e-01 3.44857216e-01 1.49508134e-01 -7.92888165e-01 1.41205341e-01 6.92229331e-01 4.39141653e-02 8.26324448e-02 2.02974737e-01 1.39047873e+00 -8.83409798e-01 -7.25898385e-01 2.91518599e-01 4.37836647e-01 -1.30010054e-01 -8.39483067e-02 -2.05645129e-01 3.95592034e-01 -2.14637518e-01 5.02253711e-01 4.80380654e-01 3.64913255e-01 3.95917207e-01 3.22365135e-01 -4.95562851e-01 6.67949855e-01 -6.18956327e-01 1.70660222e+00 -9.66360807e-01 6.87796175e-01 2.19360381e-01 -7.21944749e-01 8.68411958e-01 7.19501853e-01 1.44633785e-01 -5.12428999e-01 3.29859555e-01 5.72017014e-01 1.11502543e-01 -2.51678973e-01 7.05564439e-01 -1.29998803e-01 -6.22680664e-01 2.64035761e-02 6.32173002e-01 -3.83264385e-02 5.65867782e-01 6.22295141e-02 9.59271550e-01 2.04251513e-01 6.17985308e-01 -5.72267532e-01 7.59994149e-01 1.81512415e-01 3.66283238e-01 7.62680411e-01 -1.96650475e-01 3.13817382e-01 3.11481506e-01 -2.31540188e-01 -8.31791520e-01 -9.14839029e-01 -3.09504747e-01 1.47334397e+00 -4.28238034e-01 -3.97708625e-01 -6.59611940e-01 -1.06824958e+00 -2.00587586e-01 8.83082569e-01 -3.79960150e-01 3.89343947e-01 -9.15788949e-01 -8.27310622e-01 1.27562380e+00 7.59165764e-01 4.73787993e-01 -1.72601438e+00 1.47005916e-01 5.96637428e-01 -2.52195477e-01 -1.34395671e+00 -3.55141193e-01 7.11458683e-01 -6.69973910e-01 -6.13169849e-01 -6.99349463e-01 -1.59631705e+00 2.80441195e-01 -4.41824406e-01 1.46784341e+00 -3.97235215e-01 1.46997511e-01 1.15911551e-01 -5.87715685e-01 -7.75804281e-01 -8.02624226e-01 6.00229800e-01 -1.67252436e-01 -6.14865959e-01 5.32419860e-01 -7.83754215e-02 2.37987533e-01 -7.97312632e-02 -7.56390035e-01 -3.14859301e-01 8.55836213e-01 7.03433573e-01 3.00679386e-01 -1.02298021e-01 7.22061574e-01 -1.05379260e+00 5.19018173e-01 -2.15924174e-01 -1.92683265e-01 3.61245662e-01 -3.25563133e-01 8.53692368e-02 1.06158769e+00 -3.38847786e-01 -1.21329057e+00 -8.63878429e-03 -1.10668874e+00 3.81027818e-01 -5.60660481e-01 8.67364287e-01 -3.90802562e-01 1.14075959e-01 5.34818053e-01 7.90534094e-02 -8.75451267e-01 -9.64446664e-01 4.97078568e-01 8.34287643e-01 5.08063734e-01 -7.25878716e-01 4.03214961e-01 -3.53241526e-02 -4.59374040e-01 -8.80993783e-01 -1.02613282e+00 -8.58159959e-01 -1.34590471e+00 2.16857240e-01 1.15700567e+00 -1.07012177e+00 -1.86924517e-01 6.96685910e-01 -1.57195401e+00 -5.49065888e-01 -2.05546632e-01 5.86328506e-01 -1.64691940e-01 2.77365744e-01 -1.30272126e+00 -6.78880334e-01 -5.19923329e-01 -8.19453359e-01 1.19318521e+00 -1.12615004e-01 -1.82914913e-01 -1.86386657e+00 3.88729811e-01 -8.38588644e-03 2.19592750e-01 -6.27027750e-02 1.10204029e+00 -1.16238391e+00 4.56394315e-01 -1.51125401e-01 -7.54486471e-02 3.60765725e-01 -3.50147426e-01 -2.81951338e-01 -7.92203009e-01 -3.11651111e-01 -4.76914346e-01 -4.57539409e-01 8.62118244e-01 4.15728450e-01 1.62036836e-01 -1.08430833e-01 -4.93563324e-01 2.00463012e-01 1.33842337e+00 3.37088794e-01 4.36949641e-01 5.46092093e-01 6.45457864e-01 5.25743663e-01 4.70444024e-01 -1.79786518e-01 7.78182328e-01 3.25952291e-01 8.88318941e-02 -2.75997251e-01 -2.00297639e-01 -4.24561173e-01 8.50871921e-01 1.49517381e+00 1.59146547e-01 -6.29173636e-01 -1.25853193e+00 7.80476153e-01 -1.89055943e+00 -4.98448312e-01 -5.34112275e-01 1.92478275e+00 1.00079823e+00 2.53504962e-01 -6.85075000e-02 -1.65968195e-01 6.24127984e-01 1.44938245e-01 1.37244016e-01 -8.62154305e-01 -4.57517475e-01 5.45280099e-01 4.39424425e-01 5.07156491e-01 -1.39469051e+00 1.69237530e+00 7.03743982e+00 8.90434742e-01 -1.02843940e+00 5.69493771e-01 3.39956760e-01 4.24492508e-01 8.39026272e-02 -1.36869289e-02 -1.44797766e+00 1.03940018e-01 1.58562958e+00 1.13706432e-01 4.99751158e-02 6.74931645e-01 3.37612145e-02 1.45013347e-01 -1.05476737e+00 6.74146116e-01 8.90260190e-02 -8.06185365e-01 2.65437234e-02 -1.50481716e-01 8.63393009e-01 7.90172935e-01 -5.10697544e-01 1.08566451e+00 1.06672037e+00 -8.81130278e-01 8.12100828e-01 6.91166818e-02 8.57247889e-01 -7.12494791e-01 1.24428999e+00 6.51902795e-01 -1.42696536e+00 1.06421448e-01 -6.41866505e-01 1.32911295e-01 4.28352714e-01 3.54425758e-01 -5.97825646e-01 8.66252661e-01 4.93871719e-01 6.74459279e-01 -8.92738461e-01 1.01006842e+00 -6.68089986e-01 8.60556066e-01 -2.59129256e-01 -3.18643540e-01 6.37795031e-01 2.05785766e-01 3.19989592e-01 2.02984667e+00 1.59469828e-01 -5.33042789e-01 6.32962346e-01 -1.41214682e-02 -1.84918553e-01 8.72936130e-01 -4.23338860e-01 -3.22640240e-01 1.73540533e-01 1.40601444e+00 -7.98687756e-01 -3.91530603e-01 -6.75257742e-01 9.02927279e-01 6.81397080e-01 6.72932416e-02 -6.02114558e-01 -5.22840858e-01 -1.01487093e-01 -1.55561730e-01 1.18565701e-01 -6.87205315e-01 -1.12556472e-01 -1.20781052e+00 -3.81319940e-01 -7.10471094e-01 6.87991619e-01 -7.03624845e-01 -1.43064833e+00 1.06870306e+00 -2.23146565e-02 -5.58185458e-01 -3.11168849e-01 -1.28385913e+00 -4.51866031e-01 9.07968104e-01 -1.74834406e+00 -1.75292408e+00 5.42682946e-01 5.64552248e-01 6.82380021e-01 -4.28275287e-01 1.23007131e+00 4.97044057e-01 -3.65074843e-01 5.91795981e-01 4.81242001e-01 5.98416507e-01 1.01270819e+00 -1.65353787e+00 7.38948941e-01 7.45357633e-01 6.62276208e-01 4.60507393e-01 1.55109480e-01 -6.33133590e-01 -8.06572437e-01 -1.22060013e+00 1.95644510e+00 -5.76879382e-01 1.09651458e+00 -6.20018542e-01 -6.26752853e-01 1.08497572e+00 8.41131747e-01 -3.77165407e-01 5.89078426e-01 5.36890984e-01 -1.10214002e-01 2.00697422e-01 -1.00948834e+00 4.20109689e-01 8.00995588e-01 -4.11895454e-01 -9.00911987e-01 5.32782853e-01 5.69107175e-01 -4.54911403e-02 -1.07260358e+00 1.76461294e-01 3.25414538e-01 -5.08465528e-01 5.73194921e-01 -5.96503377e-01 1.94061488e-01 1.16810285e-01 9.01470855e-02 -1.73424006e+00 -4.44017857e-01 -5.83893538e-01 4.77444649e-01 1.70979440e+00 8.59305978e-01 -8.08271468e-01 2.72324085e-01 -1.47262782e-01 -3.97844315e-01 -1.86445132e-01 -1.05475891e+00 -1.14245439e+00 9.20360208e-01 -5.92277527e-01 1.42259032e-01 9.67849314e-01 3.01253974e-01 9.61108804e-01 -2.21671954e-01 -7.38936141e-02 3.62860560e-02 -4.28528786e-01 3.66735935e-01 -1.59183812e+00 -2.23243639e-01 -4.50469166e-01 -2.68474936e-01 -1.06631458e+00 7.69686043e-01 -1.43916416e+00 3.77170742e-01 -2.12721586e+00 9.26560443e-03 -4.91240263e-01 -2.05514267e-01 1.01110673e+00 -1.77950501e-01 3.27673644e-01 2.06425726e-01 1.27603486e-01 -6.76384628e-01 3.83676469e-01 9.00980353e-01 -4.55400087e-02 -1.71291143e-01 -3.22967738e-01 -4.87418652e-01 9.27213788e-01 8.23415279e-01 -6.73741221e-01 2.03561381e-01 -8.29458475e-01 2.99698025e-01 1.59686599e-02 -3.87764245e-01 -1.11416960e+00 8.76598656e-02 3.38037610e-01 3.97795171e-01 -6.32318914e-01 5.88022880e-02 -5.58627605e-01 -5.37465870e-01 3.43289554e-01 -1.72812432e-01 4.60625470e-01 6.40803218e-01 2.39803810e-02 -5.53921402e-01 -6.99342906e-01 7.33771384e-01 -3.01570386e-01 -8.00949812e-01 2.57996857e-01 -8.84576797e-01 3.46815974e-01 6.44834638e-01 3.83124828e-01 -3.89416724e-01 -6.10176064e-02 -8.87000322e-01 3.57899129e-01 -8.80827904e-02 6.72624528e-01 -1.46352351e-01 -9.91709113e-01 -9.27046061e-01 -8.77277851e-02 2.43729074e-02 -2.83244729e-01 -1.96735039e-01 7.21049309e-01 -5.81444800e-01 1.14495516e+00 -1.13382533e-01 -1.97543234e-01 -1.13169706e+00 4.68424708e-01 1.31671205e-01 -1.29071271e+00 -3.44021887e-01 7.88048208e-01 5.45469932e-02 -1.45131624e+00 7.28728101e-02 -4.55993921e-01 -7.01846302e-01 -2.97962669e-02 2.31292397e-01 9.95325670e-02 2.42498040e-01 -9.36573505e-01 -4.34094429e-01 3.95222098e-01 -1.44250691e-01 -3.00821066e-01 1.23066545e+00 4.06542746e-03 -2.69352704e-01 6.51216805e-01 8.36635590e-01 4.68484640e-01 -5.11387229e-01 -1.18544139e-01 5.26671946e-01 3.76400799e-01 -1.68036193e-01 -1.26387560e+00 -5.00003159e-01 1.22438228e+00 1.77140057e-01 7.06069320e-02 6.84829056e-01 9.15575325e-02 9.05115187e-01 7.14574099e-01 5.50235987e-01 -1.12830651e+00 -4.37939018e-01 1.47610712e+00 6.84612453e-01 -1.06572545e+00 -5.55580676e-01 -2.15444967e-01 -6.83016419e-01 1.15730548e+00 4.10423011e-01 -1.36032412e-02 8.14728498e-01 7.37280488e-01 4.80920166e-01 1.30318385e-02 -6.36089623e-01 -5.10218978e-01 3.27539712e-01 6.57788694e-01 1.19600761e+00 2.37452358e-01 -7.30028152e-01 7.10755706e-01 -5.23369014e-01 -2.28840888e-01 2.14537740e-01 8.35971355e-01 -4.42955285e-01 -1.64969623e+00 -2.92767376e-01 1.43367305e-01 -1.15653360e+00 -7.81229973e-01 -6.10641479e-01 1.21831095e+00 1.90651864e-01 1.09957623e+00 -1.45805568e-01 5.29217813e-03 5.07916629e-01 5.90166092e-01 3.97299588e-01 -1.09120822e+00 -1.20502663e+00 1.39771491e-01 6.00708723e-01 2.08617985e-01 -4.15946752e-01 -8.23617101e-01 -1.28007305e+00 2.24097855e-02 -3.35520118e-01 6.12861812e-01 7.52618194e-01 1.12948287e+00 -2.00923085e-01 3.45571190e-01 -3.31862345e-02 -8.96528244e-01 -3.34336430e-01 -1.55487335e+00 -6.54780149e-01 -1.39426321e-01 -1.94118291e-01 -1.57239303e-01 -1.18669041e-01 1.33152485e-01]
[10.230796813964844, 9.940140724182129]
e8717dad-cf8f-43c7-8a37-e3b4a98dc544
an-interpretable-federated-learning-based
2201.03134
null
https://arxiv.org/abs/2201.03134v1
https://arxiv.org/pdf/2201.03134v1.pdf
An Interpretable Federated Learning-based Network Intrusion Detection Framework
Learning-based Network Intrusion Detection Systems (NIDSs) are widely deployed for defending various cyberattacks. Existing learning-based NIDS mainly uses Neural Network (NN) as a classifier that relies on the quality and quantity of cyberattack data. Such NN-based approaches are also hard to interpret for improving efficiency and scalability. In this paper, we design a new local-global computation paradigm, FEDFOREST, a novel learning-based NIDS by combining the interpretable Gradient Boosting Decision Tree (GBDT) and Federated Learning (FL) framework. Specifically, FEDFOREST is composed of multiple clients that extract local cyberattack data features for the server to train models and detect intrusions. A privacy-enhanced technology is also proposed in FEDFOREST to further defeat the privacy of the FL systems. Extensive experiments on 4 cyberattack datasets of different tasks demonstrate that FEDFOREST is effective, efficient, interpretable, and extendable. FEDFOREST ranks first in the collaborative learning and cybersecurity competition 2021 for Chinese college students.
['Jialiang Lu', 'Han Qiu', 'Song Li', 'Tian Dong']
2022-01-10
null
null
null
null
['network-intrusion-detection']
['miscellaneous']
[-1.41676188e-01 -4.49566454e-01 -4.54293936e-01 -7.68126726e-01 -1.46758318e-01 -8.61836076e-01 5.01231611e-01 5.90294041e-02 -3.36677700e-01 7.63314664e-01 -2.81410366e-01 -1.14732730e+00 -3.04539472e-01 -8.82766664e-01 -4.32835668e-01 -5.08416235e-01 1.00421727e-01 1.04801003e-02 2.95885921e-01 -1.80169940e-01 4.07423019e-01 8.98822844e-01 -1.19614458e+00 7.58037388e-01 7.80743957e-01 1.53703058e+00 -7.78381646e-01 7.68302560e-01 -1.36433452e-01 1.00777042e+00 -6.66615725e-01 -1.00050330e+00 6.49609208e-01 -1.40885338e-01 -7.47346997e-01 -7.80080497e-01 2.38525689e-01 -5.13255119e-01 -2.16181725e-01 9.53028202e-01 7.48457685e-02 -7.54123032e-02 2.76142776e-01 -2.02346897e+00 -5.02330422e-01 3.21308047e-01 -3.03391844e-01 3.38657111e-01 8.66543874e-02 1.39883369e-01 8.09248984e-01 -4.12616789e-01 3.14741224e-01 1.38371003e+00 7.54583001e-01 4.68407333e-01 -6.35921657e-01 -1.31139231e+00 2.85138398e-01 7.78980672e-01 -6.54899895e-01 -1.48346022e-01 6.57049358e-01 -2.64434591e-02 7.65495360e-01 8.16175342e-01 6.46580279e-01 1.43142700e+00 7.29531765e-01 6.34497941e-01 1.30378449e+00 -4.44235116e-01 7.53909111e-01 1.80535629e-01 7.19011128e-01 6.97166085e-01 7.18669057e-01 5.52887499e-01 -3.81516993e-01 -8.62389684e-01 3.07248950e-01 8.45679104e-01 1.71740785e-01 -2.92471439e-01 -2.54756778e-01 1.11263931e+00 6.88788652e-01 1.57737527e-02 -1.28797457e-01 -4.20658290e-01 7.41909802e-01 6.34943128e-01 4.04345900e-01 1.87146336e-01 -8.58621180e-01 1.90495029e-01 -1.65104955e-01 2.68567447e-02 1.18372846e+00 3.01836699e-01 5.39798141e-01 1.33811060e-04 2.71952063e-01 4.08469141e-01 5.29534221e-01 2.83302754e-01 5.36495388e-01 -5.28104365e-01 2.98771739e-01 9.66865480e-01 -3.81330431e-01 -1.22458375e+00 -1.80586994e-01 -4.33790565e-01 -8.09954226e-01 5.73258460e-01 2.27580503e-01 -3.02500218e-01 -7.48319209e-01 1.09459519e+00 9.72675383e-01 5.49774945e-01 7.62051791e-02 7.53771544e-01 2.98331827e-01 3.96754295e-01 3.26316863e-01 7.52919093e-02 1.26359701e+00 -9.44151998e-01 -5.28630078e-01 -1.81723356e-01 5.69660127e-01 -4.07870233e-01 6.62025392e-01 8.41174841e-01 -4.55704778e-02 -1.18609078e-01 -1.34179437e+00 2.94726789e-01 -1.08104527e+00 -6.66246355e-01 1.01778841e+00 1.37421775e+00 -4.09897447e-01 5.23884237e-01 -7.30203807e-01 -9.26126074e-03 7.92012393e-01 1.83304191e-01 -3.05071175e-01 -3.69293064e-01 -1.23276675e+00 7.36938596e-01 5.34763992e-01 -1.54038072e-01 -7.29163826e-01 -3.96751165e-01 -5.23056149e-01 9.21327174e-02 3.68149668e-01 -3.63036364e-01 1.07550311e+00 -8.58004093e-01 -1.38043976e+00 4.52070355e-01 5.60891092e-01 -7.60959625e-01 3.34958464e-01 -1.67006984e-01 -8.76336455e-01 -1.61724344e-01 -3.92067552e-01 -5.64082146e-01 1.19034958e+00 -9.57571566e-01 -6.10731006e-01 -1.06614339e+00 -5.21868281e-02 -3.21586847e-01 -6.31705403e-01 2.12064624e-01 5.69174945e-01 -3.33591014e-01 4.45584990e-02 -6.41873538e-01 -2.42663786e-01 -1.33610545e-02 -6.52421117e-01 -1.81665391e-01 1.61336756e+00 -5.75865924e-01 1.09339833e+00 -1.84856164e+00 -9.89753425e-01 7.81158805e-01 4.38436002e-01 1.08337271e+00 -9.32994112e-02 2.74346024e-01 -3.17122996e-01 2.41705760e-01 1.95644349e-01 2.27802560e-01 4.59893234e-02 3.29757959e-01 -6.76447988e-01 2.71293759e-01 -2.61783868e-01 7.36958981e-01 -5.45825601e-01 -3.23344707e-01 2.42096156e-01 1.15782760e-01 -4.39210683e-01 4.01445031e-01 -2.45329011e-02 1.14241853e-01 -8.34809005e-01 1.00574374e+00 1.08172762e+00 -1.73618406e-01 3.65767092e-01 1.73322007e-01 1.91783816e-01 1.63504064e-01 -1.07769263e+00 9.36209559e-01 -2.35267043e-01 6.50282204e-02 3.87092084e-01 -1.12414217e+00 1.09281576e+00 3.73489484e-02 1.17541537e-01 -6.78015649e-01 3.43751371e-01 1.05010547e-01 -5.19387983e-02 -3.88035923e-01 -3.02809685e-01 2.30820119e-01 -4.01608944e-02 9.26750064e-01 -6.97349533e-02 5.93481839e-01 -6.45481646e-01 1.48601621e-01 1.61234212e+00 -3.12131047e-01 7.18106270e-01 8.58036131e-02 7.15665460e-01 -9.06995311e-02 8.37860227e-01 9.71526861e-01 -6.41571045e-01 -4.30691212e-01 1.73926786e-01 -1.29174042e+00 -4.42063779e-01 -1.13130677e+00 1.94758624e-02 1.61337268e+00 -4.37691547e-02 -4.96273965e-01 -7.12224841e-01 -1.70859325e+00 2.60819137e-01 7.20781863e-01 -2.29018301e-01 -4.74775612e-01 -2.51644284e-01 -7.25019038e-01 8.28599870e-01 8.03112090e-02 8.51600766e-01 -9.40097511e-01 -3.79594415e-01 7.73741454e-02 8.32710788e-02 -7.45187461e-01 -4.80626635e-02 3.76090467e-01 -7.04375505e-01 -1.67347741e+00 5.72936118e-01 -2.14141876e-01 3.79422247e-01 3.58780831e-01 7.25504160e-01 2.45466381e-01 -5.51008403e-01 4.40330990e-02 -4.49789584e-01 -1.02770030e+00 -3.37281466e-01 -1.18487574e-01 2.57380545e-01 2.82340586e-01 7.29920983e-01 -6.85611844e-01 -4.69018191e-01 3.29640508e-01 -9.77322221e-01 -5.78656554e-01 6.91484451e-01 9.56361532e-01 -1.17633238e-01 2.14850679e-01 5.86539030e-01 -1.25384998e+00 8.95348489e-01 -7.19789207e-01 -6.70138299e-01 6.41728282e-01 -1.18447745e+00 -3.95477153e-02 1.02540612e+00 -6.03554904e-01 -1.23326206e+00 -2.17705920e-01 -4.77287844e-02 -3.62000108e-01 -4.25484508e-01 6.73510283e-02 -3.59878093e-01 -7.06313670e-01 1.15085566e+00 1.52746961e-01 -3.41073498e-02 -5.05077004e-01 6.72821552e-02 1.06009758e+00 1.88456416e-01 -4.68663007e-01 9.33414996e-01 1.55239657e-01 1.86241120e-01 -4.09188837e-01 -9.86496031e-01 -3.84924084e-01 -2.03493953e-01 -2.46173635e-01 4.19429660e-01 -4.04061794e-01 -1.45623910e+00 6.69564426e-01 -1.10236156e+00 3.79646361e-01 2.14397848e-01 4.23187584e-01 1.06241435e-01 3.47745508e-01 -6.93215430e-01 -1.07791221e+00 -9.45936501e-01 -5.55747926e-01 3.24771047e-01 2.12206095e-01 2.10799158e-01 -9.10066187e-01 2.64112145e-01 9.04024720e-01 5.55799365e-01 4.63208288e-01 1.03321505e+00 -1.74486578e+00 -4.87390518e-01 -7.30939388e-01 -2.78976798e-01 6.87456727e-01 5.06654847e-04 -2.03922644e-01 -1.16725123e+00 -2.88245320e-01 4.30900604e-01 -6.12421274e-01 5.23841083e-01 -1.72020823e-01 1.47062647e+00 -1.03936088e+00 -2.46161282e-01 6.61732316e-01 1.36003554e+00 5.94827771e-01 4.47725296e-01 5.27470887e-01 6.67348981e-01 4.08538163e-01 5.19509614e-01 5.04126489e-01 9.32775214e-02 -9.42812413e-02 8.10122132e-01 2.27333739e-01 6.51393056e-01 -4.41710025e-01 3.89275372e-01 3.80328447e-01 2.30736792e-01 2.83545349e-02 -9.42097902e-01 -3.59920323e-01 -2.03405476e+00 -9.92412329e-01 7.41809160e-02 2.01215100e+00 5.78340292e-01 2.07776815e-01 -3.49068679e-02 3.59867990e-01 6.90630674e-01 -4.25880104e-02 -1.01141524e+00 -9.89164293e-01 3.68736297e-01 5.35137117e-01 4.98654485e-01 1.09180026e-01 -1.29048884e+00 6.14465714e-01 5.66187716e+00 1.03900409e+00 -1.13524854e+00 1.87630191e-01 8.18053663e-01 3.21343124e-01 1.74394250e-01 1.82015136e-01 -7.15346515e-01 4.24266547e-01 1.16410661e+00 1.22572303e-01 5.65044820e-01 1.63972127e+00 -4.00066137e-01 3.70219320e-01 -7.37352192e-01 8.18545282e-01 -2.19455212e-01 -1.42713249e+00 1.23403743e-02 2.14672789e-01 2.28467882e-01 -2.26084553e-02 -2.46255230e-02 6.49725497e-01 1.04366744e+00 -9.03300405e-01 -3.01906373e-02 3.74916136e-01 8.89275819e-02 -1.08034670e+00 7.33525276e-01 7.22946644e-01 -7.97390401e-01 -8.01274121e-01 -2.84335375e-01 -1.63636118e-01 -7.02900410e-01 7.57531703e-01 -1.00139606e+00 7.18474925e-01 9.38762605e-01 2.32742026e-01 -6.44359410e-01 8.02632570e-01 -2.38150209e-01 8.08153629e-01 -3.81105661e-01 -4.14303452e-01 2.03784540e-01 -1.20433822e-01 3.39090019e-01 8.64164829e-01 -1.97610185e-01 2.08781913e-01 5.24865210e-01 3.02142560e-01 -7.00769573e-02 1.15840621e-01 -7.39207029e-01 7.60739967e-02 7.70603180e-01 1.51681840e+00 -2.61067688e-01 -8.14971775e-02 -1.20375745e-01 5.38574576e-01 4.65914577e-01 7.31507093e-02 -7.29667485e-01 -7.28404403e-01 9.70734298e-01 -1.77850157e-01 2.45717932e-02 2.85596382e-02 -5.34209788e-01 -1.28591573e+00 -2.15185091e-01 -1.24810958e+00 1.23807800e+00 -3.14586222e-01 -1.93722129e+00 7.65729785e-01 -3.92387211e-01 -9.97722089e-01 -1.90993577e-01 -8.33425581e-01 -8.82320702e-01 3.55888247e-01 -1.38143575e+00 -1.41876125e+00 -3.28904778e-01 1.33348620e+00 1.74499266e-02 -4.60735977e-01 1.09178817e+00 -9.29061398e-02 -9.55004215e-01 8.57892215e-01 1.58986390e-01 4.12528247e-01 5.94507992e-01 -7.47625470e-01 1.91836596e-01 9.16868269e-01 9.95641351e-02 8.40124607e-01 1.60427466e-02 -7.94608235e-01 -1.45457935e+00 -1.25928843e+00 5.06042123e-01 -3.04003119e-01 6.71582639e-01 -6.63745284e-01 -7.64968395e-01 7.73998082e-01 -9.84962657e-03 4.65754181e-01 1.31524742e+00 3.71388555e-01 -1.24876630e+00 -7.07574546e-01 -2.05889463e+00 3.01155627e-01 6.80899501e-01 -4.16689992e-01 -3.75616640e-01 5.61565816e-01 7.46772408e-01 1.34287968e-01 -7.34835744e-01 9.06221271e-02 6.26664102e-01 -1.25321317e+00 1.06257284e+00 -1.41963947e+00 -2.46574596e-01 1.44640580e-01 -1.78148225e-01 -9.13703740e-01 -4.40901011e-01 -5.55662096e-01 -5.56237280e-01 1.01431978e+00 -1.17360182e-01 -1.42992282e+00 1.25255442e+00 8.74339283e-01 3.50131124e-01 -6.99150383e-01 -1.10704172e+00 -9.14444983e-01 -1.96141824e-01 -5.15172064e-01 1.05814958e+00 1.42601907e+00 1.26754656e-01 1.28207639e-01 -2.74528742e-01 1.61111787e-01 1.17763782e+00 1.31685808e-01 7.39609540e-01 -1.52748299e+00 -1.35590121e-01 8.62793848e-02 -5.01818717e-01 -1.00910924e-01 2.91200638e-01 -7.80480742e-01 -5.97459316e-01 -5.91509581e-01 -1.87611133e-01 -5.07685959e-01 -8.05345356e-01 1.15802372e+00 1.17533669e-01 -1.67509511e-01 1.85233578e-01 2.03240842e-01 -6.42082572e-01 1.21106863e-01 7.87715554e-01 -1.01994842e-01 5.61712198e-02 3.97988290e-01 -7.44105577e-01 8.43703866e-01 1.07707429e+00 -6.81238711e-01 -4.33071464e-01 2.93308914e-01 -4.92328733e-01 -5.60537428e-02 5.39525747e-01 -7.60085583e-01 5.00519156e-01 -7.54985452e-01 9.40428853e-01 -3.80091161e-01 1.49844900e-01 -1.25241542e+00 1.36927096e-02 8.92864883e-01 -2.21192598e-01 1.93070155e-02 -7.18450993e-02 8.20116162e-01 1.13367550e-01 1.03047751e-01 7.86985040e-01 -1.37862623e-01 -4.33625698e-01 6.05843961e-01 -2.51791537e-01 -2.96074361e-01 1.40868580e+00 -4.62289155e-02 -7.01487601e-01 -1.35485008e-01 -3.04794699e-01 -3.67650948e-02 -1.36394024e-01 3.98503006e-01 8.77835631e-01 -1.24832714e+00 -3.40982258e-01 8.09609532e-01 -4.19325493e-02 -5.08358419e-01 8.34150389e-02 1.24381304e-01 -3.92761499e-01 4.68286186e-01 -5.27384579e-01 -9.80584845e-02 -1.52164495e+00 7.03179717e-01 7.29726776e-02 -7.74033666e-01 -2.02982754e-01 6.80188298e-01 -5.10707915e-01 -1.09287310e+00 4.38419253e-01 2.09259108e-01 -2.04769038e-02 -4.51632768e-01 8.97034109e-01 6.59849524e-01 3.65828604e-01 1.03756934e-01 -6.92393363e-01 -5.34821868e-01 -6.49042070e-01 3.10582399e-01 1.45605576e+00 4.96603578e-01 -4.11421597e-01 -3.11460912e-01 1.24608612e+00 -4.20335680e-01 -6.90421224e-01 -3.85013908e-01 2.61237174e-01 -8.07250857e-01 1.74244400e-02 -1.31474566e+00 -1.08739460e+00 5.45216918e-01 7.26443112e-01 3.88545156e-01 1.33630240e+00 -8.82989109e-01 1.05350208e+00 9.47501600e-01 5.99407971e-01 -8.34015906e-01 6.21811226e-02 4.50170547e-01 3.82962942e-01 -1.14098740e+00 8.16280320e-02 -3.33152652e-01 -3.31517726e-01 1.39040506e+00 8.99001598e-01 -2.23538354e-01 1.12051463e+00 3.73006940e-01 3.52208242e-02 6.72324449e-02 -8.73727262e-01 7.30358839e-01 -8.76797065e-02 9.54825222e-01 -4.97693032e-01 7.25504383e-02 3.90453674e-02 9.45630610e-01 -8.07255358e-02 -3.43555249e-02 -3.66716110e-03 1.45164657e+00 -3.81804705e-01 -1.35629344e+00 -7.67442703e-01 6.67707860e-01 -4.82820988e-01 1.90037742e-01 -8.89496922e-01 3.60743344e-01 2.03181610e-01 1.28452551e+00 -3.88250887e-01 -1.10078335e+00 -4.64745499e-02 1.77920014e-01 -1.32483259e-01 -1.06173493e-01 -1.12360168e+00 -7.29704380e-01 -3.60191129e-02 -9.91068363e-01 3.23945016e-01 -2.26083338e-01 -8.67313445e-01 -9.33232725e-01 -3.74411792e-01 4.18054461e-01 1.15863252e+00 8.70667636e-01 6.99091077e-01 4.42328805e-04 1.27484047e+00 -1.31146908e-01 -1.06231081e+00 -5.56718886e-01 -5.59076369e-01 9.63152051e-02 3.02359104e-01 -3.56401443e-01 -5.32665074e-01 -5.45510054e-01]
[5.386078834533691, 7.187366485595703]
27f348ae-8285-45fd-8f8e-d04f44319b5b
novel-deep-learning-framework-for-bovine-iris
2212.11439
null
https://arxiv.org/abs/2212.11439v1
https://arxiv.org/pdf/2212.11439v1.pdf
Novel Deep Learning Framework For Bovine Iris Segmentation
Iris segmentation is the initial step to identify biometric of animals to establish a traceability system of livestock. In this study, we propose a novel deep learning framework for pixel-wise segmentation with minimum use of annotation labels using BovineAAEyes80 public dataset. In the experiment, U-Net with VGG16 backbone was selected as the best combination of encoder and decoder model, demonstrating a 99.50% accuracy and a 98.35% Dice coefficient score. Remarkably, the selected model accurately segmented corrupted images even without proper annotation data. This study contributes to the advancement of the iris segmentation and the development of a reliable DNNs training framework.
['Sang-Hee Lee', 'Mira Park', 'Heemoon Yoon']
2022-12-22
null
null
null
null
['iris-segmentation']
['medical']
[ 3.17474663e-01 -8.22101533e-02 -2.84544677e-01 -7.59686470e-01 -1.76093012e-01 -2.49596983e-01 3.81102003e-02 -1.98212609e-01 -4.43438381e-01 6.47490919e-01 -2.28657991e-01 -1.89947486e-01 8.27179253e-02 -7.16241062e-01 -6.88352406e-01 -7.24402606e-01 3.06333870e-01 1.68555945e-01 -2.13934228e-01 1.49382144e-01 2.79514402e-01 4.39121902e-01 -1.44267786e+00 1.07579559e-01 1.27477074e+00 1.17575371e+00 -7.18125179e-02 4.19933200e-01 2.16351803e-02 5.63204110e-01 -5.96162140e-01 -7.67788470e-01 5.12188911e-01 -6.55809760e-01 -7.27150917e-01 8.75219181e-02 7.64293969e-01 -6.61872923e-01 -1.88556299e-01 1.34904516e+00 7.55468965e-01 -1.41908973e-01 4.85583484e-01 -7.55755246e-01 -8.46409202e-01 7.33410180e-01 -9.14854228e-01 2.45106474e-01 -3.37003499e-01 4.44006473e-01 6.66494548e-01 -1.03793822e-01 5.73075056e-01 8.20971012e-01 5.63487768e-01 6.47464454e-01 -1.10486627e+00 -8.55685830e-01 -4.77919310e-01 1.18890606e-01 -1.33050025e+00 -4.42952305e-01 3.83938789e-01 -4.31033820e-01 5.25478423e-01 1.46236107e-01 7.55447030e-01 5.05585968e-01 1.33145362e-01 8.50801706e-01 1.31532598e+00 -2.12492988e-01 -2.52856106e-01 -2.63029426e-01 1.85364589e-01 9.08221185e-01 4.87924546e-01 2.60274768e-01 -4.13063794e-01 4.48618799e-01 1.04533780e+00 -2.28004947e-01 1.45309135e-01 1.36900306e-01 -1.07599914e+00 5.34980178e-01 6.39320076e-01 1.51573330e-01 -3.23627889e-01 2.14544490e-01 3.18222582e-01 2.07176536e-01 4.62756217e-01 3.60375047e-01 -4.00384903e-01 -1.15572498e-03 -1.25429618e+00 -2.07638234e-01 3.57004136e-01 9.73787248e-01 5.13925552e-01 2.00703755e-01 -4.75531459e-01 7.86294281e-01 5.35289407e-01 6.34119153e-01 7.66719729e-02 -1.01850152e+00 1.30975768e-01 8.06201398e-01 -2.39014670e-01 -9.08867896e-01 -4.43227887e-01 -6.92554951e-01 -1.04402506e+00 5.03360964e-02 5.87544858e-01 -5.23268402e-01 -1.38688302e+00 1.51966596e+00 4.10232902e-01 4.61218148e-01 -7.61302859e-02 1.00849926e+00 1.02734065e+00 4.35120434e-01 1.38899967e-01 4.72057126e-02 1.23099041e+00 -7.64157116e-01 -7.00434923e-01 2.50213683e-01 4.03489441e-01 -7.81323135e-01 5.08837998e-01 3.26144040e-01 -8.74716401e-01 -8.19648087e-01 -1.11177385e+00 -1.21524014e-01 -1.06180556e-01 7.20005035e-01 7.42481709e-01 9.29112792e-01 -9.11854029e-01 5.52843571e-01 -8.55134785e-01 -4.52261955e-01 8.87905657e-01 6.08324051e-01 -2.65556633e-01 2.89238095e-02 -1.07765877e+00 7.80982077e-01 5.33313692e-01 6.96735203e-01 -7.01526701e-01 -4.17343259e-01 -6.11833274e-01 -2.76825070e-01 -1.86618015e-01 -5.96052706e-01 9.73428011e-01 -1.06082034e+00 -1.59357011e+00 1.29529917e+00 6.33312166e-02 -8.87027740e-01 5.97513318e-01 -8.38975385e-02 -2.95182794e-01 1.45911828e-01 -1.63844749e-01 1.01494050e+00 5.08175373e-01 -1.02130985e+00 -6.82054043e-01 -4.63474363e-01 -9.91906449e-02 -6.34363946e-03 1.11516431e-01 1.77291960e-01 -4.64767039e-01 -5.89084566e-01 2.25543857e-01 -7.69083381e-01 -1.23116702e-01 5.38636707e-02 -4.81642932e-01 1.00779079e-01 3.73245656e-01 -1.13972878e+00 1.13821006e+00 -1.93748999e+00 -2.30698749e-01 2.85962492e-01 2.05317080e-01 8.05873871e-01 -1.45516381e-01 -2.12900743e-01 1.44175306e-01 1.26993045e-01 -3.80986273e-01 4.95305322e-02 -1.61884621e-01 4.94673033e-04 2.17562675e-01 7.67306387e-01 2.79544502e-01 1.02938282e+00 -6.82680786e-01 -7.01440632e-01 4.37938243e-01 5.44038355e-01 -4.39486325e-01 1.25645146e-01 -1.07097618e-01 6.68436408e-01 -2.91705370e-01 9.65479136e-01 1.04929304e+00 -4.91380654e-02 6.04009517e-02 -4.00772333e-01 -1.03669800e-01 -2.82156199e-01 -1.10026288e+00 1.82360852e+00 7.28432164e-02 6.96348250e-01 -3.77651416e-02 -8.39691222e-01 1.12208867e+00 4.73982766e-02 6.11116171e-01 -8.33116710e-01 5.87318659e-01 1.85217798e-01 3.76520157e-01 -6.24834478e-01 2.43828952e-01 9.49681997e-02 2.73804367e-01 5.63128851e-02 3.58437240e-01 1.70389429e-01 3.30988348e-01 -3.54587078e-01 4.09287035e-01 3.39319676e-01 2.26290282e-02 -2.71654844e-01 4.46246028e-01 -8.34255712e-04 7.69982517e-01 6.33201361e-01 -6.53114080e-01 6.91444039e-01 4.51715082e-01 -4.80915844e-01 -9.06712890e-01 -4.87841725e-01 -7.04428971e-01 6.17278337e-01 3.43001366e-01 1.85087770e-01 -1.25196218e+00 -6.52940691e-01 1.60344560e-02 2.51784325e-01 -5.29433012e-01 3.97928990e-02 -3.72737020e-01 -1.17235839e+00 1.13731670e+00 3.05976301e-01 1.18523061e+00 -9.24272776e-01 -4.25823808e-01 -5.81421256e-02 -8.28360319e-02 -8.19447398e-01 -2.07026646e-01 4.28556725e-02 -8.62103760e-01 -1.45942163e+00 -8.67828667e-01 -1.04811025e+00 8.16214263e-01 -2.18840063e-01 7.51769662e-01 2.31852055e-01 -3.56911987e-01 -5.59062362e-01 -3.10203638e-02 -2.84580141e-01 -3.19600582e-01 -4.28375527e-02 -1.51412621e-01 3.23349726e-03 8.46661627e-01 1.29487813e-01 -8.67336571e-01 2.27410659e-01 -7.74963498e-01 9.38013867e-02 5.70586681e-01 8.90713096e-01 8.59431446e-01 4.42835838e-02 3.64294797e-01 -9.45692241e-01 1.86920971e-01 -1.56084135e-01 -1.01128507e+00 4.36105460e-01 -6.33891404e-01 -1.65767938e-01 2.16919944e-01 1.03180818e-01 -1.01390040e+00 2.99618006e-01 -4.87190723e-01 3.10937352e-02 -5.18229723e-01 4.03341174e-01 -1.39450103e-01 -5.04786730e-01 3.65685910e-01 6.94517139e-03 1.66371435e-01 -6.76146746e-01 3.25780034e-01 9.98165905e-01 7.50466704e-01 -3.47326130e-01 2.46224210e-01 1.75494909e-01 9.97065008e-02 -7.71529973e-01 -5.51067114e-01 -2.86960512e-01 -9.98715937e-01 -2.45574430e-01 1.15743434e+00 -9.20439720e-01 -9.43473220e-01 1.12413192e+00 -9.94006574e-01 -3.20835710e-01 2.40284875e-02 5.38949072e-01 -2.72993356e-01 5.30572057e-01 -7.61421978e-01 -4.16433364e-01 -5.59890985e-01 -1.36452484e+00 6.84520006e-01 7.10367560e-01 3.14765461e-02 -5.17081976e-01 -1.66729748e-01 8.30819905e-01 2.28940994e-01 6.31912827e-01 5.39572775e-01 -5.10049820e-01 -5.51507533e-01 -2.47083098e-01 -6.26316667e-01 7.57743597e-01 5.70009686e-02 5.72418034e-01 -1.06452584e+00 -1.52918234e-01 -2.36349031e-01 -1.56435460e-01 1.06281042e+00 9.26381707e-01 1.31553292e+00 3.98134664e-02 -3.80631797e-02 1.25990009e+00 1.60204101e+00 5.50937653e-01 8.06296229e-01 8.95996243e-02 7.28283465e-01 4.78636652e-01 5.35892069e-01 1.89801529e-01 2.57934093e-01 2.81923532e-01 3.60355228e-01 -4.43448901e-01 -4.03604686e-01 -2.77471811e-01 -9.62463692e-02 5.85551381e-01 -2.44983852e-01 -3.70154709e-01 -1.12040389e+00 4.65629280e-01 -1.56816041e+00 -7.17453241e-01 -4.59250927e-01 1.98617673e+00 1.07127094e+00 -1.68522179e-01 -6.48481995e-02 -1.81262985e-01 9.91779327e-01 -1.22059137e-01 -7.01623797e-01 -3.35619956e-01 -2.95407385e-01 3.85385513e-01 9.81245220e-01 2.96460778e-01 -1.51545382e+00 1.20904052e+00 6.74900484e+00 7.65062332e-01 -1.06486893e+00 -1.79998323e-01 8.86598766e-01 2.04833493e-01 3.66221935e-01 -4.25433695e-01 -9.53167319e-01 8.29085231e-01 1.02785301e+00 5.15840888e-01 2.51714498e-01 3.28374356e-01 2.04330847e-01 -2.13020191e-01 -5.80998778e-01 8.41569901e-01 -8.10030997e-02 -1.24271798e+00 -1.18823163e-01 2.16247831e-02 1.00021434e+00 2.55686462e-01 1.90398932e-01 -3.38141412e-01 3.33223999e-01 -1.23259842e+00 2.53946304e-01 6.63349152e-01 1.16160500e+00 -8.49422038e-01 1.20203078e+00 -5.31858653e-02 -7.69578218e-01 2.55911469e-01 -4.53113139e-01 2.70294428e-01 3.38228233e-02 3.71251702e-01 -5.56918561e-01 3.76903206e-01 5.11938632e-01 8.25738847e-01 -6.77885592e-01 1.62319374e+00 -2.29783192e-01 9.86379862e-01 -3.51822048e-01 3.07688534e-01 2.03735769e-01 -5.74715495e-01 1.97828233e-01 1.33159721e+00 1.83928221e-01 6.56657666e-02 -1.13237374e-01 8.27059984e-01 -4.18886900e-01 6.55591115e-02 -3.09069097e-01 -1.31637722e-01 2.09371433e-01 9.49053586e-01 -9.91591156e-01 -1.06830910e-01 -3.39261234e-01 8.52602780e-01 -2.57052809e-01 2.78689265e-01 -9.91664052e-01 -5.24853170e-01 7.45404422e-01 -1.79289058e-01 1.48497820e-01 1.25150103e-03 -8.18348289e-01 -9.21249866e-01 -3.85276616e-01 -9.69435036e-01 1.03208274e-01 -3.36016089e-01 -1.05968070e+00 3.93778563e-01 -3.53844851e-01 -1.15826452e+00 3.31828892e-01 -5.47464848e-01 -2.51875073e-01 1.10018218e+00 -1.72532880e+00 -1.49162030e+00 -3.76167715e-01 1.45204872e-01 1.30653903e-01 -4.20798987e-01 4.68727887e-01 5.41767061e-01 -1.02057374e+00 6.82396948e-01 4.63761657e-01 5.54639697e-01 7.13356078e-01 -1.20788360e+00 5.17217040e-01 1.21842253e+00 -7.47276023e-02 6.08496368e-01 3.95392835e-01 -8.38576972e-01 -1.03706157e+00 -1.21993136e+00 7.51705706e-01 9.24874563e-03 1.86953738e-01 1.01650104e-01 -6.45671844e-01 5.06312966e-01 4.70314443e-01 -8.50510225e-02 8.70959461e-01 -2.51517832e-01 2.50447452e-01 -3.13135624e-01 -1.54684329e+00 1.78581506e-01 6.76806927e-01 -3.42587113e-01 -2.00299665e-01 1.35573670e-01 4.18011248e-01 -9.05017436e-01 -1.11767328e+00 6.37660384e-01 7.77939022e-01 -8.12130094e-01 8.57508957e-01 -4.68743801e-01 6.48254871e-01 -6.31283343e-01 7.55323991e-02 -7.71386147e-01 -2.56119817e-01 -3.88125777e-01 -7.26867244e-02 1.43777692e+00 3.90751451e-01 -3.58246505e-01 9.46948647e-01 5.74718475e-01 4.07878943e-02 -6.58208251e-01 -6.81334257e-01 -3.54167968e-01 5.89557216e-02 -1.86508119e-01 8.15815270e-01 7.92193770e-01 -6.85584366e-01 -2.88979441e-01 -5.36592424e-01 1.61078736e-01 8.42521608e-01 -1.80198140e-02 4.84968871e-01 -1.16570747e+00 2.76505351e-01 -4.69540983e-01 -6.54341400e-01 -1.15275931e+00 6.83176666e-02 -9.12140608e-01 2.59499699e-02 -1.51209867e+00 1.06064804e-01 -3.81369263e-01 -5.47612429e-01 5.48857152e-01 -1.46819815e-01 8.11750054e-01 -1.15458950e-01 -2.05517467e-02 -3.67687374e-01 9.43617076e-02 1.51646805e+00 -3.26863647e-01 -5.50977774e-02 2.97073990e-01 -7.54971325e-01 4.89699721e-01 1.06593966e+00 -1.87317297e-01 -1.38009697e-01 -7.83081174e-01 -5.41567616e-02 -2.87660092e-01 2.96992183e-01 -9.52246904e-01 2.45160922e-01 -1.03673413e-01 7.66053855e-01 -6.48388445e-01 -2.01540619e-01 -8.36583316e-01 1.05814129e-01 5.71069956e-01 -4.31797862e-01 -5.78133225e-01 2.64228493e-01 3.52776885e-01 -3.45313042e-01 -2.02627659e-01 1.16621220e+00 1.04680695e-01 -9.94216919e-01 4.25946265e-01 9.32918638e-02 -1.24190584e-01 1.01806521e+00 -4.99007255e-01 -3.34408015e-01 3.57360095e-01 -4.69548345e-01 4.27322596e-01 6.21412933e-01 1.74604088e-01 4.19026285e-01 -1.04249525e+00 -8.49345326e-01 6.80211067e-01 -4.60155495e-02 6.65283352e-02 3.35283250e-01 7.80246735e-01 -1.28510916e+00 4.55365062e-01 -6.15859687e-01 -6.05251133e-01 -1.33869576e+00 -7.53880143e-02 5.85752308e-01 2.99284846e-01 -3.54903102e-01 1.27280581e+00 -2.94761717e-01 -3.69387269e-01 4.04265314e-01 -5.89964211e-01 -5.97196043e-01 1.76342294e-01 3.51323873e-01 5.09114563e-01 1.10346258e-01 -9.69487429e-01 -2.14826673e-01 6.51746809e-01 1.67509183e-01 5.24266481e-01 1.25363588e+00 -2.07106963e-01 -4.51759070e-01 -5.27999178e-02 9.02651370e-01 -5.32023430e-01 -1.39001131e+00 -6.78431094e-02 -1.27847237e-03 -6.30473733e-01 2.96574116e-01 -1.24759471e+00 -1.68931866e+00 9.33264077e-01 1.18407130e+00 -2.11533129e-01 1.21036851e+00 -6.42970860e-01 9.92004395e-01 3.72277535e-02 2.28000268e-01 -1.21770835e+00 -8.60297501e-01 3.11896741e-01 3.74980122e-01 -1.61380124e+00 -1.29859969e-02 -3.12979221e-02 -8.06318343e-01 1.17872882e+00 7.71036506e-01 3.73478644e-02 5.32732248e-01 1.25325188e-01 3.72520655e-01 -2.29514524e-01 -2.01666523e-02 -5.16836345e-01 5.50560176e-01 8.11511040e-01 8.70279551e-01 1.85142457e-01 -5.78947842e-01 3.67137790e-01 -5.34153730e-02 5.02721071e-01 1.71222985e-01 3.90241742e-01 -3.47409576e-01 -1.07012665e+00 9.14994106e-02 7.86341429e-01 -8.73124301e-01 -1.79257408e-01 -1.93492770e-01 3.82660538e-01 6.97206318e-01 9.41368043e-01 2.81601679e-02 -3.80544752e-01 1.62157178e-01 -2.04473305e-02 5.03547370e-01 -4.29828405e-01 -8.91399324e-01 9.81458127e-02 -1.70297906e-01 -3.87213796e-01 -8.74203324e-01 -3.78094196e-01 -9.41840470e-01 -5.25152862e-01 -5.56868732e-01 -1.66886866e-01 7.64183164e-01 7.34942198e-01 3.22089195e-01 4.22023535e-01 4.12353009e-01 -2.13354558e-01 -3.20429862e-01 -9.69819307e-01 -8.67054820e-01 1.46249205e-01 3.55779111e-01 -1.70783669e-01 2.08314642e-01 4.48820978e-01]
[3.7500877380371094, -3.6304140090942383]
301158ed-aeaa-49c2-af24-117f0c1e17ae
building-a-parallel-corpus-and-training
2301.02773
null
https://arxiv.org/abs/2301.02773v1
https://arxiv.org/pdf/2301.02773v1.pdf
Building a Parallel Corpus and Training Translation Models Between Luganda and English
Neural machine translation (NMT) has achieved great successes with large datasets, so NMT is more premised on high-resource languages. This continuously underpins the low resource languages such as Luganda due to the lack of high-quality parallel corpora, so even 'Google translate' does not serve Luganda at the time of this writing. In this paper, we build a parallel corpus with 41,070 pairwise sentences for Luganda and English which is based on three different open-sourced corpora. Then, we train NMT models with hyper-parameter search on the dataset. Experiments gave us a BLEU score of 21.28 from Luganda to English and 17.47 from English to Luganda. Some translation examples show high quality of the translation. We believe that our model is the first Luganda-English NMT model. The bilingual dataset we built will be available to the public.
['Heeyoul Choi', 'Daniela N. Rim', 'Richard Kimera']
2023-01-07
null
null
null
null
['nmt']
['computer-code']
[-1.15477175e-01 -5.06153964e-02 -4.58012611e-01 -2.12616041e-01 -1.15518105e+00 -6.74801648e-01 7.86106765e-01 -3.85590643e-01 -5.07309854e-01 1.15841472e+00 4.89122957e-01 -8.81218493e-01 3.12134862e-01 -5.12170196e-01 -8.02064598e-01 -5.11884689e-01 3.38977963e-01 1.08407378e+00 -3.58573467e-01 -5.68929017e-01 3.64410058e-02 -3.82633172e-02 -6.40908539e-01 3.95712733e-01 9.13838327e-01 1.65609136e-01 5.13863444e-01 4.58319694e-01 -1.27753079e-01 1.99498042e-01 -5.46866238e-01 -7.31347859e-01 6.37645543e-01 -8.80827487e-01 -9.95951653e-01 -3.93608838e-01 3.16623271e-01 -2.48505890e-01 -2.74955146e-02 9.82303321e-01 6.74371541e-01 -4.46077824e-01 3.06531698e-01 -8.27486992e-01 -8.86354268e-01 1.06711411e+00 -5.46603024e-01 3.61223668e-02 8.63479897e-02 1.30263910e-01 1.12745965e+00 -1.02050483e+00 1.13530993e+00 1.12073612e+00 5.24634063e-01 6.54744029e-01 -8.48533750e-01 -6.60138726e-01 -4.73743111e-01 -3.71042732e-03 -1.15883803e+00 -4.93571699e-01 3.44783992e-01 -1.72911018e-01 1.21386802e+00 1.89300999e-01 7.78413773e-01 1.48151374e+00 5.51034510e-01 5.74352503e-01 1.50509369e+00 -7.56836355e-01 -2.89073735e-01 8.31325874e-02 -6.34371042e-01 2.80307442e-01 1.91180661e-01 5.61911389e-02 -6.16151929e-01 -5.70681617e-02 5.68705916e-01 -4.87606674e-01 3.91895808e-02 9.99847725e-02 -1.76451051e+00 8.40312362e-01 -2.92788260e-02 5.42431474e-01 -3.31376135e-01 -1.45760238e-01 5.33821285e-01 8.67926061e-01 7.23360777e-01 4.16495651e-01 -6.07701898e-01 -4.79002953e-01 -7.89773881e-01 2.80785728e-02 8.14101875e-01 1.13643599e+00 5.90303183e-01 -6.73356950e-02 3.41946512e-01 1.02102184e+00 2.27445856e-01 9.21209216e-01 6.47206664e-01 -5.85057974e-01 9.83853161e-01 3.50313753e-01 -2.68219322e-01 -5.84837198e-01 -2.01950390e-02 -2.86776245e-01 -8.43058825e-01 -4.98695165e-01 2.54501730e-01 -2.27696463e-01 -6.24020576e-01 1.64833939e+00 -5.83350332e-03 -5.94979227e-01 4.37585413e-01 9.71655250e-01 5.17106056e-01 1.03572774e+00 -4.62658614e-01 -2.72302628e-01 1.01238859e+00 -1.06776392e+00 -6.89361274e-01 -3.74398768e-01 9.91046131e-01 -1.45934153e+00 1.07502675e+00 1.09158464e-01 -1.18799770e+00 -2.99376756e-01 -9.56634045e-01 -5.54250367e-03 -2.53934145e-01 1.64152488e-01 6.17110670e-01 5.39752424e-01 -1.16187334e+00 4.05670494e-01 -7.50210404e-01 -8.85238826e-01 1.27206426e-02 3.95664722e-01 -6.44043148e-01 -2.85257578e-01 -1.39531767e+00 1.35164082e+00 4.58819032e-01 2.24264592e-01 -6.89146519e-01 -2.04594597e-01 -3.56987238e-01 -5.45645952e-01 6.04074672e-02 -8.16927433e-01 1.16207659e+00 -1.05430973e+00 -1.56272364e+00 1.27651179e+00 -1.55806035e-01 -3.99395436e-01 6.17834985e-01 -1.20492607e-01 -5.12058496e-01 -1.78433821e-01 3.86024505e-01 8.01527083e-01 3.37495744e-01 -7.20908761e-01 -5.75902820e-01 -3.50448698e-01 -2.91261792e-01 2.93181449e-01 -1.83548868e-01 6.05537832e-01 -3.82980585e-01 -5.22757232e-01 1.40332013e-01 -1.29989564e+00 -1.39992937e-01 -8.92876267e-01 -4.25820470e-01 -1.78714067e-01 4.34232146e-01 -1.07819533e+00 1.15962636e+00 -1.71708286e+00 2.27377653e-01 -8.03673565e-02 -1.50077686e-01 2.49507800e-01 -2.74046719e-01 9.66634035e-01 1.27326161e-01 2.25019470e-01 -2.77181864e-01 -2.13710833e-02 -9.22284126e-02 3.38293731e-01 -1.94511235e-01 3.90254647e-01 3.99620980e-02 1.17027855e+00 -8.16219151e-01 -4.20045078e-01 -1.90970540e-01 1.87525764e-01 -2.57712513e-01 3.57209146e-02 -3.13211232e-02 6.18154168e-01 -1.82402030e-01 6.30356133e-01 4.99377429e-01 9.12934467e-02 5.61813414e-01 2.32569993e-01 -4.30929214e-01 7.50937581e-01 -1.59707323e-01 2.12848115e+00 -5.45291603e-01 8.38100731e-01 -2.09179491e-01 -4.83676761e-01 1.06768191e+00 4.23915356e-01 1.98571533e-01 -8.42363119e-01 9.35901627e-02 9.75197494e-01 6.02854669e-01 -3.59128475e-01 5.25264144e-01 -1.07657351e-01 -2.06533656e-01 7.08883882e-01 1.25653017e-02 -3.43480945e-01 3.58122706e-01 1.76036611e-01 7.74128139e-01 4.20378387e-01 1.67028025e-01 -6.07088447e-01 1.31351814e-01 4.71352696e-01 6.34579062e-01 3.37778926e-01 9.52348206e-03 5.64843655e-01 2.17545956e-01 -5.93271852e-01 -1.85098672e+00 -6.43168449e-01 5.64810708e-02 6.25535011e-01 -4.55470383e-01 -6.54726803e-01 -9.73835170e-01 -5.25873303e-01 -6.00327253e-01 5.90348303e-01 -1.58533618e-01 1.94965050e-01 -1.07194424e+00 -7.31411695e-01 7.65304327e-01 -2.23299600e-02 5.95554531e-01 -9.33934391e-01 -6.12166226e-02 1.60106540e-01 -6.30754232e-01 -1.08737504e+00 -7.31239438e-01 6.05832078e-02 -9.83441591e-01 -5.84489644e-01 -7.93826461e-01 -1.10490477e+00 4.23848748e-01 7.93949589e-02 1.33085573e+00 -4.11006749e-01 3.51898462e-01 -4.00966555e-01 -2.01581150e-01 -4.26420867e-01 -9.54277456e-01 6.38092041e-01 2.91101158e-01 -5.70132434e-01 7.64924526e-01 -5.65317392e-01 -1.79038808e-01 2.95496285e-01 -5.31019211e-01 5.93954325e-01 1.01459968e+00 8.94271851e-01 4.69516367e-01 -4.87731814e-01 4.40024704e-01 -7.81252265e-01 6.79434896e-01 -3.54594916e-01 -4.93940383e-01 3.04446608e-01 -7.95465112e-01 -1.60888627e-01 5.61499178e-01 -3.12043577e-01 -8.20128977e-01 -4.24961835e-01 -1.09304681e-01 -5.02464622e-02 6.65285289e-02 7.33364224e-01 -1.99833259e-01 4.26912427e-01 5.43910146e-01 1.89618334e-01 -7.55271539e-02 -4.54149365e-01 2.04199582e-01 1.14099443e+00 3.37675005e-01 -7.34589815e-01 7.70035028e-01 5.84513787e-03 -3.08361471e-01 -7.02919364e-01 -3.74124229e-01 -4.22520414e-02 -6.17312431e-01 8.70237276e-02 7.59306729e-01 -1.08528996e+00 -1.60171211e-01 4.67277080e-01 -1.18529081e+00 -4.85335022e-01 6.19016774e-02 8.79331112e-01 -3.98657024e-01 9.63078365e-02 -9.66331899e-01 -2.68533200e-01 -6.42547011e-01 -1.25617504e+00 7.19384491e-01 -2.51167178e-01 -4.35196072e-01 -9.96731341e-01 4.76781964e-01 5.81184685e-01 5.74403107e-01 -1.86518550e-01 8.89545798e-01 -5.82499385e-01 -3.62971723e-01 -2.70717754e-03 -1.44896239e-01 3.46290350e-01 2.12124512e-01 -9.44077671e-02 -3.96106213e-01 -4.32653934e-01 4.34676670e-02 -4.40345019e-01 3.71050358e-01 2.45582893e-01 1.63558200e-01 -3.41008663e-01 -1.37051091e-01 4.27402914e-01 1.28339040e+00 3.71356755e-01 6.29578292e-01 7.16682136e-01 7.46393144e-01 5.25082350e-01 5.52043080e-01 -2.62198418e-01 5.50115347e-01 6.71760142e-01 -3.13671231e-02 -1.60764694e-01 -1.42979592e-01 -6.14575744e-01 8.11461151e-01 1.96405399e+00 -1.35357484e-01 -1.80950642e-01 -1.24584317e+00 6.48683488e-01 -1.65387440e+00 -6.42863691e-01 -2.66271889e-01 1.93458235e+00 9.98170614e-01 -8.23038071e-03 -1.04347572e-01 -5.05613625e-01 7.69669294e-01 -8.81099403e-02 -1.35902911e-01 -8.14478695e-01 -5.97743630e-01 1.35419250e-01 6.05353236e-01 4.19001311e-01 -6.58115327e-01 1.41072798e+00 6.24406528e+00 8.46253216e-01 -1.01184142e+00 2.29236707e-01 6.06834352e-01 -1.18072620e-02 -5.05081713e-01 4.39495504e-01 -7.80365229e-01 4.35592383e-01 1.42938709e+00 -1.08076543e-01 5.29854357e-01 4.55388963e-01 3.88189107e-01 2.06570968e-01 -9.85639751e-01 1.02786160e+00 9.03021544e-02 -1.21219444e+00 8.12022090e-02 5.67626953e-01 1.14239204e+00 6.85555339e-01 -9.81742218e-02 2.94939607e-01 5.17222226e-01 -1.03370845e+00 5.79757750e-01 -7.57218525e-02 9.28012371e-01 -8.07158291e-01 8.84112775e-01 5.09951055e-01 -5.15620470e-01 4.75484729e-01 -6.43201113e-01 -9.85522270e-02 2.01298013e-01 5.69092095e-01 -1.11586058e+00 7.91711271e-01 5.47756255e-01 6.77493513e-01 -2.02359125e-01 3.86183769e-01 -4.60413694e-01 9.85875130e-01 -2.84649432e-01 -9.79495794e-02 5.42854667e-01 -6.72539175e-01 6.02837503e-01 1.10843766e+00 7.16007888e-01 -3.02965611e-01 8.54103640e-02 4.22460556e-01 -3.04429382e-01 6.49324775e-01 -9.88818765e-01 -4.19366062e-01 3.01843017e-01 9.61222947e-01 -4.22192037e-01 -2.19962850e-01 -5.15036225e-01 1.25671041e+00 1.97030932e-01 9.64321494e-02 -6.11115992e-01 -6.87207952e-02 5.52926242e-01 -1.07868552e-01 -1.85057908e-01 -3.80757928e-01 -1.68883398e-01 -1.37806129e+00 1.71772480e-01 -1.43349981e+00 3.48904682e-03 -7.36862242e-01 -1.25395989e+00 1.00040138e+00 -1.49914250e-01 -1.16339386e+00 -6.21911943e-01 -4.74782288e-01 -2.56549269e-01 1.22285426e+00 -1.02675772e+00 -1.59212780e+00 6.43249035e-01 1.79958969e-01 7.58231580e-01 -5.81614554e-01 1.00478029e+00 4.49004889e-01 -5.27016819e-01 5.71499288e-01 4.42531168e-01 2.19134778e-01 1.23313904e+00 -8.72835815e-01 9.50943232e-01 9.77668881e-01 1.99298635e-01 9.11072195e-01 5.72823226e-01 -8.45754743e-01 -1.59253180e+00 -8.13879132e-01 1.83193123e+00 -5.75476527e-01 7.48700857e-01 -4.91823435e-01 -3.86728764e-01 9.22693074e-01 9.16360438e-01 -6.92549944e-01 6.83715165e-01 1.06982648e-01 -2.28058219e-01 8.11765566e-02 -7.66032934e-01 8.60256910e-01 1.12384963e+00 -6.07515931e-01 -5.06696999e-01 4.78137285e-01 7.65973926e-01 -4.12611157e-01 -9.77018118e-01 2.99356461e-01 5.67337751e-01 -6.97706759e-01 4.19910848e-01 -7.12568343e-01 7.79121816e-01 -1.69114098e-01 -4.48916942e-01 -1.66312814e+00 -8.37202892e-02 -8.67731214e-01 4.00154263e-01 1.25263298e+00 9.16890264e-01 -8.17202747e-01 5.50449729e-01 6.78443238e-02 -3.65854561e-01 -6.67948365e-01 -8.98059249e-01 -8.71249855e-01 6.31047487e-01 -2.03402534e-01 7.59245574e-01 1.33590412e+00 3.11604585e-03 8.67985129e-01 -7.61381626e-01 -2.89055318e-01 3.15530062e-01 1.76728606e-01 9.02526557e-01 -7.76104331e-01 -4.12744254e-01 -2.87334114e-01 4.67098504e-02 -9.13794100e-01 1.42187908e-01 -1.32605231e+00 -2.40254343e-01 -1.56062937e+00 5.18502891e-01 -3.05108130e-01 1.92742109e-01 4.97009993e-01 6.20270967e-02 5.00184894e-01 6.67888904e-03 6.60811484e-01 -7.72373527e-02 2.97956347e-01 1.39627421e+00 -1.92267209e-01 -1.32996440e-01 -3.89545143e-01 -6.62553906e-01 2.74223089e-01 1.30695474e+00 -6.26553297e-01 -1.75793439e-01 -1.04014874e+00 5.03701270e-01 -4.51857932e-02 -3.59982073e-01 -4.88708943e-01 -4.37358320e-02 -3.07022840e-01 2.21062884e-01 -6.27208591e-01 1.67527329e-02 -4.58976388e-01 6.45003021e-01 4.38408405e-01 -1.97482362e-01 8.01776826e-01 1.09732047e-01 -2.26641595e-01 -3.95129383e-01 1.41689390e-01 3.96828175e-01 -3.63733113e-01 -3.43860656e-01 1.52903855e-01 -3.67508054e-01 -5.58149889e-02 5.47485590e-01 -9.74141434e-02 -3.14716250e-01 -2.74814218e-01 -4.09526490e-02 -5.58933662e-03 7.61635423e-01 6.16283834e-01 3.15363348e-01 -1.41969979e+00 -1.35531819e+00 1.35288253e-01 5.99300824e-02 -2.85835207e-01 -1.75629601e-01 1.06655419e+00 -6.39050066e-01 7.59693742e-01 -4.65195984e-01 -5.01046002e-01 -1.09805930e+00 2.86407501e-01 -1.06526658e-01 -5.42742252e-01 -4.81951535e-01 4.35665756e-01 -1.98330849e-01 -9.71848190e-01 -4.86063302e-01 1.13201641e-01 3.21662903e-01 -3.52032363e-01 1.91742837e-01 2.55180389e-01 1.84429482e-01 -9.09768641e-01 -9.35085937e-02 3.48214030e-01 -2.28989214e-01 -6.05320632e-01 1.25712800e+00 -3.05117965e-01 -7.05601633e-01 4.85301882e-01 1.29077888e+00 3.34715813e-01 -3.74406993e-01 -7.85784721e-02 3.55813950e-02 -3.26517403e-01 -3.27377230e-01 -9.77075815e-01 -6.57944739e-01 7.34912276e-01 4.09728289e-01 -5.09891629e-01 8.96574020e-01 -1.73886999e-01 1.16925943e+00 5.93992412e-01 6.51336372e-01 -1.22461236e+00 -4.64119077e-01 9.65082049e-01 5.72936237e-01 -1.23523676e+00 -2.85118908e-01 8.66596177e-02 -5.03869951e-01 8.85004520e-01 4.09482151e-01 1.43003151e-01 6.50706366e-02 1.56677112e-01 7.09339380e-01 1.14754103e-01 -9.15488601e-01 1.47082403e-01 -6.77010193e-02 3.17468137e-01 8.38181734e-01 2.92130798e-01 -8.88208449e-01 3.89642455e-02 -7.07684338e-01 -2.25138083e-01 3.09468180e-01 7.04227328e-01 -7.48556331e-02 -1.89250946e+00 -4.35612798e-01 1.24210857e-01 -8.99518251e-01 -5.49832404e-01 -7.04642594e-01 9.61589396e-01 -8.15997273e-02 8.36644053e-01 -1.15209848e-01 -4.45413589e-01 2.88376790e-02 1.97119474e-01 5.96493959e-01 -3.24870139e-01 -7.66348779e-01 4.68379438e-01 3.88679773e-01 -1.04538925e-01 -3.04510951e-01 -5.80227077e-01 -8.73009801e-01 -7.94431508e-01 -1.42154858e-01 6.23645961e-01 1.06726861e+00 7.50663817e-01 3.97294015e-01 -1.50412455e-01 5.94856799e-01 -4.98843521e-01 -4.40678447e-01 -1.27763999e+00 -1.77579932e-02 1.16917454e-01 -2.14574888e-01 2.02310771e-01 -3.49947512e-02 -1.85242936e-01]
[11.540536880493164, 10.365926742553711]
4ed7b02a-dea0-49d7-89d8-95d7a2ec1ab6
a-multi-stage-memory-augmented-neural-network
null
null
https://aclanthology.org/W18-2603
https://aclanthology.org/W18-2603.pdf
A Multi-Stage Memory Augmented Neural Network for Machine Reading Comprehension
Reading Comprehension (RC) of text is one of the fundamental tasks in natural language processing. In recent years, several end-to-end neural network models have been proposed to solve RC tasks. However, most of these models suffer in reasoning over long documents. In this work, we propose a novel Memory Augmented Machine Comprehension Network (MAMCN) to address long-range dependencies present in machine reading comprehension. We perform extensive experiments to evaluate proposed method with the renowned benchmark datasets such as SQuAD, QUASAR-T, and TriviaQA. We achieve the state of the art performance on both the document-level (QUASAR-T, TriviaQA) and paragraph-level (SQuAD) datasets compared to all the previously published approaches.
['Haejun Lee', 'Seohyun Back', 'Sathish Reddy Indurthi', 'Seunghak Yu']
2018-07-01
null
null
null
ws-2018-7
['triviaqa']
['miscellaneous']
[ 3.43110770e-01 2.78179310e-02 4.00613993e-01 -4.98440474e-01 -9.83685255e-01 -4.81716365e-01 7.86666811e-01 6.72153831e-01 -7.36548185e-01 7.26135850e-01 6.16839230e-01 -7.01337755e-01 -2.97477841e-01 -8.08694303e-01 -7.02378035e-01 -2.07327425e-01 2.20507145e-01 7.38657355e-01 3.46104801e-01 -4.16663736e-01 6.95032954e-01 -5.21154515e-02 -1.20649374e+00 5.52289367e-01 1.37329340e+00 8.89670253e-01 3.27212900e-01 1.04355907e+00 -1.99021310e-01 1.12398970e+00 -5.82755625e-01 -5.06962836e-01 -4.12371039e-01 -3.74449283e-01 -1.38149464e+00 -5.77584922e-01 7.34185755e-01 -2.07766503e-01 3.36578153e-02 7.70691931e-01 4.25000578e-01 3.85244101e-01 6.83962882e-01 -5.38806796e-01 -9.12224829e-01 6.57526731e-01 -5.34229636e-01 6.63203835e-01 7.42303848e-01 -1.77880704e-01 1.12340569e+00 -8.48435462e-01 1.35764927e-01 1.53751922e+00 3.59468132e-01 4.28098112e-01 -5.83688140e-01 -3.25444281e-01 3.12094301e-01 4.59257334e-01 -8.22097480e-01 -2.03255519e-01 5.22252440e-01 7.38937221e-03 1.40578377e+00 2.17706457e-01 1.41016185e-01 1.10044658e+00 7.79251575e-01 1.16303146e+00 1.29421580e+00 -5.29138327e-01 2.78224796e-01 -5.51971376e-01 1.05561411e+00 6.86199605e-01 1.06030107e-01 -4.83202994e-01 -6.77162647e-01 8.52566510e-02 2.04778448e-01 -2.93850571e-01 -3.61119121e-01 2.48601422e-01 -1.25565803e+00 8.61661851e-01 4.42894071e-01 1.72683895e-01 -2.51071572e-01 -8.86116773e-02 5.23214877e-01 4.36765045e-01 6.80371881e-01 6.23455226e-01 -7.44535446e-01 -2.15211749e-01 -6.85695529e-01 3.49003822e-01 1.06517816e+00 8.49892974e-01 9.68097448e-02 -3.24913025e-01 -5.74199796e-01 7.51086235e-01 2.55773604e-01 5.21898389e-01 6.36339784e-01 -4.64702964e-01 1.13704431e+00 3.46661747e-01 -6.19641729e-02 -9.64771390e-01 -5.77375233e-01 -8.45123470e-01 -1.38869274e+00 -4.67628628e-01 1.55450270e-01 7.51998946e-02 -9.43779767e-01 1.56319344e+00 -2.82955170e-01 -2.85376981e-02 5.77989459e-01 7.74279535e-01 1.27791381e+00 1.03490365e+00 2.28599027e-01 -8.84058625e-02 1.45050132e+00 -1.56783319e+00 -7.99529135e-01 -5.29104173e-01 3.71282458e-01 -5.78790665e-01 1.36864483e+00 7.69842684e-01 -1.50355709e+00 -7.87456393e-01 -1.03834176e+00 -5.63468158e-01 -3.80157173e-01 -2.27579981e-01 3.97897661e-01 2.35357404e-01 -9.63166893e-01 1.60261154e-01 -5.84517717e-01 -3.66036028e-01 3.49628687e-01 1.47112459e-01 -7.85738081e-02 -4.11267310e-01 -1.44917274e+00 9.53230321e-01 4.00955409e-01 3.65629107e-01 -1.15769577e+00 -3.96718860e-01 -5.97062409e-01 5.48815548e-01 4.15881604e-01 -1.02100980e+00 1.71143889e+00 -6.57226801e-01 -1.45660591e+00 7.04489470e-01 -2.99928725e-01 -5.55456460e-01 1.47943020e-01 -1.03813088e+00 -3.30484509e-01 1.22455135e-01 -4.93418649e-02 5.34299791e-01 5.66924512e-01 -7.43473947e-01 -4.23462272e-01 -4.95906681e-01 3.16896409e-01 4.25205290e-01 -1.30878389e-01 -7.85605088e-02 -2.09302872e-01 -5.17956197e-01 -5.87640423e-03 -3.39915127e-01 1.57403156e-01 -5.85670888e-01 -3.73064011e-01 -7.83665955e-01 4.13856328e-01 -9.87077713e-01 1.16336501e+00 -1.83079886e+00 5.53150237e-01 -2.74522424e-01 1.77299663e-01 4.46185172e-01 -4.75015372e-01 7.30678320e-01 1.31740421e-01 2.81533320e-02 -3.72246772e-01 -4.46101040e-01 -1.01628177e-01 2.14116499e-01 -5.42859137e-01 5.91231138e-02 1.78504273e-01 1.15444946e+00 -8.28595042e-01 -4.15130198e-01 -2.99899876e-01 5.83752841e-02 -4.10404146e-01 6.15763426e-01 -9.30558860e-01 2.85753399e-01 -5.12831271e-01 3.46357554e-01 9.10641849e-01 -3.74994278e-01 -3.32635105e-01 2.98536032e-01 8.32274333e-02 5.29786885e-01 -3.62131566e-01 2.10211134e+00 -4.91367996e-01 4.99786586e-01 -1.06850132e-01 -7.22508788e-01 8.28424931e-01 1.05727345e-01 -5.92466652e-01 -1.27941453e+00 9.38729718e-02 -2.25489568e-02 1.10378712e-01 -6.96218789e-01 6.87708080e-01 6.67512193e-02 -1.57557189e-01 5.87399244e-01 -6.00704132e-03 1.58524979e-02 2.25813776e-01 4.85399127e-01 1.22892725e+00 -1.65100694e-01 2.05672845e-01 -3.22500199e-01 1.06352913e+00 -8.41145962e-02 -1.27845764e-01 1.05914927e+00 1.10343784e-01 6.43704891e-01 6.01446390e-01 -2.12462440e-01 -7.90880799e-01 -1.33055806e+00 2.84200341e-01 1.55346954e+00 -6.65101781e-02 -2.48368889e-01 -9.31474388e-01 -5.35350442e-01 -3.26326042e-01 1.09659195e+00 -5.14093637e-01 -8.09715167e-02 -7.04469383e-01 -5.65255284e-01 7.87276566e-01 8.13421905e-01 1.37285364e+00 -1.19106114e+00 -5.83217204e-01 1.47694767e-01 -3.57832372e-01 -1.00727749e+00 -3.04060221e-01 7.96941668e-03 -1.00743163e+00 -7.35770285e-01 -7.18751013e-01 -1.09289432e+00 4.22119945e-01 2.23561227e-01 1.78749347e+00 2.58507669e-01 1.32038862e-01 1.90874994e-01 -7.61142313e-01 -5.46152711e-01 -1.46699727e-01 6.99106276e-01 -5.20156860e-01 -4.18721229e-01 3.71248066e-01 -1.32393941e-01 -5.05995214e-01 -8.50934815e-03 -1.01497376e+00 3.12117428e-01 9.99632776e-01 9.24938858e-01 2.37404570e-01 2.33859066e-02 9.71951783e-01 -1.11248267e+00 1.52840042e+00 -5.88974118e-01 -4.38785791e-01 5.97710788e-01 -5.48753500e-01 2.13014081e-01 8.02782536e-01 -1.51707917e-01 -1.48763955e+00 -7.26935744e-01 -5.19872904e-01 3.98003578e-01 -3.38802129e-01 1.30082500e+00 -5.51903583e-02 6.39145017e-01 4.47394520e-01 5.51301539e-01 -2.53416568e-01 -8.08784664e-01 2.60057807e-01 7.58665383e-01 8.81442964e-01 -5.95874429e-01 3.49140912e-01 -5.76263592e-02 -3.25396955e-01 -6.90647423e-01 -1.65007699e+00 -4.38787133e-01 -6.88084543e-01 3.13206971e-01 1.14885271e+00 -9.17744815e-01 -5.77690840e-01 7.83575058e-01 -1.50533307e+00 -2.26804510e-01 4.39165682e-01 1.03526846e-01 -4.03675914e-01 3.51142049e-01 -6.84132934e-01 -6.35645688e-01 -1.15910077e+00 -7.51981735e-01 1.11036861e+00 3.91545385e-01 -1.39851436e-01 -1.16428578e+00 2.99245507e-01 8.26323032e-01 6.80599928e-01 -1.06880806e-01 1.64262807e+00 -7.57742226e-01 -5.39268553e-01 3.27579565e-02 -4.90220547e-01 3.81051600e-01 -4.93491769e-01 -5.63997149e-01 -8.24074447e-01 -4.31904882e-01 2.23558426e-01 -7.29165018e-01 1.22508621e+00 4.28853696e-03 1.35021341e+00 -1.07276857e-01 2.26730987e-01 1.81974590e-01 1.19985032e+00 -3.03788055e-02 8.44025075e-01 2.34476060e-01 4.09465849e-01 3.56301516e-01 6.88602805e-01 -7.87420124e-02 6.73903406e-01 -4.81224544e-02 4.27529573e-01 1.82085514e-01 1.07409947e-01 -3.68665010e-01 3.73184413e-01 1.37733614e+00 1.65027320e-01 -9.55758214e-01 -1.25592244e+00 3.98145556e-01 -1.99754000e+00 -7.00079679e-01 -4.73409683e-01 1.60944867e+00 5.97987711e-01 3.90857905e-01 -4.52588081e-01 9.97945899e-04 4.15676832e-02 4.29919839e-01 -4.59516257e-01 -8.36897790e-01 -2.71362036e-01 6.27484143e-01 -1.79233655e-01 5.40092349e-01 -9.80647087e-01 9.57945883e-01 6.19413137e+00 6.15433991e-01 -6.04856789e-01 2.05245674e-01 6.67351782e-01 3.47674310e-01 -2.28857338e-01 -2.66151190e-01 -5.48534691e-01 -1.21763283e-02 1.13627696e+00 -6.86880723e-02 1.82243958e-01 3.60466689e-01 -3.82838808e-02 -6.73074722e-01 -1.16132295e+00 6.46419585e-01 6.71644866e-01 -1.04263186e+00 2.93766677e-01 -6.88809395e-01 5.53171337e-01 1.30379319e-01 1.33773908e-01 7.29753673e-01 -1.26104234e-02 -1.61007380e+00 2.06176445e-01 7.81070709e-01 2.83309698e-01 -9.42943215e-01 1.28639245e+00 9.27167535e-01 -6.00105584e-01 -9.39860046e-02 -6.50509536e-01 -4.32764322e-01 1.27302215e-01 3.56577784e-01 -4.02959794e-01 6.04556620e-01 6.31941617e-01 5.93164206e-01 -1.11235666e+00 7.69377172e-01 -5.36275506e-01 9.76131499e-01 1.44765571e-01 -4.76268113e-01 5.70539773e-01 6.52379496e-03 1.88480794e-01 1.11982429e+00 -7.35708699e-02 2.72225469e-01 -2.03243122e-01 6.53777659e-01 -3.97868603e-01 1.92110464e-01 -7.33538792e-02 -1.10791735e-01 -3.43006998e-02 9.42213058e-01 -2.84056306e-01 -4.39066708e-01 -4.78107512e-01 1.07205963e+00 8.13917756e-01 3.20518225e-01 -6.26610994e-01 -3.97058010e-01 -6.44951314e-02 -2.49840423e-01 2.10983053e-01 -5.54086804e-01 -3.55973691e-01 -1.23310494e+00 1.20808639e-01 -1.14498401e+00 6.22498274e-01 -1.17319083e+00 -1.53591216e+00 7.49565840e-01 1.55598015e-01 -3.91209841e-01 -1.07872047e-01 -7.19021857e-01 -9.58007812e-01 1.16608870e+00 -1.64042401e+00 -1.10404563e+00 -6.73309743e-01 4.78652418e-01 1.17994249e+00 -3.07038158e-01 1.05172265e+00 2.58085411e-02 -4.34204042e-01 3.88846576e-01 2.39307210e-01 1.32057918e-02 6.00486517e-01 -1.37498534e+00 7.74975538e-01 6.82083905e-01 -4.09285389e-02 8.10290575e-01 5.49702168e-01 -5.88178575e-01 -1.56364059e+00 -8.90028119e-01 1.15262163e+00 -5.87245524e-01 5.07448196e-01 -5.68256795e-01 -1.26267242e+00 7.38496542e-01 1.11879802e+00 -7.95710683e-01 5.31194270e-01 3.67238790e-01 -4.26046699e-01 -2.20218077e-02 -9.05330718e-01 3.83993655e-01 8.02031159e-01 -5.34461558e-01 -1.38231850e+00 3.64470780e-01 9.80670094e-01 -4.18835938e-01 -7.04099000e-01 3.16027761e-01 4.02816564e-01 -9.42029893e-01 6.30353034e-01 -8.49459171e-01 8.91332448e-01 2.66272984e-02 2.62102205e-02 -1.60770786e+00 -2.72670448e-01 -1.08882569e-01 -1.53751001e-01 9.18219805e-01 4.99429524e-01 -5.09639025e-01 5.65573335e-01 2.00161874e-01 -1.91918209e-01 -7.96058178e-01 -7.98054159e-01 -4.11297202e-01 7.52906024e-01 -2.31170103e-01 4.70655769e-01 3.78718495e-01 -1.73952430e-01 1.16951680e+00 -1.82162836e-01 6.21979833e-02 4.51712161e-01 1.43338218e-01 5.78934610e-01 -1.30917358e+00 -3.57609749e-01 -1.31937727e-01 1.29011735e-01 -1.67756474e+00 3.19503874e-01 -7.58407831e-01 1.04586139e-01 -1.95266545e+00 4.98088688e-01 1.00774504e-01 -1.75840229e-01 -2.28745863e-02 -3.31807047e-01 -3.49912852e-01 -3.21821161e-02 -1.52082695e-02 -1.14386916e+00 6.98050380e-01 1.44551063e+00 -3.14672023e-01 2.74215162e-01 -1.11408591e-01 -7.04839528e-01 4.70017821e-01 1.16723692e+00 -1.09097540e-01 -6.69519305e-01 -1.30881000e+00 6.53773248e-01 1.33669317e-01 2.19451576e-01 -9.61504161e-01 5.70238233e-01 1.69767871e-01 3.67025286e-01 -1.34104609e+00 1.47758588e-01 -3.58037472e-01 -5.78131020e-01 3.89408439e-01 -9.25271749e-01 7.49271274e-01 1.66959018e-01 7.21799672e-01 -5.80937922e-01 -3.60015988e-01 4.89839524e-01 -3.00638556e-01 -5.24627686e-01 -8.86049420e-02 -4.91809189e-01 4.70272809e-01 5.39718747e-01 5.55391908e-01 -1.04047906e+00 -6.74753726e-01 -2.84177989e-01 7.11928308e-01 -2.56613404e-01 6.96892798e-01 1.05105436e+00 -6.06234550e-01 -1.09889781e+00 6.49956539e-02 1.81513295e-01 6.24128461e-01 3.11574280e-01 7.03124404e-01 -8.07800114e-01 1.08085966e+00 -1.93032756e-01 -4.60137010e-01 -1.18463755e+00 5.87461293e-01 2.16741011e-01 -8.49128425e-01 -2.88771182e-01 9.22028363e-01 1.83867320e-01 -5.35231054e-01 4.28413242e-01 -5.21059632e-01 -5.84999681e-01 -2.44422495e-01 7.08619118e-01 4.11933273e-01 1.65093988e-01 -1.76363319e-01 -8.59107822e-02 4.23612773e-01 -6.54498100e-01 2.76567712e-02 1.25681806e+00 -2.14160353e-01 -4.60223019e-01 4.42654103e-01 9.66014326e-01 -3.16066086e-01 -3.80917102e-01 -2.44346321e-01 2.28740096e-01 6.47625253e-02 -2.88952794e-02 -1.40073621e+00 -4.73052680e-01 1.47385669e+00 3.37023586e-01 -1.13658952e-02 1.22898173e+00 -8.73899907e-02 9.95671451e-01 9.62293923e-01 2.47816533e-01 -9.67792094e-01 3.75433236e-01 1.29347086e+00 1.26879859e+00 -1.25843835e+00 -1.13837674e-01 -1.20093808e-01 -4.69988585e-01 1.09366918e+00 9.87577379e-01 -1.42501488e-01 3.40607792e-01 -1.97992548e-01 2.20622215e-02 -3.68401557e-01 -1.21179771e+00 7.88378567e-02 2.94581264e-01 2.75997818e-01 7.60393322e-01 -1.02478243e-01 -5.01732588e-01 6.07382059e-01 -1.80322930e-01 -4.03391048e-02 4.87108350e-01 9.83986020e-01 -6.92087412e-01 -8.58912289e-01 -3.41248482e-01 6.29676819e-01 -3.58273178e-01 -5.54469824e-01 -6.71727955e-01 6.21013761e-01 -4.38059628e-01 1.26623654e+00 1.23803996e-01 1.44113535e-02 4.18196529e-01 1.60248786e-01 3.72290522e-01 -5.17327309e-01 -8.79413247e-01 -3.33753645e-01 3.75770271e-01 -1.44932151e-01 -4.06838655e-01 -2.42973700e-01 -1.21819091e+00 -3.07332814e-01 -1.47462890e-01 3.16896856e-01 2.82931030e-01 1.08005321e+00 2.73983479e-01 7.25352526e-01 -3.36980037e-02 -8.11762586e-02 -7.57831097e-01 -1.52579689e+00 -2.54617125e-01 2.92916924e-01 4.69058484e-01 -1.40722945e-01 -1.25923306e-01 -3.38364244e-01]
[11.197235107421875, 8.212535858154297]
ed493d8c-e317-4bb8-9996-d1fc8acdc0c6
road-reality-oriented-adaptation-for-semantic
1711.11556
null
http://arxiv.org/abs/1711.11556v2
http://arxiv.org/pdf/1711.11556v2.pdf
ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes
Exploiting synthetic data to learn deep models has attracted increasing attention in recent years. However, the intrinsic domain difference between synthetic and real images usually causes a significant performance drop when applying the learned model to real world scenarios. This is mainly due to two reasons: 1) the model overfits to synthetic images, making the convolutional filters incompetent to extract informative representation for real images; 2) there is a distribution difference between synthetic and real data, which is also known as the domain adaptation problem. To this end, we propose a new reality oriented adaptation approach for urban scene semantic segmentation by learning from synthetic data. First, we propose a target guided distillation approach to learn the real image style, which is achieved by training the segmentation model to imitate a pretrained real style model using real images. Second, we further take advantage of the intrinsic spatial structure presented in urban scene images, and propose a spatial-aware adaptation scheme to effectively align the distribution of two domains. These two modules can be readily integrated with existing state-of-the-art semantic segmentation networks to improve their generalizability when adapting from synthetic to real urban scenes. We evaluate the proposed method on Cityscapes dataset by adapting from GTAV and SYNTHIA datasets, where the results demonstrate the effectiveness of our method.
['Luc van Gool', 'Yuhua Chen', 'Wen Li']
2017-11-30
road-reality-oriented-adaptation-for-semantic-1
http://openaccess.thecvf.com/content_cvpr_2018/html/Chen_ROAD_Reality_Oriented_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_ROAD_Reality_Oriented_CVPR_2018_paper.pdf
cvpr-2018-6
['synthetic-to-real-translation']
['computer-vision']
[ 3.88758957e-01 1.64149746e-01 1.05187513e-01 -5.62844932e-01 -5.58182001e-01 -4.84766632e-01 6.99467719e-01 -4.26882505e-01 -4.95173514e-01 6.68235481e-01 8.00106674e-02 6.64947331e-02 1.44231126e-01 -1.04034042e+00 -9.75733221e-01 -5.39191246e-01 5.59728980e-01 4.96572584e-01 6.17450178e-01 -4.09620434e-01 1.56706482e-01 3.58526021e-01 -1.43431282e+00 2.82481849e-01 1.50362337e+00 7.55350113e-01 6.43659651e-01 1.18401773e-01 -4.76620615e-01 5.15893996e-01 -5.76506019e-01 -1.53976724e-01 4.83069688e-01 -5.49326241e-01 -8.56509864e-01 5.22736907e-01 1.69602707e-01 -2.38040477e-01 -3.67351353e-01 1.34525752e+00 2.75188118e-01 2.33546793e-01 7.05405295e-01 -1.14794564e+00 -6.33407474e-01 4.45280433e-01 -6.60629511e-01 -1.00784518e-01 4.68834788e-02 4.17341352e-01 5.24897814e-01 -7.41757631e-01 5.86003244e-01 1.42874098e+00 4.16050792e-01 4.54389751e-01 -1.17676198e+00 -6.29760385e-01 4.28439885e-01 1.63099647e-01 -1.47160327e+00 -3.26950550e-01 1.09496236e+00 -4.08459425e-01 3.50328475e-01 -1.23105973e-01 6.63279474e-01 1.34432566e+00 -3.05571467e-01 1.06398952e+00 1.33819199e+00 -1.40895829e-01 3.10774773e-01 4.30079550e-01 -3.36788177e-01 1.74480125e-01 2.49654070e-01 1.50427118e-01 1.58576131e-01 4.44588482e-01 8.78421128e-01 4.66202945e-02 -3.37646604e-01 -6.33218527e-01 -1.20845091e+00 6.27747715e-01 8.21747780e-01 2.05790088e-01 -2.84297049e-01 1.28396526e-02 3.08630913e-01 8.32272321e-02 4.38581705e-01 3.88505787e-01 -3.42214912e-01 1.64161533e-01 -9.12898958e-01 2.02120796e-01 3.96620005e-01 1.00205970e+00 9.60916519e-01 3.64444554e-01 -6.19855896e-02 1.17847431e+00 3.65807533e-01 6.03259325e-01 7.74248898e-01 -7.68962562e-01 5.90129197e-01 6.44125223e-01 1.39604270e-01 -1.00204301e+00 -2.53980249e-01 -5.49360096e-01 -7.87727058e-01 7.36987591e-02 5.51978707e-01 6.58303034e-04 -1.07902813e+00 1.73288906e+00 2.82540619e-01 3.93024921e-01 2.91997075e-01 1.07688439e+00 8.08860600e-01 5.75445175e-01 2.30605662e-01 2.63711482e-01 9.89180684e-01 -1.19649398e+00 -4.27435726e-01 -7.68791318e-01 4.41531777e-01 -6.40282691e-01 1.50020981e+00 7.69179836e-02 -7.09788561e-01 -8.06290030e-01 -1.08030081e+00 1.44839704e-01 -6.04801595e-01 1.76602408e-01 2.41176456e-01 4.69559431e-01 -6.59769058e-01 3.02090287e-01 -7.17792451e-01 -5.78130782e-01 6.02593958e-01 -8.44612196e-02 -1.64540499e-01 -3.03614855e-01 -1.23578370e+00 5.69289148e-01 1.12663639e+00 3.72336172e-02 -8.35646510e-01 -5.21241188e-01 -9.04587865e-01 -1.16688289e-01 3.85141462e-01 -5.31035900e-01 9.68450427e-01 -1.60910249e+00 -1.45503306e+00 8.53654742e-01 2.33599305e-01 -3.06007653e-01 8.50992858e-01 -7.84506463e-03 -6.17142797e-01 8.04193690e-02 5.00457883e-01 8.66443694e-01 7.69899786e-01 -1.66827750e+00 -4.99365300e-01 -3.14922750e-01 1.41129881e-01 3.53471398e-01 -7.44194910e-02 -5.75998068e-01 -6.09203219e-01 -9.61631536e-01 2.42231891e-01 -9.72440898e-01 -3.30010116e-01 -1.07664339e-01 -5.79267681e-01 2.84262270e-01 9.08265769e-01 -5.32575130e-01 8.31458449e-01 -2.27291131e+00 -1.07147386e-02 3.60780135e-02 -1.79416835e-01 5.22464037e-01 -3.94210428e-01 1.82582423e-01 -1.50623024e-01 -1.45771867e-02 -6.11090660e-01 -1.22481726e-01 -1.58771515e-01 4.65133727e-01 -4.04026538e-01 1.37269065e-01 2.95237839e-01 1.01559329e+00 -9.50114846e-01 -5.12839973e-01 3.84019226e-01 2.52657861e-01 -4.32881802e-01 4.10193413e-01 -5.15447974e-01 1.02440214e+00 -6.97348952e-01 2.31395975e-01 1.20229173e+00 -3.76898535e-02 -9.54282284e-02 -2.33177394e-01 7.66104534e-02 1.38910323e-01 -1.35661602e+00 1.91888595e+00 -5.30774176e-01 3.36665064e-01 -1.90570399e-01 -1.33827150e+00 9.92287874e-01 -1.00655630e-02 1.97885633e-01 -1.00139511e+00 -1.13690393e-02 3.23517263e-01 -2.88595200e-01 -7.00707078e-01 3.24154645e-01 -1.86787650e-01 -1.68803722e-01 2.09863871e-01 -4.58866172e-02 -5.33838868e-01 1.07442334e-01 -1.07005779e-02 4.58983034e-01 5.02351761e-01 -8.60905088e-03 -2.28116512e-01 6.95277631e-01 2.70688772e-01 7.61344433e-01 4.86996055e-01 -1.23427875e-01 9.50836718e-01 3.50786597e-01 -4.34214503e-01 -1.04951394e+00 -1.21605265e+00 -2.38483045e-02 6.70202851e-01 6.81191146e-01 1.90703690e-01 -1.02151239e+00 -9.74209487e-01 -2.62367606e-01 1.00233996e+00 -5.80473542e-01 -2.77083337e-01 -6.20956481e-01 -6.88897133e-01 5.27218759e-01 6.31216168e-01 1.44693267e+00 -1.04317451e+00 -5.44685841e-01 2.70143598e-01 -5.17405450e-01 -1.56195331e+00 -3.33143443e-01 -1.96986422e-01 -7.54094362e-01 -1.04817796e+00 -8.15937102e-01 -6.76641464e-01 5.51435113e-01 5.02997994e-01 1.09093511e+00 -1.66082650e-01 3.21543068e-02 1.87275082e-01 -3.33125532e-01 -2.41735846e-01 -5.76360643e-01 2.34892264e-01 -2.37913609e-01 3.84316027e-01 1.11433618e-01 -6.16188824e-01 -8.39706123e-01 5.12372136e-01 -1.37891757e+00 4.54958260e-01 7.72691369e-01 8.18678737e-01 6.34899914e-01 9.36164036e-02 6.55234277e-01 -1.05533159e+00 2.99079239e-01 -4.90780920e-01 -5.34794450e-01 1.54013231e-01 -2.84122407e-01 1.48143470e-01 8.25516224e-01 -4.30102944e-01 -1.54113221e+00 2.38169432e-01 -2.73832440e-01 -3.34646344e-01 -5.40924072e-01 2.78213501e-01 -5.85665762e-01 7.05052167e-02 6.97835684e-01 4.62856919e-01 -2.06868917e-01 -3.01831990e-01 5.13651907e-01 7.03790843e-01 6.07037067e-01 -6.68094814e-01 9.49781120e-01 7.12231219e-01 -3.39317054e-01 -7.81213641e-01 -9.48379934e-01 -2.50779718e-01 -7.26759911e-01 1.80970430e-02 9.79387581e-01 -1.07206261e+00 6.47021011e-02 6.07943952e-01 -1.01029670e+00 -6.38696671e-01 -4.78619367e-01 3.65071625e-01 -7.24627316e-01 3.67399454e-01 -1.89309627e-01 -3.73026282e-01 1.04155377e-01 -1.37206078e+00 1.18584764e+00 3.43795002e-01 2.33831078e-01 -1.01727128e+00 -8.66805017e-02 3.59459877e-01 4.78434205e-01 5.07113099e-01 7.08365858e-01 -5.23549855e-01 -6.48618162e-01 1.07998557e-01 -7.40696371e-01 4.45080757e-01 1.05577320e-01 -2.94973761e-01 -9.82068360e-01 -1.11187391e-01 -2.22449675e-02 -4.05300140e-01 8.56317222e-01 2.15401441e-01 1.32746160e+00 -2.44841784e-01 -3.70015085e-01 7.74948120e-01 1.46833253e+00 5.86708523e-02 8.11645389e-01 5.24761319e-01 8.71086240e-01 6.53813660e-01 8.39486063e-01 2.89202128e-02 4.30059761e-01 8.45370591e-01 4.75709170e-01 -4.82322633e-01 -4.41666067e-01 -6.57881260e-01 1.03460230e-01 4.86820906e-01 3.43764514e-01 -1.44702047e-01 -9.07942653e-01 8.14662993e-01 -1.91532099e+00 -7.09038258e-01 1.66485198e-02 2.17398357e+00 5.83433509e-01 2.17927352e-01 6.74361289e-02 -1.17980644e-01 6.21213377e-01 2.33584777e-01 -7.19021380e-01 -2.65533589e-02 -2.59108037e-01 -8.48660991e-02 5.07826924e-01 1.98500037e-01 -1.06307137e+00 1.36300004e+00 4.95339298e+00 1.24735236e+00 -1.57048488e+00 2.35604659e-01 8.30552876e-01 4.51752186e-01 -4.22959119e-01 1.57302748e-02 -3.15405041e-01 6.88594878e-01 5.10037005e-01 2.15879045e-02 2.71602392e-01 8.62332880e-01 3.50744277e-01 1.46283656e-01 -7.33518064e-01 1.01920819e+00 -1.12614401e-01 -1.04018593e+00 2.88668305e-01 -6.51393160e-02 1.03474617e+00 1.04654349e-01 2.24056855e-01 4.35133547e-01 3.72667402e-01 -1.03007758e+00 7.58205235e-01 3.03433150e-01 7.83621252e-01 -6.23973191e-01 4.96061355e-01 5.49894869e-01 -1.21819043e+00 -3.69981378e-02 -5.75162709e-01 2.42387876e-01 2.07708746e-01 5.39006829e-01 -8.26398313e-01 7.61858284e-01 5.33165514e-01 7.86615252e-01 -7.37558961e-01 1.03109717e+00 -4.26271170e-01 5.16914666e-01 -2.67279983e-01 4.60804939e-01 5.56056499e-01 -4.37690377e-01 4.46106791e-01 1.05597830e+00 3.26310605e-01 -1.30498469e-01 2.21611530e-01 1.35057354e+00 1.05475865e-01 6.30925819e-02 -8.39472592e-01 1.37083501e-01 3.20856512e-01 9.86880958e-01 -9.29271877e-01 -3.96037519e-01 -3.99513930e-01 1.30968511e+00 1.90900117e-01 8.02634299e-01 -9.31815803e-01 -2.82502681e-01 3.00490558e-01 1.96762517e-01 2.71846682e-01 -1.58118516e-01 -3.72331172e-01 -1.40451741e+00 -1.22850478e-01 -8.80357921e-01 1.19948812e-01 -8.99775922e-01 -1.11195672e+00 7.99766302e-01 1.34416193e-01 -1.47044528e+00 -1.81046292e-01 -3.19426537e-01 -6.28661990e-01 7.71122515e-01 -1.64689255e+00 -1.31807399e+00 -7.23450184e-01 5.89340806e-01 9.09241557e-01 -7.10439533e-02 4.08544809e-01 3.20872575e-01 -4.85495150e-01 4.46903646e-01 1.20765172e-01 2.43105263e-01 6.78463280e-01 -1.11517620e+00 6.97060406e-01 9.91247416e-01 6.38737977e-02 9.41814482e-02 6.28684223e-01 -4.31712329e-01 -6.84797764e-01 -1.70910108e+00 2.02959836e-01 -1.06147192e-01 2.49370575e-01 -2.95627564e-01 -1.08416355e+00 6.63250387e-01 6.08051307e-02 1.47550732e-01 2.15033606e-01 -4.86065686e-01 -3.97121936e-01 -2.10224539e-01 -1.28177464e+00 8.94525826e-01 1.15649629e+00 -2.40800604e-01 -5.46083331e-01 2.60040700e-01 8.54122102e-01 -3.04495722e-01 -4.35107768e-01 6.62328184e-01 2.07999378e-01 -1.16327393e+00 1.13206649e+00 -2.30508894e-01 4.01030272e-01 -5.13064265e-01 -2.20812634e-01 -1.65713382e+00 -7.74951279e-02 -1.22214444e-01 4.11717236e-01 1.22416055e+00 2.82770753e-01 -8.92455339e-01 7.59292901e-01 4.06774223e-01 -1.90494269e-01 -4.39264685e-01 -7.05002069e-01 -8.36729825e-01 3.22192043e-01 -3.48078787e-01 9.34509039e-01 1.12415540e+00 -6.18029833e-01 2.69375741e-01 -7.00062662e-02 6.50009140e-02 4.55800533e-01 2.66203254e-01 1.06758451e+00 -9.91192281e-01 -4.23008144e-01 -4.96302098e-01 -4.45824087e-01 -1.53098941e+00 2.38067746e-01 -7.75897205e-01 1.14928253e-01 -1.48798621e+00 -1.42258089e-02 -8.03788960e-01 -5.68899140e-02 1.13082975e-01 -2.28241086e-01 4.32054967e-01 1.59760147e-01 2.81692356e-01 -5.67757607e-01 1.02561700e+00 1.65381742e+00 -2.69606084e-01 -2.67072529e-01 3.91476639e-02 -7.25938320e-01 8.12478721e-01 8.29558134e-01 -2.81056732e-01 -7.68170178e-01 -6.46340966e-01 -4.36359458e-02 -8.03600326e-02 4.54376072e-01 -1.21317768e+00 -1.60159245e-01 -3.37195486e-01 3.38238060e-01 -3.60864043e-01 2.51116753e-01 -9.01726246e-01 1.37738720e-01 2.57243067e-01 -1.19050115e-01 -3.91300797e-01 3.35113883e-01 7.60261178e-01 -4.36497957e-01 -1.10078961e-01 1.11867726e+00 -3.18732083e-01 -1.05916822e+00 1.85871586e-01 2.02093963e-02 4.24105406e-01 1.06975269e+00 -4.99293000e-01 -1.33062139e-01 -3.41989905e-01 -4.79511082e-01 2.11031348e-01 7.54807711e-01 5.44042289e-01 5.23037910e-01 -1.38827562e+00 -6.75055087e-01 4.24558133e-01 4.51645017e-01 5.08143842e-01 5.03349900e-01 7.29624212e-01 -6.66980505e-01 8.18654597e-02 -3.45588624e-01 -8.16165149e-01 -5.32099187e-01 6.60895586e-01 5.28930068e-01 -1.11943565e-01 -5.78826129e-01 5.30408859e-01 9.55072045e-01 -9.17946815e-01 -2.14746833e-01 -3.11666071e-01 -1.09923378e-01 -3.38784158e-01 7.98188448e-02 5.58229163e-02 -6.32869825e-02 -9.16945755e-01 -9.46733356e-02 7.97708035e-01 6.76197112e-02 -1.62699029e-01 9.88173127e-01 -3.46893728e-01 3.21225613e-01 2.91959137e-01 1.22066247e+00 -2.19564319e-01 -1.55473840e+00 -4.13400412e-01 -1.44408107e-01 -6.62980139e-01 -2.01254979e-01 -7.20968843e-01 -1.28731084e+00 1.02784467e+00 6.84619725e-01 -3.40732336e-02 1.17079794e+00 -1.30555809e-01 1.00769377e+00 3.89035195e-02 3.85122091e-01 -1.23496675e+00 2.82355011e-01 3.21801007e-01 8.27410221e-01 -1.46258736e+00 -4.64225829e-01 -6.06137335e-01 -9.39558029e-01 7.97211289e-01 7.84417748e-01 -2.58457869e-01 5.00009894e-01 -3.27663422e-01 2.33216316e-01 -3.12496703e-02 6.65848237e-03 -4.20258105e-01 1.60881564e-01 7.31567681e-01 7.94877782e-02 3.91968973e-02 -1.13714047e-01 4.38704461e-01 -1.08816572e-01 -1.93915963e-02 4.42819983e-01 5.07796586e-01 -2.84793973e-01 -1.11408436e+00 -3.37840825e-01 5.68265989e-02 -2.74589825e-02 2.04030544e-01 -2.02561885e-01 9.15137053e-01 2.97918081e-01 8.44027698e-01 1.66507363e-02 -2.31908277e-01 6.20944560e-01 -2.09168941e-01 1.63085431e-01 -6.44460917e-01 -2.42234077e-02 -3.69761288e-02 -2.20963895e-01 -5.64551592e-01 -3.79213303e-01 -4.38199878e-01 -1.25760436e+00 1.15284771e-01 -1.38863157e-02 -2.25163791e-02 5.00226676e-01 1.04885578e+00 4.14487630e-01 6.85706854e-01 5.98765671e-01 -9.29105580e-01 -3.49381536e-01 -8.97693574e-01 -5.00963509e-01 8.61923933e-01 6.77369162e-02 -8.53291571e-01 -1.54154643e-01 -2.68786214e-02]
[9.732667922973633, 1.1428358554840088]
7459761c-b33b-46df-a1b1-a726c8f9d889
3-dimensional-dense-reconstruction-a-review
2304.09371
null
https://arxiv.org/abs/2304.09371v1
https://arxiv.org/pdf/2304.09371v1.pdf
3 Dimensional Dense Reconstruction: A Review of Algorithms and Dataset
3D dense reconstruction refers to the process of obtaining the complete shape and texture features of 3D objects from 2D planar images. 3D reconstruction is an important and extensively studied problem, but it is far from being solved. This work systematically introduces classical methods of 3D dense reconstruction based on geometric and optical models, as well as methods based on deep learning. It also introduces datasets for deep learning and the performance and advantages and disadvantages demonstrated by deep learning methods on these datasets.
['Yangming Li']
2023-04-19
null
null
null
null
['3d-reconstruction']
['computer-vision']
[-2.28264779e-01 -9.73479077e-02 1.56807527e-01 -3.85820985e-01 -5.50216138e-01 4.28831438e-03 6.67965889e-01 -3.09092581e-01 -6.62317351e-02 3.97921681e-01 2.63746470e-01 5.73425181e-02 -7.39279315e-02 -7.95285046e-01 -7.86961675e-01 -6.34683967e-01 -2.88089991e-01 1.14957905e+00 2.73415521e-02 1.62058517e-01 2.23537609e-01 1.31305373e+00 -1.41791904e+00 1.87599257e-01 1.75321233e-02 1.32942152e+00 2.23580033e-01 2.52042294e-01 -4.83758509e-01 6.45348012e-01 -2.13757247e-01 -3.31186615e-02 2.98479587e-01 -1.83313210e-02 -7.79709816e-01 5.05032003e-01 5.33292949e-01 -8.13740194e-01 -5.69856465e-01 5.51432312e-01 6.41505599e-01 -1.16236463e-01 1.02026379e+00 -5.29811263e-01 -8.08505476e-01 -1.67995617e-01 -6.42149389e-01 6.51526228e-02 7.57032275e-01 -1.70934737e-01 5.34551501e-01 -1.35820067e+00 9.15629923e-01 1.36571693e+00 8.19637656e-01 4.37998354e-01 -1.15112388e+00 -2.55223542e-01 -3.07477117e-01 1.77205667e-01 -1.35821533e+00 -3.41762096e-01 1.17410398e+00 -5.68908274e-01 1.29652524e+00 -2.40837693e-01 8.08826566e-01 1.04281616e+00 3.22082490e-01 1.14696717e+00 1.19571400e+00 -4.89199013e-01 4.69155870e-02 -2.18730927e-01 1.56369489e-02 8.67957354e-01 2.23061338e-01 5.94958067e-01 -3.86235297e-01 7.14262575e-02 1.36917794e+00 1.39138317e-02 -7.47405440e-02 -8.15942645e-01 -9.43287313e-01 8.13139439e-01 4.42858428e-01 1.57516971e-01 -5.22492588e-01 7.99894612e-03 7.70304948e-02 2.40230516e-01 9.32657957e-01 1.49411500e-01 -3.22895229e-01 8.85187164e-02 -6.79432809e-01 4.33569044e-01 6.79361403e-01 1.18312478e+00 8.91850710e-01 3.08578998e-01 4.78052109e-01 6.12431645e-01 4.44518715e-01 7.24591196e-01 -5.21977134e-02 -9.72533703e-01 -3.14755946e-01 7.15528190e-01 1.73098773e-01 -9.72281873e-01 -6.12994373e-01 -2.16716439e-01 -9.37632918e-01 6.16211951e-01 7.68736824e-02 2.39159912e-01 -1.03780723e+00 8.49859238e-01 4.88207936e-01 1.67596564e-01 -2.33677790e-01 1.11554289e+00 1.56380796e+00 4.91194069e-01 -6.03910327e-01 4.74578328e-02 6.00409567e-01 -6.62530005e-01 -6.25292063e-01 -1.42239362e-01 5.14342561e-02 -8.65750670e-01 5.58448255e-01 4.21500176e-01 -1.31391525e+00 -5.12940586e-01 -6.77910388e-01 -4.79097813e-01 -2.08649471e-01 -2.92628378e-01 7.64366150e-01 2.22468033e-01 -1.02329421e+00 5.32451749e-01 -9.50560272e-01 -1.87142715e-01 9.03772116e-01 4.26074505e-01 -8.09974730e-01 -4.93068308e-01 -4.14332598e-01 1.09583449e+00 -5.95568419e-02 7.08289817e-02 -1.19269025e+00 -5.78962922e-01 -1.11915624e+00 -3.65010381e-01 5.11835217e-02 -9.01084483e-01 1.29482675e+00 -8.40767324e-02 -1.67167354e+00 1.62006485e+00 -7.48368874e-02 -2.00647846e-01 3.19392234e-01 -4.98588294e-01 2.74238318e-01 2.35253111e-01 -2.59043515e-01 4.98636186e-01 9.24300671e-01 -1.53625190e+00 -6.91612884e-02 -7.77445674e-01 -1.34693503e-01 7.00332746e-02 5.45212626e-01 -2.33797088e-01 -3.49001735e-01 -2.23928392e-01 8.08030903e-01 -6.48719251e-01 -2.88534880e-01 3.66578162e-01 -3.63569707e-01 -6.77362829e-02 1.00119567e+00 -4.54954565e-01 1.05547450e-01 -1.93892050e+00 2.87059516e-01 7.85121396e-02 5.41755617e-01 2.11773083e-01 -2.57764041e-01 2.47910455e-01 2.13931710e-01 -2.42781103e-01 4.63046841e-02 -7.58038640e-01 8.24349970e-02 3.58923227e-01 -4.16737571e-02 9.04105604e-01 1.27932534e-01 1.23802841e+00 -6.35993898e-01 -2.90659100e-01 8.53149235e-01 8.92904222e-01 -4.17498827e-01 6.25717878e-01 -1.32866442e-01 7.67021716e-01 -4.99784023e-01 8.76359463e-01 8.87029767e-01 -3.36676598e-01 -2.06724539e-01 -3.53858620e-01 -1.69862866e-01 2.86004126e-01 -9.79244351e-01 1.86802340e+00 -4.34747398e-01 4.15205032e-01 3.09953362e-01 -1.34671283e+00 1.30891705e+00 2.25429654e-01 8.63262832e-01 -9.27324831e-01 3.82124662e-01 2.83720732e-01 -6.20720923e-01 -6.04832292e-01 1.75810829e-01 -5.52255630e-01 3.38183008e-02 6.28331661e-01 1.94046333e-01 -9.57633197e-01 -5.75217783e-01 -2.89551407e-01 8.68183076e-01 3.98477107e-01 2.46041283e-01 -9.70950797e-02 1.65866613e-01 4.33458248e-03 1.41654715e-01 4.33731407e-01 1.24674313e-01 8.33036780e-01 4.52423207e-02 -1.23555696e+00 -1.24223423e+00 -1.28391600e+00 -4.97100830e-01 -1.53169706e-01 3.89911205e-01 -1.95220429e-02 -1.26893833e-01 -3.81171703e-01 3.63185525e-01 1.11651257e-01 -6.40181720e-01 1.61050841e-01 -5.53394020e-01 -2.97551036e-01 -1.23851463e-01 2.91455239e-01 5.66291332e-01 -1.14482725e+00 -5.19379556e-01 1.12571595e-02 1.75800696e-01 -1.32080853e+00 2.36035377e-01 1.45948514e-01 -1.23990190e+00 -1.16944575e+00 -8.01052630e-01 -8.96892130e-01 6.66855097e-01 5.46969891e-01 1.53254652e+00 8.75483230e-02 -4.72265840e-01 7.23445952e-01 -3.02178353e-01 -4.58634615e-01 -1.14926308e-01 -7.49136284e-02 1.12494066e-01 -2.50127137e-01 4.28929895e-01 -8.29344392e-01 -2.94738233e-01 2.54652560e-01 -6.18514240e-01 1.99322060e-01 6.02848709e-01 7.44843006e-01 1.25339186e+00 2.29261164e-02 1.71933755e-01 -7.19496727e-01 1.26082137e-01 -2.16087341e-01 -6.64524496e-01 -2.47781858e-01 -1.82863533e-01 -1.27321482e-01 8.34015533e-02 3.45360227e-02 -8.40957224e-01 3.88907671e-01 -7.28106797e-01 -7.95380712e-01 -7.07976580e-01 1.82031319e-01 -2.04411179e-01 -4.16577756e-01 3.90000969e-01 3.06708574e-01 3.25809628e-01 -1.17337668e+00 6.94719478e-02 3.44103932e-01 1.51640370e-01 -4.43458796e-01 6.93459988e-01 9.94810104e-01 2.98941255e-01 -1.27074111e+00 -1.06860316e+00 -2.85780162e-01 -1.20837307e+00 -2.08283946e-01 8.30849588e-01 -7.25239217e-01 -4.86103147e-01 7.00946450e-01 -1.32474935e+00 -5.31136811e-01 -6.48391485e-01 7.34866023e-01 -1.06387997e+00 1.98928609e-01 -7.90849209e-01 -6.47180796e-01 -3.65668535e-01 -1.07246971e+00 1.57719660e+00 -1.87765166e-01 1.94005109e-02 -1.20170879e+00 2.52642274e-01 3.29912007e-01 4.14926261e-01 6.48733079e-01 1.00598955e+00 7.93396980e-02 -1.03670764e+00 -4.74777430e-01 -3.35873723e-01 3.44179422e-01 1.14301257e-01 -4.38954771e-01 -1.04499328e+00 -1.61832184e-01 2.91245848e-01 -6.02795959e-01 7.37879813e-01 8.80334437e-01 1.14431810e+00 1.62819356e-01 -2.57387698e-01 9.54749048e-01 1.54581690e+00 -2.52392262e-01 7.62645423e-01 8.52787346e-02 7.61636615e-01 4.06918645e-01 1.90039292e-01 3.82737458e-01 1.90884754e-01 5.88603795e-01 8.78977060e-01 -2.75314420e-01 -4.41252232e-01 -2.30956122e-01 -1.28131852e-01 9.05093074e-01 -3.04320842e-01 3.23295444e-01 -7.84953952e-01 1.36675417e-01 -1.21066868e+00 -7.84722447e-01 -2.08202109e-01 1.86506224e+00 2.97850966e-01 1.32840052e-01 -1.42924607e-01 2.86026120e-01 2.80850500e-01 1.18112758e-01 -5.60339153e-01 -2.75547355e-01 -2.56690323e-01 7.22592533e-01 -9.11344662e-02 5.23129165e-01 -9.99997020e-01 1.03015840e+00 7.87428761e+00 5.22855759e-01 -1.07013333e+00 1.22480728e-02 3.84734899e-01 4.08860669e-02 -4.08471614e-01 -4.40145284e-01 -9.33293164e-01 -1.46410421e-01 3.10583413e-01 1.39285788e-01 1.73532382e-01 7.81202674e-01 1.27507344e-01 -1.80505306e-01 -1.25571871e+00 1.36268187e+00 1.77122936e-01 -1.72974086e+00 2.24681422e-01 3.13756227e-01 9.92816865e-01 3.61451536e-01 -1.47051197e-02 5.71927875e-02 5.45750558e-02 -1.26392579e+00 8.40131938e-01 7.80240238e-01 1.00563180e+00 -5.58646858e-01 8.36150348e-01 5.21918952e-01 -8.21503937e-01 3.89458477e-01 -7.54171491e-01 -2.90757477e-01 4.05544549e-01 1.00934446e+00 -6.19588137e-01 4.06431675e-01 8.49153578e-01 1.31592512e+00 -1.26343131e-01 1.26160645e+00 -2.95943469e-01 2.66576052e-01 -3.79824489e-01 2.28140250e-01 1.99853763e-01 -2.32449129e-01 6.31591558e-01 9.18288112e-01 2.99991757e-01 1.24048665e-01 2.50196368e-01 1.05873573e+00 -1.29639089e-01 -2.42265880e-01 -1.34441602e+00 2.71837145e-01 1.15264608e-02 9.86994088e-01 -4.85682368e-01 4.08762656e-02 -5.38717985e-01 6.75333560e-01 4.03320044e-01 1.55845344e-01 -2.59655952e-01 1.27304330e-01 6.08482897e-01 5.70050478e-01 3.38540018e-01 -8.73425841e-01 -3.85089725e-01 -9.23826873e-01 -1.90023318e-01 -2.31774524e-01 1.24378815e-01 -9.05458093e-01 -1.77160060e+00 4.32561815e-01 5.77561967e-02 -1.13777840e+00 1.03001110e-01 -9.63644981e-01 -2.85835654e-01 7.21437037e-01 -1.90469837e+00 -1.16458261e+00 -5.55747032e-01 7.17428088e-01 5.43345213e-01 -1.32134601e-01 1.13986385e+00 2.62613237e-01 -8.61014500e-02 -2.86886562e-02 6.07265644e-02 -5.45299565e-03 1.08382754e-01 -9.77589011e-01 5.33057332e-01 5.42013049e-02 1.49500594e-01 7.47338161e-02 2.12661937e-01 -5.33431947e-01 -1.97641397e+00 -9.03207064e-01 6.89497948e-01 -4.98570561e-01 3.00364391e-05 -3.99200708e-01 -9.28964257e-01 6.74994230e-01 -9.72083807e-02 3.88037860e-01 5.19195616e-01 2.02263724e-02 -5.56427315e-02 1.83501840e-01 -1.30777657e+00 3.53422575e-02 1.36236680e+00 -5.98797441e-01 -7.59162605e-01 4.43344116e-01 4.85705256e-01 -9.48100150e-01 -8.23724568e-01 4.94009107e-01 6.02403700e-01 -1.24471867e+00 1.38586676e+00 -4.20512170e-01 5.20437896e-01 1.58656627e-01 -4.41589355e-01 -1.11308944e+00 -6.07530594e-01 -3.40618461e-01 -5.23868978e-01 3.80484760e-01 -1.21188648e-01 -1.17774159e-01 1.23046684e+00 1.43962398e-01 -5.96549511e-01 -1.06809902e+00 -1.00880861e+00 -8.00316870e-01 2.40942881e-01 -5.85936666e-01 7.30031967e-01 7.22675145e-01 -8.17606747e-01 2.10905924e-01 -3.47096801e-01 6.16274327e-02 1.11030078e+00 6.89213216e-01 9.06284869e-01 -1.47546077e+00 1.43485457e-01 -3.83134574e-01 -6.27393126e-01 -1.37438619e+00 4.14920360e-01 -1.11788702e+00 -1.14655562e-01 -1.98688245e+00 2.35879254e-02 -6.44051313e-01 1.99710041e-01 5.85582033e-02 6.68717742e-01 6.99577391e-01 -3.09484690e-01 3.53617966e-01 -5.38573444e-01 9.17330623e-01 1.86218452e+00 -1.99589431e-01 -1.91881750e-02 5.34843169e-02 -1.90150738e-01 8.33772659e-01 5.77553630e-01 -2.09424734e-01 6.38045976e-03 -9.65626299e-01 1.85015763e-03 1.08938320e-02 5.61621964e-01 -7.85205066e-01 -1.98468938e-01 -1.07873250e-02 9.86229658e-01 -1.33405674e+00 7.31462777e-01 -9.83625114e-01 1.47268116e-01 2.77357459e-01 2.71613374e-02 -8.28422084e-02 3.23207021e-01 4.01250303e-01 -1.79780468e-01 -1.04315490e-01 1.02113855e+00 -6.82816803e-01 -8.72254491e-01 8.78332078e-01 -2.07051083e-01 -1.29520938e-01 9.21964347e-01 -5.85249543e-01 2.28967920e-01 -2.35299885e-01 -1.05423796e+00 -1.91115603e-01 6.10350013e-01 8.17748383e-02 1.46894038e+00 -1.65146565e+00 -7.96625674e-01 7.36428022e-01 -2.40531206e-01 5.77150404e-01 3.17700267e-01 4.98879313e-01 -7.87326276e-01 4.67889607e-01 -4.53501701e-01 -1.08930147e+00 -9.19028819e-01 6.26548469e-01 6.01508379e-01 1.62651688e-02 -1.38726556e+00 8.33491385e-01 2.20980853e-01 -7.49754429e-01 3.52193922e-01 -1.09380439e-01 -4.70200069e-02 -5.25144458e-01 4.03673947e-01 2.20432535e-01 2.97521353e-01 -6.97808623e-01 -3.00624400e-01 1.21624148e+00 2.13420317e-01 2.80415297e-01 1.90492094e+00 -1.30396366e-01 -1.18003041e-01 4.33419228e-01 1.43773365e+00 -4.71642733e-01 -1.09898961e+00 -5.32315969e-01 -2.65759408e-01 -8.96221578e-01 4.70239788e-01 -4.91110414e-01 -1.36735523e+00 1.38285911e+00 5.15796363e-01 -7.39731267e-02 8.08544278e-01 5.42641163e-01 1.09343064e+00 3.66260737e-01 7.66321480e-01 -7.20346987e-01 3.85269642e-01 9.99305069e-01 1.24096322e+00 -1.43931770e+00 2.51002192e-01 -4.48042929e-01 1.61604047e-01 1.09079719e+00 3.37626964e-01 -6.94515586e-01 1.32915342e+00 4.31089967e-01 -1.08571388e-01 -8.76840234e-01 -3.53832394e-01 -2.76115268e-01 3.89326006e-01 9.75643694e-01 2.83138722e-01 -1.43910155e-01 3.57702702e-01 1.61740720e-01 -1.15926854e-01 -3.83447334e-02 1.53854266e-01 1.01656103e+00 -3.02241236e-01 -9.64597106e-01 -3.26568574e-01 4.76273775e-01 -8.12487155e-02 4.51423556e-01 -3.71807367e-01 7.63039649e-01 3.79021615e-02 2.57229328e-01 3.27938676e-01 -4.13345009e-01 5.80427527e-01 -2.42206097e-01 1.19084918e+00 -9.35309410e-01 6.71495646e-02 8.41583535e-02 -5.61794117e-02 -6.90465868e-01 -5.21092355e-01 -5.54915726e-01 -1.07257068e+00 -5.35558581e-01 -1.57967731e-01 -2.44108856e-01 7.71760583e-01 8.76081169e-01 2.59032130e-01 1.10286679e-02 8.66758525e-01 -1.73545086e+00 -2.81938493e-01 -6.28205299e-01 -1.04600906e+00 4.06409353e-01 3.95805806e-01 -1.17123175e+00 -4.35748518e-01 -2.26581752e-01]
[8.437551498413086, -3.4756767749786377]
be889c32-d404-4d37-8eeb-cab01f1867f4
coupled-physics-informed-neural-networks-for
2301.08618
null
https://arxiv.org/abs/2301.08618v3
https://arxiv.org/pdf/2301.08618v3.pdf
Solving PDEs with Unmeasurable Source Terms Using Coupled Physics-Informed Neural Network with Recurrent Prediction for Soft Sensors
Partial differential equations (PDEs) are a model candidate for soft sensors in industrial processes with spatiotemporal dependence. Although physics-informed neural networks (PINNs) are a promising machine learning method for solving PDEs, they are infeasible for the nonhomogeneous PDEs with unmeasurable source terms. To this end, a coupled PINN (CPINN) with a recurrent prediction (RP) learning strategy (CPINN- RP) is proposed. First, CPINN composed of NetU and NetG is proposed. NetU is for approximating PDEs solutions and NetG is for regularizing the training of NetU. The two networks are integrated into a data-physics-hybrid loss function. Then, we theoretically prove that the proposed CPINN has a satisfying approximation capability for solutions to nonhomogeneous PDEs with unmeasurable source terms. Besides the theoretical aspects, we propose a hierarchical training strategy to optimize and couple NetU and NetG. Secondly, NetU-RP is proposed for compensating information loss in data sampling to improve the prediction performance, in which RP is the recurrently delayed outputs of well-trained CPINN and hard sensors. Finally, the artificial and practical datasets are used to verify the feasibility and effectiveness of CPINN-RP for soft sensors.
['Xi-Ming Sun', 'Pan Qin', 'Aina Wang']
2023-01-20
null
null
null
null
['sensor-modeling']
['computer-vision']
[-4.26744372e-02 2.26160914e-01 -2.93587483e-02 8.40021006e-04 -3.37122113e-01 4.78793234e-02 8.32192376e-02 -1.29520744e-01 1.90017730e-01 8.44135880e-01 -2.77563959e-01 -1.56694353e-01 -6.25648677e-01 -8.74850035e-01 -9.84368443e-01 -9.36510980e-01 1.83182538e-01 1.98223993e-01 2.22100258e-01 -3.13464962e-02 -4.27707881e-02 5.15155494e-01 -1.16715109e+00 -2.04621702e-01 1.04859984e+00 1.69956028e+00 3.78982186e-01 3.45365345e-01 2.10226059e-01 9.86418843e-01 -5.36378510e-02 4.76942621e-02 4.07624185e-01 -2.25383177e-01 -2.65918583e-01 -2.19429016e-01 -1.15708478e-01 -3.32245193e-02 -6.75800800e-01 1.02079737e+00 6.38187051e-01 5.81947327e-01 7.07189202e-01 -1.04056776e+00 -6.99879527e-01 4.76504862e-01 -3.26769114e-01 -1.33680895e-01 -2.29203761e-01 3.15218329e-01 5.77415824e-01 -7.09797084e-01 2.81374216e-01 1.25232267e+00 1.03856492e+00 4.49160814e-01 -8.37932408e-01 -3.31835806e-01 1.11272775e-01 -1.22828782e-01 -9.70659435e-01 1.94580853e-01 1.11193085e+00 -5.28675139e-01 5.52761734e-01 2.24646941e-01 7.14717031e-01 9.78448212e-01 7.61876464e-01 6.59366488e-01 8.49886179e-01 2.34540001e-01 4.71632779e-01 3.03791374e-01 3.87909263e-01 5.66456974e-01 2.05939710e-01 5.35203815e-01 -2.30018377e-01 -3.63491289e-02 1.35290790e+00 3.31218123e-01 -3.91245812e-01 -3.99953350e-02 -9.33030963e-01 6.56230152e-01 7.28055596e-01 1.88934714e-01 -6.17557764e-01 -8.00038353e-02 4.32313323e-01 2.48053521e-01 5.44413924e-01 7.23241150e-01 -7.11788595e-01 7.50227347e-02 -4.10246491e-01 1.63103208e-01 8.93597603e-01 1.12275004e+00 5.03245890e-01 3.55429739e-01 -3.62778783e-01 7.71568298e-01 2.81492770e-01 6.37064517e-01 5.70771694e-01 -1.14279783e+00 2.21897617e-01 5.59695661e-01 2.28282049e-01 -1.13620532e+00 -3.70284617e-01 -3.78538787e-01 -1.40220630e+00 1.52103081e-01 3.32935415e-02 -5.43668330e-01 -6.81971073e-01 1.51678562e+00 2.92267233e-01 4.59514737e-01 9.30378810e-02 1.02336013e+00 6.36698663e-01 1.29714167e+00 -8.06508660e-02 -5.33501625e-01 1.01548994e+00 -8.89169753e-01 -8.48898232e-01 1.14151552e-01 2.72216499e-01 -2.51096457e-01 1.00057590e+00 4.20584440e-01 -1.24389672e+00 -8.16852987e-01 -7.81792879e-01 9.98513326e-02 -1.19641334e-01 7.59947598e-02 4.21980858e-01 -2.11138815e-01 -5.52005410e-01 1.30681741e+00 -1.04759169e+00 8.13823789e-02 1.42412379e-01 1.23444676e-01 3.38041723e-01 3.54576021e-01 -1.28343058e+00 7.61402667e-01 4.67285067e-01 6.44550622e-01 -7.88777769e-01 -1.26132596e+00 -5.62698543e-01 -1.13368958e-01 2.12207794e-01 -5.49833536e-01 1.02816308e+00 -5.11819065e-01 -2.14088202e+00 5.76611757e-02 2.49209985e-01 -5.04287302e-01 8.01341474e-01 -5.75764216e-02 -2.91307628e-01 6.62684143e-02 -2.19206214e-01 2.11807489e-01 8.24683785e-01 -1.11205840e+00 -3.13208073e-01 -1.70472432e-02 -1.49381638e-01 -5.46298325e-02 -4.09855217e-01 -5.28617799e-01 1.99709967e-01 -7.45902002e-01 3.43837857e-01 -6.83216155e-01 -4.03788894e-01 2.99122930e-01 -6.56740665e-01 -3.30181330e-01 1.14548194e+00 -8.37288022e-01 7.67386317e-01 -2.02664924e+00 2.52697527e-01 1.72667459e-01 1.12257719e-01 5.22812665e-01 1.68158747e-02 2.35477731e-01 6.82916865e-02 -2.87948787e-01 -4.80691522e-01 -1.91517934e-01 1.39798626e-01 3.88153195e-01 -5.18514931e-01 2.09773704e-01 3.73241663e-01 9.26011145e-01 -8.02639127e-01 -3.43104601e-01 4.55279708e-01 4.04804230e-01 -2.97467321e-01 4.12784934e-01 -6.40156329e-01 6.76479459e-01 -7.85126090e-01 6.92933917e-01 8.81059468e-01 -1.61662236e-01 -4.98116344e-01 -4.83587772e-01 -3.96871537e-01 -2.13218406e-01 -1.04480386e+00 1.15361357e+00 -6.15417957e-01 9.22822282e-02 5.25959611e-01 -1.47872305e+00 1.41011608e+00 3.35306048e-01 8.20430160e-01 -6.65855408e-01 4.72916543e-01 5.37044227e-01 -5.59276283e-01 -7.07111835e-01 1.49462685e-01 -4.97344673e-01 2.78131038e-01 -2.05913082e-01 -3.24204415e-02 -4.06392187e-01 -8.54739621e-02 -4.19419438e-01 1.06591570e+00 1.53090149e-01 -2.45646089e-01 -5.53324282e-01 8.25925469e-01 -3.44760448e-01 1.08823442e+00 5.20346940e-01 -1.51149973e-01 4.70763147e-01 4.30389822e-01 -5.04483521e-01 -1.06104374e+00 -1.06118953e+00 -3.89412224e-01 3.02534759e-01 5.69052219e-01 4.01027858e-01 -5.23127556e-01 -3.60371977e-01 2.84242272e-01 4.93578851e-01 -2.36138657e-01 -4.74580705e-01 -6.15254343e-01 -5.81953466e-01 1.36402354e-01 7.08126187e-01 9.01095152e-01 -1.09257960e+00 -4.75624837e-02 5.83406091e-01 2.04606205e-01 -9.75017130e-01 -1.41980305e-01 2.33081430e-01 -9.80671346e-01 -9.15849864e-01 -9.93606329e-01 -7.91828573e-01 5.51447630e-01 -1.31386608e-01 6.92059636e-01 -4.86387670e-01 -4.84408662e-02 4.61651355e-01 -3.32705416e-02 -6.42989397e-01 -2.94014424e-01 -5.38064986e-02 2.09436938e-01 1.36933357e-01 -1.79761946e-01 -1.00971651e+00 -5.62771440e-01 4.16625053e-01 -6.86378002e-01 -6.49919584e-02 7.62180448e-01 7.50900805e-01 9.80711758e-01 2.30849326e-01 5.57192445e-01 -4.47666675e-01 6.30490601e-01 -6.33790016e-01 -1.08995342e+00 1.86940117e-04 -5.72250068e-01 -1.25169694e-01 1.20555162e+00 -8.88545990e-01 -1.21703565e+00 3.70408185e-02 -1.86340004e-01 -1.05964553e+00 2.27023378e-01 5.39073229e-01 -1.30691856e-01 -3.19089234e-01 3.05735260e-01 1.75449237e-01 6.45636842e-02 -5.00328124e-01 -2.84101784e-01 3.20378661e-01 4.58590090e-01 -9.39550996e-01 5.46586573e-01 8.41322616e-02 4.50502753e-01 -1.02150619e+00 -8.95810246e-01 -1.68877080e-01 -1.12507634e-01 -2.26956666e-01 7.14397013e-01 -5.66661358e-01 -1.33278632e+00 8.17912161e-01 -1.38347900e+00 -4.53363866e-01 -9.95424211e-01 7.76262283e-01 -8.47305954e-01 2.39253733e-02 -1.16047859e+00 -1.05979407e+00 -3.46950024e-01 -9.12495732e-01 8.18690598e-01 3.65678966e-01 3.97023201e-01 -1.32278812e+00 -7.47972950e-02 -7.38620386e-02 4.03944552e-01 5.90850711e-01 4.99043673e-01 -2.41452977e-01 -5.51345348e-01 -2.66516775e-01 -3.69394809e-01 9.31834161e-01 -3.21952365e-02 1.99168157e-02 -8.72840166e-01 -1.81501076e-01 8.79172981e-01 -2.28146911e-01 7.76163876e-01 8.90137851e-01 1.31718338e+00 -6.94286644e-01 -3.95616233e-01 5.77299714e-01 1.60088038e+00 4.98321891e-01 3.31528097e-01 -2.07357496e-01 8.25860143e-01 3.65343034e-01 4.17950720e-01 5.74318707e-01 9.10730381e-03 1.90135576e-02 5.48282146e-01 -1.53221190e-01 3.79019201e-01 -2.00825796e-01 5.17855883e-01 1.38415706e+00 -1.64162725e-01 -2.24816471e-01 -4.15990800e-01 2.41549477e-01 -2.00754237e+00 -5.53256154e-01 -4.36336190e-01 1.86766076e+00 7.28401780e-01 8.03542361e-02 -3.71997744e-01 4.79215048e-02 8.15875113e-01 2.06887498e-02 -1.15275502e+00 -3.61459047e-01 -1.70431986e-01 7.75836408e-02 4.73939836e-01 4.75344300e-01 -1.04640663e+00 1.70604810e-01 5.03420877e+00 7.57965744e-01 -1.35940373e+00 1.40891701e-01 5.76865554e-01 3.08927387e-01 -4.84991930e-02 -3.35309327e-01 -7.84908652e-01 9.75969672e-01 7.66983151e-01 -1.87801365e-02 3.94924939e-01 9.26638246e-01 4.76360828e-01 1.11425020e-01 -9.66293395e-01 7.10804760e-01 -4.89917099e-01 -1.27329004e+00 8.13931152e-02 -1.12978898e-01 1.04118979e+00 -1.91297799e-01 1.14726380e-01 1.35533169e-01 2.51656681e-01 -5.12601554e-01 6.75784230e-01 1.33075893e+00 2.87132293e-01 -4.22364831e-01 8.83172631e-01 4.24099565e-01 -1.24112046e+00 -4.05217767e-01 -8.35075140e-01 -9.64397937e-02 2.71305412e-01 1.22892261e+00 -7.27935880e-03 9.30026174e-01 4.09212112e-01 1.19103694e+00 2.91861743e-01 9.32650805e-01 -7.51348287e-02 5.52828789e-01 -5.28716683e-01 -2.80707538e-01 3.03927422e-01 -6.21108711e-01 9.30058599e-01 7.73686767e-01 8.02873790e-01 3.07747215e-01 4.07261699e-01 1.43040240e+00 1.63187340e-01 -2.84274757e-01 -5.04281402e-01 -1.04602367e-01 4.23960686e-01 1.11336672e+00 -2.08343640e-01 -9.49690565e-02 -7.00342050e-03 5.44490218e-01 1.48563273e-02 5.71284413e-01 -8.62190425e-01 -5.57305098e-01 6.61197305e-01 1.62393585e-01 7.74833113e-02 -1.14964068e-01 -3.32918584e-01 -9.43203807e-01 3.17028344e-01 -8.94203484e-02 2.07758397e-01 -8.74903917e-01 -1.92606151e+00 2.57232070e-01 -2.87502199e-01 -1.49474502e+00 2.32813731e-01 -9.80550826e-01 -8.99654150e-01 8.73803258e-01 -1.57627583e+00 -8.98418963e-01 -3.44957411e-01 4.87709194e-01 2.04269186e-01 7.10029304e-02 4.24572498e-01 2.38432318e-01 -8.48643780e-01 9.64009464e-02 4.14781690e-01 -2.39833906e-01 4.86860014e-02 -1.03645420e+00 -2.61620909e-01 6.30078256e-01 -1.05299950e+00 3.51434797e-01 7.78258443e-01 -7.63417721e-01 -1.61413693e+00 -1.50253975e+00 2.69566000e-01 1.61639199e-01 8.86117160e-01 -9.94368270e-03 -1.16756523e+00 5.66975355e-01 -1.59476355e-01 4.56405938e-01 -2.95614749e-01 -6.35073066e-01 3.55171591e-01 -5.55160165e-01 -1.47229123e+00 1.25515312e-01 7.10676372e-01 -1.85230717e-01 -3.32976043e-01 6.83048606e-01 1.04662943e+00 -6.55135989e-01 -1.38741910e+00 7.72837222e-01 2.23320037e-01 -4.77683485e-01 9.14885402e-01 -2.60732263e-01 9.12254930e-01 -1.23133808e-01 6.36169463e-02 -1.26575530e+00 -3.04436058e-01 -9.29475904e-01 -5.03585398e-01 1.35445440e+00 2.53905319e-02 -1.17300940e+00 7.03514040e-01 6.40628755e-01 -6.70462787e-01 -1.15601325e+00 -8.78985465e-01 -1.29736495e+00 3.02121758e-01 -1.74421608e-01 4.06627566e-01 8.60650599e-01 1.28711965e-02 -8.94773975e-02 -1.72745585e-01 4.34566855e-01 6.53554022e-01 -1.24389485e-01 1.09335855e-01 -1.51210845e+00 -2.21462443e-01 -3.37844700e-01 -1.65768877e-01 -1.31966245e+00 1.43369883e-01 -6.08205557e-01 4.13584292e-01 -1.54605806e+00 -4.07306761e-01 -7.94171572e-01 -4.88811493e-01 -3.56854424e-02 2.12764174e-01 -4.50199127e-01 -1.80980079e-02 1.44910917e-01 -6.38710037e-02 9.46333706e-01 1.98804665e+00 -3.96707207e-01 -4.50449467e-01 3.94844741e-01 -7.14265630e-02 6.85964525e-01 7.90273249e-01 -1.16009653e-01 -6.59312010e-01 -2.93581188e-02 -9.88360718e-02 5.32412112e-01 5.46863139e-01 -1.40297830e+00 4.43325251e-01 -3.50485116e-01 1.18420810e-01 -7.01979935e-01 4.70755279e-01 -8.72178257e-01 8.87043998e-02 5.66138029e-01 -2.94644296e-01 -4.36651081e-01 1.38619572e-01 5.93988836e-01 -3.23719889e-01 -1.89372122e-01 1.04349566e+00 -2.80322164e-01 -2.30461080e-02 9.00636375e-01 -2.01362282e-01 4.68303524e-02 9.62423384e-01 7.19942292e-03 -1.04184255e-01 5.84534667e-02 -6.76899493e-01 5.08165538e-01 -1.65476397e-01 -6.85407370e-02 5.71477532e-01 -1.45962059e+00 -2.48146370e-01 2.94645816e-01 -5.15402794e-01 5.82109869e-01 4.74571854e-01 9.45310771e-01 -2.51272649e-01 3.67073029e-01 -1.71341989e-02 -5.05483389e-01 -2.46503845e-01 6.58115208e-01 8.13401818e-01 -4.11786258e-01 -7.17833579e-01 8.41285348e-01 9.96244252e-02 -8.80423188e-01 4.11629111e-01 -1.06659186e+00 2.38454118e-01 -1.70837402e-01 5.61834909e-02 9.05721426e-01 3.96432281e-02 2.88206935e-02 2.33465642e-01 5.50320625e-01 3.10523838e-01 2.57240444e-01 1.53418612e+00 7.67405927e-02 -2.82156080e-01 6.96132600e-01 1.23089874e+00 -6.88513398e-01 -1.92793190e+00 -2.70546883e-01 -4.31317359e-01 2.35849947e-01 1.39387935e-01 -5.55892467e-01 -1.45635557e+00 9.38274682e-01 3.14245433e-01 6.28866911e-01 9.29382682e-01 -3.57830435e-01 1.49699318e+00 5.56239724e-01 1.55473441e-01 -1.14403248e+00 1.30080089e-01 8.50432634e-01 1.01599038e+00 -6.37752473e-01 -2.56856918e-01 -4.69994932e-01 -2.88832247e-01 1.31511068e+00 7.64205039e-01 -5.59248924e-01 1.14798737e+00 3.99250209e-01 -4.97254610e-01 -3.08261383e-02 -4.65328187e-01 3.83717269e-01 -1.12120844e-02 4.19054180e-01 -1.57568723e-01 -5.32511547e-02 -3.97072941e-01 9.29493606e-01 1.04205608e-01 3.18140537e-01 1.18300311e-01 9.39160049e-01 -2.49102518e-01 -4.35534179e-01 -1.43708974e-01 5.76387107e-01 4.10664268e-02 4.04991299e-01 1.27547339e-01 4.00419295e-01 1.86163127e-01 5.69881499e-01 -4.74918960e-03 -5.00784338e-01 6.65264904e-01 -3.06485504e-01 1.18463613e-01 -1.31746307e-01 -3.36917728e-01 -1.96781129e-01 -5.00789285e-01 -5.95973849e-01 -1.37142628e-01 -5.32835841e-01 -1.38314223e+00 -2.85906792e-01 -2.21782163e-01 2.30526060e-01 4.21610922e-01 9.51814413e-01 3.72246087e-01 9.31044996e-01 9.52016890e-01 -1.11799347e+00 -9.90149081e-01 -8.87619436e-01 -9.91633117e-01 -1.14532866e-01 5.23727775e-01 -7.49936223e-01 -6.23533607e-01 -1.37739316e-01]
[6.619194507598877, 3.5012874603271484]
db717a1c-cab6-40cd-9d70-c0488cf74919
localization-of-deep-inpainting-using-high
null
null
http://openaccess.thecvf.com/content_ICCV_2019/html/Li_Localization_of_Deep_Inpainting_Using_High-Pass_Fully_Convolutional_Network_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Li_Localization_of_Deep_Inpainting_Using_High-Pass_Fully_Convolutional_Network_ICCV_2019_paper.pdf
Localization of Deep Inpainting Using High-Pass Fully Convolutional Network
Image inpainting has been substantially improved with deep learning in the past years. Deep inpainting can fill image regions with plausible contents, which are not visually apparent. Although inpainting is originally designed to repair images, it can even be used for malicious manipulations, e.g., removal of specific objects. Therefore, it is necessary to identify the presence of inpainting in an image. This paper presents a method to locate the regions manipulated by deep inpainting. The proposed method employs a fully convolutional network that is based on high-pass filtered image residuals. Firstly, we analyze and observe that the inpainted regions are more distinguishable from the untouched ones in the residual domain. Hence, a high-pass pre-filtering module is designed to get image residuals for enhancing inpainting traces. Then, a feature extraction module, which learns discriminative features from image residuals, is built with four concatenated ResNet blocks. The learned feature maps are finally enlarged by an up-sampling module, so that a pixel-wise inpainting localization map is obtained. The whole network is trained end-to-end with a loss addressing the class imbalance. Extensive experimental results evaluated on both synthetic and realistic images subjected to deep inpainting have shown the effectiveness of the proposed method.
[' Jiwu Huang', 'Haodong Li']
2019-10-01
null
null
null
iccv-2019-10
['image-manipulation-detection']
['computer-vision']
[ 5.94706595e-01 3.34118456e-02 1.52453342e-02 -8.72203484e-02 -5.61281025e-01 -2.96691898e-02 2.64922112e-01 -2.46240478e-02 -1.43720314e-01 7.31291234e-01 8.76154304e-02 1.24972060e-01 2.85998642e-01 -8.30696642e-01 -1.07692885e+00 -9.77980852e-01 2.14364961e-01 -3.01262736e-01 6.04097843e-02 -1.13282464e-01 4.06422287e-01 5.22278666e-01 -1.28937018e+00 4.04750735e-01 9.23183680e-01 1.06772125e+00 4.48388845e-01 3.79252434e-01 -4.52204980e-02 1.14756680e+00 -7.81553626e-01 -1.76863328e-01 4.24664170e-01 -5.65086246e-01 -4.30161506e-01 5.82760513e-01 4.49856520e-01 -7.17967629e-01 -8.54460418e-01 1.27755868e+00 2.93487579e-01 2.03027297e-02 3.13794553e-01 -9.61675763e-01 -8.13748658e-01 3.07243645e-01 -1.04557633e+00 2.62631387e-01 2.06896856e-01 4.22464788e-01 4.69824910e-01 -9.62907314e-01 5.70178270e-01 1.38164985e+00 5.43795288e-01 3.10328633e-01 -1.12234890e+00 -7.11063623e-01 -2.16848314e-01 3.31943184e-01 -1.14065564e+00 -1.99233204e-01 1.37883377e+00 -1.79599449e-01 3.24160576e-01 3.08672577e-01 4.94488657e-01 7.86600590e-01 4.20516491e-01 8.63116682e-01 1.12796724e+00 -4.25213933e-01 -8.42879936e-02 5.15132844e-02 -3.42087388e-01 5.96643209e-01 -8.02275445e-03 1.35221034e-01 -3.29141170e-01 2.21023545e-01 9.11432385e-01 5.77700317e-01 -6.71706736e-01 -7.27863610e-02 -9.47849572e-01 6.14732265e-01 9.54718053e-01 2.55418628e-01 -6.75570071e-01 9.87931862e-02 4.72321838e-01 2.84799546e-01 6.61896706e-01 2.67523378e-01 -1.27587765e-01 3.49261582e-01 -1.24609911e+00 1.30516559e-01 9.40104574e-02 5.76985896e-01 1.06368339e+00 2.35524371e-01 -3.36780220e-01 9.77553070e-01 -1.02950670e-01 1.64395720e-01 5.97056627e-01 -7.87441432e-01 5.43985844e-01 7.34488904e-01 1.12699814e-01 -1.42946875e+00 -4.61183414e-02 -5.57386935e-01 -1.32414472e+00 4.65338737e-01 6.02680147e-02 3.82050662e-03 -9.73875821e-01 1.32172549e+00 3.52522343e-01 3.62563223e-01 -3.07448879e-02 9.95228410e-01 5.75554013e-01 9.32527602e-01 -9.24315006e-02 -2.38609597e-01 1.26632071e+00 -1.22688365e+00 -8.80415738e-01 -3.82347584e-01 1.18070625e-01 -8.13579440e-01 9.91473973e-01 3.89933586e-01 -1.20653784e+00 -8.34762335e-01 -1.10096514e+00 -2.58248866e-01 -1.08869448e-01 1.67751402e-01 2.02897057e-01 2.24136621e-01 -7.34738171e-01 8.28384161e-01 -4.68492508e-01 -3.14944647e-02 7.46782243e-01 -2.41565835e-02 -5.43483257e-01 -1.96619749e-01 -1.11932051e+00 8.16688418e-01 6.06397927e-01 3.46921325e-01 -9.19988811e-01 -6.21682107e-01 -1.00580060e+00 2.37590328e-01 2.21607015e-01 -2.35440463e-01 7.59775877e-01 -1.39940012e+00 -1.13271475e+00 7.23283350e-01 2.13773996e-02 -5.79868674e-01 7.78348863e-01 -1.03982955e-01 -3.76273185e-01 4.92501944e-01 2.05469057e-01 6.15432382e-01 1.50215948e+00 -1.44654953e+00 -6.74697638e-01 -2.29902655e-01 -2.01264918e-01 2.14567065e-01 -3.18564117e-01 2.42461134e-02 -5.44827521e-01 -1.28550291e+00 7.16127222e-03 -4.81323093e-01 -1.50549039e-01 1.42841965e-01 -4.69373763e-01 3.11752886e-01 1.33070338e+00 -1.33978271e+00 1.07323074e+00 -2.38606143e+00 -6.53417408e-02 7.97881782e-02 3.13997686e-01 4.28122848e-01 -2.38088995e-01 3.92755538e-01 -3.66479099e-01 -1.21528372e-01 -6.16802931e-01 -3.56954813e-01 -5.24983287e-01 2.55316813e-02 -6.88960552e-01 7.91057587e-01 5.94398975e-01 8.10761452e-01 -6.25803590e-01 -4.53901380e-01 5.76215625e-01 5.01037538e-01 -3.50962937e-01 3.39584649e-01 -1.08368494e-01 6.18072927e-01 -1.51789576e-01 6.48290157e-01 1.18573654e+00 4.97507080e-02 -3.45569819e-01 -2.83496231e-01 -8.29678774e-02 -2.04304114e-01 -8.20059299e-01 1.56650925e+00 -5.50119758e-01 7.85142601e-01 1.22945726e-01 -1.02253008e+00 9.60371017e-01 -1.76447406e-02 3.71998280e-01 -9.42846775e-01 2.44269475e-01 1.13321580e-01 -2.04116553e-01 -7.31733024e-01 5.75962663e-01 -1.81899332e-02 5.23893610e-02 2.60551989e-01 -2.22594067e-01 -7.40984902e-02 1.33364722e-01 9.21359733e-02 8.48688722e-01 -6.10504821e-02 -1.44226896e-02 1.41297147e-01 7.31215060e-01 -2.45880157e-01 5.45264781e-01 3.97352308e-01 -4.94530760e-02 1.06202793e+00 4.36809689e-01 -6.49985790e-01 -1.16538179e+00 -7.30756640e-01 -8.25519636e-02 5.71921229e-01 6.27098918e-01 3.67725790e-02 -9.07232940e-01 -6.12473726e-01 -6.91552088e-02 5.28426528e-01 -8.45548153e-01 -5.37813306e-01 -7.26232350e-01 -4.27910060e-01 2.98918247e-01 2.92665482e-01 1.09013009e+00 -1.62812233e+00 -7.02757597e-01 3.46569389e-01 -3.22408378e-01 -9.71732914e-01 -5.63050091e-01 -3.17634493e-02 -7.90911376e-01 -9.61663961e-01 -1.05191374e+00 -1.09761846e+00 9.83649909e-01 4.81133789e-01 6.44679666e-01 3.63083661e-01 -5.35535812e-01 -3.50098521e-01 -3.05206418e-01 1.88668519e-02 -5.34903646e-01 -3.48341733e-01 -4.02738571e-01 3.99843097e-01 -1.29487202e-01 -6.61500514e-01 -9.73393857e-01 7.96603784e-02 -1.38290393e+00 1.31186202e-01 1.04163480e+00 1.15183699e+00 5.31486452e-01 5.61830699e-01 5.52206933e-01 -8.25053215e-01 5.22641242e-01 -2.81837344e-01 -3.11426759e-01 3.86012197e-02 -2.15563789e-01 -3.83727029e-02 9.64391291e-01 -4.20799226e-01 -1.16305685e+00 -6.01183400e-02 -1.60357937e-01 -8.06988299e-01 -1.48947924e-01 2.42517233e-01 -2.29784518e-01 -1.71664864e-01 3.77513677e-01 6.33132398e-01 1.45756111e-01 -4.22994196e-01 2.89365530e-01 6.70564055e-01 7.63016045e-01 -2.68217381e-02 1.06457436e+00 5.33031642e-01 -2.11938724e-01 -7.26664662e-01 -5.08753061e-01 -1.19057767e-01 -1.33556664e-01 -3.53373647e-01 7.23067582e-01 -8.94098759e-01 -2.79691041e-01 8.23491931e-01 -1.15634382e+00 -2.07443729e-01 -3.14525694e-01 2.99518406e-02 -4.34954822e-01 7.22039938e-01 -7.56557763e-01 -4.00027782e-01 -5.80893338e-01 -1.12671721e+00 1.06734252e+00 5.93924165e-01 1.19796865e-01 -5.66888690e-01 -3.28264654e-01 3.68835121e-01 3.42650294e-01 3.99964541e-01 9.11502004e-01 -1.05439082e-01 -6.11300111e-01 -3.14236522e-01 -5.14848173e-01 7.21114099e-01 3.05703670e-01 -2.37642094e-01 -8.84804785e-01 -4.58390802e-01 3.18633050e-01 -3.37804109e-01 1.06384194e+00 2.65238702e-01 1.66400242e+00 -4.22992945e-01 -2.63674706e-01 7.51233518e-01 1.49166417e+00 2.30411991e-01 1.34567940e+00 4.06896114e-01 7.82977283e-01 4.34202760e-01 7.79297292e-01 3.02531123e-01 -3.07586432e-01 3.12303036e-01 7.62879908e-01 -6.62854135e-01 -4.46861804e-01 -3.49052459e-01 2.63374388e-01 2.80191332e-01 3.15115184e-01 -8.56921822e-02 -3.28007519e-01 5.88643312e-01 -1.53398705e+00 -9.81516838e-01 6.65968880e-02 2.03265595e+00 1.01657665e+00 1.89135224e-01 -3.07059944e-01 2.93866634e-01 1.03081441e+00 4.38398361e-01 -7.28849947e-01 -2.07624450e-01 -2.04134345e-01 4.16167885e-01 4.97284859e-01 3.75865847e-01 -1.11909544e+00 8.85328352e-01 4.45228529e+00 1.27288377e+00 -1.44100308e+00 -1.06542692e-01 1.04413879e+00 2.24620700e-01 -2.25183833e-02 -6.71572089e-02 -1.28445327e-01 9.19853032e-01 1.52300686e-01 1.90645874e-01 3.85355026e-01 7.66131341e-01 3.79084170e-01 -2.66016603e-01 -5.02105355e-01 1.10381830e+00 2.70306587e-01 -1.39111567e+00 1.05178408e-01 -2.16975003e-01 8.19885850e-01 -4.50264782e-01 2.95909256e-01 1.24057755e-01 -3.16107124e-01 -8.87965083e-01 8.19816172e-01 4.60705370e-01 9.00384009e-01 -1.24143243e+00 6.75351322e-01 2.86661565e-01 -8.16960871e-01 -3.37278038e-01 -5.38381696e-01 4.62172404e-02 1.02096153e-02 9.05834615e-01 -6.42115355e-01 4.99721855e-01 7.15130746e-01 8.57574522e-01 -6.87656939e-01 1.18165338e+00 -3.39418232e-01 3.92849743e-01 1.35121211e-01 5.63240707e-01 1.15636662e-01 -3.29432517e-01 4.66751188e-01 1.03639233e+00 4.21156794e-01 -1.50460169e-01 -2.12847322e-01 9.56455946e-01 -4.10913944e-01 -7.08102137e-02 -5.57240725e-01 2.26098672e-01 2.61786252e-01 1.47878635e+00 -7.60122955e-01 -3.58346552e-01 -1.82457760e-01 1.51753592e+00 1.94235191e-01 3.84451240e-01 -1.01524353e+00 -9.02283132e-01 4.05395985e-01 2.29119167e-01 5.46104610e-01 2.33840793e-01 -1.51225269e-01 -1.05541670e+00 2.37966001e-01 -9.34020638e-01 -3.45231406e-02 -1.00904202e+00 -1.06034160e+00 5.56305289e-01 -4.81517643e-01 -1.48101556e+00 3.67317051e-02 -1.53766364e-01 -8.78643334e-01 1.02795064e+00 -1.58055496e+00 -1.02873790e+00 -7.11355984e-01 4.98830885e-01 8.62218797e-01 5.72583228e-02 2.30143279e-01 4.93312448e-01 -7.61745811e-01 5.42777479e-01 1.06098764e-01 2.57366568e-01 7.28386700e-01 -7.82283843e-01 1.98325992e-01 1.31620967e+00 -3.41049492e-01 3.96275699e-01 7.80091584e-01 -7.24228501e-01 -1.05544186e+00 -1.65444338e+00 4.22875375e-01 4.19726014e-01 1.39575899e-01 -2.11767182e-01 -1.18768847e+00 5.05080283e-01 6.19227529e-01 2.69367397e-01 -1.58860087e-01 -9.73323464e-01 -1.63491637e-01 -2.71518528e-01 -1.41022992e+00 5.56470454e-01 4.56970215e-01 -4.30536121e-01 -5.09638906e-01 1.90363929e-01 6.39856339e-01 -4.03087229e-01 -4.73964036e-01 4.01562780e-01 2.04656094e-01 -1.14608359e+00 1.03323245e+00 -1.56974997e-02 9.93421257e-01 -4.94922191e-01 3.76915604e-01 -1.39784098e+00 -2.49473229e-01 -6.03916585e-01 2.06295699e-02 1.35400522e+00 -1.88019708e-01 -4.89127815e-01 7.78364241e-01 8.89250487e-02 -2.74702549e-01 -7.40679562e-01 -6.41020000e-01 -4.05517995e-01 -2.21735626e-01 6.82808533e-02 4.97889847e-01 9.11149561e-01 -3.93085152e-01 -4.81548198e-02 -6.84631705e-01 1.57613099e-01 6.54445887e-01 1.72321498e-01 7.08246589e-01 -5.81515789e-01 -1.34072363e-01 -2.68964767e-01 -3.80203784e-01 -1.05611360e+00 1.16551720e-01 -5.85117459e-01 7.01756850e-02 -1.36133873e+00 2.00650632e-01 -2.29947984e-01 -1.96048528e-01 4.28228140e-01 -5.51137745e-01 6.59476936e-01 4.72393855e-02 2.67520159e-01 -1.25619456e-01 7.71253169e-01 1.52760911e+00 -4.57158118e-01 -2.63001285e-02 -2.22530439e-01 -6.71140492e-01 6.24635756e-01 1.01082313e+00 -5.20164073e-01 -2.44379640e-01 -2.01689929e-01 -2.31477171e-01 1.47662669e-01 7.14065552e-01 -1.22064567e+00 -6.69670850e-02 6.31434768e-02 8.94932032e-01 -7.94597268e-01 1.96153358e-01 -9.02445555e-01 2.67158728e-02 6.99658394e-01 -2.90957451e-01 -1.40228704e-01 2.60864258e-01 5.53618014e-01 -6.25259459e-01 -2.54229546e-01 1.18180025e+00 -1.12545170e-01 -7.52848506e-01 2.11581483e-01 -1.56257361e-01 -1.97025448e-01 1.26910639e+00 -3.44313681e-01 -1.67905271e-01 -3.74929935e-01 -3.04732978e-01 -6.97811991e-02 5.72828293e-01 3.02453727e-01 1.04367936e+00 -1.28755772e+00 -6.77367866e-01 5.47626436e-01 -4.59520370e-02 2.30395243e-01 8.17967713e-01 6.98781669e-01 -9.90102172e-01 -1.82650879e-01 -5.44858277e-01 -3.73000890e-01 -1.15476537e+00 9.70243752e-01 1.88759699e-01 -2.45432898e-01 -9.05046046e-01 6.32670403e-01 3.91797721e-01 1.22865126e-01 2.11475298e-01 -3.23812246e-01 -1.34933963e-01 1.95889194e-02 7.68465459e-01 1.92944124e-01 -2.71705836e-02 -6.22989595e-01 4.04464081e-02 4.22661185e-01 -3.53450388e-01 2.27931485e-01 1.36117637e+00 -2.86374927e-01 -4.12517756e-01 -2.25718871e-01 1.40192711e+00 6.68080747e-02 -1.67793965e+00 -2.03842372e-01 -4.04726386e-01 -8.66419196e-01 7.47480690e-02 -4.41347778e-01 -1.76533937e+00 8.97321999e-01 6.53107524e-01 1.84954286e-01 1.61954296e+00 -3.89956474e-01 1.29523981e+00 -2.45646119e-01 -1.65118985e-02 -8.05667818e-01 3.04976612e-01 3.64012737e-03 1.14395440e+00 -1.03112519e+00 1.45372711e-02 -2.81836301e-01 -4.89663452e-01 1.07422757e+00 6.37282610e-01 -5.97123206e-01 2.02404425e-01 1.85908064e-01 -1.74885876e-02 9.63854045e-02 -2.06431001e-01 1.44043744e-01 -5.82348220e-02 5.08502424e-01 -9.38725397e-02 -2.24661365e-01 -3.13812733e-01 2.52529651e-01 7.16009364e-02 -3.19004729e-02 6.78605080e-01 8.07293355e-01 -4.18492854e-01 -7.59726048e-01 -7.03437209e-01 3.63082767e-01 -4.45452720e-01 -1.24597766e-01 -1.48869082e-01 6.34913385e-01 4.29471284e-01 8.53046358e-01 7.20098764e-02 -3.46777827e-01 1.30215585e-01 -4.03835922e-01 3.02258313e-01 -2.32469022e-01 -5.57611585e-01 3.52983773e-02 -4.83288318e-01 -5.47263265e-01 -1.32746994e-01 -2.18553364e-01 -1.20309234e+00 -7.81538486e-02 -2.37629592e-01 -1.64042577e-01 4.00789559e-01 5.17995954e-01 2.57009208e-01 8.36834729e-01 9.66956139e-01 -1.14075398e+00 -3.21897835e-01 -9.57370460e-01 -6.28700435e-01 7.75336385e-01 6.74250960e-01 -3.93049508e-01 -5.75772703e-01 2.37150759e-01]
[11.4028902053833, -1.2865592241287231]
0bb366e0-948f-4316-b09f-7bce9bd99afc
embedded-deep-regularized-block-hsic
2106.02106
null
https://arxiv.org/abs/2106.02106v1
https://arxiv.org/pdf/2106.02106v1.pdf
Embedded Deep Regularized Block HSIC Thermomics for Early Diagnosis of Breast Cancer
Thermography has been used extensively as a complementary diagnostic tool in breast cancer detection. Among thermographic methods matrix factorization (MF) techniques show an unequivocal capability to detect thermal patterns corresponding to vasodilation in cancer cases. One of the biggest challenges in such techniques is selecting the best representation of the thermal basis. In this study, an embedding method is proposed to address this problem and Deep-semi-nonnegative matrix factorization (Deep-SemiNMF) for thermography is introduced, then tested for 208 breast cancer screening cases. First, we apply Deep-SemiNMF to infrared images to extract low-rank thermal representations for each case. Then, we embed low-rank bases to obtain one basis for each patient. After that, we extract 300 thermal imaging features, called thermomics, to decode imaging information for the automatic diagnostic model. We reduced the dimensionality of thermomics by spanning them onto Hilbert space using RBF kernel and select the three most efficient features using the block Hilbert Schmidt Independence Criterion Lasso (block HSIC Lasso). The preserved thermal heterogeneity successfully classified asymptomatic versus symptomatic patients applying a random forest model (cross-validated accuracy of 71.36% (69.42%-73.3%)).
['Xavier P. V. Maldague', 'Hossein Memarzadeh Sharifipour', 'Bardia Yousefi']
2021-06-03
null
null
null
null
['breast-cancer-detection', 'breast-cancer-detection']
['knowledge-base', 'medical']
[ 2.95231849e-01 -1.38319820e-01 -4.04258966e-01 -1.95911750e-01 -8.17283511e-01 -4.03444409e-01 7.22247139e-02 -3.42748135e-01 -2.37529054e-01 3.48050654e-01 4.92410213e-01 -2.93265879e-01 -3.68529975e-01 -5.05546868e-01 -7.76295364e-02 -1.44789839e+00 -2.28089824e-01 2.43576363e-01 -5.82229555e-01 -1.65910646e-02 1.69684365e-01 3.12600672e-01 -1.21810615e+00 6.84859753e-01 1.32354021e+00 8.28465879e-01 -2.90753804e-02 7.86416590e-01 1.02504916e-01 6.08895183e-01 -1.04581296e-01 -5.86248524e-02 1.71516776e-01 -5.66172302e-01 -6.87348008e-01 -1.75853059e-01 5.97578175e-02 -2.46802390e-01 -2.88277179e-01 6.82674170e-01 5.85956454e-01 3.34944278e-02 1.09303510e+00 -8.24107528e-01 -6.22688770e-01 2.83948660e-01 -8.47320497e-01 6.89283088e-02 1.13219477e-01 -3.63253653e-01 6.43503964e-01 -6.78847790e-01 6.05027378e-01 9.22824979e-01 5.50797641e-01 7.05554366e-01 -1.45113516e+00 -4.39090669e-01 -6.84009552e-01 4.28063065e-01 -9.97257531e-01 -3.59230548e-01 8.55407059e-01 -7.10272133e-01 4.72589344e-01 1.07789814e+00 9.48717654e-01 1.23649263e+00 8.94129992e-01 6.27972484e-01 1.64510787e+00 -3.85083765e-01 1.61430031e-01 7.92103782e-02 1.93200469e-01 8.36237609e-01 1.64380953e-01 3.43563378e-01 -4.33971792e-01 -6.99196935e-01 5.20133257e-01 1.08210549e-01 -2.69446880e-01 -1.53794363e-01 -1.37641382e+00 8.64384115e-01 3.36555123e-01 6.18830562e-01 -4.35087144e-01 4.19342145e-02 5.20997345e-01 6.86067119e-02 5.04041731e-01 3.62542421e-01 7.41559118e-02 7.76910484e-02 -8.82736981e-01 -4.60093141e-01 4.36438203e-01 -3.73297632e-02 4.68001455e-01 -1.02275074e-01 -2.79405028e-01 8.40687394e-01 2.40138501e-01 9.63403404e-01 9.47355747e-01 -9.81742382e-01 1.64110307e-02 7.39270091e-01 -3.09466392e-01 -1.20321727e+00 -7.03962266e-01 -4.81041342e-01 -1.75838542e+00 -3.07403743e-01 -7.30382800e-02 2.93070953e-02 -8.55811059e-01 1.30902767e+00 4.46733356e-01 2.06159770e-01 1.34049818e-01 1.13877726e+00 7.10975230e-01 5.43880820e-01 -1.87651083e-01 -4.94781613e-01 1.56436384e+00 -5.15128434e-01 -6.21709883e-01 6.20074617e-03 1.04937303e+00 -6.30809128e-01 5.59500635e-01 4.22198832e-01 -1.02757037e-01 -1.87538713e-01 -8.10666621e-01 5.13470545e-02 1.09464355e-01 8.03669572e-01 1.07288039e+00 1.03892875e+00 -8.81838024e-01 4.65399951e-01 -1.24993193e+00 -2.57939577e-01 9.29754972e-03 2.50274748e-01 -6.94028735e-01 -2.28603855e-01 -1.26728952e+00 6.39274180e-01 7.53418356e-02 7.43219435e-01 -6.78681791e-01 -5.79034030e-01 -8.94128680e-01 -5.60263157e-01 -1.74294218e-01 -9.50235426e-01 3.35932195e-01 -8.39489162e-01 -1.52587628e+00 8.78531992e-01 -3.85169029e-01 -3.55291851e-02 4.40482795e-01 -7.38550872e-02 -3.07671785e-01 5.89868486e-01 2.50871241e-01 1.73815936e-01 1.17983174e+00 -8.96976590e-01 1.33766085e-01 -6.66096568e-01 -5.34953237e-01 3.44032720e-02 -8.17976892e-01 -2.35149458e-01 -5.84098287e-02 -6.35059416e-01 8.80427182e-01 -1.37973559e+00 -5.80461562e-01 -2.91219264e-01 -5.16029418e-01 1.14742786e-01 4.72763002e-01 -1.15731096e+00 1.28426766e+00 -2.07179260e+00 6.05264366e-01 4.68700200e-01 4.26196873e-01 -2.19272673e-01 7.53276870e-02 2.49151990e-01 -4.32204664e-01 1.59467623e-01 -3.76298904e-01 -4.56153341e-02 -4.68311161e-01 1.44561768e-01 1.15945209e-02 9.69641626e-01 -5.55019826e-02 8.69250059e-01 -8.07329535e-01 -7.42866874e-01 5.47239304e-01 6.04311049e-01 -4.29486871e-01 -8.21413398e-02 5.50539553e-01 8.47329319e-01 -7.26777673e-01 6.71334565e-01 6.56912565e-01 -1.53312609e-01 2.84788191e-01 -8.05159390e-01 5.85442968e-02 -5.45088887e-01 -7.16696918e-01 1.74579823e+00 -4.82089192e-01 4.00987417e-01 7.10640997e-02 -1.02179289e+00 9.57426846e-01 3.81640524e-01 1.43485045e+00 -6.12926006e-01 9.91792828e-02 3.63144487e-01 1.71329863e-02 -8.64606202e-01 2.65365660e-01 -3.91099215e-01 -8.39877725e-02 5.76424241e-01 -3.74034941e-01 2.80188054e-01 -1.36401847e-01 2.37173438e-01 1.08754337e+00 -1.60984188e-01 5.59426956e-02 -4.67066526e-01 8.18268538e-01 1.69047508e-02 5.33144712e-01 4.26976740e-01 -2.79040784e-01 6.17699087e-01 6.55305326e-01 -5.54948986e-01 -6.45532906e-01 -5.59196949e-01 -3.89847726e-01 7.08969533e-01 -1.11757576e-01 -4.13249612e-01 -4.38120723e-01 -4.77589935e-01 3.45822163e-02 1.74378932e-01 -1.26690137e+00 -4.20751750e-01 -4.70749021e-01 -1.40755904e+00 4.73472267e-01 2.73888290e-01 2.63305902e-01 -4.92743909e-01 -6.23077512e-01 -1.76538616e-01 -5.55495203e-01 -5.41139960e-01 -1.70664921e-01 3.24985683e-01 -1.06140089e+00 -1.09644592e+00 -9.24546659e-01 -3.03802758e-01 9.76035714e-01 2.98403859e-01 4.01866615e-01 -2.20257536e-01 -9.99678314e-01 2.76442468e-01 -3.93201411e-01 3.69343460e-01 -4.24866736e-01 -1.24387488e-01 1.14377208e-01 4.32512909e-01 -1.10238642e-01 -1.36398673e-01 -9.95194793e-01 3.71482730e-01 -8.75658393e-01 2.47505248e-01 9.02627051e-01 1.14645851e+00 6.36934340e-01 -1.58271402e-01 -1.22264490e-01 -7.98081160e-01 4.01197374e-01 -3.50568026e-01 2.00354848e-02 4.16712910e-01 -3.89198422e-01 3.30441356e-01 3.75639737e-01 -2.50698715e-01 -8.90150547e-01 2.43541256e-01 2.10399196e-01 -5.96266448e-01 3.70702446e-01 7.62609422e-01 4.04110700e-01 -2.01324522e-01 9.83631134e-01 4.59653348e-01 1.83633193e-01 -2.50321358e-01 3.34623575e-01 5.20555019e-01 2.48366296e-01 -5.29409230e-01 6.15033805e-01 8.23748529e-01 4.70290333e-01 -1.06351709e+00 -6.07321203e-01 -7.77957797e-01 -8.58911455e-01 -4.64328885e-01 1.18007326e+00 -5.22708535e-01 -7.66834080e-01 3.15899014e-01 -5.21564722e-01 -2.58558299e-02 1.01981714e-01 8.50828350e-01 -2.96373636e-01 7.71758556e-01 -7.45679080e-01 -8.07438433e-01 -8.72927904e-01 -1.13352907e+00 1.13766932e+00 -1.41449407e-01 3.09029408e-02 -9.22280192e-01 5.53168654e-01 7.90945470e-01 4.57754016e-01 6.18948579e-01 9.57873166e-01 3.03643830e-02 7.29527026e-02 -3.88278097e-01 -1.03873588e-01 2.80379027e-01 4.19439405e-01 9.43598971e-02 -1.03097534e+00 -4.19920474e-01 3.23796451e-01 -1.78518429e-01 1.32174385e+00 8.27182293e-01 1.18586111e+00 -2.75821658e-03 -6.02735460e-01 9.70550418e-01 1.28060937e+00 -7.50517324e-02 5.18152833e-01 2.19893172e-01 9.56442952e-01 5.12627780e-01 5.47312319e-01 4.49212790e-01 -5.57027198e-02 4.08378989e-01 5.95940016e-02 -3.79020691e-01 4.11437005e-01 2.07365051e-01 4.86470610e-01 9.63828683e-01 -3.00539672e-01 4.80788469e-01 -1.01144481e+00 1.21940384e-02 -1.85485983e+00 -7.36505508e-01 -3.66687030e-01 2.03126860e+00 4.41025168e-01 -3.73533875e-01 -1.90292656e-01 3.09653878e-01 6.11735046e-01 2.52352297e-01 -4.90881771e-01 -2.76809514e-01 -2.73300279e-02 -6.04419596e-02 6.97462022e-01 2.58721262e-01 -1.17996085e+00 2.39736497e-01 6.05862045e+00 6.72936976e-01 -1.41795576e+00 5.04246205e-02 9.22940791e-01 1.47701308e-01 -4.62931454e-01 -1.60902534e-02 2.24337429e-02 1.42628357e-01 9.81929898e-01 1.97570324e-01 1.60061285e-01 4.59847718e-01 5.76503277e-01 -3.43360782e-01 -7.13198304e-01 1.19720137e+00 1.36558577e-01 -9.19589996e-01 -2.72366673e-01 2.10517570e-01 5.99931419e-01 -3.51927310e-01 2.54524797e-01 -2.74407547e-02 -3.16912323e-01 -1.09492552e+00 3.00730243e-02 6.87338531e-01 1.17778885e+00 -5.16668379e-01 8.39155853e-01 1.34336948e-01 -1.08634138e+00 -6.07984401e-02 -4.41603512e-01 4.95555997e-01 -2.61930019e-01 1.07193685e+00 -8.77735138e-01 9.92659807e-01 5.76253235e-01 9.08715308e-01 -6.45356059e-01 5.30542552e-01 7.98563510e-02 6.84770882e-01 -3.09816241e-01 1.51408136e-01 -2.12546159e-02 -6.49381042e-01 3.53505731e-01 1.04970419e+00 2.81322777e-01 5.43759316e-02 -3.46181206e-02 6.82241738e-01 5.34856856e-01 3.01463276e-01 -3.81675184e-01 -2.16234297e-01 -7.08700567e-02 1.73461080e+00 -9.63681698e-01 -8.32429379e-02 4.14626561e-02 1.31169224e+00 -2.15049371e-01 3.07482690e-01 -7.01044261e-01 -5.01728840e-02 1.45434067e-01 -3.03379059e-01 -4.05773252e-01 -1.20302275e-01 -3.37210387e-01 -1.54262149e+00 1.86777639e-03 -7.18168914e-01 5.59744418e-01 -3.79937023e-01 -1.03239155e+00 3.97285581e-01 -2.38986313e-01 -1.31666672e+00 -1.07216805e-01 -6.12192810e-01 -3.29901338e-01 9.07146454e-01 -1.10759556e+00 -1.29227221e+00 -5.16286552e-01 5.62325120e-01 -6.02537729e-02 4.21621874e-02 1.16180563e+00 1.86780006e-01 -1.09295917e+00 2.26013854e-01 6.76786304e-01 9.26215276e-02 8.78928363e-01 -1.22073638e+00 -4.04610813e-01 5.67987800e-01 -2.89268792e-01 8.24775934e-01 3.78005683e-01 -6.92272007e-01 -2.06343627e+00 -9.23188508e-01 4.34527189e-01 -1.53446808e-01 5.67974329e-01 -2.52783567e-01 -5.96901715e-01 1.44624546e-01 -3.06976438e-01 2.14625672e-01 1.13442564e+00 8.41303319e-02 -3.33682597e-01 -3.17761093e-01 -1.05065846e+00 2.90091187e-01 3.62154216e-01 -5.80860972e-01 -8.02189186e-02 5.14374793e-01 1.01409160e-01 -2.33246788e-01 -1.28546393e+00 4.84462172e-01 9.30945516e-01 -1.04483271e+00 9.26800251e-01 -3.77323270e-01 4.11842227e-01 -1.61169574e-01 4.54667285e-02 -9.99764204e-01 -6.67739034e-01 -5.47689855e-01 2.86017656e-02 5.68869829e-01 1.27019241e-01 -6.03395522e-01 1.19693267e+00 5.37511289e-01 1.33503256e-02 -8.35394800e-01 -1.14840031e+00 -3.02467436e-01 -5.08756861e-02 -2.41607040e-01 -2.17630237e-01 1.10139740e+00 2.55790561e-01 -6.26871437e-02 -5.12568414e-01 -8.12332258e-02 7.65941024e-01 3.96843642e-01 1.83128417e-01 -9.96752977e-01 -2.21389502e-01 -5.62621318e-02 -3.22468042e-01 -1.29930496e-01 1.77717581e-01 -1.21011150e+00 -2.26621851e-01 -1.35937119e+00 7.05805361e-01 -4.36351627e-01 -5.06986439e-01 3.89435858e-01 -2.15132192e-01 1.10344544e-01 -2.03530282e-01 5.55549026e-01 -8.23556036e-02 4.57322985e-01 1.39340818e+00 -2.16474071e-01 -3.77179474e-01 -1.49004504e-01 -5.72222590e-01 1.15429170e-01 6.84704959e-01 -2.66031206e-01 -3.63540292e-01 1.87792927e-02 3.35820615e-01 6.03780091e-01 3.79020482e-01 -9.34566319e-01 -3.34274843e-02 -3.77918333e-01 7.16799319e-01 -4.06582296e-01 1.94158524e-01 -7.06261396e-01 4.69366759e-01 1.15415108e+00 -2.45192841e-01 -4.16746825e-01 -3.70982401e-02 6.22241616e-01 -1.27212316e-01 2.95440499e-02 5.86827338e-01 5.54450490e-02 -4.44984436e-01 6.84579909e-02 -5.20596027e-01 -5.80114543e-01 9.73041892e-01 -4.44590785e-02 -1.52642101e-01 4.75932024e-02 -7.94805169e-01 -1.23278992e-02 2.09856644e-01 2.19992638e-01 8.20507884e-01 -1.32726693e+00 -8.04911315e-01 2.71339446e-01 1.78767487e-01 -3.99801254e-01 8.73169541e-01 1.53489840e+00 -6.99828029e-01 5.45467198e-01 -1.37285009e-01 -1.08749247e+00 -1.33868659e+00 3.97618473e-01 5.20325005e-01 -4.75845635e-01 -5.54322422e-01 6.35326922e-01 1.99546248e-01 -2.99072564e-01 -3.95931304e-01 -3.60401511e-01 -3.10931295e-01 3.26755226e-01 3.10593426e-01 5.46300054e-01 2.99700886e-01 -7.80545354e-01 -6.70213103e-01 9.54044580e-01 1.40172601e-01 -1.61972940e-01 1.22965562e+00 -3.19695398e-02 -6.35041654e-01 3.67225111e-01 1.63430762e+00 -2.44436815e-01 -5.03218234e-01 1.68473572e-01 -2.74427414e-01 -1.91917166e-01 4.19706523e-01 -5.01464427e-01 -1.26489377e+00 8.36255968e-01 1.05230987e+00 -1.64855406e-01 1.32723260e+00 -3.60994011e-01 5.24898410e-01 2.78373837e-01 1.68994650e-01 -7.31406987e-01 -1.21881841e-02 -6.74930513e-02 8.56487393e-01 -1.17409754e+00 3.22262436e-01 -5.00178695e-01 -7.61920571e-01 1.53468227e+00 1.79419696e-01 -4.86670202e-03 6.65832520e-01 -6.42171875e-02 1.34271964e-01 -2.44446382e-01 -5.97365975e-01 2.30672583e-01 6.75374925e-01 3.72598231e-01 6.60696089e-01 5.30827403e-01 -5.12183607e-01 2.62491286e-01 -9.18382332e-02 -1.21954471e-01 1.05559245e-01 8.56809258e-01 -2.35276684e-01 -8.81874561e-01 -8.56565595e-01 8.55004072e-01 -3.20029318e-01 1.77945346e-01 -4.37652886e-01 6.48117363e-02 -1.21358983e-01 8.15636396e-01 -5.12678981e-01 -8.71817172e-01 -2.02614188e-01 -2.27793381e-02 3.42920631e-01 -2.94528335e-01 -4.89554733e-01 4.42949414e-01 -1.44037917e-01 -7.43305981e-01 -4.10806417e-01 -7.56794572e-01 -9.70410466e-01 -1.45573178e-02 -3.32714826e-01 3.34604442e-01 8.21381986e-01 5.30918837e-01 2.47866943e-01 4.31542933e-01 1.06329393e+00 -6.81580067e-01 -3.28102529e-01 -8.84988904e-01 -7.07528174e-01 4.50493157e-01 3.56951326e-01 -4.55204248e-01 -6.55410647e-01 -7.08769113e-02]
[12.314820289611816, 0.32027676701545715]