paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a2c9dc57-7d42-400c-8813-8bde31ff1ff8 | quantification-of-robotic-surgeries-with | 2205.03028 | null | https://arxiv.org/abs/2205.03028v1 | https://arxiv.org/pdf/2205.03028v1.pdf | Quantification of Robotic Surgeries with Vision-Based Deep Learning | Surgery is a high-stakes domain where surgeons must navigate critical anatomical structures and actively avoid potential complications while achieving the main task at hand. Such surgical activity has been shown to affect long-term patient outcomes. To better understand this relationship, whose mechanics remain unknown for the majority of surgical procedures, we hypothesize that the core elements of surgery must first be quantified in a reliable, objective, and scalable manner. We believe this is a prerequisite for the provision of surgical feedback and modulation of surgeon performance in pursuit of improved patient outcomes. To holistically quantify surgeries, we propose a unified deep learning framework, entitled Roboformer, which operates exclusively on videos recorded during surgery to independently achieve multiple tasks: surgical phase recognition (the what of surgery), gesture classification and skills assessment (the how of surgery). We validated our framework on four video-based datasets of two commonly-encountered types of steps (dissection and suturing) within minimally-invasive robotic surgeries. We demonstrated that our framework can generalize well to unseen videos, surgeons, medical centres, and surgical procedures. We also found that our framework, which naturally lends itself to explainable findings, identified relevant information when achieving a particular task. These findings are likely to instill surgeons with more confidence in our framework's behaviour, increasing the likelihood of clinical adoption, and thus paving the way for more targeted surgical feedback. | ['Andrew J. Hung', 'Animashree Anandkumar', 'Christian Wagner', 'Jessica Nguyen', 'Taseen F. Haque', 'Runzhuo Ma', 'Dani Kiyasseh'] | 2022-05-06 | null | null | null | null | ['skills-assessment', 'surgical-phase-recognition'] | ['computer-vision', 'computer-vision'] | [ 2.85085171e-01 4.29202169e-01 -5.44251323e-01 -7.39065111e-02
-8.58813465e-01 -8.40208769e-01 2.48646393e-01 3.13588619e-01
-6.44629478e-01 3.32377881e-01 8.33366692e-01 -6.49632573e-01
-5.36619782e-01 -2.33575389e-01 -8.01251471e-01 -4.96858329e-01
-2.35709041e-01 -4.26079333e-02 -3.08788896e-01 1.04095796e-02
2.98214108e-01 7.26214886e-01 -1.17880094e+00 4.03922588e-01
3.37506473e-01 8.62424910e-01 3.21122438e-01 6.70740187e-01
5.35717785e-01 1.01563644e+00 -1.26358837e-01 -2.16581792e-01
6.09901309e-01 -1.32212110e-04 -6.76122546e-01 -5.25182858e-02
4.37214255e-01 -6.21847570e-01 -3.91689122e-01 7.26269424e-01
5.60278118e-01 -1.97550794e-03 3.21260631e-01 -4.54198211e-01
-5.89096285e-02 3.22546989e-01 9.03736353e-02 1.21887974e-01
2.23519206e-01 6.45336807e-01 6.53532684e-01 -5.92655241e-01
8.66124213e-01 6.97401583e-01 5.29268324e-01 6.39838099e-01
-8.48310530e-01 -6.16802752e-01 -8.40208605e-02 -4.05145228e-01
-6.89276278e-01 -5.84240615e-01 3.31708282e-01 -9.14814353e-01
4.49410081e-01 2.94910938e-01 1.10428226e+00 1.15887582e+00
8.48246932e-01 6.54428303e-01 8.22813094e-01 -1.09079748e-01
4.53896411e-02 -2.07004577e-01 -4.99644548e-01 9.25410509e-01
5.26329398e-01 5.98174393e-01 -4.97845441e-01 2.51705796e-01
1.14271200e+00 3.80340368e-01 -5.43629110e-01 -6.04891121e-01
-1.76664519e+00 4.08182442e-01 5.26043952e-01 3.71078700e-01
-7.00591683e-01 3.51357281e-01 3.71268719e-01 1.29411131e-01
-2.81586647e-01 9.73433375e-01 -4.41409260e-01 -6.61863863e-01
-7.02693701e-01 -1.77676409e-01 7.66414404e-01 6.35390341e-01
1.74911678e-01 -4.81380433e-01 -4.12321031e-01 3.03909451e-01
2.00486858e-03 -7.39813522e-02 6.50615633e-01 -1.39053357e+00
2.50744730e-01 7.06574142e-01 2.02771887e-01 -6.97398722e-01
-7.77822614e-01 -7.60187566e-01 -3.74061406e-01 3.75202835e-01
3.12828273e-01 -2.51992911e-01 -7.96474397e-01 1.47667050e+00
1.68647081e-01 -1.67206302e-01 -1.38696030e-01 9.92380261e-01
7.67437756e-01 -3.78493398e-01 4.01596576e-01 -1.44807607e-01
1.17345500e+00 -7.71188319e-01 -4.18074697e-01 -4.58283156e-01
1.19065297e+00 -6.11380398e-01 1.17247748e+00 4.29113179e-01
-9.17187691e-01 -2.80972600e-01 -7.91877151e-01 2.03851499e-02
4.85480875e-02 3.71034414e-01 9.56178486e-01 4.80365723e-01
-8.26134324e-01 8.42511535e-01 -1.33171844e+00 -4.00568187e-01
5.35409808e-01 7.47935891e-01 -8.58615994e-01 1.00256257e-01
-4.74578261e-01 1.11277890e+00 5.11220880e-02 3.80993336e-01
-1.16422629e+00 -6.87397480e-01 -9.34394002e-01 -9.25836153e-03
4.81256723e-01 -7.33369231e-01 1.39491105e+00 -6.90397322e-01
-1.25376666e+00 1.04240072e+00 3.48220021e-01 -1.24486372e-01
3.82135957e-01 -4.01340067e-01 -3.52228954e-02 1.50860295e-01
-1.42165586e-01 5.26515067e-01 4.15220350e-01 -8.09485376e-01
-3.20265561e-01 -5.77963173e-01 4.65153873e-01 5.18572450e-01
-4.63919669e-01 -4.47231054e-01 -1.71922803e-01 -5.02643526e-01
-4.68159001e-03 -1.23052394e+00 -4.75429177e-01 6.06737435e-01
-2.16466784e-02 5.65430045e-01 2.32433900e-01 -6.68248475e-01
1.01927722e+00 -2.24879384e+00 5.63700378e-01 -1.31251320e-01
4.60212320e-01 1.53256938e-01 1.45782948e-01 4.17925566e-01
6.03752621e-02 1.14794232e-01 2.31610388e-01 5.63670546e-02
-4.35234725e-01 1.13537289e-01 3.68738919e-01 7.14778602e-01
-1.05350561e-01 1.07098603e+00 -1.11001372e+00 -4.75553870e-01
4.79239553e-01 1.09745689e-01 -1.00245965e+00 3.29803258e-01
2.11558163e-01 9.64733541e-01 -3.30191344e-01 9.34934199e-01
-2.40114585e-01 -1.80951104e-01 4.63611305e-01 -3.78966063e-01
-1.60307270e-02 1.87941030e-01 -5.02665401e-01 2.06559825e+00
-6.33201957e-01 4.76468533e-01 3.93703550e-01 -6.39008641e-01
4.91526544e-01 3.89787734e-01 1.01298070e+00 -5.57297945e-01
5.17131746e-01 3.18096459e-01 5.03141105e-01 -9.22144055e-01
-8.91381688e-03 -4.49985623e-01 -1.29578948e-01 1.51500991e-02
1.71931967e-01 -3.69593769e-01 -1.46892101e-01 4.48636413e-02
1.52410245e+00 1.51047707e-01 6.23752296e-01 -3.44262719e-01
-1.18365169e-01 3.40168625e-01 6.09753840e-02 7.12166071e-01
-6.79670095e-01 2.74364054e-01 4.68324631e-01 -3.36905658e-01
-4.83363032e-01 -1.11944890e+00 1.33023739e-01 8.49643052e-01
6.66578114e-02 -3.03841177e-02 -3.67633879e-01 -7.35478580e-01
1.32964686e-01 3.52586985e-01 -1.04932106e+00 -6.73523426e-01
-4.04067785e-01 -2.62732655e-02 2.45011970e-03 4.14276600e-01
-3.52547526e-01 -1.13268697e+00 -1.08458984e+00 2.02853844e-01
2.10549925e-02 -1.10570717e+00 -4.89691108e-01 3.21541429e-01
-1.08836770e+00 -1.49586713e+00 -5.98310173e-01 -7.48884559e-01
8.01146448e-01 2.92259455e-01 7.02234030e-01 -3.43333334e-02
-6.04940176e-01 9.16959345e-01 -3.40303540e-01 -3.17595571e-01
-5.75793982e-01 1.80109277e-01 -7.16667473e-02 -4.18787718e-01
-9.87863317e-02 -2.60179162e-01 -1.13227296e+00 1.73679471e-01
-8.40684712e-01 1.78861290e-01 1.41785359e+00 7.20748127e-01
2.89287746e-01 -8.50579023e-01 -2.68523544e-02 -6.97956085e-01
5.94452798e-01 -4.05181795e-01 -2.09808797e-01 5.82726784e-02
-3.77426654e-01 -1.01002328e-01 4.03483570e-01 -4.78357673e-01
-5.82494676e-01 1.78699926e-01 1.19449303e-01 -4.75923330e-01
-1.66247308e-01 8.29649985e-01 5.20303905e-01 -5.26519835e-01
8.51787388e-01 -2.43729770e-01 5.34213424e-01 4.89505567e-03
-8.52198526e-02 4.10863191e-01 5.89107811e-01 -4.49078828e-01
3.93843055e-01 4.70999181e-01 1.80204242e-01 -4.44357276e-01
-8.85046899e-01 -6.67163432e-01 -4.86651629e-01 -6.86518967e-01
7.54752100e-01 -9.86617267e-01 -1.25298834e+00 -3.28740060e-01
-4.68940347e-01 -6.47458196e-01 -2.35527754e-01 1.04507899e+00
-7.32058644e-01 1.20241813e-01 -5.95829725e-01 -4.78224486e-01
-2.16219068e-01 -1.49747169e+00 1.35631156e+00 1.01845481e-01
-6.03578866e-01 -1.05733073e+00 1.78229928e-01 4.26781803e-01
4.17508513e-01 5.67826748e-01 7.38193572e-01 -4.50942725e-01
-7.66938984e-01 -6.82113409e-01 2.08628625e-01 2.90102392e-01
4.44112390e-01 -1.45918787e-01 -4.51771975e-01 -4.42590028e-01
-2.32097711e-02 -3.27230155e-01 2.35252410e-01 5.92582881e-01
1.34459031e+00 -1.96620710e-02 -2.53968507e-01 7.53151417e-01
1.24652588e+00 -1.17229288e-02 4.63077456e-01 3.26739848e-01
3.92840832e-01 5.25462985e-01 7.70636499e-01 1.76850244e-01
3.15839678e-01 6.58310831e-01 7.28268623e-01 -1.08885288e-01
-3.56480405e-02 -3.10346689e-02 4.00904536e-01 8.13140750e-01
-2.14023337e-01 1.43544659e-01 -9.95488644e-01 4.95093316e-01
-1.41423774e+00 -7.36636400e-01 3.53969932e-01 2.38918710e+00
6.25371218e-01 1.27020776e-01 -2.32951209e-01 -2.67691523e-01
3.87881361e-02 -1.41040891e-01 -5.59519291e-01 -2.46622682e-01
6.77248538e-01 2.24777460e-01 9.53144312e-01 1.10552803e-01
-7.99368858e-01 6.66887462e-01 6.45280266e+00 4.26508524e-02
-1.50577867e+00 -1.64627716e-01 3.83944571e-01 -5.68903029e-01
-1.91891398e-02 -1.75234124e-01 -1.56274036e-01 1.82534203e-01
6.91096783e-01 1.81936231e-02 3.81478578e-01 7.61445820e-01
6.42513335e-01 -1.95862770e-01 -1.39271080e+00 5.79821646e-01
-1.27578288e-01 -1.42071521e+00 -3.21145654e-01 7.86252916e-02
4.42753971e-01 -1.80168554e-01 1.75055087e-01 4.35386866e-01
1.14724651e-01 -1.04920709e+00 3.83568674e-01 6.72162712e-01
1.09121335e+00 7.29907081e-02 5.80231667e-01 2.88032949e-01
-7.84484267e-01 -4.95507866e-01 2.99489141e-01 -1.01417430e-01
-8.48694667e-02 -5.39937569e-03 -1.19355679e+00 1.71222821e-01
4.31732804e-01 7.05370784e-01 -1.11395843e-01 1.14884818e+00
-5.07526658e-02 1.82166427e-01 6.93236142e-02 -2.78854207e-03
2.87654996e-01 3.69686544e-01 3.93525660e-01 8.00865471e-01
4.01732087e-01 1.82956085e-01 -6.98508024e-02 2.24661380e-01
-1.10221192e-01 5.00288643e-02 -5.47885954e-01 -5.76205969e-01
1.21683478e-01 1.33413589e+00 -5.91352046e-01 1.43593356e-01
-3.65708053e-01 6.26471281e-01 3.85394752e-01 8.67534578e-02
-5.52281559e-01 9.32523757e-02 7.26772606e-01 2.59580225e-01
-2.01103419e-01 -3.95951241e-01 -4.55154926e-01 -1.08684504e+00
2.29905978e-01 -9.74995553e-01 1.65339470e-01 -7.07441866e-01
-3.40005010e-01 -2.02580485e-02 -4.00939167e-01 -1.68538940e+00
-9.86423194e-02 -1.02470386e+00 -2.40478978e-01 3.98476094e-01
-1.37658846e+00 -8.67124021e-01 -8.44818354e-01 4.08049136e-01
4.13603246e-01 2.94703215e-01 8.17511022e-01 2.47798078e-02
-3.48482668e-01 1.96696207e-01 -2.48862311e-01 9.40191150e-02
1.03426158e+00 -8.62648606e-01 -3.70877981e-01 4.61368203e-01
-3.56478393e-01 1.02023602e+00 5.96595705e-01 -6.61526561e-01
-1.93704093e+00 -6.61741197e-01 1.43165395e-01 -6.86448455e-01
7.02959299e-01 -7.61259422e-02 -7.19925314e-02 1.01325607e+00
-5.09746432e-01 -1.31537512e-01 1.03957021e+00 8.47902745e-02
2.09370732e-01 -3.99904884e-02 -9.78149176e-01 9.16507185e-01
1.34751570e+00 -4.18836862e-01 -6.11077845e-01 5.33397555e-01
4.99676377e-01 -1.04154158e+00 -1.23423100e+00 7.99448013e-01
1.04896736e+00 -9.82201576e-01 9.16210055e-01 -7.96579897e-01
9.96460736e-01 3.55302453e-01 4.56311554e-02 -1.10906684e+00
-1.09217472e-01 -5.12444019e-01 -7.06794709e-02 1.58568453e-02
3.56920362e-01 -3.67763728e-01 9.16873395e-01 9.58588839e-01
-6.01187289e-01 -1.03920352e+00 -7.35029280e-01 -4.44623232e-01
-5.45340497e-03 -2.80072331e-01 -3.05617112e-03 7.24070430e-01
4.24493432e-01 -6.27423704e-01 -9.10390913e-02 1.64194912e-01
2.25689739e-01 -1.93256095e-01 9.14171815e-01 -1.13434184e+00
-4.22374368e-01 -7.39629269e-01 -5.74347258e-01 -6.48089170e-01
-3.41617107e-01 -9.42211568e-01 4.58549187e-02 -1.76826131e+00
2.31133819e-01 -2.72762895e-01 -4.46590900e-01 3.45595092e-01
-1.73640445e-01 -5.11101708e-02 9.87367630e-02 4.20900017e-01
-3.16827208e-01 1.62250325e-01 1.84017432e+00 2.93435961e-01
-2.28974804e-01 5.82001507e-02 -1.06212306e+00 5.10275066e-01
5.43005943e-01 -4.35429960e-01 -1.43331259e-01 -3.75990987e-01
8.16181228e-02 4.98912901e-01 4.38927799e-01 -1.03224552e+00
3.94581735e-01 -3.22726279e-01 3.02071810e-01 2.02922270e-01
3.36677998e-01 -1.15195668e+00 1.21869586e-01 1.04731476e+00
-5.73523343e-01 -2.97206610e-01 3.74078035e-01 3.75120372e-01
-1.04523644e-01 2.37982303e-01 5.77422798e-01 -3.35164160e-01
-5.04207194e-01 4.11931604e-01 -2.46944949e-01 -5.26717268e-02
1.21670020e+00 -2.94339269e-01 -8.67151543e-02 -3.47995788e-01
-1.07879353e+00 -9.60827172e-02 5.96671343e-01 5.41938543e-01
4.60138291e-01 -8.18713427e-01 -3.75803769e-01 3.56435776e-02
2.02609837e-01 -5.56427911e-02 5.80119967e-01 1.46987844e+00
-7.68554151e-01 4.96214271e-01 -2.55739510e-01 -5.24253845e-01
-7.53355742e-01 4.25572276e-01 6.53593719e-01 -1.92273960e-01
-5.95961332e-01 7.32864439e-01 2.52907395e-01 -3.77486527e-01
5.39041758e-01 -5.22256553e-01 -4.05690782e-02 -3.15458834e-01
5.63730448e-02 -9.95795876e-02 9.98898745e-02 -1.08242311e-01
-2.65664011e-01 3.36187780e-01 -8.30530301e-02 2.68724591e-01
1.22923267e+00 1.61951631e-01 2.28296816e-01 3.56176525e-01
9.01985526e-01 8.32853764e-02 -1.34189129e+00 2.84744769e-01
-1.95390195e-01 -5.49652219e-01 2.83034623e-01 -1.13842618e+00
-9.61160362e-01 6.30440116e-01 5.40479124e-01 -4.56797600e-01
9.27260816e-01 6.98408410e-02 4.08511162e-01 2.75713354e-01
6.90278828e-01 -7.36476243e-01 7.11875856e-02 -6.89356774e-02
8.82991433e-01 -1.34286678e+00 -2.74980739e-02 -2.31256723e-01
-6.41949177e-01 1.11272991e+00 5.79051971e-01 1.86048180e-01
5.90660691e-01 3.80443871e-01 1.78557754e-01 -5.24688363e-01
-5.92455149e-01 1.95983574e-02 3.51201594e-01 7.07668364e-02
7.07822978e-01 3.75528544e-01 -4.17900532e-01 4.71036613e-01
-1.83366984e-01 4.79122847e-01 5.50843120e-01 1.28371835e+00
-3.44425291e-01 -5.42256474e-01 2.00987756e-01 9.83474612e-01
-6.05637133e-01 -5.29756472e-02 -6.52381703e-02 1.04206812e+00
-2.44061723e-01 6.20798111e-01 -4.52094018e-01 -2.11543605e-01
6.46283567e-01 -1.52498722e-01 5.64753711e-01 -1.01441193e+00
-8.86637747e-01 -1.41773880e-01 8.98203924e-02 -1.16069329e+00
-3.04664820e-01 -6.09183848e-01 -8.56066704e-01 1.71286687e-01
-7.28481784e-02 -3.09760779e-01 1.03933227e+00 8.44064295e-01
4.32928503e-01 9.51099396e-01 1.82941779e-01 -9.93532717e-01
-6.31531715e-01 -6.71446502e-01 -2.53319681e-01 3.76626611e-01
4.35935110e-01 -7.60209322e-01 -4.89787757e-01 -1.66581154e-01] | [14.055708885192871, -3.3703932762145996] |
35a33392-3327-4156-a0ea-2ceff3125172 | relative-density-ratio-estimation-for-robust | null | null | http://papers.nips.cc/paper/4254-relative-density-ratio-estimation-for-robust-distribution-comparison | http://papers.nips.cc/paper/4254-relative-density-ratio-estimation-for-robust-distribution-comparison.pdf | Relative Density-Ratio Estimation for Robust Distribution Comparison | Divergence estimators based on direct approximation of density-ratios without going through separate approximation of numerator and denominator densities have been successfully applied to machine learning tasks that involve distribution comparison such as outlier detection, transfer learning, and two-sample homogeneity test. However, since density-ratio functions often possess high fluctuation, divergence estimation is still a challenging task in practice. In this paper, we propose to use relative divergences for distribution comparison, which involves approximation of relative density-ratios. Since relative density-ratios are always smoother than corresponding ordinary density-ratios, our proposed method is favorable in terms of the non-parametric convergence speed. Furthermore, we show that the proposed divergence estimator has asymptotic variance independent of the model complexity under a parametric setup, implying that the proposed estimator hardly overfits even with complex models. Through experiments, we demonstrate the usefulness of the proposed approach. | ['Hirotaka Hachiya', 'Makoto Yamada', 'Taiji Suzuki', 'Masashi Sugiyama', 'Takafumi Kanamori'] | 2011-12-01 | null | null | null | neurips-2011-12 | ['density-ratio-estimation'] | ['methodology'] | [-1.86212957e-01 -2.39782229e-01 2.76208967e-02 -3.86910141e-01
-9.01868284e-01 -2.49713510e-01 4.93479401e-01 4.53140467e-01
-6.43860102e-01 1.06413102e+00 -5.23366034e-01 -3.17358017e-01
-2.97672629e-01 -6.75176859e-01 -7.05889225e-01 -8.22731972e-01
7.94613585e-02 4.60010618e-01 1.24527283e-01 2.14591935e-01
4.34641868e-01 3.45045388e-01 -1.42080045e+00 -7.65651464e-01
1.47553968e+00 1.17655015e+00 -1.63853720e-01 4.25105482e-01
-7.23729059e-02 2.86952525e-01 -7.46931851e-01 -4.42790240e-01
2.42021099e-01 -6.15890622e-01 -1.40736327e-01 -1.12320758e-01
2.97667325e-01 -2.74497420e-01 3.58779728e-01 1.56970632e+00
2.28156120e-01 3.97503734e-01 1.39779270e+00 -1.36285019e+00
-3.97332907e-01 1.73888266e-01 -9.19152975e-01 2.57467896e-01
1.48424417e-01 -1.83343619e-01 8.42442036e-01 -8.44323933e-01
-4.65454943e-02 9.63526309e-01 8.11631799e-01 5.51093854e-02
-1.39473641e+00 -6.32761240e-01 -6.70172572e-02 -3.47646363e-02
-1.72883010e+00 -1.87315598e-01 5.48015296e-01 -6.36772215e-01
3.67315263e-01 3.56255993e-02 2.99730211e-01 8.13645124e-01
3.04349482e-01 4.10261869e-01 1.05214679e+00 -2.02735588e-01
5.08569479e-01 4.23385322e-01 5.10853194e-02 3.12785655e-01
7.09234297e-01 -2.77584165e-01 1.50511071e-01 -4.78787661e-01
8.88781846e-01 1.51879815e-02 -4.27883267e-01 -4.77446109e-01
-8.30173373e-01 7.95701623e-01 9.41293463e-02 3.51770937e-01
-8.51770192e-02 2.13708635e-02 2.75583893e-01 3.07119817e-01
7.21737385e-01 5.70266098e-02 -1.09817788e-01 -3.07491779e-01
-1.03904426e+00 4.84343290e-01 8.54750693e-01 9.82479751e-01
5.70358336e-01 1.58975348e-01 2.62854435e-02 8.83930981e-01
2.63026565e-01 5.78436375e-01 4.90352839e-01 -6.21972382e-01
4.90306109e-01 2.23759055e-01 4.40219402e-01 -1.13244593e+00
-7.07404539e-02 -4.42560881e-01 -1.25972700e+00 7.61813372e-02
1.04228330e+00 1.22351320e-02 -4.31541830e-01 1.69277406e+00
3.44324827e-01 1.64038464e-01 -5.57474829e-02 7.65308619e-01
-3.86741385e-02 4.86273855e-01 -1.50114179e-01 -5.90057313e-01
9.67977226e-01 -3.80542099e-01 -5.90024114e-01 2.62961149e-01
7.09352911e-01 -5.57444274e-01 1.29203582e+00 4.61316764e-01
-8.40227485e-01 -3.20035011e-01 -9.15983021e-01 2.65789330e-01
-5.35328779e-03 -5.49800806e-02 2.78634336e-02 6.29817486e-01
-5.80762386e-01 8.22240174e-01 -7.06492066e-01 -3.39566380e-01
3.12339753e-01 1.49876386e-01 -3.20100248e-01 3.12409908e-01
-8.16400349e-01 6.81078136e-01 5.64592063e-01 1.30648628e-01
-2.81321079e-01 -7.30953991e-01 -7.21067488e-01 3.41721445e-01
1.32509828e-01 -5.03931284e-01 1.23816419e+00 -7.65607119e-01
-1.62722886e+00 2.90614516e-01 2.77035534e-02 -4.52995300e-01
1.04313242e+00 -3.52809519e-01 -1.56401500e-01 -1.21014625e-01
-8.78718793e-02 -1.63227722e-01 1.06720924e+00 -6.50684595e-01
-4.43612725e-01 -2.43743435e-01 -4.88823891e-01 6.51241690e-02
-2.36267984e-01 -3.63902003e-01 2.10316956e-01 -5.66328824e-01
1.99719265e-01 -4.09971833e-01 -1.44703716e-01 2.55393028e-01
-2.42149621e-01 -8.32008198e-02 4.35761780e-01 -4.06401873e-01
1.16276169e+00 -2.38927603e+00 -2.95268774e-01 4.86981153e-01
9.48339850e-02 6.86235400e-03 3.73911440e-01 2.21879631e-01
6.28160760e-02 -6.44586310e-02 -5.96360326e-01 2.86691287e-03
1.32897690e-01 -2.72404224e-01 -2.08596706e-01 1.03166676e+00
2.29013994e-01 1.46294579e-01 -8.66715908e-01 -4.24713701e-01
1.49221033e-01 2.71709323e-01 -5.91341197e-01 3.27877879e-01
-5.90887778e-02 5.24008095e-01 -3.25274944e-01 2.67517745e-01
9.88825500e-01 -8.90041441e-02 1.59436534e-03 1.10636823e-01
2.07686666e-02 -6.89351559e-02 -1.36915278e+00 9.93304551e-01
-5.05811512e-01 4.30163145e-01 -1.07117752e-02 -1.35177958e+00
1.28109443e+00 -2.75408477e-02 1.30020753e-01 -4.22318876e-01
3.55454355e-01 6.78798735e-01 1.91505536e-01 -9.04129595e-02
3.11665505e-01 -4.87734646e-01 1.59422178e-02 1.57200515e-01
-8.04264173e-02 -5.86436912e-02 2.82814860e-01 -2.71074146e-01
6.91066504e-01 4.53555658e-02 9.25880432e-01 -5.74701250e-01
7.19667971e-01 -6.78077817e-01 4.11164790e-01 6.71977103e-01
-2.03740239e-01 4.91800249e-01 9.40137863e-01 2.00495452e-01
-1.11955965e+00 -1.40683568e+00 -7.52644837e-01 3.49714309e-01
2.10375816e-01 4.04058676e-03 -5.94484210e-01 -5.58606684e-01
2.79976636e-01 7.36916900e-01 -1.97317138e-01 -7.01065138e-02
-2.15744540e-01 -8.22722495e-01 5.93276680e-01 4.14717048e-01
4.12546098e-01 -2.29255944e-01 -5.04124105e-01 7.61834532e-02
2.69534022e-01 -8.49274576e-01 -4.78217036e-01 6.98544756e-02
-1.05124354e+00 -1.12462401e+00 -1.30194199e+00 -5.18320799e-01
5.99803686e-01 -1.62097737e-01 7.29170322e-01 -3.01162601e-01
1.15794674e-01 4.82779741e-02 -4.32456061e-02 -3.88836972e-02
-3.40956837e-01 3.18524486e-04 3.24370474e-01 1.62571594e-01
2.17921332e-01 -9.59029436e-01 -5.78337550e-01 5.59844136e-01
-7.67576575e-01 -4.87621933e-01 5.44573545e-01 9.70297098e-01
5.15985131e-01 1.90768734e-01 9.81167316e-01 -7.21287072e-01
8.40721369e-01 -7.21957147e-01 -1.08926654e+00 1.49018973e-01
-6.36650503e-01 2.65371233e-01 1.09365988e+00 -6.06677055e-01
-1.04902136e+00 -4.76245850e-01 8.59217569e-02 -3.90746891e-01
-1.72888368e-01 3.69484663e-01 -1.38656721e-01 1.82890400e-01
6.29311621e-01 1.31355137e-01 2.86666870e-01 -6.20096505e-01
1.47911921e-01 8.04201782e-01 7.61544704e-01 -6.35971665e-01
7.31620133e-01 9.13714021e-02 3.06315750e-01 -1.03590369e+00
-5.21862507e-01 -4.80669558e-01 -2.83583581e-01 4.84212451e-02
4.04349834e-01 -5.97608566e-01 -9.60350454e-01 6.57241523e-01
-8.14305604e-01 -5.72384372e-02 -2.32711881e-01 8.52006435e-01
-6.32210553e-01 7.60704994e-01 -4.78916734e-01 -1.35912645e+00
-1.62062466e-01 -9.20766473e-01 8.14449072e-01 3.14941525e-01
-1.58343837e-01 -1.20825803e+00 1.53869316e-01 -2.81779081e-01
3.63320261e-01 3.24448645e-01 9.88112509e-01 -1.09042883e+00
-1.39565319e-01 -3.00749063e-01 -3.94450575e-01 5.83091557e-01
4.48781341e-01 2.01856807e-01 -6.68795943e-01 -4.01214421e-01
2.20500469e-01 -1.42375350e-01 5.27736306e-01 5.11604369e-01
1.38244486e+00 -2.55594939e-01 -9.83966514e-02 5.19771695e-01
1.32935655e+00 -5.78262135e-02 4.60332572e-01 7.39015266e-02
4.20835346e-01 4.24680322e-01 7.71819532e-01 7.77074993e-01
-1.67794935e-02 4.49125528e-01 1.22392504e-02 4.15075183e-01
6.96187556e-01 -1.22442521e-01 4.43553895e-01 8.22641313e-01
2.63852865e-01 -1.83729440e-01 -6.47235394e-01 4.09970343e-01
-1.78244305e+00 -9.07823682e-01 -2.69638538e-01 2.89864278e+00
8.20456564e-01 3.36317182e-01 3.72694433e-01 1.39060125e-01
1.01004314e+00 -1.82616085e-01 -6.51853085e-01 -4.13632900e-01
2.37830058e-01 1.27738044e-01 4.24784869e-01 3.89278501e-01
-8.46401811e-01 2.04148129e-01 6.04951143e+00 1.23319054e+00
-8.38393092e-01 -1.76304713e-01 6.02900267e-01 1.97724223e-01
-2.64342487e-01 2.93410886e-02 -6.12358749e-01 9.43750143e-01
7.95997381e-01 -4.86889660e-01 1.54810790e-02 9.13091183e-01
4.49651591e-02 -6.61701739e-01 -1.16964614e+00 1.14893305e+00
-2.50169575e-01 -5.63024998e-01 -1.29638419e-01 1.64588362e-01
4.56835181e-01 -6.56401575e-01 1.85758650e-01 3.62171531e-01
-3.17038655e-01 -9.19124126e-01 6.13254964e-01 6.48022532e-01
7.28410602e-01 -1.03282237e+00 1.08543777e+00 6.28571272e-01
-9.04438436e-01 9.82894152e-02 -5.29131711e-01 -1.79990873e-01
7.58708045e-02 1.15738726e+00 -8.82537246e-01 5.57492733e-01
3.36155951e-01 4.02411461e-01 -2.80802190e-01 1.51440239e+00
2.21595630e-01 4.39483255e-01 -7.38213718e-01 -1.54417291e-01
-1.48130119e-01 -9.02705669e-01 5.84829152e-01 9.95708942e-01
7.69544125e-01 -4.85887945e-01 -1.20657429e-01 9.94551361e-01
6.92913085e-02 4.11968797e-01 -6.21436834e-01 1.35148559e-02
5.05896032e-01 8.94343734e-01 -7.84165382e-01 -1.46180138e-01
-3.69671345e-01 6.65657640e-01 2.97216356e-01 4.31108505e-01
-1.01930571e+00 -6.71754777e-01 6.42266750e-01 1.75410837e-01
3.30937237e-01 -1.17318600e-01 -7.64844269e-02 -1.20496631e+00
3.96517515e-01 -5.35265446e-01 2.96768934e-01 -2.07655191e-01
-1.70070529e+00 3.67944390e-01 4.96013373e-01 -1.46957505e+00
-5.85573196e-01 -5.43243825e-01 -7.86584437e-01 8.38769495e-01
-1.22247207e+00 -2.37572879e-01 -1.58153161e-01 3.70544970e-01
1.76250979e-01 4.94703054e-02 3.93355399e-01 3.88762116e-01
-5.87636411e-01 9.83224690e-01 6.59056187e-01 -1.99040756e-01
7.45425940e-01 -1.29489183e+00 4.69373306e-03 6.95897877e-01
-2.24694028e-01 5.57410479e-01 9.09982443e-01 -6.48425996e-01
-6.25792205e-01 -8.03959012e-01 3.13310474e-01 3.36838774e-02
9.13083673e-01 -2.82307118e-01 -1.19960630e+00 2.57775754e-01
-2.55102128e-01 1.48639664e-01 6.30530417e-01 6.72533065e-02
-1.67878076e-01 -2.08964914e-01 -1.40837252e+00 3.90532225e-01
5.96564651e-01 -2.66103894e-01 -4.69005704e-01 3.18940803e-02
2.19403461e-01 -2.33942077e-01 -9.06057835e-01 4.74967986e-01
5.82410991e-01 -1.12959886e+00 5.20848393e-01 -1.69155017e-01
-4.39205952e-02 -3.67786080e-01 -2.51743883e-01 -1.27489352e+00
1.19578108e-01 -6.27881825e-01 -2.21492201e-01 1.42366040e+00
1.47095874e-01 -1.11482060e+00 3.93666893e-01 3.77532005e-01
2.26461604e-01 -5.92289984e-01 -1.21293128e+00 -1.23168600e+00
2.16032922e-01 -2.41686016e-01 3.63953769e-01 6.10697448e-01
-1.50346324e-01 1.35749340e-01 -2.65835822e-01 -4.72306237e-02
7.91295707e-01 -9.83724669e-02 9.99290705e-01 -1.55502212e+00
-6.04315937e-01 -6.93376601e-01 -7.69880176e-01 -1.23773789e+00
1.48321331e-01 -5.57684064e-01 2.20851988e-01 -7.65220404e-01
1.33546188e-01 -3.52828413e-01 -2.66591251e-01 -2.67189920e-01
-2.57853895e-01 -8.74518454e-02 -3.05479854e-01 2.19292000e-01
-3.77513856e-01 1.05109012e+00 9.58446801e-01 3.54063332e-01
-2.53585637e-01 4.49336469e-01 -3.20232630e-01 9.31485116e-01
7.37274170e-01 -5.16098797e-01 -6.33020759e-01 3.63744855e-01
8.50642100e-03 4.82621975e-02 3.14266413e-01 -1.09546947e+00
-8.38722438e-02 -1.26909196e-01 3.07484210e-01 -4.11725968e-01
-1.00733032e-02 -7.01057494e-01 8.80094543e-02 6.36190549e-02
-6.03934973e-02 9.59411487e-02 3.89472917e-02 8.83515537e-01
-3.46636683e-01 -5.09439290e-01 1.00324404e+00 3.57973039e-01
-4.27381024e-02 4.97803204e-02 -3.87039304e-01 2.36737266e-01
9.99596238e-01 -3.20955813e-01 -7.91044682e-02 -5.54982185e-01
-2.57545263e-01 1.26236640e-02 5.90497017e-01 -2.21364871e-01
3.86953592e-01 -1.29916632e+00 -4.81377423e-01 1.25814170e-01
7.60322139e-02 2.38029957e-01 1.03444710e-01 1.43537593e+00
-6.09318972e-01 -4.11534347e-02 -5.46318628e-02 -8.71165991e-01
-6.35661304e-01 2.74185330e-01 3.03621590e-01 -1.15312696e-01
-5.13863444e-01 4.31321591e-01 4.68782008e-01 -3.18903118e-01
2.79311091e-01 -6.72061324e-01 1.47951066e-01 -6.00601221e-03
4.34634864e-01 5.78180254e-01 -8.52317829e-03 -3.40910017e-01
-3.76531154e-01 5.08444965e-01 -1.27907336e-01 -9.19364840e-02
7.89934158e-01 -8.01085085e-02 5.25325686e-02 9.29091811e-01
1.28437459e+00 -9.45017114e-02 -1.24607837e+00 3.62747274e-02
2.87784934e-01 -6.95895076e-01 -4.13984686e-01 7.99710769e-03
-5.82147896e-01 7.74232626e-01 4.84253198e-01 3.73454213e-01
1.05225551e+00 -3.66650611e-01 5.59709311e-01 4.54077929e-01
2.40839377e-01 -9.02768016e-01 -1.00564100e-01 2.78632581e-01
5.21375299e-01 -1.22732806e+00 7.03707337e-02 -2.37567067e-01
-2.41394266e-01 1.06275177e+00 6.10129058e-01 -4.15204942e-01
7.50688136e-01 8.41386765e-02 -3.20043355e-01 4.95520532e-01
-3.96702111e-01 -2.20890213e-02 3.94435018e-01 5.30655503e-01
4.88230467e-01 -1.63126618e-01 -6.81834519e-01 4.26439881e-01
-1.42309576e-01 -2.01761752e-01 4.79084969e-01 5.20623922e-01
-3.43787283e-01 -9.66516614e-01 -3.16772491e-01 6.41633511e-01
-4.29342151e-01 8.25416967e-02 1.79876372e-01 1.03135693e+00
-4.38311160e-01 5.75426579e-01 4.12210017e-01 1.56414881e-01
2.33746886e-01 1.61333680e-01 5.56555927e-01 -2.20464721e-01
-7.33012287e-03 1.41978115e-01 -3.07004601e-01 -2.77626812e-01
-2.13614061e-01 -6.74724162e-01 -1.00206041e+00 -4.45598036e-01
-6.36554658e-01 4.42129016e-01 4.27713603e-01 1.01622283e+00
-1.29784169e-02 -2.80362815e-02 6.33775830e-01 -5.44583559e-01
-1.30459261e+00 -1.15573573e+00 -1.13288510e+00 3.00078958e-01
4.24524158e-01 -1.00907409e+00 -8.28147650e-01 -4.92052585e-01] | [7.305465221405029, 4.055818557739258] |
db9b89c2-5b40-47ed-a971-692fc159ac10 | knowledge-extraction-with-interval-temporal | 2305.16864 | null | https://arxiv.org/abs/2305.16864v1 | https://arxiv.org/pdf/2305.16864v1.pdf | Knowledge Extraction with Interval Temporal Logic Decision Trees | Multivariate temporal, or time, series classification is, in a way, the temporal generalization of (numeric) classification, as every instance is described by multiple time series instead of multiple values. Symbolic classification is the machine learning strategy to extract explicit knowledge from a data set, and the problem of symbolic classification of multivariate temporal series requires the design, implementation, and test of ad-hoc machine learning algorithms, such as, for example, algorithms for the extraction of temporal versions of decision trees. One of the most well-known algorithms for decision tree extraction from categorical data is Quinlan's ID3, which was later extended to deal with numerical attributes, resulting in an algorithm known as C4.5, and implemented in many open-sources data mining libraries, including the so-called Weka, which features an implementation of C4.5 called J48. ID3 was recently generalized to deal with temporal data in form of timelines, which can be seen as discrete (categorical) versions of multivariate time series, and such a generalization, based on the interval temporal logic HS, is known as Temporal ID3. In this paper we introduce Temporal C4.5, that allows the extraction of temporal decision trees from undiscretized multivariate time series, describe its implementation, called Temporal J48, and discuss the outcome of a set of experiments with the latter on a collection of public data sets, comparing the results with those obtained by other, classical, multivariate time series classification methods. | ['Stan Ionel Eduard', 'Guido Sciavicco'] | 2023-05-26 | null | null | null | null | ['time-series-classification'] | ['time-series'] | [ 6.65021315e-02 -1.97824121e-01 -3.34417582e-01 -3.52895319e-01
-8.63099769e-02 -8.71320128e-01 8.42349291e-01 6.68428242e-01
-2.75612980e-01 7.74850786e-01 -2.72099972e-01 -6.96180165e-01
-7.63333201e-01 -9.96057630e-01 -2.54801154e-01 -5.26283205e-01
-9.70139325e-01 5.15321672e-01 3.72754574e-01 -2.97255665e-01
1.45314187e-01 7.02294052e-01 -1.91020322e+00 3.66295904e-01
4.09819335e-01 1.47410560e+00 -6.61052167e-01 5.68393588e-01
-2.05052882e-01 7.34713316e-01 -5.56815386e-01 -1.53853409e-02
-4.89180200e-02 -3.85419726e-01 -9.20395970e-01 -3.32168311e-01
-6.75451100e-01 2.28366613e-01 1.54034540e-01 4.08136964e-01
-3.03471148e-01 2.52279580e-01 8.35454345e-01 -1.88796699e+00
-6.24964535e-02 7.34885812e-01 -1.96576223e-01 1.09824829e-01
6.90984011e-01 -2.60481149e-01 7.21298397e-01 -1.47571370e-01
6.89153790e-01 1.13008988e+00 7.25500226e-01 -1.03342339e-01
-1.63400710e+00 -3.64713281e-01 -2.52821445e-01 5.05891681e-01
-1.45461166e+00 1.01083331e-01 6.28500819e-01 -6.94711745e-01
1.04614377e+00 5.34984767e-01 9.50671852e-01 9.54268754e-01
2.86869645e-01 5.00120044e-01 1.56841862e+00 -7.02352464e-01
6.73637569e-01 -1.92308589e-03 4.09205854e-01 1.13796122e-01
-1.13435267e-02 4.77355033e-01 -1.34818926e-01 -4.20518398e-01
3.29771459e-01 4.11054604e-02 1.31530806e-01 -1.84696943e-01
-1.14747131e+00 7.67885625e-01 -1.96052715e-02 8.80664408e-01
-2.86494255e-01 -1.32199898e-01 1.06964099e+00 7.86398590e-01
4.07336086e-01 9.66446251e-02 -7.74838567e-01 -3.76394868e-01
-7.52156734e-01 3.87653887e-01 1.08220863e+00 8.27171385e-01
4.45770353e-01 -1.65566072e-01 7.83112794e-02 2.29410797e-01
-8.11636597e-02 1.08510174e-01 7.65724540e-01 -7.08074749e-01
-3.87017950e-02 8.21243346e-01 -1.45482421e-01 -7.34937787e-01
-6.80577099e-01 1.80103723e-02 -8.24643314e-01 1.36799961e-01
5.77307761e-01 4.17068899e-02 -5.31783998e-01 1.59017038e+00
2.97712028e-01 9.18273907e-03 2.41505086e-01 2.17792317e-01
2.56544948e-01 6.78801239e-01 1.84416845e-02 -9.56740558e-01
1.01731133e+00 5.09024672e-02 -7.87738323e-01 6.20193720e-01
8.48577380e-01 -3.47075820e-01 5.13222754e-01 8.44332337e-01
-4.94265556e-01 -3.57149720e-01 -9.22075868e-01 3.80459696e-01
-1.09671092e+00 -4.02120799e-01 9.51602578e-01 4.06044453e-01
-7.79703617e-01 8.90772283e-01 -9.05676365e-01 -5.47914803e-01
-1.45725936e-01 3.51291627e-01 -3.83388966e-01 4.85864252e-01
-1.50721681e+00 8.67078066e-01 7.59930313e-01 -2.66587377e-01
-2.83544600e-01 -4.37345564e-01 -8.18417013e-01 -2.33443812e-01
3.75272840e-01 -1.01831228e-01 1.26786911e+00 -8.31174254e-01
-1.18531168e+00 8.59699368e-01 -7.97649622e-02 -6.68356478e-01
4.78753686e-01 4.73044097e-01 -1.15804243e+00 -1.44674018e-01
1.52899832e-01 8.70757699e-02 7.21465170e-01 -5.81223726e-01
-6.53163731e-01 -5.46040416e-01 -1.64234176e-01 -8.79841387e-01
-6.33975416e-02 2.46688843e-01 1.50171623e-01 -6.74784005e-01
-7.63890445e-02 -9.79982734e-01 -2.18117341e-01 -3.63892794e-01
-1.58129811e-01 -7.90043831e-01 8.41653466e-01 -5.07021070e-01
1.78678763e+00 -2.27709961e+00 2.33364403e-01 7.02219307e-01
-1.99125469e-01 -3.23538005e-01 5.92165709e-01 8.33387792e-01
-7.13882327e-01 1.42770901e-01 -6.19980156e-01 1.87529325e-01
6.33841828e-02 5.79564333e-01 -5.66900551e-01 4.73821640e-01
1.17102787e-01 3.33114475e-01 -9.38350022e-01 -6.08525395e-01
2.74631172e-01 -1.41163632e-01 -5.09140007e-02 -2.45664239e-01
-5.19005895e-01 2.37951115e-01 -4.50195104e-01 5.02789021e-01
1.43127948e-01 1.76204100e-01 3.24717671e-01 1.07857615e-01
-7.90557086e-01 -1.34923421e-02 -1.02562380e+00 1.44968641e+00
-1.45703673e-01 6.58884645e-01 -7.25404263e-01 -1.24604332e+00
1.15296328e+00 7.34823167e-01 1.06444001e+00 -6.83755815e-01
2.49211028e-01 5.11257529e-01 -1.01659410e-01 -5.40685117e-01
2.15166003e-01 -6.01825789e-02 -6.50566816e-01 4.76741731e-01
-2.46035293e-01 -1.28755018e-01 7.00728536e-01 -1.93034455e-01
1.17068005e+00 3.30333084e-01 8.41667235e-01 -1.18405588e-01
7.30658948e-01 5.07225454e-01 5.12606800e-01 2.58679628e-01
7.93057829e-02 -9.94110778e-02 1.10214686e+00 -7.64202833e-01
-1.00183070e+00 -8.16875339e-01 -4.58547473e-01 7.37261772e-01
-4.87090260e-01 -7.05708086e-01 -1.47071511e-01 -5.01368344e-01
3.56297046e-01 8.83513510e-01 -7.98506081e-01 -6.69635683e-02
-7.13950694e-01 -4.53730047e-01 6.63114905e-01 4.58579272e-01
7.09836697e-03 -1.08419693e+00 -8.32765281e-01 4.84538823e-01
1.24238618e-01 -8.96103382e-01 3.60774279e-01 6.73922241e-01
-1.09639084e+00 -1.16375530e+00 1.08590797e-02 -2.17173293e-01
-8.76064226e-02 -5.90097785e-01 8.45760882e-01 -2.68395454e-01
-2.65425920e-01 2.97482222e-01 -8.27700734e-01 -8.48453999e-01
-5.50550938e-01 -1.41485721e-01 2.78257132e-01 8.17754418e-02
5.27454793e-01 -9.94047463e-01 2.10318089e-01 3.10991257e-01
-1.27845907e+00 -3.16618294e-01 9.99572948e-02 4.43281442e-01
6.49750352e-01 4.96812999e-01 6.24737859e-01 -4.04876173e-01
4.61213887e-01 -7.12115467e-01 -8.48472655e-01 2.87533402e-01
-7.10585952e-01 2.97906309e-01 8.92954111e-01 -6.25043690e-01
-3.35172445e-01 8.11671987e-02 1.80571467e-01 -5.08424699e-01
-2.46124625e-01 1.09386253e+00 2.09461659e-01 2.53044158e-01
6.45483911e-01 3.22035372e-01 5.59802353e-02 -5.24497628e-01
1.17864899e-01 5.60082555e-01 4.71593231e-01 -7.77875721e-01
5.15237868e-01 5.49046934e-01 6.27306402e-01 -7.27832317e-01
-2.27932379e-01 -4.62651789e-01 -9.87838507e-01 -3.45248401e-01
6.36691272e-01 -1.63210064e-01 -6.75448835e-01 4.16146845e-01
-9.92122293e-01 -2.08569914e-01 -4.24784541e-01 5.67659616e-01
-9.43636596e-01 -2.19358914e-02 -1.28114507e-01 -1.01585734e+00
1.39165416e-01 -4.97793555e-01 6.53728664e-01 -3.38235468e-01
-7.72576094e-01 -1.12088120e+00 2.15632305e-01 -4.54704255e-01
1.00191057e-01 1.20153952e+00 1.40887785e+00 -1.04233980e+00
1.07892029e-01 -5.23729026e-01 3.98605525e-01 1.98206484e-01
4.54245973e-03 5.47838211e-01 -6.33652389e-01 8.25426206e-02
1.15583800e-01 7.17328563e-02 2.56832242e-01 1.15594387e-01
1.30393982e+00 -2.63649434e-01 -4.48466063e-01 2.96177119e-01
1.40285289e+00 8.91603887e-01 5.79210222e-01 5.18979788e-01
-9.42053199e-02 7.61234105e-01 1.09108639e+00 7.49466121e-01
9.12733302e-02 9.29857969e-01 1.74703613e-01 3.57640505e-01
6.79863691e-01 9.75802019e-02 3.47340107e-01 4.89472419e-01
-4.54989523e-01 2.94916064e-01 -1.01645482e+00 4.83464062e-01
-1.92190194e+00 -1.35044932e+00 -5.21347404e-01 2.33307409e+00
9.26788867e-01 3.46814215e-01 7.31365085e-01 1.17468476e+00
4.47962105e-01 -1.73523918e-01 -3.08937967e-01 -8.70840847e-01
4.67452258e-02 5.69767952e-01 3.44831049e-01 5.64596942e-03
-1.24363732e+00 4.48409766e-01 5.95398188e+00 7.03557372e-01
-1.31059480e+00 -2.12142095e-01 2.11437136e-01 2.42823780e-01
1.36461392e-01 1.67696178e-01 -3.20919991e-01 4.79901671e-01
1.57368529e+00 -9.08407450e-01 2.80928403e-01 8.60538960e-01
4.85349000e-01 -9.39048231e-02 -1.70176971e+00 8.03876936e-01
-4.52401459e-01 -1.10421658e+00 -2.59394705e-01 -6.96140230e-02
2.62926579e-01 -5.15992045e-01 -2.90118635e-01 5.18184006e-01
-1.05129622e-01 -8.29789400e-01 1.05284810e+00 6.37140274e-01
7.60502636e-01 -6.86265528e-01 6.07280195e-01 4.01617646e-01
-1.44135237e+00 -3.35748076e-01 3.87769461e-01 -3.60464901e-01
6.95856884e-02 5.23395121e-01 -5.31778812e-01 9.91526544e-01
8.48997772e-01 1.06389368e+00 -4.68057990e-01 9.36883211e-01
1.60079136e-01 5.11885166e-01 -4.68048811e-01 -1.06283739e-01
1.14794374e-01 -1.70749426e-01 5.70712626e-01 1.08263612e+00
4.38276500e-01 1.98595360e-01 -1.00559285e-02 6.14508986e-01
9.03012097e-01 1.33141195e-02 -8.40315342e-01 -2.41549745e-01
5.06879926e-01 7.31304586e-01 -6.95886493e-01 -3.86160105e-01
-3.30677032e-01 2.80384958e-01 -4.95603681e-01 2.02892601e-01
-1.00854123e+00 -5.83055615e-01 2.75163919e-01 1.73553690e-01
2.96051893e-02 -4.31897432e-01 -3.20693821e-01 -7.17935026e-01
1.12263963e-01 -8.34407032e-01 1.07017338e+00 -6.91254318e-01
-1.22345078e+00 6.25015497e-01 8.33881259e-01 -1.76791143e+00
-9.56259966e-01 -7.85875499e-01 -3.84663701e-01 6.85296297e-01
-6.81865692e-01 -8.84181201e-01 6.05243258e-02 1.02960944e+00
1.08166814e-01 7.49941692e-02 9.86103296e-01 1.63887888e-01
-2.43670136e-01 1.94565356e-01 -3.64391729e-02 -1.71642061e-02
4.63714689e-01 -1.29807198e+00 -2.22956836e-02 3.55629742e-01
-3.83343607e-01 3.13595772e-01 9.30459321e-01 -4.97474849e-01
-1.41537011e+00 -1.05729914e+00 1.18610013e+00 -2.13745788e-01
1.22784495e+00 -2.18574494e-01 -9.36069548e-01 7.58987606e-01
-3.41625959e-01 -2.48833388e-01 6.54636323e-01 1.14366179e-02
-3.68539363e-01 -4.61941302e-01 -1.18956351e+00 3.60297561e-01
8.14316392e-01 -5.44289052e-01 -9.03928399e-01 2.28592485e-01
7.50522435e-01 3.04910541e-02 -1.58686638e+00 5.51105499e-01
6.73925638e-01 -1.07347798e+00 8.54807794e-01 -6.31114781e-01
1.01044655e-01 -5.08161843e-01 -2.10543498e-01 -9.30308998e-01
-3.13438065e-02 -6.62183285e-01 -1.84953004e-01 1.05441546e+00
4.00924355e-01 -9.48243320e-01 1.93788946e-01 4.05522317e-01
-1.13019474e-01 -4.49564844e-01 -1.23072457e+00 -1.42211866e+00
-1.38533622e-01 -9.15087044e-01 9.22953606e-01 1.30407822e+00
4.50777709e-01 -1.57551646e-01 1.41540453e-01 -3.03398103e-01
3.65033269e-01 4.41003054e-01 4.35411751e-01 -1.64888859e+00
-2.20213115e-01 -7.05117404e-01 -9.90595698e-01 1.00794867e-01
2.40603909e-01 -9.06540096e-01 -4.71278310e-01 -8.39124084e-01
-6.78962708e-01 -5.26451468e-01 -6.68781027e-02 7.69088507e-01
8.64348471e-01 -3.50245357e-01 -2.87220120e-01 3.31158906e-01
-6.52708262e-02 1.93209484e-01 7.29052186e-01 9.87669174e-03
-5.92770994e-01 3.78457934e-01 1.28737122e-01 6.28251255e-01
6.35988593e-01 -5.48953652e-01 -3.27852756e-01 5.10037124e-01
4.44324315e-01 7.04781234e-01 4.62890714e-01 -1.13158095e+00
1.73032358e-01 -5.67074478e-01 2.31131971e-01 -8.85272920e-01
5.48215061e-02 -1.15054822e+00 9.26694095e-01 7.44582534e-01
-2.56140381e-01 4.04372722e-01 3.45923036e-01 3.86902213e-01
-5.79348564e-01 -8.02058503e-02 4.41670179e-01 1.27720043e-01
-1.06177378e+00 7.42783472e-02 -5.61655283e-01 -4.66975033e-01
1.53174353e+00 -3.63018870e-01 -1.62820444e-01 -2.57546902e-02
-1.22397244e+00 8.98434296e-02 2.59342164e-01 3.01246524e-01
3.06622416e-01 -1.40979576e+00 -4.36504245e-01 4.49335761e-03
3.37888479e-01 -3.09578091e-01 -2.79643297e-01 1.23639119e+00
-3.35717142e-01 6.23334289e-01 -2.60314286e-01 -7.00042009e-01
-1.20499265e+00 1.11544549e+00 1.34713158e-01 -2.87421554e-01
-5.80600560e-01 -1.71358824e-01 -6.51580572e-01 -2.00717822e-02
6.81498274e-02 -8.81106079e-01 -3.62513095e-01 5.15796483e-01
3.88832241e-01 4.52835023e-01 2.24997282e-01 -3.01805288e-01
-6.89890325e-01 4.95107591e-01 5.62355578e-01 -3.84198666e-01
1.48976445e+00 4.41253245e-01 -8.30155909e-01 1.25478768e+00
1.27207232e+00 -3.90891612e-01 -2.91256994e-01 -1.24442410e-02
7.41452217e-01 1.73637026e-03 -5.47333956e-01 -6.57808304e-01
-3.31294596e-01 2.90052116e-01 4.14366454e-01 1.15840387e+00
1.62424862e+00 -5.42719290e-02 1.72561601e-01 4.11058038e-01
8.54338884e-01 -8.65859330e-01 -5.93864620e-01 7.36533701e-01
1.04367113e+00 -6.86642349e-01 -1.19462438e-01 -2.66365618e-01
-2.42766827e-01 1.61080372e+00 4.28714640e-02 6.77972361e-02
9.50666428e-01 3.97447348e-01 -4.88852203e-01 -8.67134631e-02
-1.10759318e+00 -2.75594443e-01 1.26500458e-01 4.15722907e-01
3.83801460e-01 4.40516442e-01 -6.75416231e-01 8.40972781e-01
-3.67142379e-01 5.48179328e-01 3.40703905e-01 1.28726351e+00
-2.36453842e-02 -1.32749343e+00 -6.23339117e-01 3.89915556e-01
-2.17065454e-01 2.79031962e-01 -4.81260419e-01 1.33391452e+00
4.25372869e-01 9.68361318e-01 2.72331983e-01 -6.83848023e-01
5.32696962e-01 4.57931072e-01 3.77222180e-01 -2.49515876e-01
-6.85579121e-01 -3.05560619e-01 2.84443259e-01 -5.30154049e-01
-5.84866524e-01 -1.04989529e+00 -1.38058507e+00 -4.94479597e-01
1.67082742e-01 3.41049373e-01 7.05801964e-01 1.07410419e+00
-1.88194171e-01 3.69698107e-01 9.24112499e-01 -5.84989905e-01
-2.87238181e-01 -7.52570748e-01 -7.60116100e-01 3.79612625e-01
2.01474726e-01 -6.33455396e-01 -5.52239060e-01 2.23618403e-01] | [7.258142471313477, 3.3350372314453125] |
29af4675-1065-4069-863a-053c52e33293 | norppa-novel-ringed-seal-re-identification-by | 2206.02498 | null | https://arxiv.org/abs/2206.02498v3 | https://arxiv.org/pdf/2206.02498v3.pdf | NORPPA: NOvel Ringed seal re-identification by Pelage Pattern Aggregation | We propose a method for Saimaa ringed seal (Pusa hispida saimensis) re-identification. Access to large image volumes through camera trapping and crowdsourcing provides novel possibilities for animal monitoring and conservation and calls for automatic methods for analysis, in particular, when re-identifying individual animals from the images. The proposed method NOvel Ringed seal re-identification by Pelage Pattern Aggregation (NORPPA) utilizes the permanent and unique pelage pattern of Saimaa ringed seals and content-based image retrieval techniques. First, the query image is preprocessed, and each seal instance is segmented. Next, the seal's pelage pattern is extracted using a U-net encoder-decoder based method. Then, CNN-based affine invariant features are embedded and aggregated into Fisher Vectors. Finally, the cosine distance between the Fisher Vectors is used to find the best match from a database of known individuals. We perform extensive experiments of various modifications of the method on a new challenging Saimaa ringed seals re-identification dataset. The proposed method is shown to produce the best re-identification accuracy on our dataset in comparisons with alternative approaches. | ['Heikki Kälviäinen', 'Tuomas Eerola', 'Ilia Chelak', 'Ekaterina Nepovinnykh'] | 2022-06-06 | null | null | null | null | ['content-based-image-retrieval'] | ['computer-vision'] | [ 2.31380276e-02 -1.07670575e-01 1.92230746e-01 -5.86197555e-01
-5.95205307e-01 -6.76497161e-01 5.45600235e-01 5.95568717e-01
-1.30832374e+00 4.31393832e-01 -1.04177810e-01 3.80390137e-01
6.78777089e-03 -6.46922827e-01 -7.16502786e-01 -6.47854388e-01
-5.77106237e-01 4.03002173e-01 3.03709418e-01 -1.91447929e-01
2.94766843e-01 9.47584093e-01 -1.84479833e+00 -3.43036562e-01
1.24917977e-01 7.41346002e-01 3.69980961e-01 5.87909341e-01
3.79683435e-01 4.94296223e-01 -5.59358418e-01 -8.38754237e-01
6.30242884e-01 -2.50609796e-02 -5.31781793e-01 -4.89097089e-01
8.85442615e-01 -9.04008210e-01 -3.07297379e-01 9.80873764e-01
3.95647854e-01 1.57289088e-01 6.51575506e-01 -5.84117293e-01
-2.51379520e-01 5.11599123e-01 -6.37690187e-01 8.66595328e-01
1.47173062e-01 1.03408657e-02 8.26107979e-01 -6.28626704e-01
5.37867486e-01 1.15602565e+00 1.24602556e+00 7.58907080e-01
-1.17722452e+00 -9.58287537e-01 -7.48365581e-01 1.57458514e-01
-1.67859578e+00 -5.60184181e-01 3.80792499e-01 -5.55265665e-01
7.22237289e-01 9.68204662e-02 1.03669012e+00 5.29162437e-02
6.09734692e-02 6.39353454e-01 1.01425064e+00 1.56519767e-02
1.94660217e-01 -9.34869575e-04 1.62975676e-02 7.09486544e-01
3.10554773e-01 2.17155963e-01 -5.19762933e-01 -5.56925178e-01
3.76889855e-01 4.75988388e-01 1.98299885e-01 -1.36126488e-01
-9.05218720e-01 9.51250136e-01 5.17847657e-01 -1.78676359e-02
-1.19461089e-01 7.55097196e-02 2.47564316e-01 2.84916908e-01
3.11970115e-01 4.15257722e-01 1.06273584e-01 1.97856463e-02
-1.41298699e+00 6.58294678e-01 5.79918981e-01 5.22745788e-01
1.27889943e+00 -3.88606012e-01 -2.08160020e-02 1.17774057e+00
4.43869978e-01 1.00718510e+00 6.08700454e-01 -5.36929727e-01
2.04325333e-01 3.90248418e-01 2.72484243e-01 -1.28479838e+00
-5.26683390e-01 1.70868337e-01 -4.39885795e-01 1.25519842e-01
1.05466999e-01 5.77358268e-02 -6.38624787e-01 1.38406742e+00
5.72297096e-01 -8.63834843e-03 3.39465410e-01 8.30851734e-01
9.16274011e-01 4.49838221e-01 1.59333095e-01 2.00361446e-01
1.76387942e+00 -4.88823801e-01 -3.36979806e-01 -4.80933517e-01
3.38556617e-01 -4.62045103e-01 5.91398515e-02 -6.12811804e-01
-6.20961249e-01 -3.28044385e-01 -1.47330236e+00 1.19133994e-01
-6.06574833e-01 3.59287888e-01 2.24196270e-01 7.87048221e-01
-1.15288675e+00 5.60867190e-01 -8.65443528e-01 -4.51727092e-01
5.27830184e-01 6.83286667e-01 -1.02688074e+00 4.56196964e-01
-7.42413223e-01 8.43810499e-01 1.61250085e-01 4.25972253e-01
-1.11963296e+00 -3.73814523e-01 -1.32536042e+00 -2.99976408e-01
-3.45898569e-01 4.60742489e-02 1.36674321e+00 -4.59570795e-01
-1.24382865e+00 1.66807449e+00 -3.95517088e-02 -1.36018145e+00
3.26299548e-01 -3.06252036e-02 9.43775289e-03 5.38727224e-01
5.43087721e-01 1.08901322e+00 9.61583853e-01 -7.51299918e-01
-1.05214262e+00 -6.60374701e-01 -3.52307916e-01 3.78116146e-02
4.50006351e-02 2.94585049e-01 1.40846357e-01 -8.95363867e-01
1.49276227e-01 -9.45801914e-01 -7.55781829e-02 2.46373788e-01
4.85341191e-01 -1.33020177e-01 6.17019236e-01 -8.45000923e-01
7.65333533e-01 -2.41458917e+00 -3.83157402e-01 1.19796656e-01
2.88785666e-01 4.69618142e-01 -5.44365263e-03 5.76990366e-01
3.02384824e-01 -1.04926825e-01 -7.49496520e-01 -8.19784701e-01
-3.08798283e-01 3.67143691e-01 -3.19105200e-02 1.16845930e+00
3.56781520e-02 5.32497644e-01 -8.92193854e-01 -7.82727122e-01
1.32645220e-01 3.50181580e-01 -3.01784903e-01 4.76619661e-01
4.34461474e-01 1.98036864e-01 -2.01560020e-01 7.41729081e-01
8.91655207e-01 6.00620270e-01 -2.25685909e-01 1.26467660e-01
-5.62971711e-01 -3.21626991e-01 -5.49128294e-01 1.05280209e+00
-4.55549031e-01 8.81121457e-01 5.44549376e-02 -5.95803976e-01
1.18491340e+00 -2.53770024e-01 3.64738911e-01 -5.51629245e-01
1.87679932e-01 5.12846410e-01 -2.67619014e-01 -5.29192507e-01
1.05234337e+00 -4.39814515e-02 -1.25280783e-01 3.87497276e-01
7.05792382e-02 -6.22474067e-02 2.71420419e-01 2.20206212e-02
6.42875791e-01 -2.74992615e-01 4.11976427e-01 -6.23291790e-01
4.27283198e-01 5.77344783e-02 2.46246874e-01 7.22444236e-01
-4.19947833e-01 3.85059386e-01 -2.28393123e-01 -1.27146113e+00
-9.55008566e-01 -7.28707492e-01 -6.06936514e-01 8.94690454e-01
4.93541509e-01 -1.64492518e-01 -1.11442709e+00 -3.48855346e-01
3.28817457e-01 1.97019950e-02 -1.23189545e+00 2.23486568e-03
-5.68259418e-01 -8.13427210e-01 1.12358022e+00 1.67855516e-01
9.51331437e-01 -1.00279701e+00 -1.40901434e+00 1.79357529e-01
8.79645050e-02 -1.02633560e+00 -6.01957202e-01 -2.54122019e-01
-6.38950527e-01 -1.03561974e+00 -9.42819595e-01 -1.01461554e+00
6.97772324e-01 4.78900105e-01 2.73504734e-01 3.71352375e-01
-6.02866769e-01 2.49430016e-01 -3.15683514e-01 -1.40543422e-02
-3.48606169e-01 -3.61259073e-01 3.58992130e-01 4.47062999e-01
7.03073859e-01 -3.91937375e-01 -7.45157361e-01 4.47103232e-01
-8.02717209e-01 -5.48642755e-01 4.37075436e-01 7.65533686e-01
7.69662678e-01 -4.80467349e-01 3.14291567e-01 -1.65833816e-01
1.15103140e-01 -4.74914551e-01 -1.17771959e+00 1.76576555e-01
4.08207960e-02 1.09924823e-01 1.87995166e-01 -3.40810657e-01
-5.34945250e-01 6.65929794e-01 -1.24445811e-01 -6.98741227e-02
-3.13438512e-02 -5.37315607e-02 3.97425592e-01 -6.78663433e-01
4.57348675e-01 3.32562983e-01 3.25802267e-01 -6.94597960e-01
-1.50765985e-01 1.03607428e+00 1.05571389e+00 8.05421099e-02
8.28551233e-01 8.48972440e-01 -1.63460955e-01 -1.22445345e+00
-1.77223876e-01 -6.76120579e-01 -6.17499411e-01 -3.63348186e-01
1.40340579e+00 -1.00122201e+00 -9.29458737e-01 1.00710940e+00
-9.83716846e-01 -3.81669998e-02 -8.61891732e-02 4.57406253e-01
-3.36063564e-01 6.82416558e-01 -4.68210042e-01 -1.04994655e+00
-7.59218514e-01 -1.13159442e+00 1.36523044e+00 8.60069692e-01
1.50769576e-01 -4.53513771e-01 6.90779805e-01 3.70998204e-01
4.12385106e-01 1.57804459e-01 -6.29445389e-02 -1.20003021e+00
-1.59666002e-01 -7.31985331e-01 -2.16349095e-01 2.21249238e-02
2.78099980e-02 -1.41817808e-01 -8.54770660e-01 -4.21180308e-01
1.81017611e-02 1.92005653e-02 8.91164780e-01 -2.39612944e-02
3.83685112e-01 -5.15066087e-01 -6.16093516e-01 6.92661941e-01
1.25014770e+00 2.24571511e-01 1.96839765e-01 5.49157917e-01
3.25217575e-01 7.35911548e-01 5.16519487e-01 6.33244812e-01
1.00499713e+00 7.96539545e-01 3.72797012e-01 1.97670609e-01
2.02387244e-01 -7.44115055e-01 1.86063737e-01 9.97339636e-02
-2.00116187e-01 3.75582427e-01 -9.94856656e-01 1.10882103e+00
-1.37894452e+00 -1.11308789e+00 3.73405010e-01 2.53989244e+00
3.79011720e-01 -7.66471505e-01 3.99995744e-01 -3.37401718e-01
8.95118177e-01 -1.62627045e-02 -1.97688013e-01 -1.79750890e-01
-2.76582241e-01 1.31377995e-01 1.43451691e+00 6.43687367e-01
-1.45932996e+00 9.89150226e-01 5.86436987e+00 7.13855565e-01
-8.12208533e-01 -4.65401672e-02 4.22214985e-01 2.76608199e-01
3.21266353e-01 -3.77960992e-03 -1.11262047e+00 4.54333782e-01
5.74050784e-01 -1.58550553e-02 2.91422009e-01 7.65010297e-01
-3.56938303e-01 -4.76456970e-01 -7.67318606e-01 1.35508966e+00
6.11155689e-01 -1.07734525e+00 -5.38526475e-01 7.19775334e-02
6.01989329e-01 2.74981111e-01 -3.05442721e-01 -3.17447931e-01
1.11662120e-01 -7.05487609e-01 9.36549008e-01 5.69016993e-01
5.48746169e-01 -6.80078685e-01 1.11014771e+00 1.45481423e-01
-1.46393168e+00 -4.14376445e-02 -6.35716438e-01 -1.46254878e-02
-2.44327366e-01 -4.24919635e-01 -7.39107251e-01 -8.08914080e-02
1.29564595e+00 5.88431060e-01 -1.09592748e+00 1.55499291e+00
2.87587792e-01 1.35920778e-01 -1.00973046e+00 -4.83927161e-01
1.41765133e-01 -1.58965752e-01 6.27797961e-01 1.28621078e+00
2.25528806e-01 2.82539308e-01 -3.07314873e-01 4.19513822e-01
-9.12744924e-03 3.25492352e-01 -5.26194751e-01 2.86914438e-01
6.03777945e-01 1.16940331e+00 -8.90290916e-01 -4.82017398e-01
-3.89845595e-02 6.68547690e-01 3.50918472e-01 -2.95362532e-01
-2.74401724e-01 -4.32172209e-01 5.64988792e-01 1.86432265e-02
5.96931398e-01 -4.22769636e-02 4.46831763e-01 -8.87512326e-01
-6.52464256e-02 -3.77079070e-01 5.15555561e-01 -2.05577537e-01
-1.18896377e+00 8.44331741e-01 6.07554495e-01 -1.59754109e+00
-1.37422055e-01 -1.28624454e-01 -3.49909306e-01 4.49785292e-01
-1.40469980e+00 -1.17156494e+00 -8.27487707e-02 2.30191395e-01
3.08274895e-01 -4.32677358e-01 4.83075023e-01 3.23725760e-01
7.73202926e-02 9.46615458e-01 3.50825995e-01 3.45223755e-01
2.94345856e-01 -8.50296259e-01 5.19541025e-01 8.35169733e-01
2.20007256e-01 4.24256414e-01 6.64613903e-01 -9.34612274e-01
-1.25769627e+00 -8.38449478e-01 8.14555764e-01 -1.71726882e-01
6.16365075e-01 -4.70353693e-01 -6.96797073e-01 4.97621953e-01
-5.92143349e-02 7.22272918e-02 6.48525238e-01 -1.03900528e+00
-1.95262015e-01 -3.77561569e-01 -1.62922335e+00 1.00701340e-01
4.75717366e-01 -6.33590579e-01 -6.93019807e-01 2.61093736e-01
2.70430464e-02 -2.48601928e-01 -7.42309511e-01 2.42667958e-01
9.04012561e-01 -7.21916080e-01 7.79106915e-01 4.97981720e-02
5.58120422e-02 -6.42514586e-01 -1.19581461e-01 -8.64782095e-01
3.04403514e-01 -5.42575896e-01 8.05337250e-01 9.89735007e-01
1.35365993e-01 -6.72040284e-01 3.30744237e-01 3.15949827e-01
3.14902812e-01 1.09452158e-02 -1.57075369e+00 -6.47744834e-01
-1.51622579e-01 1.72889382e-01 8.71960044e-01 4.54716623e-01
-2.72070557e-01 -2.66150147e-01 -7.78483987e-01 4.99426961e-01
1.13894832e+00 2.56507378e-02 9.34647143e-01 -1.06404305e+00
1.39611378e-01 -1.86468080e-01 -1.25203156e+00 -8.78868282e-01
8.08092058e-02 -7.02646673e-01 3.90711010e-01 -8.00655365e-01
-1.21103041e-01 -3.29062372e-01 5.01063466e-01 6.91578209e-01
4.75715622e-02 9.69101191e-01 2.05677837e-01 5.10031998e-01
-4.08123970e-01 4.90400612e-01 4.70921308e-01 -3.65179569e-01
3.17156054e-02 2.22192153e-01 1.57637060e-01 5.11746943e-01
5.03691792e-01 -8.15006554e-01 4.60385054e-01 -4.36062902e-01
-5.03271222e-02 2.57920861e-01 7.37477243e-01 -1.37718713e+00
5.98692596e-01 4.81221199e-01 -1.80681363e-01 -5.74625373e-01
3.82471532e-01 -8.50155950e-01 4.32536960e-01 6.90446496e-01
-1.11558989e-01 1.99613065e-01 4.51306283e-01 6.74486160e-01
-3.32825929e-01 -7.16734946e-01 1.05616999e+00 2.60532256e-02
-6.01369739e-01 1.71363801e-01 -9.36554968e-01 -4.08769876e-01
9.50593829e-01 -4.21147138e-01 -3.14873978e-02 -9.10389889e-03
-2.30608210e-01 1.12417839e-01 6.46893919e-01 3.65604281e-01
6.12867892e-01 -8.44088972e-01 -9.85705435e-01 6.88554108e-01
4.78257507e-01 -2.74179965e-01 6.80482805e-01 4.64573115e-01
-1.39961076e+00 -1.91553593e-01 -5.06790757e-01 -5.71693599e-01
-1.66029108e+00 2.66973108e-01 7.55740106e-01 3.73672754e-01
-6.14161670e-01 8.99535894e-01 -1.66028187e-01 -8.08903053e-02
-4.85662706e-02 -1.10149093e-01 -6.16478682e-01 3.23739380e-01
1.03648818e+00 7.47962296e-02 -1.91926509e-01 -1.71221757e+00
-5.03401577e-01 9.22816515e-01 -1.10621803e-01 7.98334926e-02
1.46895039e+00 -1.44166514e-01 -3.09621483e-01 -1.13498650e-01
1.30897319e+00 1.85206756e-01 -1.11821854e+00 -2.59234160e-01
-3.17761907e-03 -6.81651413e-01 -2.99764633e-01 3.92359346e-02
-1.08593321e+00 6.95424378e-01 1.33223450e+00 1.35061190e-01
6.16100311e-01 3.29682380e-01 7.00361192e-01 6.26323879e-01
5.77484012e-01 -9.13825989e-01 -7.43974030e-01 -1.52741119e-01
8.64883721e-01 -1.50534844e+00 1.70328408e-01 5.70698023e-01
-6.44360006e-01 8.49739254e-01 1.89086094e-01 -4.34444129e-01
6.85767353e-01 1.03164501e-01 1.74558729e-01 -3.38954896e-01
-3.79921794e-02 -3.28350097e-01 -1.35723680e-01 6.42903030e-01
-3.87786090e-01 4.27629352e-01 -2.64294237e-01 4.58189011e-01
-8.81065905e-01 -6.58281505e-01 4.63650674e-01 9.54848111e-01
-4.64336216e-01 -6.33996367e-01 -7.47912407e-01 3.43687594e-01
-6.93895936e-01 -3.15513462e-02 -2.86792457e-01 5.64973116e-01
2.41202250e-01 8.50857317e-01 3.39929134e-01 -5.04641533e-01
2.25891992e-01 -6.20589852e-01 1.04586840e-01 -1.63212448e-01
-9.30464745e-01 -4.14057553e-01 -2.24575356e-01 1.47829056e-01
-9.95943308e-01 -8.98008883e-01 -7.27796495e-01 -4.61670235e-02
-3.40845734e-01 5.70573509e-01 9.19476449e-01 8.76083016e-01
-1.93909168e-01 -9.45161581e-01 7.24309564e-01 -1.03687835e+00
2.95100342e-02 -9.37761307e-01 -5.16077220e-01 1.59583718e-01
7.53175378e-01 -8.04253519e-01 -6.06950641e-01 1.34449974e-01] | [8.245160102844238, -1.1261447668075562] |
c8b95b87-ed1a-406b-a247-668536708d79 | infinite-dimensional-sparse-learning-in | 2203.14731 | null | https://arxiv.org/abs/2203.14731v2 | https://arxiv.org/pdf/2203.14731v2.pdf | Infinite-Dimensional Sparse Learning in Linear System Identification | Regularized methods have been widely applied to system identification problems without known model structures. This paper proposes an infinite-dimensional sparse learning algorithm based on atomic norm regularization. Atomic norm regularization decomposes the transfer function into first-order atomic models and solves a group lasso problem that selects a sparse set of poles and identifies the corresponding coefficients. The difficulty in solving the problem lies in the fact that there are an infinite number of possible atomic models. This work proposes a greedy algorithm that generates new candidate atomic models maximizing the violation of the optimality condition of the existing problem. This algorithm is able to solve the infinite-dimensional group lasso problem with high precision. The algorithm is further extended to reduce the bias and reject false positives in pole location estimation by iteratively reweighted adaptive group lasso and complementary pairs stability selection respectively. Numerical results demonstrate that the proposed algorithm performs better than benchmark parameterized and regularized methods in terms of both impulse response fitting and pole location estimation. | ['Roy S. Smith', 'Andrea Iannelli', 'Mehmet Tolga Akan', 'Mingzhou Yin'] | 2022-03-28 | null | null | null | null | ['sparse-learning'] | ['methodology'] | [ 2.37949505e-01 1.74683183e-01 -4.15069014e-01 2.61731148e-02
-1.07900703e+00 -3.56880456e-01 -2.82505397e-02 -2.86190480e-01
3.51476610e-01 1.00480485e+00 -6.88032806e-02 4.67822775e-02
-7.21590996e-01 -1.01802379e-01 -7.07875371e-01 -9.31199968e-01
-1.79926932e-01 5.36218286e-01 -3.56426388e-01 -1.69274002e-01
3.29213977e-01 2.92764515e-01 -1.40335834e+00 -1.34845778e-01
1.18719697e+00 8.12224209e-01 -4.59511429e-02 1.11473061e-01
6.17851913e-01 4.38077450e-01 -2.07431093e-01 5.62591791e-01
3.96664292e-01 -5.46568215e-01 -4.75273341e-01 4.30469543e-01
3.85010093e-01 1.40738279e-01 2.34857649e-01 1.15669215e+00
5.58054447e-01 3.30872715e-01 7.19680071e-01 -1.13680220e+00
-1.48593917e-01 5.08930087e-01 -7.17083216e-01 5.44534400e-02
3.40910494e-01 -3.33549738e-01 9.23444986e-01 -1.33967912e+00
1.52577668e-01 1.16135097e+00 1.04998374e+00 8.91841948e-02
-1.76410902e+00 -6.72279179e-01 3.77505086e-02 -1.89984024e-01
-1.70354331e+00 -4.42329615e-01 8.24865699e-01 -6.01753116e-01
7.83597350e-01 3.66897583e-01 2.75932133e-01 5.78362882e-01
-2.87452370e-01 3.13913435e-01 8.78486812e-01 -5.47041476e-01
2.39671096e-01 1.03229553e-01 6.47747755e-01 7.97177911e-01
4.90358084e-01 7.98549429e-02 -3.97600144e-01 -9.24553514e-01
1.06719935e+00 -4.45919096e-01 -4.85946417e-01 -5.25667667e-01
-1.35800219e+00 8.39539707e-01 -1.01671092e-01 3.16720486e-01
-5.81545174e-01 -5.51887937e-02 3.23821008e-01 2.85584569e-01
4.14423555e-01 5.71724772e-01 -2.85763353e-01 4.84034747e-01
-9.18304622e-01 2.07311377e-01 8.15107882e-01 8.47541213e-01
7.38304555e-01 9.87882912e-01 1.49767950e-01 1.21439064e+00
1.97603732e-01 7.18450606e-01 3.90642256e-01 -9.98736024e-01
3.13456655e-01 4.88077283e-01 3.98067534e-01 -1.25911355e+00
-4.05193537e-01 -6.76443398e-01 -1.08363974e+00 -2.83975601e-02
2.86203802e-01 -3.03865433e-01 -5.98397434e-01 1.62833309e+00
5.36382139e-01 8.08056891e-01 -9.11186561e-02 1.23493052e+00
3.74731004e-01 9.58845556e-01 -1.24772757e-01 -8.83494437e-01
9.02490735e-01 -7.53863573e-01 -8.84969473e-01 9.46541782e-03
6.06683552e-01 -8.47236454e-01 7.52667904e-01 5.43066859e-01
-9.72946227e-01 -5.60617149e-01 -1.02193594e+00 5.78131258e-01
5.56815684e-01 8.71056199e-01 6.27032578e-01 3.73060852e-01
-6.42518461e-01 4.98996079e-01 -5.71748972e-01 6.01910539e-02
-4.73902553e-01 8.20155621e-01 -2.23581761e-01 6.50550902e-01
-1.16921377e+00 5.68541229e-01 3.44257504e-01 4.07911539e-01
-7.70928025e-01 -7.84792900e-01 -6.39528871e-01 1.19041383e-01
3.35745841e-01 -6.57355249e-01 6.94897950e-01 -1.22812414e+00
-1.45956993e+00 4.70301688e-01 -2.82376081e-01 -5.13783932e-01
3.38115692e-02 -1.26364514e-01 -4.67856735e-01 8.69777333e-03
5.97349294e-02 -2.79986471e-01 1.67473292e+00 -1.12997758e+00
-3.68251294e-01 -1.33824617e-01 -4.27144080e-01 1.84347138e-01
-1.24633297e-01 -2.94654578e-01 8.55147541e-02 -8.94343436e-01
8.65830839e-01 -1.07776368e+00 -4.60498899e-01 -6.05448484e-01
-4.38339949e-01 -3.77447195e-02 7.80857742e-01 -6.45439804e-01
1.66108835e+00 -2.26710939e+00 5.46034753e-01 8.61561656e-01
-6.77427948e-02 2.11052224e-01 4.18043211e-02 3.91295195e-01
-5.52281618e-01 -1.81837797e-01 -2.27471620e-01 1.47659197e-01
-3.09895635e-01 -2.47757182e-01 -4.85881507e-01 7.85152435e-01
-1.92389622e-01 -4.24646251e-02 -5.03578842e-01 -1.82692841e-01
1.52806133e-01 3.65819573e-01 -5.02486229e-01 -1.27891257e-01
1.94505140e-01 6.30454898e-01 -7.42281556e-01 5.72617292e-01
5.80738544e-01 -4.71629679e-01 4.11859095e-01 -7.13696003e-01
-3.07851076e-01 -8.09598193e-02 -2.08673930e+00 1.04805613e+00
-3.56914967e-01 1.10298924e-01 6.76150441e-01 -1.58032036e+00
1.21481991e+00 6.69028401e-01 9.54363704e-01 1.17728949e-01
7.05913007e-02 7.18203723e-01 -2.44204909e-01 -3.60627234e-01
-5.49084395e-02 -1.37396082e-01 -3.67202498e-02 2.51902163e-01
6.88690394e-02 -3.38913500e-02 -9.44611132e-02 -1.01866297e-01
4.01747495e-01 -1.69665977e-01 4.92746085e-01 -1.00804830e+00
1.24979794e+00 -2.14126687e-02 9.63120997e-01 5.09674966e-01
2.19269857e-01 3.39989871e-01 2.04937622e-01 -5.72486520e-01
-1.03148770e+00 -6.66986525e-01 -2.81009465e-01 7.34190762e-01
8.93841013e-02 -1.38078555e-01 -5.39076269e-01 8.03231299e-02
1.51737228e-01 4.23684418e-01 -3.08723122e-01 -1.71075478e-01
-7.91868031e-01 -8.02205980e-01 2.49612212e-01 2.39755567e-02
1.34860680e-01 -3.01278085e-01 -8.67845416e-02 2.80166745e-01
-2.98152149e-01 -6.53838396e-01 -5.12870014e-01 1.78961262e-01
-1.13190949e+00 -1.02106094e+00 -6.14225686e-01 -1.35494912e+00
1.04395819e+00 1.43671960e-01 5.07217646e-01 -2.34756529e-01
-2.33273834e-01 3.98246646e-01 -6.89043552e-02 -8.61927047e-02
-1.59382731e-01 -1.40954316e-01 7.56968737e-01 5.79053402e-01
-1.74390540e-01 -6.32401943e-01 -2.39014044e-01 6.15405440e-01
-2.11495921e-01 -1.59259051e-01 1.30764902e-01 1.28579795e+00
1.09387124e+00 -9.13280174e-02 1.30654883e+00 -7.30969429e-01
8.15854669e-01 -5.01504064e-01 -1.16759396e+00 2.47102633e-01
-6.37932479e-01 1.10387430e-01 7.36204922e-01 -6.07275069e-01
-1.04470325e+00 4.98000383e-01 4.34067965e-01 -6.23694241e-01
5.40883720e-01 7.74179995e-01 2.55845368e-01 -5.19246638e-01
7.95475841e-01 1.68492928e-01 1.99524358e-01 -5.49690306e-01
3.53884436e-02 4.15263027e-01 2.87541181e-01 -6.97650552e-01
7.17548966e-01 1.22050352e-01 3.50579947e-01 -1.28759444e+00
-8.11389863e-01 -8.52386653e-01 -2.70731688e-01 -1.11423574e-01
3.05632025e-01 -1.14545906e+00 -6.59717560e-01 2.19002351e-01
-7.83004344e-01 1.96064755e-01 -2.27621883e-01 9.01825368e-01
-8.31347942e-01 5.83574235e-01 -4.28519815e-01 -1.06901026e+00
-6.19458854e-01 -9.62352037e-01 9.50591385e-01 -1.30308926e-01
-2.41182134e-01 -8.44599366e-01 8.19576159e-02 1.47533387e-01
6.38346225e-02 2.18012989e-01 8.25502992e-01 -4.73774463e-01
-3.51152509e-01 -3.42489511e-01 3.14671755e-01 4.30125207e-01
3.61601636e-02 -2.06234738e-01 -5.13261497e-01 -6.88608885e-01
5.39374053e-01 -2.34938338e-01 4.09018606e-01 8.52584898e-01
6.01757169e-01 -4.44965422e-01 -3.80791456e-01 6.72571540e-01
1.50603342e+00 1.59731153e-02 1.69443056e-01 7.29326438e-03
6.23091817e-01 3.95288587e-01 7.08198011e-01 7.24284410e-01
-5.26394427e-01 5.17510712e-01 3.88764078e-03 7.56946355e-02
4.75360960e-01 5.93280680e-02 1.28809080e-01 1.13503361e+00
-1.69549212e-01 3.77821326e-01 -7.66932070e-01 5.98814607e-01
-2.20206308e+00 -1.03786075e+00 -5.47130108e-01 2.60327601e+00
4.14798826e-01 -3.81567419e-01 1.46056995e-01 4.23003018e-01
1.17514777e+00 -2.52347857e-01 -4.84035224e-01 -2.53454357e-01
-1.83951765e-01 -3.43715958e-02 4.97808725e-01 8.29229057e-01
-1.19508243e+00 5.36746681e-01 6.78159142e+00 8.52598727e-01
-1.04634655e+00 -2.37365127e-01 3.61323893e-01 2.15093896e-01
2.82537844e-02 1.97862297e-01 -1.00501692e+00 1.24529243e-01
7.76451230e-01 -5.30378878e-01 5.13875246e-01 7.84885406e-01
5.88665009e-01 7.65686017e-03 -7.50183284e-01 1.24068964e+00
8.55528563e-02 -1.07909954e+00 -5.60733676e-02 -3.45668882e-01
1.22413135e+00 -5.10117471e-01 9.88159776e-02 6.50360286e-02
-4.66084510e-01 -7.56362498e-01 3.70686114e-01 6.20864511e-01
5.47140777e-01 -6.73689783e-01 2.62249708e-01 5.42172790e-01
-1.30283678e+00 -4.55762804e-01 -4.13233727e-01 -7.91800767e-02
3.32772434e-01 8.13584089e-01 -6.65034294e-01 4.98703569e-01
1.89368397e-01 6.70306325e-01 5.57175279e-02 1.21749115e+00
1.54776871e-01 9.74380016e-01 -8.21826100e-01 2.41941124e-01
1.58458993e-01 -9.01660383e-01 1.14645720e+00 6.12282574e-01
5.78235984e-01 3.50770473e-01 5.36356032e-01 7.71689951e-01
5.65059483e-01 4.80299622e-01 -4.64455396e-01 1.61646277e-01
6.17701828e-01 9.20993924e-01 -3.98566931e-01 -3.49122763e-01
-2.47638837e-01 4.91372555e-01 -1.58221036e-01 6.97781920e-01
-8.40693057e-01 -2.03941762e-01 1.81470588e-01 2.08136156e-01
9.87050831e-02 -1.13968164e-01 -2.76305526e-01 -1.25769925e+00
-1.35701999e-01 -1.26192558e+00 5.12933314e-01 -4.00129378e-01
-1.13529766e+00 3.62902403e-01 6.04973137e-02 -1.62718070e+00
-5.30418336e-01 -1.19785048e-01 -3.84416431e-01 1.10204268e+00
-6.61872566e-01 -1.03890038e+00 1.95090994e-01 8.08756232e-01
6.24523938e-01 -4.32835609e-01 9.16576624e-01 4.97645348e-01
-6.39909267e-01 3.59873593e-01 6.23170555e-01 -3.97589773e-01
6.23717368e-01 -7.41737545e-01 -3.89743030e-01 6.28251255e-01
-3.79207224e-01 8.88670266e-01 1.06436527e+00 -7.13164032e-01
-1.40816104e+00 -9.17051733e-01 8.14715385e-01 2.56510466e-01
7.63142228e-01 3.35571431e-02 -1.02227426e+00 6.41113758e-01
-3.83162320e-01 3.74596640e-02 5.38270235e-01 2.27505803e-01
2.69666743e-02 -2.71389842e-01 -9.88802135e-01 2.32217595e-01
4.45674092e-01 -3.96654218e-01 -4.77097124e-01 7.02156603e-01
2.62534767e-01 -2.28213042e-01 -9.56881404e-01 7.72067547e-01
2.83664078e-01 -3.58692348e-01 1.26071835e+00 -5.88421643e-01
-4.31966543e-01 -6.77800179e-01 -7.29438737e-02 -1.13720477e+00
-6.43048644e-01 -1.05637777e+00 -3.53231609e-01 9.74633813e-01
5.52735507e-01 -6.68288052e-01 6.51568294e-01 3.08824927e-01
-1.14653982e-01 -6.94006145e-01 -9.57203805e-01 -9.56553280e-01
-3.82844627e-01 1.77403003e-01 2.77019776e-02 1.19090509e+00
3.28153431e-01 7.48513520e-01 -9.22517478e-01 6.11728251e-01
1.09885108e+00 4.55341190e-01 4.46359605e-01 -1.43554461e+00
-4.83612150e-01 9.21147913e-02 -1.24565281e-01 -6.90846860e-01
3.78485948e-01 -7.24110067e-01 -7.83302039e-02 -9.22593057e-01
-3.31970751e-01 -7.41350532e-01 -1.69302776e-01 2.58413792e-01
-5.36587201e-02 -3.36425155e-02 -1.38657302e-01 5.88825583e-01
-2.29601711e-01 3.49769235e-01 9.05305207e-01 -6.96311519e-02
-7.80876935e-01 3.86321574e-01 -4.70128097e-02 8.96065116e-01
8.33390474e-01 -1.85316429e-01 -7.33435988e-01 -9.89416763e-02
2.85151005e-01 6.29164040e-01 1.58117965e-01 -1.31432831e+00
8.95754620e-02 -9.06152651e-02 -6.73010647e-02 -4.63481128e-01
2.62733370e-01 -9.36587453e-01 6.38443291e-01 3.52647662e-01
-2.53585130e-01 -2.28468731e-01 1.21954411e-01 6.88227892e-01
-3.99185538e-01 -4.95947003e-01 1.07254612e+00 1.25048131e-01
-5.57162642e-01 -1.01517007e-01 -5.04226506e-01 -1.47587076e-01
9.47668016e-01 -2.84223318e-01 4.06317353e-01 -4.50438261e-01
-1.31346071e+00 2.49286398e-01 -1.18801005e-01 1.49194933e-02
3.86623919e-01 -1.43235290e+00 -6.74473643e-01 4.08485681e-01
-3.14226151e-01 -4.39804941e-01 3.38256925e-01 1.19253290e+00
-1.71774775e-01 5.93618453e-01 -4.32643406e-02 -7.32486188e-01
-1.27845454e+00 5.19321203e-01 5.36342859e-01 -6.80601224e-02
-4.66390163e-01 6.68030977e-01 9.08885002e-02 -3.22591543e-01
2.25448892e-01 2.34271836e-04 -1.79785505e-01 7.19174519e-02
2.09181577e-01 7.51144350e-01 3.56700197e-02 -9.32020724e-01
-1.78602174e-01 9.69074667e-01 3.52273673e-01 2.11272612e-01
1.17811131e+00 -2.82201558e-01 -4.02345747e-01 4.06335205e-01
1.13215220e+00 -2.98754778e-02 -8.19195271e-01 4.88079758e-03
-1.33761704e-01 -1.25280187e-01 6.81218654e-02 -3.02652240e-01
-7.93924451e-01 2.65363634e-01 6.89247966e-01 1.90761797e-02
1.08115387e+00 -5.81529677e-01 4.53262568e-01 6.44953966e-01
6.09812081e-01 -1.34971118e+00 -2.23400280e-01 6.48789465e-01
1.07349408e+00 -9.71343994e-01 3.02893698e-01 -1.05166304e+00
-2.15969071e-01 9.57359135e-01 4.91558343e-01 -8.12576294e-01
7.44194806e-01 -8.35117884e-03 -3.04231077e-01 9.04197991e-02
-4.90519166e-01 2.13886604e-01 5.86782396e-01 3.65588248e-01
5.06866515e-01 -6.29689768e-02 -1.12658298e+00 8.29083741e-01
3.41403306e-01 -1.48815051e-01 2.81746835e-01 5.49758732e-01
-7.44577289e-01 -7.69297838e-01 -1.02298033e+00 6.19098663e-01
-3.94994766e-01 1.82434142e-01 4.62720767e-02 4.99253005e-01
-2.40948945e-01 7.57121444e-01 -4.46752578e-01 -1.06362946e-01
3.86833429e-01 1.13907337e-01 1.45870686e-01 -5.61687469e-01
-5.22487164e-01 7.76038229e-01 3.09933573e-01 -3.53170633e-01
-3.07627290e-01 -6.25851631e-01 -1.29997373e+00 2.38441348e-01
-7.67198324e-01 7.49714315e-01 2.84693360e-01 5.17111719e-01
4.17855054e-01 1.60966545e-01 7.95872092e-01 -8.25115979e-01
-1.17638266e+00 -7.90406704e-01 -8.40208530e-01 2.88893372e-01
4.63904023e-01 -8.70791852e-01 -7.55672932e-01 2.99362212e-01] | [7.135342121124268, 4.314519882202148] |
4d19e8ef-25b5-4667-ac70-4615cd70d70c | medical-image-retrieval-using-deep | 1703.08472 | null | http://arxiv.org/abs/1703.08472v1 | http://arxiv.org/pdf/1703.08472v1.pdf | Medical Image Retrieval using Deep Convolutional Neural Network | With a widespread use of digital imaging data in hospitals, the size of
medical image repositories is increasing rapidly. This causes difficulty in
managing and querying these large databases leading to the need of content
based medical image retrieval (CBMIR) systems. A major challenge in CBMIR
systems is the semantic gap that exists between the low level visual
information captured by imaging devices and high level semantic information
perceived by human. The efficacy of such systems is more crucial in terms of
feature representations that can characterize the high-level information
completely. In this paper, we propose a framework of deep learning for CBMIR
system by using deep Convolutional Neural Network (CNN) that is trained for
classification of medical images. An intermodal dataset that contains twenty
four classes and five modalities is used to train the network. The learned
features and the classification results are used to retrieve medical images.
For retrieval, best results are achieved when class based predictions are used.
An average classification accuracy of 99.77% and a mean average precision of
0.69 is achieved for retrieval task. The proposed method is best suited to
retrieve multimodal medical images for different body organs. | ['Adnan Qayyum', 'Muhammad Awais', 'Syed Muhammad Anwar', 'Muhammad Majid'] | 2017-03-24 | null | null | null | null | ['medical-image-retrieval', 'medical-image-retrieval'] | ['computer-vision', 'medical'] | [ 7.16250166e-02 -1.94390699e-01 -2.40253344e-01 -2.97153950e-01
-1.08484304e+00 -2.47157708e-01 5.24676442e-01 6.46755874e-01
-5.22125423e-01 4.11956996e-01 2.98023432e-01 5.71770258e-02
-2.48557597e-01 -8.91559899e-01 -2.36436978e-01 -7.06884086e-01
1.28415868e-01 4.00402874e-01 1.84860095e-01 -6.55268654e-02
3.34417261e-02 5.23620844e-01 -1.65034616e+00 1.01706231e+00
3.88883173e-01 1.58244145e+00 5.11184096e-01 7.44212687e-01
-2.31810972e-01 1.02156365e+00 -5.81506848e-01 -1.68660536e-01
1.15606941e-01 -3.31317902e-01 -9.82305825e-01 2.27365512e-02
2.38402501e-01 -5.08253038e-01 -3.72738600e-01 9.24731672e-01
8.15708041e-01 -8.99545476e-02 8.40369523e-01 -9.22809780e-01
-6.45511568e-01 1.81592628e-01 -1.77401170e-01 3.89416367e-01
2.72105396e-01 -3.12928140e-01 7.00847328e-01 -7.81006753e-01
6.55062258e-01 1.08897984e+00 2.77316004e-01 3.57438773e-01
-7.21328616e-01 -3.31739902e-01 -7.39285111e-01 3.98641437e-01
-1.35318732e+00 -9.42536592e-02 4.76649463e-01 -8.08508575e-01
6.23451352e-01 3.44708025e-01 4.82358009e-01 4.97150898e-01
6.60483003e-01 6.50052547e-01 9.34531093e-01 -5.30025661e-01
3.60478871e-02 3.03885192e-01 1.35443240e-01 5.70771039e-01
2.03057528e-01 -1.43980175e-01 -4.37803447e-01 -7.99296424e-02
5.81340671e-01 4.47812825e-01 -3.07552088e-02 -1.49541065e-01
-1.17775691e+00 7.58760571e-01 8.36536407e-01 8.64146352e-01
-6.55760348e-01 -8.45242217e-02 6.87156796e-01 2.00114459e-01
5.14765317e-03 2.14123115e-01 -1.66125178e-01 3.07577610e-01
-8.56684804e-01 -8.19373280e-02 3.77937466e-01 4.87247974e-01
2.38496512e-01 -3.04975450e-01 -4.07295048e-01 1.13602340e+00
4.22107488e-01 6.98242843e-01 1.05521476e+00 -6.67985618e-01
-1.09064445e-01 8.87179911e-01 -1.75051481e-01 -1.33405149e+00
-5.36053658e-01 -3.76070410e-01 -9.73952711e-01 5.28284833e-02
7.25521520e-02 3.53956729e-01 -1.10872531e+00 1.11313510e+00
2.17997149e-01 -4.57468092e-01 3.30173463e-01 1.14812386e+00
1.49521768e+00 6.19421899e-01 3.27611417e-01 4.61110249e-02
1.81760049e+00 -6.94685102e-01 -8.12204659e-01 2.72368461e-01
4.95729685e-01 -9.60051537e-01 7.78820992e-01 1.96938500e-01
-9.41158831e-01 -5.57753086e-01 -1.11006153e+00 -1.99031323e-01
-7.46745229e-01 5.07427573e-01 2.72616923e-01 2.53017068e-01
-1.11551642e+00 1.86148405e-01 -5.88945389e-01 -3.67145032e-01
4.32878464e-01 5.31461298e-01 -6.12277329e-01 -3.28618616e-01
-1.18853056e+00 9.71848786e-01 5.23872256e-01 1.44323945e-01
-7.51138568e-01 -4.51509953e-01 -6.04660332e-01 1.31052688e-01
-2.83944309e-01 -5.29158711e-01 1.15727508e+00 -1.12556708e+00
-9.51345026e-01 1.22194374e+00 3.68396670e-01 -3.27812612e-01
4.35541481e-01 2.25571260e-01 -4.52621788e-01 7.33541429e-01
1.78016931e-01 8.04260135e-01 4.46394593e-01 -1.18422401e+00
-5.31107306e-01 -5.37800133e-01 -1.00790456e-01 2.23145097e-01
-4.75360066e-01 5.40623739e-02 -5.31172335e-01 -3.00888449e-01
1.75350323e-01 -7.76049256e-01 1.20157160e-01 8.32310989e-02
-2.53031552e-01 -7.79478699e-02 6.30373061e-01 -8.76661420e-01
8.98511112e-01 -2.01660562e+00 -1.51740581e-01 1.48214713e-01
1.89443022e-01 4.03752118e-01 -1.09863482e-01 4.43447530e-01
-3.48840393e-02 -7.35492706e-02 2.37722397e-01 2.08838377e-02
-3.73406410e-01 -1.53372930e-02 2.10728407e-01 3.38009030e-01
-8.82798359e-02 8.79673958e-01 -4.87496585e-01 -8.74234676e-01
6.00159347e-01 8.96575153e-01 -2.11620808e-01 3.06929410e-01
1.29370600e-01 5.78263283e-01 -6.07282102e-01 8.87777805e-01
4.82990593e-01 -6.28974617e-01 7.13128671e-02 -7.08138347e-01
2.80129701e-01 -2.92500228e-01 -6.38983727e-01 1.69622397e+00
-4.86002117e-01 7.17540681e-01 -2.10068628e-01 -9.37851965e-01
6.00502074e-01 5.67688704e-01 9.57185745e-01 -1.25273871e+00
5.31672418e-01 3.08875710e-01 -7.03929439e-02 -9.58956182e-01
2.01533824e-01 -1.93498582e-01 1.05025746e-01 5.08738495e-02
7.47030154e-02 2.18783930e-01 1.46584278e-02 8.64110738e-02
8.07141721e-01 -6.75720215e-01 3.52643222e-01 -2.60280877e-01
7.89232910e-01 3.66179407e-01 -4.79653664e-02 5.67332864e-01
-1.42206475e-01 6.25355422e-01 1.22586906e-01 -7.69541204e-01
-9.82310772e-01 -8.31735194e-01 -5.06664693e-01 7.52715766e-01
2.44477063e-01 4.20303904e-02 -5.42774677e-01 -1.77409038e-01
-1.54514641e-01 8.51433799e-02 -6.52997792e-01 -2.08675995e-01
-1.98895976e-01 -5.60203075e-01 2.64522374e-01 3.04151058e-01
5.21348655e-01 -1.36283040e+00 -9.49826062e-01 -5.18377796e-02
-3.33109856e-01 -1.04027748e+00 1.59218479e-02 -1.70059115e-01
-8.66595805e-01 -1.32636559e+00 -1.04585588e+00 -9.98745501e-01
6.88402593e-01 1.02633379e-01 1.02034199e+00 3.33661556e-01
-9.67967451e-01 5.25274873e-01 -3.74431938e-01 -4.59395081e-01
-5.30560136e-01 -9.92040262e-02 -4.08249378e-01 -1.30136028e-01
3.31459701e-01 1.76581398e-01 -1.12836444e+00 -9.76252705e-02
-1.31813180e+00 1.08298674e-01 1.05614138e+00 1.01584089e+00
6.82831764e-01 -1.51428699e-01 5.07002950e-01 -5.54016471e-01
4.95921880e-01 -4.98579502e-01 -3.20273072e-01 3.96490514e-01
-4.69288796e-01 -1.90949067e-01 5.24530783e-02 -3.37186962e-01
-7.35525012e-01 -9.40516517e-02 -1.40929088e-01 -3.62459600e-01
-1.49368256e-01 8.70488942e-01 3.37285459e-01 2.46919990e-02
7.25108266e-01 1.57797664e-01 2.16350764e-01 -4.32938039e-01
-7.92896375e-02 1.10263836e+00 4.74798679e-01 2.47466117e-02
-5.20021580e-02 4.84511912e-01 5.73526956e-02 -9.09408689e-01
-7.66858101e-01 -7.65513718e-01 -4.37455595e-01 -5.16358912e-01
1.23142648e+00 -9.86155629e-01 -8.18923414e-01 2.71606147e-01
-9.19353962e-01 1.88097820e-01 1.29557610e-03 5.82137048e-01
-2.80760109e-01 1.55102119e-01 -7.13783205e-01 -6.41349792e-01
-8.40093017e-01 -1.48202050e+00 1.34958470e+00 1.44621506e-01
8.95879865e-02 -8.18104923e-01 8.53549980e-04 6.72627568e-01
6.41739190e-01 2.77142465e-01 1.00909460e+00 -8.95424545e-01
-5.61648190e-01 -7.86075652e-01 -6.14286423e-01 4.21795696e-01
3.36980611e-01 -5.68343759e-01 -9.32358384e-01 -2.60488093e-01
-1.19398259e-01 -5.23648918e-01 6.92634284e-01 6.67304456e-01
1.43346024e+00 -1.03065692e-01 -3.89278829e-01 4.93728928e-02
1.79932892e+00 3.66883188e-01 5.88569105e-01 3.48541796e-01
4.77537960e-01 6.03070319e-01 5.54501414e-01 3.18886369e-01
2.07882866e-01 5.38560510e-01 6.02006614e-01 -2.66650021e-01
-2.58262157e-01 9.55454558e-02 -3.40221167e-01 9.26132262e-01
3.68152618e-01 -1.10437572e-01 -1.32425773e+00 5.78337491e-01
-1.57341468e+00 -5.49263537e-01 1.51625603e-01 2.07370234e+00
6.58574462e-01 -4.68788296e-01 -2.16634408e-01 3.13010775e-02
7.20058143e-01 -3.10906887e-01 -2.40829945e-01 -7.37257823e-02
2.47781202e-01 1.99258924e-02 2.63010561e-01 2.45060474e-01
-1.26894867e+00 4.83341485e-01 6.25641966e+00 7.87267148e-01
-1.51902390e+00 1.82997778e-01 8.55297446e-01 1.60839126e-01
1.55684263e-01 -7.46521950e-01 -3.15652221e-01 3.12128007e-01
9.61357534e-01 -4.72110473e-02 -1.05175957e-01 7.52789497e-01
1.07945368e-01 -2.98722833e-01 -9.07019734e-01 1.53216553e+00
3.89256537e-01 -1.44281685e+00 4.31896955e-01 1.66901480e-02
5.86775720e-01 1.09972663e-01 2.06203923e-01 -4.57228422e-02
-3.53762388e-01 -1.30710220e+00 3.08790416e-01 7.74269223e-01
8.53070259e-01 -5.51210463e-01 1.23930490e+00 3.04562837e-01
-8.14170420e-01 -6.07066490e-02 -4.77725238e-01 5.12999654e-01
-3.18555504e-01 3.02435130e-01 -9.56055105e-01 4.43166643e-01
7.95364916e-01 4.03506935e-01 -5.14711261e-01 1.39748168e+00
5.45795977e-01 -3.44404788e-03 -7.69952163e-02 2.62926538e-02
4.80299927e-02 2.15799600e-01 9.14063230e-02 1.23860466e+00
4.03252423e-01 4.18430381e-02 2.24655822e-01 3.02016020e-01
-2.88403779e-01 7.22880840e-01 -6.85417831e-01 -2.71500498e-01
-5.74847981e-02 1.41405356e+00 -7.97694564e-01 -4.61832672e-01
-3.44574541e-01 7.95793593e-01 -1.97213084e-01 1.06338955e-01
-4.27396715e-01 -4.49765997e-04 7.46766478e-02 1.06405087e-01
-9.84281451e-02 2.09053755e-01 2.62658726e-02 -9.38468397e-01
-1.80625603e-01 -8.40171278e-01 7.13796198e-01 -1.00214767e+00
-1.43975174e+00 9.60585952e-01 -8.69812593e-02 -1.39454079e+00
-1.91778660e-01 -8.50342870e-01 1.12489760e-01 8.06050777e-01
-1.50000679e+00 -1.42188370e+00 -6.79418147e-01 6.82184577e-01
6.34758651e-01 -4.01253909e-01 1.03951859e+00 5.93806922e-01
7.96253458e-02 2.18624830e-01 2.83909112e-01 3.92842442e-01
7.41704524e-01 -9.49778676e-01 -9.01338160e-01 1.00757778e-01
-4.99431491e-02 3.57922822e-01 3.60709399e-01 -5.06755650e-01
-1.34157717e+00 -9.25055027e-01 7.65626788e-01 -3.09664965e-01
2.40398794e-01 1.93297654e-01 -6.14662111e-01 2.54889637e-01
2.95506269e-01 2.74664313e-01 9.51699555e-01 -5.59690893e-01
-1.61228150e-01 -2.70523280e-01 -1.33935297e+00 2.14428633e-01
6.61257049e-03 -5.09498119e-01 -3.55943829e-01 5.61712325e-01
3.05397958e-01 -3.71751010e-01 -1.13275063e+00 5.84877670e-01
8.09269488e-01 -6.51304662e-01 1.17149258e+00 -5.93960345e-01
7.00006783e-01 -6.31813183e-02 -5.29091775e-01 -7.19629943e-01
1.54594302e-01 6.46230996e-01 4.24397439e-01 5.16356826e-01
2.10529849e-01 -2.64681250e-01 5.87776303e-01 5.16777039e-01
2.55061954e-01 -7.27661014e-01 -7.84611821e-01 -2.32692569e-01
1.42900273e-01 -1.03899874e-01 9.62532908e-02 8.83971810e-01
-1.56205863e-01 1.93563197e-02 -2.20641062e-01 6.28305739e-03
4.85435069e-01 1.99325994e-01 1.87419936e-01 -1.29674804e+00
4.91565466e-02 -2.62249976e-01 -1.00800693e+00 -3.11495692e-01
-2.06901342e-01 -1.04480791e+00 -8.83349255e-02 -1.86982179e+00
8.23289037e-01 -2.69446462e-01 -7.45789468e-01 3.12985152e-01
3.52269441e-01 7.78753936e-01 2.05454975e-01 5.48673272e-01
-7.21881747e-01 1.28894463e-01 1.27989173e+00 -4.36373770e-01
1.77401379e-01 -2.99520433e-01 -2.18495294e-01 5.07708073e-01
9.90198016e-01 -3.05989593e-01 -3.24592859e-01 -3.26932162e-01
1.64781302e-01 4.12822664e-01 3.84105653e-01 -1.12173736e+00
2.99920231e-01 2.39982978e-01 8.31718862e-01 -9.01658535e-01
4.56230491e-01 -1.16608179e+00 2.88346946e-01 7.12004542e-01
-7.27618873e-01 -2.58368906e-02 1.20542645e-01 3.82266074e-01
-8.31185400e-01 -1.97895154e-01 9.51240420e-01 -3.01858157e-01
-6.46389842e-01 3.62720042e-01 -3.56080055e-01 -4.06836510e-01
9.25014853e-01 6.49096593e-02 -2.30208546e-01 -3.39192152e-01
-1.09935689e+00 -4.34662960e-03 2.85414178e-02 6.00378990e-01
9.09096122e-01 -1.47327554e+00 -4.80635643e-01 -1.55284420e-01
5.86336434e-01 -3.43444198e-01 5.56518257e-01 9.02487874e-01
-9.82126653e-01 8.30280960e-01 -4.33767706e-01 -8.98906410e-01
-1.57659745e+00 4.51442420e-01 6.14003122e-01 -2.80865908e-01
-5.79276383e-01 2.95101374e-01 2.28198186e-01 -1.06391929e-01
1.77196100e-01 -7.72073716e-02 -6.52731717e-01 1.59562275e-01
7.78209984e-01 2.13857554e-02 3.07950020e-01 -1.04244208e+00
-4.12801951e-01 5.03405154e-01 -9.86732170e-02 -3.34790014e-02
1.24471724e+00 6.91205263e-04 -3.43195438e-01 5.54525554e-01
1.61482537e+00 -5.88826180e-01 -2.23668575e-01 -3.02997321e-01
-3.70658636e-02 -3.58691543e-01 4.03255403e-01 -1.18012178e+00
-1.18243086e+00 1.14662385e+00 1.54452729e+00 8.09987113e-02
1.17647338e+00 2.66728103e-01 6.72539294e-01 4.18357193e-01
2.48675272e-01 -9.67169225e-01 3.90532076e-01 -2.94603705e-02
1.00485432e+00 -1.69670975e+00 -1.51632786e-01 -1.35409966e-01
-6.29001200e-01 1.23115814e+00 2.24787503e-01 -5.56173362e-02
8.99026334e-01 -8.24195072e-02 4.79465336e-01 -5.69316268e-01
-3.75231594e-01 -1.56602070e-01 6.67543232e-01 2.65657395e-01
6.67040706e-01 3.74671742e-02 -5.40151656e-01 4.72632468e-01
2.76360184e-01 1.22467689e-01 1.19413093e-01 9.25439656e-01
-4.75485772e-01 -9.34366226e-01 -4.36645985e-01 6.32358372e-01
-1.14721680e+00 1.05257168e-01 -1.27350122e-01 6.51315749e-01
-1.46047948e-02 9.75123405e-01 6.64846301e-02 -3.05400584e-02
9.55625176e-02 1.83169339e-02 2.54410535e-01 -4.25868720e-01
-4.87990826e-01 2.41784543e-01 -2.00230256e-01 -5.14834344e-01
-5.82538962e-01 -1.74781695e-01 -1.26665747e+00 1.68297395e-01
-1.42546132e-01 3.54795642e-02 1.13593507e+00 7.12839246e-01
2.07346082e-01 6.62777364e-01 1.74234495e-01 -2.99522132e-01
-2.33234733e-01 -8.93350124e-01 -4.34070081e-01 6.90236747e-01
3.76264989e-01 -6.64811015e-01 1.84554115e-01 2.32016519e-01] | [14.352544784545898, -1.575683832168579] |
c5df04bb-297c-4c5d-be63-c9975fd5edf0 | deep-recurrent-spiking-neural-networks | 2306.01354 | null | https://arxiv.org/abs/2306.01354v1 | https://arxiv.org/pdf/2306.01354v1.pdf | Deep recurrent spiking neural networks capture both static and dynamic representations of the visual cortex under movie stimuli | In the real world, visual stimuli received by the biological visual system are predominantly dynamic rather than static. A better understanding of how the visual cortex represents movie stimuli could provide deeper insight into the information processing mechanisms of the visual system. Although some progress has been made in modeling neural responses to natural movies with deep neural networks, the visual representations of static and dynamic information under such time-series visual stimuli remain to be further explored. In this work, considering abundant recurrent connections in the mouse visual system, we design a recurrent module based on the hierarchy of the mouse cortex and add it into Deep Spiking Neural Networks, which have been demonstrated to be a more compelling computational model for the visual cortex. Using Time-Series Representational Similarity Analysis, we measure the representational similarity between networks and mouse cortical regions under natural movie stimuli. Subsequently, we conduct a comparison of the representational similarity across recurrent/feedforward networks and image/video training tasks. Trained on the video action recognition task, recurrent SNN achieves the highest representational similarity and significantly outperforms feedforward SNN trained on the same task by 15% and the recurrent SNN trained on the image classification task by 8%. We investigate how static and dynamic representations of SNNs influence the similarity, as a way to explain the importance of these two forms of representations in biological neural coding. Taken together, our work is the first to apply deep recurrent SNNs to model the mouse visual cortex under movie stimuli and we establish that these networks are competent to capture both static and dynamic representations and make contributions to understanding the movie information processing mechanisms of the visual cortex. | ['Yonghong Tian', 'Huihui Zhou', 'Zhengyu Ma', 'Liwei Huang'] | 2023-06-02 | null | null | null | null | ['action-recognition-in-videos', 'action-recognition'] | ['computer-vision', 'computer-vision'] | [ 5.21485746e-01 -4.41333890e-01 7.58105591e-02 -1.88125432e-01
4.15601730e-01 -5.15644670e-01 7.12546170e-01 -2.45950833e-01
-4.35545921e-01 4.34502326e-02 1.17757812e-01 8.07183050e-03
2.46670712e-02 -5.42473018e-01 -7.39596188e-01 -9.21403110e-01
-5.40584065e-02 -4.20606107e-01 5.66181958e-01 -2.58266658e-01
3.33092004e-01 5.87381065e-01 -1.90305603e+00 9.27040696e-01
2.50901785e-02 1.24095595e+00 6.60333455e-01 8.61303568e-01
5.55962436e-02 1.28497505e+00 -5.01549184e-01 1.33586973e-01
1.03007503e-01 -7.22147703e-01 -6.37196958e-01 -6.06738403e-02
3.62499982e-01 3.40512954e-02 -7.57135689e-01 9.17519331e-01
4.18966234e-01 1.37051925e-01 6.11404777e-01 -8.46709430e-01
-8.33964109e-01 5.77155232e-01 -1.88559562e-01 9.83441532e-01
2.53272802e-01 4.41097051e-01 8.66445839e-01 -7.01196611e-01
9.33517277e-01 1.10576367e+00 2.77893215e-01 7.76067555e-01
-1.58321309e+00 -4.30858672e-01 3.32481503e-01 3.83723229e-01
-9.82773125e-01 -5.84696651e-01 6.61807716e-01 -7.18108654e-01
1.33282435e+00 1.17748126e-01 1.13830733e+00 1.39601827e+00
7.21223176e-01 5.90422750e-01 9.50188279e-01 -1.61098689e-01
2.86273986e-01 -3.62282336e-01 1.88649669e-01 1.76543981e-01
-3.85713458e-01 1.74936071e-01 -8.05852830e-01 3.19728792e-01
1.11636376e+00 4.06523645e-01 -4.42660540e-01 -3.30806039e-02
-1.36455476e+00 6.07763350e-01 8.95173550e-01 7.92821586e-01
-3.38831842e-01 6.01470232e-01 4.54231203e-01 5.61838567e-01
7.44619314e-03 3.71241629e-01 -1.74661294e-01 -1.73918635e-01
-7.19255984e-01 -2.95643602e-02 2.16298327e-01 3.86813700e-01
3.34526211e-01 4.18796748e-01 -2.12872967e-01 9.25858974e-01
1.66378111e-01 2.56223530e-01 8.94220710e-01 -1.18663764e+00
-7.00375661e-02 5.09493589e-01 -4.75930899e-01 -1.10457361e+00
-4.09182280e-01 -3.59310627e-01 -9.08117712e-01 2.79131681e-01
3.76984179e-01 4.56154346e-01 -9.84850049e-01 1.92818010e+00
-6.27601981e-01 -1.37547359e-01 -1.62590612e-02 1.01678562e+00
8.72827947e-01 6.13566041e-01 3.14490162e-02 -3.84738475e-01
1.22782874e+00 -6.09456122e-01 -6.55121207e-01 -2.74810076e-01
2.74956346e-01 -4.90504861e-01 8.00134420e-01 1.05462812e-01
-1.13818312e+00 -8.32272410e-01 -9.39295709e-01 1.52722105e-01
-3.15443367e-01 -1.67763695e-01 6.76414728e-01 -6.99322894e-02
-1.24989748e+00 6.90395534e-01 -9.55709755e-01 -8.26532900e-01
4.85881686e-01 2.15428144e-01 -3.82589757e-01 2.16301158e-01
-1.02930892e+00 6.44767702e-01 8.47156346e-02 1.37905836e-01
-1.23316216e+00 -5.89130282e-01 -6.71702147e-01 1.23651326e-01
-3.63810539e-01 -7.59750843e-01 1.28706932e+00 -1.60943830e+00
-1.37703490e+00 1.00817585e+00 -3.17420572e-01 -6.14927411e-01
-5.95263578e-02 3.85173112e-01 -2.31552839e-01 4.86663908e-01
-2.85770059e-01 9.41849351e-01 7.20060229e-01 -1.02068603e+00
1.95524730e-02 -3.60586673e-01 -2.04066932e-02 -1.31256998e-01
-1.70987129e-01 3.11971903e-01 -4.76542749e-02 -8.19181621e-01
2.74071425e-01 -9.86698091e-01 -2.27187723e-01 2.52772868e-01
1.54515952e-01 9.15881246e-02 5.74009538e-01 -1.57898143e-01
1.11072266e+00 -2.47039747e+00 4.97350335e-01 -1.98413581e-01
3.48668814e-01 1.20901093e-01 -4.00643677e-01 5.91605604e-01
-5.22429585e-01 1.10691026e-01 -2.26408735e-01 3.99831124e-02
-5.85378706e-01 2.23843098e-01 -6.58014715e-01 4.35554743e-01
2.95037061e-01 1.12502289e+00 -6.39222205e-01 8.05519372e-02
-8.39516148e-02 5.12485504e-01 -4.32545155e-01 2.59503216e-01
-2.26366878e-01 5.55661201e-01 -1.02818809e-01 3.49261552e-01
2.30150238e-01 -4.86263305e-01 1.62732974e-01 -2.22712338e-01
-2.76667476e-01 2.14130133e-01 -4.44075108e-01 1.74211240e+00
-1.51911706e-01 1.28223062e+00 -2.54571974e-01 -1.26801825e+00
7.05879271e-01 3.34088773e-01 4.28816170e-01 -1.39540029e+00
2.80908942e-01 -2.02689067e-01 6.23483360e-01 -6.23402894e-01
-4.85340916e-02 -2.23587856e-01 2.01185212e-01 4.49752122e-01
3.53368700e-01 2.22171664e-01 2.27715239e-01 3.72866422e-01
1.33292341e+00 -1.35293156e-01 -3.61365788e-02 -5.95390983e-02
1.84781268e-01 -3.90333921e-01 4.51849699e-01 6.91269040e-01
-3.45944673e-01 9.65989411e-01 6.40034139e-01 -5.55281639e-01
-9.01919961e-01 -1.21188605e+00 -2.60694921e-01 1.22689283e+00
9.29255560e-02 -2.66403377e-01 -4.71277148e-01 2.04441585e-02
-1.79160088e-01 3.02698582e-01 -1.03270006e+00 -5.08099735e-01
-3.07650208e-01 -7.64359772e-01 4.91774946e-01 6.67965412e-01
3.67104590e-01 -1.54074001e+00 -1.11954868e+00 2.32857704e-01
9.40722674e-02 -1.20418870e+00 -9.13308710e-02 4.06282157e-01
-8.56101751e-01 -1.03989267e+00 -7.45711744e-01 -8.54283571e-01
5.79116523e-01 5.09711385e-01 9.43123281e-01 -7.28137568e-02
-5.68276942e-01 5.63926578e-01 -2.25904167e-01 4.57475483e-02
-2.92953074e-01 -5.08368552e-01 2.29134802e-02 1.19679021e-02
1.44795641e-01 -9.61805344e-01 -8.68495703e-01 5.31794548e-01
-1.31529486e+00 1.70922309e-01 2.77635992e-01 6.86303675e-01
4.51765329e-01 -3.46410304e-01 4.05941427e-01 -5.33364713e-01
3.10522199e-01 -5.80331087e-01 -4.06074852e-01 1.00751314e-02
-2.47776657e-02 1.05110578e-01 8.08714688e-01 -7.55990684e-01
-8.93606007e-01 8.45286772e-02 3.97213595e-03 -4.54121143e-01
-1.22334339e-01 6.16802454e-01 4.57810700e-01 -3.11177790e-01
8.83728147e-01 5.80962539e-01 7.97294304e-02 -2.57485330e-01
8.74906331e-02 2.07317859e-01 3.95796239e-01 -5.68781197e-02
2.81403333e-01 7.06504762e-01 -1.64338887e-01 -8.96739483e-01
-4.87678766e-01 -2.71344155e-01 -4.37170357e-01 -5.35079598e-01
1.16404605e+00 -8.12749207e-01 -1.01330245e+00 7.21368134e-01
-1.28743505e+00 -4.66414928e-01 -1.78099021e-01 4.13686872e-01
-8.75345767e-01 1.54089123e-01 -1.06566715e+00 -6.46049619e-01
1.17558308e-01 -1.14902043e+00 5.98565757e-01 3.13393444e-01
-1.45494431e-01 -7.85591662e-01 3.24315488e-01 -2.32386328e-02
7.37497926e-01 6.95634857e-02 1.10903704e+00 -2.95364767e-01
-6.01531506e-01 2.42098302e-01 -2.56316423e-01 1.57384649e-01
-5.79447821e-02 4.75851536e-01 -1.29008567e+00 -1.45989165e-01
2.69965559e-01 -5.51130772e-01 1.37550592e+00 6.76947474e-01
1.28908098e+00 7.81822577e-02 -1.03565358e-01 6.59845114e-01
1.53351581e+00 5.11271954e-01 8.56098413e-01 1.38496399e-01
2.40110338e-01 8.08611989e-01 -1.98164195e-01 3.26768607e-01
-3.42693627e-02 6.27855599e-01 6.86157882e-01 9.84702185e-02
-2.59476930e-01 -4.40911092e-02 7.40676165e-01 1.16954601e+00
-2.66992450e-01 -9.40547436e-02 -8.34300995e-01 4.52420324e-01
-1.90885842e+00 -1.42651951e+00 2.30817735e-01 1.96587980e+00
6.27227485e-01 1.65733278e-01 8.79713241e-03 -1.19729407e-01
5.38200796e-01 3.90793502e-01 -7.26646900e-01 -6.44115984e-01
-6.13869131e-01 -3.86012867e-02 -7.99879152e-03 -1.88965246e-01
-7.14805186e-01 7.30371177e-01 7.31327677e+00 4.11537588e-01
-1.71869469e+00 -1.49597466e-01 5.32862663e-01 -2.78730422e-01
-1.59429401e-01 -2.74291821e-02 -4.06888515e-01 3.94669861e-01
1.31613183e+00 -1.65047824e-01 8.61827552e-01 4.51952279e-01
4.25981820e-01 -1.12101234e-01 -1.21977091e+00 1.03521454e+00
-2.08890121e-02 -1.67634594e+00 2.29509026e-01 -3.79084051e-02
5.47830284e-01 4.28038299e-01 4.06662166e-01 7.67755061e-02
1.31023869e-01 -1.27866673e+00 7.57300019e-01 9.22152042e-01
5.79913080e-01 -7.16063082e-02 4.05980051e-01 3.66420418e-01
-1.21240211e+00 -3.98153186e-01 -6.77101016e-01 -3.55107397e-01
-1.31159514e-01 1.25473857e-01 -1.47804663e-01 -1.05952591e-01
9.77152288e-01 1.40718544e+00 -7.55251050e-01 9.42043662e-01
2.78548270e-01 5.09019852e-01 1.14973269e-01 1.70291159e-02
5.32501657e-03 1.81056723e-01 4.95758533e-01 1.16975832e+00
6.54856712e-02 1.22999959e-01 -2.51253963e-01 1.23218179e+00
5.09708151e-02 -2.08788559e-01 -9.45489168e-01 -6.23699784e-01
-2.48935502e-02 1.06864226e+00 -9.61453021e-01 -4.55181003e-02
-3.48906517e-01 8.59226227e-01 4.91662621e-01 7.77775228e-01
-6.19797587e-01 -1.85468867e-02 7.71127939e-01 9.42988843e-02
4.40324426e-01 -4.51573879e-01 6.37733727e-04 -1.23124456e+00
-1.95257917e-01 -6.09261632e-01 6.19433224e-02 -1.24019611e+00
-1.21784210e+00 1.06379712e+00 -2.11901635e-01 -1.33718753e+00
-3.31834763e-01 -8.99661660e-01 -6.82814240e-01 5.79367101e-01
-1.11079156e+00 -6.07287049e-01 -2.24470556e-01 6.62694871e-01
7.06140280e-01 -1.83183655e-01 9.07492876e-01 -4.32588458e-02
-5.71033955e-01 1.92712694e-01 4.53761220e-02 7.26973191e-02
3.62129837e-01 -7.94901788e-01 2.86471725e-01 7.64828146e-01
3.90403390e-01 9.30977106e-01 5.93965232e-01 -1.11154303e-01
-1.39680839e+00 -8.19985807e-01 3.33577365e-01 -3.16346169e-01
8.39909077e-01 -6.08821094e-01 -1.06957185e+00 4.32341665e-01
4.71108496e-01 4.17952806e-01 8.32352519e-01 -4.14445847e-01
-6.45819604e-01 -8.19609314e-02 -6.57225788e-01 5.90876937e-01
1.24634564e+00 -8.86087656e-01 -5.11293828e-01 1.08489439e-01
8.29033315e-01 2.61657774e-01 -8.32582891e-01 3.30082387e-01
7.61344373e-01 -1.20596278e+00 7.50672221e-01 -8.32693875e-01
7.22612560e-01 -2.57325888e-01 -4.04358238e-01 -1.22670543e+00
-6.43242061e-01 -2.17275873e-01 1.65766343e-01 8.10611188e-01
2.37091690e-01 -5.76869011e-01 3.70902717e-01 1.79662302e-01
1.75690744e-02 -6.65550768e-01 -9.49025452e-01 -6.85837686e-01
-2.96260789e-02 -4.57337677e-01 -2.96986431e-01 5.12840748e-01
8.74873474e-02 3.34175795e-01 1.73379537e-02 -4.11257476e-01
9.63745341e-02 1.99752539e-01 2.17968255e-01 -9.74105537e-01
-2.95418680e-01 -7.98953533e-01 -8.51941586e-01 -9.37161028e-01
2.63876706e-01 -1.08774471e+00 4.82731089e-02 -1.34080160e+00
4.57122564e-01 9.71834585e-02 -7.34246314e-01 3.90345931e-01
4.02516961e-01 4.09810871e-01 5.54020107e-01 5.50988376e-01
-5.88477373e-01 5.83139956e-01 1.21223867e+00 -1.51833430e-01
1.27200931e-01 -1.95718870e-01 -3.58130008e-01 5.94948709e-01
4.49699163e-01 -3.86687845e-01 -3.58021677e-01 -5.64876914e-01
5.19747436e-01 9.55828577e-02 5.11738539e-01 -1.10397530e+00
3.49986970e-01 -8.70049745e-02 5.39006770e-01 1.26766711e-02
3.55605692e-01 -8.04904580e-01 2.50941634e-01 6.82695150e-01
-7.89317071e-01 1.98317543e-01 3.44377816e-01 7.57175863e-01
-5.34316480e-01 1.81411728e-02 9.64886725e-01 -4.31718409e-01
-8.57104421e-01 2.45371759e-01 -1.22172415e+00 -6.81466013e-02
8.49466562e-01 -4.98936534e-01 -6.40911818e-01 -2.79948533e-01
-1.04474390e+00 -2.63008982e-01 4.77269590e-01 5.24534047e-01
8.81042957e-01 -1.29357564e+00 -3.02197009e-01 4.62872207e-01
2.40501165e-01 -7.36199677e-01 4.24223512e-01 8.55541706e-01
-2.91500926e-01 5.04639268e-01 -8.14157069e-01 -1.01608109e+00
-1.03985131e+00 7.06184804e-01 5.91455877e-01 2.19790623e-01
-3.26030284e-01 8.06320846e-01 7.22303689e-01 1.80376589e-01
1.84618965e-01 -4.70531732e-01 -7.21368074e-01 1.78370684e-01
5.46187460e-01 -2.32583195e-01 -2.15244219e-01 -7.10297287e-01
-2.96247691e-01 8.67540658e-01 -6.94185421e-02 4.72650565e-02
1.39233375e+00 -2.98744570e-02 -3.47869039e-01 1.18265963e+00
1.31596839e+00 -5.45571744e-01 -1.27733934e+00 -1.71793446e-01
-1.61391139e-01 -2.05287427e-01 -2.30353490e-01 -4.92895007e-01
-1.39630640e+00 1.31192982e+00 7.15633929e-01 4.36107069e-01
1.39757478e+00 3.79999466e-02 4.02039915e-01 2.82758981e-01
2.97189325e-01 -7.46934414e-01 7.37957120e-01 6.45575345e-01
1.24240339e+00 -1.03611588e+00 -5.35426795e-01 -2.93213278e-02
-6.74681365e-01 1.45658135e+00 6.60751104e-01 -4.07173783e-01
7.12149739e-01 1.81041673e-01 1.27355736e-02 -2.77289897e-01
-1.48518836e+00 -1.08654417e-01 1.41381517e-01 3.56202155e-01
6.41568244e-01 -1.84094027e-01 -7.28443339e-02 4.55517083e-01
1.10994324e-01 1.75255761e-02 6.03338659e-01 8.42742562e-01
-4.85241115e-01 -5.84361136e-01 1.30867347e-01 2.98996031e-01
-4.80526328e-01 -1.39282852e-01 -4.32266802e-01 1.38292715e-01
-1.54266313e-01 6.61317170e-01 3.06909919e-01 -6.29367352e-01
2.10928142e-01 -1.41569776e-02 6.66897237e-01 -7.61718273e-01
-8.10539961e-01 9.61521547e-03 -4.01853889e-01 -7.38650322e-01
-8.04390848e-01 -4.71780300e-01 -1.36453807e+00 2.53544096e-02
1.46883592e-01 -3.00469816e-01 5.99602878e-01 7.28859663e-01
4.06599790e-01 7.99414098e-01 5.69037199e-01 -1.03618193e+00
-1.04045674e-01 -7.83489168e-01 -4.62468177e-01 5.41503668e-01
3.74653995e-01 -5.79584539e-01 -6.41154826e-01 4.13833439e-01] | [9.592422485351562, 2.5118184089660645] |
35ba26a3-20da-477b-9844-665214fc06d5 | iso-timeml-event-extraction-in-persian-text | null | null | https://aclanthology.org/C12-1179 | https://aclanthology.org/C12-1179.pdf | ISO-TimeML Event Extraction in Persian Text | null | ['Gholamreza Ghassem-Sani', 'Mirrosh', 'Yadollah Yaghoobzadeh', 'Seyed Abolghasem el', 'Mahbaneh Eshaghzadeh'] | 2012-12-01 | iso-timeml-event-extraction-in-persian-text-1 | https://aclanthology.org/C12-1179 | https://aclanthology.org/C12-1179.pdf | coling-2012-12 | ['temporal-information-extraction'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.239124774932861, 3.7641868591308594] |
45aa66df-ada2-43e3-80ec-3b2ea9e9920b | towards-speech-only-opinion-level-sentiment | null | null | https://aclanthology.org/2022.lrec-1.215 | https://aclanthology.org/2022.lrec-1.215.pdf | Towards Speech-only Opinion-level Sentiment Analysis | The growing popularity of various forms of Spoken Dialogue Systems (SDS) raises the demand for their capability of implicitly assessing the speaker’s sentiment from speech only. Mapping the latter on user preferences enables to adapt to the user and individualize the requested information while increasing user satisfaction. In this paper, we explore the integration of rank consistent ordinal regression into a speech-only sentiment prediction task performed by ResNet-like systems. Furthermore, we use speaker verification extractors trained on larger datasets as low-level feature extractors. An improvement of performance is shown by fusing sentiment and pre-extracted speaker embeddings reducing the speaker bias of sentiment predictions. Numerous experiments on Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) databases show that we beat the baselines of state-of-the-art unimodal approaches. Using speech as the only modality combined with optimizing an order-sensitive objective function gets significantly closer to the sentiment analysis results of state-of-the-art multimodal systems. | ['Wolfgang Minker', 'Yuri Matveev', 'Aleksei Gusev', 'Alisa Gazizullina', 'Annalena Aicher'] | null | null | null | null | lrec-2022-6 | ['spoken-dialogue-systems'] | ['speech'] | [ 9.12193805e-02 4.27529097e-01 -2.31374115e-01 -1.11073375e+00
-9.51641679e-01 -4.71687019e-01 8.15499485e-01 3.06000799e-01
-7.91879654e-01 5.13428628e-01 9.23768163e-01 3.69115919e-02
2.44290158e-01 -1.44018084e-01 -1.05264589e-01 -5.10470450e-01
4.35689315e-02 6.76517069e-01 -2.61946470e-01 -8.11732590e-01
1.79747924e-01 2.02762187e-01 -1.90401685e+00 8.79231811e-01
5.40614009e-01 1.53252947e+00 -2.23864436e-01 9.15609598e-01
-5.01483500e-01 7.90996373e-01 -6.34332955e-01 -4.13654357e-01
-1.16081774e-01 -1.98201835e-01 -8.59598756e-01 1.04565509e-01
5.46501517e-01 -2.70137675e-02 5.14014550e-02 7.73157477e-01
8.14426303e-01 3.24175835e-01 7.87965238e-01 -1.09174514e+00
-5.26955366e-01 7.35954642e-01 -1.50465086e-01 1.09649962e-02
7.72403181e-01 -3.82478684e-01 1.27939987e+00 -1.18759644e+00
3.25556308e-01 1.42524338e+00 3.07430774e-01 7.94262469e-01
-1.29407346e+00 -3.66861403e-01 1.98590383e-01 2.42918119e-01
-9.00235891e-01 -1.12646687e+00 7.78782189e-01 -1.94541752e-01
1.08387661e+00 6.19937599e-01 8.14178437e-02 1.21709514e+00
-4.96962786e-01 9.09945607e-01 1.14738798e+00 -5.38463712e-01
3.53897095e-01 9.62588191e-01 2.81972885e-01 4.59623635e-01
-6.74501896e-01 -4.67229038e-01 -1.21017742e+00 -2.11503416e-01
-2.44677544e-01 -3.95810455e-01 -1.64229468e-01 -2.19285607e-01
-1.16863370e+00 1.03705943e+00 4.86107357e-03 3.76536489e-01
-4.69821692e-01 -2.90166616e-01 7.78620422e-01 6.20220125e-01
9.14369464e-01 4.97031599e-01 -9.57551479e-01 -3.61619562e-01
-1.06986511e+00 -1.14004634e-01 1.23515391e+00 4.29899603e-01
5.17495871e-01 7.32481107e-02 -1.31548002e-01 1.44690037e+00
4.36802208e-01 4.30931747e-01 9.55104947e-01 -7.32405484e-01
3.74925077e-01 6.41072035e-01 -2.06551570e-02 -7.22197235e-01
-6.89871371e-01 -1.22793391e-01 -5.67523956e-01 -5.48695736e-02
1.51538566e-01 -4.36778069e-01 -7.28121817e-01 1.80334747e+00
2.68116176e-01 -4.51648235e-01 4.79218632e-01 8.40170085e-01
1.01111412e+00 8.47418547e-01 1.06040373e-01 -2.41537780e-01
1.50589859e+00 -9.18836653e-01 -6.90821528e-01 -1.99817523e-01
5.26376307e-01 -6.32590294e-01 1.27713966e+00 5.78042865e-01
-9.17190492e-01 -5.59159458e-01 -9.40930367e-01 1.04502551e-01
-7.46790111e-01 1.76544920e-01 4.79710042e-01 1.04425490e+00
-1.34167325e+00 1.68828219e-01 -2.45537475e-01 -3.77618462e-01
-5.75896613e-02 7.82640636e-01 -5.66803753e-01 5.68815708e-01
-1.46290076e+00 1.32674885e+00 -1.14943445e-01 2.37463322e-02
-3.18043500e-01 -4.92019624e-01 -1.12020874e+00 3.81103382e-02
-1.90080646e-02 -2.23677874e-01 1.45687389e+00 -1.50949359e+00
-2.28283167e+00 9.52882528e-01 -5.06993175e-01 -2.69625753e-01
1.94483891e-01 -5.90437315e-02 -6.80891573e-01 9.06971470e-02
-1.88563541e-01 9.37299788e-01 8.81899416e-01 -1.19263446e+00
-8.61445725e-01 -4.01138157e-01 -1.17920920e-01 6.11174643e-01
-9.86357391e-01 2.27224961e-01 3.30646038e-02 -9.48174223e-02
-2.30218709e-01 -6.91908777e-01 -4.17243838e-02 -5.25701463e-01
-2.43711099e-01 -6.93510652e-01 7.41766393e-01 -5.87550879e-01
1.17187834e+00 -2.18494201e+00 5.22153795e-01 2.14905530e-01
-2.52669424e-01 -1.12178072e-01 -4.36288118e-01 4.90020573e-01
-2.94741452e-01 8.33155066e-02 2.84711868e-02 -9.94817734e-01
4.62953895e-01 2.73069413e-03 -3.61963749e-01 3.77842546e-01
3.01366478e-01 4.70560968e-01 -4.42058921e-01 -3.22215021e-01
2.22102970e-01 4.51677799e-01 -5.40002406e-01 3.63804072e-01
-2.73951050e-02 3.55449826e-01 -1.68469220e-01 5.04485905e-01
2.55118936e-01 1.07539468e-01 9.96206515e-03 -3.17632377e-01
-2.79577583e-01 6.79888070e-01 -9.41806674e-01 1.67021108e+00
-9.30626512e-01 7.07798958e-01 3.27741235e-01 -9.78827834e-01
8.73087525e-01 5.95122576e-01 3.96742314e-01 -6.67753160e-01
2.85200953e-01 1.21186651e-01 -1.39205351e-01 -5.01997769e-01
8.82586241e-01 -3.66159409e-01 -5.25183976e-01 3.92856508e-01
5.28555810e-01 -2.43305162e-01 3.50398645e-02 3.03628165e-02
4.85701680e-01 -4.53204662e-01 1.73000813e-01 -3.46761703e-01
1.08277524e+00 -3.11368138e-01 -1.28647789e-01 4.41919297e-01
-2.24256605e-01 3.90584886e-01 5.27244568e-01 -7.20453188e-02
-6.81771696e-01 -6.71478510e-01 -3.15373778e-01 2.09792757e+00
-2.98958480e-01 -1.51525766e-01 -7.10560858e-01 -7.71256864e-01
-8.37120265e-02 9.36307609e-01 -8.38011563e-01 1.09850019e-01
-1.44503757e-01 -6.96036458e-01 4.95195001e-01 2.30462849e-01
-6.25760183e-02 -1.01397669e+00 -1.06352396e-01 6.47153407e-02
-3.65022808e-01 -1.08751202e+00 -3.20208639e-01 4.40408975e-01
-4.20845956e-01 -2.08615214e-01 -8.28000426e-01 -6.66261911e-01
2.82841593e-01 -4.39958423e-01 9.88497078e-01 -5.15952051e-01
3.54525685e-01 7.57636905e-01 -4.81069326e-01 -5.29946506e-01
-5.53151906e-01 4.71935451e-01 4.92573738e-01 5.17496824e-01
4.86218661e-01 -2.23547965e-01 -3.48417282e-01 1.65495038e-01
-7.93038666e-01 -3.24533433e-01 3.35907966e-01 8.07513952e-01
-1.77951738e-01 -4.31439161e-01 1.12599564e+00 -5.52978873e-01
1.04679096e+00 -3.68623406e-01 1.29271010e-02 3.68303470e-02
-5.89610279e-01 2.42474541e-01 4.48502243e-01 -4.41520274e-01
-1.14787519e+00 1.29390970e-01 -4.36859936e-01 1.69312179e-01
-3.54518831e-01 5.95561385e-01 -1.14953004e-01 1.73830807e-01
5.27476013e-01 1.54863670e-01 2.11354777e-01 -1.41357973e-01
6.65011168e-01 1.46296275e+00 3.36395800e-01 -2.12960482e-01
1.10676214e-01 2.18321532e-01 -4.88172024e-01 -1.22190893e+00
-8.36719692e-01 -7.57935703e-01 -6.21709108e-01 -3.93881649e-01
8.28713596e-01 -9.48139429e-01 -9.57301319e-01 2.48280421e-01
-1.13198185e+00 -7.34147727e-02 -1.98498622e-01 3.07445735e-01
-5.06202102e-01 2.87605703e-01 -4.51894224e-01 -1.22056127e+00
-3.71895611e-01 -1.24889445e+00 1.35149670e+00 1.31304845e-01
-8.09126019e-01 -1.05380559e+00 3.35505694e-01 6.82688475e-01
6.87220752e-01 -4.28055197e-01 6.36060953e-01 -1.33996522e+00
3.90456855e-01 -4.52712387e-01 6.62963316e-02 7.47693062e-01
2.04855911e-02 -2.38011196e-01 -1.69819283e+00 1.40395805e-01
8.29962566e-02 -6.12721622e-01 9.15073276e-01 2.39518017e-01
7.37528265e-01 -4.66624081e-01 3.65436584e-01 -8.54231566e-02
7.28741288e-01 -9.41003487e-02 2.80510068e-01 1.94439650e-01
3.56907129e-01 1.34544516e+00 3.73983115e-01 5.50232947e-01
7.07969069e-01 5.67381501e-01 2.72538155e-01 -1.02079824e-01
3.23968947e-01 2.45562986e-01 9.09307480e-01 1.05321074e+00
2.77776182e-01 -2.75968611e-01 -6.55619383e-01 5.18839717e-01
-1.76713586e+00 -8.82660806e-01 1.89452440e-01 1.83051503e+00
1.08547235e+00 -9.70511958e-02 3.77636403e-01 2.18691230e-01
4.25105453e-01 4.16444182e-01 -2.32226506e-01 -1.01782310e+00
-1.63307682e-01 1.35111600e-01 3.67650479e-01 8.27656031e-01
-1.23360384e+00 8.83144915e-01 6.14010859e+00 6.71920180e-01
-1.40824056e+00 1.34937137e-01 8.57645214e-01 -3.69598567e-01
-2.81375855e-01 -5.90020776e-01 -6.50017083e-01 2.88829923e-01
1.52490675e+00 2.20081940e-01 3.67597312e-01 8.11018765e-01
2.36712888e-01 -1.46531627e-01 -1.33231866e+00 8.98459494e-01
6.38126373e-01 -8.70121956e-01 -1.56788543e-01 -1.76449299e-01
4.61653680e-01 2.49978319e-01 4.47764218e-01 5.97252667e-01
-1.39863893e-01 -1.10556912e+00 7.87772000e-01 5.61405301e-01
6.46263957e-01 -7.52763927e-01 1.02538705e+00 1.71557322e-01
-6.29806995e-01 -1.71281964e-01 1.26638323e-01 1.43216504e-02
2.78480172e-01 2.08284423e-01 -9.88103509e-01 1.42521411e-01
6.86881959e-01 4.14976925e-01 -4.57688630e-01 4.87661399e-02
1.49733722e-01 6.00585461e-01 -4.09480631e-01 -5.91186166e-01
2.76866823e-01 7.03352317e-02 5.07982790e-01 1.73191667e+00
1.78211946e-02 -1.27936766e-01 -1.26618966e-01 1.81184202e-01
-1.23371869e-01 6.30034506e-01 -3.76650512e-01 -1.96956575e-01
3.53258364e-02 1.46685779e+00 -1.09470546e-01 -5.19850910e-01
-4.38226640e-01 1.10657763e+00 5.79960607e-02 2.59940207e-01
-3.61225605e-01 -2.88794100e-01 7.74020255e-01 -3.93847555e-01
1.97289944e-01 1.04498550e-01 -4.68586713e-01 -1.23025572e+00
-1.81844786e-01 -1.24314034e+00 1.55780107e-01 -6.13269687e-01
-1.42878306e+00 9.52290952e-01 -3.81316632e-01 -8.77206802e-01
-6.02938116e-01 -7.83339024e-01 -4.33182418e-01 9.14281309e-01
-1.58215284e+00 -9.55827117e-01 1.25366092e-01 4.20706362e-01
8.83756161e-01 -4.76682693e-01 1.17684495e+00 2.72769094e-01
-3.75502765e-01 6.46312952e-01 -1.68054968e-01 -1.48795113e-01
1.06242490e+00 -1.33656585e+00 -2.45267764e-01 8.80023241e-02
6.56976849e-02 3.62869889e-01 1.09654796e+00 -7.22798035e-02
-1.23548317e+00 -4.36377972e-01 1.29637313e+00 -7.86207497e-01
9.75957036e-01 -5.13768077e-01 -6.80646122e-01 1.13221154e-01
7.49614537e-01 -7.13261127e-01 1.14414954e+00 5.57362378e-01
-2.64474541e-01 -2.82330364e-01 -1.04530191e+00 5.49906611e-01
2.61408955e-01 -8.62300575e-01 -7.03663707e-01 7.77617050e-03
6.23798251e-01 -5.03350459e-02 -8.91292930e-01 4.19240713e-01
7.74066329e-01 -8.90199840e-01 8.14223945e-01 -7.71286547e-01
5.16896248e-01 1.55528724e-01 -6.57414854e-01 -1.55475533e+00
2.40696013e-01 -4.06908244e-01 1.03495479e-01 1.29967356e+00
1.09119642e+00 -5.81000566e-01 6.87096357e-01 9.71733451e-01
-4.04390357e-02 -5.47457993e-01 -1.15479040e+00 1.64926667e-02
-2.28326574e-01 -5.75725079e-01 3.31296533e-01 8.76074851e-01
9.26993489e-01 8.62999022e-01 -4.16035861e-01 1.23885378e-01
1.62995785e-01 -3.07108343e-01 6.48218811e-01 -1.21003973e+00
-3.31132300e-02 -7.65873969e-01 -3.80045354e-01 -8.38083625e-01
7.21569121e-01 -7.52629399e-01 2.90852726e-01 -1.25676250e+00
-1.91442698e-01 1.65352553e-01 -5.23170829e-01 4.08706546e-01
1.46743551e-01 1.18133172e-01 2.55234148e-02 -2.53642827e-01
-7.03308403e-01 8.57697904e-01 4.45891172e-01 -2.36374483e-01
-3.80285978e-01 5.26592731e-02 -9.10401285e-01 7.94127047e-01
7.79113293e-01 -1.86150417e-01 -2.20507175e-01 3.64811644e-02
4.22337204e-01 2.07144946e-01 -1.11863159e-01 -5.86035013e-01
4.82761025e-01 1.55907124e-01 1.89473599e-01 -5.29492497e-01
9.51557875e-01 -7.89505482e-01 -7.57475257e-01 -7.45507404e-02
-1.03160346e+00 -1.76240038e-02 2.86455899e-01 3.44707698e-01
-6.42536283e-01 -2.28979185e-01 5.01309335e-01 3.39261085e-01
-5.53669810e-01 -1.40104532e-01 -9.54943478e-01 -3.33408982e-01
3.59233379e-01 6.41258880e-02 -8.87359157e-02 -9.97966528e-01
-8.80156219e-01 2.89729118e-01 -1.68975405e-02 8.16369653e-01
4.62887853e-01 -1.00432670e+00 -7.57242799e-01 1.99560657e-01
3.60677987e-01 -6.99717760e-01 2.66504377e-01 9.04449224e-01
1.90895826e-01 5.49244761e-01 1.15713365e-01 -5.35670221e-01
-1.60635948e+00 -5.94942383e-02 2.91713625e-01 -6.82933955e-03
4.66658622e-01 9.90072668e-01 -1.04035974e-01 -1.09649801e+00
5.93574703e-01 -2.51993597e-01 -7.56375313e-01 9.47522163e-01
4.13372397e-01 1.92207888e-01 2.06378594e-01 -9.80584443e-01
-5.77814817e-01 1.73990473e-01 -6.51227217e-03 -9.61754680e-01
1.48161340e+00 -4.83050168e-01 -2.47581571e-01 9.47836339e-01
1.34759533e+00 3.46159369e-01 -7.28825450e-01 -9.42353159e-02
2.42737934e-01 1.54481143e-01 2.45507419e-01 -1.07152128e+00
-6.48875892e-01 9.20908391e-01 6.93722188e-01 5.97661316e-01
9.47662830e-01 1.58958301e-01 3.67820859e-01 6.37565494e-01
-1.85916901e-01 -1.47933757e+00 6.95223063e-02 6.99583113e-01
1.09383559e+00 -1.69529414e+00 -3.32037121e-01 1.64106280e-01
-1.41261911e+00 1.15679443e+00 2.38743380e-01 2.36621499e-01
7.76052833e-01 7.55739063e-02 6.59566224e-01 -7.29150176e-02
-9.65006173e-01 -2.57737160e-01 7.67239213e-01 3.33466887e-01
8.76969993e-01 1.02383085e-01 -1.23003144e-02 7.54137039e-01
-4.31392193e-01 -5.30694246e-01 4.50543046e-01 3.21557611e-01
-6.33099914e-01 -1.10876787e+00 -2.20209196e-01 3.38105053e-01
-6.29007101e-01 -4.04167533e-01 -7.45328963e-01 2.94064671e-01
-3.20160002e-01 1.54678345e+00 2.35867761e-02 -4.46544319e-01
5.40905654e-01 6.12616062e-01 -9.02799889e-02 -6.97381198e-01
-9.11653399e-01 3.73005979e-02 6.62092805e-01 -4.25665975e-01
-6.93699002e-01 -8.55254531e-01 -1.00229776e+00 1.23622805e-01
-3.65496814e-01 3.37807328e-01 1.36885405e+00 9.40039337e-01
3.12924594e-01 3.77967179e-01 9.63498533e-01 -1.11589503e+00
-8.11085463e-01 -1.33236814e+00 -4.20614183e-01 2.58436710e-01
7.73379862e-01 -1.25514358e-01 -7.13391185e-01 2.20592916e-02] | [13.362642288208008, 5.5572638511657715] |
38baf180-881d-4e1e-bd77-f7929c5cfc6c | twistbytes-hierarchical-classification-at | 1908.06493 | null | https://arxiv.org/abs/1908.06493v1 | https://arxiv.org/pdf/1908.06493v1.pdf | TwistBytes -- Hierarchical Classification at GermEval 2019: walking the fine line (of recall and precision) | We present here our approach to the GermEval 2019 Task 1 - Shared Task on hierarchical classification of German blurbs. We achieved first place in the hierarchical subtask B and second place on the root node, flat classification subtask A. In subtask A, we applied a simple multi-feature TF-IDF extraction method using different n-gram range and stopword removal, on each feature extraction module. The classifier on top was a standard linear SVM. For the hierarchical classification, we used a local approach, which was more light-weighted but was similar to the one used in subtask A. The key point of our approach was the application of a post-processing to cope with the multi-label aspect of the task, increasing the recall but not surpassing the precision measure score. | ['Fernando Benites'] | 2019-08-18 | null | null | null | null | ['hierarchical-text-classification-of-blurbs'] | ['natural-language-processing'] | [ 4.37516004e-01 2.22465649e-01 1.78830624e-01 -3.30975950e-01
-7.96991229e-01 -6.38848066e-01 8.18328857e-01 6.73183322e-01
-8.76319706e-01 9.13496137e-01 3.23180050e-01 -2.88927168e-01
-3.91946614e-01 -5.49035311e-01 -1.91693544e-01 -7.69737780e-01
1.10075407e-01 3.64886999e-01 7.12406278e-01 -2.79911429e-01
3.70244384e-01 3.56444418e-01 -1.72442794e+00 1.07321560e+00
5.13741672e-01 1.04680824e+00 1.72343493e-01 8.04350853e-01
-1.69511586e-01 7.96949804e-01 -5.87901413e-01 -5.71252465e-01
1.30210042e-01 -1.86722681e-01 -1.34936607e+00 -2.92730480e-02
3.31551313e-01 3.69584680e-01 1.46594256e-01 7.39364922e-01
2.22135842e-01 3.09453476e-02 1.12977326e+00 -7.62092710e-01
1.71404809e-01 6.93873227e-01 -1.27613679e-01 -4.88671521e-03
6.23214543e-01 -2.36617118e-01 1.32606173e+00 -1.02151978e+00
5.19734502e-01 1.06785142e+00 8.26045334e-01 2.68460125e-01
-1.34850252e+00 -3.45427841e-01 -1.17247932e-01 2.87885427e-01
-1.32819700e+00 -2.51057506e-01 1.35269426e-02 -8.63119364e-01
1.01560700e+00 6.56062424e-01 6.06880426e-01 9.79152858e-01
3.04582119e-01 3.47725332e-01 1.85461485e+00 -7.12286949e-01
1.33479655e-01 3.98166001e-01 5.82347035e-01 3.99832845e-01
6.07912540e-02 -1.11056492e-01 -1.38452038e-01 -2.42655352e-01
6.68619052e-02 -2.90040076e-01 6.02751272e-04 -2.26924896e-01
-1.06282103e+00 8.70997548e-01 2.75620341e-01 9.91071761e-01
-3.47760051e-01 -2.58912623e-01 8.63383114e-01 5.07964373e-01
5.10666609e-01 4.86322880e-01 -9.90454674e-01 1.01934746e-01
-1.05712080e+00 2.66418219e-01 9.99499261e-01 5.11789203e-01
6.51450813e-01 -5.53110242e-01 -6.54980421e-01 7.77332366e-01
3.00408173e-02 -6.10981435e-02 7.16338694e-01 -3.34696710e-01
3.61729473e-01 7.09392369e-01 -8.00908282e-02 -5.89541197e-01
-8.57395053e-01 -5.16428113e-01 -6.96106493e-01 1.39468700e-01
6.39297068e-01 -1.13985250e-02 -1.07618690e+00 1.40120232e+00
2.33515650e-01 -4.44353193e-01 -1.54367626e-01 4.30482537e-01
5.35616457e-01 2.41396189e-01 2.65544444e-01 -3.30431074e-01
1.64356828e+00 -8.27482760e-01 -4.99977201e-01 2.24298850e-01
1.14525211e+00 -1.00090921e+00 8.66563916e-01 7.06333816e-01
-5.84261656e-01 -5.10688603e-01 -9.40206766e-01 -9.13226455e-02
-9.37023163e-01 1.54052645e-01 3.08249831e-01 8.91438484e-01
-1.11277103e+00 8.34627569e-01 -1.69482768e-01 -4.64900494e-01
-1.85477212e-01 4.78188574e-01 -7.19063520e-01 6.91594481e-02
-1.34506035e+00 1.13760281e+00 8.98200691e-01 -3.00463736e-01
-3.38527769e-01 -3.71422499e-01 -7.70032883e-01 1.84287146e-01
4.72260326e-01 -5.11223197e-01 1.16090405e+00 -9.76904213e-01
-1.59485102e+00 1.18249655e+00 1.11453254e-02 -4.29527789e-01
5.15171349e-01 -1.53042749e-02 -2.90335447e-01 -3.04285407e-01
9.61793140e-02 3.38949025e-01 8.52601767e-01 -1.00266886e+00
-7.83206463e-01 -3.48817647e-01 -2.40055874e-01 -3.39897722e-02
-2.39165559e-01 1.93578303e-01 6.40682280e-02 -5.55014610e-01
-6.68438151e-02 -9.72934723e-01 -6.06585890e-02 -1.08738065e+00
-2.36813620e-01 -3.91117752e-01 2.14724377e-01 -7.46951044e-01
1.59921432e+00 -2.30893755e+00 4.00245249e-01 3.68598878e-01
2.26713791e-01 3.03395987e-01 -1.47906458e-03 8.03818047e-01
-5.61082602e-01 5.93393156e-03 -1.75013959e-01 -2.83069015e-01
-1.03699174e-02 -8.29764307e-02 -1.65368110e-01 3.31089437e-01
-2.96795871e-02 4.79641795e-01 -7.61977494e-01 -3.28709215e-01
8.38461071e-02 1.10555187e-01 -3.78163069e-01 -2.14166805e-01
-2.15058234e-02 2.92786211e-02 -5.18057048e-02 2.88672179e-01
4.01783347e-01 2.85518579e-02 1.74597546e-01 -2.81415015e-01
-4.49142814e-01 5.39203286e-01 -1.26015496e+00 1.46700394e+00
-6.70802593e-01 1.81247175e-01 1.55955984e-03 -1.00632608e+00
7.45488703e-01 4.15641516e-01 4.57532465e-01 -3.95407796e-01
3.40080529e-01 5.32707572e-01 1.69099748e-01 -3.42994034e-01
4.43815142e-01 -2.45212436e-01 -3.01273167e-01 -1.14121810e-01
2.76127249e-01 -8.26828927e-02 3.68482083e-01 4.95638186e-03
1.03603232e+00 1.58414558e-01 9.29255724e-01 -7.08072662e-01
1.05353451e+00 -4.56424356e-02 9.36266258e-02 6.79884136e-01
9.93780047e-02 7.41889775e-01 6.12713873e-01 -4.91185248e-01
-6.65811062e-01 -4.27164912e-01 -3.00782591e-01 1.40104544e+00
-7.52560616e-01 -8.58757377e-01 -7.59519577e-01 -1.24313092e+00
3.67372367e-03 6.21350646e-01 -8.68672550e-01 4.52631861e-02
-4.30122018e-01 -8.01222265e-01 4.27696794e-01 -1.47624567e-01
1.42405614e-01 -8.68312001e-01 -4.56082731e-01 2.60108680e-01
-9.47233737e-02 -1.07896280e+00 -1.61827490e-01 1.05503440e+00
-6.29075587e-01 -8.24914634e-01 -8.01459253e-01 -6.43304110e-01
1.81506455e-01 -2.32101023e-01 9.55299377e-01 -1.29044980e-01
-2.46022999e-01 -6.73862845e-02 -6.48038805e-01 -4.25562590e-01
-4.98194814e-01 7.62519956e-01 -2.66101837e-01 4.61101308e-02
3.27201098e-01 -1.20470151e-01 -1.08966127e-01 1.95166409e-01
-7.63609409e-01 -1.62911505e-01 7.80697882e-01 9.62384284e-01
2.54722327e-01 -1.21889070e-01 4.46395129e-01 -1.00844276e+00
3.81123155e-01 -2.64449716e-01 -3.12123895e-01 9.09275413e-02
-6.15201831e-01 2.26652715e-02 7.42726803e-01 -2.88757771e-01
-4.54736620e-01 4.07976955e-01 -6.00136757e-01 3.07150453e-01
-3.54451060e-01 4.13343608e-01 -1.94699869e-01 -8.76627043e-02
7.72357881e-01 2.83614602e-02 -2.34115645e-01 -7.47696579e-01
2.04346359e-01 1.09305799e+00 -1.69161260e-01 -2.27789760e-01
5.71716309e-01 -1.01972327e-01 2.22316131e-01 -7.83283353e-01
-1.03820181e+00 -8.11443210e-01 -8.78536761e-01 4.87457253e-02
9.89359319e-01 -7.42310941e-01 -4.61509943e-01 6.33001626e-01
-1.01451457e+00 -2.30330706e-01 -4.59224373e-01 3.88382971e-01
-4.10578460e-01 2.74073124e-01 -4.42966938e-01 -6.43388152e-01
-1.54206783e-01 -9.69947934e-01 1.07158434e+00 -3.56318384e-01
-4.41821247e-01 -7.10114837e-01 2.00384170e-01 4.00761247e-01
3.46533209e-01 -1.05542779e-01 1.08512735e+00 -1.34819937e+00
1.97151974e-01 -3.53373617e-01 -2.06748888e-01 6.01166070e-01
1.31904155e-01 -3.75479400e-01 -1.18093431e+00 -1.81098282e-01
1.83581695e-01 -3.18669766e-01 1.08633387e+00 -7.34587163e-02
1.06408191e+00 2.19887849e-02 -1.95913449e-01 1.13926783e-01
1.39630091e+00 8.15094355e-03 4.78333116e-01 5.32463729e-01
4.28562343e-01 8.26031387e-01 7.84823239e-01 1.32883251e-01
1.80089742e-01 1.14717376e+00 1.84520129e-02 -3.19615155e-02
-2.00220659e-01 1.96494728e-01 4.24916893e-01 7.23640621e-01
1.36915268e-02 -5.81854396e-02 -1.02191401e+00 5.11152387e-01
-1.83781505e+00 -5.92315197e-01 -5.69985628e-01 2.41574216e+00
7.60875881e-01 4.92453694e-01 5.56683123e-01 6.48235440e-01
3.96179944e-01 -2.01745331e-01 4.50683504e-01 -7.10930586e-01
3.92378233e-02 2.32221186e-01 5.80802798e-01 7.25665450e-01
-1.25285554e+00 9.47208583e-01 5.96052599e+00 1.35976219e+00
-9.20048416e-01 3.89427990e-01 2.65193254e-01 1.04809524e-02
2.64567733e-01 -6.62427843e-02 -1.18278778e+00 4.92651135e-01
1.27034152e+00 4.13415909e-01 1.48760825e-01 6.15004241e-01
-2.15597987e-01 -4.27052379e-01 -9.69522357e-01 4.66142714e-01
8.51670131e-02 -6.77639067e-01 -2.16625053e-02 1.72060058e-01
3.43337208e-01 2.11124253e-02 -4.19375956e-01 6.18127108e-01
1.35839013e-02 -9.15850937e-01 6.44891739e-01 2.43653700e-01
7.08370924e-01 -6.25915349e-01 1.05925882e+00 5.04755080e-01
-1.20791090e+00 -3.22387427e-01 -4.28473856e-03 -2.67998159e-01
-1.70227051e-01 9.04093742e-01 -6.60281956e-01 9.15595531e-01
5.79772234e-01 1.74322769e-01 -5.92863202e-01 1.05908990e+00
-1.23928361e-01 3.56867492e-01 -2.07098141e-01 -1.94266081e-01
3.72910231e-01 1.14045721e-02 6.13823950e-01 1.87097991e+00
1.65944010e-01 -4.08219606e-01 9.61104333e-02 -1.98751956e-01
3.59510511e-01 8.08171332e-01 -4.25292164e-01 3.25246215e-01
2.35816780e-02 1.45519066e+00 -9.77339387e-01 -5.64260304e-01
-4.35765117e-01 1.14486229e+00 3.92082125e-01 -1.73246503e-01
-6.28238976e-01 -6.61591053e-01 2.33052000e-02 3.48344326e-01
4.54259068e-01 -5.20165190e-02 -1.43885612e-01 -1.03419948e+00
-1.69735774e-01 -9.98641610e-01 4.71528947e-01 -1.52610868e-01
-1.12921512e+00 8.45163107e-01 2.82692701e-01 -8.20387483e-01
-2.93290854e-01 -9.61953402e-01 6.89313114e-02 1.09329140e+00
-1.10048079e+00 -1.21901703e+00 1.62173867e-01 5.57230949e-01
4.24357772e-01 -1.52306020e-01 1.13521278e+00 4.62407559e-01
-3.47318918e-01 3.55384588e-01 6.38004392e-02 -3.02123606e-01
9.40647840e-01 -1.57956457e+00 -4.76571806e-02 3.93587798e-01
1.32177144e-01 5.44194221e-01 7.53407240e-01 -5.25594532e-01
-5.15222669e-01 -8.36447716e-01 1.88157463e+00 -3.65065694e-01
9.46877480e-01 -8.77311885e-01 -7.22063720e-01 3.16156954e-01
3.18134248e-01 -4.12091136e-01 7.56299675e-01 4.06985581e-01
-2.17820585e-01 -4.21406925e-02 -1.18951440e+00 2.37961277e-01
7.38471508e-01 -5.29033542e-01 -8.60564232e-01 2.68039674e-01
4.42991257e-01 -1.98483214e-01 -9.13072169e-01 4.82548833e-01
5.56064725e-01 -9.12307739e-01 7.32080162e-01 -4.78263587e-01
3.01191270e-01 -8.97474661e-02 -3.13813925e-01 -1.38974321e+00
-6.29173338e-01 -2.88645476e-01 2.25781471e-01 1.16269553e+00
6.88109338e-01 -6.07330680e-01 2.61510849e-01 6.32633716e-02
1.24567948e-01 -6.77589536e-01 -1.15148056e+00 -8.08344603e-01
1.73409089e-01 -1.12941042e-01 1.49602279e-01 5.79276681e-01
1.06960088e-01 8.05415094e-01 -2.47741833e-01 -3.92105281e-01
2.32348189e-01 -1.30205214e-01 4.14992362e-01 -1.63435555e+00
-4.38393980e-01 -4.44110453e-01 -4.09223497e-01 -3.50181073e-01
1.13639876e-01 -1.18713415e+00 -1.73988178e-01 -1.22866035e+00
1.54691234e-01 5.90434149e-02 -6.32021606e-01 5.90326786e-01
-1.94707915e-01 2.96567589e-01 4.12687153e-01 6.61510462e-03
-3.42428535e-01 -1.26344617e-02 5.74185133e-01 5.44813909e-02
-1.69992730e-01 2.49112230e-02 -6.42004550e-01 5.98473907e-01
5.93396604e-01 -9.24556553e-01 -9.09536704e-02 1.07336685e-01
4.56170201e-01 -5.00504732e-01 2.31787279e-01 -1.02551532e+00
-4.68184128e-02 2.75372475e-01 2.94265240e-01 -3.67830873e-01
1.15951434e-01 -9.70789254e-01 1.65849134e-01 8.00293148e-01
-2.55226225e-01 -8.52044374e-02 2.67018646e-01 6.31770864e-02
-2.03247726e-01 -7.86729753e-01 9.16693687e-01 -2.16834605e-01
-3.68091524e-01 -3.43022943e-01 -8.80101085e-01 -3.06016028e-01
9.78950679e-01 -2.53839027e-02 5.63314967e-02 3.04055691e-01
-1.22124875e+00 -2.29115203e-01 2.30948418e-01 2.03652710e-01
-9.34963524e-02 -8.24715018e-01 -7.64247894e-01 1.42365500e-01
1.94311351e-01 -6.14816904e-01 -1.90299167e-03 1.18914902e+00
-4.96995449e-02 6.97527826e-01 -2.32707679e-01 -1.94826439e-01
-1.70188272e+00 6.75356686e-01 2.34725118e-01 -1.03662467e+00
-2.58523285e-01 6.06168687e-01 -2.09576022e-02 -3.70281875e-01
1.38359770e-01 -3.27106833e-01 -8.61748040e-01 8.68011594e-01
3.95226210e-01 3.36744010e-01 8.41398656e-01 -7.03957915e-01
-5.29509187e-01 6.36456668e-01 -3.07543337e-01 -3.52115989e-01
1.17607093e+00 -1.19046189e-01 -2.22193539e-01 7.90487707e-01
1.20999801e+00 3.01990479e-01 -2.32878238e-01 4.00796980e-02
6.85201764e-01 -3.96572500e-02 2.22958893e-01 -1.02924013e+00
-3.19431126e-01 6.57776058e-01 5.74236155e-01 7.34428883e-01
9.17489231e-01 -3.34889054e-01 2.38951385e-01 2.24760100e-01
4.67482418e-01 -1.06021512e+00 -4.81306255e-01 9.57591832e-01
8.85869563e-01 -1.03296602e+00 8.65537748e-02 -6.28657281e-01
-5.34356773e-01 1.15648890e+00 2.99625341e-02 9.68540385e-02
5.81245542e-01 2.89652020e-01 -1.18225388e-01 -1.13217816e-01
-6.46647453e-01 -5.61831057e-01 5.63122094e-01 1.46000013e-01
7.92133868e-01 9.45987478e-02 -1.08626866e+00 8.22394371e-01
-1.38963878e-01 1.90301478e-01 7.38579929e-02 6.88010991e-01
-4.90061879e-01 -1.49207199e+00 -1.75769627e-01 4.98492271e-01
-9.12680447e-01 -3.67689520e-01 -7.70492673e-01 8.64106536e-01
5.38752615e-01 8.42047274e-01 -3.54412407e-01 -6.83972597e-01
4.73815173e-01 7.30790973e-01 5.68021894e-01 -9.15539920e-01
-1.39012134e+00 5.56053072e-02 4.90205407e-01 -5.50227165e-01
-1.69407606e-01 -9.35202241e-01 -6.35187447e-01 2.19286948e-01
-3.38358462e-01 2.71775186e-01 9.25055325e-01 1.17366397e+00
-2.36472581e-02 4.89248604e-01 6.73703849e-01 -7.64716744e-01
-6.57059371e-01 -1.37263715e+00 -5.87359369e-01 3.51529807e-01
3.55826199e-01 -5.66806495e-01 -5.66943467e-01 -1.31429717e-01] | [10.54720401763916, 10.387114524841309] |
04e1002b-b44e-4d6c-bd99-2ffac277f447 | event-representation-learning-enhanced-with | 1909.0519 | null | https://arxiv.org/abs/1909.05190v2 | https://arxiv.org/pdf/1909.05190v2.pdf | Event Representation Learning Enhanced with External Commonsense Knowledge | Prior work has proposed effective methods to learn event representations that can capture syntactic and semantic information over text corpus, demonstrating their effectiveness for downstream tasks such as script event prediction. On the other hand, events extracted from raw texts lacks of commonsense knowledge, such as the intents and emotions of the event participants, which are useful for distinguishing event pairs when there are only subtle differences in their surface realizations. To address this issue, this paper proposes to leverage external commonsense knowledge about the intent and sentiment of the event. Experiments on three event-related tasks, i.e., event similarity, script event prediction and stock market prediction, show that our model obtains much better event embeddings for the tasks, achieving 78% improvements on hard similarity task, yielding more precise inferences on subsequent events under given contexts, and better accuracies in predicting the volatilities of the stock market. | ['Zhongyang Li', 'Kuo Liao', 'Ting Liu', 'Junwen Duan', 'Xiao Ding'] | 2019-09-09 | event-representation-learning-enhanced-with-1 | https://aclanthology.org/D19-1495 | https://aclanthology.org/D19-1495.pdf | ijcnlp-2019-11 | ['stock-market-prediction'] | ['time-series'] | [-1.17729604e-01 -1.58283144e-01 -3.13790858e-01 -7.16832280e-01
-4.09143150e-01 -7.96447754e-01 1.00834024e+00 7.64276385e-01
-3.94015163e-01 6.53914869e-01 9.46709752e-01 -2.90024102e-01
1.34012386e-01 -1.02253735e+00 -4.96924609e-01 -3.19774151e-01
-1.92601413e-01 1.34988859e-01 1.99467093e-01 -2.97910780e-01
4.52253103e-01 3.56830984e-01 -1.28543854e+00 4.18581635e-01
3.85725439e-01 1.43147719e+00 -2.25196838e-01 3.27328920e-01
-3.16103458e-01 1.56508839e+00 -4.77913111e-01 -6.88755035e-01
1.31762832e-01 -5.23513019e-01 -6.66208327e-01 -4.79720205e-01
-1.58121660e-01 -4.70471531e-01 -6.53173625e-01 9.32166636e-01
1.99473962e-01 3.60992134e-01 9.36074674e-01 -1.14744520e+00
-7.07483232e-01 1.12231374e+00 -2.67304152e-01 1.04259086e+00
3.06567430e-01 -9.11024064e-02 1.75321460e+00 -6.14951253e-01
4.16757822e-01 1.06739819e+00 7.43734837e-01 9.25876200e-02
-7.85235584e-01 -9.88766909e-01 2.24107921e-01 4.43798572e-01
-8.80086303e-01 -2.23542616e-01 8.26175094e-01 -4.07898784e-01
1.21015227e+00 2.02013806e-01 4.20573980e-01 1.55419099e+00
4.83727902e-01 7.05730498e-01 9.07048881e-01 1.11572899e-01
4.31394309e-01 9.73394588e-02 4.41696554e-01 2.51024794e-02
2.97066212e-01 2.08364666e-01 -7.69422233e-01 -3.25039923e-01
6.19121850e-01 3.26651841e-01 -9.24693272e-02 5.99231541e-01
-1.32704365e+00 1.13403440e+00 3.28219831e-01 4.44304287e-01
-7.08830237e-01 -4.62431610e-02 9.88928676e-01 4.54215169e-01
7.11843669e-01 6.20848060e-01 -7.83949733e-01 -3.44631046e-01
-5.90702415e-01 4.64110494e-01 1.03180242e+00 5.68818688e-01
5.33241034e-01 8.50693434e-02 -2.87404209e-01 2.79697299e-01
7.15765357e-02 2.82103121e-01 1.04094434e+00 -3.31056625e-01
6.17823064e-01 5.37282765e-01 2.89967865e-01 -1.28856230e+00
-3.97983015e-01 -2.52275854e-01 -2.82303989e-01 -3.95193666e-01
3.12755078e-01 -4.74851340e-01 -6.19244337e-01 1.86071396e+00
1.63625970e-01 7.84393072e-01 3.03111911e-01 7.56107092e-01
8.54713142e-01 8.98432612e-01 4.22965348e-01 -2.90660232e-01
1.57177949e+00 -3.46173525e-01 -7.09770143e-01 -5.32897353e-01
5.33749640e-01 -6.29220903e-01 7.10351586e-01 -2.33352885e-01
-8.90312314e-01 -2.67701954e-01 -9.49461520e-01 9.66352075e-02
-6.13440096e-01 -5.04837096e-01 1.06639445e+00 2.08506554e-01
-8.63573104e-02 9.50453758e-01 -8.21181118e-01 -2.37256691e-01
2.60597795e-01 -2.22557366e-01 2.03723423e-02 5.76606095e-01
-1.74578893e+00 9.86901760e-01 7.62049556e-01 -3.60061377e-01
-6.59004629e-01 -1.08703911e+00 -8.73330057e-01 4.19921607e-01
6.95686340e-02 -2.05222577e-01 1.42843211e+00 -1.00053215e+00
-1.21230984e+00 9.22449946e-01 -6.91294000e-02 -1.00312901e+00
3.28178555e-01 -2.36056894e-01 -8.25697720e-01 -1.37342280e-02
2.46937096e-01 1.74503867e-02 6.61429465e-01 -2.06055060e-01
-7.99074531e-01 -2.29202360e-01 -2.47036088e-02 8.72667134e-02
-4.22152966e-01 4.92079645e-01 3.82365406e-01 -9.85357165e-01
-1.40290618e-01 -4.59170789e-01 -5.84762096e-02 -4.12662178e-01
-1.40660182e-01 -6.64871693e-01 4.95345294e-01 -6.73232436e-01
1.18846953e+00 -2.39903593e+00 -5.22192299e-01 -2.82594766e-02
-6.90301657e-02 -1.69641107e-01 2.00840756e-01 6.83782697e-01
-3.47411096e-01 1.30804386e-02 2.11257413e-01 9.44670960e-02
2.90554553e-01 1.45698115e-01 -1.53171146e+00 2.51473516e-01
5.82141042e-01 1.06778872e+00 -9.61172640e-01 -2.46830702e-01
1.16911503e-02 7.22333370e-03 -1.96566418e-01 3.40570033e-01
-2.22049236e-01 1.77942619e-01 -7.47138262e-01 2.07936853e-01
7.35440478e-02 -3.19029003e-01 -7.91320354e-02 -1.07197680e-01
3.15346457e-02 1.32531345e+00 -1.06704211e+00 9.90405798e-01
-2.64616162e-01 7.45127976e-01 -7.01400697e-01 -1.05878413e+00
8.72714698e-01 5.82357705e-01 2.88904220e-01 -8.13276708e-01
3.19222748e-01 5.42685464e-02 -8.57333615e-02 -2.57860392e-01
4.77165610e-01 -6.70799136e-01 -4.88668919e-01 8.10973048e-01
-1.76794201e-01 4.83567826e-02 1.34491757e-01 2.18545526e-01
1.08582985e+00 -3.07206899e-01 7.51664519e-01 -1.85533404e-01
-6.83574900e-02 1.73026159e-01 8.81752908e-01 6.74423397e-01
-3.47839922e-01 3.41680288e-01 7.53279865e-01 -7.30523050e-01
-7.69494474e-01 -1.30686247e+00 -3.20535570e-01 1.17772722e+00
1.48768589e-01 -3.83120984e-01 -1.66459635e-01 -6.24556720e-01
1.82034299e-01 1.24763131e+00 -8.30429494e-01 -2.96796739e-01
-5.36914229e-01 -1.11637008e+00 5.72270751e-01 1.12852907e+00
3.02875727e-01 -1.17392564e+00 -6.19833708e-01 4.74692196e-01
-2.07053840e-01 -1.26272011e+00 -4.14969832e-01 4.20821846e-01
-7.67596006e-01 -9.92652237e-01 2.88959444e-02 -5.48040390e-01
-3.29232626e-02 -2.23033145e-01 1.23694944e+00 -6.20993018e-01
-9.36748087e-02 -4.20252010e-02 -3.77877444e-01 -8.30309689e-01
-2.34991908e-01 -2.97597259e-01 4.13899645e-02 1.10627092e-01
7.56585181e-01 -7.53856897e-01 -5.55585325e-01 5.21149375e-02
-9.14399564e-01 -3.08859915e-01 5.33885285e-02 6.54543400e-01
2.26155892e-01 2.87125498e-01 1.00766289e+00 -6.87498868e-01
8.09384227e-01 -1.04663205e+00 -1.85173079e-01 -1.02557335e-02
-4.80321139e-01 -4.08802368e-02 8.27593148e-01 -6.22251511e-01
-1.41917932e+00 -6.57229245e-01 1.59492552e-01 -5.59305586e-02
-2.20578477e-01 5.95652401e-01 2.75745332e-01 8.75360370e-01
6.35676026e-01 2.54027724e-01 -5.86882651e-01 -2.74890840e-01
8.94679949e-02 4.73421723e-01 5.61797500e-01 -4.10607725e-01
6.45872951e-01 6.09257042e-01 -3.94631028e-01 -3.68016720e-01
-1.36163211e+00 -4.83302623e-01 -1.54881403e-01 3.09900194e-01
9.24335003e-01 -1.16001546e+00 -5.02858400e-01 3.26035500e-01
-1.10655880e+00 -2.87188999e-02 -4.30658251e-01 9.03087795e-01
-2.96301514e-01 -8.40971693e-02 -1.08867025e+00 -5.67104101e-01
-2.46533945e-01 -4.73183692e-01 7.39703894e-01 2.49176353e-01
-8.09048712e-01 -1.28266108e+00 2.27655575e-01 -3.66911329e-02
2.84107149e-01 3.60798419e-01 1.14370060e+00 -1.58135045e+00
-2.14000985e-01 -3.64359319e-01 -2.68676460e-01 7.71002844e-02
3.40759635e-01 -1.73294112e-01 -1.06124079e+00 1.45598292e-01
2.67875135e-01 -3.95241708e-01 9.43708062e-01 1.26201868e-01
7.56843507e-01 -3.22378457e-01 -1.87365487e-01 3.53818744e-01
1.06986225e+00 2.84139365e-01 4.74604219e-01 2.45358035e-01
1.54210314e-01 4.62549448e-01 4.64829803e-01 8.92632425e-01
2.72584349e-01 2.48566806e-01 5.61083220e-02 4.14923966e-01
2.07703710e-01 -5.91777861e-01 7.07183003e-01 4.97529179e-01
2.80767798e-01 -1.31971151e-01 -6.33752346e-01 7.06433356e-01
-1.74080586e+00 -1.44754601e+00 5.47695719e-02 1.77280128e+00
1.09713566e+00 3.73650253e-01 -8.75924304e-02 3.01792286e-02
6.44868135e-01 7.47306585e-01 -7.23618269e-01 -3.83845836e-01
-1.43525898e-01 2.80311882e-01 3.82435709e-01 -5.62749319e-02
-1.24697375e+00 8.98749292e-01 6.41120100e+00 6.93553448e-01
-1.17406583e+00 -7.57032307e-03 5.93172491e-01 -1.46187976e-01
-4.55035239e-01 -4.25736569e-02 -8.79650891e-01 7.17511952e-01
1.17974937e+00 -6.43772066e-01 8.37449133e-02 7.38346636e-01
2.88515240e-01 2.80926734e-01 -1.49317765e+00 7.12546229e-01
-7.16089532e-02 -1.58904243e+00 7.07880855e-02 -3.93722445e-01
6.69637620e-01 1.79252759e-01 -1.88721001e-01 5.33457100e-01
5.32157302e-01 -8.87270510e-01 8.68061721e-01 1.92352921e-01
7.20159635e-02 -7.17650056e-01 7.41747022e-01 1.95638910e-01
-1.14736271e+00 -2.90668495e-02 -2.48577580e-01 -6.82494044e-01
2.89164066e-01 7.33503044e-01 -9.48503137e-01 3.08426917e-01
6.69264019e-01 1.05771804e+00 -3.34522128e-01 3.90913308e-01
-3.36224884e-01 1.11553466e+00 -3.09871584e-01 -2.65818000e-01
2.85656214e-01 4.47117873e-02 4.28944886e-01 1.22766912e+00
9.52517018e-02 3.24512690e-01 4.46716100e-02 1.11894679e+00
-2.47652322e-01 1.55849233e-01 -6.67901456e-01 -5.42091131e-01
4.75928336e-01 9.17224646e-01 -7.56622136e-01 -5.05306900e-01
-6.59494698e-01 8.90538514e-01 4.10830438e-01 2.51864046e-01
-1.26600790e+00 -5.60547650e-01 9.87253606e-01 -2.67361462e-01
4.63253230e-01 7.68152624e-02 -5.08891404e-01 -1.42711329e+00
3.99678871e-02 -4.74894762e-01 7.70112157e-01 -7.09550261e-01
-1.88428915e+00 2.32959881e-01 -1.12849362e-01 -8.68063986e-01
-4.31495965e-01 -6.54401422e-01 -1.42071319e+00 6.30783141e-01
-1.41738534e+00 -6.63132310e-01 2.50784904e-01 5.56987643e-01
4.30303961e-01 -8.77838805e-02 5.34925401e-01 -3.61578315e-02
-5.75513422e-01 2.80793905e-01 3.45943049e-02 7.29628801e-01
7.87906945e-01 -1.25310886e+00 5.65542519e-01 6.46117091e-01
3.80257487e-01 5.35040677e-01 6.90186918e-01 -8.10281813e-01
-1.01990640e+00 -1.30036831e+00 1.37598419e+00 -5.40816486e-01
1.42758000e+00 -1.27601609e-01 -8.77037942e-01 1.14941287e+00
1.07704885e-01 -3.56365442e-01 9.57622230e-01 2.98705339e-01
-8.27042699e-01 7.03365803e-02 -9.22254026e-01 7.54935980e-01
8.71055663e-01 -9.91356015e-01 -1.44911230e+00 3.45100880e-01
9.55682039e-01 -1.31911412e-01 -9.95322585e-01 2.18135610e-01
3.21054131e-01 -8.01219046e-01 1.03889668e+00 -1.29296207e+00
7.59881258e-01 1.09945633e-01 -3.92906487e-01 -1.19873846e+00
-2.18208313e-01 -3.51799369e-01 5.71801849e-02 1.51568604e+00
4.70863551e-01 -8.82643878e-01 2.51267880e-01 9.14609969e-01
1.53164044e-01 -4.29235578e-01 -7.53343344e-01 -7.40653336e-01
1.42146021e-01 -7.09113419e-01 9.23659563e-01 1.42895019e+00
3.23319525e-01 5.10062397e-01 -6.74062148e-02 3.86750668e-01
5.57697080e-02 6.92946792e-01 1.44955412e-01 -1.23031569e+00
-3.44617605e-01 -5.78419864e-01 -4.43727165e-01 -6.92923129e-01
7.20878780e-01 -1.09843504e+00 -3.49166572e-01 -9.60711479e-01
3.85177016e-01 7.24198818e-02 -6.29853189e-01 3.21907222e-01
-4.38863486e-01 -3.85650471e-02 -7.68463314e-02 4.17215675e-02
-4.14092332e-01 5.67245781e-01 6.76710963e-01 -7.26769939e-02
-1.46109104e-01 -7.02398717e-02 -7.99348116e-01 9.91693616e-01
9.67052698e-01 -5.03957152e-01 -2.62065917e-01 -1.13997020e-01
4.37341213e-01 1.58802211e-01 6.16980076e-01 -4.59897637e-01
2.14063916e-02 -5.26086569e-01 4.78894711e-01 -5.01439929e-01
8.89147446e-02 -5.05034685e-01 -1.44673005e-01 3.02800924e-01
-9.13551927e-01 2.29734063e-01 2.45156944e-01 9.58904743e-01
-5.24987638e-01 -3.23144257e-01 4.82817113e-01 -1.20480023e-01
-8.32639694e-01 2.16009080e-01 -4.59717840e-01 6.81370080e-01
1.13771629e+00 1.41818151e-01 -2.38916755e-01 -4.83185560e-01
-5.06610453e-01 -8.04836955e-03 -1.12647479e-02 7.04127789e-01
3.42269570e-01 -1.32324028e+00 -9.53583837e-01 4.41818647e-02
-5.65353269e-03 -4.86227244e-01 4.41365317e-02 6.85375988e-01
-5.76386265e-02 3.08462292e-01 7.29270577e-02 4.76548970e-02
-7.24662840e-01 4.05978560e-01 2.04613537e-01 -3.48983049e-01
-6.39219463e-01 6.75600946e-01 5.00146329e-01 -1.38829192e-02
3.10491268e-02 -9.00162160e-01 -1.42104747e-02 5.60220599e-01
9.58433688e-01 4.23625499e-01 -6.70267195e-02 -2.11729363e-01
-4.22666550e-01 9.94214043e-03 -2.25667119e-01 7.21022710e-02
1.48985732e+00 9.15368870e-02 3.92420515e-02 7.80099571e-01
1.26922977e+00 -1.34839505e-01 -1.12127101e+00 -3.80477041e-01
4.19975072e-01 -3.15066397e-01 1.39847040e-01 -6.39290869e-01
-7.89884806e-01 8.47384810e-01 2.40935739e-02 4.65274215e-01
6.49162591e-01 3.10156196e-01 1.32734704e+00 4.45237428e-01
1.14633061e-01 -1.06071842e+00 -6.07398562e-02 7.30481267e-01
7.02991307e-01 -1.33033121e+00 -2.77771384e-01 4.32185642e-02
-9.64638412e-01 1.04023528e+00 2.73104697e-01 -2.95109481e-01
7.62075901e-01 1.53620929e-01 -1.66392773e-01 -2.65840054e-01
-9.64712679e-01 -1.99852124e-01 1.56694204e-01 -1.08623169e-02
4.84185696e-01 2.28202060e-01 -2.08863139e-01 1.18297482e+00
-4.20869917e-01 -3.89846832e-01 2.58615702e-01 6.86774194e-01
-3.29686642e-01 -3.61671180e-01 -1.32164061e-01 7.28170395e-01
-9.75081086e-01 -3.19456667e-01 -4.36458826e-01 5.41369498e-01
-1.96977645e-01 9.18649495e-01 6.29483879e-01 -1.08052671e-01
2.80344933e-01 5.19371867e-01 4.80507351e-02 -5.82149327e-01
-8.96623015e-01 -4.18099612e-01 4.63902235e-01 -5.88826895e-01
-1.10638604e-01 -9.47175443e-01 -1.69468629e+00 -4.28063184e-01
-1.99228227e-02 1.26647338e-01 1.01366729e-01 1.22275245e+00
3.76057446e-01 3.26707780e-01 8.30218077e-01 -3.67763221e-01
-9.86789107e-01 -8.03394616e-01 -8.20648909e-01 1.12865484e+00
2.39239812e-01 -4.92775887e-01 -6.91727221e-01 9.34560150e-02] | [4.459316730499268, 4.406608581542969] |
3ff30e7c-3993-45db-9f40-8cd5ba039017 | rotational-crossed-slit-light-field | null | null | http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Rotational_Crossed-Slit_Light_CVPR_2016_paper.html | http://openaccess.thecvf.com/content_cvpr_2016/papers/Li_Rotational_Crossed-Slit_Light_CVPR_2016_paper.pdf | Rotational Crossed-Slit Light Field | Light fields (LFs) are image-based representation that records the radiance along all rays along every direction through every point in space. Traditionally LFs are acquired by using a 2D grid of evenly spaced pinhole cameras or by translating a pinhole camera along the 2D grid using a robot arm. In this paper, we present a novel LF sampling scheme by exploiting a special non-centric camera called the crossed-slit or XSlit camera. An XSlit camera acquires rays that simultaneously pass through two oblique slits. We show that, instead of translating the camera as in the pinhole case, we can effectively sample the LF by rotating individual or both slits while keeping the camera fixed. This leads a "fixed-location" LF acquisition scheme. We further show through theoretical analysis and experiments that the resulting XSlit LFs provide several advantages: they provide more dense spatial-angular sampling, are amenable multi-view stereo matching and volumetric reconstruction, and can synthesize unique refocusing effects. | ['Jingyi Yu', 'Haiting Lin', 'Nianyi Li', 'Mingyuan Zhou', 'Bilin Sun'] | 2016-06-01 | null | null | null | cvpr-2016-6 | ['stereo-matching'] | ['computer-vision'] | [ 5.09666681e-01 -3.49058270e-01 -2.71165036e-02 -8.46835151e-02
-2.20205501e-01 -6.74940884e-01 7.07953334e-01 -4.64562535e-01
-5.36534667e-01 7.21659303e-01 -4.12067473e-02 -2.62719244e-01
1.65659431e-02 -7.92828381e-01 -8.36271584e-01 -6.80342913e-01
7.72069693e-01 4.91534203e-01 3.53907228e-01 1.30062312e-01
6.06853902e-01 7.56528974e-01 -1.49899721e+00 -1.90856561e-01
2.88677067e-01 7.36015975e-01 7.64637589e-01 7.47775435e-01
3.70483920e-02 6.94247723e-01 -1.84833407e-02 -2.23026294e-02
4.90017802e-01 -5.06015897e-01 -5.95849395e-01 3.25276554e-01
5.69788039e-01 -6.43982768e-01 -4.28449303e-01 9.27717566e-01
2.78089643e-02 6.80652037e-02 3.91259283e-01 -8.11605930e-01
-2.02633366e-01 -9.02718455e-02 -1.27388525e+00 -8.16215351e-02
1.00488186e+00 -1.36047319e-01 5.78679740e-01 -8.32634985e-01
8.92410934e-01 8.15554142e-01 4.80835259e-01 4.78860945e-01
-1.23712885e+00 -2.64275491e-01 -5.47808409e-01 -1.12712309e-01
-1.01285756e+00 -5.49295127e-01 9.67745125e-01 -4.21523750e-01
5.62293470e-01 4.17429268e-01 7.85797834e-01 6.87351704e-01
5.14730215e-01 9.76176783e-02 1.41863036e+00 -1.00021255e+00
1.81075007e-01 2.78969139e-01 5.39090782e-02 7.91308045e-01
3.76135916e-01 2.77342290e-01 -5.96777797e-01 -9.86052454e-02
1.41694427e+00 4.28230315e-01 -8.50676775e-01 -8.74207258e-01
-1.60099566e+00 4.31951314e-01 3.02119136e-01 1.64605290e-01
-1.69761762e-01 1.11240158e-02 -1.58374399e-01 6.97095767e-02
2.02020958e-01 6.69788182e-01 5.93863875e-02 2.29824394e-01
-7.90619612e-01 -5.06069660e-02 5.17209113e-01 1.00135112e+00
1.10734594e+00 -4.95433629e-01 3.33651364e-01 4.62257236e-01
1.38722330e-01 8.08892369e-01 2.00934768e-01 -1.16939032e+00
4.12503272e-01 3.76257837e-01 4.42581683e-01 -6.69851184e-01
-3.09140801e-01 7.15250596e-02 -4.68171686e-01 6.43662453e-01
4.02776659e-01 5.97033165e-02 -5.61210215e-01 1.22093940e+00
4.48553026e-01 5.62745072e-02 7.64831528e-02 9.69593704e-01
3.47542137e-01 5.74286103e-01 -9.30021167e-01 -5.76754451e-01
1.36045933e+00 -8.84343147e-01 -6.17464006e-01 2.17586588e-02
1.48491979e-01 -1.02994084e+00 1.17920005e+00 5.93952060e-01
-1.21481526e+00 -2.02841371e-01 -9.56046283e-01 -4.75094691e-02
1.14936493e-01 1.98066860e-01 3.32329899e-01 3.74874145e-01
-7.88347185e-01 1.97357953e-01 -7.99662173e-01 -2.10715473e-01
-3.83774377e-02 4.00437377e-02 -5.14189243e-01 -4.73903149e-01
-3.89012486e-01 6.92361236e-01 -2.41534039e-01 -4.54030991e-01
-3.30718666e-01 -8.36306512e-01 -6.55068994e-01 -3.29627663e-01
3.01243424e-01 -9.96851623e-01 1.18831098e+00 -3.29837292e-01
-1.84899771e+00 1.10711050e+00 -6.07491612e-01 -6.91559538e-03
4.70002085e-01 -2.01600716e-01 -5.63698336e-02 7.87187755e-01
3.80518764e-01 1.95746675e-01 6.40281856e-01 -1.34579933e+00
-5.20566642e-01 -6.00194216e-01 2.31345609e-01 3.37312281e-01
1.76274374e-01 -5.79745024e-02 -3.39716703e-01 1.21497199e-01
5.57777762e-01 -8.97651017e-01 -1.20504372e-01 1.31251395e-01
-6.69009924e-01 5.33180892e-01 1.36096609e+00 1.55251846e-01
6.97271407e-01 -1.92735064e+00 -1.29480865e-02 -1.84546500e-01
2.91286945e-01 -1.58571936e-02 3.63377184e-01 8.36118460e-01
6.93038106e-02 -4.95638579e-01 -2.53444642e-01 -3.83942842e-01
-7.34561801e-01 2.81548314e-02 -3.01108360e-01 8.86148691e-01
-5.14863431e-01 4.87449437e-01 -8.34291041e-01 -3.36423814e-01
8.05370212e-01 4.88907576e-01 -6.22915149e-01 1.35052085e-01
-1.19911224e-01 1.04667401e+00 -4.34843659e-01 4.30074334e-01
1.03832436e+00 -2.20574275e-01 -1.72615677e-01 -2.87361950e-01
-9.12204146e-01 2.53631175e-02 -1.21272337e+00 1.77106726e+00
-6.65846646e-01 8.69578302e-01 2.54776269e-01 -5.22406578e-01
6.97030723e-01 1.95170730e-01 3.72643560e-01 -7.93685257e-01
-1.18555285e-01 2.02978149e-01 -9.68232930e-01 -5.15276790e-01
6.64740741e-01 -5.28385520e-01 8.75136182e-02 5.28050721e-01
-3.47411990e-01 -5.65842211e-01 -1.14392238e-02 -1.87208783e-02
8.70843649e-01 7.60709494e-03 4.89382416e-01 -2.99712330e-01
5.71513355e-01 1.07440494e-01 1.63881779e-01 7.15611160e-01
3.79285485e-01 9.96334493e-01 1.32824674e-01 -5.42854249e-01
-1.25054502e+00 -9.82985497e-01 -7.45906055e-01 9.88295004e-02
7.49205887e-01 -2.53398180e-01 -6.37401998e-01 7.85746947e-02
-1.40619427e-01 4.67813402e-01 -2.22288787e-01 4.82233852e-01
-5.44000745e-01 -3.37861866e-01 -8.09921101e-02 9.47406366e-02
8.23985040e-01 -4.41554815e-01 -1.53755701e+00 -6.99528232e-02
-2.88303107e-01 -1.14387643e+00 -3.59157443e-01 -7.62085393e-02
-6.20783567e-01 -1.52420092e+00 -7.74322569e-01 -2.86223680e-01
7.29350567e-01 1.04223347e+00 8.49040627e-01 -4.74965125e-01
-3.14190000e-01 9.24838185e-01 -1.05603606e-01 4.69445847e-02
-2.93595530e-02 -5.26740849e-01 2.09924862e-01 1.44210696e-01
5.61052002e-02 -7.09435165e-01 -8.88405681e-01 4.37694132e-01
-7.20693469e-01 6.19563282e-01 9.51176882e-02 5.86648881e-01
8.21594656e-01 6.80544414e-03 -2.41047204e-01 -8.69296193e-01
3.88337858e-02 -9.51813981e-02 -1.27417827e+00 -3.82006727e-02
-1.90872520e-01 -1.86802894e-01 7.85168469e-01 1.10993363e-01
-1.21579516e+00 -3.07785776e-02 1.86982498e-01 -5.96846581e-01
-3.05590183e-01 -8.69940966e-02 1.12199381e-01 -5.26880980e-01
5.47048509e-01 3.10556144e-01 -3.04426756e-02 -4.85203415e-01
1.11142844e-01 5.71201622e-01 6.83690012e-01 -3.50353152e-01
5.79764783e-01 1.22806430e+00 6.14386559e-01 -1.34837914e+00
-6.71795368e-01 -6.93319976e-01 -7.20748663e-01 -4.67579961e-01
1.07692695e+00 -7.02509284e-01 -9.80603397e-01 3.80856782e-01
-1.16572976e+00 -1.07046530e-01 -4.21525836e-01 1.02410507e+00
-7.36169040e-01 4.08490598e-01 -4.93787587e-01 -6.64943278e-01
-1.85253080e-02 -1.24730408e+00 1.44330275e+00 4.17292267e-01
6.74495921e-02 -1.14644408e+00 4.00548875e-01 3.82929772e-01
3.14983726e-01 3.12664717e-01 6.84649825e-01 7.73030937e-01
-1.02605164e+00 -6.89179152e-02 -1.22333840e-01 -1.31802812e-01
8.05823132e-02 1.96510181e-02 -9.25588071e-01 -3.31125051e-01
6.44051552e-01 -2.61388391e-01 6.72354102e-01 7.53456056e-01
8.46453905e-01 1.57778889e-01 -7.76090920e-01 1.18210387e+00
2.12873936e+00 2.23953247e-01 6.28924847e-01 4.06991065e-01
6.64662302e-01 3.04937631e-01 3.59431803e-01 4.03737873e-01
2.54538089e-01 9.27422643e-01 4.51363832e-01 -5.74718863e-02
-8.93396363e-02 -2.70651996e-01 -7.04270508e-03 4.46102381e-01
-3.89284670e-01 -2.33832464e-01 -6.49336219e-01 1.71823710e-01
-1.20189726e+00 -9.63508844e-01 -6.66472971e-01 2.68877482e+00
4.57410187e-01 -4.40857053e-01 -2.47820318e-01 1.97305068e-01
7.03249812e-01 8.62026364e-02 -3.06273490e-01 -4.19095494e-02
-3.88271250e-02 5.73129505e-02 8.73455942e-01 1.05162430e+00
-5.03247976e-01 5.81137419e-01 6.35675192e+00 2.84367740e-01
-1.47170854e+00 5.26710562e-02 -9.08101723e-03 -2.59499550e-01
-7.17710316e-01 2.93227404e-01 -1.02121794e+00 4.95295852e-01
1.66407257e-01 1.68676540e-01 4.31765974e-01 2.81567782e-01
2.42198035e-01 -9.75946963e-01 -1.04522836e+00 1.21536970e+00
-3.52429040e-02 -1.41877902e+00 -9.19677615e-02 2.55839944e-01
8.52223635e-01 3.45444530e-02 5.90613708e-02 -6.89916849e-01
-1.84113279e-01 -3.85317624e-01 5.05770504e-01 5.57210624e-01
1.35060573e+00 -3.17802399e-01 -1.84265718e-01 6.28740251e-01
-9.84810829e-01 1.10775381e-01 -5.24512410e-01 -1.55207917e-01
5.87717891e-01 8.87260795e-01 -5.43999553e-01 6.44611478e-01
5.47030926e-01 4.82427388e-01 -1.07889967e-02 7.59875178e-01
4.76458631e-02 9.16333944e-02 -4.15025264e-01 2.91936129e-01
2.09101304e-01 -9.33830082e-01 8.87548029e-01 6.68653846e-01
4.81908023e-01 3.20242047e-01 -1.44792721e-01 9.24636543e-01
3.21474850e-01 -5.41924715e-01 -1.08696795e+00 8.00282121e-01
2.51696438e-01 1.17610121e+00 -7.54144490e-01 -1.17759809e-01
-8.20634365e-01 9.37177420e-01 -1.16774347e-02 4.57336068e-01
-3.78476709e-01 -4.91485238e-01 2.92577982e-01 6.43856764e-01
1.39269844e-01 -2.93623805e-01 -4.81641106e-02 -1.62281132e+00
5.08380719e-02 3.73349600e-02 -1.89396292e-01 -1.36620784e+00
-7.55296230e-01 4.34150666e-01 2.15836823e-01 -1.32143462e+00
8.44318122e-02 -7.21859097e-01 -4.13090169e-01 9.38645542e-01
-1.95572424e+00 -8.07848692e-01 -4.49592739e-01 1.03820574e+00
4.47603703e-01 3.04768592e-01 6.52030110e-01 7.72297801e-03
-7.81301335e-02 -2.61253387e-01 3.78080040e-01 -4.10463661e-01
5.27540803e-01 -1.12508464e+00 -1.83414847e-01 7.86849618e-01
-1.88094407e-01 6.16859972e-01 5.67813993e-01 -3.24379444e-01
-1.81729174e+00 -7.75982738e-01 6.72017813e-01 -3.98444384e-01
6.75095618e-02 -3.23513269e-01 -2.65236557e-01 8.49638164e-01
4.83475029e-01 1.84983745e-01 3.86155546e-01 -4.37268615e-01
1.41118057e-02 -1.24185152e-01 -1.42126441e+00 3.03307682e-01
9.73918259e-01 -7.71698415e-01 -5.89769483e-01 4.74087447e-01
2.93965399e-01 -8.37037861e-01 -3.10000420e-01 1.85851514e-01
8.00480664e-01 -1.60978508e+00 9.85848188e-01 1.68621272e-01
6.65269971e-01 -4.43642735e-01 -3.07939440e-01 -1.29924023e+00
-6.85376450e-02 -6.15636110e-01 4.44375187e-01 7.06090569e-01
-1.65382490e-01 -1.12223470e+00 7.90865123e-01 2.14028895e-01
-2.60043949e-01 -5.04300892e-01 -8.92180383e-01 -5.51181257e-01
-4.95823920e-01 -8.34396183e-02 3.14546019e-01 8.99672806e-01
2.64965177e-01 4.29962814e-01 -1.63972825e-01 4.27200913e-01
1.09195268e+00 5.07223725e-01 6.27456605e-01 -1.10751355e+00
-4.78191197e-01 5.18101528e-02 -1.58877805e-01 -1.58659673e+00
-2.14701846e-01 -7.46761441e-01 -3.16376686e-01 -1.27750480e+00
2.70517915e-01 -5.61728418e-01 6.78565741e-01 -3.03927451e-01
4.67505932e-01 3.16817731e-01 -1.79045290e-01 5.27017236e-01
-2.72344798e-01 1.65601045e-01 1.68373096e+00 5.66764295e-01
-1.33292243e-01 1.97799906e-01 -1.65187672e-01 9.14945722e-01
4.01050240e-01 -1.28385231e-01 -5.50440431e-01 -7.53543735e-01
4.22735780e-01 8.44717860e-01 5.01165092e-01 -1.06956911e+00
5.36495984e-01 -1.67469159e-01 3.73536468e-01 -8.78928483e-01
6.73297703e-01 -1.02938473e+00 4.88961130e-01 3.14323843e-01
3.70559692e-02 1.84594076e-02 -2.24913523e-01 5.35243690e-01
-9.05833021e-02 -5.93843281e-01 1.13214314e+00 -7.04121053e-01
-2.24933386e-01 -3.70498002e-03 -3.23093653e-01 -2.66593337e-01
1.31635773e+00 -3.74064922e-01 -4.53908324e-01 -1.97818369e-01
-2.69550860e-01 -2.14824438e-01 1.32336545e+00 -2.77443737e-01
7.76949644e-01 -1.19399023e+00 -4.12662104e-02 9.64590073e-01
-4.76410761e-02 2.53777981e-01 2.25116521e-01 7.90135205e-01
-1.17954755e+00 8.61513138e-01 -1.60716355e-01 -1.10188723e+00
-1.12472606e+00 3.96679431e-01 5.81461489e-01 1.39060810e-01
-1.14322054e+00 7.75082648e-01 5.71504712e-01 -4.19006288e-01
-3.83610457e-01 -1.46634728e-01 1.63023956e-02 -4.79916096e-01
7.51266360e-01 3.64554137e-01 6.10374361e-02 -4.88471568e-01
-9.88785699e-02 1.47730672e+00 2.69026577e-01 -4.30088758e-01
1.26055992e+00 -5.16351819e-01 -2.38633320e-01 4.25716341e-01
1.10819864e+00 5.62150478e-01 -1.37399161e+00 -2.18873948e-01
-9.39878166e-01 -1.24105012e+00 1.38187110e-01 -1.37380630e-01
-9.10498619e-01 9.47985888e-01 7.95131624e-02 3.13569456e-01
1.11279321e+00 1.55983225e-01 5.39313614e-01 1.10681243e-01
1.01783323e+00 -4.97673035e-01 -1.17896363e-01 2.41699159e-01
4.93403822e-01 -7.18288660e-01 -4.18771356e-02 -5.90474844e-01
-2.45956793e-01 1.36089826e+00 2.91230053e-01 -1.12047076e-01
3.47010314e-01 4.01973069e-01 -2.53689289e-01 -4.49583471e-01
-6.08962476e-01 3.05808842e-01 -2.88546383e-01 5.11774480e-01
2.85599321e-01 -1.75672412e-01 -8.03463534e-02 -5.05381167e-01
-9.50696617e-02 1.62541881e-01 1.19949710e+00 1.02047837e+00
-6.31768644e-01 -9.91901517e-01 -7.62094259e-01 2.72016585e-01
-1.02212898e-01 1.70149833e-01 2.59722263e-01 6.79284453e-01
-1.06361702e-01 7.34931409e-01 4.00766432e-01 1.15881428e-01
4.88619983e-01 -2.45712757e-01 1.10043025e+00 -5.52350104e-01
3.02024037e-01 6.51416322e-03 -3.04772824e-01 -5.66821277e-01
-7.61525214e-01 -8.77147019e-01 -9.29746330e-01 -2.99367934e-01
-4.68833208e-01 7.55084679e-02 7.49190092e-01 6.81802273e-01
1.29313022e-01 -1.07177664e-02 1.03216767e+00 -1.05858815e+00
-2.18840301e-01 -5.45467019e-01 -1.00648820e+00 -1.02016263e-01
8.56213391e-01 -7.86150992e-01 -7.12438881e-01 3.69367637e-02] | [9.53967571258545, -2.714120626449585] |
66b9bf30-8f91-46ef-8c43-1103c3d82f64 | a-fully-convolutional-network-for-mr | 1911.09846 | null | http://arxiv.org/abs/1911.09846v1 | http://arxiv.org/pdf/1911.09846v1.pdf | A Fully Convolutional Network for MR Fingerprinting | Magnetic Resonance Fingerprinting (MRF) methods typically rely on dictionary
matching to map the temporal MRF signals to quantitative tissue parameters.
These methods suffer from heavy storage and computation requirements as the
dictionary size grows. To address these issues, we proposed an end to end fully
convolutional neural network for MRF reconstruction (MRF-FCNN), which firstly
employ linear dimensionality reduction and then use neural network to project
the data into the tissue parameters manifold space. Experiments on the MAGIC
data demonstrate the effectiveness of the method. | [] | 2019-11-22 | null | null | null | null | ['magnetic-resonance-fingerprinting'] | ['medical'] | [ 5.35833389e-02 -2.44924173e-01 -1.60779580e-01 -5.85982025e-01
-6.35316849e-01 -8.81613344e-02 2.00378180e-01 -4.42545444e-01
-3.89061421e-01 5.51947951e-01 3.24141055e-01 -1.66324794e-01
-1.65736467e-01 -5.47320843e-01 -5.73206961e-01 -6.50547326e-01
-3.69674236e-01 2.77688563e-01 1.45392558e-02 1.46933377e-01
1.41149461e-01 5.91677427e-01 -9.19753671e-01 1.23016253e-01
5.02685010e-01 1.17730856e+00 3.84410053e-01 3.06488544e-01
1.21383153e-01 7.51284361e-01 -9.77412388e-02 1.81220934e-01
4.14064258e-01 3.28992046e-02 -8.43616903e-01 -4.25216228e-01
5.32746255e-01 -7.78047144e-01 -1.26609361e+00 1.18000555e+00
8.81958365e-01 2.39152655e-01 3.43464732e-01 -7.94435084e-01
-7.28974700e-01 6.61270082e-01 -3.81767571e-01 7.32240915e-01
-1.29151359e-01 -2.48914018e-01 3.49773079e-01 -1.23612010e+00
7.95612872e-01 8.62959027e-01 1.06550646e+00 6.92548633e-01
-9.60677803e-01 -7.80962884e-01 -3.72931987e-01 1.78122178e-01
-1.46892548e+00 -5.33637881e-01 8.80746961e-01 -4.92472440e-01
8.36180449e-01 -3.72505151e-02 4.11186397e-01 8.77439618e-01
5.20696282e-01 4.12377954e-01 1.13004005e+00 -3.12675238e-02
-1.63842022e-01 -5.41756988e-01 2.93515891e-01 7.89666116e-01
-9.20688957e-02 5.18827379e-01 -4.55544978e-01 -2.95734853e-01
1.18777871e+00 1.11431032e-01 -4.32742923e-01 -2.31561676e-01
-1.69636488e+00 8.93163800e-01 4.88434732e-01 5.10440171e-01
-5.57115197e-01 4.88196045e-01 5.94831645e-01 3.36001843e-01
2.99746245e-01 2.69563884e-01 -1.02266975e-01 1.14989668e-01
-1.11828434e+00 9.79506597e-02 2.47661352e-01 5.52167833e-01
2.42879793e-01 7.08893165e-02 2.94352602e-02 9.48478639e-01
3.60092312e-01 5.29013395e-01 8.43049645e-01 -1.17932653e+00
1.46278083e-01 -3.01435497e-02 -1.55329883e-01 -1.44951844e+00
-8.63521576e-01 -3.92530441e-01 -1.07982290e+00 -2.72326231e-01
1.42845094e-01 -2.35431213e-02 -8.93186152e-01 1.78133845e+00
4.56028670e-01 4.55426216e-01 -3.45290691e-01 1.48713386e+00
1.10862470e+00 2.76606053e-01 -5.96337393e-02 -9.36144143e-02
1.05817819e+00 -6.76838517e-01 -1.03164363e+00 3.44602227e-01
6.56651616e-01 -4.92350459e-01 7.91548491e-01 1.36506006e-01
-9.04436171e-01 -5.82713544e-01 -1.10834670e+00 -1.86425537e-01
-5.92736639e-02 2.58097857e-01 1.00002623e+00 4.09260303e-01
-1.13900447e+00 1.03077185e+00 -1.32124448e+00 2.28820384e-01
5.26656687e-01 6.75177038e-01 -7.07575202e-01 7.99900759e-03
-1.62622762e+00 5.85228622e-01 3.67955893e-01 6.90082669e-01
-1.14237440e+00 -8.76451612e-01 -6.90831184e-01 -2.78047204e-01
-2.94088364e-01 -5.80951691e-01 8.71372342e-01 -4.28477019e-01
-1.48796964e+00 8.15393448e-01 1.59026518e-01 -4.51327771e-01
2.99790263e-01 2.27270536e-02 -7.61612952e-01 4.79963303e-01
1.51258141e-01 6.89243019e-01 8.24605942e-01 -6.18996561e-01
-8.84692147e-02 -4.90114570e-01 -2.44088635e-01 -1.38104349e-01
-2.25591183e-01 -7.56414905e-02 2.53573619e-02 -9.49145019e-01
7.67158926e-01 -9.44379151e-01 -3.69986027e-01 1.62592143e-01
-1.90153748e-01 -8.71521980e-02 8.09416890e-01 -9.82849061e-01
1.25753665e+00 -2.07529116e+00 1.05663225e-01 3.89956027e-01
7.68194854e-01 -1.83303468e-02 -2.25795180e-01 -1.75490007e-01
-5.19576371e-01 -3.54081452e-01 2.80962475e-02 -1.07331071e-02
-1.92430601e-01 5.13911322e-02 -2.85225421e-01 1.13714528e+00
-3.67113799e-01 8.71364594e-01 -8.51549447e-01 -5.69972873e-01
1.06698155e-01 6.26625299e-01 -4.56085652e-01 1.71599425e-02
4.60036963e-01 5.69008350e-01 -3.84720594e-01 5.70947766e-01
7.81656384e-01 -2.94426441e-01 1.14032760e-01 -9.20432985e-01
1.01170301e-01 1.68891877e-01 -7.87269056e-01 2.38634014e+00
-2.62923062e-01 6.54464722e-01 1.82400569e-01 -1.27586377e+00
9.46372092e-01 3.20471019e-01 1.28202140e+00 -7.60798097e-01
2.88629383e-01 4.43139255e-01 5.50283603e-02 -6.09970629e-01
1.70710057e-01 -3.97211403e-01 1.97892845e-01 6.53124690e-01
8.61765891e-02 5.39268553e-01 -3.76287669e-01 -4.57560644e-02
1.08578885e+00 2.98923161e-02 -4.58513796e-01 -5.88539362e-01
4.54641402e-01 -2.61819094e-01 6.80400729e-01 6.23421729e-01
-5.37802875e-01 4.90577251e-01 -4.29838970e-02 -1.01421046e+00
-9.83526289e-01 -1.07323432e+00 -7.10234284e-01 5.90757370e-01
1.28782570e-01 -8.88347775e-02 -7.73194849e-01 -6.41561270e-01
6.46993667e-02 -9.82898995e-02 -9.53381479e-01 -2.66316950e-01
-9.69127297e-01 -7.00437963e-01 6.22929037e-01 5.66702545e-01
4.74478662e-01 -8.09270740e-01 -4.68910813e-01 5.20905256e-01
-4.25637096e-01 -1.12746692e+00 -9.15277064e-01 6.26410916e-02
-1.16544390e+00 -8.68881524e-01 -8.26676071e-01 -9.28192139e-01
6.12390578e-01 2.67311424e-01 6.56551957e-01 7.27993697e-02
-5.33195376e-01 1.20562524e-01 4.47877236e-02 2.21684754e-01
-2.22207069e-01 1.75654903e-01 4.41324502e-01 -2.69268472e-02
3.11208129e-01 -9.23111677e-01 -1.06050372e+00 3.76884192e-01
-7.98262000e-01 -1.18651092e-02 3.91860545e-01 1.09189665e+00
1.03238535e+00 -2.58440554e-01 7.32297003e-01 -6.35837257e-01
6.29891753e-01 -4.01881009e-01 -5.00633895e-01 1.93455547e-01
-5.94274879e-01 3.32862958e-02 4.67462242e-01 -6.26681387e-01
-3.66867483e-01 2.52693772e-01 -5.64504787e-02 -9.93155122e-01
1.69115037e-01 7.47001052e-01 3.87463689e-01 -6.62549555e-01
6.48698568e-01 4.42215323e-01 2.74626285e-01 -4.87852901e-01
2.41757095e-01 6.16124272e-01 1.11341810e+00 -5.37254512e-01
4.16831613e-01 6.85120821e-01 2.02559099e-01 -4.26559001e-01
-6.29632115e-01 -2.55895674e-01 -7.29061842e-01 -3.56036872e-01
7.96161711e-01 -7.37922788e-01 -6.35787666e-01 2.96746045e-01
-1.11283982e+00 -9.81541201e-02 -1.99350920e-02 1.07496440e+00
-6.79475665e-01 6.98315322e-01 -8.81797731e-01 -2.07097828e-02
-8.45617890e-01 -1.19932675e+00 8.78245592e-01 -2.60114402e-01
1.72935456e-01 -1.05242658e+00 3.28469068e-01 1.82246670e-01
6.72432065e-01 5.11057973e-01 8.14046741e-01 -1.56588659e-01
-1.63566813e-01 -3.25675666e-01 -3.15884531e-01 4.14093062e-02
2.82421172e-01 -7.72199929e-01 -6.26199305e-01 -5.73492587e-01
3.19926322e-01 -1.91070795e-01 6.51378512e-01 7.77991951e-01
1.56024849e+00 -2.82015800e-02 -4.27806556e-01 1.27746212e+00
1.33358204e+00 8.01523030e-03 5.94101787e-01 1.54651806e-01
9.27803397e-01 2.34677330e-01 3.32099855e-01 3.02013665e-01
3.03024828e-01 6.37650251e-01 1.20964304e-01 -1.57399237e-01
-4.03322965e-01 -1.65102899e-01 -7.77370669e-03 1.33606529e+00
4.88799624e-02 4.80537057e-01 -9.91652846e-01 4.67207700e-01
-1.59779298e+00 -8.05045366e-01 8.88596103e-02 1.78856874e+00
8.28659415e-01 -3.06620836e-01 -8.26288387e-02 -8.70484635e-02
7.88106561e-01 4.26426604e-02 -8.26586366e-01 1.38684303e-01
9.90649536e-02 2.24670172e-01 7.15172410e-01 2.36687809e-01
-1.16408980e+00 5.67299485e-01 7.54946709e+00 5.95817327e-01
-1.63221467e+00 5.24016917e-01 3.94652545e-01 -5.61032109e-02
-2.08688036e-01 -3.28990400e-01 -3.12785596e-01 4.33109403e-01
9.78428960e-01 1.02640443e-01 8.54160905e-01 5.69260359e-01
2.37103224e-01 3.78525257e-01 -8.57205153e-01 1.55126929e+00
-3.25529903e-01 -1.62104881e+00 -1.38318747e-01 8.38876516e-02
3.02608848e-01 4.97470081e-01 2.69012200e-03 -1.17359143e-02
-1.22178555e-01 -1.36366570e+00 3.67261827e-01 7.25143135e-01
1.30342293e+00 -5.46954930e-01 5.35040498e-01 -4.52438667e-02
-1.11625457e+00 2.04162538e-01 -7.69107521e-01 4.10208851e-01
1.26199305e-01 5.58668256e-01 -6.48271680e-01 2.03722700e-01
7.91527212e-01 7.59333611e-01 -4.69621047e-02 7.29088128e-01
3.70866179e-01 3.84710044e-01 -3.19102257e-01 3.89105052e-01
1.50433183e-01 -5.78620061e-02 4.56975430e-01 1.03796780e+00
3.09053928e-01 2.86235243e-01 1.97027355e-01 1.00990498e+00
-1.00606874e-01 9.11053736e-03 -4.23944026e-01 -2.56615788e-01
3.93185407e-01 1.35308957e+00 -7.70549178e-01 1.08468495e-02
-2.73988426e-01 7.88380504e-01 3.49268883e-01 1.61241055e-01
-9.03541684e-01 -5.82433164e-01 3.53416741e-01 2.84635097e-01
1.83083024e-02 -5.17260134e-01 -1.37625948e-01 -1.27995038e+00
-2.50711311e-02 -6.80192947e-01 1.85745165e-01 -5.47153234e-01
-1.44863617e+00 6.93107605e-01 -2.49381393e-01 -1.17738724e+00
5.02566472e-02 -4.91316974e-01 -1.16368897e-01 7.89971888e-01
-1.35218120e+00 -9.44955170e-01 -3.58394682e-01 1.12673044e+00
-7.24890605e-02 -3.26417476e-01 8.50273192e-01 9.34807837e-01
-3.06439489e-01 8.06771517e-01 1.82252228e-01 5.40247321e-01
5.16668677e-01 -9.59239960e-01 2.60566026e-01 4.34566438e-01
-2.04387918e-01 9.92038667e-01 1.83434516e-01 -6.16904557e-01
-1.75320458e+00 -1.07634175e+00 5.65238714e-01 -1.13737144e-01
6.77620351e-01 -2.49438733e-01 -9.22952235e-01 3.91897529e-01
-2.54981369e-01 8.40959132e-01 7.43900239e-01 -2.17407227e-01
-2.62838215e-01 -1.12020373e-01 -1.33907425e+00 1.86592206e-01
1.12181401e+00 -9.95864570e-01 -4.23472881e-01 5.43621540e-01
6.87413335e-01 -8.21129203e-01 -1.66615558e+00 4.61301595e-01
8.35392833e-01 -3.16232622e-01 9.87485468e-01 -7.29167104e-01
2.15146795e-01 -3.55776906e-01 -3.15863132e-01 -1.10452485e+00
-5.29622436e-01 -6.05791628e-01 -1.72690257e-01 4.01905417e-01
-4.32575978e-02 -5.87868631e-01 7.66619027e-01 5.71239591e-01
-4.03693050e-01 -8.38308215e-01 -1.40873647e+00 -5.91630816e-01
3.01399022e-01 -3.17106426e-01 7.42281377e-01 1.36528838e+00
-3.94753786e-03 -6.86534541e-03 -4.89674211e-01 1.82628974e-01
9.18925524e-01 2.23464385e-01 4.13192697e-02 -9.74838912e-01
-2.29981869e-01 -2.75308549e-01 -5.22449911e-01 -1.01095390e+00
2.92823821e-01 -1.38548422e+00 1.37242610e-02 -1.12222815e+00
2.10476771e-01 -7.23925352e-01 -7.95890093e-01 3.43757182e-01
2.33881027e-01 3.55198264e-01 -1.98024064e-01 6.21105790e-01
-3.33781987e-01 3.81533176e-01 1.60959125e+00 -2.35595688e-01
1.58951491e-01 -5.39112747e-01 -3.12950104e-01 1.89271301e-01
5.53601384e-01 -6.68025732e-01 -3.83173168e-01 -7.29618669e-01
6.94637327e-03 6.80636346e-01 3.74112070e-01 -1.00684941e+00
2.71511197e-01 8.22213590e-02 6.12220824e-01 -6.13030314e-01
7.11003989e-02 -8.54903877e-01 4.20111448e-01 6.75229669e-01
-5.18690348e-01 2.34464541e-01 3.13955024e-02 3.88869643e-01
-3.26997012e-01 7.78296515e-02 1.09434879e+00 -1.37332287e-02
-3.29292595e-01 1.00610948e+00 -6.30133674e-02 -1.71970069e-01
5.56782246e-01 -8.70097205e-02 9.22471937e-03 -4.91884947e-02
-1.09760690e+00 1.19490111e-02 -3.17293629e-02 3.20647657e-01
9.95114982e-01 -1.99276555e+00 -5.71465552e-01 3.32354754e-01
-3.48330051e-01 -2.69345492e-01 5.76937795e-01 1.30737984e+00
-7.87530303e-01 5.58885813e-01 -4.81150180e-01 -7.52931595e-01
-6.55052423e-01 6.47102475e-01 1.04228008e+00 -1.13739930e-01
-1.06737018e+00 7.07044065e-01 -6.07533194e-03 -6.53665423e-01
1.85410336e-01 -2.47116864e-01 -1.39074624e-01 -2.49046221e-01
6.15872025e-01 1.96550921e-01 1.33032843e-01 -6.12533033e-01
-4.95204717e-01 6.55809343e-01 -2.37128407e-01 6.93941116e-03
1.60476243e+00 -1.54936761e-01 -2.15890303e-01 -8.56923237e-02
1.70744300e+00 -6.26687169e-01 -9.38877821e-01 -6.47411346e-01
9.18025337e-03 -4.50514466e-01 9.09103692e-01 -4.25524712e-01
-1.73259163e+00 9.20979857e-01 1.41486406e+00 -3.91658902e-01
9.74242866e-01 -2.76034504e-01 1.56105781e+00 3.52112919e-01
5.15110075e-01 -1.09295785e+00 -2.28859574e-01 3.03196430e-01
9.41958368e-01 -1.01645064e+00 -1.03945732e-01 -8.61765146e-02
-2.36265436e-02 1.63937461e+00 2.95887262e-01 -4.06658441e-01
1.17990816e+00 2.53610879e-01 1.76235035e-01 -6.56925201e-01
-2.67911315e-01 7.01411605e-01 2.87020206e-01 6.30247712e-01
4.07400250e-01 1.37328088e-01 -4.77400899e-01 7.08475113e-01
-1.67591795e-01 5.31866193e-01 1.72075927e-02 6.70541525e-01
-2.19652489e-01 -8.46525908e-01 -1.38054535e-01 5.79797089e-01
-6.21922731e-01 -9.16227251e-02 1.37277335e-01 3.69850159e-01
3.48235928e-02 3.50118816e-01 -1.62900656e-01 -5.67350626e-01
2.84083813e-01 -4.51366574e-01 8.00800443e-01 -4.33209166e-02
-4.75281209e-01 2.05830097e-01 -3.17039162e-01 -9.44508195e-01
-5.03071666e-01 -6.26056731e-01 -1.54153526e+00 -2.86774218e-01
-1.89559951e-01 -5.12959883e-02 7.89879262e-01 7.29217947e-01
3.44477952e-01 3.11496556e-01 9.74529982e-01 -7.10135221e-01
-8.31596673e-01 -8.67954373e-01 -8.35689664e-01 3.47404182e-01
4.54648435e-01 -8.33228052e-01 -9.20881480e-02 -2.51348615e-01] | [13.513011932373047, -2.35417103767395] |
6675d136-765a-4875-a207-26110303996f | bringing-alive-blurred-moments | 1804.02913 | null | http://arxiv.org/abs/1804.02913v2 | http://arxiv.org/pdf/1804.02913v2.pdf | Bringing Alive Blurred Moments | We present a solution for the goal of extracting a video from a single motion
blurred image to sequentially reconstruct the clear views of a scene as beheld
by the camera during the time of exposure. We first learn motion representation
from sharp videos in an unsupervised manner through training of a convolutional
recurrent video autoencoder network that performs a surrogate task of video
reconstruction. Once trained, it is employed for guided training of a motion
encoder for blurred images. This network extracts embedded motion information
from the blurred image to generate a sharp video in conjunction with the
trained recurrent video decoder. As an intermediate step, we also design an
efficient architecture that enables real-time single image deblurring and
outperforms competing methods across all factors: accuracy, speed, and
compactness. Experiments on real scenes and standard datasets demonstrate the
superiority of our framework over the state-of-the-art and its ability to
generate a plausible sequence of temporally consistent sharp frames. | ['Anshul Shah', 'Kuldeep Purohit', 'A. N. Rajagopalan'] | 2018-04-09 | bringing-alive-blurred-moments-1 | http://openaccess.thecvf.com/content_CVPR_2019/html/Purohit_Bringing_Alive_Blurred_Moments_CVPR_2019_paper.html | http://openaccess.thecvf.com/content_CVPR_2019/papers/Purohit_Bringing_Alive_Blurred_Moments_CVPR_2019_paper.pdf | cvpr-2019-6 | ['video-reconstruction'] | ['computer-vision'] | [ 4.95139152e-01 -2.67249765e-03 1.55776799e-01 -1.67395800e-01
-6.41577840e-01 -5.50927758e-01 6.03739738e-01 -1.03770983e+00
-1.91944003e-01 6.71303511e-01 6.61640823e-01 -3.13636959e-02
1.51889250e-01 -2.41320580e-01 -1.19722617e+00 -6.71494246e-01
1.73439950e-01 -1.71307176e-01 4.20043245e-02 1.92908555e-01
2.30298296e-01 3.76639992e-01 -1.37755239e+00 5.10382652e-01
4.67327505e-01 8.03294420e-01 7.56231785e-01 1.01549304e+00
4.83105183e-01 1.53267288e+00 -3.61439586e-01 -3.93389240e-02
2.93889463e-01 -5.18540502e-01 -9.32428896e-01 6.09597325e-01
6.02292717e-01 -1.21305203e+00 -1.12010360e+00 8.46236110e-01
3.88387591e-02 2.54508227e-01 3.75589430e-01 -5.79630792e-01
-9.29875433e-01 4.69969183e-01 -4.64098334e-01 3.50438684e-01
5.98163188e-01 4.57159609e-01 5.56780159e-01 -1.03859508e+00
8.42112899e-01 1.00730312e+00 5.18682659e-01 7.32486725e-01
-1.25136292e+00 -1.53389946e-01 -1.22171581e-01 2.01503068e-01
-1.12878931e+00 -1.07150090e+00 6.46639943e-01 -2.77263463e-01
9.38193262e-01 9.09175202e-02 3.73191863e-01 1.44876015e+00
3.13933909e-01 6.49949551e-01 6.27051771e-01 -2.23366588e-01
2.77509868e-01 -4.23560262e-01 -2.94309109e-01 5.97241044e-01
7.69787207e-02 4.34777319e-01 -5.80106556e-01 9.83070880e-02
1.17880380e+00 2.31253624e-01 -1.00523984e+00 -1.85864508e-01
-1.24889100e+00 3.34242225e-01 3.97135705e-01 1.90942794e-01
-7.24010110e-01 5.60379267e-01 -8.66034403e-02 1.88194394e-01
3.64430755e-01 3.88679713e-01 -1.41170144e-01 -1.20193034e-01
-1.52566493e+00 1.04327910e-01 5.13959825e-01 8.39815080e-01
5.23494124e-01 4.12396699e-01 -1.35271803e-01 4.91831005e-01
1.40297562e-01 1.77901804e-01 5.19616902e-01 -1.56584918e+00
2.06697658e-01 -1.41095668e-01 6.28254175e-01 -7.22850204e-01
2.06288397e-01 -7.31763020e-02 -7.53637075e-01 1.42251134e-01
2.49812514e-01 -9.25701484e-02 -1.07886350e+00 1.59931087e+00
-2.99262200e-02 8.33082318e-01 2.36226559e-01 1.33770227e+00
5.47733188e-01 9.52057302e-01 -4.74768490e-01 -3.71175408e-01
8.78320575e-01 -1.12820888e+00 -7.24794507e-01 -5.35290599e-01
-2.07608655e-01 -7.41629303e-01 4.87032533e-01 3.93173784e-01
-1.61506236e+00 -7.44683504e-01 -9.57731366e-01 -2.71779537e-01
4.26738024e-01 1.29434532e-02 2.74270326e-01 4.54223454e-02
-1.41018987e+00 6.94777071e-01 -1.00434482e+00 -7.81463459e-02
3.90713245e-01 5.39226010e-02 -5.28341770e-01 -4.06174630e-01
-9.03085053e-01 8.42056274e-01 3.48753661e-01 3.16855222e-01
-1.43490422e+00 -8.05317223e-01 -1.04270697e+00 2.49829009e-01
1.20216392e-01 -1.17266405e+00 1.47991610e+00 -1.41613865e+00
-1.69343781e+00 4.67181057e-01 -3.05915475e-01 -6.97930634e-01
6.54262304e-01 -6.52520597e-01 -2.21872002e-01 6.95776105e-01
-3.84018198e-02 7.96433687e-01 1.58276463e+00 -1.35349119e+00
-4.44336653e-01 2.11307421e-01 -1.46524161e-02 2.02993095e-01
2.71702647e-01 -6.25807568e-02 -6.46676540e-01 -7.69662738e-01
-1.55053645e-01 -7.89463937e-01 -2.21230447e-01 -2.10366502e-01
-1.12975627e-01 5.92695594e-01 1.10509861e+00 -1.06785047e+00
1.01011145e+00 -2.15249300e+00 5.73085010e-01 -4.35579985e-01
3.16618055e-01 2.62217075e-01 -2.68371314e-01 2.18424574e-01
-3.63740474e-01 -2.97949880e-01 -4.20178205e-01 -4.05999571e-01
-5.72072566e-01 1.14558376e-02 -7.52922595e-01 5.41885078e-01
3.78902256e-01 1.07477891e+00 -1.01353669e+00 1.53321579e-01
5.03948450e-01 7.37794578e-01 -6.27819121e-01 7.82156587e-01
-1.82887852e-01 5.98362446e-01 -4.56505828e-02 2.49139026e-01
6.57567203e-01 -5.56537867e-01 2.64837027e-01 -4.55902517e-01
-1.55543908e-01 6.71736971e-02 -7.39220858e-01 2.01935077e+00
-4.44194168e-01 1.08104634e+00 1.96680948e-01 -7.80632377e-01
2.53103137e-01 5.43639183e-01 3.40815097e-01 -2.47850105e-01
6.92663789e-02 -3.54687162e-02 -5.23378670e-01 -8.64058018e-01
7.60508776e-01 2.72290818e-02 2.93044001e-01 4.72793102e-01
1.35942504e-01 -1.44251853e-01 -2.23023489e-01 2.49595061e-01
1.30501938e+00 5.34169257e-01 -2.74615381e-02 9.43432525e-02
4.31576282e-01 -3.78024638e-01 1.23455636e-01 6.81962192e-01
2.40082871e-02 1.27486217e+00 -1.75593257e-01 -7.29678452e-01
-1.44188273e+00 -1.21611083e+00 3.51637781e-01 4.56361562e-01
3.05295616e-01 -7.03295991e-02 -9.23104763e-01 -3.79957408e-01
-4.06974256e-01 7.34245181e-01 -6.21059537e-01 -1.91579014e-01
-7.66143620e-01 -3.63778502e-01 1.73224598e-01 4.12720948e-01
4.95048553e-01 -1.00244129e+00 -9.74247992e-01 1.97365493e-01
-5.81124783e-01 -1.58829296e+00 -8.28638136e-01 -1.90142348e-01
-7.56949067e-01 -9.66765404e-01 -9.46322143e-01 -9.13893700e-01
7.23467052e-01 8.79960060e-01 1.10568130e+00 -7.86266923e-02
-1.51901484e-01 3.30045909e-01 -4.09617797e-02 5.17598689e-01
-6.92937136e-01 -5.00736773e-01 8.61606225e-02 3.49757850e-01
-2.79437721e-01 -7.21729279e-01 -9.92389321e-01 7.12260976e-03
-1.32771540e+00 4.56273407e-01 7.32490659e-01 8.82886291e-01
8.04731026e-02 -7.19190985e-02 9.41269696e-02 -4.49144185e-01
3.91294181e-01 -5.31526446e-01 -6.33488238e-01 6.68416768e-02
-1.49920583e-01 3.32609922e-01 6.88620448e-01 -4.55288529e-01
-1.45268357e+00 2.17803031e-01 2.19145030e-01 -1.17919004e+00
-1.76226541e-01 2.07275406e-01 2.57482350e-01 1.65822998e-01
5.62931955e-01 5.61667323e-01 4.25635241e-02 -3.41599673e-01
6.44691646e-01 6.84772968e-01 1.24395275e+00 -1.08829893e-01
7.86116004e-01 6.23805225e-01 -4.18855458e-01 -9.15764034e-01
-6.89094484e-01 -1.70947909e-01 -4.98882115e-01 -2.15716735e-01
9.60622311e-01 -1.35003090e+00 -4.39250767e-01 6.78024471e-01
-1.47126985e+00 -4.50391889e-01 -9.39497054e-02 4.12012398e-01
-8.78735185e-01 6.15302742e-01 -1.01968729e+00 -4.19814914e-01
-3.21943909e-01 -1.16738629e+00 1.07162917e+00 2.46524811e-01
-1.11824743e-01 -7.59969711e-01 3.97840608e-03 4.55575198e-01
4.23969865e-01 9.21082795e-02 3.46179605e-01 3.22083533e-01
-1.30790043e+00 1.47669733e-01 -2.98596591e-01 4.38643813e-01
3.17271501e-01 -3.18984874e-03 -1.14107549e+00 -3.55700910e-01
3.87526751e-01 -1.87735274e-01 1.15716267e+00 8.70702326e-01
1.05816793e+00 -7.05316067e-01 -7.11935163e-02 1.00615907e+00
1.52227414e+00 2.22971616e-03 1.02234519e+00 1.62005112e-01
7.12134302e-01 1.52613163e-01 2.26639152e-01 1.93823040e-01
7.00889677e-02 5.10582387e-01 4.50670153e-01 7.39884451e-02
-4.49236929e-01 -2.97011733e-01 8.53681803e-01 6.61282241e-01
-1.14467822e-01 -1.42558098e-01 -4.21836168e-01 6.99352384e-01
-1.87033296e+00 -1.56118834e+00 3.85841161e-01 2.02689481e+00
7.57557392e-01 -2.03459322e-01 -1.97364315e-01 -2.54149169e-01
6.78984523e-01 5.14485896e-01 -4.72144544e-01 -4.74807434e-02
-2.15765834e-02 -2.51055714e-02 2.77170360e-01 8.55429411e-01
-9.77241695e-01 1.05851853e+00 6.89093447e+00 2.47658461e-01
-1.25139737e+00 -1.16262943e-01 7.15106964e-01 -1.93055809e-01
-2.61593878e-01 5.30881025e-02 -1.18392043e-01 6.19912565e-01
1.21802521e+00 8.95294733e-03 1.14365470e+00 4.65418726e-01
6.61331058e-01 -1.18137017e-01 -1.18700850e+00 1.15899599e+00
2.57605761e-01 -1.85862446e+00 9.64883566e-02 -2.23353505e-01
1.03601062e+00 1.18816622e-01 2.29844779e-01 -2.98625559e-01
2.56717414e-01 -1.07840812e+00 1.08543372e+00 8.60055089e-01
9.68107462e-01 -4.75226343e-01 3.87912393e-01 2.60980636e-01
-7.65152514e-01 -2.13366941e-01 -2.46846795e-01 -1.36767074e-01
4.39056545e-01 4.90043610e-01 -7.20724106e-01 6.34397268e-01
6.97743237e-01 1.06034911e+00 -2.09480271e-01 7.95903921e-01
-1.34995192e-01 4.87536550e-01 1.97989002e-01 8.49086702e-01
2.37482950e-01 -2.55459934e-01 5.81525505e-01 1.17378795e+00
5.57456434e-01 2.74419755e-01 -2.96723336e-01 1.04478204e+00
-2.91659206e-01 -9.47885334e-01 -7.95028985e-01 1.01660885e-01
3.56077611e-01 1.04140401e+00 -2.63228148e-01 -4.06739533e-01
-3.93214077e-01 1.68597770e+00 2.80173779e-01 8.00668299e-01
-9.99509156e-01 8.06847513e-02 7.12869227e-01 -1.58142015e-01
8.38963330e-01 -2.40645066e-01 2.05813617e-01 -1.73554933e+00
-1.25737693e-02 -9.02159989e-01 -9.41798910e-02 -1.51869035e+00
-9.57934201e-01 8.54853868e-01 -2.00338110e-01 -1.34394348e+00
-7.69592106e-01 -2.50661790e-01 -5.77458680e-01 8.30630004e-01
-1.45488143e+00 -8.95019948e-01 -5.07524669e-01 5.23265779e-01
1.08574152e+00 -2.54784133e-02 4.68858302e-01 -1.55702140e-02
-4.05709326e-01 -1.00462474e-01 1.43897876e-01 3.71223651e-02
5.91751099e-01 -8.54088545e-01 7.08890080e-01 1.51870179e+00
9.09468457e-02 4.96699065e-01 9.79158103e-01 -5.27207136e-01
-1.59379590e+00 -1.28428876e+00 4.40890044e-01 -5.23372352e-01
4.97198433e-01 6.89240992e-02 -7.68139064e-01 8.84639859e-01
6.72459602e-01 1.65938079e-01 -7.36857429e-02 -8.91688764e-01
-2.49900863e-01 1.27255516e-02 -7.48466671e-01 6.23328865e-01
9.10006583e-01 -8.14513624e-01 -9.36588824e-01 -9.83974338e-02
9.02650356e-01 -6.40932977e-01 -5.50829709e-01 3.10651176e-02
6.14506364e-01 -1.15370643e+00 1.26598930e+00 -3.51963997e-01
1.16543365e+00 -5.47650993e-01 -8.70261043e-02 -1.31414974e+00
-4.96948570e-01 -1.24305594e+00 -6.60722673e-01 6.56971514e-01
-5.83542511e-02 -1.05492726e-01 5.83387733e-01 5.96121073e-01
-1.85435742e-01 -3.31487268e-01 -5.00370145e-01 -3.75056714e-01
-4.99772340e-01 -2.13672623e-01 2.18191877e-01 7.21713364e-01
-3.46914917e-01 3.46955627e-01 -9.98541713e-01 3.78091961e-01
7.81082571e-01 2.39937678e-01 5.85644543e-01 -3.68585855e-01
-4.99558896e-01 -6.79597184e-02 -1.41189620e-01 -1.51527786e+00
1.85528666e-01 -3.61815512e-01 2.98819900e-01 -1.27505124e+00
3.18447888e-01 4.28763002e-01 -7.05780163e-02 -4.21665469e-03
-2.89574802e-01 2.46851861e-01 2.40319684e-01 4.77365971e-01
-5.12310207e-01 5.16672313e-01 1.13364339e+00 5.63578531e-02
-2.45527759e-01 -2.27096394e-01 -6.20382786e-01 6.01658642e-01
2.99996197e-01 -2.10879982e-01 -5.12917757e-01 -1.00069416e+00
-2.37429559e-01 6.91455603e-01 6.67178333e-01 -9.43505645e-01
2.63457030e-01 -2.09627867e-01 7.75223672e-01 -2.86922365e-01
3.88056278e-01 -7.58863568e-01 6.29481316e-01 2.83077836e-01
-4.47099477e-01 1.32559046e-01 -5.07245597e-04 8.04305613e-01
-1.68495417e-01 7.16916919e-02 8.83425415e-01 -2.09960878e-01
-7.95108855e-01 1.96616322e-01 -4.17002738e-01 -1.22139014e-01
6.77139044e-01 -3.05726081e-01 -3.14862043e-01 -7.12372661e-01
-5.61240196e-01 -3.08240831e-01 8.82614434e-01 5.10964692e-01
1.06501281e+00 -1.03116703e+00 -6.49987817e-01 3.45934212e-01
-4.89920676e-01 1.95463523e-02 4.08355296e-01 5.76123476e-01
-9.32818472e-01 4.50320840e-01 -3.63302648e-01 -5.93893230e-01
-8.22089314e-01 8.44320953e-01 4.52704549e-01 1.70613289e-01
-9.68447328e-01 6.20133996e-01 5.61491251e-01 5.21245897e-01
9.95044503e-03 -3.47292215e-01 2.08813980e-01 -6.85569882e-01
9.41949844e-01 9.14861858e-02 -7.72608519e-02 -6.17081404e-01
-7.57045895e-02 3.20308506e-01 -6.18511848e-02 -4.01687831e-01
1.60947430e+00 -6.54434919e-01 8.05056319e-02 1.14328273e-01
1.17768610e+00 -8.26232433e-02 -2.28344774e+00 1.81527939e-02
-2.88550794e-01 -7.12326765e-01 2.00841755e-01 -5.78136206e-01
-1.07089174e+00 4.67665017e-01 3.62374187e-01 -1.75825998e-01
1.32997525e+00 -4.97853979e-02 8.90085876e-01 9.40677971e-02
1.06722623e-01 -6.11569643e-01 2.42757872e-01 2.45457932e-01
9.10951674e-01 -9.81080890e-01 -1.60466105e-01 -7.82852396e-02
-6.50847495e-01 1.33836031e+00 2.04218298e-01 -4.27966475e-01
2.16097146e-01 2.33316332e-01 -5.44713736e-02 3.09003275e-02
-1.09624577e+00 1.87039211e-01 3.71311009e-01 4.46594119e-01
2.30566114e-01 -4.23775434e-01 4.82345313e-01 1.52008504e-01
1.16125703e-01 4.82316911e-01 1.03104675e+00 6.18532360e-01
-3.15054625e-01 -3.42478603e-01 -3.51350695e-01 -7.52309337e-02
-4.33810204e-01 -2.21844003e-01 -1.65041015e-02 2.91505188e-01
-2.88341910e-01 9.66701388e-01 1.32728040e-01 -2.22034723e-01
-1.77979186e-01 -1.42965481e-01 7.82505631e-01 -2.46358633e-01
-1.48970604e-01 1.50568008e-01 -8.26962069e-02 -9.84155834e-01
-5.62843919e-01 -5.69375098e-01 -7.71090090e-01 -2.63217032e-01
9.90212262e-02 -4.27223779e-02 2.38532692e-01 1.00529861e+00
4.96017367e-01 4.79603320e-01 8.04570436e-01 -1.49468255e+00
-3.99992764e-01 -6.88807487e-01 -1.30639687e-01 6.09843075e-01
1.14587235e+00 -6.99436218e-02 -4.34691817e-01 8.51837397e-01] | [11.374125480651855, -2.428046941757202] |
4881a1eb-e6b4-424d-9f56-fa6e625920ed | multi-scanner-canine-cutaneous-squamous-cell | 2301.04423 | null | https://arxiv.org/abs/2301.04423v2 | https://arxiv.org/pdf/2301.04423v2.pdf | Multi-Scanner Canine Cutaneous Squamous Cell Carcinoma Histopathology Dataset | In histopathology, scanner-induced domain shifts are known to impede the performance of trained neural networks when tested on unseen data. Multi-domain pre-training or dedicated domain-generalization techniques can help to develop domain-agnostic algorithms. For this, multi-scanner datasets with a high variety of slide scanning systems are highly desirable. We present a publicly available multi-scanner dataset of canine cutaneous squamous cell carcinoma histopathology images, composed of 44 samples digitized with five slide scanners. This dataset provides local correspondences between images and thereby isolates the scanner-induced domain shift from other inherent, e.g. morphology-induced domain shifts. To highlight scanner differences, we present a detailed evaluation of color distributions, sharpness, and contrast of the individual scanner subsets. Additionally, to quantify the inherent scanner-induced domain shift, we train a tumor segmentation network on each scanner subset and evaluate the performance both in- and cross-domain. We achieve a class-averaged in-domain intersection over union coefficient of up to 0.86 and observe a cross-domain performance decrease of up to 0.38, which confirms the inherent domain shift of the presented dataset and its negative impact on the performance of deep neural networks. | ['Marc Aubreville', 'Katharina Breininger', 'Andreas Maier', 'Robert Klopfleisch', 'Jingna Qiu', 'Mathias Öttl', 'Nikolas Stathonikos', 'Christof A. Bertram', 'Marco Fragoso', 'Frauke Wilm'] | 2023-01-11 | null | null | null | null | ['tumor-segmentation'] | ['computer-vision'] | [ 6.30251348e-01 -1.25394166e-01 -5.06896451e-02 -3.38798463e-01
-1.28616893e+00 -9.41834927e-01 4.24435705e-01 4.73538935e-01
-5.92824221e-01 5.87581515e-01 -4.93927568e-01 -2.96354115e-01
-1.09756850e-01 -5.37550509e-01 -6.88037276e-01 -1.23569286e+00
9.34382826e-02 4.90928560e-01 5.04684329e-01 -1.38156787e-01
7.60670602e-02 9.37461793e-01 -1.11610246e+00 3.81575853e-01
8.73378277e-01 7.93030441e-01 1.10804342e-01 5.38895011e-01
-2.46790245e-01 -5.02123162e-02 -6.76491082e-01 -2.21229985e-01
1.97785124e-01 -2.84128308e-01 -6.19024634e-01 5.35613634e-02
5.30449390e-01 -1.14080362e-01 8.70517343e-02 1.21482873e+00
4.38746601e-01 -3.87515903e-01 1.07235563e+00 -9.26172435e-01
-3.35021406e-01 2.53872573e-01 -8.44457805e-01 4.39882010e-01
-1.80448115e-01 4.16455179e-01 6.01064563e-01 -3.72760087e-01
1.09849823e+00 6.00310028e-01 7.23512769e-01 5.51046789e-01
-1.60011351e+00 -6.76150501e-01 -3.85842532e-01 -9.79809314e-02
-1.40818393e+00 -1.98454922e-03 9.10355568e-01 -7.75375426e-01
4.91365403e-01 1.36529595e-01 3.43880922e-01 1.05097091e+00
3.27065378e-01 2.88065284e-01 1.56538594e+00 -4.51527208e-01
3.24995399e-01 4.11441445e-01 5.18046767e-02 5.36792040e-01
5.07975936e-01 -8.35626051e-02 -1.11897640e-01 7.47755691e-02
7.36993849e-01 -1.32221967e-01 -2.81801701e-01 -4.56297129e-01
-9.88650858e-01 4.49360520e-01 6.07966959e-01 6.74193382e-01
8.22982267e-02 -3.82844180e-01 5.56981862e-01 2.07564995e-01
1.63282752e-01 4.72458333e-01 -1.10252313e-01 3.19113612e-01
-9.30454373e-01 -2.51992106e-01 3.20903599e-01 5.74464202e-01
8.37825358e-01 -3.33594739e-01 -2.35965867e-02 6.82859778e-01
-3.01455528e-01 2.51197875e-01 6.66797280e-01 -3.15605253e-01
4.13034819e-02 8.71142864e-01 -3.17987353e-01 -6.60462320e-01
-8.34648728e-01 -6.77007854e-01 -1.15328848e+00 2.90033400e-01
1.09311402e+00 2.19340444e-01 -1.12541401e+00 1.49210918e+00
4.35638160e-01 -1.05246820e-01 1.36038391e-02 8.00725579e-01
6.76214635e-01 -2.10392550e-01 3.20062160e-01 -2.66567320e-02
1.47283471e+00 -3.72630358e-01 -3.86518627e-01 -3.06276940e-02
1.03410101e+00 -6.51049554e-01 1.31089127e+00 1.93770275e-01
-6.43591821e-01 -3.24027598e-01 -1.30540657e+00 1.94277123e-01
-6.23704851e-01 2.26412967e-01 1.40010625e-01 7.55204380e-01
-9.05030489e-01 6.81159377e-01 -7.71126807e-01 -6.53212309e-01
6.74709141e-01 4.34709281e-01 -7.05457151e-01 -9.44548249e-02
-8.84397805e-01 7.78095782e-01 4.42282706e-01 -2.67852664e-01
-4.15731996e-01 -1.22661948e+00 -4.91855234e-01 -3.13498884e-01
-7.39884824e-02 -3.26028138e-01 8.33725810e-01 -1.01065719e+00
-1.17516458e+00 1.53200901e+00 2.40727022e-01 -3.72482508e-01
8.26818645e-01 5.37751853e-01 -5.59950173e-01 4.93029773e-01
8.99577513e-02 6.02082849e-01 4.12196159e-01 -1.26612532e+00
-4.23916906e-01 -5.84017098e-01 -4.14990813e-01 -8.75382721e-02
-4.35827494e-01 -3.20246190e-01 -2.68682092e-01 -4.76929396e-01
7.42294267e-02 -1.11479127e+00 -6.06218092e-02 2.74096251e-01
-3.69098395e-01 2.77281642e-01 7.28046894e-01 -5.02201796e-01
8.71203244e-01 -2.36986208e+00 -4.54999834e-01 4.21593934e-01
2.17566386e-01 1.48481160e-01 -3.51179779e-01 9.43176225e-02
-3.25230658e-01 1.12447195e-01 -3.79645556e-01 1.52785912e-01
-2.80023545e-01 -3.78793254e-02 3.68596703e-01 1.01432729e+00
4.33147103e-01 7.57687271e-01 -5.43909788e-01 -6.87748849e-01
7.48391673e-02 3.39823067e-01 -1.33328602e-01 -8.84208903e-02
-1.24709740e-01 5.69327295e-01 -7.24663138e-02 6.40510976e-01
1.10838389e+00 -3.70524377e-01 3.74299109e-01 -3.27623397e-01
3.15475352e-02 -3.27546120e-01 -7.75563657e-01 1.56501150e+00
-2.64770895e-01 7.38659382e-01 6.39681742e-02 -6.61486089e-01
9.28901017e-01 -7.17470273e-02 5.12058735e-01 -9.31420445e-01
1.89607188e-01 4.82188255e-01 3.13326299e-01 -4.51300800e-01
2.36984819e-01 -5.17707825e-01 9.99640152e-02 3.98880661e-01
-3.03030200e-03 2.74503767e-03 1.76301524e-01 -9.56474151e-03
9.78778124e-01 -5.06092012e-01 2.78683990e-01 -6.58664405e-01
5.97457945e-01 3.61621678e-01 1.24663398e-01 4.47629064e-01
-5.01425087e-01 7.66014040e-01 6.97457910e-01 -2.29273409e-01
-1.16758800e+00 -1.00861442e+00 -5.62562406e-01 6.94638491e-01
1.73684016e-01 5.69454491e-01 -7.82483935e-01 -7.14851260e-01
8.74992311e-02 1.62309051e-01 -8.91111910e-01 -1.08625948e-01
-5.53896070e-01 -9.20707643e-01 9.66189682e-01 5.39782882e-01
5.36104023e-01 -4.17294890e-01 -6.63773119e-01 -2.04924513e-02
2.01632559e-01 -1.28521645e+00 -2.05661416e-01 4.56091255e-01
-7.98088312e-01 -1.27208579e+00 -1.00711942e+00 -9.24282491e-01
9.55195606e-01 -3.56733836e-02 9.47536707e-01 8.57471749e-02
-6.79437280e-01 2.62391269e-02 -4.59072404e-02 -3.01053762e-01
-7.45017409e-01 3.15321088e-01 -2.95489520e-01 -9.17418972e-02
5.15460551e-01 -4.49345440e-01 -7.74689138e-01 4.21917021e-01
-1.15950775e+00 -2.94875413e-01 1.08421874e+00 1.03106117e+00
8.47451508e-01 -2.64250790e-03 4.33102071e-01 -9.79188204e-01
4.35092866e-01 -1.94884941e-01 -5.83723783e-01 3.01669389e-01
-4.14893389e-01 4.87378091e-02 6.09813929e-01 -6.48981690e-01
-1.01559162e+00 3.16335261e-01 2.47317888e-02 -1.61599770e-01
-7.98921585e-01 2.52141774e-01 -9.79319587e-02 -4.73824620e-01
1.21381617e+00 2.82655805e-01 4.60275352e-01 -6.42353669e-02
-1.26325920e-01 5.64498007e-01 6.61354303e-01 -2.39856943e-01
9.28253651e-01 7.71991253e-01 2.38162294e-01 -1.02628219e+00
-3.42787057e-01 -8.27195764e-01 -6.74853027e-01 -1.69657648e-01
7.85581589e-01 -7.33466506e-01 -3.91561210e-01 6.75686538e-01
-8.73862863e-01 -5.97891927e-01 1.85715482e-02 3.04705471e-01
-1.30199030e-01 3.71835113e-01 -5.10807157e-01 -3.22890878e-01
-2.61105686e-01 -1.16428876e+00 9.58943605e-01 4.66638893e-01
-3.72388035e-01 -1.25036120e+00 6.13348857e-02 2.83104122e-01
3.71988982e-01 7.22509801e-01 1.30789423e+00 -9.63439167e-01
-2.16314688e-01 -2.66582042e-01 -4.23532754e-01 -3.82174850e-02
1.91789940e-01 1.62505776e-01 -1.16178000e+00 -4.11699474e-01
-2.77248859e-01 -5.68019040e-02 7.91815877e-01 3.78453791e-01
9.93048131e-01 3.50787431e-01 -7.06032455e-01 6.16548479e-01
1.80107594e+00 1.71563447e-01 5.16380787e-01 7.21981585e-01
2.92431712e-01 6.94767714e-01 3.77961457e-01 5.64594083e-02
-2.55691379e-01 4.88042951e-01 2.38889277e-01 -7.33028412e-01
-2.24580601e-01 6.89956024e-02 -2.45775163e-01 -6.81628883e-02
3.53575528e-01 5.08639887e-02 -1.21695292e+00 7.14260161e-01
-8.86125863e-01 -3.76335710e-01 -2.72432983e-01 2.00848675e+00
8.45146298e-01 2.53708780e-01 3.08032930e-01 2.42890880e-01
9.74853456e-01 -3.33780974e-01 -8.57698441e-01 -2.41134614e-01
-4.68059242e-01 3.16392958e-01 7.44352221e-01 5.82522526e-02
-1.05978394e+00 5.83005250e-01 6.40494776e+00 9.79549587e-01
-1.69941723e+00 -2.11965024e-01 8.27412903e-01 4.32026424e-02
-2.59677768e-01 -7.04178274e-01 -5.03987134e-01 2.92177558e-01
6.26089692e-01 -1.02285437e-01 -3.43208551e-01 6.53669119e-01
-1.39750332e-01 -2.68973649e-01 -1.15350437e+00 8.78557503e-01
-2.09093243e-01 -1.42408192e+00 -1.12737164e-01 3.91024679e-01
6.75642908e-01 -5.71288727e-02 4.00819391e-01 -1.16347507e-01
-5.87518699e-02 -9.21844840e-01 1.93315789e-01 -1.05243213e-01
1.39000809e+00 -6.79719985e-01 9.49519515e-01 2.69675776e-02
-8.57245445e-01 2.22541615e-01 -2.29071662e-01 4.98224199e-01
-3.57397914e-01 8.63977253e-01 -1.33790851e+00 4.03006732e-01
5.13014078e-01 2.10497439e-01 -9.10539091e-01 8.46983790e-01
2.34084234e-01 2.72756219e-01 -2.77127981e-01 -5.18301427e-02
1.54809743e-01 -1.45027461e-02 1.81786090e-01 1.52397048e+00
2.51892120e-01 -2.08136320e-01 -3.62954885e-01 7.51282215e-01
3.52593847e-02 7.10147992e-02 -3.99259329e-01 -8.21179710e-04
5.40110767e-01 1.53753507e+00 -1.21742737e+00 -2.40042228e-02
-2.46608064e-01 7.20689297e-01 4.67018560e-02 2.71401674e-01
-8.30166161e-01 -4.13215846e-01 6.72143996e-01 3.46996218e-01
1.37375712e-01 8.66813511e-02 -6.67332411e-01 -5.45237839e-01
-6.19201101e-02 -7.08982766e-01 5.90960443e-01 -1.27086535e-01
-1.35395229e+00 5.04488826e-01 -2.97335267e-01 -1.30161989e+00
1.76784441e-01 -7.93885648e-01 -7.12343276e-01 8.17831278e-01
-1.81214535e+00 -1.22910333e+00 -5.71721733e-01 4.57545996e-01
-7.50314444e-03 -5.68508543e-02 7.92984307e-01 1.91286653e-01
-4.76696044e-01 1.06118178e+00 4.63512510e-01 3.14733177e-01
1.01050520e+00 -1.25252450e+00 2.80496711e-03 4.58531231e-01
-4.56380457e-01 5.16132772e-01 5.87484837e-01 -3.30824047e-01
-1.07027471e+00 -1.11345637e+00 1.46589458e-01 -3.23776126e-01
7.65789509e-01 -1.65692806e-01 -1.09764266e+00 3.08638275e-01
5.04099466e-02 1.09744996e-01 1.27511895e+00 -1.77307606e-01
-4.74177271e-01 -2.14299977e-01 -1.63035309e+00 4.92185742e-01
5.78842342e-01 -4.36518818e-01 -1.60898343e-01 1.27490804e-01
1.31638363e-01 -5.23146749e-01 -1.00881195e+00 2.26216063e-01
6.48679495e-01 -1.11771345e+00 7.58651316e-01 -2.19333082e-01
4.67662543e-01 -1.92074746e-01 1.69698834e-01 -1.20107019e+00
-2.92752355e-01 2.20507048e-02 7.43378341e-01 1.21168458e+00
5.88819265e-01 -7.80630291e-01 1.25483382e+00 3.98182869e-01
-8.11296627e-02 -5.88912070e-01 -1.01521063e+00 -9.06245470e-01
7.96278238e-01 2.12398261e-01 5.00395596e-01 9.25283611e-01
-2.96826698e-02 -2.38454938e-01 6.59908473e-01 1.93481132e-01
7.08765388e-01 6.38496354e-02 5.20826817e-01 -1.19237065e+00
-1.38153555e-03 -7.25989759e-01 -4.45849180e-01 -3.89186084e-01
6.89266697e-02 -9.95552123e-01 -8.09198394e-02 -9.75481629e-01
2.17847347e-01 -5.75658917e-01 -4.43596363e-01 1.70595735e-01
1.29350930e-01 6.20161533e-01 -2.74583250e-01 2.84600109e-01
-2.38627210e-01 -3.44008893e-01 1.56973886e+00 -3.64917338e-01
-2.02454209e-01 -4.19099182e-01 -7.69684732e-01 4.44401681e-01
9.26067293e-01 -3.73185873e-01 -2.89313830e-02 -2.40613788e-01
-2.64008254e-01 -2.98475593e-01 3.70956302e-01 -1.39853370e+00
2.83281654e-01 -1.28621012e-01 7.96308458e-01 -4.49268579e-01
-2.64680181e-02 -7.78517008e-01 2.40438551e-01 8.12633872e-01
-3.05507451e-01 -4.66628939e-01 6.00735903e-01 3.92234027e-01
-2.20948115e-01 7.73840100e-02 1.32547534e+00 -1.78354472e-01
-6.23700678e-01 -9.61572211e-03 -3.71502101e-01 -6.95048794e-02
1.33512497e+00 -7.98032343e-01 -5.84672511e-01 3.18569422e-01
-5.19615412e-01 -1.13317750e-01 9.20133591e-01 -2.07043186e-01
1.44964814e-01 -9.32854950e-01 -5.59551835e-01 3.46387893e-01
6.28758013e-01 1.44932836e-01 9.31698501e-01 1.08805346e+00
-7.81148911e-01 4.04270113e-01 -6.41321182e-01 -1.10624480e+00
-1.45602334e+00 2.30246931e-01 5.70131302e-01 -5.03413022e-01
-1.92843929e-01 1.04454195e+00 3.06913257e-01 -2.38781556e-01
-2.49133363e-01 -3.24638724e-01 -8.86233225e-02 1.59754619e-01
2.79325575e-01 2.11810112e-01 5.26245475e-01 -3.59219700e-01
-5.99804282e-01 7.88363576e-01 -3.22917968e-01 2.59445846e-01
1.13178217e+00 1.25550032e-01 1.89305782e-01 7.61524737e-02
1.39657044e+00 -3.02785993e-01 -1.20471954e+00 -1.13221847e-01
1.47931175e-02 -1.34139806e-01 -1.60849705e-01 -9.18791831e-01
-1.04234600e+00 8.41117680e-01 1.00372386e+00 -3.97275388e-03
1.38870347e+00 1.54920354e-01 6.13570452e-01 4.76487391e-02
2.01661047e-02 -1.06283712e+00 1.36315644e-01 5.74724041e-02
4.45389152e-01 -1.34644055e+00 -9.38325152e-02 -4.53082740e-01
-4.55338866e-01 1.22311592e+00 7.04030752e-01 2.71360558e-02
1.94908127e-01 6.44011915e-01 5.49509585e-01 -1.54262811e-01
-3.35470319e-01 -2.99043022e-02 -9.32743866e-03 1.13955319e+00
4.28789169e-01 1.82586815e-02 -1.71828255e-01 3.87377888e-01
-9.74642113e-02 6.89135417e-02 5.79236448e-01 8.42994750e-01
-1.81046367e-01 -9.93173182e-01 -4.90266085e-01 3.93979520e-01
-3.88279021e-01 3.74463081e-01 -5.97277164e-01 1.21931183e+00
6.55922107e-03 3.59700143e-01 2.14747548e-01 -2.38660693e-01
3.17842335e-01 1.34474766e-02 5.36434174e-01 -2.80909210e-01
-5.94681203e-01 1.03508353e-01 -3.70258033e-01 -2.65077893e-02
-3.30168992e-01 -5.81695914e-01 -1.30667627e+00 -2.44904563e-01
-2.90852666e-01 -2.18129635e-01 6.81109250e-01 7.05558240e-01
2.22157761e-01 6.58792496e-01 3.19768041e-01 -4.62712675e-01
-3.52079540e-01 -7.79187381e-01 -7.80060112e-01 6.69508874e-01
4.20857936e-01 -5.97443938e-01 -5.72030365e-01 1.45354882e-01] | [15.103414535522461, -3.06050181388855] |
fa7a043b-4ed3-42ee-a13d-006f7dd09e38 | an-landcover-fuzzy-logic-classification-by | 1407.4739 | null | http://arxiv.org/abs/1407.4739v1 | http://arxiv.org/pdf/1407.4739v1.pdf | An landcover fuzzy logic classification by maximumlikelihood | In present days remote sensing is most used application in many sectors. This
remote sensing uses different images like multispectral, hyper spectral or
ultra spectral. The remote sensing image classification is one of the
significant method to classify image. In this state we classify the maximum
likelihood classification with fuzzy logic. In this we experimenting fuzzy
logic like spatial, spectral texture methods in that different sub methods to
be used for image classification. | ['G. Nagalakshmi', 'T. Sarath'] | 2014-07-17 | null | null | null | null | ['remote-sensing-image-classification'] | ['miscellaneous'] | [ 3.71483952e-01 -4.93382305e-01 -5.32027073e-02 -6.66576385e-01
-1.40931547e-01 -8.09578121e-01 3.79216164e-01 8.86216015e-02
-3.92375886e-01 9.55818534e-01 -4.01743978e-01 -4.96954679e-01
-5.39344668e-01 -1.26461601e+00 3.64548713e-02 -3.29387248e-01
2.21351102e-01 4.50723827e-01 2.67660409e-01 -5.00003755e-01
6.88921094e-01 9.50256348e-01 -1.68458009e+00 5.11618137e-01
6.99812412e-01 9.82373536e-01 3.58108580e-01 7.55755961e-01
-1.44903152e-03 2.34202743e-01 -4.42185141e-02 6.93081379e-01
6.17990017e-01 -3.31033260e-01 -9.41362679e-01 5.88689186e-02
1.12968639e-01 -1.60918102e-01 6.47491157e-01 1.51928186e+00
2.64060080e-01 4.55443829e-01 1.40066552e+00 -6.39391363e-01
-6.99101329e-01 7.14707553e-01 -8.83092165e-01 6.99069142e-01
1.47087365e-01 -2.08056405e-01 3.44616652e-01 -7.40622044e-01
1.01669773e-01 1.23282111e+00 4.40116614e-01 -1.77097861e-02
-8.37823391e-01 -3.38894576e-01 -3.39644670e-01 7.28645742e-01
-1.76693141e+00 3.15420367e-02 3.75126570e-01 -5.59483528e-01
8.90217662e-01 5.42432368e-01 4.27655816e-01 -5.04942596e-01
2.08177969e-01 -2.40701903e-03 2.34475136e+00 -7.87527561e-01
1.61235407e-01 2.79759377e-01 6.46777034e-01 5.29743314e-01
2.88869411e-01 -6.78630993e-02 4.12902117e-01 1.40899532e-02
3.94324571e-01 4.22133952e-01 -8.38417113e-02 9.21497464e-01
-5.35346746e-01 8.63892257e-01 3.99447203e-01 1.07070160e+00
-4.64925855e-01 -1.88759878e-01 -2.15009987e-01 3.08229119e-01
2.86809564e-01 1.41622573e-01 -4.57067400e-01 4.05687869e-01
-1.02159882e+00 9.57588665e-03 3.01004559e-01 9.90724936e-02
1.33564305e+00 -5.81326149e-02 7.84164786e-01 5.85070670e-01
5.19599855e-01 1.03046000e+00 5.75791717e-01 -6.79857910e-01
-2.18621209e-01 6.83393359e-01 -7.44248256e-02 -1.08064926e+00
-4.19343948e-01 8.13740492e-02 -7.14827657e-01 8.64601433e-01
-1.78903475e-01 1.31569756e-02 -1.19595075e+00 6.57356381e-01
1.04152292e-01 7.57752806e-02 1.87373772e-01 8.47064078e-01
6.99186802e-01 1.04875743e+00 1.09326035e-01 -1.35921702e-01
1.42011297e+00 -3.83890088e-04 -5.34546971e-01 2.17825890e-01
-3.24443132e-01 -1.02377343e+00 6.93099141e-01 8.72706652e-01
-2.44697347e-01 -4.92905259e-01 -1.10858023e+00 6.53690934e-01
-9.99342263e-01 1.47816360e-01 5.84755838e-01 7.26296961e-01
-9.41202283e-01 4.53578860e-01 -5.09805143e-01 -6.46258831e-01
7.08681941e-02 3.84839207e-01 -4.53637451e-01 1.99563622e-01
-1.04927397e+00 1.26365757e+00 1.17435944e+00 5.55677749e-02
4.24090438e-02 2.27683112e-01 -4.74183857e-01 -1.91041201e-01
-2.07876018e-03 2.75062472e-01 6.36023819e-01 -1.27412283e+00
-1.11663604e+00 1.07663858e+00 -1.31326569e-02 -2.92882591e-01
-1.91848397e-01 5.72096944e-01 -7.49073625e-01 4.05897766e-01
-2.50657108e-02 1.03403203e-01 4.83123422e-01 -1.11406434e+00
-8.86474609e-01 -5.81964970e-01 -1.14678949e-01 1.44470572e-01
2.00202599e-01 9.32345837e-02 7.80360639e-01 -3.20168495e-01
7.15894341e-01 -7.10896909e-01 2.22824886e-02 -6.50391459e-01
3.44379693e-02 -2.19123051e-01 1.16366172e+00 -5.01512647e-01
6.93562388e-01 -1.75685775e+00 -5.24497688e-01 8.61128509e-01
-6.05224729e-01 5.06567836e-01 6.12061739e-01 2.65778989e-01
-9.95144947e-04 7.70191729e-01 -3.76959950e-01 8.66116285e-01
-4.94549304e-01 1.65997237e-01 -1.05665140e-01 3.67395163e-01
-8.90985802e-02 1.22750506e-01 -3.82887423e-01 -8.02997589e-01
6.58896565e-01 2.77116954e-01 5.87886125e-02 -4.62206602e-01
-6.47430820e-03 3.46428126e-01 -8.39952767e-01 8.93376827e-01
1.06915522e+00 6.18884228e-02 1.47501856e-01 -4.30841386e-01
-4.23674405e-01 -6.49655104e-01 -1.31838894e+00 8.74522626e-01
-1.85453922e-01 5.16086996e-01 -2.12257117e-01 -1.51418853e+00
1.12225580e+00 2.61141807e-01 3.12455773e-01 -4.38246310e-01
3.39115918e-01 5.89153647e-01 -3.43882143e-01 -1.00791955e+00
3.36870044e-01 -4.46193874e-01 5.02789199e-01 3.85393858e-01
-2.98123181e-01 -3.89241040e-01 1.31564453e-01 -6.60368145e-01
1.65301964e-01 1.29864097e-01 9.19990003e-01 -4.63863283e-01
8.15055132e-01 6.89447522e-01 1.87957883e-01 5.30608773e-01
-9.77315232e-02 1.73897386e-01 -4.62547660e-01 -4.83375877e-01
-7.60811150e-01 -8.57053101e-01 -8.37279975e-01 6.46260738e-01
3.01554382e-01 9.43461180e-01 -4.91571337e-01 -1.90918669e-01
-1.44455925e-01 2.43627951e-01 -1.18675619e-01 5.47432423e-01
-3.81895959e-01 -1.00072932e+00 4.85707194e-01 -9.83311757e-02
1.14343703e+00 -1.06012475e+00 -5.79192638e-01 1.55073613e-01
1.49567127e-01 -4.68178749e-01 6.18686914e-01 -1.57619745e-01
-1.21397018e+00 -9.95759666e-01 -4.84351754e-01 -5.39906919e-01
4.59772557e-01 4.77929443e-01 5.79988599e-01 5.96404523e-02
-4.45879608e-01 -3.64434160e-02 -8.44526768e-01 -6.08634830e-01
-3.44701678e-01 -1.78853482e-01 -1.44052148e-01 -9.40357521e-02
5.63588023e-01 -7.69085765e-01 -4.10229415e-01 1.98048446e-02
-1.22692633e+00 -4.27146316e-01 8.68685126e-01 3.76689076e-01
8.16474020e-01 1.08693588e+00 3.04778308e-01 -1.02195191e+00
1.77341565e-01 -5.64979434e-01 -8.11661243e-01 5.90225875e-01
-7.82856703e-01 -2.42324136e-02 5.89100003e-01 1.09544799e-01
-9.87723231e-01 1.92624480e-01 -5.54224066e-02 3.47365439e-01
-8.57775390e-01 1.06132174e+00 1.98221385e-01 -5.31976581e-01
1.05914509e+00 1.76519796e-01 -1.44289464e-01 -6.22769654e-01
-2.48097554e-01 1.19400382e+00 2.65024126e-01 -1.85330048e-01
6.30499184e-01 7.29711294e-01 5.17271101e-01 -1.13993859e+00
-3.87409717e-01 -6.81423366e-01 -4.90724415e-01 -5.11452794e-01
1.31159806e+00 -5.94496071e-01 -7.19164193e-01 1.88510299e-01
-8.45258057e-01 4.76922132e-02 6.66938841e-01 8.66996884e-01
-1.99687213e-01 1.43025398e-01 -4.14437242e-02 -1.51218462e+00
-1.94466144e-01 -7.85520673e-01 4.13559765e-01 6.98247612e-01
4.79861081e-01 -8.43643010e-01 -3.49954516e-02 1.11202136e-01
3.35537821e-01 5.76305866e-01 6.87959969e-01 -3.44721824e-01
-1.82143852e-01 5.51759079e-03 -4.01939243e-01 4.89077210e-01
5.33215642e-01 3.49990070e-01 -8.00242722e-01 3.92084658e-01
-4.75689247e-02 -1.85143456e-01 1.02487063e+00 5.23540318e-01
8.83507848e-01 -3.61703932e-02 -1.50181681e-01 4.36489463e-01
2.56641793e+00 8.08115482e-01 7.50564277e-01 5.38879752e-01
2.50590354e-01 6.52902901e-01 1.08425510e+00 1.84946239e-01
-5.28620407e-02 5.62990271e-02 2.18225509e-01 1.04864165e-01
4.13345873e-01 3.69778693e-01 3.36673409e-02 1.81870446e-01
-6.92414582e-01 -7.40687624e-02 -1.56750178e+00 7.05531761e-02
-1.86250019e+00 -1.70266032e+00 -4.52218473e-01 1.80601287e+00
6.47854030e-01 -2.76720673e-01 -1.97967231e-01 7.09592938e-01
1.19972968e+00 -1.44543707e-01 1.13253534e-01 -3.42961490e-01
-3.63970697e-01 8.19534600e-01 8.66108119e-01 1.09285378e+00
-1.18335092e+00 7.27854073e-01 6.02895260e+00 6.34075880e-01
-1.81888902e+00 1.36018723e-01 5.51472723e-01 6.22256875e-01
-3.11994016e-01 2.95886010e-01 -5.53893626e-01 3.48318189e-01
4.22560155e-01 -6.81897029e-02 6.79898202e-01 4.94820744e-01
7.61598229e-01 -9.47600424e-01 5.70881786e-03 9.03011858e-01
-1.17361158e-01 -1.09131444e+00 3.77934247e-01 -1.78477559e-02
9.59568679e-01 1.24664053e-01 -2.04390839e-01 -4.02476639e-01
3.63983624e-02 -1.35123682e+00 5.17548382e-01 1.06713128e+00
7.68981934e-01 -7.54738152e-01 8.97496641e-01 3.17296237e-01
-1.30737484e+00 -9.23981071e-02 -5.72178423e-01 -2.14203700e-01
-4.46179096e-04 6.09580874e-01 -8.03522766e-01 6.58933759e-01
6.85713470e-01 5.34233868e-01 -3.73492002e-01 7.92609632e-01
2.07868025e-01 6.06855214e-01 -6.90011799e-01 -2.58386672e-01
2.99137443e-01 -7.58106530e-01 9.78928655e-02 9.57386553e-01
5.52448153e-01 8.17032695e-01 3.47741485e-01 5.54066420e-01
7.19547272e-01 4.19025958e-01 -9.49748993e-01 -4.02665138e-03
6.14563465e-01 9.31757808e-01 -1.15404165e+00 -5.59112072e-01
1.88290570e-02 3.70598823e-01 -5.80902994e-01 3.18609864e-01
-2.87301153e-01 -6.61858678e-01 -7.10530728e-02 2.72849411e-01
-3.26395929e-01 -3.61706883e-01 -3.05587471e-01 -9.88069892e-01
-4.64349836e-01 -5.14728189e-01 4.52909410e-01 -8.76313329e-01
-9.18960750e-01 5.41947305e-01 5.86318135e-01 -1.13859367e+00
-7.50739947e-02 -1.01381171e+00 -4.28232968e-01 1.44188678e+00
-1.89872849e+00 -1.20088160e+00 -5.83165944e-01 7.62852252e-01
2.59295404e-01 -3.48943859e-01 7.48801589e-01 2.57563531e-01
1.02504663e-01 -4.44559008e-01 2.25396752e-01 -5.21228984e-02
4.60270464e-01 -1.27884746e+00 -8.03522587e-01 8.54746878e-01
-1.10795543e-01 2.56040245e-01 5.76330841e-01 -8.21290970e-01
-7.27649987e-01 -6.89238250e-01 4.51616704e-01 5.29066622e-01
1.68441772e-01 8.65736127e-01 -4.76916373e-01 3.57247055e-01
-2.42429748e-02 9.21892971e-02 6.46313787e-01 -6.71898365e-01
1.64769679e-01 -3.77489746e-01 -1.76140428e+00 4.62572016e-02
-6.98727816e-02 -5.52829087e-01 -5.56165040e-01 4.08273071e-01
-4.68510032e-01 2.37308770e-01 -8.36975396e-01 2.38858536e-01
6.36323631e-01 -1.42133367e+00 7.68272400e-01 -1.78403065e-01
9.95459110e-02 -9.81742144e-01 -6.04099214e-01 -8.89883935e-01
-4.05777574e-01 5.06706350e-02 1.41193140e+00 9.80003357e-01
5.88628113e-01 -7.83493400e-01 6.87753141e-01 -1.35850027e-01
1.49288014e-01 6.61619380e-02 -5.27731836e-01 -3.72376531e-01
-3.45574669e-03 4.97298874e-03 4.45480525e-01 1.38771808e+00
-3.87374610e-01 -3.62242647e-02 1.61824018e-01 4.02099609e-01
6.58496320e-01 2.04440475e-01 5.75308166e-02 -1.82865179e+00
-3.72931421e-01 -5.30225039e-01 -8.02718759e-01 -8.57093111e-02
-1.97788104e-02 -8.85387242e-01 -2.87131295e-02 -1.75149810e+00
1.00217037e-01 -8.32397580e-01 -2.81554282e-01 6.70906067e-01
-2.19001502e-01 8.52194130e-01 -1.36379227e-01 6.14688456e-01
1.32307172e-01 -4.26269174e-01 9.02419329e-01 -2.67236888e-01
-2.28321299e-01 -2.39653736e-02 -4.43562567e-02 8.45963717e-01
1.31771743e+00 -3.27486753e-01 -4.90656346e-01 -1.60086557e-01
5.99338233e-01 1.71186291e-02 1.96544513e-01 -1.09877312e+00
-8.46298635e-02 -1.04427993e+00 1.94662169e-01 -3.81831586e-01
-1.20491803e-01 -1.25369668e+00 6.79652333e-01 5.54428577e-01
1.69646233e-01 -2.27034315e-01 -1.04848750e-01 1.45972043e-01
-4.49889868e-01 -8.01030278e-01 1.21179175e+00 -7.46327102e-01
-1.42121172e+00 3.01276669e-02 -6.80322945e-01 -5.66449344e-01
1.20781362e+00 -7.14941919e-01 -2.72247881e-01 -1.48515254e-01
-9.34777915e-01 -1.58190563e-01 4.36727792e-01 -5.48409522e-01
4.81444210e-01 -9.94285762e-01 -7.70368397e-01 -2.92828321e-01
1.11997448e-01 -5.20336032e-01 2.72854716e-01 7.97691524e-01
-1.68981314e+00 1.17468745e-01 -1.12415659e+00 -4.00583625e-01
-1.42561567e+00 -5.78070022e-02 6.96373105e-01 2.10469976e-01
-1.97056681e-02 2.28080705e-01 -6.96802676e-01 -8.79086182e-02
-8.29732060e-01 3.10585890e-02 -1.07107806e+00 -1.62036344e-01
4.93021280e-01 7.07013726e-01 7.52691366e-03 -9.60862458e-01
-5.42362690e-01 1.38834417e+00 6.92439139e-01 -8.72508526e-01
1.35956991e+00 -9.65433121e-02 -8.42227280e-01 7.54455268e-01
8.98995638e-01 1.11485586e-01 -4.56639051e-01 2.24038035e-01
1.78961493e-02 -4.92306769e-01 4.75141943e-01 -1.00620663e+00
-5.16288042e-01 8.72227907e-01 1.09027469e+00 8.73882830e-01
1.45138955e+00 -5.48765182e-01 1.36803150e-01 9.24850821e-01
7.55224943e-01 -1.32380199e+00 -8.91929805e-01 5.12255073e-01
5.29921055e-01 -1.67622817e+00 5.22993445e-01 -5.16910434e-01
-3.74027908e-01 1.78298247e+00 -2.96508931e-02 -4.85167831e-01
1.54591823e+00 1.91720456e-01 4.95524555e-01 -3.54042321e-01
-4.26087491e-02 -6.41193509e-01 1.90890878e-01 8.68790209e-01
6.59428179e-01 4.07525837e-01 -1.22894049e+00 -9.57239047e-02
4.90992628e-02 4.20193255e-01 6.02118015e-01 1.01351571e+00
-1.21615136e+00 -1.06285608e+00 -1.03892970e+00 7.96155214e-01
-8.04466069e-01 -6.52773455e-02 -3.27532440e-01 3.24460357e-01
7.45718777e-01 1.33917141e+00 8.29217285e-02 -5.01175284e-01
-5.72770089e-02 -6.34998307e-02 4.62305427e-01 -4.89685208e-01
-6.12375379e-01 -2.00283647e-01 -2.13443071e-01 1.40687436e-01
-1.33750927e+00 -3.89036447e-01 -1.72063851e+00 -6.82886600e-01
-3.86539459e-01 4.48658079e-01 1.34091139e+00 1.04683423e+00
-3.59166235e-01 -1.29950926e-01 7.88034141e-01 -6.32105529e-01
-1.10520564e-01 -1.17668486e+00 -1.21073008e+00 8.39474648e-02
1.17160976e-01 -6.36100590e-01 -3.58484536e-01 3.80019546e-01] | [9.706321716308594, -1.7889801263809204] |
46d36aea-d901-4cf8-bd06-167783800e55 | towards-universal-representation-for-unseen | 1803.0846 | null | http://arxiv.org/abs/1803.08460v1 | http://arxiv.org/pdf/1803.08460v1.pdf | Towards Universal Representation for Unseen Action Recognition | Unseen Action Recognition (UAR) aims to recognise novel action categories
without training examples. While previous methods focus on inner-dataset
seen/unseen splits, this paper proposes a pipeline using a large-scale training
source to achieve a Universal Representation (UR) that can generalise to a more
realistic Cross-Dataset UAR (CD-UAR) scenario. We first address UAR as a
Generalised Multiple-Instance Learning (GMIL) problem and discover
'building-blocks' from the large-scale ActivityNet dataset using distribution
kernels. Essential visual and semantic components are preserved in a shared
space to achieve the UR that can efficiently generalise to new datasets.
Predicted UR exemplars can be improved by a simple semantic adaptation, and
then an unseen action can be directly recognised using UR during the test.
Without further training, extensive experiments manifest significant
improvements over the UCF101 and HMDB51 benchmarks. | ['Ling Shao', 'Yang Long', 'Yu Guan', 'Shawn Newsam', 'Yi Zhu'] | 2018-03-22 | towards-universal-representation-for-unseen-1 | http://openaccess.thecvf.com/content_cvpr_2018/html/Zhu_Towards_Universal_Representation_CVPR_2018_paper.html | http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_Towards_Universal_Representation_CVPR_2018_paper.pdf | cvpr-2018-6 | ['zero-shot-action-recognition'] | ['computer-vision'] | [ 9.49283957e-01 8.46547037e-02 -2.72302508e-01 -4.29018676e-01
-1.07331777e+00 -4.35531944e-01 7.13522196e-01 -3.96781355e-01
-2.81971723e-01 9.01879847e-01 3.09725314e-01 1.88940048e-01
-1.22804001e-01 -5.04248500e-01 -8.79584491e-01 -7.77151048e-01
7.37567693e-02 5.77147663e-01 5.90743899e-01 -1.02755673e-01
-1.66613404e-02 5.63270211e-01 -1.81597567e+00 9.44820583e-01
4.25630867e-01 9.29705739e-01 5.97692467e-02 8.95364106e-01
2.87197083e-01 1.12352216e+00 -9.33828950e-01 -2.25182012e-01
5.34278452e-01 -7.39883184e-01 -1.14478695e+00 2.19554991e-01
5.54277420e-01 -2.01459557e-01 -4.35760379e-01 5.18509507e-01
5.32490790e-01 6.27468109e-01 6.86916053e-01 -1.28940105e+00
-7.68162251e-01 2.52746135e-01 -3.56892139e-01 2.28613168e-01
5.72249353e-01 3.94843966e-01 8.71687531e-01 -5.13840497e-01
9.75844681e-01 1.39614487e+00 4.90470707e-01 1.14584208e+00
-1.31184268e+00 -4.50809717e-01 1.59834817e-01 4.70325261e-01
-1.03940845e+00 -2.98155129e-01 5.11005759e-01 -1.26507310e-02
1.21055555e+00 5.81749022e-01 2.82048255e-01 1.87940049e+00
-2.21724421e-01 1.53232622e+00 1.04263425e+00 -1.01737767e-01
4.46664244e-01 -2.82567531e-01 -6.09630086e-02 1.19806290e-01
-1.14172861e-01 3.22006159e-02 -5.49829900e-01 2.65429050e-01
8.23319137e-01 2.75218964e-01 -4.78179842e-01 -6.13599062e-01
-1.41329908e+00 5.61895490e-01 6.17601573e-01 2.72344708e-01
-1.03718564e-01 1.84153125e-01 7.02477396e-01 3.26354563e-01
1.94673628e-01 6.16211355e-01 -8.42625022e-01 -4.43308651e-01
-6.65292382e-01 1.53112158e-01 3.94956410e-01 8.01914394e-01
7.06125736e-01 -1.91368107e-02 -4.46578979e-01 1.04412091e+00
-1.79714248e-01 3.55464607e-01 1.08785188e+00 -8.73246074e-01
3.19778621e-01 7.54439831e-01 -1.40120491e-01 -2.46200711e-01
-9.44177657e-02 -2.03018099e-01 -5.81910074e-01 3.35717916e-01
3.98145109e-01 1.75568014e-01 -1.42182636e+00 1.31115985e+00
3.09337467e-01 6.56521201e-01 7.04317570e-01 7.44318247e-01
8.36007595e-01 5.32433212e-01 2.22135559e-01 2.68258631e-01
9.56177115e-01 -1.24955630e+00 -2.89744854e-01 -4.19692755e-01
7.66482174e-01 -1.48858622e-01 9.53202426e-01 3.87146711e-01
-6.25301123e-01 -9.08028245e-01 -9.90894258e-01 -1.29880890e-01
-7.49781311e-01 1.03077598e-01 5.30232906e-01 3.50571185e-01
-6.53530538e-01 7.82663107e-01 -8.17586422e-01 -6.26768172e-01
8.96901488e-01 9.03532580e-02 -8.61350179e-01 -4.88234818e-01
-9.91864920e-01 1.01125073e+00 1.04382932e+00 2.30025500e-02
-1.42891955e+00 -6.89317048e-01 -9.60592866e-01 -3.31633925e-01
5.38549721e-01 -3.51422966e-01 1.09669983e+00 -1.56158078e+00
-1.46108341e+00 7.61290669e-01 2.92008072e-01 -7.75453627e-01
7.17649698e-01 -2.54260927e-01 -5.29871345e-01 2.85441011e-01
4.65728305e-02 8.55126917e-01 8.27141464e-01 -1.17843449e+00
-7.88903117e-01 -3.42400849e-01 9.52669010e-02 2.70524353e-01
1.35986328e-01 -1.25329971e-01 -1.10998347e-01 -9.35868979e-01
-1.45107001e-01 -8.06135237e-01 -9.99820530e-02 -3.60290021e-01
-9.15895924e-02 -3.35503668e-01 1.14069033e+00 -7.96313643e-01
8.29735160e-01 -2.13697696e+00 4.07963425e-01 -1.98037267e-01
-2.21141726e-01 6.37326837e-01 -5.56915224e-01 1.76978260e-01
-6.14382803e-01 -3.39731544e-01 -2.87172586e-01 4.88003641e-02
-4.96005081e-02 6.89797997e-01 -3.92248780e-01 2.28952870e-01
5.44778049e-01 1.32811320e+00 -1.07336724e+00 -4.50598970e-02
4.56375897e-01 3.09463412e-01 -2.54881263e-01 2.67635763e-01
-3.41578037e-01 4.86686051e-01 -3.08662385e-01 9.20754135e-01
2.20287547e-01 -1.23715587e-01 6.12740479e-02 -1.74850345e-01
5.17519057e-01 -2.10814193e-01 -1.05790126e+00 1.91279006e+00
-3.37422162e-01 5.63321173e-01 -6.88482463e-01 -1.32838905e+00
1.01012313e+00 3.03254593e-02 3.90062511e-01 -7.82143414e-01
1.21843582e-02 1.26173839e-01 -8.01351964e-02 -3.77779424e-01
2.21990153e-01 -2.42809635e-02 -1.96593478e-01 1.89761847e-01
5.78281581e-01 4.36928332e-01 1.40108839e-01 9.36722159e-02
1.66754103e+00 9.07899857e-01 4.90444511e-01 1.77821368e-01
4.68965292e-01 5.44142313e-02 5.72610259e-01 8.18498790e-01
-5.15755355e-01 9.99672949e-01 1.53565943e-01 -6.92960680e-01
-7.86729395e-01 -1.32246685e+00 -2.61159122e-01 1.26642358e+00
1.09011114e-01 -3.02947432e-01 -4.78866905e-01 -1.43947685e+00
7.55714253e-02 1.05664098e+00 -1.11253655e+00 -3.93694758e-01
-4.15974230e-01 -6.66948080e-01 4.89477158e-01 1.22480536e+00
6.75515413e-01 -1.64233005e+00 -9.22864318e-01 2.84450024e-01
-1.52766258e-01 -1.10040927e+00 7.23957494e-02 4.91169304e-01
-6.73139453e-01 -1.36248982e+00 -9.30101037e-01 -3.94797206e-01
4.99254316e-01 -5.80458064e-03 9.15821970e-01 -4.09157783e-01
-8.29741418e-01 7.61913359e-01 -9.47462320e-01 -9.59227085e-02
-5.37918150e-01 -2.89132148e-01 -4.08859141e-02 4.00024116e-01
7.04896152e-01 -3.51051718e-01 -4.72401828e-01 5.25850892e-01
-9.78372574e-01 -7.29336962e-02 9.12194788e-01 8.80442142e-01
7.99940586e-01 -6.07349351e-02 7.76511729e-01 -6.85072362e-01
1.61100994e-04 -3.16619366e-01 -8.86181928e-03 6.06576800e-01
1.77774738e-04 1.22033350e-01 5.15100777e-01 -8.41943145e-01
-1.29020095e+00 2.89553732e-01 1.25028387e-01 -7.62590647e-01
-7.40297794e-01 -1.59570098e-01 -5.92344999e-01 1.81467056e-01
9.00896490e-01 4.97427076e-01 -3.85910898e-01 -6.38779759e-01
6.14003062e-01 8.33701909e-01 7.66852498e-01 -5.44027746e-01
4.81345594e-01 4.88276601e-01 -2.21756354e-01 -6.08710766e-01
-1.01372874e+00 -6.96450114e-01 -1.05364716e+00 -1.75128996e-01
1.26343083e+00 -9.97768402e-01 -2.81958163e-01 3.53343010e-01
-6.48968041e-01 -7.39758372e-01 -9.78084564e-01 3.11002731e-01
-9.71018076e-01 1.58058077e-01 -1.06998079e-01 -5.05209386e-01
-8.76402296e-03 -8.51698816e-01 1.44482493e+00 2.50973612e-01
-3.17281902e-01 -8.88648808e-01 3.51451427e-01 7.37347066e-01
-3.35035548e-02 5.89803457e-01 2.70903975e-01 -1.23422992e+00
-4.94836479e-01 -4.12521899e-01 -1.48209155e-01 9.19137061e-01
2.05684289e-01 -3.42585534e-01 -1.11477208e+00 -3.48614991e-01
-4.63982284e-01 -9.70620513e-01 1.09261096e+00 -1.41445175e-01
1.42615974e+00 -6.27883226e-02 -3.96036655e-01 4.56169218e-01
1.23373449e+00 2.31931940e-01 1.28258359e+00 4.44724590e-01
7.61317074e-01 1.55035213e-01 7.43634701e-01 1.24783672e-01
-3.70673835e-02 5.89491785e-01 3.05744171e-01 -3.85958096e-03
-4.00738835e-01 -4.31441337e-01 6.85799539e-01 -1.43942479e-02
-2.94984788e-01 -1.04876228e-01 -6.88466251e-01 6.23039246e-01
-2.10302496e+00 -1.19084704e+00 2.76171178e-01 2.07182074e+00
6.83240533e-01 -6.28856793e-02 8.06893855e-02 3.30147445e-02
6.01958215e-01 1.11490749e-01 -8.50405812e-01 -3.00111204e-01
-2.49646813e-01 5.86012304e-01 4.73341763e-01 -2.06781849e-01
-1.41558003e+00 1.01035297e+00 6.30589914e+00 1.24137378e+00
-5.97180724e-01 1.17128059e-01 5.50892889e-01 -1.30909324e-01
2.34472856e-01 -1.30663544e-01 -7.59387791e-01 2.02371642e-01
1.02209866e+00 2.79217064e-01 3.35170031e-01 1.11145139e+00
-3.97877067e-01 -3.97672988e-02 -1.39008176e+00 1.24655366e+00
4.98810351e-01 -1.08221519e+00 3.64723772e-01 -1.95230216e-01
8.51536870e-01 8.23322088e-02 -2.44882196e-01 8.00403237e-01
6.09570026e-01 -1.04103851e+00 1.62426695e-01 5.88619292e-01
8.90929937e-01 -6.59874499e-01 6.12154007e-01 6.90648630e-02
-1.08842432e+00 -4.30402100e-01 -6.88103974e-01 1.60682186e-01
-2.43132174e-01 -2.44416073e-01 -8.12883794e-01 8.68389726e-01
8.40744913e-01 1.27558160e+00 -1.11971390e+00 8.55655611e-01
-4.17013168e-01 3.90238225e-01 -8.21385682e-02 2.73216814e-01
2.75866836e-01 2.79812105e-02 4.38931018e-01 1.00219798e+00
7.72252157e-02 -6.03207499e-02 8.49861056e-02 4.45861280e-01
-1.07278429e-01 -5.52340895e-02 -5.79032302e-01 -7.49655291e-02
-4.09894019e-01 1.27181804e+00 -6.12798095e-01 -5.52258849e-01
-3.62014532e-01 1.67029965e+00 4.62663263e-01 4.15931284e-01
-9.71864104e-01 -1.57850966e-01 7.05349386e-01 -1.71284005e-01
7.15596557e-01 4.55015689e-01 4.88983899e-01 -1.55531085e+00
-1.58209160e-01 -1.13102794e+00 7.76481986e-01 -1.01649272e+00
-1.48616719e+00 4.12386447e-01 3.11848968e-02 -1.42303097e+00
-1.70423418e-01 -9.66894567e-01 -4.46736127e-01 2.89275646e-01
-1.28205061e+00 -1.47659147e+00 -2.09918216e-01 7.83470750e-01
9.53060985e-01 -3.93119633e-01 1.03627074e+00 5.48270568e-02
-5.21794081e-01 5.77764571e-01 1.89534605e-01 4.06048745e-01
6.49609268e-01 -1.51429212e+00 3.19307953e-01 8.41760397e-01
4.54618454e-01 2.19213098e-01 2.65807480e-01 -6.85947418e-01
-9.36942637e-01 -1.65669847e+00 1.86443999e-01 -1.19321251e+00
6.49894774e-01 -4.50554818e-01 -9.89813626e-01 1.15715683e+00
3.30047905e-02 4.68265504e-01 9.67704833e-01 -2.60811113e-02
-7.00647771e-01 -3.34634073e-02 -1.15645468e+00 4.85369802e-01
1.51077199e+00 -4.08264667e-01 -1.10754287e+00 4.46157485e-01
4.69971955e-01 -2.35538438e-01 -1.01426136e+00 7.20586002e-01
5.01872838e-01 -7.95539856e-01 1.03033733e+00 -1.42286396e+00
3.61988723e-01 -4.08557564e-01 -3.71310055e-01 -1.30564868e+00
-1.13179125e-01 -4.46501195e-01 -2.69306272e-01 1.07191050e+00
1.53214961e-01 -4.65699822e-01 5.46644866e-01 3.76812547e-01
-1.04732357e-01 -5.00327468e-01 -1.04830885e+00 -1.13515997e+00
-1.39649451e-01 -4.48534220e-01 4.85509634e-01 9.07766581e-01
-1.44063890e-01 2.85045892e-01 -4.93123829e-01 -1.30487248e-01
4.69917297e-01 8.09346512e-02 1.04474270e+00 -9.58028316e-01
-5.90108514e-01 1.78185906e-02 -1.07176638e+00 -9.58079815e-01
3.02727193e-01 -1.03288531e+00 1.09074406e-01 -1.48491752e+00
4.17686701e-01 -4.48939800e-02 -6.31137073e-01 9.64154541e-01
-1.80768594e-01 5.03174603e-01 1.89213708e-01 -3.45173082e-03
-1.37618256e+00 8.31323147e-01 1.23976338e+00 -3.15667659e-01
-9.55954865e-02 -1.16707478e-02 -4.40738231e-01 5.53049445e-01
6.25549972e-01 -2.25773424e-01 -5.92061520e-01 -3.94854657e-02
-4.43109065e-01 -1.92037418e-01 6.98750675e-01 -1.45734203e+00
-3.46220672e-01 -4.04671915e-02 9.87185657e-01 -4.44797128e-01
2.23756850e-01 -9.30733204e-01 1.52952060e-01 1.19422831e-01
-6.06579900e-01 -5.14777958e-01 2.70939261e-01 9.76486206e-01
-9.89909768e-02 -1.68710440e-01 8.90091121e-01 -1.25419334e-01
-1.30108416e+00 1.63563207e-01 -2.09671054e-02 1.65286824e-01
1.55504215e+00 -6.34160995e-01 -3.23676139e-01 6.66450113e-02
-1.22353208e+00 4.80241403e-02 4.04125869e-01 9.01126921e-01
7.02259541e-01 -1.39494359e+00 -6.59341216e-01 1.08754829e-01
5.81466496e-01 3.90037126e-03 5.27155638e-01 3.01236182e-01
-3.05831134e-01 1.32884085e-01 -5.05899906e-01 -5.64348638e-01
-1.15432155e+00 7.64665127e-01 5.89266896e-01 -2.48730883e-01
-8.68793130e-01 7.46596813e-01 3.62579435e-01 -5.32322466e-01
6.21926561e-02 -4.48079407e-02 -8.26787353e-02 -2.37699803e-02
9.50233221e-01 4.46870714e-01 -1.33150563e-01 -9.11394536e-01
-3.60232651e-01 1.65139824e-01 -1.38621986e-01 3.39467406e-01
1.56259036e+00 2.40256801e-01 4.25976455e-01 5.11464298e-01
1.45490527e+00 -6.41451776e-01 -1.79026508e+00 -1.38504982e-01
-1.40447356e-02 -6.43792212e-01 -4.00367558e-01 -1.23744297e+00
-8.74454141e-01 7.69109786e-01 8.91442418e-01 -2.44468883e-01
1.13139415e+00 3.52767199e-01 6.69562817e-01 5.65280318e-01
2.13016048e-01 -1.25262034e+00 5.48127294e-01 2.39259049e-01
1.10098779e+00 -1.29475379e+00 -1.82737768e-01 1.55389592e-01
-1.09558570e+00 1.09222257e+00 9.30440664e-01 -1.43295199e-01
1.53058946e-01 -2.68092245e-01 3.37547362e-02 5.08370623e-02
-5.14452696e-01 -6.50743902e-01 4.28859949e-01 1.17017078e+00
-2.98396438e-01 -8.18928257e-02 2.80760676e-01 5.75209141e-01
3.26173395e-01 1.48925796e-01 2.95097053e-01 9.75354552e-01
-2.25494057e-01 -1.05613792e+00 -2.47128010e-02 4.76959139e-01
-1.31994396e-01 2.48251587e-01 -5.27808130e-01 1.00085711e+00
2.62658626e-01 4.65363622e-01 1.57047167e-01 -3.89373124e-01
4.77121800e-01 4.78370905e-01 6.94412708e-01 -8.10431302e-01
-3.58962387e-01 -2.62147456e-01 2.27300916e-02 -1.01892912e+00
-7.32986629e-01 -7.11712539e-01 -1.18150747e+00 5.07667482e-01
-8.74704346e-02 -2.61393070e-01 8.27112794e-02 1.02129054e+00
4.01056379e-01 8.45451832e-01 2.65801102e-01 -6.82572424e-01
-5.52428067e-01 -1.01804745e+00 -5.45863271e-01 1.03061962e+00
6.67997375e-02 -7.90707290e-01 -4.73412961e-01 4.02791679e-01] | [8.501482009887695, 0.821831464767456] |
20bfbcd2-d12b-468b-8818-dbc0f17354de | presenting-an-approach-based-on-weighted | 2306.17068 | null | https://arxiv.org/abs/2306.17068v2 | https://arxiv.org/pdf/2306.17068v2.pdf | weighted CapsuleNet networks for Persian multi-domain sentiment analysis | Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification. | ['Ramin Mousa', 'Benyamin Pourhosseini', 'Nima Karimi', 'Mahboobeh Sadat Kobari'] | 2023-06-12 | null | null | null | null | ['classification-1', 'sentiment-analysis'] | ['methodology', 'natural-language-processing'] | [ 1.13897324e-01 -1.42551437e-01 -2.32350349e-01 -3.64361107e-01
-2.30719447e-01 -7.75246441e-01 4.77250636e-01 7.02253997e-01
-5.42003810e-01 8.71671021e-01 1.14558032e-02 -1.66090056e-02
-3.25105578e-01 -9.61102664e-01 -7.22797364e-02 -8.28763962e-01
1.34567454e-01 3.79223764e-01 5.69613278e-02 -5.54504693e-01
5.88941693e-01 3.78240526e-01 -1.70899606e+00 4.57374841e-01
9.59516406e-01 1.23128831e+00 3.58302705e-02 4.10862684e-01
-3.18190038e-01 8.59127760e-01 -9.61925149e-01 -4.12234277e-01
-2.06891000e-01 -2.30946407e-01 -5.64518988e-01 -8.67959559e-02
-2.14313537e-01 2.40675226e-01 7.03155756e-01 9.90967035e-01
3.34758520e-01 -2.70415749e-02 1.08238780e+00 -1.18443501e+00
-4.88935977e-01 4.93921250e-01 -5.30896246e-01 2.49178056e-02
4.67201173e-01 -7.06798494e-01 8.22302818e-01 -8.86311054e-01
5.96709669e-01 9.69691753e-01 3.47344428e-01 1.82072863e-01
-5.67695856e-01 -7.40950942e-01 -4.89526093e-02 3.80838253e-02
-9.74723577e-01 9.71464142e-02 7.15241790e-01 -5.32671213e-01
8.88862014e-01 5.38009703e-02 4.57059205e-01 4.18314725e-01
6.85614347e-01 2.60576159e-01 1.39051044e+00 -5.19966185e-01
2.94439614e-01 9.17276263e-01 4.20957923e-01 1.57056376e-01
3.90070766e-01 -3.79939556e-01 -3.81099522e-01 -1.24302953e-01
-1.55571550e-01 -1.64559141e-01 5.13354689e-02 7.86048621e-02
-6.75292194e-01 1.06984580e+00 3.07642758e-01 7.28904605e-01
-3.68203163e-01 -7.80490696e-01 6.19792163e-01 3.89458835e-01
5.59444070e-01 3.40380073e-01 -7.40229785e-01 1.38415322e-01
-8.11948836e-01 2.02847540e-01 1.09049833e+00 3.92088652e-01
3.55172217e-01 -6.89395219e-02 2.54362375e-01 9.24520135e-01
3.74887466e-01 5.31951249e-01 8.29304278e-01 -2.73387074e-01
2.14274645e-01 1.17323124e+00 5.75644560e-02 -1.38796902e+00
-6.60393655e-01 -4.36524838e-01 -7.58134544e-01 3.44623446e-01
4.24935281e-01 -4.05959219e-01 -8.37382853e-01 1.49743247e+00
3.05527419e-01 -7.97884405e-01 6.29153192e-01 6.38135374e-01
9.65330422e-01 9.41972017e-01 1.90509856e-01 -3.34623963e-01
1.60484838e+00 -5.44011295e-01 -8.45095217e-01 -2.23250642e-01
3.23249876e-01 -1.12081563e+00 6.05257154e-01 9.44501102e-01
-6.95431054e-01 -4.00143057e-01 -1.57952201e+00 5.13584316e-01
-9.79961395e-01 4.25967455e-01 4.55120206e-01 8.27268898e-01
-6.35243952e-01 3.89743000e-01 -2.34240741e-01 -2.04177752e-01
-7.42699485e-03 5.81103742e-01 -3.90481114e-01 1.58688158e-01
-1.46700931e+00 1.34437597e+00 5.34928143e-01 -1.44423097e-01
-1.97122529e-01 -2.84016579e-01 -8.04953635e-01 -1.26247466e-01
-6.32907003e-02 1.43622220e-01 7.66889155e-01 -1.54176962e+00
-1.18138504e+00 6.86844647e-01 -7.54160285e-02 -1.56031847e-01
1.19600587e-01 2.27349922e-01 -9.64941680e-01 1.30509466e-01
3.18382204e-01 3.09384882e-01 6.07607543e-01 -1.14062095e+00
-9.39368069e-01 -5.80137670e-01 1.33741319e-01 3.03188026e-01
-6.60792589e-01 1.53400704e-01 6.14160858e-02 -4.70951855e-01
1.11014694e-01 -7.55421579e-01 1.29355550e-01 -5.13191819e-01
1.30668178e-01 -4.54352200e-01 9.60398197e-01 -7.24376678e-01
1.26318932e+00 -2.13991547e+00 -1.07951321e-01 6.70599580e-01
-2.06966743e-01 2.25742906e-01 1.90950647e-01 3.07762355e-01
-2.33871385e-01 -1.09112270e-01 -2.81137675e-01 3.77469093e-01
-2.31462896e-01 -1.39586553e-01 -3.48888561e-02 3.06255937e-01
4.50332224e-01 -6.74474612e-02 -6.34137332e-01 -3.98683906e-01
-1.82283716e-03 6.47614539e-01 -7.13731200e-02 -1.99633807e-01
3.16474661e-02 -2.37346888e-01 -3.31286281e-01 8.21517706e-01
7.74470091e-01 6.23294041e-02 5.55970550e-01 -2.67436594e-01
-2.81308115e-01 -8.21325928e-02 -1.51033783e+00 7.05210567e-01
-6.14099979e-01 4.34905618e-01 2.84621567e-02 -1.05764556e+00
1.48718703e+00 5.00589073e-01 3.71583372e-01 -6.54462874e-01
7.02577412e-01 6.36695802e-01 1.80295423e-01 -3.72121572e-01
6.99186504e-01 -3.02539408e-01 -2.68157840e-01 3.19699973e-01
1.26220033e-01 -1.75426677e-01 7.66618311e-01 1.33813053e-01
3.18939477e-01 -1.20689392e-01 4.73158926e-01 -5.13597369e-01
1.08814359e+00 2.99701810e-01 3.21218193e-01 -6.60011992e-02
-1.14523858e-01 1.30254567e-01 8.75730991e-01 -2.59260356e-01
-7.26698041e-01 -5.86625099e-01 -3.06774199e-01 1.05472875e+00
1.72024816e-01 -4.69402298e-02 -6.31033719e-01 -6.29080474e-01
-4.51434217e-02 5.53122640e-01 -5.93841672e-01 -9.11316276e-02
-8.10409784e-02 -1.18130481e+00 2.86649585e-01 1.78811938e-01
5.19124091e-01 -1.11504614e+00 -5.01617193e-01 2.30041340e-01
-1.80013344e-01 -5.67691207e-01 1.18004993e-01 6.21062279e-01
-6.41124725e-01 -1.23199809e+00 -6.81612372e-01 -1.22503769e+00
7.22668171e-01 -1.03202254e-01 8.52793097e-01 -1.35995403e-01
1.96707159e-01 -2.40272686e-01 -5.98310232e-01 -6.62330329e-01
-4.05933648e-01 6.01120740e-02 7.31368922e-03 1.20231226e-01
6.70743406e-01 -7.33339190e-02 -2.25598902e-01 1.63587183e-01
-1.00805008e+00 -7.68805921e-01 3.72964859e-01 7.63435960e-01
3.02638233e-01 5.01521230e-01 1.01989961e+00 -8.97665620e-01
1.20043492e+00 -7.08330810e-01 -3.97945106e-01 1.25872716e-01
-7.19127119e-01 -8.09307992e-02 9.85970795e-01 -2.95337319e-01
-1.10492229e+00 7.05472752e-02 -1.52237400e-01 5.92400908e-01
8.37396085e-02 8.46532941e-01 -9.83971953e-02 -7.18609318e-02
6.92688286e-01 -6.57004789e-02 3.72750133e-01 1.34953246e-01
-7.47977123e-02 1.02189994e+00 -1.09251318e-02 -1.93180650e-01
1.19815908e-01 8.13755319e-02 -4.76397537e-02 -6.77649736e-01
-6.63964868e-01 -4.06059951e-01 -4.02077585e-01 -4.77654099e-01
9.01310086e-01 -8.74742031e-01 -8.19131494e-01 6.16485476e-01
-8.76542509e-01 4.76209193e-01 3.66833359e-01 5.09842992e-01
9.78186801e-02 1.80955783e-01 -2.47478649e-01 -8.77549291e-01
-5.67442656e-01 -1.08113027e+00 2.34219477e-01 5.46419859e-01
-5.66789508e-01 -9.23741937e-01 -5.47748804e-02 1.10245384e-01
3.66679966e-01 3.71890843e-01 1.06090236e+00 -1.00033510e+00
5.79199612e-01 -6.80205107e-01 -6.54759333e-02 8.25792551e-01
1.25745818e-01 2.80939072e-01 -7.63547122e-01 -6.41686544e-02
2.82878906e-01 -3.43262076e-01 6.44479215e-01 3.40286255e-01
5.14149129e-01 -1.48024961e-01 -7.59993196e-02 -1.53301328e-01
1.79944408e+00 8.11285496e-01 4.10829395e-01 6.00205898e-01
6.84657767e-02 9.20651078e-01 1.11014438e+00 3.63510400e-01
2.83016324e-01 1.77712932e-01 4.42571968e-01 -1.08397147e-02
3.83142322e-01 5.02110958e-01 4.96862561e-01 6.60986543e-01
6.11792877e-02 -2.97026545e-01 -8.75865757e-01 6.01742506e-01
-1.38364923e+00 -7.95844853e-01 -4.14263904e-01 1.95069492e+00
6.97625279e-01 4.02614683e-01 1.37344509e-01 8.33693206e-01
7.55348980e-01 -4.47931550e-02 -2.59986401e-01 -1.16725576e+00
-4.26206887e-01 5.37548661e-01 4.26756680e-01 5.28122544e-01
-1.27750063e+00 4.53162670e-01 5.42592573e+00 7.91989505e-01
-1.41082919e+00 -8.90292972e-02 5.61479926e-01 1.39689282e-01
-9.60698351e-02 -3.44944358e-01 -7.27972686e-01 6.06243968e-01
9.09301221e-01 -2.77702838e-01 -5.81480376e-02 9.13386643e-01
-7.95264635e-03 -7.01104820e-01 -1.98670179e-01 4.56545681e-01
4.82693344e-01 -7.01752305e-01 8.32814723e-02 -2.02526957e-01
6.43946290e-01 -3.70689988e-01 5.61915636e-02 1.64331555e-01
-1.25508429e-02 -8.03784430e-01 5.87832391e-01 1.78694621e-01
5.03909290e-01 -1.28936112e+00 1.32988465e+00 2.09945992e-01
-9.93931830e-01 -3.05873156e-01 -2.02264369e-01 -3.43441159e-01
-1.75465971e-01 7.38591075e-01 -7.18322515e-01 5.48979461e-01
6.17739081e-01 6.29714966e-01 -3.91878188e-01 6.12643361e-01
-8.84295069e-03 2.54409224e-01 -3.14377308e-01 -7.12172389e-01
3.26196373e-01 -2.77624875e-01 1.29647478e-01 1.18419850e+00
5.52927196e-01 -6.72653466e-02 -1.81722805e-01 1.21215738e-01
1.53049797e-01 7.66488016e-01 -4.24422324e-01 6.67525232e-02
3.38806123e-01 1.56671727e+00 -1.10325289e+00 -5.10193884e-01
-2.37854481e-01 5.21039367e-01 -2.05886170e-01 -1.65341407e-01
-6.55085504e-01 -1.01056099e+00 1.65164515e-01 -2.42388740e-01
2.22809210e-01 3.30672950e-01 -5.88522315e-01 -6.79777145e-01
4.98369075e-02 -9.68186080e-01 5.70949376e-01 -6.00247741e-01
-1.13242722e+00 9.43150640e-01 -2.63482094e-01 -1.50942779e+00
-1.09141991e-01 -1.05779874e+00 -3.42422962e-01 1.08056641e+00
-1.38906574e+00 -8.88759196e-01 -1.93883598e-01 4.58563268e-01
2.86117971e-01 -4.40758318e-01 1.09230137e+00 4.73354161e-01
-1.65055126e-01 3.34188998e-01 2.46836811e-01 2.16215272e-02
9.59491849e-01 -1.26908350e+00 -8.05472612e-01 5.72766542e-01
-5.98735094e-01 4.53530967e-01 7.65441954e-01 -6.61145031e-01
-6.49419427e-01 -6.50874853e-01 1.45107520e+00 -5.79905286e-02
4.33526993e-01 5.49416766e-02 -5.77583551e-01 -2.49800254e-02
3.43834877e-01 -6.94619119e-01 1.08560264e+00 -7.11910352e-02
-1.82923958e-01 -2.93877602e-01 -1.60694766e+00 1.47396788e-01
-2.07458109e-01 -8.54120329e-02 -5.36754429e-01 2.14796424e-01
2.58182764e-01 -7.74137825e-02 -1.17416739e+00 3.16421360e-01
8.47680807e-01 -8.93005610e-01 5.22980988e-01 -3.15648057e-02
8.92270088e-01 -5.19278586e-01 -9.62405205e-02 -1.39643919e+00
-9.14642662e-02 5.23312986e-01 4.78751808e-01 1.23207343e+00
9.63515043e-01 -5.11879563e-01 4.32870418e-01 1.99525103e-01
1.90272957e-01 -7.80895531e-01 -4.55451071e-01 -2.37257794e-01
1.32491633e-01 -1.00719303e-01 4.96336490e-01 1.15441060e+00
3.60166192e-01 5.32552838e-01 -1.59363657e-01 -1.66014180e-01
2.86526561e-01 2.20363364e-02 1.35995224e-01 -1.47783315e+00
2.85833478e-01 -4.10318553e-01 -2.33690217e-01 7.89636895e-02
-1.04647383e-01 -9.03036892e-01 -3.13766152e-01 -1.49995065e+00
-1.51026875e-01 -2.13302538e-01 -3.62440407e-01 3.02604049e-01
8.87249224e-03 4.97463197e-01 1.85802191e-01 4.00427729e-02
-2.95430468e-03 -1.17967889e-01 9.73652124e-01 -1.90224126e-01
-3.87353808e-01 5.35203777e-02 -1.07073867e+00 7.62008131e-01
1.04566157e+00 -4.45891947e-01 -3.96175027e-01 -1.59070417e-02
6.48763716e-01 -1.66333422e-01 -2.80641049e-01 -9.90363300e-01
1.74229696e-01 -6.77356869e-02 7.92616248e-01 -7.53142238e-01
1.71711877e-01 -1.00248098e+00 8.63890201e-02 6.08453095e-01
-1.60255864e-01 1.17554508e-01 2.81862527e-01 8.42158347e-02
-6.01087868e-01 -5.55848777e-01 7.85789251e-01 -1.28254548e-01
-7.40517139e-01 -3.81240696e-01 -5.34503818e-01 -3.74813139e-01
1.23847437e+00 -3.63726377e-01 -1.58060893e-01 -2.01878205e-01
-8.20446849e-01 1.06320977e-01 4.42262031e-02 5.06132305e-01
4.28364336e-01 -1.21005082e+00 -6.77435696e-01 8.59644860e-02
1.83208779e-01 -6.08917415e-01 1.92508250e-01 6.49751186e-01
-7.69348204e-01 2.48886481e-01 -5.56100368e-01 -1.24586970e-01
-1.46377516e+00 1.90096498e-01 3.02880198e-01 -4.45685178e-01
5.46115458e-01 4.95646447e-01 -4.29057717e-01 -4.61817503e-01
-4.83646579e-02 -6.18066117e-02 -1.44032037e+00 1.10605669e+00
4.08554018e-01 3.30665708e-01 5.03000021e-01 -1.00286913e+00
-6.25246108e-01 8.50262225e-01 -1.14202976e-01 -2.58074671e-01
1.24775350e+00 2.60435611e-01 -6.65371776e-01 4.05887604e-01
1.04572105e+00 2.66568214e-01 -2.69003958e-01 3.48438889e-01
-5.09383797e-04 4.56281826e-02 -2.16811746e-02 -1.49717104e+00
-9.20149565e-01 4.44603086e-01 5.83929300e-01 5.53915679e-01
1.49100780e+00 -5.27464569e-01 3.50201100e-01 7.47333840e-02
6.17099032e-02 -1.56661153e+00 -3.86224478e-01 6.78886056e-01
6.16289854e-01 -1.21191931e+00 7.57707655e-02 -2.63014942e-01
-9.97973680e-01 1.49485648e+00 5.49099684e-01 -3.26723546e-01
9.47038889e-01 2.31868938e-01 2.99081355e-01 -1.93575844e-01
-4.24799293e-01 1.34580612e-01 2.36098021e-01 5.13726950e-01
8.62704873e-01 2.40917742e-01 -1.31342590e+00 1.07082736e+00
-3.82415742e-01 5.49356081e-02 6.99089289e-01 9.74454224e-01
-6.83350921e-01 -1.18353641e+00 -7.43124664e-01 5.65311134e-01
-9.13991868e-01 1.83565885e-01 -5.93835235e-01 7.75332987e-01
4.76433933e-01 1.44683480e+00 7.22841844e-02 -4.54354137e-01
4.41583991e-01 6.51002005e-02 2.25716718e-02 -2.75054008e-01
-1.05453026e+00 1.46130864e-02 2.37203419e-01 5.99067993e-02
-7.62764275e-01 -5.10195673e-01 -1.31095481e+00 -2.62759864e-01
-4.39186543e-01 6.20901108e-01 1.03696764e+00 8.35518897e-01
-5.09140603e-02 5.09007692e-01 8.55243385e-01 -4.50450331e-01
-2.90458828e-01 -1.13977671e+00 -7.29575694e-01 4.43258107e-01
1.58833936e-01 -7.19438493e-01 -6.61044061e-01 -2.26789843e-02] | [11.066542625427246, 6.9027581214904785] |
77f890bb-edff-48bf-8c63-917ab0249beb | a-novel-pipeline-for-improving-optical | 2307.04245 | null | https://arxiv.org/abs/2307.04245v1 | https://arxiv.org/pdf/2307.04245v1.pdf | A Novel Pipeline for Improving Optical Character Recognition through Post-processing Using Natural Language Processing | Optical Character Recognition (OCR) technology finds applications in digitizing books and unstructured documents, along with applications in other domains such as mobility statistics, law enforcement, traffic, security systems, etc. The state-of-the-art methods work well with the OCR with printed text on license plates, shop names, etc. However, applications such as printed textbooks and handwritten texts have limited accuracy with existing techniques. The reason may be attributed to similar-looking characters and variations in handwritten characters. Since these issues are challenging to address with OCR technologies exclusively, we propose a post-processing approach using Natural Language Processing (NLP) tools. This work presents an end-to-end pipeline that first performs OCR on the handwritten or printed text and then improves its accuracy using NLP. | ['Anirban Dasgupta', 'Samyak Mehta', 'Aishik Rakshit'] | 2023-07-09 | null | null | null | null | ['optical-character-recognition'] | ['computer-vision'] | [ 3.52555603e-01 -6.00782931e-01 -1.86547637e-01 -1.59326017e-01
-4.77581590e-01 -8.95245612e-01 7.11849451e-01 1.69659153e-01
-5.68414330e-01 6.19377196e-01 -1.55348048e-01 -4.95805234e-01
-1.31434396e-01 -5.76021850e-01 -3.15216064e-01 -3.04548681e-01
3.04801494e-01 5.45688748e-01 5.64085066e-01 -5.38262390e-02
1.08204091e+00 1.14418411e+00 -1.17746580e+00 4.57239658e-01
7.96309590e-01 5.59461176e-01 1.49236713e-02 1.23076713e+00
-7.72405863e-01 9.43035305e-01 -8.41860950e-01 -6.64339483e-01
2.22278520e-01 -2.05793947e-01 -5.84431469e-01 4.19230551e-01
5.32799661e-01 -4.26658034e-01 -5.75489521e-01 1.23258710e+00
1.78182781e-01 -2.30505858e-02 7.89527476e-01 -7.23902702e-01
-1.15672803e+00 1.41475439e-01 -8.72821212e-01 1.13898523e-01
6.42626226e-01 1.90038588e-02 6.23825073e-01 -8.68826747e-01
7.81178772e-01 1.31046700e+00 5.42373061e-01 3.54493469e-01
-5.61301768e-01 -2.91438341e-01 -2.30862007e-01 7.34945238e-02
-1.34086740e+00 -2.38610476e-01 3.66389006e-01 -4.28934008e-01
9.48067784e-01 2.78514266e-01 1.40562698e-01 7.78958976e-01
2.88003206e-01 1.18021059e+00 1.08864033e+00 -7.35339463e-01
-4.83800992e-02 3.92867446e-01 3.39649558e-01 5.38103759e-01
2.35209867e-01 -4.40410823e-01 -3.29687774e-01 2.89715707e-01
8.84007215e-01 4.66320328e-02 1.85732752e-01 3.17637205e-01
-1.20462978e+00 5.15396833e-01 -3.97759825e-01 5.19333959e-01
-1.37837857e-01 -1.84616104e-01 2.61057138e-01 3.37954193e-01
1.98173940e-01 5.54771721e-01 -2.83563137e-01 -5.81357658e-01
-1.41892481e+00 1.90782323e-01 7.98586786e-01 1.48363566e+00
5.77535927e-01 -1.46424711e-01 -1.45992860e-01 1.17019308e+00
4.49680448e-01 5.91867685e-01 7.19667375e-01 -3.90763521e-01
7.44934022e-01 5.43190479e-01 1.22353351e-02 -9.86491919e-01
-1.86516687e-01 1.48440465e-01 -5.39088607e-01 3.84875312e-02
6.34621501e-01 1.92416087e-01 -1.20259511e+00 2.20873937e-01
-1.87052906e-01 -2.55477846e-01 -1.55073199e-02 9.26859379e-01
6.08506203e-01 8.41012299e-01 -2.63042301e-01 1.20694362e-01
1.48914421e+00 -1.17203629e+00 -8.97056639e-01 -4.54381317e-01
4.01396602e-01 -1.48941076e+00 9.88219023e-01 6.68152332e-01
-7.51463175e-01 -2.64389902e-01 -9.56941545e-01 -3.90607804e-01
-7.79021680e-01 6.88043296e-01 4.14205641e-01 9.44777250e-01
-5.93125939e-01 5.53094149e-01 -6.27737999e-01 -5.92873454e-01
3.56869429e-01 1.57996580e-01 -3.12864214e-01 -3.17818254e-01
-6.70647383e-01 8.10884774e-01 1.70612216e-01 1.14170760e-01
-1.93982080e-01 -3.34944218e-01 -6.48304522e-01 -1.92862451e-01
4.06984359e-01 2.53396481e-01 1.22266066e+00 -6.88976824e-01
-1.95341575e+00 9.07366753e-01 -1.17522590e-01 -1.32766053e-01
9.59186792e-01 -4.11021203e-01 -8.69608581e-01 1.49652943e-01
-1.72087044e-01 1.90178961e-01 9.95632112e-01 -6.92388654e-01
-7.55625606e-01 -2.84396023e-01 -4.61895287e-01 -6.97218776e-02
-2.25719333e-01 5.73551357e-01 -1.11184454e+00 -6.90323412e-01
8.22526310e-03 -8.66287351e-01 7.34037831e-02 -3.47111709e-02
-7.55016983e-01 -1.01018019e-01 1.26079106e+00 -1.08893442e+00
1.31584525e+00 -2.41564846e+00 -4.88108397e-01 5.39799094e-01
-2.59140939e-01 5.84800601e-01 -1.09501302e-01 4.29120243e-01
4.17565912e-01 2.40757361e-01 -1.08899340e-01 -2.53986299e-01
1.73967287e-01 -1.40159905e-01 -2.03842297e-01 5.74646354e-01
4.96418357e-01 8.14689577e-01 -6.37779653e-01 -6.66596591e-01
3.50000083e-01 2.43374884e-01 6.01450317e-02 -2.58751243e-01
-2.33557448e-01 -1.41478017e-01 -3.32876861e-01 1.23187900e+00
8.26217294e-01 1.36662483e-01 -2.96497624e-03 3.01981181e-01
-5.09684682e-01 7.76889250e-02 -1.42898214e+00 1.23297787e+00
-1.01016596e-01 1.39230573e+00 -1.24650739e-01 -3.59697044e-01
1.20991826e+00 -2.16426820e-01 3.16088125e-02 -6.23247802e-01
5.35416417e-02 5.76708734e-01 -1.48629189e-01 -7.33100176e-01
1.29601002e+00 2.92399883e-01 2.21755907e-01 2.71574736e-01
-3.28428298e-01 -2.18667373e-01 5.49641907e-01 1.19910948e-01
9.92023468e-01 9.43896472e-02 1.72071189e-01 1.77491456e-02
6.67416215e-01 3.39500666e-01 4.47548367e-03 8.26001644e-01
-1.74870074e-01 9.33635533e-01 3.28257233e-01 -6.86628893e-02
-1.43990529e+00 -6.25874937e-01 -2.12544858e-01 6.82069242e-01
-2.59566717e-02 -1.49010852e-01 -7.29092717e-01 -4.49138999e-01
9.01819468e-02 5.34301460e-01 -1.02406591e-01 5.46897173e-01
-6.37114942e-01 -3.58260781e-01 8.80953074e-01 4.40449297e-01
5.74540734e-01 -1.22389138e+00 -1.50472283e-01 3.69752169e-01
4.69036639e-01 -1.56366026e+00 -5.89314520e-01 -2.75214851e-01
-8.17466974e-01 -8.80942404e-01 -1.17254782e+00 -9.70240533e-01
7.49679804e-01 2.08006889e-01 4.35025394e-01 1.57162890e-01
-6.22936726e-01 2.02396899e-01 -4.31404352e-01 -4.37992454e-01
-6.45226240e-01 3.65722656e-01 -4.43561748e-03 8.21473747e-02
7.28901148e-01 2.11220875e-01 -1.48387671e-01 4.03021336e-01
-1.10083270e+00 -3.52077514e-01 8.20322394e-01 4.13704902e-01
4.33796197e-01 2.58366406e-01 -2.55238470e-02 -1.10665417e+00
8.98322165e-01 -5.66172367e-03 -9.10421848e-01 5.88185430e-01
-4.36358184e-01 -1.21506788e-02 7.68269777e-01 -6.14643097e-01
-9.98906016e-01 1.10438779e-01 -9.74048153e-02 -1.91843629e-01
-5.50196230e-01 4.23908591e-01 3.11269592e-02 -2.66928792e-01
4.35624510e-01 5.46645403e-01 -2.22023547e-01 -6.14577711e-01
-4.09202687e-02 1.45779586e+00 8.60118032e-01 -3.04389894e-01
9.90577638e-01 2.94541329e-01 -1.40218839e-01 -1.59662092e+00
-3.53705794e-01 -7.39259541e-01 -8.05602074e-01 -1.86707139e-01
6.49509192e-01 -4.12993461e-01 -5.75371087e-01 9.18485403e-01
-1.34381306e+00 -1.30401686e-01 1.88254595e-01 5.48179030e-01
-1.25072137e-01 9.55483794e-01 -8.95763040e-01 -1.04248619e+00
-8.54546055e-02 -1.11191893e+00 1.20149493e+00 6.55313492e-01
-4.13956009e-02 -8.79937768e-01 -6.03111610e-02 4.45712000e-01
3.30766708e-01 -3.00959975e-01 7.69498050e-01 -6.94537342e-01
-7.33611107e-01 -7.98310995e-01 -4.64114100e-01 2.96542048e-01
5.88436052e-02 8.20690334e-01 -6.98636949e-01 7.20566511e-02
-7.92339146e-01 1.59222528e-01 6.68463945e-01 2.24744286e-02
1.14745963e+00 -4.67076376e-02 -2.34598294e-01 3.46233338e-01
1.28725016e+00 4.43509102e-01 1.51728189e+00 7.64457226e-01
7.13819444e-01 5.96026123e-01 6.71057343e-01 3.73300493e-01
-9.90645438e-02 4.35855716e-01 -4.19488430e-01 2.71667004e-01
3.92214991e-02 -1.88727424e-01 4.88990515e-01 6.88481390e-01
1.82718690e-02 -4.42798764e-01 -1.03830898e+00 3.60256255e-01
-1.54508328e+00 -9.66511607e-01 -5.04825592e-01 1.99939239e+00
7.90380478e-01 2.82779217e-01 -1.64010823e-01 2.83796310e-01
9.07590747e-01 -4.74544540e-02 -3.47055733e-01 -8.09541821e-01
-3.50416273e-01 -7.07696155e-02 9.70255375e-01 2.74353594e-01
-1.10212529e+00 1.31567943e+00 6.59702301e+00 1.12506163e+00
-1.33960402e+00 -4.86401647e-01 4.20468152e-01 2.22531080e-01
8.08909759e-02 -1.38588652e-01 -1.25610459e+00 5.69417953e-01
6.11838400e-01 1.87497482e-01 5.78448594e-01 7.02634215e-01
3.66215892e-02 -2.89992809e-01 -8.95504773e-01 1.24364352e+00
2.36537799e-01 -1.39489067e+00 9.65775165e-04 8.20143148e-02
8.29926550e-01 -2.18166679e-01 7.20539093e-02 7.74891451e-02
-5.83035424e-02 -1.03746510e+00 8.15907061e-01 5.50722480e-01
8.82817030e-01 -6.10934913e-01 6.91007018e-01 1.92612648e-01
-8.07825983e-01 2.13981390e-01 -5.78477502e-01 2.36065879e-01
8.14095363e-02 5.78508079e-01 -9.23353612e-01 1.27162293e-01
3.11489135e-01 5.33219159e-01 -8.14405024e-01 1.35969114e+00
-2.79467911e-01 4.20434743e-01 -2.66085535e-01 -5.98646760e-01
4.75227505e-01 -4.17473078e-01 3.67596537e-01 1.96288323e+00
3.55805218e-01 1.03286398e-03 -2.32813105e-01 6.67234838e-01
-2.48011276e-01 3.37179899e-01 -3.34849089e-01 -9.33438599e-01
3.19023401e-01 1.34039390e+00 -1.33326066e+00 -3.55576187e-01
-5.52945614e-01 1.45500362e+00 -1.10530123e-01 3.80250454e-01
-5.35472870e-01 -1.13317108e+00 2.94141412e-01 2.23781839e-01
2.33910918e-01 -7.70060658e-01 -4.92650270e-01 -1.08243227e+00
2.19914272e-01 -1.10306191e+00 -6.28842935e-02 -6.66380167e-01
-1.18345737e+00 2.79106200e-01 -5.04479587e-01 -1.27755010e+00
5.61350621e-02 -1.32745218e+00 -5.34230709e-01 6.22070789e-01
-1.50523341e+00 -7.61131346e-01 -1.39114544e-01 2.94122487e-01
9.09342825e-01 -6.95696592e-01 2.97903806e-01 5.39261818e-01
-7.78334558e-01 7.99280167e-01 7.92744040e-01 6.25504553e-01
9.53851759e-01 -1.21918118e+00 6.39587283e-01 1.10902321e+00
2.92089373e-01 6.63890541e-01 4.32420254e-01 -7.70539999e-01
-1.67499518e+00 -8.44072461e-01 1.01743484e+00 -3.46895397e-01
8.15779448e-01 -3.47787350e-01 -8.49841595e-01 4.05462921e-01
1.27052441e-02 -2.04774752e-01 4.03667420e-01 -2.75016010e-01
-2.19570085e-01 2.13943109e-01 -1.04956591e+00 7.72746384e-01
4.69058126e-01 -8.06601226e-01 -3.23179245e-01 4.51002091e-01
8.50956663e-02 -6.86563969e-01 -5.30643284e-01 -4.34577256e-01
7.51302183e-01 -3.92844409e-01 5.90545535e-01 -5.49286366e-01
7.36384809e-01 -5.61391175e-01 1.13378741e-01 -8.06204677e-01
-1.86378896e-01 -7.94561505e-01 3.24714370e-02 1.42897224e+00
7.05537677e-01 -4.74998534e-01 9.24474359e-01 8.57722163e-01
8.32695886e-02 -2.12651044e-01 -4.58224475e-01 -9.82172012e-01
-1.67388529e-01 -6.01484001e-01 4.41143006e-01 9.57480252e-01
1.65515970e-02 -4.49077785e-02 -4.18985546e-01 1.74646661e-01
3.60705554e-01 -1.41561836e-01 6.41705155e-01 -1.01380599e+00
-1.13062561e-01 -5.30037403e-01 -7.51685381e-01 -1.15798378e+00
1.87888290e-04 -4.20204103e-01 2.47980729e-01 -1.51546907e+00
7.71679878e-02 -1.87171504e-01 3.68180066e-01 2.17958018e-01
2.44695377e-02 4.18824017e-01 3.58763963e-01 3.36447209e-01
-6.63776815e-01 -1.48305535e-01 1.12963068e+00 -4.38631743e-01
-3.33434671e-01 -1.03045627e-01 -2.44356900e-01 6.17208004e-01
7.43515134e-01 -4.20772344e-01 3.29624236e-01 -4.93816316e-01
2.82183379e-01 -4.90135789e-01 -4.36203973e-03 -8.31061542e-01
5.95928311e-01 -2.37225786e-01 6.16473973e-01 -8.06538165e-01
-2.05697209e-01 -7.53806114e-01 -3.53127092e-01 1.73609942e-01
-2.85896152e-01 9.31422785e-02 1.96964473e-01 3.76170129e-01
-2.65125841e-01 -8.16415846e-01 7.82170773e-01 3.45903523e-02
-9.10575151e-01 -3.38854715e-02 -1.05109918e+00 -1.85545728e-01
9.28589404e-01 -7.90936470e-01 -5.92854977e-01 -2.07523584e-01
-1.38397485e-01 -1.90405571e-03 5.80322385e-01 6.40233755e-01
6.26123905e-01 -9.95973527e-01 -6.37838900e-01 1.95214987e-01
8.18695873e-02 -2.01514274e-01 -5.17769381e-02 5.11346638e-01
-1.63584578e+00 7.89571106e-01 -1.43525183e-01 -2.80860662e-01
-1.43002236e+00 3.17375183e-01 8.20787400e-02 -1.78280860e-01
-3.28296214e-01 5.19504905e-01 -7.36551344e-01 -2.89021611e-01
3.66093904e-01 -3.67826521e-01 -2.31886819e-01 -3.62162925e-02
9.27737057e-01 8.04749072e-01 2.59918123e-01 -4.68127429e-01
-4.89357561e-01 8.30296278e-01 -6.15743458e-01 -1.81433260e-01
1.02418029e+00 1.77511908e-02 -1.16201125e-01 1.92659855e-01
1.09476221e+00 4.22997117e-01 -8.85397077e-01 -1.27305180e-01
5.47405183e-01 -7.41918087e-01 -1.32707670e-01 -6.96180761e-01
-7.96028912e-01 9.48531389e-01 3.87650311e-01 1.02721870e-01
6.93909824e-01 -3.70660633e-01 7.82729983e-01 9.11515474e-01
2.69940913e-01 -1.93606257e+00 -7.41483793e-02 9.09523606e-01
5.20788372e-01 -1.16568828e+00 3.10721070e-01 -4.17998403e-01
-6.66936040e-01 1.82225120e+00 2.51603633e-01 1.19489774e-01
2.63197035e-01 5.52075684e-01 1.00392252e-01 1.32148966e-01
-8.66930261e-02 -2.07191240e-02 4.89967585e-01 4.67610955e-01
6.81967318e-01 -5.19603863e-02 -4.42996442e-01 3.18063408e-01
-6.72171544e-03 4.63629514e-02 9.01516914e-01 1.21356702e+00
-4.39184397e-01 -1.13277864e+00 -8.55549753e-01 6.11510813e-01
-7.13217676e-01 -3.03842813e-01 -9.91578519e-01 6.46857262e-01
-3.26370746e-01 8.12318206e-01 1.49119884e-01 -1.86110958e-01
3.40495288e-01 1.05467498e-01 3.83147836e-01 -5.14024377e-01
-5.68501711e-01 6.22245260e-02 2.28108428e-02 -2.28444368e-01
-2.78658066e-02 -8.54374290e-01 -1.29461324e+00 -6.20871723e-01
-3.88863772e-01 -3.19739133e-01 1.00521135e+00 9.65263128e-01
1.47243127e-01 2.52675295e-01 2.96163052e-01 -5.52000940e-01
-4.23085749e-01 -8.67190063e-01 -9.60865200e-01 2.95772582e-01
2.44102985e-01 -2.71103741e-03 -1.50336146e-01 3.50499749e-01] | [11.828479766845703, 2.609433889389038] |
dd50ba40-a13a-4b17-b6ac-06c5c159b362 | clip-driven-fine-grained-text-image-person-re | 2210.10276 | null | https://arxiv.org/abs/2210.10276v1 | https://arxiv.org/pdf/2210.10276v1.pdf | CLIP-Driven Fine-grained Text-Image Person Re-identification | TIReID aims to retrieve the image corresponding to the given text query from a pool of candidate images. Existing methods employ prior knowledge from single-modality pre-training to facilitate learning, but lack multi-modal correspondences. Besides, due to the substantial gap between modalities, existing methods embed the original modal features into the same latent space for cross-modal alignment. However, feature embedding may lead to intra-modal information distortion. Recently, CLIP has attracted extensive attention from researchers due to its powerful semantic concept learning capacity and rich multi-modal knowledge, which can help us solve the above problems. Accordingly, in the paper, we propose a CLIP-driven Fine-grained information excavation framework (CFine) to fully utilize the powerful knowledge of CLIP for TIReID. To transfer the multi-modal knowledge effectively, we perform fine-grained information excavation to mine intra-modal discriminative clues and inter-modal correspondences. Specifically, we first design a multi-grained global feature learning module to fully mine intra-modal discriminative local information, which can emphasize identity-related discriminative clues by enhancing the interactions between global image (text) and informative local patches (words). Secondly, cross-grained feature refinement (CFR) and fine-grained correspondence discovery (FCD) modules are proposed to establish the cross-grained and fine-grained interactions between modalities, which can filter out non-modality-shared image patches/words and mine cross-modal correspondences from coarse to fine. CFR and FCD are removed during inference to save computational costs. Note that the above process is performed in the original modality space without further feature embedding. Extensive experiments on multiple benchmarks demonstrate the superior performance of our method on TIReID. | ['Jinhui Tang', 'Liyan Zhang', 'Neng Dong', 'Shuanglin Yan'] | 2022-10-19 | null | null | null | null | ['nlp-based-person-retrival'] | ['computer-vision'] | [ 2.12139547e-01 -3.91046256e-01 -3.84793788e-01 -2.69463748e-01
-1.13167369e+00 -5.06624937e-01 5.23376703e-01 -1.93101257e-01
-2.12903872e-01 3.54821771e-01 5.98763704e-01 2.62738496e-01
-5.06102443e-01 -6.51540816e-01 -5.22794962e-01 -8.79628897e-01
3.50881100e-01 1.06821209e-01 2.29452714e-01 -7.03518093e-02
2.07015604e-01 3.40337396e-01 -1.73930562e+00 6.80954516e-01
8.72696280e-01 1.05500424e+00 5.08164167e-01 7.45327920e-02
-2.21942291e-01 3.63469511e-01 -2.12791979e-01 -9.28929523e-02
1.94948241e-01 -2.55035788e-01 -7.19357073e-01 4.94960785e-01
4.66420263e-01 -2.00563297e-01 -3.67111862e-01 1.11580777e+00
4.34735477e-01 1.51371300e-01 5.93834221e-01 -1.12787998e+00
-7.49069273e-01 1.82041228e-01 -9.99527514e-01 -1.47777824e-02
3.09999734e-01 1.42971322e-01 1.35846245e+00 -1.56034803e+00
6.69900894e-01 1.41851234e+00 3.92480075e-01 2.23506704e-01
-1.15745616e+00 -6.91590726e-01 2.99371272e-01 3.70476544e-01
-1.84996796e+00 -2.37337053e-01 1.01288676e+00 -3.72384846e-01
5.58146834e-01 2.26513579e-01 5.31086147e-01 7.04748750e-01
-7.69510046e-02 1.09593785e+00 1.13527060e+00 -4.14693564e-01
-2.44099289e-01 8.16931054e-02 -1.82003543e-01 9.24427927e-01
-7.52887204e-02 2.94555798e-02 -1.01426291e+00 6.85321093e-02
9.97010171e-01 4.17489320e-01 -3.71376216e-01 -3.76982778e-01
-1.52812088e+00 7.81020164e-01 4.87981528e-01 5.26719451e-01
-3.56648326e-01 -2.57355243e-01 3.20353776e-01 2.01042131e-01
3.18011492e-01 2.76083708e-01 -5.43327510e-01 1.55007899e-01
-8.67451906e-01 -9.08846781e-02 1.66196600e-01 1.00257921e+00
1.37511075e+00 -4.00912493e-01 -4.31003958e-01 1.16366589e+00
2.82745332e-01 4.44376588e-01 3.89655501e-01 -7.77509630e-01
6.94432616e-01 8.68422270e-01 -2.22219512e-01 -1.31463611e+00
-1.02889389e-01 -3.20859253e-01 -1.12858164e+00 -2.62561858e-01
7.93278515e-02 3.08561713e-01 -9.80743945e-01 1.65482605e+00
4.80964869e-01 1.50412261e-01 -1.66920900e-01 1.08885622e+00
7.42891848e-01 5.67765296e-01 -7.42631406e-02 -1.30277514e-01
1.51877129e+00 -9.49021280e-01 -4.29456234e-01 -9.11615863e-02
3.33025038e-01 -1.00893688e+00 1.31754863e+00 -4.45429124e-02
-6.62141085e-01 -7.25836456e-01 -7.67944694e-01 -2.78653830e-01
-4.31385159e-01 2.24998623e-01 5.00083029e-01 8.26454684e-02
-7.12154090e-01 -1.15503363e-01 -4.26591307e-01 -2.76403397e-01
5.48017323e-01 3.09935838e-01 -6.17124796e-01 -7.40583777e-01
-1.39009345e+00 4.81719792e-01 5.47060072e-01 1.14954688e-01
-7.64575601e-01 -8.52005422e-01 -8.70102108e-01 -8.23741779e-02
7.77664900e-01 -7.00742304e-01 5.53618789e-01 -7.44990289e-01
-1.01911616e+00 9.46823716e-01 -4.35469419e-01 2.78173625e-01
5.85034005e-02 -1.53055703e-02 -3.86120707e-01 4.17115390e-01
5.56853354e-01 8.35956752e-01 1.08886898e+00 -1.34742224e+00
-9.96110857e-01 -4.08809394e-01 1.45005479e-01 4.96462941e-01
-4.96631414e-01 -3.06125045e-01 -1.24150431e+00 -9.74018157e-01
4.95336533e-01 -7.88358331e-01 1.87955573e-01 8.38090945e-03
-3.82720590e-01 -4.04493600e-01 8.82912099e-01 -4.90155697e-01
1.18182480e+00 -2.30235195e+00 3.00522596e-01 3.98111135e-01
2.74487048e-01 -1.80553734e-01 -3.83121878e-01 2.81800777e-01
9.65685844e-02 -1.19222693e-01 -1.47439435e-01 -1.35372534e-01
8.55271369e-02 3.56184036e-01 -2.05134585e-01 2.45860592e-01
4.29955274e-01 1.09818745e+00 -8.45186949e-01 -9.15250361e-01
3.58010083e-01 3.64186794e-01 -4.60813016e-01 6.33310899e-02
3.57542522e-02 5.10342062e-01 -8.98649395e-01 1.14034450e+00
7.83288777e-01 -3.68775398e-01 -1.87886372e-01 -1.01498044e+00
-3.61126214e-02 -2.65985698e-01 -1.16445434e+00 2.05809689e+00
-5.93789339e-01 2.26345211e-01 1.77292526e-02 -1.05865872e+00
8.17412913e-01 -1.35452179e-02 7.37828016e-01 -9.64135349e-01
-2.03291759e-01 2.58115232e-01 -4.59382176e-01 -5.72447240e-01
6.28196120e-01 -2.75398761e-01 -2.55952746e-01 3.20475608e-01
1.32832155e-01 1.31941944e-01 -8.09181631e-02 3.22486997e-01
7.59532928e-01 -1.36335741e-03 1.91142235e-03 -1.60519108e-01
8.40098441e-01 -8.16065595e-02 6.44451380e-01 5.05535245e-01
2.76526622e-02 7.68681586e-01 3.78668420e-02 -1.34259045e-01
-7.54012644e-01 -1.06127119e+00 -1.61550984e-01 1.31492186e+00
8.14648032e-01 -4.90899682e-01 -2.28773817e-01 -8.10217440e-01
4.48716432e-03 4.11990508e-02 -7.77003229e-01 -2.72732645e-01
-3.82716149e-01 -5.82052171e-01 3.77529263e-01 4.97398019e-01
6.97118223e-01 -9.56659317e-01 -3.13425772e-02 1.07162632e-02
-6.06460452e-01 -9.68141735e-01 -1.04053569e+00 -8.37474614e-02
-5.14859796e-01 -1.11636090e+00 -8.91461968e-01 -1.08795893e+00
9.02455747e-01 7.98209369e-01 9.70676839e-01 1.37943923e-01
-4.24332619e-01 6.79446995e-01 -4.84743416e-01 2.43472397e-01
2.76888728e-01 5.67306019e-02 -1.94391400e-01 3.58413577e-01
4.93834764e-01 -3.61618668e-01 -6.47199571e-01 6.33040130e-01
-1.25201178e+00 3.14568043e-01 1.02790761e+00 1.34618711e+00
1.02152872e+00 4.13444728e-01 4.75451112e-01 -6.15529597e-01
3.25063050e-01 -4.11834270e-01 -2.71826655e-01 5.32302380e-01
-4.42254543e-01 2.25648180e-01 3.04799497e-01 -3.57474893e-01
-1.22852600e+00 3.86470780e-02 1.81670710e-01 -7.81809628e-01
-1.42862022e-01 8.52795839e-01 -6.24619067e-01 5.58101572e-03
9.31935534e-02 6.12812161e-01 -2.65387565e-01 -5.44797540e-01
5.04294395e-01 4.67974842e-01 5.78418195e-01 -8.18381310e-01
1.06263471e+00 6.08070135e-01 -1.03240684e-01 -5.69609106e-01
-1.15785944e+00 -8.78462970e-01 -8.15646112e-01 -1.31012509e-02
8.60617399e-01 -1.26140356e+00 -3.98101628e-01 4.72904563e-01
-7.07106411e-01 2.60410517e-01 -3.42044920e-01 4.49997604e-01
-2.84651399e-01 4.48911756e-01 -3.42155099e-01 -2.43012175e-01
-1.70989826e-01 -1.09223545e+00 1.56922352e+00 4.13658440e-01
1.96732998e-01 -9.13011193e-01 -1.27014384e-01 5.53867519e-01
9.97578204e-02 -1.49418190e-01 8.94427359e-01 -7.36723170e-02
-8.89726400e-01 -2.53163418e-03 -6.85613215e-01 2.10335776e-01
3.83863807e-01 -3.86956990e-01 -7.67525077e-01 -4.00482774e-01
-3.80813718e-01 -4.16607082e-01 1.09107125e+00 1.47969589e-01
1.24988270e+00 -8.86428058e-02 -3.46065491e-01 5.69821000e-01
1.36750865e+00 -2.23602042e-01 3.73304456e-01 3.21607023e-01
1.06725264e+00 6.07393861e-01 1.18703079e+00 4.49544221e-01
5.92777789e-01 7.42215693e-01 2.36103192e-01 -2.19343707e-01
-2.25854635e-01 -5.25228739e-01 2.25695610e-01 8.87356758e-01
8.27097148e-02 2.28013992e-01 -5.84540367e-01 8.71620357e-01
-1.85310924e+00 -9.48325753e-01 3.27048689e-01 1.92182302e+00
1.02570188e+00 -1.64250270e-01 -1.06590338e-01 -1.02289155e-01
8.56751502e-01 2.65467167e-01 -5.79102814e-01 4.20378417e-01
-4.67188478e-01 -7.48055503e-02 2.33692348e-01 2.82653302e-01
-1.08342934e+00 9.71034288e-01 4.25864077e+00 1.61159050e+00
-1.01119494e+00 1.52142897e-01 4.19732004e-01 1.44073859e-01
-7.76863277e-01 1.57463830e-02 -7.99711585e-01 3.59605461e-01
-1.11591406e-01 2.75214799e-02 2.73376375e-01 4.93232220e-01
-1.13234073e-01 -1.44658193e-01 -9.05920386e-01 1.31126106e+00
1.95058957e-01 -1.35843360e+00 2.07131162e-01 7.82834813e-02
1.05332208e+00 -2.19742537e-01 7.57999644e-02 3.30982208e-01
-4.88393046e-02 -9.11615908e-01 5.02041996e-01 6.66764379e-01
1.14647627e+00 -9.67791617e-01 6.83304429e-01 1.78282797e-01
-1.84837186e+00 4.43326496e-02 -4.52519983e-01 6.26472473e-01
-3.46478000e-02 7.04549253e-01 -3.72165084e-01 9.22946930e-01
9.36371565e-01 1.12154245e+00 -6.83022916e-01 7.11813867e-01
-2.80260830e-03 2.75276870e-01 -4.02701408e-01 4.61285233e-01
3.93687606e-01 -1.26836821e-01 4.34164822e-01 1.11196411e+00
2.77630419e-01 1.33673921e-01 5.18955290e-01 7.96942711e-01
-7.03847632e-02 3.53539921e-02 -1.69822440e-01 6.28814995e-02
6.22440934e-01 1.37874460e+00 -5.08118033e-01 -1.58441797e-01
-7.15088069e-01 1.13331044e+00 4.38483916e-02 4.17261899e-01
-5.92564642e-01 -3.98579866e-01 5.28107226e-01 -5.26331663e-02
4.94430721e-01 -2.51180120e-02 -1.26298293e-01 -1.45931935e+00
1.92911923e-01 -9.02293146e-01 7.68883348e-01 -6.58303142e-01
-1.67482305e+00 2.58716136e-01 8.21392890e-03 -1.55942643e+00
1.50160775e-01 -2.93988734e-01 -2.99650460e-01 1.00536525e+00
-1.76453412e+00 -1.82390749e+00 -4.88639623e-01 1.28946292e+00
7.49409080e-01 -2.00405464e-01 5.80919087e-01 5.93132079e-01
-3.32201809e-01 8.63508046e-01 9.08427909e-02 1.54839382e-01
9.22664642e-01 -9.46842194e-01 -4.12561923e-01 7.21835852e-01
2.07212597e-01 7.87024319e-01 1.29437789e-01 -5.61803818e-01
-1.56226766e+00 -1.30381060e+00 6.24230027e-01 -1.62051722e-01
6.46689773e-01 -1.18360288e-01 -1.07127607e+00 2.87665933e-01
-2.34287694e-01 2.71834671e-01 5.58139563e-01 2.86779583e-01
-6.29073858e-01 -3.19537640e-01 -6.70480192e-01 4.87939388e-01
9.97701705e-01 -1.16020024e+00 -6.52517915e-01 1.69065192e-01
7.21174300e-01 -1.80027232e-01 -1.09541404e+00 5.34203053e-01
5.81062973e-01 -6.37683809e-01 1.05793393e+00 -1.98842615e-01
4.10702616e-01 -6.97174609e-01 -4.43978995e-01 -9.13213909e-01
-3.18525106e-01 -3.35564464e-01 -8.62798654e-03 1.67781568e+00
1.90899983e-01 -2.82753557e-01 6.02251291e-01 2.31215730e-01
-2.00106710e-01 -8.15903485e-01 -9.81379092e-01 -4.94238257e-01
-2.51907438e-01 -3.75009924e-01 5.96234679e-01 1.11356699e+00
-1.55409828e-01 4.74859744e-01 -6.40598238e-01 3.24705094e-01
5.33016145e-01 8.01481962e-01 6.72476709e-01 -9.68863487e-01
-2.01529115e-01 -1.49533883e-01 -2.03649029e-01 -1.37742341e+00
9.28904340e-02 -9.17032838e-01 1.59359366e-01 -1.26908469e+00
6.76174045e-01 -6.52288854e-01 -7.50387549e-01 7.25364625e-01
-4.22743201e-01 5.60282946e-01 1.20290630e-01 6.07409656e-01
-9.83543217e-01 9.08406258e-01 1.62322283e+00 -3.50035310e-01
-7.23528787e-02 -3.05008113e-01 -9.21637595e-01 5.35607636e-01
3.27375621e-01 -3.43358815e-01 -4.84545350e-01 -3.88985723e-01
1.49719834e-01 -7.38249347e-02 6.46218240e-01 -6.92510247e-01
4.00525182e-01 -3.08636576e-01 5.96236229e-01 -1.01620245e+00
3.71767223e-01 -1.04267836e+00 -4.54162173e-02 -1.29565420e-02
-2.92893142e-01 -3.99688721e-01 -3.73147149e-03 8.67424726e-01
-8.28033626e-01 1.43087760e-01 6.14802659e-01 -3.78869362e-02
-1.17315781e+00 7.22755253e-01 -3.52169499e-02 9.70415995e-02
7.14812040e-01 -3.91262233e-01 -1.11885481e-01 -1.53729588e-01
-6.32054865e-01 4.54500020e-01 4.95935440e-01 7.50535071e-01
8.82610500e-01 -1.65423441e+00 -5.51283836e-01 4.22367275e-01
6.85836196e-01 1.91076621e-01 8.75565112e-01 1.04745913e+00
1.70351788e-01 3.75736803e-01 -2.03363657e-01 -8.60887885e-01
-1.27043140e+00 5.09454191e-01 6.80581257e-02 -4.09193993e-01
-5.05083680e-01 8.79029691e-01 8.40509593e-01 -4.45074081e-01
-1.09089442e-01 2.07215250e-01 -1.01931401e-01 3.86239052e-01
3.51066947e-01 -3.73866945e-03 -1.40255556e-01 -9.59326744e-01
-4.96723533e-01 1.18877149e+00 -3.22133303e-01 1.72078200e-02
1.28978622e+00 -7.49597907e-01 -2.48522654e-01 2.80468374e-01
1.43193936e+00 1.45319954e-01 -1.28764462e+00 -9.92500365e-01
-1.89307198e-01 -7.85180867e-01 2.51987487e-01 -6.77150309e-01
-1.28744900e+00 8.63433659e-01 5.22073388e-01 -3.02109897e-01
1.69369543e+00 3.99030775e-01 8.38816464e-01 1.57281041e-01
2.66286463e-01 -1.18648267e+00 5.79565108e-01 4.44484502e-01
8.57972860e-01 -1.34638643e+00 7.46642724e-02 -5.95906615e-01
-7.02099383e-01 9.36561167e-01 6.90380752e-01 1.60586461e-01
7.02440321e-01 -2.25089878e-01 -1.67087257e-01 -4.65144247e-01
-4.95956242e-01 -4.89566535e-01 8.80089581e-01 5.02895534e-01
-3.11754178e-02 -1.27977073e-01 1.01382649e-02 7.92901039e-01
3.82861972e-01 -1.25053391e-01 -2.60319054e-01 8.32965314e-01
-4.34775352e-01 -1.04946697e+00 -4.65579629e-01 4.04085606e-01
-1.39981657e-01 -2.82927483e-01 -2.40421772e-01 7.84157157e-01
6.25155032e-01 7.91676342e-01 -1.40527263e-01 -5.68736851e-01
1.58731848e-01 -2.68517196e-01 2.90933102e-01 -5.00023127e-01
-1.38203070e-01 5.46806872e-01 -3.48259211e-01 -5.28709948e-01
-7.43593812e-01 -6.31353796e-01 -1.18004620e+00 4.41008434e-02
-5.02499640e-01 5.03275879e-02 8.19301605e-02 1.05318725e+00
5.37666857e-01 3.64580363e-01 8.79433095e-01 -7.05774426e-01
-4.75774445e-02 -6.46073103e-01 -8.14076006e-01 5.98437369e-01
2.50933617e-01 -8.68321180e-01 -2.24725157e-01 1.89349547e-01] | [10.86642074584961, 1.2582930326461792] |
6155f332-d090-4978-8a41-868cf7911e33 | generalized-spectral-clustering-for-directed | 2203.03221 | null | https://arxiv.org/abs/2203.03221v2 | https://arxiv.org/pdf/2203.03221v2.pdf | Generalized Spectral Clustering for Directed and Undirected Graphs | Spectral clustering is a popular approach for clustering undirected graphs, but its extension to directed graphs (digraphs) is much more challenging. A typical workaround is to naively symmetrize the adjacency matrix of the directed graph, which can however lead to discarding valuable information carried by edge directionality. In this paper, we present a generalized spectral clustering framework that can address both directed and undirected graphs. Our approach is based on the spectral relaxation of a new functional that we introduce as the generalized Dirichlet energy of a graph function, with respect to an arbitrary positive regularizing measure on the graph edges. We also propose a practical parametrization of the regularizing measure constructed from the iterated powers of the natural random walk on the graph. We present theoretical arguments to explain the efficiency of our framework in the challenging setting of unbalanced classes. Experiments using directed K-NN graphs constructed from real datasets show that our graph partitioning method performs consistently well in all cases, while outperforming existing approaches in most of them. | ['Matthieu Jonckheere', 'Argyris Kalogeratos', 'Harry Sevi'] | 2022-03-07 | null | null | null | null | ['graph-partitioning'] | ['graphs'] | [ 3.15377325e-01 4.06812757e-01 -6.93248361e-02 -2.76203364e-01
-3.01604956e-01 -8.61229718e-01 4.15230215e-01 2.50145555e-01
-8.01557302e-02 3.97156417e-01 1.04488850e-01 -4.14454788e-01
-5.31445086e-01 -9.20182407e-01 -3.63866806e-01 -1.09579241e+00
-2.44981334e-01 8.06220055e-01 3.45460802e-01 -4.39060517e-02
1.36850178e-01 5.12105763e-01 -1.28608990e+00 -1.23053320e-01
7.43508995e-01 2.30331272e-01 -1.75852805e-01 6.33316278e-01
-1.84683874e-01 4.23812419e-01 -3.38859409e-01 -3.46694618e-01
2.28755578e-01 -5.80598354e-01 -1.27203000e+00 7.53900409e-01
-2.57616471e-02 5.52376270e-01 -1.47230729e-01 1.23453212e+00
3.20494890e-01 1.96645096e-01 9.69889641e-01 -1.45477593e+00
-3.53347331e-01 8.32727075e-01 -8.88031185e-01 -5.30746169e-02
2.38691032e-01 -4.52717334e-01 1.34673405e+00 -4.66376960e-01
6.91222966e-01 1.17925632e+00 6.93655849e-01 1.93064749e-01
-1.61855245e+00 -1.54609412e-01 1.24219276e-01 8.75399262e-03
-1.70074558e+00 5.60313649e-02 8.89595091e-01 -5.11564553e-01
6.32836401e-01 4.17479038e-01 5.89519620e-01 4.50537145e-01
-3.21785063e-01 5.18044591e-01 1.02473974e+00 -7.28644311e-01
4.08894092e-01 -1.38602361e-01 5.86174786e-01 6.73065186e-01
5.84186554e-01 -5.01817226e-01 9.27195549e-02 -6.01514816e-01
2.92633235e-01 -1.57405287e-01 -3.11536610e-01 -1.11155117e+00
-8.91444445e-01 1.06780517e+00 1.95049301e-01 3.64654928e-01
-1.88960314e-01 5.60703222e-03 2.72020131e-01 1.65868506e-01
5.43115079e-01 2.87294816e-02 -1.09346971e-01 2.92455286e-01
-7.85182536e-01 -1.57464921e-01 1.25627387e+00 9.24441040e-01
1.04792809e+00 -3.83882284e-01 3.32740903e-01 8.03079784e-01
3.35213125e-01 2.42441550e-01 -2.23486483e-01 -9.01753008e-01
7.52616897e-02 7.30995893e-01 -2.46427014e-01 -1.22014892e+00
-6.57887101e-01 -1.47863612e-01 -9.85897541e-01 -3.41536611e-01
6.44099295e-01 -3.08687761e-02 -7.99325466e-01 1.66673768e+00
4.80299085e-01 -8.83128345e-02 -2.35886574e-01 6.10624790e-01
3.64065379e-01 4.00705636e-01 -1.74971133e-01 -4.86610115e-01
1.00099301e+00 -6.77904129e-01 -5.32028019e-01 1.13762945e-01
6.94406688e-01 -5.53222954e-01 7.61760354e-01 3.49772513e-01
-9.42325711e-01 1.14872336e-01 -7.58322477e-01 3.54120046e-01
-1.35906890e-01 -3.04083973e-01 5.61942816e-01 1.00035799e+00
-1.41558301e+00 5.66775620e-01 -7.55676866e-01 -7.55888999e-01
1.81384403e-02 4.58103240e-01 -2.66306341e-01 -1.84734091e-01
-8.62477183e-01 3.87651503e-01 4.92631108e-01 -1.14501558e-01
-1.55565545e-01 -2.49167964e-01 -6.99372172e-01 1.60827175e-01
5.32477558e-01 -4.08685625e-01 7.37794459e-01 -1.10170472e+00
-1.09747910e+00 1.06950760e+00 -6.88742995e-02 -2.07471892e-01
2.26605654e-01 5.12313604e-01 -9.84972864e-02 4.92942542e-01
1.17448434e-01 1.77771911e-01 6.00413322e-01 -1.39239132e+00
4.52362606e-03 -4.40896243e-01 4.91464650e-03 1.46668956e-01
-3.82208407e-01 -2.17626765e-01 -4.57012475e-01 -4.03747678e-01
4.50041562e-01 -1.40521538e+00 -4.92846221e-01 -6.47238076e-01
-7.38815367e-01 -4.43425447e-01 5.71922719e-01 -2.28189379e-01
1.45486629e+00 -2.20211458e+00 4.04199392e-01 9.59439456e-01
4.74691600e-01 -8.03642049e-02 3.92379612e-02 9.12988603e-01
-4.27066892e-01 2.72302985e-01 -7.09379137e-01 1.73223674e-01
3.02732699e-02 4.29425895e-01 1.51328996e-01 9.49364960e-01
-1.48587406e-01 5.31739771e-01 -1.09036660e+00 -4.36992586e-01
-6.50403500e-02 2.67061591e-01 -6.28062785e-01 -3.14865023e-01
6.28333613e-02 6.59804046e-02 -2.62714773e-01 1.40152946e-01
9.00552034e-01 -6.51479185e-01 1.07116628e+00 3.30298878e-02
2.32461140e-01 7.75727034e-02 -1.59639573e+00 1.33395493e+00
3.92714217e-02 3.72777671e-01 3.62788260e-01 -1.63407576e+00
5.49251020e-01 8.78559127e-02 8.69047701e-01 5.35072014e-02
1.15485704e-02 -4.27394472e-02 2.76717190e-02 -2.13091880e-01
9.42870155e-02 -2.31321812e-01 -1.55231863e-01 7.56779015e-01
-1.20821167e-02 -2.12128535e-02 3.73025954e-01 8.61833036e-01
1.29034770e+00 -3.73557597e-01 3.19074571e-01 -8.73663306e-01
5.12817442e-01 -1.19791031e-01 2.45499834e-01 5.94743311e-01
-1.93950832e-02 5.85247457e-01 1.07648110e+00 -1.61613211e-01
-1.00982428e+00 -1.08936775e+00 -6.82859719e-02 8.16912353e-01
1.70238063e-01 -7.63945162e-01 -1.12133718e+00 -8.38686228e-01
-1.24201953e-01 3.58677626e-01 -6.49057806e-01 -1.35344088e-01
-2.40601376e-01 -1.31442058e+00 3.18226069e-01 1.81546271e-01
1.42330870e-01 -4.41257268e-01 2.34841760e-02 -2.04876289e-02
-2.60912448e-01 -9.42070186e-01 -5.26665926e-01 3.35824400e-01
-8.54987979e-01 -1.38225198e+00 -4.55012560e-01 -9.59845066e-01
9.42509592e-01 6.93114161e-01 1.06527042e+00 2.16106355e-01
-1.24180406e-01 8.52551222e-01 -3.50650340e-01 1.90833971e-01
-3.04762304e-01 2.39601061e-01 4.13528923e-03 2.82532156e-01
4.65791434e-01 -6.62878692e-01 -3.73525828e-01 4.48945254e-01
-1.15895438e+00 -2.91158885e-01 6.91971853e-02 6.89093769e-01
4.67606723e-01 4.63035852e-01 3.52409810e-01 -1.30682468e+00
6.00724280e-01 -7.24451482e-01 -4.73443329e-01 1.78936064e-01
-7.85214245e-01 2.58575708e-01 3.90048027e-01 -1.86064154e-01
-7.06927121e-01 2.87977904e-01 2.46667147e-01 -8.58269706e-02
1.01756215e-01 6.55979276e-01 -3.29794496e-01 -2.15954199e-01
5.17555833e-01 -4.55426760e-02 -1.18814250e-02 -3.09139222e-01
7.01727211e-01 4.70859051e-01 1.75205901e-01 -5.13096809e-01
7.49050021e-01 8.46614540e-01 5.02334952e-01 -1.15278733e+00
-4.99815255e-01 -8.90767276e-01 -7.93830991e-01 -1.67869568e-01
7.04272091e-01 -4.33908880e-01 -7.55061567e-01 2.51380116e-01
-8.33839178e-01 -1.28812701e-01 -1.80607587e-01 3.42420369e-01
-4.23562437e-01 9.97885466e-01 -5.55885315e-01 -7.88979888e-01
2.95879275e-01 -7.88800061e-01 8.35239172e-01 -3.28344464e-01
-1.48976952e-01 -1.40148664e+00 4.30435091e-01 2.04388142e-01
-3.76720577e-02 3.07825863e-01 1.15072560e+00 -8.42027068e-01
-2.70010680e-01 -1.37935162e-01 -2.83137113e-01 2.81969577e-01
2.04376448e-02 2.23817393e-01 -4.83609527e-01 -2.89296418e-01
-9.35843289e-02 2.54480727e-02 9.64855433e-01 4.43980575e-01
9.69885826e-01 -2.34797418e-01 -5.63037634e-01 3.04508805e-01
1.48311937e+00 -1.27011508e-01 5.55882752e-01 -1.45047143e-01
9.71509039e-01 8.56183887e-01 1.65993303e-01 3.08454037e-01
4.14769709e-01 3.92380744e-01 2.53757954e-01 -7.62859061e-02
2.46738315e-01 1.14922538e-01 1.22519292e-01 1.16523564e+00
-1.59797609e-01 -3.58958691e-01 -9.95348334e-01 6.59851074e-01
-1.90248120e+00 -9.17625487e-01 -8.16830456e-01 2.34646344e+00
4.75649327e-01 -7.69023821e-02 5.97923636e-01 4.36060965e-01
1.27756453e+00 7.47788399e-02 -5.42920306e-02 -4.18120086e-01
-1.60915256e-01 3.05282474e-01 8.01017582e-01 8.43958914e-01
-8.74731123e-01 5.74008226e-01 7.06578064e+00 7.50978827e-01
-5.71646571e-01 4.01285626e-02 3.82811934e-01 1.94725156e-01
-4.67942983e-01 3.39518338e-01 -3.02928180e-01 3.91912967e-01
8.90523553e-01 -2.75229186e-01 4.76555318e-01 7.02151954e-01
-6.34685382e-02 -2.22234353e-01 -8.54145706e-01 6.97187006e-01
5.08877262e-02 -8.67186308e-01 -8.24888721e-02 4.46862936e-01
9.62590635e-01 -1.37423337e-01 -2.85625994e-01 -2.43479788e-01
6.76635563e-01 -8.03723156e-01 1.50012290e-02 1.12196200e-01
4.93938416e-01 -9.03304696e-01 3.70845139e-01 2.36510411e-01
-1.32868743e+00 3.23849171e-01 -2.16159031e-01 -9.56211425e-03
-9.05419663e-02 9.75999951e-01 -8.34845185e-01 7.78377414e-01
4.35743213e-01 6.22898817e-01 -4.30154562e-01 8.01594496e-01
2.11009793e-02 8.76398921e-01 -5.30793846e-01 1.49041265e-01
2.76825219e-01 -8.25420320e-01 6.39178991e-01 1.29204690e+00
7.66046867e-02 1.77005544e-01 3.64740998e-01 4.24580216e-01
-6.48684204e-02 3.11244577e-01 -8.57340097e-01 -1.68856457e-01
2.51222908e-01 1.49901175e+00 -1.60048866e+00 -2.41246775e-01
-5.21831810e-01 8.63346815e-01 3.80136102e-01 4.71674860e-01
-5.32813072e-01 -4.24107522e-01 2.88923830e-01 3.47437620e-01
4.80310082e-01 -3.63055825e-01 3.57753038e-02 -1.16803908e+00
2.27816086e-02 -5.15386760e-01 6.68259203e-01 -3.48844945e-01
-1.35953867e+00 2.98025191e-01 2.01696351e-01 -8.67133856e-01
-1.36982247e-01 -5.48111439e-01 -4.21322346e-01 5.24705827e-01
-1.00565839e+00 -6.68710291e-01 -9.23932120e-02 7.96854973e-01
-1.50570840e-01 4.05236930e-01 5.99557698e-01 3.55013013e-01
-3.31061482e-01 4.87386025e-02 3.52439016e-01 1.07637756e-02
5.31327724e-01 -1.64645731e+00 8.72888342e-02 8.27843130e-01
9.80275944e-02 6.68862104e-01 7.08027244e-01 -6.73047245e-01
-1.35808384e+00 -9.54219759e-01 7.63446689e-01 -2.17949450e-01
9.91456151e-01 -4.47254241e-01 -9.36326802e-01 8.47857654e-01
1.71402201e-01 -1.91872159e-03 9.17834818e-01 2.72895902e-01
-3.55356693e-01 2.39578888e-01 -1.05650759e+00 3.55262429e-01
1.25436246e+00 -3.58787656e-01 -9.90130082e-02 7.64450431e-01
3.95646811e-01 2.18867972e-01 -8.88583839e-01 2.96083450e-01
1.95781156e-01 -1.12307668e+00 8.11193228e-01 -5.74788451e-01
-6.88624233e-02 -4.68973517e-01 -1.62399784e-01 -1.33100545e+00
-5.94292998e-01 -8.73157740e-01 3.41626137e-01 1.13650048e+00
2.44016409e-01 -7.26113617e-01 9.01783943e-01 2.25926504e-01
2.88198739e-01 -4.99594510e-01 -7.19905436e-01 -7.32481718e-01
3.62470262e-02 -3.17822456e-01 2.27673322e-01 1.29468942e+00
4.46133554e-01 7.06645131e-01 -1.06496081e-01 1.70880616e-01
9.50087368e-01 3.87055986e-02 5.42875171e-01 -1.67085290e+00
-3.23642552e-01 -3.93409848e-01 -6.68271184e-01 -8.18846583e-01
3.32158148e-01 -1.29347801e+00 -2.57652014e-01 -1.57077801e+00
4.79584843e-01 -3.32990915e-01 1.79006562e-01 1.56873390e-02
-7.83620253e-02 3.17265570e-01 -1.77915826e-01 1.20115198e-01
-7.98399210e-01 9.73012373e-02 8.89353156e-01 1.35981268e-03
-2.39286095e-01 3.86431068e-02 -6.40613556e-01 9.36578155e-01
6.35816276e-01 -4.90144521e-01 -6.52292907e-01 6.91466033e-02
5.28605163e-01 -3.62734497e-02 2.13812813e-01 -4.89525646e-01
3.26783210e-01 1.66238621e-02 -2.28841141e-01 -5.40033400e-01
-1.00116901e-01 -8.43327940e-01 5.22403955e-01 3.12631309e-01
-1.51350528e-01 3.84887718e-02 -2.54338741e-01 9.11437094e-01
-7.23701268e-02 -3.65303725e-01 9.31217849e-01 -3.73217463e-02
-1.48783326e-01 8.32274035e-02 -4.80603397e-01 2.69615173e-01
1.11211824e+00 -1.95262998e-01 -1.16924323e-01 -4.95691746e-01
-1.12705231e+00 1.95885271e-01 7.84020245e-01 -1.77090868e-01
1.92989469e-01 -1.34474099e+00 -4.92525250e-01 -9.67038050e-03
-3.24769248e-03 -1.72542661e-01 6.45648688e-02 1.15997899e+00
-4.62444007e-01 2.53786594e-01 2.77623147e-01 -6.81246579e-01
-1.45775747e+00 9.17166948e-01 1.61967680e-01 -3.40140045e-01
-5.01966059e-01 4.58791465e-01 3.76383096e-01 -3.65749896e-01
-2.20128819e-02 2.87054926e-02 6.20838767e-03 3.13347518e-01
3.69376540e-02 6.93802953e-01 1.82406798e-01 -8.59225929e-01
-5.58556616e-01 6.04109526e-01 1.03303656e-01 -1.53343290e-01
1.18868411e+00 -4.77404088e-01 -6.88889444e-01 3.79039854e-01
1.41071010e+00 2.77787864e-01 -6.53146148e-01 -1.91332728e-01
2.79930979e-01 -1.42072067e-01 -2.19445676e-01 -8.91284123e-02
-1.12978590e+00 5.37298501e-01 -7.89483786e-02 1.13549960e+00
1.12454987e+00 4.48036462e-01 3.45960081e-01 3.96287233e-01
2.32014209e-01 -1.00995243e+00 -1.84878483e-01 2.94477552e-01
2.57824659e-01 -8.72694314e-01 6.76564649e-02 -9.35435295e-01
-4.98433173e-01 1.10927701e+00 -1.20200336e-01 -4.24545288e-01
9.85692561e-01 8.29485580e-02 -3.57666582e-01 -5.34359097e-01
-3.09384644e-01 -3.93038243e-01 1.37683943e-01 6.49663806e-01
4.60078984e-01 2.11989388e-01 -5.46977460e-01 1.19952649e-01
1.95787959e-02 -4.89330381e-01 8.04003417e-01 7.38896489e-01
-4.49398369e-01 -1.15765285e+00 -3.49340498e-01 4.44619715e-01
-4.94296551e-01 -6.72322288e-02 -8.94798994e-01 7.90818393e-01
-2.48833746e-01 1.12663531e+00 -1.14132678e-02 -2.26965457e-01
2.57109124e-02 7.21169040e-02 6.57974005e-01 -7.45741189e-01
-1.11947738e-01 1.85557887e-01 1.16753817e-01 -2.96805531e-01
-1.02029467e+00 -9.19840872e-01 -1.10584927e+00 -4.55580682e-01
-4.70589548e-01 6.98629439e-01 3.86898667e-01 8.00383449e-01
1.26290500e-01 1.87858701e-01 8.36684823e-01 -7.22524464e-01
-2.62521952e-01 -6.14712656e-01 -1.18795764e+00 4.59582210e-01
8.64959583e-02 -6.48194134e-01 -8.49340022e-01 1.31482601e-01] | [7.042876720428467, 5.240075588226318] |
f5ef241d-7261-4d11-b967-ec6922918400 | dominance-based-rough-set-approach-basic | 2210.03233 | null | https://arxiv.org/abs/2210.03233v1 | https://arxiv.org/pdf/2210.03233v1.pdf | Dominance-based Rough Set Approach, basic ideas and main trends | Dominance-based Rough Approach (DRSA) has been proposed as a machine learning and knowledge discovery methodology to handle Multiple Criteria Decision Aiding (MCDA). Due to its capacity of asking the decision maker (DM) for simple preference information and supplying easily understandable and explainable recommendations, DRSA gained much interest during the years and it is now one of the most appreciated MCDA approaches. In fact, it has been applied also beyond MCDA domain, as a general knowledge discovery and data mining methodology for the analysis of monotonic (and also non-monotonic) data. In this contribution, we recall the basic principles and the main concepts of DRSA, with a general overview of its developments and software. We present also a historical reconstruction of the genesis of the methodology, with a specific focus on the contribution of Roman S{\l}owi\'nski. | ['Marcin Szeląg', 'Benedetto Matarazzo', 'Salvatore Greco', 'Jerzy Błaszczyński'] | 2022-10-06 | null | null | null | null | ['general-knowledge'] | ['miscellaneous'] | [-1.10614389e-01 3.04086745e-01 -3.12432408e-01 -8.48135471e-01
-1.61024034e-01 -3.84947270e-01 3.86608094e-01 7.07525373e-01
-2.10893631e-01 1.02354908e+00 1.09696187e-01 -6.51625872e-01
-1.27956617e+00 -8.39382410e-01 6.55673519e-02 -3.72507632e-01
-2.35864446e-01 1.12874174e+00 9.54837576e-02 -5.56648731e-01
4.63607371e-01 6.32414103e-01 -1.97755206e+00 5.65273941e-01
1.28128946e+00 1.18837476e+00 1.49560943e-01 3.30893919e-02
-1.85178429e-01 1.07746994e+00 -3.03115487e-01 -5.83237052e-01
2.13640463e-02 -1.25740379e-01 -1.28944290e+00 -1.07447974e-01
-6.23979568e-01 -2.67855763e-01 3.15185368e-01 5.21471500e-01
1.51255101e-01 4.08937693e-01 9.18786108e-01 -1.16744280e+00
-5.15001476e-01 7.58718669e-01 -4.61383015e-01 -1.20211095e-01
7.77202249e-01 -5.85845768e-01 1.07381773e+00 -7.58851826e-01
6.00631773e-01 1.26494908e+00 3.73375624e-01 3.35846245e-01
-8.35559785e-01 -7.71830454e-02 5.11850059e-01 7.76381910e-01
-1.14901519e+00 -2.09602401e-01 5.61241567e-01 -2.55885422e-01
9.19040203e-01 6.19326293e-01 7.24710703e-01 5.30664697e-02
-1.37128472e-01 9.95837271e-01 1.48792911e+00 -8.89454901e-01
8.37775588e-01 4.86994207e-01 7.04259038e-01 1.58312321e-01
8.70987892e-01 -3.92539576e-02 -6.54524267e-02 -3.53179067e-01
-4.36895601e-02 1.16123132e-01 2.14250237e-01 -4.79196668e-01
-5.51592112e-01 1.03385592e+00 1.05882742e-01 4.80127901e-01
-5.97016811e-01 -6.52017236e-01 1.11185439e-01 5.68205357e-01
1.03776410e-01 5.83362758e-01 -3.66760373e-01 1.58674181e-01
-8.14725399e-01 6.58639491e-01 1.08649826e+00 4.45623457e-01
3.90674561e-01 -1.13891087e-01 -8.70868713e-02 6.19372964e-01
5.88857114e-01 2.31641620e-01 1.19636446e-01 -1.03196943e+00
6.02577925e-02 1.09288788e+00 6.21840835e-01 -1.26389074e+00
-4.30599600e-01 -2.46410713e-01 -3.68866473e-01 8.13510537e-01
4.76030022e-01 -6.22255392e-02 -5.25764525e-01 1.02700543e+00
2.48304456e-01 -1.02283704e+00 1.53818905e-01 8.28282058e-01
6.64964378e-01 3.25846881e-01 1.41059617e-02 -6.00320041e-01
1.25018048e+00 -1.94816783e-01 -9.08171058e-01 2.67232865e-01
3.08990836e-01 -4.22662586e-01 6.93911195e-01 1.14539433e+00
-1.05819404e+00 -1.77080259e-01 -1.14864051e+00 9.46868286e-02
-6.72336042e-01 -1.77462101e-01 1.13820481e+00 7.64473915e-01
-8.08144748e-01 6.19595945e-01 -1.69160783e-01 -5.09157181e-01
2.55250752e-01 6.10804200e-01 4.20199633e-02 -6.88431323e-01
-1.25626600e+00 1.34788895e+00 2.03565404e-01 -2.43230797e-02
-1.76583409e-01 -3.33539784e-01 -6.12472951e-01 -9.01565105e-02
5.91309369e-01 -6.16079509e-01 9.26080406e-01 -4.35739338e-01
-1.35234666e+00 9.90618587e-01 -3.57323512e-02 -6.05789185e-01
5.26050210e-01 7.50921145e-02 -1.09026992e+00 1.50349485e-02
1.71525523e-01 8.68342724e-03 1.01422854e-01 -1.25265872e+00
-1.14180660e+00 -5.46832800e-01 4.44229394e-01 1.11850634e-01
4.63660300e-01 5.23078144e-01 5.89326262e-01 -4.52058673e-01
2.43957236e-01 -1.82493508e-01 -5.05617738e-01 -3.40079725e-01
-2.02717595e-02 -5.23530364e-01 1.47825301e-01 -2.48490542e-01
1.80895138e+00 -1.61864138e+00 -2.67616242e-01 9.82132673e-01
1.95010170e-01 2.00924471e-01 6.68330312e-01 8.59403431e-01
1.34791657e-01 -3.81267965e-02 -3.28908980e-01 5.32027066e-01
3.09276462e-01 3.00757229e-01 -6.74915090e-02 1.85980201e-01
-1.90948471e-01 4.11428630e-01 -8.47925425e-01 -5.36909223e-01
4.79022592e-01 7.01195598e-02 -5.72334677e-02 -1.95685610e-01
4.86640558e-02 -2.21466497e-01 -5.90057254e-01 9.84041214e-01
5.93695760e-01 -8.13488066e-02 5.98607242e-01 1.75934330e-01
-5.36400676e-01 2.29117140e-01 -1.66570771e+00 9.63223219e-01
-5.19165471e-02 5.45951314e-02 3.19158435e-02 -1.29756331e+00
1.08101714e+00 4.84225273e-01 6.47504389e-01 -6.52064562e-01
3.48628283e-01 6.50208712e-01 7.00770840e-02 -5.47851562e-01
2.39221722e-01 -2.83169478e-01 -1.95419416e-01 7.08197355e-01
-5.16836107e-01 1.18709825e-01 5.23409069e-01 1.22214101e-01
7.65210807e-01 -3.32499057e-01 1.21447003e+00 -7.48925388e-01
8.97889197e-01 6.89955890e-01 5.00793040e-01 5.50734282e-01
1.63767308e-01 1.16328582e-01 1.50047705e-01 -8.96859586e-01
-3.19158524e-01 -7.62312829e-01 -3.52871031e-01 1.02536821e+00
1.17119990e-01 -1.24998234e-01 -3.05560380e-01 -2.18594715e-01
3.45604658e-01 1.09142923e+00 -7.29321957e-01 3.60862464e-01
-2.34149888e-01 -8.40300977e-01 -2.37111032e-01 2.03612313e-01
3.22879821e-01 -9.00914311e-01 -8.30127954e-01 5.12593329e-01
-1.25611071e-02 -4.65067655e-01 5.62199891e-01 2.82556951e-01
-9.13940430e-01 -1.47197378e+00 -3.79603624e-01 -4.89740252e-01
3.99719149e-01 3.70445162e-01 1.18584359e+00 2.24774927e-02
-1.85007825e-01 1.32125989e-01 -7.05818892e-01 -7.73872972e-01
-2.81136215e-01 -5.45540631e-01 4.14633602e-01 -3.78857292e-02
7.61699319e-01 -6.97349310e-01 -5.48663259e-01 4.65563565e-01
-5.57783842e-01 -2.63821304e-01 4.85346168e-01 1.63053468e-01
5.68221629e-01 3.28021795e-01 9.29789186e-01 -1.20794451e+00
1.20357680e+00 -4.80725884e-01 -5.40165842e-01 6.47929490e-01
-1.43920851e+00 -1.51778487e-02 2.62351960e-01 3.18862200e-01
-1.22819364e+00 -2.99352109e-01 4.61326018e-02 5.39939165e-01
-4.41858917e-01 8.25026512e-01 -4.03309226e-01 -1.70524731e-01
6.24342918e-01 -3.80737901e-01 -2.66885329e-02 -7.66854763e-01
2.50719517e-01 7.58797824e-01 3.03025097e-01 -6.18425846e-01
2.36978292e-01 6.28697932e-01 1.82011291e-01 -2.08352715e-01
-4.35214996e-01 -5.36414564e-01 -4.39067245e-01 -3.88963521e-01
4.38119024e-01 -3.18868399e-01 -1.12938035e+00 3.21457461e-02
-5.71548581e-01 2.84308046e-01 -5.86837947e-01 6.80497110e-01
-5.41286707e-01 -1.51034156e-02 -7.59635270e-02 -1.19123685e+00
-3.53437424e-01 -7.61378706e-01 -5.20852506e-01 1.95323259e-01
-6.71937585e-01 -7.66395509e-01 8.60627275e-03 4.47916776e-01
2.95402855e-01 8.11245501e-01 1.42576766e+00 -1.02185142e+00
9.95750427e-02 -6.37581110e-01 -2.78440211e-02 -1.54515253e-02
1.81533858e-01 -2.36294512e-03 -6.91372454e-01 -2.46961191e-02
2.02941030e-01 -9.14543867e-02 4.03620988e-01 5.10604322e-01
3.85542363e-01 -2.81033009e-01 -3.45581323e-01 -2.35416070e-01
1.60268176e+00 7.69074857e-01 4.14853781e-01 6.18134916e-01
-1.29158452e-01 1.08661628e+00 1.26983202e+00 6.93261445e-01
7.19707370e-01 5.30266881e-01 3.71442974e-01 2.25593850e-01
1.77710384e-01 2.61003077e-01 -1.43739954e-01 5.06952167e-01
-7.85512030e-01 -5.56647219e-02 -8.80433321e-01 6.08498454e-01
-1.97430146e+00 -9.44959342e-01 -3.69068116e-01 2.17380214e+00
2.78654844e-01 9.26037878e-02 5.65087795e-01 9.29442346e-01
6.27930105e-01 -4.55739915e-01 -3.04572016e-01 -1.31679916e+00
-3.49724859e-01 1.36355311e-01 3.67849283e-02 6.20920420e-01
-6.63553774e-01 1.30642608e-01 6.91233683e+00 6.46484256e-01
-3.74982476e-01 -2.63872325e-01 4.92943674e-01 5.04435189e-02
-6.03035569e-01 -1.12038493e-01 -2.78175712e-01 2.38903493e-01
6.30207002e-01 -5.00444412e-01 2.80530751e-01 8.35219741e-01
3.68850291e-01 -5.76484144e-01 -1.08544230e+00 4.69689876e-01
-3.44439477e-01 -1.42625201e+00 3.51369113e-01 1.63595140e-01
8.04585993e-01 -6.28811359e-01 -2.45158255e-01 1.49934947e-01
7.71053255e-01 -1.05479443e+00 7.18713582e-01 4.30289716e-01
6.15325570e-01 -1.20348394e+00 1.13866448e+00 2.76246071e-01
-1.04588544e+00 -4.96668875e-01 -3.20661813e-01 -8.60901058e-01
2.64216922e-02 8.18357170e-01 -4.27731425e-01 1.13780332e+00
6.99055612e-01 4.01573300e-01 -1.69771522e-01 1.02572906e+00
6.53175032e-03 9.82185751e-02 -2.59028345e-01 -2.34464929e-01
4.12428260e-01 -3.07373524e-01 3.68480384e-01 8.97475064e-01
5.15618175e-02 8.22932720e-01 -1.30170584e-01 5.10363102e-01
4.71908182e-01 4.19040561e-01 -3.53496432e-01 4.89300966e-01
8.03267896e-01 6.79965794e-01 -6.89891279e-01 -1.76958650e-01
-5.45508802e-01 5.97593486e-02 -1.06289767e-01 1.17553107e-01
-1.37249939e-02 -5.43088019e-01 6.29744768e-01 4.84930158e-01
5.87705821e-02 4.90348041e-01 -7.77403772e-01 -6.11876011e-01
-8.53427351e-02 -9.37192142e-01 1.10026324e+00 -3.27760577e-01
-1.22881234e+00 4.62672621e-01 5.48049927e-01 -1.38554144e+00
-6.16600215e-01 -5.85392952e-01 -6.12615585e-01 8.41396213e-01
-1.30394459e+00 -7.90371835e-01 1.15030408e-01 7.52281606e-01
3.00515257e-02 -2.85336763e-01 9.78882194e-01 -2.67556980e-02
-1.10299967e-01 2.65412182e-01 3.76752526e-01 -5.42951703e-01
2.61846423e-01 -1.38853312e+00 -1.77218139e-01 6.17988884e-01
-6.05625987e-01 6.10289276e-01 1.11423910e+00 -4.32471812e-01
-9.84452486e-01 -2.73353606e-01 1.26658726e+00 -1.57787874e-01
2.39301503e-01 3.13976109e-01 -7.34007239e-01 5.26212044e-02
9.45581868e-03 -6.18635774e-01 1.13314295e+00 2.32855737e-01
1.43821046e-01 -7.13382423e-01 -1.91624451e+00 1.32989585e-01
4.59590793e-01 1.12348549e-01 -1.09043896e+00 -2.15742856e-01
1.56703457e-01 1.71507075e-01 -8.99992764e-01 4.11854774e-01
9.93945539e-01 -1.43832541e+00 9.03784990e-01 -5.82792044e-01
-4.37246412e-02 -4.81667817e-01 -4.02395487e-01 -8.34570110e-01
-6.36729658e-01 -4.47614104e-01 -1.84019133e-01 9.19920146e-01
5.92805982e-01 -6.18647695e-01 4.47572440e-01 1.18423808e+00
7.26836780e-03 -1.19147086e+00 -8.54100287e-01 -4.47550625e-01
-1.40956596e-01 -4.89902705e-01 1.09703124e+00 1.00291944e+00
6.54268026e-01 -1.41270950e-01 -2.75148928e-01 -2.87131369e-01
8.91603470e-01 6.10360384e-01 -6.20408505e-02 -2.04785895e+00
8.97759721e-02 -6.14117086e-01 -2.30686679e-01 -1.72313437e-01
-6.50403559e-01 -4.94751930e-01 -4.42302912e-01 -2.09605312e+00
-1.17988519e-01 -5.64101517e-01 -8.12586904e-01 1.23233646e-01
3.25281113e-01 -3.83975841e-02 5.27632311e-02 2.80286521e-01
-5.41166842e-01 -3.63162130e-01 1.05013132e+00 2.04096019e-01
-3.56673807e-01 7.01428533e-01 -1.41482925e+00 9.29904044e-01
8.33676636e-01 -4.90627855e-01 -7.16926754e-01 -1.77757125e-02
9.76421058e-01 6.11071438e-02 -1.52295008e-01 -8.21909726e-01
1.73223689e-01 -6.29267156e-01 2.64268637e-01 -8.19424212e-01
-5.94016947e-02 -1.11227810e+00 5.13240337e-01 5.65869808e-01
-3.57856959e-01 2.16554720e-02 -2.35655069e-01 4.35143799e-01
-2.59780973e-01 -4.39981192e-01 5.56715429e-01 -3.43853682e-01
-8.98316801e-01 -1.14688598e-01 -7.57157922e-01 -3.46188784e-01
1.17017221e+00 -8.11696589e-01 6.37840107e-02 -2.18151689e-01
-9.37883556e-01 5.25510311e-01 4.58676875e-01 -9.03288051e-02
7.84447074e-01 -1.07409811e+00 -7.84223378e-01 -3.27727973e-01
1.76964030e-01 -1.28533155e-01 3.25658977e-01 7.76721478e-01
-6.75167918e-01 8.92064452e-01 -6.89009786e-01 2.63477355e-01
-9.26229417e-01 9.03171301e-01 -6.64504170e-02 -5.18404365e-01
-3.10632139e-01 5.11028171e-01 -2.78254271e-01 -4.41280305e-02
2.60045439e-01 -3.51389319e-01 -1.19153440e+00 3.88131171e-01
8.75372648e-01 1.19264877e+00 2.99174219e-01 -3.30171824e-01
-9.40239489e-01 4.16995883e-01 -6.81938678e-02 -3.46731730e-02
1.51785362e+00 -5.70287228e-01 -4.36299026e-01 5.24560213e-01
2.45532855e-01 -7.57432729e-02 -2.31767848e-01 -1.92474306e-01
4.94288921e-01 -2.07280725e-01 1.10520609e-02 -1.46057451e+00
-4.35545415e-01 5.00913739e-01 3.26498061e-01 5.47898650e-01
1.33642530e+00 1.06438035e-02 1.55024663e-01 6.66102231e-01
7.73845792e-01 -1.30154812e+00 -7.86610305e-01 -5.48406616e-02
8.96180928e-01 -1.18223774e+00 5.45540869e-01 -3.67308080e-01
-9.60713744e-01 1.18739176e+00 -1.04117885e-01 -2.69755274e-02
9.73906934e-01 -3.49449031e-02 3.64302471e-02 -2.93713808e-01
-7.25511551e-01 -2.86281615e-01 1.73319101e-01 1.06915545e+00
1.94593146e-01 5.55093408e-01 -9.92917836e-01 1.44615805e+00
-1.00044142e-02 3.41600060e-01 4.60089236e-01 1.00258446e+00
-8.40519011e-01 -1.12463760e+00 -4.77834463e-01 8.00116539e-01
-5.65218508e-01 1.89153999e-01 -5.06870031e-01 1.04891682e+00
3.32019866e-01 1.66253376e+00 -4.80214506e-01 -5.27675390e-01
6.59004927e-01 -2.48649344e-01 1.68208823e-01 -3.74491930e-01
-6.36982381e-01 -3.78461003e-01 4.31389809e-01 -3.92269701e-01
-8.44478488e-01 -9.75464582e-01 -1.38627768e+00 -8.75502706e-01
-2.57970002e-02 7.99753964e-01 4.10871446e-01 1.16182697e+00
-5.58317155e-02 8.96803066e-02 6.97615206e-01 -1.88060358e-01
-2.02977091e-01 -7.50296235e-01 -1.29014730e+00 -8.93671438e-02
1.52170449e-01 -7.59352446e-01 -1.65251300e-01 -3.89548957e-01] | [8.438192367553711, 5.856001377105713] |
627462fa-0f97-4e40-bf7d-620c71521526 | weighted-concordance-index-loss-based | 2206.11458 | null | https://arxiv.org/abs/2206.11458v1 | https://arxiv.org/pdf/2206.11458v1.pdf | Weighted Concordance Index Loss-based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy | Radiation encephalopathy (REP) is the most common complication for nasopharyngeal carcinoma (NPC) radiotherapy. It is highly desirable to assist clinicians in optimizing the NPC radiotherapy regimen to reduce radiotherapy-induced temporal lobe injury (RTLI) according to the probability of REP onset. To the best of our knowledge, it is the first exploration of predicting radiotherapy-induced REP by jointly exploiting image and non-image data in NPC radiotherapy regimen. We cast REP prediction as a survival analysis task and evaluate the predictive accuracy in terms of the concordance index (CI). We design a deep multimodal survival network (MSN) with two feature extractors to learn discriminative features from multimodal data. One feature extractor imposes feature selection on non-image data, and the other learns visual features from images. Because the priorly balanced CI (BCI) loss function directly maximizing the CI is sensitive to uneven sampling per batch. Hence, we propose a novel weighted CI (WCI) loss function to leverage all REP samples effectively by assigning their different weights with a dual average operation. We further introduce a temperature hyper-parameter for our WCI to sharpen the risk difference of sample pairs to help model convergence. We extensively evaluate our WCI on a private dataset to demonstrate its favourability against its counterparts. The experimental results also show multimodal data of NPC radiotherapy can bring more gains for REP risk prediction. | ['Jiang Liu', 'Fang-Yun Xie', 'Hongbo Liu', 'Jingwen Wang', 'Jiajian Li', 'Pu-Yun OuYang', 'Anwei Li', 'Jiansheng Fang'] | 2022-06-23 | null | null | null | null | ['survival-analysis'] | ['miscellaneous'] | [ 1.96899265e-01 -3.44979674e-01 -5.31995356e-01 -2.95884132e-01
-1.31808925e+00 -4.20075059e-01 6.64604306e-01 -1.50487527e-01
-7.45833278e-01 6.50520325e-01 7.84884155e-01 -5.43684065e-01
-4.66247231e-01 -6.07821822e-01 -5.67531526e-01 -1.39718866e+00
9.33283865e-02 2.47012660e-01 -8.94233584e-02 3.35435346e-02
1.27085209e-01 8.16176891e-01 -8.16385448e-01 4.06036496e-01
9.14488256e-01 1.07319629e+00 5.53436816e-01 5.25688469e-01
2.74701566e-01 6.53570473e-01 -3.82803679e-01 -1.68572575e-01
3.87449056e-01 -1.79834962e-01 -6.64289534e-01 -3.10622156e-01
-1.24251463e-01 -2.81410307e-01 -9.05102432e-01 7.79821038e-01
1.01555645e+00 1.35028496e-01 1.18088198e+00 -1.26325905e+00
-5.09265721e-01 2.00751230e-01 -6.78472757e-01 5.13986707e-01
-5.26926666e-02 4.48414832e-01 7.15028524e-01 -7.82426417e-01
4.31671381e-01 7.76679993e-01 6.43340230e-01 5.17136335e-01
-1.09522450e+00 -6.27860546e-01 -1.77017182e-01 3.95636499e-01
-1.35923803e+00 -1.12890668e-01 5.39825618e-01 -1.85459346e-01
6.30421221e-01 5.53399086e-01 4.43528622e-01 1.33034182e+00
4.83371317e-01 9.61019278e-01 1.14573467e+00 -9.55678970e-02
1.86632797e-01 -2.85161100e-02 -1.05836011e-01 4.56923068e-01
-2.85048693e-01 3.33908916e-01 -1.86401322e-01 -1.45734876e-01
6.83515847e-01 4.65703458e-01 -8.82331610e-01 -1.20068803e-01
-9.94437695e-01 8.97923589e-01 9.18821275e-01 2.06741393e-01
-2.60014474e-01 -1.43150419e-01 4.76931155e-01 3.43157277e-02
3.07406813e-01 -1.40400141e-01 -3.85786563e-01 1.27042577e-01
-6.75808311e-01 -1.93075135e-01 4.63594735e-01 7.46174634e-01
-5.96353486e-02 -3.43552917e-01 -8.02893758e-01 1.05589664e+00
9.50169787e-02 4.06446636e-01 9.53917563e-01 -3.56480837e-01
5.04814804e-01 5.31091750e-01 -3.60010386e-01 -3.03150982e-01
-9.25733447e-01 -6.13606691e-01 -1.24166656e+00 -9.20645297e-02
3.19620579e-01 2.08457261e-02 -1.15563703e+00 1.61149764e+00
1.79907888e-01 -1.04564372e-02 -1.63285553e-01 1.09403217e+00
1.03280044e+00 4.76421744e-01 2.37780452e-01 -3.29824537e-01
1.53185415e+00 -8.08565080e-01 -3.75432372e-01 2.61684686e-01
9.54284012e-01 -5.08459687e-01 1.23289287e+00 9.13711935e-02
-6.89388216e-01 2.38723621e-01 -6.18750513e-01 -9.16626304e-02
-1.26615107e-01 4.11850989e-01 4.81348872e-01 6.20969474e-01
-9.81231570e-01 2.21281096e-01 -8.27252269e-01 -2.90617347e-01
7.39525795e-01 7.71038115e-01 -5.46943069e-01 -3.86897951e-01
-9.74151850e-01 1.08049142e+00 2.82305568e-01 8.97563621e-02
-8.86652529e-01 -1.07606864e+00 -6.06199265e-01 9.45651904e-02
3.48263234e-01 -9.80679393e-01 9.23910022e-01 -7.18115032e-01
-1.37708080e+00 6.11368537e-01 -2.99972475e-01 2.11736583e-03
4.27172273e-01 4.06555861e-01 -1.50280505e-01 1.31558999e-01
-2.53389269e-01 5.28739154e-01 4.30627525e-01 -1.24917817e+00
-5.43872714e-01 -6.22697771e-01 -2.91840881e-01 3.23089123e-01
-6.56832039e-01 7.82432556e-02 -4.50701624e-01 -7.94638813e-01
-2.07853355e-02 -8.28014672e-01 -1.41532615e-01 1.88669525e-02
-4.41114187e-01 -5.19972563e-01 6.37070894e-01 -7.74320424e-01
1.03420079e+00 -2.06976366e+00 2.56369799e-01 3.27189952e-01
2.57859588e-01 -1.25771007e-02 -4.39075887e-01 8.43088329e-03
-2.27783412e-01 9.53451693e-02 -2.00799987e-01 -4.15789455e-01
-1.30896047e-01 3.30288470e-01 -7.77587444e-02 9.23085213e-01
-4.21259599e-03 1.16755438e+00 -7.36340344e-01 -5.13138890e-01
2.63071875e-03 7.43515670e-01 -4.06631291e-01 2.51543254e-01
2.46863544e-01 5.83275914e-01 -4.36067849e-01 7.01710880e-01
7.38869071e-01 -2.10429579e-01 1.17164971e-02 -5.51777899e-01
6.78072274e-02 1.03960223e-01 -4.35483634e-01 1.41583395e+00
-4.79742765e-01 4.31460470e-01 -7.62799606e-02 -7.54919350e-01
4.84065622e-01 3.80566627e-01 6.36513352e-01 -1.07589352e+00
4.44606632e-01 -2.16890536e-02 -1.27145141e-01 -5.77127695e-01
8.85960534e-02 -4.92813170e-01 2.51732290e-01 3.40153277e-01
-1.47949159e-01 9.27952528e-02 -2.22106218e-01 8.68317410e-02
1.17182446e+00 -3.82040471e-01 5.82691133e-02 -2.33444080e-01
5.20501316e-01 -3.22571397e-01 5.64157724e-01 6.80833280e-01
-2.91644961e-01 8.84948432e-01 6.32953405e-01 -2.20247343e-01
-9.63830352e-01 -1.12544918e+00 -5.81782758e-01 9.59779143e-01
1.47541426e-02 1.34404272e-01 -3.42396170e-01 -1.02593029e+00
-1.99878469e-01 6.69556618e-01 -6.89406693e-01 -2.80128688e-01
-5.50258338e-01 -1.51103628e+00 3.83763969e-01 9.01395380e-01
7.43623525e-02 -6.99624777e-01 3.58457752e-02 -3.22071373e-01
-1.49350241e-01 -6.88206553e-01 -8.20761085e-01 4.37017709e-01
-7.37452924e-01 -1.05311668e+00 -1.22678161e+00 -7.25766242e-01
9.83803689e-01 3.58948797e-01 7.00022876e-01 4.76275906e-02
-3.47560763e-01 4.59627360e-01 -3.72085571e-01 -1.46838306e-02
-6.66971356e-02 2.73538709e-01 -8.59187990e-02 -2.64038265e-01
8.91495422e-02 -3.16248000e-01 -1.09850025e+00 5.13412178e-01
-1.18000686e+00 6.02125265e-02 7.51780450e-01 1.04616141e+00
6.81121707e-01 7.45199472e-02 3.18716437e-01 -2.95738697e-01
4.30575669e-01 -7.40561426e-01 -3.51757199e-01 4.06875104e-01
-4.67061818e-01 -3.20299566e-02 5.89393735e-01 -4.05971617e-01
-1.05176425e+00 -1.16360791e-01 -1.01317041e-01 -3.21688652e-01
9.72725600e-02 4.59231764e-01 -9.51070637e-02 -3.12427104e-01
2.47299910e-01 3.00320208e-01 -3.75857316e-02 -1.63279951e-01
1.10721841e-01 6.78065419e-01 3.85587573e-01 -4.04263735e-01
5.66243351e-01 5.26754320e-01 3.85061145e-01 -4.33370024e-01
-7.84553647e-01 -6.24263406e-01 -2.57262170e-01 -6.16591722e-02
7.21038818e-01 -9.19103980e-01 -1.17583144e+00 3.31792593e-01
-7.97317564e-01 -4.23158079e-01 -1.81259997e-02 6.60429001e-01
-4.31849688e-01 3.18534195e-01 -7.74644256e-01 -5.76311529e-01
-6.57931447e-01 -1.44551539e+00 9.96439219e-01 2.48604298e-01
2.80826092e-01 -9.84146416e-01 1.80088639e-01 4.45362836e-01
4.37480092e-01 -2.19224580e-02 1.08581829e+00 -7.90681660e-01
-4.35999811e-01 -1.71227753e-01 -7.96428084e-01 2.82535385e-02
9.20311064e-02 -2.96093404e-01 -1.01598477e+00 -6.22796416e-01
1.80415094e-01 -3.06796193e-01 1.12465322e+00 7.04569399e-01
1.63691378e+00 -2.13870183e-01 -4.26978648e-01 9.32905614e-01
1.51341712e+00 3.09563696e-01 8.82790089e-01 6.01270318e-01
8.60021591e-01 2.78938770e-01 5.69038168e-02 3.42090487e-01
5.57125449e-01 7.38263607e-01 5.28036952e-01 -1.35917559e-01
-1.25404060e-01 9.53899994e-02 3.36099952e-01 5.33461213e-01
-1.65640026e-01 -5.50564826e-01 -9.66182947e-01 3.74662042e-01
-1.52334511e+00 -7.18252361e-01 1.27593065e-02 2.16077948e+00
7.68924713e-01 -2.52462268e-01 2.77589285e-03 -8.89560655e-02
5.30618608e-01 -4.18111123e-02 -4.00577933e-01 1.57842129e-01
-2.43919790e-01 8.94688964e-02 7.72053659e-01 2.52265602e-01
-8.84280920e-01 1.76506296e-01 5.66798115e+00 1.40655565e+00
-1.11394012e+00 3.76848936e-01 9.34515357e-01 -5.56132615e-01
-4.94973242e-01 -2.64930099e-01 -6.90485477e-01 5.43978393e-01
7.45177329e-01 1.29701421e-01 3.86042297e-01 3.84878784e-01
4.93179321e-01 -1.47943363e-01 -8.83806765e-01 8.66524577e-01
1.64438620e-01 -1.18888855e+00 3.48350666e-02 3.29278350e-01
5.49215972e-01 3.51596534e-01 2.61500776e-01 2.74655253e-01
7.23362043e-02 -1.40156579e+00 2.83555239e-01 7.82391489e-01
7.84456789e-01 -9.46349204e-01 1.06335855e+00 2.75426894e-01
-1.02004397e+00 -4.18892831e-01 -1.93776488e-01 7.24856317e-01
1.09582409e-01 3.59483242e-01 -9.73173618e-01 7.26906419e-01
5.03763318e-01 4.42439497e-01 -5.19210100e-01 1.33509636e+00
7.54150599e-02 4.79568273e-01 -3.54556054e-01 1.19462319e-01
1.27395988e-01 -5.86203001e-02 4.22500044e-01 1.00089705e+00
4.63415176e-01 4.60202873e-01 -1.85714364e-02 6.02808714e-01
-1.47382125e-01 9.80559215e-02 -1.50443941e-01 2.33572334e-01
2.57228106e-01 1.31008947e+00 -5.87820590e-01 1.97230503e-01
-5.06134748e-01 7.35667884e-01 3.89214188e-01 2.66489089e-01
-7.29033411e-01 1.34796441e-01 1.24781772e-01 -1.32177211e-02
1.86193794e-01 8.89048800e-02 -5.55303037e-01 -9.88279700e-01
-1.67621389e-01 -5.22635043e-01 8.30212533e-01 -8.44894052e-01
-1.64652073e+00 5.91573715e-01 -2.18986452e-01 -1.23392618e+00
4.45368797e-01 -7.62040257e-01 -8.80546451e-01 1.00378978e+00
-1.78981149e+00 -1.33464468e+00 -3.32725316e-01 7.46855378e-01
3.28480363e-01 -1.03257656e-01 6.71946287e-01 3.29400301e-01
-1.11306107e+00 1.03068471e+00 3.32599044e-01 7.34756812e-02
5.90821326e-01 -1.11461949e+00 -4.81580257e-01 3.76420975e-01
-6.91944838e-01 3.08848053e-01 2.95623630e-01 -4.91004080e-01
-1.53237057e+00 -9.94821906e-01 5.23594022e-01 -4.17915374e-01
6.11428440e-01 1.44137386e-02 -7.79738605e-01 4.07148212e-01
3.00468765e-02 5.90296090e-02 8.97582829e-01 -3.62333417e-01
-1.68532789e-01 -1.31811887e-01 -1.31434774e+00 8.10478866e-01
7.62692511e-01 -4.26951528e-01 -1.32940292e-01 5.97300172e-01
7.54535854e-01 -3.23100239e-01 -1.35312164e+00 7.55505502e-01
3.05219263e-01 -6.32777572e-01 1.17688704e+00 -4.46829170e-01
3.95104378e-01 -2.02341497e-01 -2.25526169e-01 -1.18674529e+00
-4.60459620e-01 -1.02239378e-01 1.58094704e-01 1.00053024e+00
3.36964875e-01 -5.44536114e-01 8.23624849e-01 9.37634706e-01
-2.76812136e-01 -1.28630221e+00 -1.23426223e+00 -6.28380835e-01
2.99391776e-01 -3.64757538e-01 4.93185133e-01 6.09870613e-01
-7.70010203e-02 -2.33506829e-01 -1.29881606e-01 3.16127688e-01
4.13664430e-01 -2.23901704e-01 2.01245844e-01 -5.68954170e-01
-1.67789862e-01 -8.00455332e-01 -2.46445417e-01 -5.79209328e-01
1.13908157e-01 -1.32016182e+00 -1.33600801e-01 -1.42946863e+00
1.03826439e+00 -5.24836898e-01 -6.95031464e-01 5.68990648e-01
-3.08674037e-01 1.59407869e-01 9.01272297e-02 3.26823235e-01
-3.07323605e-01 1.07615280e+00 1.51317513e+00 -1.67732209e-01
-2.17729375e-01 9.99395922e-02 -5.25021076e-01 4.00817662e-01
7.18850017e-01 -6.80845141e-01 -2.83604413e-01 -1.95693851e-01
8.57999772e-02 2.74707645e-01 5.89870989e-01 -3.80053580e-01
5.83896339e-01 -3.89641464e-01 6.94292486e-01 -7.83802688e-01
2.00658187e-01 -9.29933786e-01 4.84638754e-03 3.46049964e-01
-1.80798754e-01 -7.45051056e-02 1.46810099e-01 4.87559527e-01
-9.73421987e-03 -2.36565277e-01 7.18111455e-01 2.05872878e-01
-2.09812477e-01 7.90797591e-01 -2.33206034e-01 -1.09628081e-01
9.01949823e-01 -1.58157051e-01 -6.18204594e-01 -1.68859199e-01
-3.38641077e-01 5.10382414e-01 2.69009501e-01 1.27270401e-01
7.76087642e-01 -1.53837371e+00 -6.54562891e-01 1.46250904e-01
1.82181776e-01 7.53131360e-02 5.40632308e-01 1.43881655e+00
-1.52863517e-01 3.98260325e-01 1.32312477e-01 -6.29753888e-01
-1.20301402e+00 5.02511561e-01 4.98145193e-01 -6.33038640e-01
-7.98433185e-01 8.80255044e-01 6.10971034e-01 -4.68582422e-01
5.20475090e-01 1.19654067e-01 -4.07530695e-01 -6.15865886e-02
5.60278594e-01 3.26253206e-01 2.32080445e-01 -4.24180865e-01
-2.69100994e-01 3.89130920e-01 -3.61278445e-01 4.71940823e-02
1.49611712e+00 -4.71672602e-02 -1.75715685e-01 -2.28695586e-01
1.57786775e+00 -4.97390687e-01 -1.28674376e+00 -2.30841413e-01
-2.23793745e-01 -4.16743070e-01 5.65099001e-01 -1.06266999e+00
-1.45225739e+00 4.76584524e-01 9.58895624e-01 -3.93520534e-01
1.57874417e+00 1.25732452e-01 9.61387277e-01 8.97197649e-02
3.82399466e-03 -7.23750472e-01 6.15785830e-02 4.85501707e-01
1.00316036e+00 -1.28827596e+00 5.46427118e-03 -6.46820068e-02
-8.16912949e-01 1.11588669e+00 2.95048773e-01 2.34360248e-01
5.54336131e-01 3.22858930e-01 -1.45743072e-01 -2.15975285e-01
-5.99523604e-01 -5.80008812e-02 6.45151138e-01 3.88458461e-01
1.95306078e-01 1.69989288e-01 -4.36762571e-01 9.41382527e-01
1.53641095e-02 1.69316866e-02 1.63776025e-01 7.81995356e-01
-1.41555443e-01 -1.02042699e+00 -4.18371081e-01 7.76899040e-01
-3.87969404e-01 -2.43403152e-01 1.02606088e-01 6.62067890e-01
-1.66492149e-01 5.41480243e-01 -7.55503550e-02 -2.21932560e-01
3.31279606e-01 -2.50981599e-01 4.60772544e-01 -5.29740192e-02
-6.42068148e-01 1.01832062e-01 -2.45793566e-01 -3.09139282e-01
-2.45139942e-01 -4.73257959e-01 -1.28928792e+00 -4.24334913e-01
-4.72750574e-01 -3.45778644e-01 7.40170538e-01 1.13989699e+00
4.41380925e-02 6.00664973e-01 1.06887996e+00 -9.39547002e-01
-6.12689197e-01 -6.77317142e-01 -6.07695341e-01 1.61198348e-01
2.86606938e-01 -6.33442938e-01 -6.31048679e-01 -5.42213619e-01] | [14.9246244430542, -2.680715322494507] |
275de59e-c2be-4f06-8045-177f761260c4 | siamese-infrared-and-visible-light-fusion | 2103.07302 | null | https://arxiv.org/abs/2103.07302v1 | https://arxiv.org/pdf/2103.07302v1.pdf | Siamese Infrared and Visible Light Fusion Network for RGB-T Tracking | Due to the different photosensitive properties of infrared and visible light, the registered RGB-T image pairs shot in the same scene exhibit quite different characteristics. This paper proposes a siamese infrared and visible light fusion Network (SiamIVFN) for RBG-T image-based tracking. SiamIVFN contains two main subnetworks: a complementary-feature-fusion network (CFFN) and a contribution-aggregation network (CAN). CFFN utilizes a two-stream multilayer convolutional structure whose filters for each layer are partially coupled to fuse the features extracted from infrared images and visible light images. CFFN is a feature-level fusion network, which can cope with the misalignment of the RGB-T image pairs. Through adaptively calculating the contributions of infrared and visible light features obtained from CFFN, CAN makes the tracker robust under various light conditions. Experiments on two RGB-T tracking benchmark datasets demonstrate that the proposed SiamIVFN has achieved state-of-the-art performance. The tracking speed of SiamIVFN is 147.6FPS, the current fastest RGB-T fusion tracker. | ['Wang Bofan', 'Zhuang Yi', 'Hu Zhengwei', 'Zhao Haitao', 'Peng Jingchao'] | 2021-03-12 | null | null | null | null | ['rgb-t-tracking'] | ['computer-vision'] | [-1.21387601e-01 -6.09261215e-01 -5.51089644e-02 -1.64654240e-01
-3.66975963e-01 -4.91283506e-01 5.69113553e-01 -6.04449928e-01
-5.05886793e-01 1.09656654e-01 -1.62452504e-01 -7.63213411e-02
3.44800770e-01 -4.52350050e-01 -6.76879823e-01 -9.49666619e-01
4.81728494e-01 -3.15781951e-01 3.38547438e-01 -2.48644054e-01
-2.40226462e-01 5.29559851e-01 -1.83895338e+00 1.77865997e-01
6.26410723e-01 1.48338449e+00 1.37046605e-01 8.49546671e-01
-1.38172194e-01 6.61069930e-01 -5.90200067e-01 -2.46721581e-01
8.69446397e-01 -6.89692572e-02 3.99296544e-02 -1.48190990e-01
1.06796896e+00 -2.40440831e-01 -7.16562748e-01 1.03647017e+00
6.38795197e-01 5.63943572e-02 1.83897659e-01 -1.49780893e+00
-8.44193518e-01 -2.59001777e-02 -8.09487879e-01 5.55444479e-01
4.17051852e-01 6.56614542e-01 3.13896090e-01 -9.52850699e-01
2.58941650e-01 1.24340332e+00 7.66396821e-01 7.23810315e-01
-6.73913240e-01 -1.14011002e+00 1.22209862e-01 -1.08020596e-01
-9.71269786e-01 -2.75164068e-01 4.96018499e-01 -2.56743550e-01
8.80593419e-01 2.12737411e-01 9.96081293e-01 7.67904818e-01
7.32792377e-01 7.10964441e-01 9.97226834e-01 -1.97025836e-01
-1.48723409e-01 -1.94638237e-01 -7.37476116e-03 6.80156171e-01
5.13237834e-01 7.43900716e-01 -9.11382973e-01 1.29177734e-01
8.57435942e-01 5.10238886e-01 -4.18809921e-01 4.59952019e-02
-1.25125647e+00 1.39768913e-01 9.69655871e-01 1.59625873e-01
-1.55608475e-01 5.25024354e-01 5.29966727e-02 3.58149976e-01
4.69385862e-01 -4.67013806e-01 -2.41816491e-01 3.38913888e-01
-5.57686388e-01 -1.44709513e-01 2.67214537e-01 1.11010313e+00
7.50463009e-01 1.89138666e-01 -4.55083430e-01 9.26012918e-02
1.05168915e+00 1.28963602e+00 1.59405366e-01 -6.27755284e-01
4.44465250e-01 6.01672530e-01 2.71851093e-01 -6.48159325e-01
-5.03204405e-01 -5.05318820e-01 -6.49452746e-01 6.12851202e-01
5.28187513e-01 -2.70149529e-01 -1.09660447e+00 1.46083450e+00
7.05579519e-01 4.27752107e-01 6.70323223e-02 1.44175148e+00
1.39505351e+00 3.99002254e-01 3.06645371e-02 -1.05234779e-01
1.63065994e+00 -8.44750226e-01 -8.83097172e-01 -2.61160493e-01
2.22526327e-01 -1.08819675e+00 3.96539748e-01 2.00511396e-01
-9.67993617e-01 -1.17392504e+00 -1.08043265e+00 -2.05567583e-01
-3.65069062e-01 3.44229728e-01 6.53441846e-01 8.68571281e-01
-1.18450344e+00 1.42561167e-01 -7.65855610e-01 -2.44943172e-01
2.12591767e-01 5.65566540e-01 -1.37500510e-01 -1.82294816e-01
-1.09913862e+00 5.35861611e-01 7.69929066e-02 7.92129219e-01
-6.35978997e-01 -9.09215331e-01 -5.27497232e-01 -2.65275449e-01
3.51131618e-01 -9.55040276e-01 1.04800200e+00 -7.12565839e-01
-1.56304097e+00 6.47931635e-01 -5.25148176e-02 -1.93206668e-01
2.55671084e-01 -2.37790450e-01 -6.66578054e-01 5.57182264e-03
-1.08382471e-01 4.08099413e-01 1.11167121e+00 -1.04832625e+00
-1.11560738e+00 -5.81044674e-01 -2.32858360e-01 2.44531482e-01
-3.24485786e-02 2.10138664e-01 -7.66795278e-01 -3.29787999e-01
1.35306090e-01 -9.79076803e-01 8.43325034e-02 4.86282408e-01
-1.71591267e-01 -5.43967843e-01 1.22170401e+00 -9.78546590e-02
6.82520390e-01 -2.07899547e+00 -3.94068301e-01 -1.83612138e-01
3.98017049e-01 7.32428491e-01 1.84135151e-03 2.89442744e-02
-1.17287934e-01 -6.01080418e-01 6.07527375e-01 -3.91789407e-01
-1.03950292e-01 -6.14040531e-02 -2.65907854e-01 9.91209745e-01
-2.13636264e-01 1.18788612e+00 -1.07844484e+00 -3.93294603e-01
6.44145131e-01 9.14689422e-01 1.40670195e-01 2.44625986e-01
-1.82688579e-01 8.40807617e-01 -4.48766857e-01 9.40249145e-01
1.01455009e+00 -1.93586260e-01 -3.42912942e-01 -7.03947723e-01
-5.63972175e-01 -3.09779048e-01 -8.97920370e-01 1.91205108e+00
-2.28133917e-01 7.58871198e-01 1.47700325e-01 -1.20404530e-02
1.06106400e+00 2.52440542e-01 7.11349845e-01 -1.07260156e+00
6.44094884e-01 6.56517372e-02 -4.32892472e-01 -2.72828132e-01
5.01289248e-01 7.34284567e-03 1.34217873e-01 3.66713345e-01
-1.80746559e-02 2.58229703e-01 -7.18540922e-02 8.20060074e-02
9.00274932e-01 5.55796325e-01 -3.37326467e-01 1.14553511e-01
7.85497427e-01 -3.66391003e-01 8.53144586e-01 7.76112676e-01
-4.52023894e-01 3.36442918e-01 -5.60439348e-01 -8.35212111e-01
-5.28950095e-01 -1.10333300e+00 8.35337490e-02 1.09386420e+00
8.43296647e-01 -1.34120032e-01 -2.77633846e-01 -5.91376126e-01
2.89218873e-01 1.05737641e-01 -4.45923597e-01 -2.30276078e-01
-5.01639366e-01 -4.53115582e-01 3.35198760e-01 5.96009731e-01
7.67751575e-01 -7.32745111e-01 -1.01914918e+00 -3.12246289e-02
-8.06771219e-02 -1.25000250e+00 -6.71478391e-01 2.47789100e-01
-6.74798548e-01 -1.22811270e+00 -4.38643187e-01 -3.57468724e-01
2.47935519e-01 1.25877810e+00 8.29773903e-01 1.99611530e-01
-5.29610872e-01 7.88322270e-01 -1.85006529e-01 -6.09185398e-01
-9.78656299e-03 -6.01308763e-01 1.16438478e-01 2.72733361e-01
7.34487772e-01 3.83392721e-02 -9.85893130e-01 3.54159504e-01
-8.15293968e-01 -2.45503873e-01 4.62047249e-01 4.04920489e-01
5.32743275e-01 -9.45347771e-02 -3.23682338e-01 -2.97325235e-02
-1.12641037e-01 3.71367373e-02 -1.15735352e+00 4.22789037e-01
-4.37654257e-01 -1.65669590e-01 4.08532888e-01 -2.76842147e-01
-1.35833073e+00 3.64019811e-01 4.45781857e-01 -1.09375966e+00
1.25101075e-01 -4.22797412e-01 6.67033419e-02 -7.78997660e-01
5.29912949e-01 1.80536330e-01 -8.63993987e-02 -3.25240254e-01
4.51169044e-01 6.22552395e-01 9.20617700e-01 -1.76393852e-01
1.30873394e+00 9.49132383e-01 1.19919844e-01 -5.90227246e-01
-1.04416561e+00 -8.34923923e-01 -5.18579543e-01 -8.20594668e-01
1.07203007e+00 -1.37492180e+00 -1.52941597e+00 7.86708236e-01
-1.02003837e+00 1.55582707e-02 -2.58683413e-01 7.99020052e-01
-2.95050919e-01 2.60319918e-01 -7.30563641e-01 -9.63529170e-01
-7.61744857e-01 -9.92398202e-01 1.50243068e+00 1.12322915e+00
8.83376062e-01 -6.87754750e-01 2.07007945e-01 4.54676241e-01
4.52102572e-01 2.04687402e-01 -2.96910882e-01 1.98953032e-01
-9.74685311e-01 -1.65330812e-01 -3.55982572e-01 5.81662431e-02
2.02644035e-01 1.79931447e-01 -1.37455595e+00 -6.37746811e-01
8.86357855e-03 -1.52770057e-01 1.17355466e+00 6.34344459e-01
5.04395545e-01 3.36569399e-01 -5.29204547e-01 1.17498553e+00
1.63518214e+00 1.90731198e-01 5.22402346e-01 3.90245885e-01
1.04113936e+00 -1.64097399e-01 1.03944814e+00 2.53342599e-01
1.63678452e-01 7.73839474e-01 8.46328557e-01 -4.91552711e-01
-4.55768853e-01 2.34836817e-01 7.54546404e-01 3.42164904e-01
-3.33472490e-01 -1.72312394e-01 -4.96546775e-01 -7.10406452e-02
-1.83213902e+00 -1.05986583e+00 -5.23168206e-01 2.18388820e+00
3.95640194e-01 2.21907236e-02 1.07861117e-01 -3.52236152e-01
8.13436270e-01 7.22040832e-02 -7.23165572e-01 2.25072876e-01
-1.41030177e-01 -5.61775528e-02 1.08725286e+00 -8.71877000e-02
-1.16548443e+00 7.32695043e-01 5.64733648e+00 4.82294768e-01
-1.21989191e+00 1.31833076e-01 -1.30655929e-01 -2.19790220e-01
1.35610819e-01 -1.14666872e-01 -1.24508119e+00 6.02340221e-01
8.06610167e-01 1.46633878e-01 3.19930792e-01 3.96371037e-01
3.88021208e-02 -1.99828312e-01 -7.85607934e-01 1.32651353e+00
4.79569063e-02 -1.04074883e+00 -4.57554370e-01 6.85732365e-02
5.28413475e-01 7.27428496e-01 5.71590662e-01 -3.40417922e-02
5.16027212e-01 -5.61729550e-01 9.53626037e-01 9.41574037e-01
8.59814286e-01 -5.86344600e-01 6.06861055e-01 3.65498923e-02
-1.98492360e+00 -3.15425187e-01 -5.58600664e-01 4.01647449e-01
-4.93274629e-02 4.96530950e-01 -3.41484040e-01 1.08597052e+00
1.13536763e+00 1.10559928e+00 -6.77347958e-01 1.22192407e+00
-8.60537738e-02 5.38919531e-02 -4.53692347e-01 2.13499665e-01
1.55314550e-01 -1.49599001e-01 4.77501839e-01 9.01027083e-01
1.87319651e-01 -1.44470157e-02 3.36295217e-01 8.64414811e-01
1.80998892e-01 -7.53323078e-01 -4.40943867e-01 2.11221278e-01
4.55132604e-01 1.75384939e+00 -7.00273812e-01 -2.39430323e-01
-7.94948876e-01 6.33888900e-01 -2.31916144e-01 4.32358056e-01
-1.19909048e+00 -1.36592299e-01 8.37965190e-01 -2.44631737e-01
4.40433085e-01 -2.16608033e-01 2.87937522e-01 -1.16426992e+00
-1.79472595e-01 -4.20658737e-01 3.91903996e-01 -1.30293298e+00
-1.23104823e+00 7.14998782e-01 -4.18874472e-01 -1.89691353e+00
4.68342185e-01 -7.66162992e-01 -3.81489545e-01 1.05214381e+00
-2.09102607e+00 -1.43089497e+00 -1.01039839e+00 1.08948767e+00
2.33326763e-01 -1.19540356e-02 2.83849034e-02 2.97893554e-01
-6.49446368e-01 5.38969994e-01 1.80223227e-01 1.07849762e-01
9.44350481e-01 -9.40166891e-01 5.29933035e-01 1.10594749e+00
5.39055690e-02 7.06308782e-01 3.83127898e-01 -7.19984770e-01
-2.18209887e+00 -1.20524228e+00 1.98751733e-01 -5.79870582e-01
4.05292332e-01 -1.31985754e-01 -5.41050971e-01 6.58217192e-01
3.03183228e-01 8.61910880e-01 3.67088556e-01 -5.27077675e-01
-5.42833984e-01 -5.91266394e-01 -1.05155432e+00 7.87132829e-02
1.01229715e+00 -5.36162555e-01 -3.42479438e-01 4.66357410e-01
8.45070839e-01 -8.15820456e-01 -9.84482229e-01 1.74514592e-01
7.57892430e-01 -1.13039899e+00 1.34876323e+00 -4.28285226e-02
-5.56584299e-01 -9.47603822e-01 1.48893818e-01 -8.72529447e-01
-3.92632335e-01 -8.51518869e-01 -2.02919841e-01 9.95189667e-01
-4.71781731e-01 -8.47566187e-01 7.30306029e-01 4.31759447e-01
-1.61408260e-01 -1.48469716e-01 -9.73761380e-01 -8.62831771e-01
-6.43938839e-01 -2.38506898e-01 7.36696839e-01 5.01633108e-01
-4.83252823e-01 2.37902597e-01 -3.70113671e-01 2.90009916e-01
1.31227624e+00 2.43495643e-01 8.75461638e-01 -1.48238409e+00
4.17524986e-02 -7.62205720e-02 -3.78313720e-01 -1.03986979e+00
-2.75993258e-01 -7.14188814e-01 2.19516426e-01 -1.34912968e+00
8.71741772e-02 -4.59349275e-01 -4.88720238e-01 5.34267366e-01
-4.01175350e-01 4.28461552e-01 5.59098065e-01 3.00398320e-01
-1.01207972e+00 5.97872198e-01 1.48985147e+00 -1.61953166e-01
-1.92605287e-01 2.91737877e-02 -3.28582823e-01 3.21224481e-01
4.60963726e-01 -3.43897372e-01 -9.64336842e-02 -6.15775287e-01
1.66485295e-01 5.42133711e-02 5.77657402e-01 -1.30869484e+00
1.07059336e+00 5.48266433e-02 9.40553069e-01 -1.12865484e+00
3.58235598e-01 -1.33464026e+00 4.42628771e-01 7.07107067e-01
2.72722185e-01 -3.47870626e-02 2.79196888e-01 9.68235731e-01
1.31163657e-01 5.60823023e-01 7.73874044e-01 1.99602023e-02
-8.22134554e-01 6.72235370e-01 5.65742254e-02 -2.90249854e-01
1.07424664e+00 -6.08454525e-01 -1.06515872e+00 8.07880536e-02
-1.70500442e-01 4.01178032e-01 5.05696237e-01 6.68571711e-01
6.00181043e-01 -1.56904554e+00 -3.70339990e-01 4.54082310e-01
1.62058517e-01 -4.33770660e-03 3.58326286e-01 1.21363604e+00
-1.54836252e-01 5.87997913e-01 -2.01715082e-01 -1.05809307e+00
-1.51350975e+00 7.68183947e-01 6.16355419e-01 8.46556574e-02
-8.67352247e-01 9.69507158e-01 1.60483643e-01 -1.48624197e-01
3.50071281e-01 -5.57708383e-01 -2.24519789e-01 -3.26160550e-01
7.62082040e-01 5.08211672e-01 6.99987859e-02 -1.01803386e+00
-5.55943668e-01 1.08260047e+00 1.40006036e-01 3.84319931e-01
1.08233273e+00 -3.98096114e-01 6.09347746e-02 1.13359615e-01
9.18012261e-01 -4.29835111e-01 -1.59257102e+00 -5.63305974e-01
-5.64218223e-01 -6.96166694e-01 4.57599789e-01 -5.85894167e-01
-1.77926409e+00 4.95024294e-01 1.11362672e+00 1.54231275e-02
1.45962286e+00 -1.75450891e-01 1.05542362e+00 2.30838239e-01
5.26305020e-01 -8.23861957e-01 1.04953073e-01 3.53882343e-01
9.25749019e-02 -1.10793376e+00 1.31096184e-01 -2.94969320e-01
-1.50699005e-01 1.21320701e+00 6.79031730e-01 2.74072103e-02
4.20681387e-01 5.11969447e-01 4.20759976e-01 -3.98558736e-01
-7.52401650e-01 -5.94597578e-01 4.65555042e-01 7.01065660e-01
2.10416675e-01 -4.75023627e-01 2.09040955e-01 -3.80691960e-02
4.22948718e-01 1.92702159e-01 -1.36908730e-02 1.10207236e+00
-5.17925024e-01 -7.13784873e-01 -9.79306757e-01 8.72167721e-02
-3.19107890e-01 2.18465537e-01 -2.10761920e-01 6.13190949e-01
3.07492346e-01 1.20408726e+00 2.10208669e-02 -7.53949344e-01
1.95871517e-01 -5.28251767e-01 7.15003729e-01 -8.06479678e-02
-1.25332117e+00 4.27640736e-01 -5.61294258e-01 -1.22128487e+00
-1.09902024e+00 -4.20724273e-01 -1.24142265e+00 -3.90725136e-01
-7.64806390e-01 -4.00213338e-02 9.27280784e-01 7.26639926e-01
3.33348274e-01 7.21949220e-01 8.55238914e-01 -1.04396939e+00
-2.60902554e-01 -5.56191325e-01 -7.08132565e-01 9.95396227e-02
7.76324630e-01 -8.72793734e-01 -4.54087794e-01 -6.93239421e-02] | [6.333939075469971, -2.2018253803253174] |
1e3021d1-ae8f-41c3-adb5-b1d437639e4c | face-generation-and-editing-with-stylegan-a | 2212.09102 | null | https://arxiv.org/abs/2212.09102v2 | https://arxiv.org/pdf/2212.09102v2.pdf | Face Generation and Editing with StyleGAN: A Survey | Our goal with this survey is to provide an overview of the state of the art deep learning technologies for face generation and editing. We will cover popular latest architectures and discuss key ideas that make them work, such as inversion, latent representation, loss functions, training procedures, editing methods, and cross domain style transfer. We particularly focus on GAN-based architectures that have culminated in the StyleGAN approaches, which allow generation of high-quality face images and offer rich interfaces for controllable semantics editing and preserving photo quality. We aim to provide an entry point into the field for readers that have basic knowledge about the field of deep learning and are looking for an accessible introduction and overview. | ['Helge Ritter', 'Gustav Reichert', 'Tarek Renusch', 'Dennis Holzmann', 'Eren Akbulut', 'Dzianis Pirshtuk', 'Dzianis Makarovets', 'Maksim Miasayedzenkau', 'Andrew Melnik'] | 2022-12-18 | null | null | null | null | ['face-generation'] | ['computer-vision'] | [ 4.22879338e-01 5.58983445e-01 -8.50463100e-03 -5.74559569e-01
-4.68779445e-01 -3.60168099e-01 6.08103156e-01 -8.80105615e-01
-3.16869356e-02 8.91090453e-01 4.05977845e-01 2.59866863e-01
1.84528455e-01 -9.05647337e-01 -6.27848744e-01 -5.80047607e-01
6.12848848e-02 3.06626767e-01 -6.97996795e-01 -3.05729389e-01
-4.88991849e-02 7.16210902e-01 -1.60413003e+00 4.53336686e-01
6.03978276e-01 8.49532604e-01 -2.56098509e-01 6.12517834e-01
-2.62478679e-01 6.45999074e-01 -9.68030512e-01 -1.07069802e+00
1.33159712e-01 -9.18144643e-01 -8.09166074e-01 1.51426971e-01
8.50958943e-01 -7.19717622e-01 -3.89904231e-01 6.62907422e-01
8.60768080e-01 4.65599541e-03 9.15934563e-01 -1.27466738e+00
-1.09953511e+00 3.31492811e-01 -2.40990907e-01 -1.60972700e-01
3.60153615e-01 2.63777450e-02 6.37984276e-01 -9.88234460e-01
8.83671343e-01 1.46693563e+00 7.53140092e-01 1.49858391e+00
-1.18158054e+00 -5.12555718e-01 -4.98204492e-02 2.04111543e-02
-1.06373715e+00 -1.09931779e+00 1.05410147e+00 -2.38042757e-01
8.77445221e-01 6.88056797e-02 8.60192418e-01 1.69532526e+00
2.32829362e-01 8.36405277e-01 9.37502027e-01 -6.81990445e-01
-5.19822054e-02 6.20817058e-02 -7.10389495e-01 6.92647755e-01
-1.23250380e-01 2.10511521e-01 -8.18538487e-01 1.38593107e-01
1.30296755e+00 -2.85378397e-01 -2.73738712e-01 -3.13806623e-01
-9.02304530e-01 9.31873500e-01 2.97324181e-01 2.56950587e-01
-1.93074971e-01 3.51803094e-01 3.83975774e-01 5.48555017e-01
5.95720828e-01 2.72006333e-01 -9.78236869e-02 8.99395254e-03
-1.13793159e+00 4.02115315e-01 5.90519488e-01 1.19875312e+00
4.68029946e-01 8.24942708e-01 -5.37109494e-01 1.10860240e+00
2.68609107e-01 4.75240320e-01 1.12600923e-01 -1.37138474e+00
1.32187814e-01 -1.02167130e-01 4.37403657e-03 -8.29268992e-01
1.74160317e-01 1.65285617e-02 -9.67942417e-01 6.95426106e-01
-1.51639767e-02 -4.32680100e-01 -1.02398300e+00 1.82145262e+00
2.54961178e-02 1.26823306e-01 -1.88944742e-01 5.08218110e-01
1.25351691e+00 3.26358646e-01 -3.22509333e-02 -1.60320833e-01
1.21331596e+00 -9.31345224e-01 -1.01671231e+00 -6.34889081e-02
-7.86891878e-02 -9.51015294e-01 9.35108483e-01 4.98762280e-02
-1.55435526e+00 -7.13136017e-01 -9.56598341e-01 -4.28466886e-01
-3.07716936e-01 1.66118518e-01 7.93023646e-01 8.85979235e-01
-1.51382411e+00 8.64328206e-01 -7.34351873e-01 -6.52264774e-01
9.11991954e-01 2.16317594e-01 -5.03438294e-01 -2.03378070e-02
-1.04943609e+00 8.89017165e-01 -1.19595759e-01 1.68857813e-01
-1.18182111e+00 -9.41715121e-01 -8.04689646e-01 -2.01112524e-01
-1.37509003e-01 -1.16796899e+00 1.23655331e+00 -1.37640846e+00
-2.21237969e+00 1.41522849e+00 -1.72021359e-01 -1.64105654e-01
6.86071277e-01 -3.19663882e-01 -4.74443078e-01 2.76313186e-01
-1.99267834e-01 1.36193621e+00 1.29739380e+00 -1.12711012e+00
-1.50266439e-01 -9.91744921e-02 4.11117859e-02 1.53500438e-01
-3.00043732e-01 2.72165298e-01 -1.17411748e-01 -1.12532544e+00
-6.16165876e-01 -6.06247067e-01 2.94677883e-01 5.43758750e-01
-2.79610455e-01 1.13857747e-03 9.12034869e-01 -6.29912972e-01
7.20595181e-01 -1.91853142e+00 3.15571189e-01 -3.27940166e-01
2.79776633e-01 4.49163884e-01 -3.58000994e-01 7.81737447e-01
-1.69676408e-01 1.07411943e-01 -2.28080109e-01 -8.68895173e-01
9.28568617e-02 1.06199957e-01 -6.26490653e-01 3.42355251e-01
3.58223349e-01 1.24496055e+00 -5.37744999e-01 -3.17362219e-01
3.95680517e-01 1.15046883e+00 -6.07279539e-01 5.02792358e-01
-2.35504508e-01 8.72935414e-01 1.31263137e-02 6.31866574e-01
7.67257452e-01 1.58155844e-01 -1.13247544e-01 -2.40855426e-01
1.01478130e-01 3.56995553e-01 -8.50210130e-01 1.80018866e+00
-6.37969613e-01 8.62524211e-01 4.70168352e-01 -6.43561184e-01
8.42762053e-01 6.53728604e-01 2.11857542e-01 -4.39260155e-01
1.00514218e-01 2.04715487e-02 -6.83464229e-01 -1.50225908e-02
1.62185952e-01 -3.59183908e-01 3.83612245e-01 4.01057601e-01
3.99355799e-01 -4.50251222e-01 -1.28196403e-01 7.02787340e-02
5.74806154e-01 4.86021847e-01 1.60202399e-01 -2.08152711e-01
5.92092812e-01 -6.71577036e-01 3.11437339e-01 4.60119694e-01
5.04364073e-02 8.62513542e-01 4.14655805e-01 -7.71824181e-01
-1.20627713e+00 -1.15269041e+00 -8.15009549e-02 8.31442595e-01
-5.25428593e-01 -4.44825917e-01 -1.04015243e+00 -6.20791554e-01
-2.34226093e-01 4.06290591e-01 -9.30794239e-01 -5.87814078e-02
-5.46486974e-01 -2.87368715e-01 8.08570206e-01 7.89624572e-01
8.54885340e-01 -1.48717642e+00 -1.83860555e-01 -1.47673368e-01
-1.67241648e-01 -8.12499404e-01 -3.57842922e-01 -3.79660100e-01
-1.04033256e+00 -6.75950289e-01 -1.18713129e+00 -1.01001966e+00
7.03578889e-01 -3.03370386e-01 1.49895561e+00 2.36448497e-01
-3.74977440e-01 6.61271274e-01 -1.61828980e-01 -4.60506469e-01
-3.49770427e-01 -5.27863242e-02 1.15164258e-02 -1.39813483e-01
1.52908802e-01 -9.86887336e-01 -7.52422214e-01 -5.42360730e-02
-8.71624768e-01 4.11691964e-02 3.39486778e-01 9.54495370e-01
4.55862850e-01 -5.47553122e-01 6.15150332e-01 -1.04187667e+00
5.74767530e-01 1.30417302e-01 -4.82648194e-01 1.15418747e-01
-3.93234134e-01 -1.04577504e-01 3.75343710e-01 -1.83445662e-02
-1.51251602e+00 -1.67540967e-01 -7.05711186e-01 -3.00506324e-01
-2.01291502e-01 -1.79816082e-01 -4.54202712e-01 -4.97266829e-01
7.27146447e-01 1.37791842e-01 2.00672492e-01 -5.00399649e-01
7.50502110e-01 4.50565875e-01 4.65668797e-01 -5.07332146e-01
7.35662043e-01 7.79907405e-01 5.53058693e-03 -8.99278998e-01
-6.69459999e-01 3.70944619e-01 -8.03892314e-01 -1.18062906e-01
7.61647999e-01 -8.70856166e-01 -5.04414022e-01 8.56052876e-01
-1.22137868e+00 -6.22383535e-01 -7.25555420e-01 -9.32318419e-02
-1.08017945e+00 6.41516447e-02 -1.09561741e+00 -4.59072441e-01
-6.35560811e-01 -9.63637948e-01 1.28063583e+00 4.07527953e-01
-2.80791968e-01 -1.37106407e+00 6.30522221e-02 2.32000068e-01
8.49921525e-01 4.56551850e-01 8.20072949e-01 1.29222095e-01
-6.76150262e-01 7.25450516e-02 1.00129329e-01 5.90749145e-01
2.98231661e-01 1.39214098e-01 -1.45412612e+00 -4.46771324e-01
-1.63753480e-01 -5.91392934e-01 8.19816291e-01 5.83413243e-01
1.35861492e+00 -2.93636322e-01 -3.36882919e-01 1.19970512e+00
1.17217016e+00 -1.43410146e-01 1.13793921e+00 -1.33030757e-01
6.57984018e-01 5.72199345e-01 6.66004024e-04 3.36028248e-01
3.43425907e-02 7.08136261e-01 2.19023511e-01 -3.33153874e-01
-7.87509620e-01 -4.82208580e-01 2.93437034e-01 6.03729904e-01
-3.71125162e-01 -2.65768468e-01 -9.84670371e-02 4.38338250e-01
-1.22926009e+00 -1.01419139e+00 4.97860312e-01 1.89835191e+00
8.54446828e-01 -4.92410302e-01 1.58937603e-01 -2.51578093e-02
7.72153020e-01 2.64052153e-01 -4.25063938e-01 -5.39222479e-01
-1.28355309e-01 7.71260619e-01 4.21615355e-02 5.78406215e-01
-9.29117322e-01 1.29403615e+00 8.58025837e+00 6.40507102e-01
-1.06491935e+00 -8.42278078e-03 7.72923470e-01 -1.13077357e-01
-5.13568223e-01 -4.04164255e-01 -7.86686778e-01 1.63553819e-01
7.40609229e-01 1.62610590e-01 6.77644491e-01 8.31849039e-01
3.62117626e-02 4.52400833e-01 -1.19533157e+00 1.09906888e+00
4.33316350e-01 -1.67398608e+00 4.28459257e-01 4.34579067e-02
1.08891487e+00 -2.21931174e-01 5.18752754e-01 3.69804949e-02
2.85476446e-01 -1.33804035e+00 4.37918335e-01 6.52998447e-01
1.59166205e+00 -8.20221066e-01 2.93321282e-01 -3.66234273e-01
-8.43680084e-01 1.99621305e-01 -4.24230844e-01 -3.30535211e-02
2.55281866e-01 4.93974060e-01 -2.56082863e-01 3.63300472e-01
6.96279645e-01 8.73543203e-01 -1.31530613e-01 7.17307627e-01
-5.54537117e-01 2.98411787e-01 4.43983562e-02 4.05758858e-01
-2.96946794e-01 -2.28899941e-01 4.44969594e-01 9.82017994e-01
4.20946211e-01 -8.92682299e-02 -4.49034482e-01 1.25686753e+00
-5.33531785e-01 -1.22522511e-01 -8.72019053e-01 -3.19858372e-01
3.01321030e-01 1.23799038e+00 -4.73879397e-01 -2.19650492e-01
-4.62206930e-01 1.47646296e+00 2.76512682e-01 4.44343328e-01
-6.92202687e-01 -7.67416954e-01 1.09233189e+00 1.69203117e-01
2.98199326e-01 -2.16292128e-01 -2.74547279e-01 -1.12318575e+00
-1.11311600e-01 -9.90645945e-01 1.27417818e-01 -9.14455593e-01
-1.34875476e+00 8.75802696e-01 -4.15216237e-02 -7.72695839e-01
-4.08125967e-01 -6.78629160e-01 -8.39788496e-01 9.49260175e-01
-1.47370946e+00 -1.51912868e+00 -5.29248357e-01 7.20271349e-01
5.55937469e-01 -4.73577112e-01 1.15938830e+00 3.39521021e-01
-2.36149952e-01 1.05300879e+00 -1.03633255e-02 1.85117960e-01
9.36103225e-01 -9.28563356e-01 7.65265226e-01 5.13656557e-01
1.77715331e-01 7.34206140e-01 4.83058900e-01 -5.19502878e-01
-1.17946827e+00 -1.06223094e+00 8.00582349e-01 -6.00243032e-01
-1.00408919e-01 -4.98409897e-01 -3.56902003e-01 1.20833826e+00
6.70190156e-01 -7.82222822e-02 6.65609896e-01 -1.98755726e-01
-1.38696879e-01 -2.72435814e-01 -1.53941631e+00 6.62307858e-01
1.44399261e+00 -7.17494309e-01 -3.14020425e-01 2.21534193e-01
3.67178410e-01 -5.83261967e-01 -6.55797124e-01 3.29450518e-01
6.88575327e-01 -1.10597539e+00 9.89717603e-01 -4.68445539e-01
5.85368156e-01 8.31221119e-02 3.34634304e-01 -1.50756669e+00
-5.74059904e-01 -9.75702882e-01 -1.21155620e-01 1.54264057e+00
-6.26120567e-02 -5.92917860e-01 9.01749790e-01 4.09673154e-01
-1.86101705e-01 -4.57724750e-01 -7.04902172e-01 -4.15195495e-01
2.83268422e-01 1.84421465e-02 7.97896922e-01 7.19283640e-01
-4.69873905e-01 1.80550665e-01 -6.98788464e-01 -4.26411569e-01
6.46470249e-01 -9.55844373e-02 8.12304914e-01 -1.03639185e+00
-8.60057585e-03 -2.81925291e-01 -3.06921422e-01 -1.14006436e+00
4.07405555e-01 -6.84807956e-01 -3.38239938e-01 -1.63071001e+00
-1.31025434e-01 6.07865341e-02 2.53628761e-01 3.99149418e-01
1.83541790e-01 1.00890338e+00 -1.22744078e-02 -9.01862979e-02
-1.21491902e-01 8.12278330e-01 1.52664435e+00 1.28438110e-02
4.73611150e-03 -5.70680164e-02 -1.02223730e+00 6.27677560e-01
6.88548446e-01 -1.02827922e-01 -6.18265510e-01 -8.65009189e-01
3.21640708e-02 -3.84464413e-01 2.59673417e-01 -9.68160152e-01
-3.30008805e-01 -1.45621682e-02 9.42774177e-01 -9.05478597e-02
8.05704653e-01 -6.89235330e-01 3.39256376e-01 9.20110419e-02
-4.33306664e-01 5.03189804e-04 2.27629840e-01 2.59939820e-01
-2.33208597e-01 -3.57051007e-02 1.26095915e+00 -4.43455160e-01
-4.87798661e-01 5.46925724e-01 -3.34357321e-01 -2.91638765e-02
9.29841697e-01 -2.19809860e-01 8.38457234e-03 -9.04355526e-01
-9.38666821e-01 -1.96980476e-01 5.86082876e-01 4.93918747e-01
6.81807041e-01 -1.74183559e+00 -8.82050812e-01 5.71116924e-01
-3.41073759e-02 -2.87231296e-01 3.66951585e-01 1.88639909e-01
-7.34706342e-01 3.99601161e-01 -7.92452514e-01 -1.84763640e-01
-1.23707080e+00 1.80798575e-01 5.70457280e-01 1.93085864e-01
-6.50472581e-01 1.32600975e+00 2.36647606e-01 -3.61671746e-01
1.82212338e-01 2.48301432e-01 -1.84826002e-01 -2.22368971e-01
8.47379923e-01 3.34000498e-01 8.48661363e-02 -5.51570058e-01
-2.33556911e-01 6.83882356e-01 8.33937749e-02 -1.25745252e-01
1.39293027e+00 -1.73329324e-01 -3.41020286e-01 1.62748650e-01
1.00747633e+00 -2.70527862e-02 -1.42738044e+00 4.86993119e-02
-8.82122815e-01 -6.33196235e-01 -5.98113351e-02 -8.03607702e-01
-1.46675289e+00 1.25703979e+00 7.65470266e-01 -3.12046349e-01
1.34914076e+00 5.51778823e-02 8.97390306e-01 -8.78288820e-02
3.38028967e-01 -1.01561117e+00 4.38557535e-01 4.16700810e-01
1.34551775e+00 -7.92504728e-01 -1.57903433e-01 -4.41201121e-01
-5.55958271e-01 1.21483910e+00 6.38647020e-01 -3.03228378e-01
6.28228128e-01 3.30747575e-01 1.47506878e-01 -1.53295919e-01
-5.23199379e-01 7.06971884e-02 2.32564181e-01 1.31745541e+00
9.25706208e-01 -1.81336150e-01 -2.43256744e-02 -7.61595368e-02
-4.32740748e-01 2.85258204e-01 1.76661387e-01 6.70262337e-01
1.93932950e-02 -1.66130924e+00 -1.25902712e-01 2.87400067e-01
-6.01739526e-01 -8.86986852e-02 -5.31487644e-01 4.68025923e-01
1.97169065e-01 6.53511703e-01 1.34352013e-01 -2.41678562e-02
2.76811808e-01 3.72599810e-01 1.20990336e+00 -6.52894318e-01
-2.46994525e-01 -7.73200393e-02 1.25253856e-01 -5.64683855e-01
-4.88517821e-01 -2.89024055e-01 -5.38368583e-01 -8.06204796e-01
3.08158267e-02 -1.18522756e-01 4.88397181e-01 6.79473758e-01
6.49027586e-01 4.72831011e-01 3.79908651e-01 -1.12653017e+00
-6.43206686e-02 -1.05884612e+00 -6.56332612e-01 2.39666343e-01
3.29014271e-01 -6.06224895e-01 -1.13465570e-01 5.33438504e-01] | [12.124787330627441, -0.31589004397392273] |
ca3f5f75-0c7b-46dc-90f7-9286bcf68478 | squant-on-the-fly-data-free-quantization-via-1 | 2202.07471 | null | https://arxiv.org/abs/2202.07471v1 | https://arxiv.org/pdf/2202.07471v1.pdf | SQuant: On-the-Fly Data-Free Quantization via Diagonal Hessian Approximation | Quantization of deep neural networks (DNN) has been proven effective for compressing and accelerating DNN models. Data-free quantization (DFQ) is a promising approach without the original datasets under privacy-sensitive and confidential scenarios. However, current DFQ solutions degrade accuracy, need synthetic data to calibrate networks, and are time-consuming and costly. This paper proposes an on-the-fly DFQ framework with sub-second quantization time, called SQuant, which can quantize networks on inference-only devices with low computation and memory requirements. With the theoretical analysis of the second-order information of DNN task loss, we decompose and approximate the Hessian-based optimization objective into three diagonal sub-items, which have different areas corresponding to three dimensions of weight tensor: element-wise, kernel-wise, and output channel-wise. Then, we progressively compose sub-items and propose a novel data-free optimization objective in the discrete domain, minimizing Constrained Absolute Sum of Error (or CASE in short), which surprisingly does not need any dataset and is even not aware of network architecture. We also design an efficient algorithm without back-propagation to further reduce the computation complexity of the objective solver. Finally, without fine-tuning and synthetic datasets, SQuant accelerates the data-free quantization process to a sub-second level with >30% accuracy improvement over the existing data-free post-training quantization works, with the evaluated models under 4-bit quantization. We have open-sourced the SQuant framework at https://github.com/clevercool/SQuant. | ['Minyi Guo', 'Yuhao Zhu', 'Fan Yang', 'Yunxin Liu', 'Chen Zhang', 'Xiaotian Gao', 'Jingwen Leng', 'Yuxian Qiu', 'Cong Guo'] | 2022-02-14 | squant-on-the-fly-data-free-quantization-via | https://openreview.net/forum?id=JXhROKNZzOc | https://openreview.net/pdf?id=JXhROKNZzOc | iclr-2022-4 | ['data-free-quantization', 'data-free-quantization'] | ['computer-vision', 'methodology'] | [ 3.03539215e-03 5.93691505e-03 -1.32985324e-01 -7.35568106e-01
-7.88150966e-01 -4.65938270e-01 1.79816008e-01 1.84189066e-01
-8.81595910e-01 8.22701275e-01 -1.25599578e-01 -5.62511921e-01
-1.35703743e-01 -9.44988489e-01 -9.73281920e-01 -6.21940136e-01
2.04562768e-02 2.88205057e-01 -6.74374402e-02 1.30371138e-01
-2.09796019e-02 5.03787637e-01 -1.40106821e+00 1.02711901e-01
8.85475814e-01 1.70743895e+00 -1.54265791e-01 4.23752338e-01
1.29563779e-01 6.60531819e-01 -5.64669609e-01 -1.11840153e+00
6.97044015e-01 1.40432715e-02 -6.12113178e-01 -3.28000933e-01
8.25859785e-01 -9.62607265e-01 -7.55607367e-01 1.61064017e+00
6.08461916e-01 -1.01602517e-01 1.90942168e-01 -1.46859992e+00
-6.37946844e-01 6.81965590e-01 -7.94718508e-03 -9.32956208e-03
-5.83287895e-01 1.93748683e-01 9.67546821e-01 -7.27024317e-01
5.05702376e-01 1.16720402e+00 6.35417342e-01 7.38005400e-01
-1.27653837e+00 -1.18095398e+00 -9.47615504e-02 2.67141581e-01
-1.59924769e+00 -5.34767926e-01 5.23317099e-01 -2.08222881e-01
8.65470290e-01 3.06535155e-01 6.15818739e-01 9.65105414e-01
9.64510888e-02 6.85177147e-01 8.22394431e-01 1.17230594e-01
7.24144220e-01 1.88018069e-01 -2.56493352e-02 5.92018425e-01
3.38753015e-01 1.82765067e-01 -4.86903995e-01 -9.63763967e-02
6.00399435e-01 2.88400769e-01 -3.38549554e-01 -3.40088755e-01
-8.97698760e-01 9.04310286e-01 5.60508966e-01 -6.17928095e-02
-3.26683164e-01 4.64850783e-01 6.84052467e-01 3.74994636e-01
4.77020741e-01 1.05365016e-01 -5.80269277e-01 -2.09953383e-01
-1.30363214e+00 5.70702016e-01 7.07789063e-01 1.13156140e+00
7.80815542e-01 7.72396848e-02 -2.23475322e-01 5.67901790e-01
2.17824996e-01 3.58790815e-01 4.68893439e-01 -1.18243897e+00
9.13740337e-01 2.82736450e-01 -1.49432659e-01 -1.03703487e+00
-2.58156776e-01 -6.04714930e-01 -1.36919475e+00 1.27950221e-01
2.75115877e-01 -3.28220695e-01 -7.79839456e-01 1.75811744e+00
3.41172606e-01 8.57120659e-03 4.13386673e-02 1.08778214e+00
4.74480033e-01 5.78776300e-01 -1.53829679e-01 -1.28768176e-01
1.20165455e+00 -8.34141731e-01 -9.64381874e-01 1.37322217e-01
8.04310083e-01 -1.05321072e-01 9.23389971e-01 6.35874629e-01
-1.11620891e+00 -2.43869647e-01 -1.37326300e+00 -5.23292243e-01
-5.56591153e-01 8.18124712e-02 5.24354398e-01 8.75760436e-01
-1.13823438e+00 9.42384481e-01 -9.48596060e-01 4.64872122e-01
1.04803360e+00 5.76898992e-01 -3.76762956e-01 -1.05047852e-01
-1.48350048e+00 5.20791829e-01 5.75926542e-01 1.63265049e-01
-9.56059992e-01 -1.14967465e+00 -7.26072788e-01 3.13885182e-01
2.61115760e-01 -4.63537514e-01 1.07896829e+00 -4.50755596e-01
-1.49985576e+00 4.45482820e-01 4.34320755e-02 -1.01102293e+00
7.68870771e-01 -2.38582224e-01 -2.97465444e-01 1.14687264e-01
-2.58046746e-01 8.51107061e-01 8.45735490e-01 -6.30987406e-01
-5.91773748e-01 -4.83771801e-01 1.37851527e-02 -2.01591730e-01
-9.33306873e-01 -4.54277486e-01 -3.85246187e-01 -8.22740495e-01
-1.12911701e-01 -5.75402260e-01 -1.59314364e-01 7.54474878e-01
-3.16460133e-01 3.08686271e-02 7.20132113e-01 -8.61304820e-01
1.40291238e+00 -2.30617404e+00 -2.27589592e-01 1.94535449e-01
5.88630259e-01 6.46800101e-01 7.52984779e-03 -6.49209544e-02
1.46758229e-01 2.85980880e-01 -4.63081956e-01 -8.72540295e-01
5.71715355e-01 4.39861506e-01 -3.81156981e-01 4.74612445e-01
2.42211655e-01 9.29729521e-01 -7.89098322e-01 -4.22285080e-01
1.08094722e-01 6.93158925e-01 -9.49137092e-01 2.82697473e-02
-1.75055310e-01 -1.15598314e-01 -1.61429957e-01 5.10391772e-01
1.24482179e+00 -1.16132937e-01 8.32832977e-02 -4.82580155e-01
1.78114157e-02 4.86068964e-01 -1.22100079e+00 1.84934473e+00
-3.25517297e-01 6.53033912e-01 3.19597036e-01 -1.14016902e+00
8.09444726e-01 2.14711368e-01 1.51227057e-01 -9.12466645e-01
3.05863023e-01 2.83882827e-01 -4.01913345e-01 -3.67175415e-02
6.18727624e-01 -5.26623093e-02 1.27820268e-01 1.50404200e-01
3.60433459e-01 1.12848021e-01 2.99921408e-02 3.83196361e-02
1.16570354e+00 -4.40440148e-01 -2.52063364e-01 -3.03537790e-02
2.30862468e-01 -4.85312074e-01 7.91393399e-01 4.95240480e-01
-4.11718249e-01 5.89503765e-01 6.03480279e-01 -4.28647757e-01
-1.08631861e+00 -9.08138752e-01 -4.07571733e-01 7.55518556e-01
-1.15315057e-01 -6.00944638e-01 -1.04494488e+00 -5.69817245e-01
2.23723620e-01 6.87630951e-01 -4.54882056e-01 -2.32089818e-01
-2.21997082e-01 -7.05992997e-01 9.07980740e-01 3.74963313e-01
8.59696627e-01 -5.29621065e-01 -4.95697439e-01 1.49774343e-01
7.28328004e-02 -1.10053408e+00 -5.13187587e-01 5.11313319e-01
-8.90113175e-01 -3.25564057e-01 -6.32540047e-01 -2.76671678e-01
5.19870698e-01 -3.32961559e-01 7.88451970e-01 -2.04863220e-01
-6.59474954e-02 -3.38360816e-01 1.65885165e-02 -3.04515958e-01
-2.22571082e-02 1.86526716e-01 1.18759923e-01 1.31445989e-01
3.22286397e-01 -9.01714265e-01 -7.18511879e-01 4.42411341e-02
-1.14634430e+00 -2.61634946e-01 5.01227319e-01 7.97633767e-01
1.06797624e+00 2.92156219e-01 3.47566843e-01 -6.89051747e-01
6.43271804e-01 -3.65848392e-01 -1.15822947e+00 8.58578309e-02
-8.92092466e-01 2.75398731e-01 1.00206101e+00 -2.99171388e-01
-3.48240614e-01 -2.18721405e-02 -3.34511042e-01 -1.17489886e+00
2.19341412e-01 2.35737368e-01 -5.64580083e-01 -2.69133180e-01
5.17889082e-01 1.66098505e-01 -8.41906741e-02 -5.62468827e-01
4.76773977e-01 6.65414095e-01 5.42280197e-01 -2.85661995e-01
7.28667855e-01 3.98719162e-01 9.98636633e-02 -2.89726794e-01
-7.18982458e-01 -3.05996351e-02 -3.13401073e-01 2.31529266e-01
7.35293746e-01 -1.04333663e+00 -1.03711665e+00 4.80602384e-01
-1.11167061e+00 -2.45709628e-01 -4.76236612e-01 4.92557347e-01
-2.45832905e-01 1.94624662e-01 -6.57186985e-01 -6.16531968e-01
-7.57335782e-01 -1.21797371e+00 7.85508156e-01 -1.43186539e-01
3.29930425e-01 -7.71680057e-01 -3.47857356e-01 2.64325082e-01
5.25162220e-01 1.69647217e-01 5.67064047e-01 -5.32153368e-01
-7.66560972e-01 -2.30619475e-01 -4.67922002e-01 1.01821125e+00
-2.50424564e-01 -3.62006515e-01 -1.16026437e+00 -4.25287515e-01
2.30480418e-01 -4.35827315e-01 7.09808230e-01 1.17371947e-01
1.83750892e+00 -9.52374756e-01 1.88350126e-01 1.38131547e+00
1.56632805e+00 -1.73029691e-01 4.83044416e-01 1.34413928e-01
8.27540994e-01 1.31619006e-01 4.19172555e-01 7.01804161e-01
5.14809072e-01 4.17426527e-01 9.09291208e-01 1.68107063e-01
2.17025638e-01 -3.16587448e-01 3.39264423e-01 8.02656233e-01
3.63010228e-01 -2.99339682e-01 -5.77402949e-01 4.82155889e-01
-1.64418781e+00 -7.45789289e-01 2.29379117e-01 2.10376668e+00
1.13087523e+00 3.05049002e-01 -1.45909086e-01 3.85469198e-01
4.01735276e-01 9.86364260e-02 -9.52495158e-01 -5.92336953e-01
7.57744536e-03 4.13288414e-01 1.22180784e+00 4.25852269e-01
-1.19330955e+00 6.43931091e-01 5.39865780e+00 1.27434480e+00
-1.40814769e+00 3.60961348e-01 8.22926402e-01 -4.59566921e-01
-4.61075753e-01 -3.62339914e-01 -1.00218368e+00 7.63334692e-01
1.34201372e+00 -1.54528201e-01 7.89376259e-01 1.05438900e+00
-9.23127681e-02 4.47022468e-01 -1.27263439e+00 1.37281394e+00
-3.57003927e-01 -1.61826897e+00 1.93800077e-01 2.81013995e-01
5.71602881e-01 3.84894431e-01 3.13178331e-01 1.83530748e-01
1.21645272e-01 -1.04356492e+00 1.06619358e+00 3.96522373e-01
1.19492805e+00 -1.01368511e+00 8.46266806e-01 3.86507183e-01
-8.58912468e-01 -2.03220427e-01 -8.34449768e-01 2.21410636e-02
-4.27167863e-02 9.79401469e-01 -4.99812603e-01 4.75203961e-01
9.35542285e-01 7.01695561e-01 -3.88877332e-01 7.23030686e-01
4.56368886e-02 7.02085793e-01 -5.30700147e-01 5.41287065e-02
3.21617395e-01 -2.86188751e-01 2.49401480e-01 9.57588434e-01
3.18612278e-01 2.23460291e-02 -3.77464741e-01 1.16987443e+00
-5.42826891e-01 -2.47914031e-01 -1.74855158e-01 -9.17362943e-02
8.12891304e-01 1.14974391e+00 -7.40819201e-02 -3.46097201e-01
-1.98248178e-01 1.01410902e+00 4.26049739e-01 2.11103067e-01
-8.84369671e-01 -7.63243020e-01 1.05684483e+00 1.19326375e-01
6.12495542e-01 -1.15230242e-02 -4.28159952e-01 -1.14004266e+00
5.31664073e-01 -7.70762146e-01 1.00606926e-01 -3.62174928e-01
-1.22262919e+00 5.43949544e-01 -2.28035226e-01 -1.12819767e+00
-1.19626500e-01 -5.97034514e-01 6.68591559e-02 9.32300091e-01
-1.67450082e+00 -6.30133092e-01 -6.90928102e-02 7.88290620e-01
-1.57746360e-01 -2.35994458e-02 7.91013837e-01 1.13991368e+00
-6.90315843e-01 1.63490641e+00 6.39820278e-01 2.38866821e-01
4.09682393e-01 -1.06333542e+00 5.37775278e-01 7.44826853e-01
-2.13379145e-01 5.95103502e-01 3.43371481e-01 -1.70063466e-01
-1.40764546e+00 -1.69427419e+00 8.69899392e-01 -4.21960391e-02
6.25455439e-01 -9.33195829e-01 -9.48820531e-01 4.83506501e-01
-3.34484190e-01 6.39558256e-01 4.70296323e-01 -4.64319199e-01
-4.59791362e-01 -8.22003186e-01 -1.71632218e+00 2.60505080e-01
1.02587664e+00 -7.56659806e-01 -3.84394750e-02 3.23464185e-01
1.26080263e+00 -5.26208043e-01 -1.19975686e+00 1.72649726e-01
4.81642216e-01 -9.46089923e-01 8.92044663e-01 -3.08346152e-01
3.78400654e-01 -2.13590249e-01 -4.89995778e-01 -8.88146281e-01
-4.96500246e-02 -8.89876366e-01 -4.18358117e-01 1.32805860e+00
3.31267565e-01 -8.79976332e-01 1.07762325e+00 8.63745630e-01
-1.17263816e-01 -1.06764603e+00 -1.29579854e+00 -8.23706031e-01
2.21151993e-01 -6.54705226e-01 1.06005192e+00 9.67030585e-01
-3.58096153e-01 -1.32641360e-01 -3.85853201e-01 2.07557514e-01
8.72688234e-01 -3.87245893e-01 4.22922969e-01 -8.92689288e-01
-6.90932348e-02 -2.54173696e-01 -7.29716897e-01 -1.13226056e+00
1.17999148e-02 -1.08317935e+00 -1.95269540e-01 -1.03231573e+00
-3.47418368e-01 -5.94186842e-01 -4.88693297e-01 7.00266957e-01
1.98500514e-01 1.64640754e-01 3.24193627e-01 1.91683955e-02
-5.58948874e-01 8.90341640e-01 1.09925199e+00 -2.78958946e-01
2.50813603e-01 -2.09056050e-01 -5.16442418e-01 2.71224290e-01
7.97155797e-01 -7.04557776e-01 -5.51871836e-01 -7.73650050e-01
1.51380703e-01 -1.86886773e-01 5.44002056e-01 -1.21569097e+00
3.66921335e-01 1.96029857e-01 1.41997248e-01 -7.07321584e-01
4.52547967e-01 -1.13082647e+00 1.44113898e-01 4.38126415e-01
-4.55224872e-01 -5.53284809e-02 1.36799842e-01 3.59343976e-01
-3.57802957e-01 -1.96634293e-01 7.46647954e-01 2.00385749e-01
-2.51377612e-01 8.94305944e-01 7.05599561e-02 1.20064385e-01
6.67445958e-01 4.33890596e-02 -2.09645629e-01 -1.00633450e-01
-3.74282330e-01 3.83582890e-01 3.09397250e-01 -2.41231825e-02
6.06430650e-01 -1.60696256e+00 -4.40140367e-01 2.71048695e-01
-2.83408761e-01 5.17878056e-01 3.08209211e-01 3.84173691e-01
-7.27343857e-01 5.82220554e-01 -2.07311794e-01 -3.66641819e-01
-7.64097273e-01 6.70654774e-01 3.69687736e-01 -3.81053448e-01
-4.65494037e-01 1.27605796e+00 -6.52795807e-02 -6.03031754e-01
7.91567564e-01 -7.25990117e-01 3.65642220e-01 -3.27396728e-02
6.49058044e-01 4.96456563e-01 4.02020454e-01 -2.57708877e-01
-3.94879460e-01 1.48019269e-01 -1.11315385e-01 -8.60519558e-02
1.38514233e+00 1.08725756e-01 -1.23651475e-01 1.54378638e-01
1.92532659e+00 -6.14729226e-01 -1.59666920e+00 -2.87001967e-01
-4.93041009e-01 -3.70439380e-01 4.94811684e-01 -5.98615706e-01
-1.73581123e+00 1.46588922e+00 9.24934983e-01 -6.53018802e-02
1.40289032e+00 -6.54043853e-01 1.21108544e+00 4.93094444e-01
3.35441172e-01 -1.11465275e+00 -5.06185770e-01 3.38088721e-01
6.34479403e-01 -9.17494774e-01 9.94041748e-03 -7.23263472e-02
-1.97482541e-01 8.54071856e-01 3.79808962e-01 -1.53848240e-02
9.52533662e-01 3.28240901e-01 -1.85447633e-01 1.02308743e-01
-9.37666118e-01 5.76341450e-01 6.64900020e-02 5.22667289e-01
-1.42689630e-01 1.42117098e-01 -1.88161746e-01 9.42439020e-01
-6.83004975e-01 3.06122094e-01 4.36632112e-02 6.94860160e-01
5.94060458e-02 -9.28921640e-01 -2.57194089e-03 6.65057063e-01
-5.86114585e-01 -3.69211078e-01 2.33226586e-02 3.48891884e-01
5.35375595e-01 5.01105726e-01 2.09135428e-01 -7.13470995e-01
2.37442389e-01 -1.86728328e-01 6.07088134e-02 -1.26579907e-02
-5.94878495e-01 -5.01250625e-01 -2.28573933e-01 -9.74628389e-01
7.23261982e-02 -4.79406714e-01 -1.15807331e+00 -8.15433800e-01
-2.45731696e-01 -6.88668434e-03 8.94014120e-01 5.72231591e-01
7.22288907e-01 3.69856566e-01 4.92856979e-01 -6.38078392e-01
-1.00900292e+00 -6.80740535e-01 -5.73412478e-01 1.51926696e-01
6.84187055e-01 -2.89702982e-01 -4.48793322e-01 -2.42820740e-01] | [8.685030937194824, 3.0503571033477783] |
9793c22c-4778-4410-b915-7e46853e42d4 | towards-training-billion-parameter-graph-1 | 2203.09697 | null | https://arxiv.org/abs/2203.09697v1 | https://arxiv.org/pdf/2203.09697v1.pdf | Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations | Recent progress in Graph Neural Networks (GNNs) for modeling atomic simulations has the potential to revolutionize catalyst discovery, which is a key step in making progress towards the energy breakthroughs needed to combat climate change. However, the GNNs that have proven most effective for this task are memory intensive as they model higher-order interactions in the graphs such as those between triplets or quadruplets of atoms, making it challenging to scale these models. In this paper, we introduce Graph Parallelism, a method to distribute input graphs across multiple GPUs, enabling us to train very large GNNs with hundreds of millions or billions of parameters. We empirically evaluate our method by scaling up the number of parameters of the recently proposed DimeNet++ and GemNet models by over an order of magnitude. On the large-scale Open Catalyst 2020 (OC20) dataset, these graph-parallelized models lead to relative improvements of 1) 15% on the force MAE metric for the S2EF task and 2) 21% on the AFbT metric for the IS2RS task, establishing new state-of-the-art results. | ['C. Lawrence Zitnick', 'Siddharth Goyal', 'Brandon M. Wood', 'Abhishek Das', 'Anuroop Sriram'] | 2022-03-18 | towards-training-billion-parameter-graph | https://openreview.net/forum?id=0jP2n0YFmKG | https://openreview.net/pdf?id=0jP2n0YFmKG | iclr-2022-4 | ['initial-structure-to-relaxed-energy-is2re'] | ['graphs'] | [ 9.51527730e-02 5.39981760e-02 -1.48659155e-01 2.66988128e-01
-3.76729757e-01 -5.50679743e-01 9.24008131e-01 5.40176630e-01
-5.15118062e-01 7.68415093e-01 -1.09861344e-01 -1.10766923e+00
1.89452976e-01 -1.21061587e+00 -9.66666818e-01 -6.99191213e-01
-2.50279278e-01 8.01965892e-01 4.88445520e-01 -5.07795930e-01
1.47650540e-01 6.55193865e-01 -1.04756653e+00 1.69104159e-01
7.84225285e-01 7.62336731e-01 4.10351120e-02 7.43904293e-01
1.27000362e-01 5.73622465e-01 -1.23398177e-01 -2.05002397e-01
9.40609276e-02 -3.12174886e-01 -8.80189717e-01 -9.04911101e-01
4.35486168e-01 1.88952416e-01 -6.93153441e-01 9.65755820e-01
6.66253328e-01 2.14305058e-01 5.40114522e-01 -7.65069127e-01
-1.77645996e-01 6.44683897e-01 -5.45582831e-01 2.11468473e-01
-3.00234463e-02 4.83817130e-01 1.06736434e+00 -3.45567852e-01
7.64017284e-01 1.11943769e+00 7.79590368e-01 4.11779165e-01
-1.24275088e+00 -6.21952891e-01 -5.22230715e-02 5.14401495e-01
-1.21041536e+00 -1.67854473e-01 4.07525778e-01 -1.86027333e-01
1.87716520e+00 2.16962904e-01 9.00121748e-01 9.31415856e-01
6.28163338e-01 -7.58709610e-02 6.96598768e-01 -2.23140121e-01
2.44487062e-01 -7.64071524e-01 1.88265204e-01 8.68997872e-01
7.47425497e-01 1.45928651e-01 -4.12074953e-01 -5.79942226e-01
6.20691240e-01 -3.45795333e-01 -1.02508053e-01 -3.07501424e-02
-1.23907185e+00 9.07248735e-01 9.32551265e-01 2.70433038e-01
-5.09420872e-01 7.83051133e-01 6.62343979e-01 -1.14565581e-01
4.26342309e-01 8.23361218e-01 -2.61008680e-01 -2.46736854e-01
-4.36964661e-01 5.00080049e-01 8.51614237e-01 4.78285313e-01
5.20088971e-01 1.20033994e-01 1.87740922e-02 2.87034720e-01
2.92477533e-02 4.79412407e-01 -1.49856836e-01 -6.47221982e-01
5.29144168e-01 6.02792263e-01 7.95811266e-02 -7.84619510e-01
-8.29457998e-01 -5.82818151e-01 -1.15195596e+00 1.04023516e-01
3.65086019e-01 -1.62681311e-01 -8.80772054e-01 1.55078554e+00
5.14222920e-01 6.55237809e-02 -1.01405531e-01 5.08444369e-01
7.98150957e-01 8.46805334e-01 3.47192645e-01 -2.61605927e-03
1.26881897e+00 -1.11913240e+00 -1.41679749e-01 -1.84901267e-01
8.95417690e-01 -4.32548463e-01 8.97377849e-01 4.34837997e-01
-1.09197366e+00 -3.30071092e-01 -1.22638845e+00 -1.38757437e-01
-4.84068632e-01 -5.43073118e-01 1.14125896e+00 6.02529824e-01
-1.09691846e+00 1.17177367e+00 -1.16061902e+00 -2.42366984e-01
2.87865549e-01 6.70101643e-01 -2.02052578e-01 -4.23443653e-02
-1.36072493e+00 8.53008926e-01 6.04802310e-01 -1.26346618e-01
-9.57094133e-01 -9.49486494e-01 -3.82674068e-01 2.80315042e-01
4.34286833e-01 -9.85214055e-01 9.50268328e-01 -1.40159935e-01
-1.10333371e+00 3.74082386e-01 3.66408229e-02 -7.71231234e-01
2.97140837e-01 2.32694671e-01 -3.44619989e-01 -2.02947259e-01
-4.11910355e-01 5.04845500e-01 1.26728378e-02 -5.58084667e-01
-1.55883819e-01 -2.73574233e-01 1.19107075e-01 1.67346030e-01
-2.67268151e-01 -5.10639064e-02 -2.92365074e-01 -1.00318514e-01
-2.36489549e-01 -1.28114200e+00 -6.65531039e-01 -5.71707308e-01
-5.60169637e-01 -3.61480087e-01 5.02617240e-01 -6.43317044e-01
1.03857255e+00 -1.58281624e+00 5.01094818e-01 4.07617033e-01
8.02904010e-01 4.16988939e-01 -3.50091606e-02 6.54627144e-01
-1.36773139e-01 2.56375551e-01 -8.70592594e-02 2.06019934e-02
-1.58953950e-01 -1.59708504e-02 2.67818272e-01 2.22243398e-01
-2.96245068e-01 1.17700350e+00 -9.29022551e-01 2.54916042e-01
-1.44011468e-01 6.48474097e-01 -5.55920780e-01 -1.27070844e-01
-6.90526545e-01 5.52523315e-01 -5.15245259e-01 -7.83263445e-02
3.86751890e-01 -7.86755741e-01 5.01081169e-01 -3.26248229e-01
-2.57029116e-01 6.34066880e-01 -5.32349408e-01 1.64018869e+00
-1.95937648e-01 2.07974955e-01 -1.56496063e-01 -6.84133530e-01
4.52449113e-01 2.33179927e-01 5.84202230e-01 -8.60816419e-01
6.86235130e-02 2.41599277e-01 5.61276197e-01 1.73519075e-01
4.94515091e-01 -6.01770729e-02 6.40615150e-02 2.17798471e-01
-2.86652714e-01 -2.96815693e-01 5.13539732e-01 4.19010371e-01
1.58604038e+00 -1.81922719e-01 1.64299086e-02 -5.74779987e-01
1.69019490e-01 1.85108677e-01 1.36813760e-01 7.31532753e-01
2.42753938e-01 1.68284759e-01 7.67481685e-01 -8.53105724e-01
-1.47236884e+00 -4.45303619e-01 4.30105478e-01 7.98684835e-01
-2.00972900e-01 -1.06604195e+00 -9.61219609e-01 -4.76846784e-01
-4.63321507e-02 7.40024328e-01 -3.12952876e-01 -3.88605386e-01
-6.51167750e-01 -1.39273167e+00 6.45255029e-01 3.59379470e-01
4.21260148e-01 -6.63471520e-01 -2.98814088e-01 4.58183676e-01
1.04357272e-01 -1.13526404e+00 -3.10592294e-01 2.70941436e-01
-7.16384470e-01 -1.30604565e+00 -4.56861883e-01 -2.11258039e-01
3.27578217e-01 2.85340846e-01 1.38225365e+00 3.85490745e-01
-3.77794623e-01 -2.47448951e-01 2.25415938e-02 -2.97609597e-01
-6.96960032e-01 5.56406021e-01 7.02489913e-02 -7.19512403e-01
-1.42494455e-01 -8.13797116e-01 -8.21763039e-01 -8.67612585e-02
-6.80646658e-01 4.85718310e-01 1.28860384e-01 6.39952421e-01
5.58285415e-01 5.08355685e-02 2.97753513e-01 -1.12191558e+00
6.20943129e-01 -3.94369155e-01 -9.77037668e-01 4.01749983e-02
-1.05990183e+00 2.44096875e-01 9.74118948e-01 -1.35178849e-01
-4.95696545e-01 -1.11343220e-01 -3.12958390e-01 -9.37806666e-02
4.37299281e-01 8.02399337e-01 1.33341447e-01 -5.09895325e-01
8.71481478e-01 -1.44391996e-03 -2.43013769e-01 -2.26303399e-01
6.15357220e-01 3.83081175e-02 2.83332914e-01 -9.32649553e-01
5.66715777e-01 1.46809921e-01 9.01885211e-01 -7.35259354e-01
-4.56520408e-01 -1.89612582e-01 -1.35422319e-01 1.61930751e-02
1.03480935e+00 -9.12554026e-01 -1.21986341e+00 4.94171947e-01
-1.23590696e+00 -7.52024114e-01 1.56336516e-01 7.71239251e-02
-2.68112779e-01 4.95430321e-01 -8.44165564e-01 -3.69957685e-01
-8.27111304e-01 -1.33471751e+00 8.10692549e-01 1.74565256e-01
-2.34020147e-02 -9.39782143e-01 2.35622510e-01 2.06668884e-01
7.78788507e-01 5.51948845e-01 1.54903018e+00 -4.65116739e-01
-6.21920288e-01 -7.40798935e-02 -3.04866016e-01 -8.17598179e-02
-1.71476617e-01 -1.18117288e-01 -5.18841445e-01 -5.97615063e-01
-4.47850466e-01 -1.63998112e-01 1.02470398e+00 1.47231311e-01
1.27133799e+00 -1.68111116e-01 -6.82594657e-01 5.99298954e-01
1.38147771e+00 8.73382390e-02 7.76816308e-01 1.69041306e-01
1.36202204e+00 -1.27757117e-01 -1.64982602e-01 5.46713881e-02
2.52894074e-01 7.81441808e-01 6.75039232e-01 -1.25368506e-01
-2.88077921e-01 -2.07097143e-01 1.86385557e-01 1.00537026e+00
-7.94879019e-01 -5.36958218e-01 -1.36174273e+00 -3.73631553e-03
-1.85237217e+00 -8.37893665e-01 -6.72948182e-01 2.34910774e+00
5.22693098e-01 3.61264050e-01 1.49035722e-01 -2.73934662e-01
5.07391930e-01 4.25101280e-01 -8.46334040e-01 -3.03999662e-01
-4.59490977e-02 6.69319153e-01 8.53015780e-01 6.09218419e-01
-7.71990240e-01 1.20616055e+00 6.22850418e+00 1.01613700e+00
-1.33752286e+00 2.18052879e-01 1.04752445e+00 -1.58059061e-01
-4.22678620e-01 2.94033080e-01 -7.43272185e-01 2.62718976e-01
1.58428490e+00 -2.16858104e-01 1.04315901e+00 4.08972114e-01
2.44580150e-01 2.38855407e-02 -9.74492610e-01 8.49380732e-01
-3.87742221e-01 -1.97817290e+00 1.24258198e-01 4.58984435e-01
9.67355490e-01 8.83097231e-01 -1.43468112e-01 1.80940926e-01
6.48317277e-01 -1.34152853e+00 3.45471203e-01 2.80551940e-01
9.18695629e-01 -9.72038150e-01 2.79246330e-01 2.26243362e-01
-1.19940257e+00 4.28255558e-01 -5.19711852e-01 -1.40180543e-01
5.64891808e-02 7.30184138e-01 -9.30871367e-01 8.52720201e-01
3.19842428e-01 4.68060583e-01 -3.77728462e-01 7.57254601e-01
-1.04782209e-01 8.81089449e-01 -6.68939054e-01 -2.96379626e-01
5.00422657e-01 -4.75579768e-01 4.20834959e-01 8.24029684e-01
3.71753156e-01 -4.60258313e-02 5.62116019e-02 8.97134960e-01
-5.17325163e-01 -9.11722928e-02 -3.18443567e-01 -4.18701291e-01
2.94168144e-01 1.30045307e+00 -8.08540583e-01 -3.37662399e-01
-1.78942397e-01 6.65265024e-01 6.44529700e-01 2.29265898e-01
-1.16544449e+00 -2.29795113e-01 5.26693225e-01 3.00570607e-01
2.02268213e-01 -7.47641981e-01 8.06021914e-02 -7.16893256e-01
-4.18341815e-01 -1.20341074e+00 2.20919132e-01 -5.91093063e-01
-8.97206604e-01 5.82683742e-01 -3.69215190e-01 -2.32646555e-01
1.22020571e-02 -9.17614102e-01 -8.10530663e-01 1.08041883e+00
-1.15017009e+00 -1.01010680e+00 -2.55751461e-01 1.12342341e-02
-1.93835855e-01 3.89063135e-02 9.35810626e-01 3.52973819e-01
-5.90395212e-01 2.75676876e-01 4.52356905e-01 -3.98299038e-01
2.85293639e-01 -1.09695625e+00 1.44088185e+00 5.70827067e-01
8.92358869e-02 5.55302918e-01 8.89035583e-01 -9.14505601e-01
-1.99674761e+00 -1.21848595e+00 6.32049024e-01 -3.48782808e-01
8.65339339e-01 -5.84746063e-01 -6.94048703e-01 3.91076058e-01
1.21786773e-01 1.08991958e-01 2.58400530e-01 4.11510110e-01
-4.92099524e-01 1.51184484e-01 -7.75287926e-01 6.58286810e-01
1.34687102e+00 -4.51688230e-01 4.13115114e-01 1.09392011e+00
1.04004610e+00 -6.13673031e-01 -1.10390985e+00 5.02712607e-01
3.25453252e-01 -8.58537376e-01 1.04516220e+00 -9.72002804e-01
3.43519658e-01 -1.81081057e-01 3.93295363e-02 -1.30758321e+00
-5.61147392e-01 -9.82924283e-01 -2.24842072e-01 3.65190446e-01
6.72035933e-01 -8.23540866e-01 8.67759883e-01 3.17501903e-01
-4.19301480e-01 -9.59361613e-01 -1.02803063e+00 -7.93993652e-01
3.42764467e-01 -1.31259978e-01 7.38161325e-01 7.47266531e-01
-1.03809342e-01 6.61396563e-01 -1.46107718e-01 -4.67680469e-02
4.90058839e-01 -3.18129420e-01 7.25663662e-01 -1.19795513e+00
-6.02349162e-01 -5.67261338e-01 -2.74011999e-01 -7.98895001e-01
4.29592244e-02 -1.19827986e+00 -5.32316864e-01 -1.67261910e+00
5.68422914e-01 -4.80892152e-01 -3.76637995e-01 5.39590716e-01
-2.70777196e-01 1.91644952e-01 1.75693944e-01 -5.78942616e-03
-6.62058711e-01 4.94435012e-01 1.15383172e+00 -3.89164865e-01
2.00627416e-01 -4.54123735e-01 -6.63190067e-01 3.19072247e-01
7.26106346e-01 -4.88487750e-01 -2.80759931e-01 -4.28067297e-01
9.58066046e-01 -2.20118724e-02 3.52712065e-01 -1.36410832e+00
1.61840484e-01 -6.31548464e-02 1.34836137e-01 -2.38654509e-01
2.66776979e-01 -1.94229618e-01 7.99725235e-01 7.63753891e-01
7.60978833e-02 4.37552869e-01 5.07915795e-01 5.61804891e-01
3.70258510e-01 1.18839577e-01 6.11216724e-01 -2.47009769e-01
-6.10175356e-02 6.99017048e-01 -4.56301756e-02 -4.15207334e-02
6.25129342e-01 4.23742861e-01 -7.68873394e-01 -2.26685107e-01
-4.05433923e-01 8.28495324e-02 6.55863285e-01 -6.55514561e-03
-2.00058550e-01 -1.05228078e+00 -5.34936547e-01 -3.92994225e-01
-1.35248587e-01 2.27763280e-01 2.56885260e-01 8.03205311e-01
-9.29203749e-01 7.16285348e-01 1.95762049e-02 -3.02564949e-01
-1.14694130e+00 5.88309884e-01 5.80772221e-01 -9.70766544e-01
-4.70384926e-01 8.15907538e-01 1.86575174e-01 -2.42632329e-01
-3.83264512e-01 -3.73043835e-01 3.00404817e-01 -6.28885269e-01
2.42194951e-01 6.47909760e-01 5.37417114e-01 -4.10265326e-01
-2.51223177e-01 2.00723067e-01 -3.21515948e-01 3.53970706e-01
1.52012599e+00 7.81342030e-01 -4.71655041e-01 7.08237886e-02
8.67630541e-01 -1.24249645e-02 -1.03752100e+00 2.21704870e-01
-1.96303695e-01 3.09060723e-01 2.74620473e-01 -7.85840929e-01
-8.74832213e-01 7.41862535e-01 4.01452243e-01 3.04258585e-01
5.45224547e-01 -3.91807407e-02 1.04643869e+00 7.14086533e-01
6.82864606e-01 -6.76725447e-01 -3.37475240e-01 7.96963990e-01
5.88578939e-01 -7.98965693e-01 3.52406353e-01 -4.24271286e-01
1.09601177e-01 1.07146287e+00 3.98657501e-01 -2.73997802e-02
1.72071308e-01 5.95398387e-03 -7.48353899e-01 -6.60993159e-01
-6.90616667e-01 1.64761558e-01 1.70328155e-01 1.19188428e-01
5.69536448e-01 4.08826202e-01 -3.56995970e-01 9.71878767e-02
-1.21714503e-01 -3.42082202e-01 2.22499266e-01 6.10446453e-01
-5.42918980e-01 -1.50769198e+00 6.64252266e-02 5.62325180e-01
-2.55226016e-01 -5.88372946e-01 -4.64022696e-01 6.77202463e-01
-2.19210893e-01 6.59718096e-01 -2.64244705e-01 -2.92560816e-01
3.14451307e-01 1.84949730e-02 9.29889202e-01 -3.55219632e-01
-6.87074959e-01 -3.82065982e-01 5.83726048e-01 -6.39167607e-01
9.23276618e-02 -2.59932399e-01 -1.49540508e+00 -9.08803046e-01
-2.75702089e-01 3.94002795e-01 8.10419381e-01 7.23078191e-01
8.63623857e-01 8.95229578e-01 5.76873459e-02 -1.14562476e+00
-4.73518729e-01 -8.58703732e-01 -1.28979608e-01 2.19530627e-01
-2.87021130e-01 -4.10710931e-01 2.65075639e-02 -6.47926807e-01] | [5.41118860244751, 5.6596574783325195] |
ce45ac54-7943-4a55-b1cd-252ca68ab60a | prediction-of-video-game-development-problems | null | null | https://aclanthology.org/2021.icon-main.56 | https://aclanthology.org/2021.icon-main.56.pdf | Prediction of Video Game Development Problems Based on Postmortems using Different Word Embedding Techniques | The interactive entertainment industry is being actively involved with the development, marketing and sale of video games in the past decade. The increasing interest in video games has led to an increase in video game development techniques and methods. It has emerged as an immensely large sector, and now it has grown to be larger than the movie and music industry combined. The postmortem of a game outlines and analyzes the game’s history, team goals, what went right, and what went wrong with the game. Despite its significance, there is little understanding related to the challenges encountered by the programmers. Postmortems are not properly maintained and are informally written, leading to a lack of trustworthiness. In this study, we perform a systematic analysis on different problems faced in the video game development. The need for automation and ML techniques arises because it could help game developers easily identify the exact problem from the description, and hence be able to easily find a solution. This work could also help developers in identifying frequent mistakes that could be avoided, and will provide researchers a beginning point to further consider game development in context of software engineering. | ['N L Bhanu Murthy', 'Lov Kumar', 'Anjali Goyal', 'Aman RAJ Singh', 'Anirudh A'] | null | null | null | null | icon-2021-12 | ['marketing'] | ['miscellaneous'] | [-1.10359862e-01 1.48178846e-01 2.41080046e-01 -4.16140594e-02
-1.01122297e-01 -6.12142324e-01 2.31682003e-01 3.39609981e-01
-1.66776642e-01 4.09975350e-01 2.29806211e-02 -4.84793812e-01
-2.58457363e-01 -7.69394755e-01 -2.02745318e-01 -2.73948491e-01
1.28774434e-01 2.52870172e-01 6.57746434e-01 -4.35788631e-01
5.66691041e-01 5.88213503e-02 -1.83144522e+00 1.33538187e-01
3.98533970e-01 5.66767812e-01 4.67991531e-01 4.60784167e-01
-4.22214568e-01 1.41728663e+00 -6.88366473e-01 -7.26255417e-01
1.17469244e-01 -7.96572924e-01 -8.86043489e-01 2.68717706e-01
-2.60257095e-01 -3.19458634e-01 3.94311070e-01 1.15127122e+00
1.23315156e-01 -2.57854372e-01 1.43306375e-01 -1.42120469e+00
-1.18269753e-02 5.59444308e-01 -5.20261824e-01 1.16240062e-01
5.38635671e-01 -8.54978934e-02 7.11233675e-01 -3.80537778e-01
7.82247603e-01 6.10513210e-01 5.24169445e-01 3.06002766e-01
-7.70548642e-01 -6.88484073e-01 -1.39081568e-01 3.13120753e-01
-1.43883288e+00 -1.61653429e-01 5.88306189e-01 -7.53220677e-01
1.08344543e+00 2.23552465e-01 1.07413757e+00 5.74094534e-01
2.00695217e-01 2.04028726e-01 7.50753701e-01 -8.78294230e-01
2.86546350e-01 5.58900893e-01 -6.52433112e-02 2.87306875e-01
4.53770965e-01 -2.80893654e-01 -1.30626038e-01 -7.07800612e-02
8.98661494e-01 -1.93763211e-01 -6.14485741e-02 -3.37696999e-01
-5.64087868e-01 7.07610786e-01 -5.34327924e-01 1.08415568e+00
-2.11150274e-01 2.00391505e-02 6.02385402e-01 4.45889652e-01
1.46450683e-01 5.84111512e-01 -2.67345220e-01 -1.41263175e+00
-8.69645834e-01 4.65600640e-01 1.20128787e+00 6.97834134e-01
4.29070354e-01 5.31522259e-02 7.63121307e-01 6.37894511e-01
4.25988406e-01 -1.67526439e-01 2.51404703e-01 -9.59957063e-01
6.03975691e-02 9.56246674e-01 2.20047101e-01 -1.37649429e+00
-1.36807755e-01 -9.15807858e-02 -2.00182036e-01 8.94379020e-01
7.70916104e-01 -2.17272360e-02 -1.64448574e-01 1.26904058e+00
-5.04700877e-02 -1.97505146e-01 -2.83185899e-01 6.26534939e-01
5.21687269e-01 4.17213857e-01 -2.65527785e-01 -2.78444022e-01
1.36382127e+00 -4.92846578e-01 -7.73048878e-01 -1.89330757e-01
6.44321620e-01 -1.13953257e+00 8.20610642e-01 9.17982757e-01
-1.31966281e+00 -3.12983632e-01 -1.13764429e+00 4.34846222e-01
-1.21334605e-01 -3.77503961e-01 5.21317005e-01 1.18275356e+00
-1.04675341e+00 6.56349123e-01 -8.57285619e-01 -7.17632711e-01
3.02136000e-02 3.42485726e-01 -2.19744146e-01 6.35250807e-02
-7.78118074e-01 1.07927108e+00 2.09508196e-01 2.28380915e-02
-1.78678498e-01 -3.43753636e-01 -5.08811712e-01 -6.50026128e-02
7.86555886e-01 -2.63367087e-01 1.44076645e+00 -1.31439424e+00
-1.35944319e+00 7.88908839e-01 3.78857493e-01 -2.68323589e-02
3.10168356e-01 2.06863105e-01 -4.17496175e-01 -4.81213212e-01
2.37079129e-01 -1.58432499e-01 2.36252263e-01 -9.83791471e-01
-1.07996988e+00 -2.42133617e-01 4.73945320e-01 2.30822135e-02
-6.14107586e-02 5.57073891e-01 -5.62311709e-01 -3.28934073e-01
1.61073320e-02 -7.27231801e-01 -2.66500503e-01 -6.10520184e-01
2.93269962e-01 -1.49539893e-03 3.63662660e-01 -7.51953721e-01
1.78843296e+00 -2.18811488e+00 1.11488611e-01 2.52532214e-01
4.26151097e-01 2.23511860e-01 4.57281172e-01 1.12563694e+00
-3.88562232e-02 2.97963023e-01 2.69657344e-01 2.38511950e-01
-3.70890610e-02 1.12455502e-01 1.02511786e-01 5.87718226e-02
-1.33620277e-01 1.97681502e-01 -9.55199122e-01 -5.57842515e-02
1.00699745e-01 3.17785233e-01 -3.52943689e-01 2.06414051e-02
1.07362926e-01 1.08018965e-01 -4.67683733e-01 4.48911875e-01
4.50968534e-01 -1.08119838e-01 4.35087800e-01 3.69361609e-01
-6.72140300e-01 3.93777251e-01 -1.43216145e+00 1.27477193e+00
-4.24701780e-01 6.68764830e-01 1.61808580e-01 -8.61254692e-01
9.30569351e-01 6.22303963e-01 4.38916862e-01 -8.90885830e-01
2.98521906e-01 4.83677387e-01 4.48102027e-01 -8.54083717e-01
6.11959279e-01 -2.01979831e-01 7.29492083e-02 6.81046247e-01
-3.75283241e-01 -1.49120808e-01 4.25738305e-01 -2.28028428e-02
1.15025485e+00 1.54960811e-01 7.90367544e-01 3.71985734e-02
5.11272430e-01 3.39597493e-01 5.12313843e-01 3.93015951e-01
-4.93974313e-02 3.92164707e-01 1.00422955e+00 -5.92450917e-01
-9.59170341e-01 -4.97320652e-01 2.89565384e-01 6.60479963e-01
1.07305937e-01 -1.14520216e+00 -8.04318130e-01 -2.89611816e-01
-5.63321292e-01 5.18061519e-01 -3.28657448e-01 8.88625979e-02
-3.92226189e-01 -1.82827264e-01 2.39750326e-01 2.16998562e-01
2.63238668e-01 -1.14849854e+00 -1.17280102e+00 7.05736518e-01
-3.51452380e-02 -8.27641368e-01 7.88629055e-02 -7.61245862e-02
-6.48531437e-01 -1.34460557e+00 -2.60264277e-01 -6.72910035e-01
3.37084174e-01 1.84833646e-01 1.12650621e+00 4.91295785e-01
-3.65587980e-01 3.72995466e-01 -9.42503929e-01 -5.84678292e-01
-8.62514198e-01 -2.24537537e-01 -4.05271143e-01 -6.15848184e-01
8.86041641e-01 -7.27740228e-01 -1.02316856e-01 4.44342881e-01
-8.69554877e-01 1.77970514e-01 1.86185345e-01 3.30674797e-01
-4.68145013e-02 6.17961168e-01 2.95405895e-01 -9.59223926e-01
9.53417242e-01 -3.71073574e-01 -6.00703359e-01 9.69436094e-02
-6.72702968e-01 -3.93265486e-01 3.82680953e-01 -5.19771203e-02
-7.36242712e-01 -4.37519670e-01 -3.99984181e-01 4.66247082e-01
-2.60635555e-01 7.80835032e-01 -4.69113961e-02 -1.19033329e-01
5.72230279e-01 -1.91215068e-01 2.46304005e-01 -2.40602970e-01
-2.86416739e-01 6.84524119e-01 -1.05014354e-01 -2.64245540e-01
5.60451269e-01 2.82649957e-02 -4.26541507e-01 -8.54692280e-01
1.55768588e-01 -5.44686258e-01 -2.43260771e-01 -6.84975982e-01
5.17263949e-01 -4.57091838e-01 -5.62321067e-01 3.76175523e-01
-1.15413702e+00 -1.40475124e-01 -2.78120607e-01 3.39200199e-01
-2.71779656e-01 3.68908793e-01 -2.93882549e-01 -1.07960188e+00
1.89745754e-01 -1.38197577e+00 2.22355127e-01 3.55100453e-01
-9.39748824e-01 -8.61921966e-01 2.28297144e-01 4.42974299e-01
5.90077221e-01 2.69181162e-01 8.38851571e-01 -2.84366876e-01
-4.72985357e-01 -2.49189869e-01 1.94550201e-03 3.35804969e-01
3.90227437e-01 4.87162858e-01 -5.18307567e-01 1.21192969e-01
4.39744622e-01 9.71127898e-02 -3.40426415e-01 2.55232394e-01
3.91471028e-01 -8.48013386e-02 -6.49206862e-02 -1.05196550e-01
1.62827694e+00 9.30451930e-01 1.05317855e+00 9.30317521e-01
3.43125015e-01 1.04569590e+00 9.17752922e-01 5.90855002e-01
3.03250700e-01 9.52897429e-01 5.43339312e-01 2.95714617e-01
1.62810281e-01 8.21779072e-02 3.35655481e-01 9.35767770e-01
-6.22422636e-01 3.58793177e-02 -1.20437014e+00 4.62177753e-01
-1.91758466e+00 -1.05668092e+00 -5.15105605e-01 2.18170166e+00
3.77339989e-01 5.09232581e-01 4.58003491e-01 4.96982425e-01
3.88925701e-01 -2.66953617e-01 3.02790999e-01 -8.11503172e-01
6.17797136e-01 2.92108417e-01 1.58047467e-01 2.66753405e-01
-4.92667705e-01 6.98610306e-01 5.64615917e+00 7.88535297e-01
-1.11034060e+00 9.64474231e-02 1.08039990e-01 1.31960601e-01
-3.57659966e-01 3.78794760e-01 -4.09189552e-01 4.09725934e-01
6.71156585e-01 -6.49486363e-01 4.26502198e-01 9.79216933e-01
5.80537140e-01 -4.75589782e-01 -8.49095643e-01 9.15811300e-01
-5.21894917e-02 -1.35610890e+00 -5.25484860e-01 3.82785112e-01
2.94008404e-01 -3.44777673e-01 -3.48423302e-01 8.39905441e-02
-4.31717075e-02 -9.63258445e-01 9.62639868e-01 1.12667069e-01
1.81185395e-01 -8.64823759e-01 1.09770536e+00 4.96059030e-01
-1.11564851e+00 9.55299437e-02 -2.35609934e-01 -1.07464957e+00
2.15385959e-01 4.64683101e-02 -8.66930902e-01 4.60921198e-01
9.32044566e-01 2.58974195e-01 -2.89920181e-01 1.26126468e+00
-7.63774738e-02 4.98801082e-01 -5.51891774e-02 -4.93659526e-01
1.59732848e-01 -5.16655803e-01 4.01475579e-01 8.07898998e-01
4.19741720e-01 1.00534871e-01 -1.56731576e-01 6.52797639e-01
6.61681354e-01 5.55737555e-01 -7.63286293e-01 -4.21681523e-01
2.14591503e-01 1.10688305e+00 -1.40279365e+00 2.07056955e-01
-7.21463978e-01 6.89096153e-01 -1.40052274e-01 -1.95195954e-02
-7.22330928e-01 -4.68855083e-01 8.30620825e-01 8.30080867e-01
2.07447186e-01 -1.57275096e-01 -1.83820501e-01 -5.90557277e-01
1.73262075e-01 -1.32616627e+00 -9.15799439e-02 -5.64178109e-01
-7.65740037e-01 6.80338681e-01 1.61561510e-03 -1.40760696e+00
-5.95679164e-01 -3.81631583e-01 -7.89897263e-01 7.01509356e-01
-5.77777505e-01 -5.95878422e-01 -1.59800589e-01 -1.26824304e-01
4.73532885e-01 -1.88500270e-01 8.70269477e-01 4.22742486e-01
-2.22069353e-01 1.24288559e-01 -1.40048966e-01 -1.40904412e-01
4.31918800e-01 -7.86391377e-01 2.54562318e-01 8.61405134e-01
7.42027238e-02 7.53193498e-01 9.45609093e-01 -5.40201843e-01
-1.05475628e+00 -1.63545117e-01 1.14279759e+00 -2.51792073e-01
9.77480352e-01 -2.57966965e-01 -6.50093138e-01 2.18288064e-01
3.27109694e-01 -8.66386831e-01 8.38760197e-01 1.41959667e-01
9.29785371e-02 -1.21762969e-01 -9.52881694e-01 6.30050123e-01
6.81200802e-01 -3.50803882e-01 -4.61368352e-01 -1.17061801e-01
1.58675283e-01 -2.81705946e-01 -5.69400012e-01 -1.84509248e-01
6.79935217e-01 -1.59112549e+00 3.89756858e-01 -1.91127896e-01
5.83716452e-01 -3.01497072e-01 1.98613659e-01 -8.85048509e-01
-2.25923344e-01 -6.13019764e-01 6.91309273e-01 1.51747072e+00
4.05779511e-01 -4.20398504e-01 1.06123340e+00 1.09932971e+00
8.60256925e-02 -6.14900112e-01 -6.81220531e-01 -6.19691849e-01
-1.20823972e-01 -9.81435716e-01 4.19638425e-01 8.60828578e-01
6.94900513e-01 1.14569105e-02 -3.09636980e-01 -2.48731658e-01
8.80594477e-02 -2.86752284e-01 9.30786967e-01 -1.34878480e+00
-6.96522593e-01 -6.95914745e-01 -9.28403020e-01 -4.96543944e-01
-6.31058276e-01 -1.95072144e-01 -1.88333929e-01 -1.70305932e+00
3.54086012e-02 -2.26776585e-01 2.79123574e-01 1.31123230e-01
2.80589610e-01 2.01131180e-01 2.66380548e-01 3.90747786e-02
-3.34942579e-01 -4.95703340e-01 8.38393390e-01 4.29914773e-01
-4.04603422e-01 3.23765010e-01 -1.17922258e+00 8.41634810e-01
7.35859096e-01 -5.79820216e-01 -6.22537911e-01 -1.52296111e-01
1.20907426e+00 5.01346104e-02 -4.78143692e-02 -1.06948686e+00
4.53534752e-01 -1.24183103e-01 -4.24864203e-01 -1.35277197e-01
-8.42728987e-02 -1.23305833e+00 9.29796278e-01 4.54962939e-01
3.16546351e-01 2.34428674e-01 1.81109160e-01 -1.21914655e-01
-5.29891372e-01 -1.04336989e+00 1.98153585e-01 -3.54588062e-01
-8.83627892e-01 -3.07365954e-01 -1.03231382e+00 -1.58511877e-01
1.48900306e+00 -1.06592369e+00 1.93243057e-01 -5.30935228e-01
-6.99896932e-01 -3.39909457e-02 1.06247127e+00 3.87686789e-01
3.30058753e-01 -7.81031430e-01 -2.30363354e-01 2.08540946e-01
5.16598485e-02 -2.30214775e-01 3.10207546e-01 7.45043218e-01
-1.24640739e+00 6.15654811e-02 -4.90229845e-01 -2.18788549e-01
-1.62350440e+00 3.13132107e-01 -1.66907031e-02 -3.61769199e-01
-6.35185182e-01 6.42901599e-01 -1.54216900e-01 2.71958828e-01
2.81492591e-01 -2.46610343e-01 -6.94949746e-01 1.23829782e-01
8.19206238e-01 5.86029053e-01 1.45093068e-01 -5.51940501e-01
-4.21987116e-01 5.81934869e-01 -1.43062234e-01 -2.78494895e-01
1.49458587e+00 -1.93612620e-01 -4.39101428e-01 7.80497074e-01
5.41328132e-01 2.53351837e-01 -8.13801408e-01 5.37373304e-01
3.04429948e-01 -7.11801231e-01 -1.45109028e-01 -5.90730011e-01
-8.64647806e-01 5.90869665e-01 2.92671829e-01 1.10327387e+00
9.91979182e-01 -5.33212274e-02 3.50103915e-01 -2.59376884e-01
9.45752263e-01 -1.10291457e+00 -1.72197029e-01 4.95452732e-01
6.41699314e-01 -8.24019372e-01 -1.00194521e-01 -6.39591455e-01
-7.35141575e-01 1.43851721e+00 3.76756877e-01 9.31141153e-02
6.20199442e-01 7.79454827e-01 7.71657079e-02 -3.80571991e-01
-5.46280146e-01 -6.64728880e-02 -3.93228054e-01 8.96830201e-01
8.34280908e-01 -2.43621558e-01 -9.34724212e-01 9.89699721e-01
-1.82434186e-01 5.06008327e-01 1.13991868e+00 1.27535617e+00
-4.73408669e-01 -1.83828735e+00 -5.07793784e-01 2.81871110e-01
-7.57772744e-01 1.80668116e-01 -6.00040317e-01 1.22796774e+00
5.44358134e-01 1.22146106e+00 -1.80912018e-01 -6.35163784e-01
6.65503979e-01 -1.74087763e-01 7.12741733e-01 -8.51715684e-01
-9.63240683e-01 1.93482190e-01 5.04365325e-01 -4.29497123e-01
-3.70600849e-01 -8.67981911e-01 -1.01538968e+00 -6.29015803e-01
-4.00857866e-01 6.23936236e-01 7.58333147e-01 9.95221734e-01
-3.76935825e-02 4.94904995e-01 1.27889901e-01 -4.56647307e-01
-1.49662271e-01 -6.75452411e-01 -7.88232625e-01 1.30428851e-01
-4.58042353e-01 -5.55665433e-01 -1.94377586e-01 2.09957436e-01] | [9.065300941467285, 6.536074161529541] |
e2927cb3-46e6-4baf-a1b8-75c56a960885 | mechanical-models-of-pattern-and-form-in | 2009.10953 | null | https://arxiv.org/abs/2009.10953v6 | https://arxiv.org/pdf/2009.10953v6.pdf | Mechanical models of pattern and form in biological tissues: the role of stress-strain constitutive equations | Mechanochemical models of pattern formation in biological tissues have been used to study a variety of biomedical systems and describe the physical interactions between cells and their local surroundings. These models generally consist of a balance equation for the cell density, one for the density of the extracellular matrix (ECM), and a force-balance equation describing the mechanical equilibrium of the cell-ECM system. Assuming this system can be regarded as an isotropic linear viscoelastic material, the force-balance equation is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain relation of the ECM. However, due to the multifaceted bio-physical nature of the ECM constituents, there are rheological aspects that cannot be effectively captured by this model and, therefore, depending on the type of biological tissue considered, other constitutive models of linear viscoelasticity may be better suited. In this work, we systematically assess the pattern formation potential of different stress-strain constitutive equations for the ECM within a mechanical model of pattern formation in biological tissues. The results obtained through linear stability analysis support the idea that constitutive equations capturing viscous flow and permanent set (Maxwell model, Jeffrey model) have a pattern formation potential much higher than the others (Kelvin-Voigt model, standard linear solid model), further confirmed by the results of our numerical simulations. Our findings suggest that further empirical work is required to acquire detailed quantitative information on the mechanical properties of components of the ECM in different biological tissues in order to furnish mechanochemical models of pattern formation with stress-strain constitutive equations for the ECM that provide a more faithful representation of the underlying tissue rheology. | ['Tommaso Lorenzi', 'Alf Gerisch', 'Mark A. J. Chaplain', 'Chiara Villa'] | 2020-09-23 | null | null | null | null | ['stress-strain-relation'] | ['miscellaneous'] | [ 3.90585475e-02 -7.88459778e-02 -1.01943433e-01 2.86477894e-01
5.65870702e-01 -3.95075411e-01 4.67797905e-01 4.10174340e-01
-2.31666148e-01 8.36780012e-01 -6.34815171e-02 -8.23366493e-02
-5.29162824e-01 -7.71629453e-01 -3.11743140e-01 -1.20276749e+00
-2.67339557e-01 5.78647435e-01 6.41303658e-01 -3.61883432e-01
-1.54131260e-02 9.34486210e-01 -1.11900949e+00 -5.63692823e-02
5.95670819e-01 9.82633889e-01 1.18564218e-01 6.74191236e-01
-6.79052845e-02 7.44551301e-01 -1.95546269e-01 1.73271715e-03
-1.68545276e-01 -3.36086154e-01 -7.67736971e-01 2.50071406e-01
-2.97334164e-01 -1.65597707e-01 -3.75849068e-01 5.19129932e-01
1.65821329e-01 6.58389032e-02 1.21383691e+00 -6.22633994e-01
-3.16418767e-01 2.42915247e-02 -2.09140494e-01 1.57258473e-02
2.56346405e-01 -1.46517828e-01 4.45042074e-01 -6.57481492e-01
1.14488208e+00 7.33717501e-01 4.24744487e-01 5.68421185e-01
-1.33667755e+00 2.54914761e-02 -2.08299309e-01 -1.97282821e-01
-1.06040561e+00 -1.97723731e-01 8.50400209e-01 -7.90435910e-01
4.80371058e-01 5.79064548e-01 1.10344207e+00 7.04686403e-01
1.22588778e+00 -2.93322392e-02 1.30345452e+00 -3.30706388e-01
5.51097751e-01 1.70328453e-01 2.37847447e-01 4.85808581e-01
7.52691507e-01 2.32113555e-01 -3.00160527e-01 -4.23439205e-01
1.03723633e+00 -2.99189717e-01 -3.54680300e-01 -7.80991971e-01
-7.74094999e-01 2.24914759e-01 9.65242740e-03 1.06682980e+00
-4.53835964e-01 2.16326639e-01 3.25907111e-01 1.14132181e-01
3.17354381e-01 5.25426269e-02 -2.62048483e-01 -1.42353363e-02
-8.87213528e-01 5.20665407e-01 1.16704953e+00 1.64225340e-01
3.69232267e-01 -4.18100283e-02 4.40465122e-01 6.03906572e-01
5.65167665e-01 6.65137231e-01 4.12017077e-01 -8.16213310e-01
-2.68049598e-01 4.11547869e-01 1.83573827e-01 -1.07751179e+00
-3.89240116e-01 -5.28569579e-01 -1.01282942e+00 3.49752247e-01
8.20667744e-01 1.68709978e-02 -3.84314477e-01 1.30368781e+00
3.73110294e-01 -4.72183079e-02 3.02954167e-01 9.63608921e-01
4.82010365e-01 3.16266596e-01 1.84330776e-01 -6.02213621e-01
1.16079390e+00 -1.11789636e-01 -7.41445124e-01 1.01148114e-01
5.87425709e-01 -6.65119410e-01 5.70087969e-01 4.65692468e-02
-1.11002183e+00 -1.71979398e-01 -8.65784347e-01 4.25783396e-01
-2.08491564e-01 -1.06629722e-01 4.40463364e-01 2.71893442e-01
-7.36141324e-01 8.95450890e-01 -1.24236894e+00 -6.27982438e-01
-2.96314627e-01 1.28498375e-01 -5.76707542e-01 -1.03900144e-02
-8.70300949e-01 9.87978756e-01 -1.37787640e-01 6.38212502e-01
-3.60042036e-01 -5.27160823e-01 -4.62101668e-01 3.83225083e-02
-4.65514958e-01 -9.19620991e-01 7.35611141e-01 -3.22198510e-01
-1.58182919e+00 9.14313257e-01 -1.86376020e-01 -8.15006196e-02
8.34512830e-01 3.98168623e-01 -1.19099263e-02 4.88981843e-01
-5.17247736e-01 -1.55104250e-01 1.51167795e-01 -1.84869909e+00
4.90288258e-01 -1.14623457e-01 -4.34271425e-01 -3.14913481e-01
-2.30167955e-02 -1.92803517e-01 4.05651569e-01 -5.75978518e-01
5.57287812e-01 -1.23122895e+00 -3.35484475e-01 1.27401292e-01
-1.48039997e-01 4.37730551e-01 5.71530879e-01 -5.33690214e-01
1.11501575e+00 -2.14174032e+00 3.58653665e-01 4.51555669e-01
2.41598547e-01 -5.11761114e-04 1.69621632e-01 1.03594780e+00
1.17408738e-01 -1.87534932e-02 -4.25911009e-01 1.95431039e-01
-2.41769090e-01 2.08716884e-01 -9.82089415e-02 6.56888425e-01
-8.63740742e-02 6.76977932e-01 -6.30303025e-01 -5.14647782e-01
-4.65932116e-02 7.12563097e-01 -1.20214581e-01 -1.07131816e-01
-4.42051813e-02 3.58102709e-01 -5.74588895e-01 4.35699880e-01
7.83264041e-01 -5.00108190e-02 6.37174189e-01 -1.84285223e-01
-2.20872506e-01 -3.61638874e-01 -9.31302905e-01 6.52018309e-01
-1.96478873e-01 3.74187738e-01 6.02938414e-01 -7.52952456e-01
1.07688081e+00 5.51035225e-01 9.13170695e-01 -2.33047396e-01
1.91719502e-01 7.36633122e-01 5.05162299e-01 -6.61895216e-01
3.75216305e-02 -7.14613736e-01 2.99139738e-01 1.87886715e-01
-3.99636537e-01 -2.91125625e-01 3.50121439e-01 4.23718691e-02
1.06921327e+00 2.14397311e-01 -7.70289451e-02 -9.53278542e-01
5.98482430e-01 8.05846155e-02 2.30746299e-01 7.92753920e-02
-1.79969981e-01 2.31599346e-01 7.03928709e-01 -5.22166252e-01
-1.04339361e+00 -9.49320614e-01 -7.02854693e-01 1.64913572e-02
3.96343589e-01 2.86822990e-02 -6.74540460e-01 5.05156517e-01
4.34881717e-01 -1.04430288e-01 -8.01986516e-01 -1.05534643e-01
-5.91453910e-01 -1.16724420e+00 7.66914040e-02 6.15739748e-02
1.90277338e-01 -1.02807152e+00 -8.36386681e-01 6.45617723e-01
1.69656694e-01 -1.16352344e+00 2.13586807e-01 1.60932288e-01
-1.28283751e+00 -1.27291346e+00 -6.35646284e-01 -5.27315915e-01
7.70674050e-01 -2.61472881e-01 6.25291049e-01 5.77244520e-01
-3.30160886e-01 3.62334728e-01 -2.74203390e-01 1.58239920e-02
-1.02922845e+00 -2.77212650e-01 1.54591426e-01 -1.04532577e-02
-3.02007824e-01 -8.71524930e-01 -8.22275221e-01 4.84456927e-01
-1.17560506e+00 -2.53976911e-01 4.37195837e-01 3.77299607e-01
5.63027620e-01 7.26059899e-02 5.57435811e-01 -7.49342561e-01
4.37423140e-01 -4.15839404e-01 -1.73542887e-01 -3.37304734e-02
-3.47098082e-01 -1.50867805e-01 5.98827660e-01 -7.21093237e-01
-1.00600433e+00 -2.17593104e-01 -2.37277225e-02 1.06257685e-01
-1.50230959e-01 8.22733223e-01 6.55166656e-02 -4.71765786e-01
3.32345515e-01 5.31722307e-01 5.02204299e-01 -3.70771825e-01
-4.65665221e-01 3.36005121e-01 2.80561984e-01 -8.74134183e-01
7.06394494e-01 6.16954982e-01 7.60328352e-01 -1.14518595e+00
-1.01200499e-01 -6.46997914e-02 -5.62501490e-01 -5.55403829e-01
4.76082951e-01 -1.38898030e-01 -8.95662844e-01 7.00830519e-01
-8.87672961e-01 -7.93151021e-01 -2.37911671e-01 5.87305605e-01
-8.28132629e-01 5.52934289e-01 -1.18295455e+00 -1.10807323e+00
-1.57179460e-01 -9.22893226e-01 5.08034050e-01 -1.01646751e-01
-4.74178404e-01 -1.47212458e+00 4.32801276e-01 2.22764269e-01
9.38321114e-01 9.53808665e-01 1.14791727e+00 2.28094757e-01
-4.65884060e-01 -1.76219016e-01 3.16655815e-01 -1.17870308e-02
2.20393632e-02 6.17182732e-01 -4.98429090e-01 -1.71805725e-01
2.50951111e-01 2.39048883e-01 8.11982512e-01 8.24394405e-01
2.92680651e-01 -3.28783631e-01 -6.27668619e-01 2.16354370e-01
1.91008854e+00 2.65004635e-01 7.40927279e-01 2.66123027e-01
8.60769451e-02 1.07391584e+00 4.27979082e-01 4.10823345e-01
-1.14331804e-01 4.75148648e-01 2.87972629e-01 -3.21869701e-01
-2.21876055e-01 2.96211213e-01 1.29358843e-01 9.00281191e-01
-5.57788491e-01 -1.62464067e-01 -7.22619116e-01 3.51682693e-01
-1.54502797e+00 -7.96847284e-01 -5.64845145e-01 2.26090956e+00
7.57017016e-01 3.56628746e-01 2.57315755e-01 2.27665082e-01
1.95863068e-01 -2.98391819e-01 -1.55525729e-01 -4.89903599e-01
-4.94450092e-01 -1.12637475e-01 3.43983918e-01 9.70516384e-01
-4.65264350e-01 2.54012108e-01 7.09142303e+00 1.34078935e-02
-1.45144987e+00 -2.79559642e-01 3.02052975e-01 1.91678211e-01
-4.01733458e-01 1.98350444e-01 -3.21087688e-01 8.05534542e-01
1.00354767e+00 -1.85303330e-01 2.37023178e-03 1.56688198e-01
6.22276962e-01 -6.55178249e-01 -5.91486573e-01 1.83279961e-01
-6.54515743e-01 -1.26310313e+00 -2.34701529e-01 5.57095587e-01
3.13784122e-01 -3.82539362e-01 -3.07438165e-01 -4.74055231e-01
-4.15727437e-01 -4.25246269e-01 6.01828039e-01 1.02893972e+00
6.11245573e-01 1.50152659e-02 1.10722077e+00 3.17190737e-01
-1.15366888e+00 1.79823786e-01 -5.16205966e-01 -1.75410181e-01
5.54237068e-01 1.21052158e+00 -3.48247379e-01 5.43538213e-01
2.63707697e-01 2.89121896e-01 -2.04875439e-01 9.95339096e-01
6.87944770e-01 5.32374799e-01 -3.95276338e-01 -4.70381528e-02
-1.97565198e-01 -5.58731377e-01 6.58420980e-01 9.88857985e-01
1.37207270e-01 1.93478718e-01 -2.96076596e-01 7.66035438e-01
5.99456966e-01 3.53738338e-01 -3.96597654e-01 -1.62611619e-01
1.38719127e-01 1.12726557e+00 -1.13558292e+00 -6.28046170e-02
-4.27850969e-02 2.81636447e-01 -4.68737744e-02 4.89771634e-01
-3.36545378e-01 1.50109261e-01 6.10327899e-01 1.01468730e+00
-7.84911290e-02 -8.18634689e-01 -7.83612654e-02 -9.77386475e-01
1.39417155e-02 -3.44508700e-02 -1.94581985e-01 -5.55629373e-01
-1.10030735e+00 6.06824100e-01 3.06913793e-01 -9.27971840e-01
1.88889369e-01 -8.55956852e-01 -5.59530079e-01 6.86530709e-01
-1.35202622e+00 -1.08855975e+00 -2.03891873e-01 -8.05997625e-02
-4.00566280e-01 2.60862082e-01 7.95686305e-01 -8.39866996e-02
-3.85715842e-01 -2.07219198e-01 3.19398075e-01 -2.54158199e-01
5.23667157e-01 -1.03951073e+00 -5.80622196e-01 3.19746822e-01
-7.76358843e-01 6.79794192e-01 1.29820061e+00 -1.04301953e+00
-1.42536604e+00 -4.05490786e-01 9.60255623e-01 1.32726178e-01
8.15941393e-01 -2.03049988e-01 -1.28001010e+00 1.71425655e-01
-2.22444907e-02 1.54727936e-01 9.50820744e-01 -3.26187968e-01
3.73098224e-01 -4.82917689e-02 -9.93839920e-01 3.11484396e-01
7.52876580e-01 3.39545608e-02 -1.11685649e-01 1.67890221e-01
-1.18262559e-01 -1.77597702e-01 -1.46201384e+00 5.73375404e-01
9.68284965e-01 -8.67567480e-01 5.54439723e-01 -3.80631655e-01
4.62652057e-01 -2.31191635e-01 9.45935845e-02 -7.21511841e-01
-5.11662364e-01 -2.13182330e-01 -1.43785313e-01 9.25553322e-01
1.57750919e-01 -8.93459439e-01 7.75107384e-01 7.99438298e-01
8.65937769e-02 -1.46328640e+00 -1.01125610e+00 -7.54205167e-01
4.26716030e-01 3.91948342e-01 -7.61821717e-02 7.69043446e-01
3.03728521e-01 -3.59079301e-01 1.88463479e-01 -3.30647528e-01
4.68433738e-01 -2.94270348e-02 1.73069343e-01 -1.53767884e+00
-3.03703159e-01 -3.57232749e-01 -4.59210366e-01 -1.44860774e-01
1.99608803e-01 -6.29297853e-01 -2.42837250e-01 -1.57995772e+00
1.81348905e-01 -8.34063649e-01 3.86531428e-02 -1.34284124e-01
3.51769596e-01 1.21450622e-03 -1.49020338e-02 6.35308146e-01
4.62599158e-01 2.59046495e-01 1.54258621e+00 1.82895645e-01
-3.52679193e-01 -2.41930187e-01 -1.82071537e-01 4.13447529e-01
5.99230349e-01 -2.40577817e-01 -2.00072795e-01 1.81714028e-01
3.07348907e-01 4.48168606e-01 3.24700952e-01 -9.97511506e-01
2.21953094e-01 -3.87706399e-01 2.45919392e-01 -3.51252034e-02
2.65288919e-01 -1.02999663e+00 1.01896393e+00 1.08371913e+00
-7.50027299e-02 -3.75513107e-01 1.38316497e-01 4.20971185e-01
-2.87301302e-01 -3.38522136e-01 1.05716574e+00 -1.33341057e-02
1.55613840e-01 -1.00853899e-02 -1.17028522e+00 -5.60563445e-01
1.02141297e+00 -6.97648883e-01 -3.97138000e-01 6.09780364e-02
-1.19232190e+00 -4.50603217e-01 9.88706648e-01 -4.89971727e-01
3.60102266e-01 -1.12057173e+00 -6.29569530e-01 1.04257353e-01
-4.72917318e-01 -2.83780396e-01 6.32380068e-01 1.16001081e+00
-1.23592770e+00 3.08580637e-01 -4.54732567e-01 -3.62798005e-01
-9.86720085e-01 3.67733806e-01 8.59521270e-01 -5.73923588e-01
-2.91719437e-01 3.39956582e-01 1.81549966e-01 1.50827006e-01
-5.84276080e-01 -2.76058376e-01 -5.15841171e-02 -1.93651095e-01
-2.70032007e-02 4.79644954e-01 -2.06851084e-02 -6.71945333e-01
-6.08716667e-01 1.12928271e+00 3.64589870e-01 9.70015675e-02
1.28022563e+00 -1.32231757e-01 -6.93666101e-01 4.97685134e-01
7.42478728e-01 2.38056764e-01 -1.19133234e+00 2.49010906e-01
-1.61994219e-01 -1.04002677e-01 -1.28468066e-01 -5.25949836e-01
-9.10718799e-01 4.06668305e-01 2.33892445e-03 5.58903813e-01
1.00503027e+00 1.10044807e-01 6.03160620e-01 -2.69101948e-01
1.82159960e-01 -8.53564024e-01 5.21738920e-03 1.18977569e-01
1.28821301e+00 -4.79218930e-01 1.02907591e-01 -1.24704707e+00
1.13039054e-01 1.30271971e+00 3.54403466e-01 -4.46168721e-01
1.19408751e+00 1.04055297e+00 1.72736511e-01 -4.87829838e-03
-7.90106773e-01 2.09702775e-01 1.01440556e-01 3.61584723e-01
9.38556015e-01 1.13841034e-02 -1.13915610e+00 4.16320622e-01
-2.15341635e-02 9.49125364e-02 8.63589048e-01 1.08579540e+00
-4.02016789e-01 -1.35044599e+00 -2.86479682e-01 1.84506401e-01
-3.69995266e-01 5.70861816e-01 -4.75058943e-01 8.92671287e-01
-8.30234885e-02 5.61918259e-01 -1.58068165e-02 1.56711087e-01
3.57222408e-01 1.40807152e-01 7.46165276e-01 -1.67433336e-01
-2.34732509e-01 5.86714566e-01 3.89459729e-02 -3.12333889e-02
-6.58597946e-01 -8.55331421e-01 -1.35378492e+00 -4.51149672e-01
-2.33179167e-01 3.04817766e-01 6.83308065e-01 8.63616943e-01
1.37781888e-01 3.70289505e-01 2.08863765e-01 -7.53551781e-01
-2.19366580e-01 -9.15334642e-01 -1.32304406e+00 4.65529591e-01
1.05604984e-01 -8.53061557e-01 -6.43688262e-01 4.02894318e-01] | [13.565567970275879, -3.027515172958374] |
7dcb5d02-4fe2-4381-8911-c0cd3b4b8073 | fault-diagnosis-for-pv-arrays-considering | 2304.06493 | null | https://arxiv.org/abs/2304.06493v1 | https://arxiv.org/pdf/2304.06493v1.pdf | Fault diagnosis for PV arrays considering dust impact based on transformed graphical feature of characteristic curves and convolutional neural network with CBAM modules | Various faults can occur during the operation of PV arrays, and both the dust-affected operating conditions and various diode configurations make the faults more complicated. However, current methods for fault diagnosis based on I-V characteristic curves only utilize partial feature information and often rely on calibrating the field characteristic curves to standard test conditions (STC). It is difficult to apply it in practice and to accurately identify multiple complex faults with similarities in different blocking diodes configurations of PV arrays under the influence of dust. Therefore, a novel fault diagnosis method for PV arrays considering dust impact is proposed. In the preprocessing stage, the Isc-Voc normalized Gramian angular difference field (GADF) method is presented, which normalizes and transforms the resampled PV array characteristic curves from the field including I-V and P-V to obtain the transformed graphical feature matrices. Then, in the fault diagnosis stage, the model of convolutional neural network (CNN) with convolutional block attention modules (CBAM) is designed to extract fault differentiation information from the transformed graphical matrices containing full feature information and to classify faults. And different graphical feature transformation methods are compared through simulation cases, and different CNN-based classification methods are also analyzed. The results indicate that the developed method for PV arrays with different blocking diodes configurations under various operating conditions has high fault diagnosis accuracy and reliability. | ['Zheng Qian', 'Hamidreza Zareipour', 'Qiang Sun', 'Lu Wei', 'Jiaqi Qu'] | 2023-03-24 | null | null | null | null | ['blocking'] | ['natural-language-processing'] | [ 3.88020128e-02 -9.21532273e-01 5.62275946e-01 -1.90934300e-01
-8.86487737e-02 -7.08715081e-01 2.56897420e-01 -9.20285359e-02
5.76622605e-01 5.88006139e-01 -3.53622228e-01 -5.20576000e-01
-5.99667847e-01 -9.65514541e-01 -6.87924862e-01 -1.12191391e+00
1.84260234e-02 4.90818545e-02 -2.68878877e-01 2.36273054e-02
3.27009022e-01 1.03008878e+00 -1.72784281e+00 3.06879520e-01
1.61737013e+00 1.33546460e+00 1.20615847e-01 5.70645094e-01
1.38271749e-01 4.20656472e-01 -1.48422348e+00 2.03795984e-01
3.21874656e-02 -2.81267703e-01 -4.07044083e-01 2.47200549e-01
1.14156976e-01 -2.35689640e-01 -4.95452553e-01 1.34023643e+00
6.12432778e-01 -2.14487299e-01 1.06682718e+00 -1.66418934e+00
-1.03234375e+00 9.51400101e-02 -2.04304472e-01 2.33863845e-01
2.88536966e-01 2.18361929e-01 2.60663897e-01 -8.29356611e-01
-2.18932837e-01 1.10887110e+00 7.00726151e-01 -2.25306258e-01
-7.83677340e-01 -5.08816481e-01 -2.58894920e-01 8.14956725e-01
-1.41312110e+00 2.81316221e-01 1.01261413e+00 -5.87153196e-01
1.40716624e+00 5.07629156e-01 8.28736007e-01 7.86437094e-01
9.86610174e-01 4.70529348e-02 1.16380095e+00 -1.89296797e-01
1.81429267e-01 -4.16146904e-01 8.15145820e-02 4.10254210e-01
7.35911906e-01 -1.40432775e-01 1.66419610e-01 -1.42701790e-01
5.48644841e-01 2.09457725e-01 -8.62543583e-01 1.25305802e-01
-6.83723629e-01 6.64526522e-01 7.65573263e-01 6.12097919e-01
-1.99119255e-01 -1.98963404e-01 3.91718984e-01 5.43544650e-01
7.75790289e-02 2.22891778e-01 -4.28991288e-01 2.23595783e-01
-4.36532885e-01 8.28862935e-03 1.03003085e+00 7.48761773e-01
5.47491729e-01 8.03003967e-01 -1.34967700e-01 7.14717150e-01
3.88722092e-01 1.22923136e+00 5.86926401e-01 -5.28511465e-01
2.08418667e-01 8.15620840e-01 1.06795635e-02 -1.31807351e+00
-3.70334029e-01 -5.64309955e-01 -1.27891386e+00 1.93942413e-01
-2.13565931e-01 -1.52983025e-01 -1.20512486e+00 7.42925525e-01
-4.76325303e-02 -1.13117825e-02 1.22593224e-01 7.55911410e-01
9.83793139e-01 9.56556797e-01 -5.19715369e-01 -3.06472957e-01
1.15935123e+00 -4.57017303e-01 -1.02077413e+00 9.54186991e-02
3.20115238e-01 -6.28007948e-01 9.31806087e-01 6.23089790e-01
-4.21676844e-01 -6.12747014e-01 -1.62857115e+00 3.98400515e-01
-6.29643440e-01 4.84563768e-01 1.21438153e-01 7.44419515e-01
-9.42772210e-01 7.23333538e-01 -4.69031811e-01 -2.02044144e-01
2.96072453e-01 3.55329365e-01 -3.27401757e-01 -3.10597867e-01
-1.19704235e+00 1.08215463e+00 -1.65034160e-02 8.62736464e-01
-8.96951079e-01 -2.65960872e-01 -7.88269162e-01 2.46887147e-01
1.34808179e-02 -3.62113059e-01 8.81874084e-01 -9.68831360e-01
-1.30372322e+00 -2.38639295e-01 1.99433113e-03 -1.89773977e-01
-6.48173466e-02 -7.64535889e-02 -1.10459661e+00 9.18140039e-02
-3.06554604e-02 -3.38479936e-01 1.03701544e+00 -1.33660066e+00
-3.54731143e-01 -3.21401447e-01 -5.04635036e-01 5.95340095e-02
-3.07271391e-01 -4.17627484e-01 2.38327280e-01 -4.35914546e-01
2.04082876e-01 -4.32099968e-01 3.29577327e-01 -4.26835984e-01
-5.87306440e-01 -3.54796737e-01 1.49198258e+00 -1.04648209e+00
9.68964398e-01 -1.99546611e+00 -1.38967976e-01 7.64511406e-01
-7.78013840e-02 3.88579875e-01 1.65739179e-01 6.92715406e-01
-4.12514389e-01 -2.13955969e-01 -6.19488657e-01 7.31666565e-01
-6.14583604e-02 4.50596929e-01 -1.31370306e-01 6.59325421e-01
6.44473195e-01 7.48129129e-01 -4.67798561e-01 2.15058744e-01
5.02100945e-01 4.13518220e-01 1.60088301e-01 2.39680752e-01
1.03390723e-01 2.59289652e-01 -1.33199066e-01 7.95885861e-01
1.14810276e+00 -7.33541846e-02 1.09224111e-01 -9.55435693e-01
-8.57202560e-02 -1.78767458e-01 -1.13053310e+00 7.37760067e-01
-3.46137524e-01 6.25393212e-01 -6.19422551e-03 -1.40194690e+00
1.04260695e+00 3.36985677e-01 3.78016919e-01 -8.48805368e-01
5.28422058e-01 2.45356172e-01 4.04750615e-01 -9.69246924e-01
-3.65029901e-01 4.50143516e-01 3.63829136e-01 -1.80230454e-01
1.09888040e-01 -4.30544943e-01 8.29725266e-02 -3.25194806e-01
1.09819913e+00 -4.06526119e-01 -4.06367891e-02 -5.21478832e-01
7.77857542e-01 -1.36028737e-01 6.60117030e-01 1.32289395e-01
2.67193437e-01 3.94147784e-01 5.83872974e-01 -3.14340830e-01
-7.39035666e-01 -1.02848780e+00 -4.98198092e-01 -3.32300961e-01
1.27565801e-01 1.30256012e-01 -7.39401281e-01 -5.84533572e-01
3.44607711e-01 7.40359187e-01 -4.78293717e-01 -3.99537653e-01
-2.40990847e-01 -9.35634553e-01 5.95574379e-01 6.53149366e-01
9.76086140e-01 -8.21325958e-01 -1.84995115e-01 2.39175018e-02
1.84627518e-01 -7.47264981e-01 1.54154897e-01 5.24559498e-01
-6.46681905e-01 -1.53345776e+00 -4.94815648e-01 -1.09118605e+00
9.51065600e-01 1.64665148e-01 6.70568228e-01 1.01358607e-01
-5.87007403e-01 3.09652865e-01 -4.92359370e-01 -4.51182038e-01
-1.24968320e-01 -6.61352158e-01 4.48971577e-02 6.59702793e-02
4.65000421e-02 -6.16280496e-01 -3.40764940e-01 2.31684476e-01
-9.45467472e-01 -6.18858039e-01 7.96798646e-01 1.15571833e+00
2.10179105e-01 1.03177893e+00 6.50946200e-01 -4.87338394e-01
6.73630357e-01 -5.43822110e-01 -7.24528074e-01 3.39910626e-01
-8.28377664e-01 -4.14290518e-01 1.00770473e+00 -2.18529031e-01
-1.01003027e+00 -2.21803144e-01 -2.66959727e-01 -6.79787457e-01
-3.40009958e-01 6.40962183e-01 -9.63106155e-01 -5.24420977e-01
6.21409059e-01 2.55376637e-01 -1.35794729e-02 -2.15098143e-01
2.22840756e-02 9.32342887e-01 6.75185978e-01 -2.99793601e-01
1.07700551e+00 7.40719065e-02 1.30182579e-01 -1.06702936e+00
-9.70444921e-03 1.00832351e-01 -3.66972417e-01 -1.83039129e-01
6.69919848e-01 -8.77647400e-01 -8.80733192e-01 1.26743877e+00
-1.17609417e+00 -1.02688305e-01 4.15114798e-02 2.26883560e-01
1.27681136e-01 6.67694092e-01 -7.54023254e-01 -4.90635365e-01
-6.02187395e-01 -1.36042440e+00 8.43745887e-01 5.86122990e-01
4.27941650e-01 -9.10793304e-01 -4.33625579e-01 -1.47864580e-01
4.32741195e-01 3.11869979e-01 1.45976448e+00 -4.22547996e-01
-3.06602567e-01 -3.30491096e-01 -3.57410431e-01 1.07916260e+00
6.63944602e-01 4.12265629e-01 -9.07037199e-01 -4.87365276e-01
6.10139549e-01 2.99592495e-01 2.15067148e-01 3.82731885e-01
1.33685935e+00 -3.90975565e-01 -2.19936699e-01 7.45614052e-01
1.81454074e+00 1.04246485e+00 1.03756356e+00 2.29977835e-02
9.86706614e-01 1.90030709e-01 2.45810956e-01 2.38011494e-01
1.41693056e-01 3.26113291e-02 6.40122175e-01 -8.60131979e-02
9.88093615e-02 4.13217157e-01 3.69729728e-01 1.05624807e+00
3.02285224e-01 -6.91635668e-01 -7.90333509e-01 5.44637680e-01
-1.20954227e+00 -5.05708754e-01 -6.15420401e-01 1.69976425e+00
2.82530338e-01 -1.43697441e-01 -6.90611005e-01 7.65570104e-01
8.84996593e-01 -2.66386211e-01 -7.72062182e-01 -4.23172355e-01
-5.87144911e-01 4.88111883e-01 3.60134929e-01 2.23046727e-02
-8.34571123e-01 -1.47492001e-02 5.79542351e+00 6.58173859e-01
-1.49225914e+00 -1.37875333e-01 3.94903749e-01 4.92938399e-01
-2.79990613e-01 -2.21955523e-01 5.42165637e-02 6.62035167e-01
6.61766827e-01 1.16441622e-01 4.22227949e-01 4.98290569e-01
-1.96303353e-01 -2.71720707e-01 -8.55184913e-01 1.31694305e+00
3.48664820e-01 -6.62012160e-01 1.43150583e-01 -2.69099623e-01
7.55796850e-01 -1.33846074e-01 -5.64984530e-02 -1.67324334e-01
-1.04351655e-01 -1.11086953e+00 3.04525256e-01 6.90767527e-01
7.86682606e-01 -8.20981860e-01 1.23980534e+00 -2.06138551e-01
-1.13080359e+00 -7.63071954e-01 -5.70916951e-01 -1.52778059e-01
-2.29110494e-01 1.19101512e+00 -8.15115154e-01 1.44000566e+00
1.30798888e+00 7.54294217e-01 -7.92838156e-01 1.13079655e+00
-1.78637162e-01 7.03068376e-01 -1.52595356e-01 -4.40989584e-02
-2.28757530e-01 -5.60406387e-01 2.82675505e-01 6.98351324e-01
1.07559204e+00 -1.83583096e-01 -2.45723233e-01 8.33024383e-01
2.87232071e-01 -1.40720740e-01 -8.64679515e-01 -1.44921988e-01
5.56282043e-01 1.46915412e+00 -6.51086390e-01 -1.89725205e-01
-4.33751315e-01 1.01940191e+00 -3.39255244e-01 6.17979586e-01
-7.62965560e-01 -9.03780341e-01 5.76354325e-01 -2.84633905e-01
3.80983680e-01 -7.64980167e-02 -4.66832668e-01 -6.92134619e-01
3.16400111e-01 -9.49230433e-01 2.27877051e-01 -1.40369344e+00
-1.73277104e+00 5.07383108e-01 -1.58117577e-01 -1.32296288e+00
1.03458889e-01 -1.04363263e+00 -1.34212863e+00 1.15348458e+00
-1.12456346e+00 -9.90361869e-01 -8.05553555e-01 5.50814807e-01
2.83030808e-01 -2.61450231e-01 6.08864248e-01 4.00985450e-01
-9.15824175e-01 3.42514247e-01 6.36724889e-01 1.36260822e-01
4.20379877e-01 -1.21664107e+00 3.16888362e-01 1.04242742e+00
-2.29877934e-01 2.89226286e-02 3.75435799e-01 -9.53164160e-01
-1.88106668e+00 -1.20815444e+00 1.98696569e-01 -3.16316783e-02
4.01232123e-01 -1.10454746e-01 -1.16564798e+00 3.03070188e-01
6.37148678e-01 -1.37167573e-01 1.98982432e-01 -6.36540830e-01
-6.00914881e-02 -5.43389320e-01 -1.21124649e+00 3.71983796e-01
5.23919344e-01 -5.92315078e-01 -4.58800584e-01 4.43850160e-01
5.31811953e-01 -3.32785219e-01 -1.20480931e+00 9.41511929e-01
7.16844425e-02 -5.42669356e-01 7.61288583e-01 9.24558192e-02
-2.19494980e-02 -9.51201439e-01 -1.57843798e-01 -1.74627042e+00
-5.59021592e-01 9.44787189e-02 1.13407642e-01 1.42942762e+00
9.51977354e-03 -1.28601909e+00 -9.29873902e-03 -2.28961930e-01
-8.16783369e-01 -8.18670809e-01 -8.40803146e-01 -6.18339121e-01
-1.66150093e-01 -6.98055327e-02 8.72031510e-01 1.04515660e+00
-4.17633533e-01 1.79584056e-01 2.46915743e-01 1.01044166e+00
9.42170992e-02 1.46022439e-01 2.36419633e-01 -1.41319227e+00
1.44531742e-01 -3.15673441e-01 -6.67545140e-01 -3.52869034e-02
1.21394671e-01 -7.40952611e-01 2.31351972e-01 -1.89892602e+00
-5.34704447e-01 -1.64059982e-01 -2.39949286e-01 4.22699392e-01
-1.18851103e-01 2.28559691e-02 -4.17954206e-01 -4.87866439e-02
3.79067183e-01 7.99522460e-01 1.07995701e+00 -7.30214655e-01
3.23909253e-01 -2.54534423e-01 -2.46703818e-01 3.88373673e-01
7.52223134e-01 1.84727106e-02 -5.60079455e-01 -5.43120325e-01
8.97603258e-02 8.00190568e-02 6.26304448e-01 -1.76347244e+00
1.55195758e-01 2.20266089e-01 1.10545897e+00 -8.71208668e-01
-1.42525434e-01 -1.08257174e+00 6.29450262e-01 7.06977844e-01
7.94363618e-01 4.86098796e-01 3.55357558e-01 3.47620964e-01
-4.76862341e-01 -2.69012630e-01 2.41431877e-01 4.41055924e-01
-5.28703511e-01 1.30454987e-01 -7.59549499e-01 -6.58803821e-01
8.16849232e-01 -1.67333156e-01 -8.35778117e-01 -1.05170526e-01
-1.73664540e-01 2.16808081e-01 3.78070652e-01 2.35322639e-01
9.12169993e-01 -1.60980844e+00 -4.70494270e-01 8.33587289e-01
-9.75996107e-02 1.56911999e-01 8.08888078e-01 8.04082572e-01
-8.99339497e-01 1.57095328e-01 -5.73656499e-01 -8.31258357e-01
-1.00514221e+00 4.79145944e-01 7.39051998e-01 3.49684715e-01
-3.16664755e-01 5.89165211e-01 1.49843208e-02 -2.22423568e-01
-1.88936055e-01 -7.45484829e-01 -4.55080330e-01 -3.82548682e-02
1.03191286e-03 5.97548604e-01 1.01796162e+00 -5.53873181e-01
-2.26248056e-01 7.42249787e-01 6.67732418e-01 4.67207283e-01
1.06434762e+00 3.65933508e-01 -6.70900047e-01 2.29848012e-01
1.18467486e+00 -3.06384265e-01 -9.63110507e-01 3.55988234e-01
-3.97021949e-01 -3.30844402e-01 -1.41388282e-01 -1.00965416e+00
-1.49476862e+00 1.01281381e+00 1.20183504e+00 6.17835522e-01
1.65423858e+00 -7.24113822e-01 5.49446642e-01 6.66025162e-01
9.98224169e-02 -9.06652331e-01 -8.71071517e-02 6.23053253e-01
1.17984068e+00 -4.90564674e-01 -1.20259136e-01 -5.60640275e-01
-3.13845277e-01 1.34639835e+00 9.31952119e-01 -2.44106025e-01
7.60229290e-01 5.27024806e-01 1.13507621e-01 -4.85570073e-01
-3.29262376e-01 1.64959535e-01 4.92641985e-01 9.74004924e-01
1.17193693e-02 3.70507464e-02 -2.27005389e-02 5.98319352e-01
-1.80489928e-01 -7.03670204e-01 3.90943736e-01 1.06284285e+00
-3.91458482e-01 -8.12815130e-01 -9.01321948e-01 1.14231241e+00
-1.13159560e-01 9.73530188e-02 -4.22610372e-01 5.93128145e-01
4.72916335e-01 1.28713751e+00 2.40568250e-01 -7.28460491e-01
6.89338982e-01 1.87973097e-01 5.85497439e-01 -1.48334384e-01
-4.31449860e-01 -1.36877462e-01 -1.75703451e-01 -2.48619109e-01
3.80725414e-02 -4.12219077e-01 -1.18144929e+00 -4.87247631e-02
-7.60437787e-01 2.38514498e-01 6.65249527e-01 9.96926904e-01
2.94377834e-01 1.19285059e+00 9.74989891e-01 -8.06029618e-01
-1.64724559e-01 -1.27605247e+00 -8.40830863e-01 3.14934880e-01
1.18741080e-01 -9.98849154e-01 -5.02040386e-01 -1.50952473e-01] | [7.090937614440918, 2.080533266067505] |
ab4d9ff1-eaf2-4180-8d85-644c95c842c5 | a-multi-task-bert-model-for-schema-guided | 2207.00828 | null | https://arxiv.org/abs/2207.00828v1 | https://arxiv.org/pdf/2207.00828v1.pdf | A Multi-Task BERT Model for Schema-Guided Dialogue State Tracking | Task-oriented dialogue systems often employ a Dialogue State Tracker (DST) to successfully complete conversations. Recent state-of-the-art DST implementations rely on schemata of diverse services to improve model robustness and handle zero-shot generalization to new domains [1], however such methods [2, 3] typically require multiple large scale transformer models and long input sequences to perform well. We propose a single multi-task BERT-based model that jointly solves the three DST tasks of intent prediction, requested slot prediction and slot filling. Moreover, we propose an efficient and parsimonious encoding of the dialogue history and service schemata that is shown to further improve performance. Evaluation on the SGD dataset shows that our approach outperforms the baseline SGP-DST by a large margin and performs well compared to the state-of-the-art, while being significantly more computationally efficient. Extensive ablation studies are performed to examine the contributing factors to the success of our model. | ['Alexandros Potamianos', 'Efthymios Georgiou', 'Eleftherios Kapelonis'] | 2022-07-02 | null | null | null | null | ['dialogue-state-tracking', 'zero-shot-slot-filling', 'slot-filling'] | ['natural-language-processing', 'natural-language-processing', 'natural-language-processing'] | [ 2.08579481e-01 5.75939834e-01 -2.40521535e-01 -5.70898414e-01
-9.92195249e-01 -6.62579238e-01 1.08917844e+00 -1.42188057e-01
-2.30702743e-01 7.76575863e-01 4.96202528e-01 -4.45819259e-01
1.86851427e-01 -1.65522054e-01 -8.29010978e-02 -9.04952660e-02
7.47841001e-02 1.29966414e+00 6.96217239e-01 -7.55655050e-01
2.86647618e-01 -5.72403744e-02 -1.36030793e+00 4.32194293e-01
8.97582829e-01 6.99252963e-01 2.25319877e-01 7.79956043e-01
-5.19507945e-01 7.87305415e-01 -7.50852168e-01 -3.82221133e-01
1.00844793e-01 -4.77787465e-01 -1.29292285e+00 3.04117382e-01
2.19230149e-02 -5.33974528e-01 -4.39133316e-01 3.68194491e-01
6.18068337e-01 3.23193520e-01 3.26675177e-01 -1.42547810e+00
8.30636173e-02 5.72905660e-01 3.11521497e-02 -1.65268444e-02
7.52523720e-01 2.52207845e-01 1.12564313e+00 -5.95186949e-01
7.28937924e-01 1.54610848e+00 6.44448400e-01 9.38833237e-01
-1.33899295e+00 -2.15578705e-01 2.44376361e-01 1.01313345e-01
-8.24479938e-01 -1.00070930e+00 4.67419684e-01 8.74646008e-02
1.68976748e+00 4.31497365e-01 4.76084471e-01 1.40780032e+00
-1.85653538e-01 1.28591406e+00 1.15568197e+00 -4.57136273e-01
3.11234593e-01 2.71892071e-01 9.47355703e-02 6.13711536e-01
-5.66418946e-01 -3.70431811e-01 -9.47648823e-01 -5.78155696e-01
3.99724513e-01 -5.05623996e-01 7.23811984e-03 -3.95585835e-01
-9.60940301e-01 9.04082656e-01 -4.27581638e-01 1.43841133e-01
-2.32778981e-01 -4.37329054e-01 8.92214954e-01 5.13224125e-01
5.93964994e-01 5.63077807e-01 -7.12382615e-01 -1.21157587e+00
-6.80536091e-01 5.63746333e-01 1.66056919e+00 1.19605052e+00
3.52262467e-01 -1.32588297e-01 -4.98443067e-01 1.31390691e+00
5.16622886e-02 -4.57757227e-02 4.23271269e-01 -1.30989146e+00
6.52625680e-01 5.76986313e-01 3.24323237e-01 -1.80232912e-01
-6.04085267e-01 2.16816351e-01 -1.69574797e-01 -3.81851584e-01
6.19234979e-01 -1.98015839e-01 -6.60279095e-01 1.68371427e+00
4.19499576e-01 1.32104531e-01 4.45098579e-01 5.55535316e-01
5.86697817e-01 7.06170797e-01 1.11122072e-01 -2.57323086e-01
1.37004840e+00 -1.32320046e+00 -8.24265242e-01 -6.49393857e-01
8.92658055e-01 -6.59414351e-01 1.28057134e+00 1.97575852e-01
-1.40440619e+00 -9.73225981e-02 -6.52612805e-01 -1.78051442e-01
4.22273837e-02 -2.42912993e-01 9.38290536e-01 8.24292183e-01
-1.01851344e+00 3.29592079e-01 -8.71135712e-01 -9.19044673e-01
-1.69776261e-01 1.82802826e-01 -1.30751908e-01 -8.99983197e-03
-1.38430858e+00 1.38638926e+00 2.03840271e-01 -2.97490925e-01
-8.11638772e-01 -4.66604292e-01 -8.79402518e-01 1.91641942e-01
6.07088327e-01 -4.83767509e-01 2.26616907e+00 -4.19376999e-01
-2.28573465e+00 6.19588733e-01 -4.56213385e-01 -7.03672945e-01
6.32393062e-01 -1.33914962e-01 -7.27688372e-02 1.82864994e-01
3.08733657e-02 5.09745777e-01 3.73204201e-01 -8.46779764e-01
-9.25726712e-01 2.26581357e-02 5.19783914e-01 7.45423496e-01
-2.90731490e-01 1.25603914e-01 -6.76471531e-01 -8.72745588e-02
7.44251208e-03 -1.04746079e+00 -2.25626305e-01 -3.28756928e-01
-3.27500552e-01 -6.60307109e-01 7.77275741e-01 -7.82472551e-01
1.32303703e+00 -1.75490820e+00 2.60146260e-01 -3.51360261e-01
-1.35258123e-01 2.71090716e-01 -8.21668431e-02 9.23926651e-01
5.23223877e-01 -2.32628301e-01 -5.36233149e-02 -8.46186221e-01
4.08259809e-01 5.44750631e-01 -2.49442086e-01 2.69557312e-02
6.70476034e-02 6.59757495e-01 -7.48802841e-01 -4.54448611e-01
3.20634514e-01 1.90860126e-02 -7.35620439e-01 5.85906327e-01
-7.38411009e-01 3.79240155e-01 -2.61828274e-01 3.99615824e-01
1.02014683e-01 -3.81926239e-01 7.20619619e-01 1.33892134e-01
4.76858169e-02 1.23009133e+00 -8.09611380e-01 2.14521480e+00
-6.74670815e-01 3.87788713e-01 3.69751334e-01 -8.11519861e-01
7.70339608e-01 7.78309464e-01 3.69981945e-01 -7.48795331e-01
-1.23229526e-01 1.24076910e-01 -1.07257888e-02 -3.23300898e-01
9.12958384e-01 -1.23853967e-01 -3.47078264e-01 7.49324441e-01
2.20690727e-01 -1.08500138e-01 2.68471599e-01 5.51388800e-01
1.20818901e+00 6.09480105e-02 2.83215553e-01 -3.71322446e-02
3.70931178e-01 2.20645234e-01 6.68909609e-01 9.74887311e-01
-4.63933438e-01 9.03551728e-02 7.93347180e-01 -2.87669539e-01
-1.19666564e+00 -5.84414661e-01 8.40517804e-02 1.75107682e+00
7.66341537e-02 -5.85194647e-01 -9.07896876e-01 -8.42529595e-01
-7.32011860e-03 1.26586795e+00 -1.38406277e-01 -5.26779518e-02
-6.21166646e-01 -4.69894409e-01 8.09102893e-01 3.49530101e-01
6.32670939e-01 -8.21192682e-01 -4.56203103e-01 6.81813955e-01
-6.55806363e-01 -1.54673886e+00 -3.46669763e-01 2.15610713e-01
-6.67539656e-01 -6.95626676e-01 -4.51001167e-01 -4.53303546e-01
2.81355046e-02 2.90086538e-01 1.28320920e+00 -4.68263850e-02
6.55469224e-02 4.81245637e-01 -4.76277918e-01 2.25336682e-02
-1.01122439e+00 5.66173792e-01 1.90186828e-01 -2.86141634e-01
4.08401251e-01 -4.39684331e-01 -1.97069958e-01 6.61148548e-01
-4.69037592e-01 5.47201753e-01 2.00405911e-01 1.16037393e+00
-2.77284771e-01 -3.80962342e-01 7.43201375e-01 -1.19538057e+00
1.00330770e+00 -4.17432755e-01 -2.62233496e-01 4.22924370e-01
-7.60535121e-01 2.31965989e-01 4.49483275e-01 -2.67254502e-01
-1.51818776e+00 -3.03780168e-01 -3.09309721e-01 -5.67202829e-02
-1.04276784e-01 2.18678281e-01 -6.89083636e-02 1.93955243e-01
5.47690988e-01 5.64725041e-01 3.36804956e-01 -7.11275458e-01
3.73302758e-01 9.48641717e-01 2.36026853e-01 -7.82857656e-01
3.25636357e-01 4.72408980e-02 -4.82025415e-01 -7.37026393e-01
-6.15702450e-01 -6.50807261e-01 -4.77974623e-01 -5.34588285e-02
4.30178195e-01 -9.15104568e-01 -8.23403358e-01 4.61194873e-01
-1.19634831e+00 -7.41647482e-01 5.85082397e-02 -1.10812001e-01
-1.00643778e+00 5.74976802e-01 -1.06883764e+00 -1.19880772e+00
-5.35851479e-01 -1.14681399e+00 1.14253306e+00 1.33935526e-01
-6.37817085e-01 -1.15171647e+00 1.15105873e-02 7.74433553e-01
5.70167959e-01 -5.42054355e-01 1.03701246e+00 -1.29801571e+00
-4.59118575e-01 3.85404341e-02 -5.37061468e-02 -8.70121717e-02
-5.17105870e-02 -4.69847858e-01 -8.99483144e-01 -4.93169457e-01
-1.09041579e-01 -7.05613136e-01 4.23697561e-01 -1.62981331e-01
3.86695504e-01 -5.38599730e-01 -3.85079324e-01 5.99800684e-02
6.03725076e-01 3.21042806e-01 3.17452103e-01 4.30173814e-01
3.48984674e-02 7.23467350e-01 1.00577152e+00 6.95912182e-01
9.55198586e-01 1.12593019e+00 -3.52491923e-02 1.38673693e-01
5.80358654e-02 -3.15349430e-01 5.08338749e-01 9.13508475e-01
4.70324904e-01 -3.29122752e-01 -1.02473795e+00 6.45625710e-01
-2.19613838e+00 -8.39901447e-01 4.17578518e-01 1.82123721e+00
1.04782379e+00 4.64592457e-01 5.15634000e-01 -3.32079940e-02
3.89127225e-01 3.83967161e-01 -7.07316220e-01 -6.48765445e-01
9.28543508e-02 -4.98827398e-02 1.83349669e-01 7.01566458e-01
-7.80908108e-01 1.38248253e+00 7.10686064e+00 6.52924955e-01
-5.68948686e-01 2.44484916e-01 3.41002792e-01 -1.44542426e-01
-1.12097196e-01 2.51728147e-01 -1.06462288e+00 3.79675925e-01
1.32369590e+00 -3.53308678e-01 5.40187061e-01 8.87109697e-01
9.61861983e-02 -2.75225490e-01 -1.09717607e+00 5.87295175e-01
1.02954470e-02 -1.27538788e+00 -1.81458667e-01 -1.14156172e-01
2.40151957e-01 9.52154994e-02 -3.14731300e-01 7.72680223e-01
8.22272837e-01 -5.54786801e-01 3.80217463e-01 1.27120569e-01
5.97972333e-01 -3.48249137e-01 3.60877186e-01 6.41612470e-01
-8.59537899e-01 -1.57028109e-01 -1.17415115e-01 -1.41383350e-01
5.73685765e-01 -1.61499813e-01 -1.63877845e+00 3.42738420e-01
3.19635838e-01 4.68450367e-01 -3.04389596e-01 5.91755271e-01
-4.85350937e-03 6.74431562e-01 -4.46998775e-01 -1.63549691e-01
4.15263653e-01 1.00615814e-01 7.39360392e-01 1.11454010e+00
-2.17409916e-02 1.48765892e-01 5.36609530e-01 4.28580672e-01
1.70903429e-01 -1.49698824e-01 -3.73075098e-01 -8.63757730e-02
8.34855080e-01 1.09380341e+00 -3.18785220e-01 -5.08006036e-01
-6.01447999e-01 1.27466977e+00 3.82491529e-01 2.20942363e-01
-4.92711335e-01 -1.61052868e-02 9.99607146e-01 -2.29891121e-01
1.95271879e-01 -2.99009711e-01 -1.24385580e-01 -1.29379177e+00
-2.01697841e-01 -1.27956033e+00 4.73401517e-01 -5.31266868e-01
-1.10315466e+00 6.58604026e-01 -1.75273418e-03 -7.83390462e-01
-9.18003738e-01 -1.79000512e-01 -4.18822438e-01 9.04053509e-01
-1.38746727e+00 -1.06987739e+00 5.86127080e-02 4.92591113e-01
1.28133821e+00 -3.76288474e-01 1.33988011e+00 -4.74792123e-02
-7.37606287e-01 6.56160176e-01 1.22392200e-01 -1.42956093e-01
8.26957047e-01 -1.33175087e+00 1.19621682e+00 5.07465303e-01
-2.53202796e-01 4.96905446e-01 1.00713968e+00 -6.60284340e-01
-1.54053617e+00 -5.47596395e-01 1.06438673e+00 -6.19619131e-01
7.16422319e-01 -7.32490480e-01 -9.97975409e-01 9.01843786e-01
3.55881214e-01 -6.90379977e-01 6.08665109e-01 6.12596691e-01
-3.24640274e-01 2.93041527e-01 -1.08820343e+00 5.94729722e-01
1.04778898e+00 -7.26552725e-01 -8.04792821e-01 4.70035911e-01
7.45963752e-01 -7.96594441e-01 -9.81900513e-01 9.47043747e-02
5.62148333e-01 -1.04395556e+00 7.51393437e-01 -8.82991731e-01
-4.20882478e-02 4.00238037e-01 -1.87621787e-02 -1.29955733e+00
-1.05697438e-01 -1.29055786e+00 -5.07330179e-01 1.07647717e+00
5.17997265e-01 -5.89924276e-01 8.91437173e-01 1.29343808e+00
-1.94329545e-01 -5.93873680e-01 -1.31734562e+00 -6.67106926e-01
-1.61860153e-01 -2.34873667e-01 5.31352937e-01 7.29020953e-01
7.43514001e-01 9.69176173e-01 -8.57105374e-01 -2.38480762e-01
2.74537712e-01 6.83733970e-02 1.06586444e+00 -1.18769908e+00
-3.98194760e-01 -2.94243395e-01 1.80901080e-01 -1.63934362e+00
3.72728139e-01 -4.23795938e-01 1.48587793e-01 -1.59045100e+00
-4.19229530e-02 -6.41168177e-01 2.00435579e-01 6.90516353e-01
-2.11534649e-01 -4.69116390e-01 3.71690780e-01 2.90739328e-01
-1.10286200e+00 7.43264139e-01 9.04475927e-01 4.52860333e-02
-4.67832774e-01 2.15915620e-01 -5.12959957e-01 3.82096410e-01
6.56331301e-01 -1.46260172e-01 -5.91669619e-01 -2.16083512e-01
-3.13427538e-01 7.48151004e-01 -2.77446330e-01 -6.71436727e-01
4.71810907e-01 -1.70426115e-01 -4.24597651e-01 -3.90217513e-01
1.09529805e+00 -3.88840467e-01 -3.04924905e-01 2.52060026e-01
-6.78810239e-01 -1.19756676e-01 3.38265866e-01 4.45550561e-01
1.19751044e-01 -1.99416399e-01 6.18469536e-01 -2.24898517e-01
-8.33029091e-01 -3.92743982e-02 -8.43218625e-01 2.10376680e-01
8.45297694e-01 -1.08578019e-01 -4.95325774e-01 -9.03985679e-01
-4.65223312e-01 4.95252997e-01 4.14709300e-01 7.40744650e-01
2.40463212e-01 -9.42241848e-01 -4.86399233e-01 1.75194696e-01
2.27964059e-01 -3.15898567e-01 2.15368107e-01 6.85675919e-01
-1.08327635e-01 8.39962006e-01 -1.71430320e-01 -6.00040317e-01
-1.40480876e+00 1.10214688e-01 3.21452677e-01 -6.24949038e-01
-7.25998461e-01 6.22901440e-01 -2.05920920e-01 -9.07405794e-01
5.22008061e-01 1.05798738e-02 -4.94167954e-02 -3.43581289e-02
3.55918199e-01 2.83258557e-01 -3.22145186e-02 -3.73030931e-01
-1.75669864e-01 -3.52843434e-01 -5.28857529e-01 -5.24446249e-01
1.12099481e+00 -5.82497239e-01 1.46383390e-01 5.64384639e-01
7.85512686e-01 -6.13613486e-01 -1.38602042e+00 -7.98040867e-01
3.74940604e-01 -4.13117617e-01 -2.05934063e-01 -1.14013863e+00
-1.79661319e-01 6.90279782e-01 9.57625732e-02 5.85950196e-01
6.79725170e-01 -2.05598280e-01 1.20645440e+00 6.10637426e-01
6.62396252e-01 -1.35053825e+00 5.21474145e-02 1.06135035e+00
5.17310381e-01 -1.15128303e+00 -3.27879846e-01 -2.38923222e-01
-1.19230151e+00 8.76109481e-01 7.66858399e-01 6.82462871e-01
5.67212934e-03 2.10790232e-01 1.68851182e-01 8.20944533e-02
-1.55936611e+00 -1.03609256e-01 -1.76550314e-01 3.83850724e-01
2.50954300e-01 -2.13530898e-01 -2.27554440e-01 4.57677037e-01
-6.61068335e-02 -6.63183182e-02 4.57898378e-01 1.25469434e+00
-4.88778710e-01 -1.53568113e+00 6.12234622e-02 3.83159429e-01
-1.80726603e-01 -1.05861627e-01 -5.01183212e-01 5.97852349e-01
-9.46444571e-01 1.24061477e+00 6.44103289e-02 -3.88920188e-01
5.36243260e-01 8.49003375e-01 2.51314461e-01 -7.86424041e-01
-9.51350331e-01 3.54223885e-02 1.08480012e+00 -6.65701628e-01
-2.16594100e-01 -7.92796016e-01 -1.02139139e+00 -6.07063949e-01
-3.17586452e-01 5.20220399e-01 5.67132771e-01 1.02214324e+00
6.64616287e-01 2.11618274e-01 6.73145115e-01 -6.58021510e-01
-1.01407170e+00 -1.34693456e+00 -2.63746709e-01 3.69024098e-01
7.77420774e-02 -7.20522881e-01 -1.31818518e-01 -3.57315719e-01] | [12.847508430480957, 7.907779216766357] |
e8baf834-df85-4038-b748-aa1453db1002 | a-mixture-of-expert-approach-to-rl-based | 2206.00059 | null | https://arxiv.org/abs/2206.00059v1 | https://arxiv.org/pdf/2206.00059v1.pdf | A Mixture-of-Expert Approach to RL-based Dialogue Management | Despite recent advancements in language models (LMs), their application to dialogue management (DM) problems and ability to carry on rich conversations remain a challenge. We use reinforcement learning (RL) to develop a dialogue agent that avoids being short-sighted (outputting generic utterances) and maximizes overall user satisfaction. Most existing RL approaches to DM train the agent at the word-level, and thus, have to deal with a combinatorially complex action space even for a medium-size vocabulary. As a result, they struggle to produce a successful and engaging dialogue even if they are warm-started with a pre-trained LM. To address this issue, we develop a RL-based DM using a novel mixture of expert language model (MoE-LM) that consists of (i) a LM capable of learning diverse semantics for conversation histories, (ii) a number of {\em specialized} LMs (or experts) capable of generating utterances corresponding to a particular attribute or personality, and (iii) a RL-based DM that performs dialogue planning with the utterances generated by the experts. Our MoE approach provides greater flexibility to generate sensible utterances with different intents and allows RL to focus on conversational-level DM. We compare it with SOTA baselines on open-domain dialogues and demonstrate its effectiveness both in terms of the diversity and sensibility of the generated utterances and the overall DM performance. | ['Craig Boutilier', 'Mohammad Ghavamzadeh', 'MoonKyung Ryu', 'Ofir Nachum', 'Aza Tulepbergenov', 'Yinlam Chow'] | 2022-05-31 | null | null | null | null | ['dialogue-management'] | ['natural-language-processing'] | [ 4.96041588e-02 9.31947827e-01 1.00346357e-01 -4.74901140e-01
-8.45795870e-01 -6.76195323e-01 9.54366326e-01 -2.78975517e-01
-2.85044968e-01 9.45168197e-01 5.50476015e-01 -4.11862105e-01
3.96213531e-01 -7.27173805e-01 -1.52565107e-01 -3.05858672e-01
2.00341940e-01 1.18569994e+00 -1.05181627e-01 -9.44267154e-01
-1.44087840e-02 1.20705917e-01 -1.28910935e+00 4.62362975e-01
9.80601490e-01 5.19864678e-01 4.00827497e-01 1.09408355e+00
-4.86571521e-01 1.19846284e+00 -9.32138801e-01 -4.48322624e-01
-1.81401774e-01 -8.23695123e-01 -1.46872568e+00 4.42163408e-01
-1.39582545e-01 -5.47900140e-01 -1.03149302e-01 3.69276762e-01
7.71341085e-01 4.95440304e-01 6.53103828e-01 -1.09155881e+00
-2.80283451e-01 8.65095079e-01 2.53659308e-01 -2.61875629e-01
9.08433676e-01 6.99145138e-01 1.11545801e+00 -5.10867178e-01
7.43752360e-01 1.77233815e+00 2.01212019e-01 1.40725648e+00
-1.34519112e+00 -2.80259084e-02 1.15434319e-01 -3.47323030e-01
-7.29689538e-01 -8.47979784e-01 4.04128313e-01 -1.34589016e-01
1.38889563e+00 2.07118422e-01 3.06347162e-01 1.50227857e+00
-1.13807477e-01 9.86175239e-01 8.70573044e-01 -5.18229306e-01
3.26105773e-01 6.31445348e-01 -2.53143579e-01 4.48467910e-01
-6.90542638e-01 -3.00032586e-01 -4.47105139e-01 -2.45594814e-01
5.06418705e-01 -7.18427002e-01 -8.12260136e-02 1.98137970e-03
-1.07681680e+00 1.24490047e+00 -2.04324797e-01 3.47127587e-01
-4.83082205e-01 -3.84391367e-01 5.37035286e-01 6.73808813e-01
2.85154909e-01 1.17369020e+00 -6.21663451e-01 -5.56899607e-01
-4.16671187e-01 5.05270541e-01 1.70054066e+00 9.99240398e-01
4.68466669e-01 1.30879968e-01 -5.98374248e-01 1.34858561e+00
2.33601272e-01 4.69378144e-01 6.00148678e-01 -1.24182987e+00
4.61091429e-01 6.85548604e-01 3.71538311e-01 -3.53224427e-01
-5.62816322e-01 2.91378573e-02 -5.36274493e-01 -5.47515824e-02
2.94789553e-01 -7.83639610e-01 -3.05629462e-01 2.06907105e+00
3.08172375e-01 -2.76519388e-01 7.98386991e-01 6.05523288e-01
1.06342995e+00 9.64971662e-01 2.16607958e-01 -3.52382392e-01
1.06114197e+00 -1.12933016e+00 -7.04221129e-01 -6.20165288e-01
9.45058346e-01 -5.52713692e-01 1.41213810e+00 3.14261109e-01
-1.52332044e+00 -5.47953486e-01 -6.68045700e-01 -1.82865337e-02
-5.44198193e-02 -1.11926496e-01 2.47824624e-01 4.45264608e-01
-1.30176067e+00 2.73286819e-01 -1.56814575e-01 -5.25741875e-01
-3.27741593e-01 3.50079864e-01 3.72857675e-02 1.98729217e-01
-1.62803471e+00 1.32490480e+00 2.85099417e-01 -2.43190974e-01
-9.41954911e-01 -1.53552011e-01 -1.01167572e+00 -6.69275597e-02
3.61428320e-01 -7.86179721e-01 2.00080943e+00 -1.16660225e+00
-2.54944587e+00 7.51476288e-01 9.93184671e-02 -4.27934289e-01
5.52806854e-01 -3.01842168e-02 -2.38324493e-01 6.55855536e-02
-7.95373693e-03 9.90365505e-01 6.41900480e-01 -1.24996436e+00
-7.54802465e-01 2.04664201e-01 5.47846138e-01 8.02948833e-01
-2.45454520e-01 -1.48174837e-01 -2.37647951e-01 -5.95282353e-02
-5.65263391e-01 -9.68737602e-01 -4.06293839e-01 -8.40511918e-01
-5.23102880e-01 -6.48317575e-01 3.30639124e-01 -6.04167581e-01
1.33431458e+00 -1.80644071e+00 5.77815711e-01 -5.73590770e-02
4.88265157e-02 5.18788278e-01 -4.77497101e-01 8.80526483e-01
4.39225465e-01 9.39584710e-03 6.82583079e-02 -6.68939352e-01
2.64437795e-01 3.38876665e-01 -1.16082720e-01 -2.22378492e-01
4.06315982e-01 8.90808225e-01 -1.13698900e+00 -4.56005722e-01
3.46389264e-01 6.72487691e-02 -7.07481802e-01 1.17353368e+00
-9.39796448e-01 8.40023398e-01 -4.82009172e-01 5.46709076e-02
1.72541719e-02 -2.67753631e-01 5.00299275e-01 3.16658944e-01
1.04185678e-01 7.27069259e-01 -1.01108980e+00 1.62303352e+00
-1.04208028e+00 2.09913090e-01 3.12870681e-01 -5.44085205e-01
1.15862691e+00 6.80568278e-01 2.19444066e-01 -6.97928607e-01
4.16471586e-02 1.73800364e-01 1.90762684e-01 -7.46140361e-01
8.18294108e-01 -3.12125027e-01 -4.41470742e-01 9.32140887e-01
2.97047228e-01 -5.89661956e-01 1.80383116e-01 4.20409888e-01
1.01434731e+00 -4.05992381e-02 3.09131801e-01 7.36233592e-02
8.53079617e-01 -2.80549694e-02 2.02022955e-01 7.93239057e-01
5.89867961e-03 1.20928839e-01 5.84154785e-01 -2.19070073e-02
-1.08702433e+00 -6.85032487e-01 2.94749081e-01 1.56858945e+00
-2.50106990e-01 -3.04214805e-01 -1.00510585e+00 -5.64169466e-01
-3.15718949e-01 1.37449193e+00 -4.62770984e-02 -2.69782394e-01
-6.03779614e-01 -1.96362972e-01 7.64648736e-01 6.06351532e-02
4.83942688e-01 -1.61170840e+00 -4.92618620e-01 5.63871145e-01
-6.25634909e-01 -1.13770843e+00 -4.80111927e-01 3.38595361e-02
-3.91763568e-01 -5.22089899e-01 -4.69099820e-01 -7.04142034e-01
3.60983193e-01 -1.46530405e-01 1.52283645e+00 3.88426222e-02
3.44160825e-01 7.12980032e-01 -4.77958858e-01 -2.33915076e-01
-1.47218549e+00 3.68548781e-01 2.97235958e-02 -9.83157158e-02
2.86386222e-01 -1.28568962e-01 -2.01436386e-01 3.93888772e-01
-7.29177713e-01 3.07774931e-01 4.53134060e-01 1.03866971e+00
-3.90869796e-01 -2.37830475e-01 1.20688045e+00 -1.00438035e+00
1.55458117e+00 -6.57291293e-01 1.45382127e-02 2.85568595e-01
-3.84816766e-01 2.83894241e-01 8.42631221e-01 -5.29536366e-01
-1.40768337e+00 -1.88422799e-01 -5.47667801e-01 2.33113751e-01
-2.91246921e-01 3.20800632e-01 -2.46011168e-01 4.48216587e-01
9.97256219e-01 2.83071607e-01 4.63127762e-01 -6.60647899e-02
8.04777086e-01 1.24095118e+00 3.30606431e-01 -8.69710207e-01
3.28596681e-01 -4.05972570e-01 -6.73135996e-01 -9.89336431e-01
-7.19212353e-01 -3.59020650e-01 -4.51457471e-01 -4.00686532e-01
7.46076703e-01 -8.08787525e-01 -8.83695126e-01 2.55138516e-01
-1.23182905e+00 -1.04106200e+00 -2.50123590e-01 3.42097729e-02
-1.05208135e+00 1.16164297e-01 -8.38465691e-01 -1.23294055e+00
-4.32566106e-01 -1.16492045e+00 8.87023628e-01 2.96151906e-01
-1.02094662e+00 -1.30113065e+00 1.77412018e-01 4.73973840e-01
5.52343369e-01 -1.18976772e-01 9.91841435e-01 -1.10934234e+00
-3.37339789e-02 3.21738981e-02 2.25444347e-01 4.57041651e-01
8.25376064e-02 -2.22011402e-01 -9.50001836e-01 -1.98628396e-01
-3.66526027e-03 -1.11835361e+00 5.63724637e-02 5.24303131e-02
4.31840658e-01 -7.18442261e-01 5.60395643e-02 -1.54832736e-01
6.17702067e-01 3.17028940e-01 4.29046631e-01 1.41457558e-01
2.44960234e-01 1.09914470e+00 6.80289149e-01 7.16291070e-01
8.71855915e-01 6.70527816e-01 1.35513753e-01 -1.62511259e-01
1.73431903e-01 -3.81619334e-01 6.64148033e-01 8.32573354e-01
2.29064077e-01 -5.66240788e-01 -7.58173168e-01 4.57664907e-01
-1.96621561e+00 -9.09139156e-01 3.08801860e-01 1.93875718e+00
1.54499030e+00 1.69475242e-01 5.53261936e-01 -4.80505794e-01
4.00373191e-01 2.22386256e-01 -6.62262619e-01 -1.21662283e+00
2.89363060e-02 8.48807320e-02 -2.20158532e-01 9.01837349e-01
-5.74070811e-01 1.26622915e+00 6.15437078e+00 5.43182671e-01
-8.74855757e-01 -7.57198408e-02 7.47743309e-01 1.37034938e-01
-3.80953908e-01 -1.83693066e-01 -9.19379473e-01 2.08296955e-01
1.38196826e+00 -1.76117375e-01 7.11833537e-01 7.43860185e-01
3.97220343e-01 -7.16617033e-02 -1.39704108e+00 5.76572418e-01
-3.08753317e-03 -1.09456110e+00 2.04753950e-01 -1.62708923e-01
5.80561638e-01 -3.79179984e-01 -2.01131538e-01 1.00529933e+00
8.32683086e-01 -1.38913798e+00 3.12541693e-01 4.42767501e-01
5.99456131e-01 -7.42459357e-01 7.14767218e-01 1.02927959e+00
-5.49205065e-01 -6.69021010e-02 -1.20552525e-01 -1.04552947e-01
2.56431609e-01 -2.56376177e-01 -1.59522367e+00 2.09251195e-01
-1.23684749e-01 1.71093971e-01 -3.21244937e-03 7.32946917e-02
-2.45573685e-01 3.51566583e-01 -5.09031005e-02 -4.61906850e-01
5.33250690e-01 -1.22781143e-01 4.77281451e-01 1.32884085e+00
-1.66891202e-01 2.33834773e-01 5.58798552e-01 8.16420376e-01
-3.93896736e-02 3.34898949e-01 -6.49566889e-01 -2.81818509e-01
6.83044016e-01 1.21681476e+00 7.89531600e-03 -4.17857826e-01
-4.25420225e-01 1.09855735e+00 4.20569450e-01 2.42108881e-01
-2.51318485e-01 -3.95486206e-02 6.04696274e-01 -1.41650796e-01
-1.50416479e-01 4.91988962e-04 -5.48891127e-02 -8.49751711e-01
-5.50726593e-01 -1.67036211e+00 1.75287932e-01 -5.98716974e-01
-1.31562984e+00 8.95761251e-01 -1.32294804e-01 -7.43902326e-01
-1.21147239e+00 -2.45863095e-01 -6.89170420e-01 1.08757031e+00
-1.12685502e+00 -9.71430242e-01 7.14688823e-02 5.25756478e-01
1.19339967e+00 -4.99424696e-01 1.29992485e+00 -1.88997954e-01
-5.42120397e-01 4.92102206e-01 -3.03021222e-01 -7.70038292e-02
7.72831380e-01 -1.43407190e+00 4.39005166e-01 5.28881289e-02
-3.35612059e-01 4.76619214e-01 1.05146015e+00 -5.38189113e-01
-1.29645681e+00 -8.68334174e-01 1.19544256e+00 -6.51004076e-01
4.49942917e-01 -3.84135336e-01 -7.93338478e-01 5.67570210e-01
5.57416201e-01 -1.01979971e+00 6.81813538e-01 1.88818008e-01
3.43879402e-01 4.51413065e-01 -1.26723742e+00 9.24853325e-01
6.03891015e-01 -5.15790880e-01 -7.50780463e-01 4.96303171e-01
7.83637881e-01 -6.07387364e-01 -8.99899304e-01 2.99365576e-02
1.71271995e-01 -8.55550408e-01 7.49517322e-01 -8.47164929e-01
4.79632169e-01 3.04380655e-01 9.29223523e-02 -1.68409860e+00
8.42559710e-02 -1.09547091e+00 -4.23260219e-02 1.33819735e+00
6.84133291e-01 -3.87590498e-01 2.79871881e-01 1.08316612e+00
-7.05367550e-02 -7.52827466e-01 -4.88619626e-01 -3.19317400e-01
2.35377222e-01 -1.30046368e-01 5.08949220e-01 8.03924680e-01
5.98621726e-01 1.27348101e+00 -7.28127182e-01 -3.07893366e-01
-6.18641712e-02 -9.80142429e-02 1.26181448e+00 -9.98282373e-01
-5.84458411e-01 -4.75638121e-01 5.87870002e-01 -1.46151078e+00
5.45334160e-01 -6.32301867e-01 5.73867857e-01 -1.61252570e+00
-2.99059540e-01 -5.47721982e-01 4.87040341e-01 2.47984335e-01
-1.51193798e-01 -6.04155183e-01 9.08489674e-02 5.53736389e-02
-7.37767816e-01 6.03595793e-01 1.29861724e+00 1.91114336e-01
-7.78015375e-01 3.31304610e-01 -7.18963325e-01 6.30842447e-01
8.12332928e-01 -1.84600614e-02 -7.59557843e-01 5.08230776e-02
7.98611045e-02 7.70249128e-01 -2.49626800e-01 -3.86215091e-01
1.81771293e-01 -4.01863009e-01 -1.91197425e-01 -6.47180574e-03
5.35551786e-01 -9.88908336e-02 -3.36850911e-01 2.07227275e-01
-9.91571307e-01 -1.12296090e-01 8.81910771e-02 1.56457186e-01
-5.74844815e-02 -4.82977986e-01 7.85994053e-01 -5.99320650e-01
-6.25348866e-01 -6.29661307e-02 -9.96580958e-01 3.86501074e-01
8.72584701e-01 4.63656224e-02 -1.97042599e-01 -1.22389448e+00
-6.69130445e-01 7.61845827e-01 4.09705698e-01 5.39322972e-01
3.93550098e-01 -9.98086035e-01 -9.33907688e-01 2.37338105e-03
1.22641638e-01 1.23575419e-01 8.55776668e-02 2.75151968e-01
-1.58562675e-01 5.22573888e-01 -1.33779094e-01 -3.74937385e-01
-1.06829143e+00 1.66461736e-01 4.88504797e-01 -6.28855944e-01
-4.94627178e-01 9.17837381e-01 6.90188780e-02 -1.07134223e+00
3.76693100e-01 1.87915683e-01 -5.73452771e-01 4.58369516e-02
4.35699821e-01 1.66452900e-01 -2.96171039e-01 -6.12954855e-01
1.02490634e-01 -1.74838364e-01 -7.17805251e-02 -6.26379192e-01
1.02717328e+00 -4.88383919e-01 8.57480094e-02 6.60802186e-01
6.66561246e-01 -6.67751804e-02 -1.35016108e+00 -5.12243748e-01
1.31954551e-01 5.29359328e-03 -3.49774480e-01 -1.00925422e+00
-2.33309582e-01 6.25980318e-01 -8.56714249e-02 5.38846791e-01
6.59832537e-01 6.17258511e-02 9.04683352e-01 6.76254213e-01
2.50014722e-01 -1.55072367e+00 6.64263844e-01 1.03298759e+00
1.01404154e+00 -1.21027112e+00 -4.89466578e-01 1.94398761e-01
-1.56699634e+00 1.24156868e+00 1.07235205e+00 2.68635601e-01
1.17300125e-02 1.55691430e-01 4.79730517e-01 7.47040659e-03
-1.48099458e+00 -3.92720222e-01 4.04764451e-02 6.16502941e-01
7.23816395e-01 1.63766295e-01 -1.61316723e-01 4.08468217e-01
-4.90371317e-01 -2.96429694e-01 7.03949153e-01 8.08811665e-01
-6.44632161e-01 -1.44215739e+00 6.86318651e-02 2.44711131e-01
-3.25782299e-02 1.95966829e-02 -8.37548375e-01 5.32452345e-01
-3.94939840e-01 1.55304670e+00 -1.35219529e-01 -3.83534163e-01
4.67994273e-01 4.56764042e-01 1.32793009e-01 -1.22444570e+00
-1.04092193e+00 -8.26202556e-02 9.94113028e-01 -3.13885808e-01
-1.13855384e-01 -6.09886229e-01 -1.40477109e+00 -4.15927231e-01
-1.92553282e-01 3.68404806e-01 4.38409954e-01 1.21069849e+00
1.65646628e-01 3.75297159e-01 1.06329477e+00 -6.07598066e-01
-1.05520964e+00 -1.39166975e+00 -2.94027388e-01 4.65831757e-01
2.48775035e-01 -2.99183518e-01 -1.79324418e-01 -2.83831149e-01] | [12.917275428771973, 8.066884994506836] |
82845cee-a335-4faf-8e5d-dcee45e126d4 | rethinking-the-protein-folding-problem-from-a | 2210.05004 | null | https://arxiv.org/abs/2210.05004v1 | https://arxiv.org/pdf/2210.05004v1.pdf | Rethinking the protein folding problem from a new perspective | One of the main concerns of Anfinsen was to reveal the connection between the amino acid sequence and their biologically active conformation. This search gave rise to two crucial questions in structural biology, namely, why the proteins fold and how a sequence encodes its folding. As to the why, he proposes a plausible answer, namely, at a given milieu a protein folds into its functional form -- native state -- because such structure represents the lowest free-energy minimum among all feasible conformations -- the thermodynamic hypothesis or Anfinsen dogma. As to the how, this remains as an unsolved challenge and, hence, this inquiry is examined here from a new perspective of protein folding, namely, as an analytic whole -- a notion proposed by Leibnitz and Kant. This new perspective forces us to discuss in detail why the theoretical force-field-based approaches have failed in both their ability to predict the three-dimensional structure of a protein accurately and in their capacity to answer one of the most critical questions in structural biology: how a sequence encodes its folding. | ['Jorge A. Vila'] | 2022-10-10 | null | null | null | null | ['protein-folding'] | ['natural-language-processing'] | [ 2.83493102e-01 3.63150477e-01 -2.25967035e-01 -2.64676243e-01
-4.55910824e-02 -6.93361819e-01 2.48568147e-01 3.25956821e-01
-2.49833807e-01 9.12625492e-01 1.26834720e-01 -8.10860872e-01
-1.17641672e-01 -5.11918485e-01 -6.60135508e-01 -9.56269324e-01
1.05533861e-01 3.23478460e-01 1.11066535e-01 -5.22212207e-01
3.98905039e-01 5.98603845e-01 -1.38769269e+00 -9.85429883e-02
1.08986342e+00 6.05211318e-01 3.79715919e-01 4.39827442e-01
-3.56924832e-01 4.05764759e-01 -1.91607609e-01 -6.01678848e-01
-8.40870366e-02 -9.70505357e-01 -1.08495998e+00 -1.79117188e-01
-1.34498449e-02 9.08425823e-02 1.52154118e-01 8.01063597e-01
-9.32892039e-02 -2.96048492e-01 5.77382803e-01 -3.55791748e-01
-7.42708623e-01 -1.23559810e-01 1.28792480e-01 -1.21104889e-01
4.81835902e-01 2.55490035e-01 1.11268175e+00 -6.83098912e-01
8.85457098e-01 9.41192746e-01 4.82635856e-01 6.97423339e-01
-1.49422026e+00 1.95602432e-01 -5.38024530e-02 2.24618331e-01
-8.79366934e-01 -3.85174394e-01 5.03378510e-01 -7.64538050e-01
9.18907166e-01 3.49526107e-01 8.84678185e-01 7.59371102e-01
8.79067242e-01 1.59199148e-01 1.21880186e+00 -4.71437335e-01
3.90982509e-01 -9.79811624e-02 1.91737518e-01 6.75601006e-01
4.94129866e-01 -2.48353952e-03 -3.24044734e-01 -2.18673363e-01
4.24658448e-01 -7.23152459e-02 -4.93297756e-01 -4.77532327e-01
-9.66944873e-01 5.77162862e-01 7.17832372e-02 6.65393949e-01
-3.09890598e-01 -1.93884388e-01 1.05046637e-01 3.70803475e-01
4.83016446e-02 7.05134332e-01 -7.27149725e-01 -1.38940394e-01
-5.59593320e-01 3.54021162e-01 1.03227520e+00 9.85313505e-02
6.54813588e-01 -2.98727691e-01 7.11566687e-01 1.27309337e-01
4.79223371e-01 1.72234505e-01 2.54669666e-01 -6.34440184e-01
7.34618679e-03 9.38017070e-01 2.90243536e-01 -7.18817890e-01
-3.24900687e-01 -1.93392277e-01 -4.58154887e-01 3.34243000e-01
8.88761163e-01 -4.13499922e-02 -4.17463183e-01 1.91114664e+00
3.77870977e-01 -5.35861373e-01 1.49954811e-01 1.09469330e+00
4.38624024e-01 6.30687833e-01 2.16642395e-01 -8.14054132e-01
1.37836695e+00 -1.42990321e-01 -4.88358617e-01 -4.85167801e-02
3.72905195e-01 -6.21401072e-01 8.89897585e-01 3.16530287e-01
-9.74844098e-01 -2.62126923e-01 -1.36596191e+00 6.35554967e-03
-2.21172974e-01 -2.22556993e-01 6.20868742e-01 6.11590028e-01
-7.52500713e-01 8.47752512e-01 -7.82606304e-01 -9.20816958e-01
-3.67927164e-01 1.47621825e-01 -5.34314334e-01 4.65960860e-01
-1.02596712e+00 1.42335296e+00 4.45687979e-01 -2.71417294e-02
-2.95851618e-01 -3.13950092e-01 -1.91797897e-01 -3.43406759e-02
1.44831404e-01 -7.43485093e-01 1.03639281e+00 -9.17623222e-01
-1.35472751e+00 1.09246302e+00 -7.09637225e-01 -2.68764436e-01
1.24271788e-01 2.58660108e-01 -3.02758962e-01 2.28327557e-01
-3.32904637e-01 1.00903340e-01 3.66368175e-01 -1.22910535e+00
-6.10027760e-02 -8.52037251e-01 -1.17713913e-01 5.49322553e-02
4.56295758e-01 2.71576717e-02 5.18067420e-01 -3.05790544e-01
9.11997139e-01 -8.51807415e-01 -3.54148388e-01 -1.18116468e-01
-4.77167554e-02 -3.25246215e-01 2.26340711e-01 -4.74414229e-01
1.01055455e+00 -1.86613178e+00 4.74241734e-01 6.02738559e-02
5.01871705e-01 2.62565136e-01 4.91376638e-01 1.10779226e+00
-5.79888582e-01 2.55161583e-01 -1.98862717e-01 7.06650972e-01
-2.11196825e-01 1.69515312e-01 -5.79801261e-01 7.25552738e-01
1.11426860e-01 9.63249683e-01 -7.67339289e-01 -1.19607285e-01
1.22597314e-01 4.50768441e-01 -2.55715191e-01 5.25564551e-02
-3.89815867e-01 6.22616649e-01 -8.32129478e-01 4.59881872e-01
5.80425084e-01 -3.05107415e-01 1.02024031e+00 -2.27092743e-01
-4.67657775e-01 3.07946831e-01 -4.73480999e-01 1.29255378e+00
5.05280733e-01 3.17270517e-01 1.05371848e-01 -1.00610435e+00
1.00170124e+00 3.66526812e-01 6.78350151e-01 -6.69614017e-01
5.73480651e-02 5.76803386e-01 3.62516820e-01 -6.26536727e-01
1.43385783e-01 -8.05459619e-01 2.41037250e-01 2.53761292e-01
-2.32686624e-01 2.44526565e-01 1.42936647e-01 -3.62382345e-02
1.03638279e+00 5.60230851e-01 6.65947020e-01 -6.17152333e-01
7.13209510e-01 1.23618208e-01 6.87931359e-01 9.77612510e-02
-3.13683391e-01 3.86714101e-01 7.53186405e-01 -8.02684247e-01
-1.22800744e+00 -9.73251998e-01 -3.56688112e-01 6.89950705e-01
1.55568197e-01 -4.97206777e-01 -1.23921072e+00 3.26379500e-02
-1.32401921e-02 4.61071044e-01 -6.18247926e-01 -2.33512163e-01
-6.01062357e-01 -8.88084471e-01 -9.48187038e-02 -2.79869854e-01
-1.06748275e-01 -1.00192571e+00 -1.16097629e+00 4.48383361e-01
-1.41565889e-01 -4.84016985e-01 2.55883098e-01 5.23604512e-01
-1.14398491e+00 -1.51040709e+00 -4.92905974e-01 -3.73683363e-01
6.05944753e-01 -3.98666784e-02 8.60126674e-01 1.68306231e-01
-3.62079442e-01 -1.85878679e-01 -3.20726961e-01 -2.02244297e-01
-8.31657767e-01 -1.21791653e-01 5.13603427e-02 -1.44267768e-01
5.99720299e-01 -9.89324033e-01 -7.92808890e-01 3.65765095e-01
-8.05086017e-01 -1.03372499e-01 5.26516080e-01 3.53117406e-01
3.48095864e-01 -5.00328481e-01 7.32627094e-01 -6.37639344e-01
5.56189001e-01 -2.43932918e-01 -3.51134390e-01 7.44089425e-01
-7.62421727e-01 3.91796947e-01 6.57869518e-01 1.85019299e-01
-7.08518744e-01 8.87960270e-02 -4.08918262e-01 4.91646379e-01
-2.33196408e-01 3.29397470e-01 -4.68571663e-01 -2.67454255e-02
6.83186114e-01 5.85248768e-01 3.42242658e-01 -6.95822477e-01
1.02020405e-01 3.34604770e-01 5.53384364e-01 -9.38571811e-01
4.56871450e-01 3.20126057e-01 2.58196741e-01 -1.00707221e+00
-6.72228158e-01 -2.74432093e-01 -7.65596271e-01 -5.81302717e-02
1.07897031e+00 -2.70481348e-01 -1.31867409e+00 3.59519348e-02
-1.22834337e+00 2.04674155e-01 -8.47888961e-02 3.46573174e-01
-8.93810868e-01 8.00460815e-01 -3.38932425e-01 -8.77381444e-01
-1.62156627e-01 -1.34156466e+00 3.99379343e-01 1.48276657e-01
-4.65247780e-01 -7.77705848e-01 3.52795899e-01 2.97059715e-01
2.66130120e-01 6.15470529e-01 1.62188482e+00 -4.58666831e-01
-4.20040667e-01 1.53105319e-01 3.98032330e-02 -1.13394886e-01
9.49709490e-02 2.14135930e-01 -6.45560265e-01 -1.45593494e-01
5.07306278e-01 -1.36225030e-01 5.62320828e-01 2.28455082e-01
3.86145562e-01 -2.31056705e-01 -1.47938877e-01 4.50782806e-01
1.81562471e+00 6.36455238e-01 6.63697243e-01 3.28740805e-01
-5.58846444e-03 9.26518619e-01 3.76125187e-01 1.52705699e-01
-9.60514247e-02 5.17238319e-01 5.85526288e-01 3.13109577e-01
2.16538236e-01 -3.59065175e-01 1.54929504e-01 6.15771294e-01
-3.05952311e-01 -1.37075752e-01 -7.96116054e-01 8.23249891e-02
-1.90565681e+00 -1.05409455e+00 -3.60777706e-01 2.36271691e+00
8.34292948e-01 1.47186577e-01 2.26782471e-01 -9.43128392e-03
4.40729976e-01 -2.22901274e-02 -8.44053030e-01 -6.17947876e-01
-2.51425296e-01 -3.70786004e-02 2.39928991e-01 4.76579696e-01
-5.10315299e-01 5.76691985e-01 7.50927544e+00 2.25420266e-01
-1.29731739e+00 -2.14810908e-01 5.09341896e-01 3.94397348e-01
-4.41519797e-01 5.92804551e-01 -5.19652367e-01 5.81962526e-01
1.16475105e+00 -2.17180803e-01 3.51928502e-01 6.00975811e-01
6.08227611e-01 -4.25646752e-01 -1.04737866e+00 5.35787344e-01
-2.34640956e-01 -1.41267490e+00 5.63739687e-02 5.05338490e-01
4.83374745e-02 -3.95791173e-01 -2.28746936e-01 -4.27256584e-01
-1.49961174e-01 -1.14864719e+00 7.95223534e-01 6.68617129e-01
6.31029427e-01 -5.32108009e-01 3.85777116e-01 6.01263881e-01
-7.53239155e-01 7.27217495e-02 -5.34530997e-01 -2.10649684e-01
3.63325447e-01 5.97533345e-01 -5.09756148e-01 2.85677642e-01
1.40892237e-01 -1.05124339e-01 -1.80716395e-01 6.73895836e-01
3.32316197e-02 4.84062791e-01 -1.60769150e-02 -2.92769819e-01
1.48097306e-01 -8.35197866e-01 4.22410280e-01 7.78691232e-01
-5.75551093e-02 5.98190010e-01 -1.11291118e-01 9.40922022e-01
4.34015661e-01 1.96230590e-01 -2.24949583e-01 -4.11908358e-01
8.23200271e-02 9.09502983e-01 -6.92539692e-01 8.34751204e-02
-2.00484738e-01 5.97755432e-01 3.19283515e-01 3.33535016e-01
-4.78551924e-01 -2.24273533e-01 9.47760880e-01 6.09454870e-01
-1.88813172e-02 -3.51862341e-01 -3.80901620e-02 -1.13034260e+00
1.64522409e-01 -7.07246184e-01 -1.25168920e-01 -4.02559787e-01
-8.00789237e-01 3.43463153e-01 -2.48439237e-01 -3.74469936e-01
-8.94333199e-02 -8.44958007e-01 -4.44496483e-01 1.05989587e+00
-1.02343094e+00 -8.12740624e-01 3.32318395e-01 -6.71171844e-02
1.87704921e-01 1.66902393e-01 6.87282264e-01 -2.03133866e-01
-4.02776212e-01 9.08358991e-02 6.39581144e-01 -4.22569424e-01
4.78694052e-01 -1.23281777e+00 3.76174241e-01 5.00900388e-01
-3.87857020e-01 1.03708243e+00 1.30099976e+00 -6.42059088e-01
-1.78055441e+00 -2.61964291e-01 1.44236541e+00 -6.00459516e-01
5.53270102e-01 -1.68667316e-01 -1.06517267e+00 3.66432786e-01
2.63762940e-02 -4.97754782e-01 8.09853554e-01 -1.55560538e-01
-4.69787158e-02 1.36032596e-01 -1.08023155e+00 3.99797708e-01
8.30997586e-01 -3.34383577e-01 -9.10249650e-01 2.74161130e-01
6.71811402e-01 1.88623071e-01 -9.58099604e-01 2.43747815e-01
8.61729443e-01 -1.54319906e+00 6.69704854e-01 -9.54938173e-01
3.30819756e-01 -3.51866007e-01 -1.53442413e-01 -6.93035543e-01
-3.94226015e-01 -9.14727807e-01 1.79279774e-01 6.57862067e-01
5.26036620e-01 -8.57813954e-01 8.03776979e-01 7.30657160e-01
-1.08522654e-01 -1.36769569e+00 -1.03799176e+00 -5.24212182e-01
3.43351662e-01 1.56364024e-01 6.12074971e-01 7.81569421e-01
6.30730033e-01 2.48003572e-01 3.68465632e-02 -4.80690658e-01
4.07404035e-01 3.41980845e-01 5.09225070e-01 -1.28344929e+00
-9.61712971e-02 -2.43556634e-01 -3.38245571e-01 -9.25313234e-01
1.99428536e-02 -6.44784331e-01 -3.15025270e-01 -1.35402381e+00
3.20953578e-01 4.13772352e-02 1.38713280e-02 -1.46940816e-02
1.55187145e-01 -4.56855983e-01 1.06121562e-01 4.22340572e-01
-1.17704250e-01 2.53609657e-01 1.04641914e+00 5.67395329e-01
-1.45050948e-02 -2.53534168e-01 -1.00677729e+00 5.77862561e-01
7.20301747e-01 -3.43086064e-01 -2.89947987e-01 1.75533831e-01
6.86186910e-01 3.67547780e-01 1.72762007e-01 -5.80952585e-01
-1.52338952e-01 -6.06083810e-01 1.36900753e-01 -4.96531546e-01
1.86731040e-01 -8.86057258e-01 5.57810247e-01 8.44684899e-01
-1.21272750e-01 2.00991258e-01 -2.93508679e-01 5.45880735e-01
1.45241246e-01 -4.25387502e-01 1.02214932e+00 -4.45954591e-01
-4.47599858e-01 -1.13183796e-01 -6.12517118e-01 -1.49433777e-01
1.26694071e+00 -8.17185462e-01 -4.21669394e-01 8.04679096e-02
-9.83433664e-01 -2.83543289e-01 1.30790007e+00 8.16699525e-04
3.67917925e-01 -7.77817369e-01 -3.13905030e-01 8.91805738e-02
4.42701206e-02 -6.66468084e-01 1.64510176e-01 8.00415635e-01
-1.14809918e+00 9.47882771e-01 -1.78849593e-01 -4.56521749e-01
-9.92065549e-01 7.46625900e-01 6.88199341e-01 5.25981411e-02
-4.63557720e-01 2.74636328e-01 4.38289940e-01 -2.41086304e-01
-4.19426382e-01 -1.55195862e-01 1.35375559e-01 -2.85750359e-01
3.60886037e-01 1.09186940e-01 -2.64463183e-02 -8.40385199e-01
-4.16891336e-01 6.65952444e-01 7.05739707e-02 4.01500165e-01
1.27725887e+00 -2.58829325e-01 -6.29638731e-01 4.50627625e-01
1.01218069e+00 -2.54400849e-01 -1.09919536e+00 1.82072893e-01
3.03749233e-01 -3.23865652e-01 -4.97632891e-01 -7.99737811e-01
-1.83367684e-01 7.75365770e-01 3.62232029e-01 3.03325683e-01
7.06359148e-01 1.38775855e-01 6.14677668e-01 4.94844943e-01
3.78396153e-01 -7.75053084e-01 -4.04868931e-01 3.07259262e-01
6.66483939e-01 -8.98018539e-01 -5.16741388e-02 -2.97167063e-01
-1.49094298e-01 1.40496516e+00 2.64614224e-01 4.59785871e-02
4.99801695e-01 -1.53023496e-01 -8.60335603e-02 -3.82529140e-01
-9.52702165e-01 9.68886837e-02 9.75683853e-02 3.66168559e-01
9.99536455e-01 6.76230490e-02 -1.26854873e+00 2.42441386e-01
-3.07740390e-01 -5.12756919e-03 3.43561828e-01 9.85643923e-01
-1.14654732e+00 -1.49359107e+00 -3.28819484e-01 8.90634507e-02
-4.78414863e-01 4.00339007e-01 -1.06317663e+00 5.44480383e-01
1.52242720e-01 9.17184412e-01 -4.90616143e-01 -1.82884976e-01
9.12725776e-02 4.24034715e-01 7.27747381e-01 -3.68629664e-01
-6.24230981e-01 -1.60639156e-02 -1.57214791e-01 -4.45682108e-01
-4.41621155e-01 -5.99424303e-01 -1.34750307e+00 -6.16830587e-01
-2.92797416e-01 9.98476386e-01 8.71200979e-01 1.23924387e+00
3.45943630e-01 -1.04128778e-01 4.97019440e-01 -4.29745406e-01
-8.96867692e-01 -4.26819175e-01 -6.99412882e-01 1.82549059e-01
4.00291502e-01 -2.82902062e-01 -2.05457062e-01 -1.32561866e-02] | [4.781989097595215, 5.2525835037231445] |
0aff533d-c7bb-4310-8a38-b4f0935a35cb | sequence-learning-in-a-spiking-neuronal | 2211.16592 | null | https://arxiv.org/abs/2211.16592v1 | https://arxiv.org/pdf/2211.16592v1.pdf | Sequence learning in a spiking neuronal network with memristive synapses | Brain-inspired computing proposes a set of algorithmic principles that hold promise for advancing artificial intelligence. They endow systems with self learning capabilities, efficient energy usage, and high storage capacity. A core concept that lies at the heart of brain computation is sequence learning and prediction. This form of computation is essential for almost all our daily tasks such as movement generation, perception, and language. Understanding how the brain performs such a computation is not only important to advance neuroscience but also to pave the way to new technological brain-inspired applications. A previously developed spiking neural network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware that holds promise for efficiently running this type of algorithm is neuromorphic hardware. It emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate. Memristive devices have been identified as potential synaptic elements in neuromorphic hardware. In particular, redox-induced resistive random access memories (ReRAM) devices stand out at many aspects. They permit scalability, are energy efficient and fast, and can implement biological plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model. We implement and simulate the model including the ReRAM plasticity using the neural simulator NEST. We investigate the effect of different device properties on the performance characteristics of the sequence learning model, and demonstrate resilience with respect to different on-off ratios, conductance resolutions, device variability, and synaptic failure. | ['Dirk J. Wouters', 'Rainer Waser', 'Markus Diesmann', 'Tom Tetzlaff', 'Sebastian Siegel', 'Younes Bouhadjar'] | 2022-11-29 | null | null | null | null | ['self-learning'] | ['natural-language-processing'] | [ 5.47559619e-01 -3.75339836e-01 1.43278256e-01 3.78537327e-02
6.25608504e-01 -3.68603468e-01 7.56729126e-01 2.43863434e-01
-6.40423119e-01 8.61005664e-01 -1.34451360e-01 -2.44280234e-01
-7.90721998e-02 -1.06782842e+00 -8.62464070e-01 -1.05145609e+00
-2.70915311e-02 1.28378689e-01 9.68267441e-01 -4.73954618e-01
6.83683753e-01 7.37812042e-01 -2.04056787e+00 5.33398747e-01
5.90818584e-01 8.68198454e-01 5.82408905e-01 4.45362538e-01
-1.28799096e-01 6.94190562e-01 -3.08931559e-01 -5.25702648e-02
2.08047554e-02 -6.06146097e-01 -2.43253767e-01 -8.06692958e-01
-5.02070844e-01 2.36321509e-01 -4.51021224e-01 6.31373048e-01
4.90970016e-01 9.69227329e-02 7.98850358e-01 -6.42046332e-01
-5.64989209e-01 6.01209104e-01 2.01510236e-01 5.17136395e-01
-4.23894152e-02 3.58260572e-01 1.87545538e-01 -7.97722518e-01
6.28032029e-01 4.87236351e-01 6.25243187e-01 1.01222014e+00
-1.21293926e+00 -7.58234859e-01 -5.63205659e-01 2.72577077e-01
-1.14251006e+00 -5.95403016e-01 4.42907095e-01 -1.96318761e-01
1.75013375e+00 1.22243993e-01 1.15817916e+00 9.73251164e-01
1.16371870e+00 7.95186013e-02 1.32917070e+00 -3.91616642e-01
7.81915665e-01 3.50904930e-03 1.36214823e-01 5.70302367e-01
5.43834686e-01 2.55730897e-01 -1.06377935e+00 -2.11053602e-02
6.87477052e-01 3.63556623e-01 -2.74450481e-01 6.93984628e-02
-7.24332511e-01 1.01272240e-01 3.43590498e-01 5.84127903e-01
-2.69085139e-01 6.24745846e-01 2.09024712e-01 2.09271356e-01
-1.74160317e-01 5.23028433e-01 6.00399077e-02 -2.39646688e-01
-7.74655402e-01 -1.22877680e-01 7.78091550e-01 1.60273820e-01
4.54569519e-01 3.73401761e-01 1.07060328e-01 7.86119282e-01
1.13874748e-01 7.41592109e-01 1.07364666e+00 -6.49996161e-01
-4.60837930e-01 7.40728319e-01 -2.86186963e-01 -5.49846411e-01
-5.39150178e-01 -1.84396163e-01 -9.24288213e-01 2.74455994e-01
2.46351492e-02 4.55431253e-01 -8.31517875e-01 1.47753131e+00
-2.76111454e-01 2.29220778e-01 7.44247958e-02 6.60801232e-01
4.93538588e-01 9.69853103e-01 1.54961973e-01 -2.71668196e-01
9.72441256e-01 -1.59947485e-01 -3.13153803e-01 -1.35889798e-01
1.57493472e-01 -7.20595568e-02 7.69786656e-01 1.91214055e-01
-1.16814828e+00 -3.53852272e-01 -1.35744214e+00 1.30835682e-01
-8.31894398e-01 -6.09141231e-01 4.30629760e-01 8.40401828e-01
-1.40044987e+00 1.10640776e+00 -1.07071650e+00 -5.31668186e-01
2.32972503e-01 7.68562138e-01 2.66050622e-02 2.79360563e-01
-1.05361331e+00 1.01698160e+00 3.19913059e-01 -3.69310826e-01
-6.08726919e-01 -4.82180446e-01 -7.78024457e-03 3.53409439e-01
-5.98219693e-01 -8.83074522e-01 7.60477901e-01 -6.67740047e-01
-1.85137856e+00 9.40388680e-01 -2.91233599e-01 -9.24542010e-01
-3.03249210e-01 4.42300916e-01 -4.77030575e-01 2.44783051e-02
-7.41395414e-01 7.46421874e-01 5.35875976e-01 -6.79301023e-01
2.57430952e-02 -3.83401603e-01 -7.80416667e-01 -3.38992506e-01
-8.48329604e-01 -9.16554406e-02 2.60407507e-01 -4.12241608e-01
1.32345885e-01 -8.86592805e-01 4.73629795e-02 2.03905962e-02
4.38729882e-01 5.55619039e-02 6.73004925e-01 2.20423983e-03
9.37200367e-01 -1.92905927e+00 2.03414331e-03 4.45553154e-01
-6.45448267e-02 4.99760956e-01 1.63859073e-02 6.46132767e-01
2.28465527e-01 1.56416968e-02 -5.22127092e-01 4.85648572e-01
-4.89763677e-01 1.80327758e-01 -5.56658030e-01 1.36116698e-01
9.94140506e-02 1.18542230e+00 -5.84377229e-01 2.30280712e-01
-3.04841120e-02 7.03083098e-01 -1.97468773e-01 -1.26569420e-01
-2.41010368e-01 2.74499118e-01 -6.95843399e-02 3.15938354e-01
1.56371653e-01 -3.24870139e-01 4.32633221e-01 1.76057652e-01
-5.67349494e-01 5.76996148e-01 -4.55330133e-01 1.41414356e+00
-2.86575079e-01 6.71693563e-01 -4.77590770e-01 -1.05196297e+00
1.46182966e+00 7.74373487e-02 3.91904026e-01 -1.58810687e+00
1.01724297e-01 6.66261852e-01 4.93009716e-01 -1.67907819e-01
2.19638363e-01 -1.67137280e-01 5.02416015e-01 6.83782101e-01
4.22176719e-02 -1.02562129e-01 -4.96685356e-02 -2.13246241e-01
1.58795440e+00 -5.72534055e-02 4.44818102e-02 -8.06425691e-01
3.07966769e-01 -1.50709674e-01 2.62030691e-01 6.29779577e-01
8.46916586e-02 1.74043596e-01 -1.38373703e-01 -6.63216412e-01
-1.25340068e+00 -1.33698678e+00 -1.69241473e-01 7.35017061e-01
2.64942765e-01 -5.70712350e-02 -5.26945472e-01 8.70843470e-01
-2.95844406e-01 4.97603893e-01 -3.22222054e-01 -8.58275115e-01
-6.66496217e-01 -8.76041591e-01 7.45974898e-01 3.64453614e-01
6.00102425e-01 -1.43032444e+00 -1.48989618e+00 6.92282975e-01
4.08763379e-01 -8.00462008e-01 2.39003837e-01 8.02103877e-01
-1.39851630e+00 -4.49198544e-01 -1.71923339e-01 -7.14856505e-01
4.31070566e-01 2.06056833e-02 8.79788935e-01 2.32837453e-01
-7.79729366e-01 1.09139875e-01 6.50965199e-02 -4.61275429e-01
-4.13130164e-01 9.30603668e-02 4.02558476e-01 -2.95178682e-01
2.47913018e-01 -1.30198061e+00 -9.94241238e-01 -3.04257334e-03
-9.58410978e-01 8.41192752e-02 5.17900527e-01 7.15141118e-01
8.69838536e-01 -1.16488680e-01 6.84865594e-01 -5.58238983e-01
4.56254989e-01 -4.04240340e-01 -2.65848726e-01 2.35828057e-01
-7.30563045e-01 4.13495481e-01 9.04285967e-01 -4.97626811e-01
-7.61144578e-01 1.78485122e-02 -2.43817568e-01 2.31152043e-01
2.01579332e-01 2.21565872e-01 1.86812758e-01 -2.63000399e-01
8.46008599e-01 1.00217748e+00 8.90681520e-02 8.24664831e-02
-2.70928264e-01 4.65391904e-01 5.15955448e-01 -5.51454365e-01
1.62663072e-01 6.51019812e-01 3.56016934e-01 -1.06394756e+00
4.92781967e-01 5.49165457e-02 -8.77540410e-02 -2.58366913e-01
4.38842863e-01 -4.48454559e-01 -8.91477525e-01 6.74945116e-01
-9.23011363e-01 -5.75396836e-01 -3.60081762e-01 -7.02855289e-02
-5.69760084e-01 -3.56146127e-01 -8.95767868e-01 -9.54588890e-01
-9.04866695e-01 -6.59640372e-01 2.30199993e-01 6.93515778e-01
-2.28713840e-01 -7.14109480e-01 2.70858556e-01 -3.64875197e-01
9.29157794e-01 -5.37193790e-02 1.24126124e+00 -3.14304113e-01
-6.62395537e-01 3.91274214e-01 2.25337178e-01 -1.98148116e-01
-1.45878300e-01 -7.62371272e-02 -1.06076777e+00 -4.44434024e-03
1.99296460e-01 -1.57831654e-01 1.27395225e+00 2.02848494e-01
1.08146775e+00 -4.46895659e-02 -5.08882761e-01 3.28555048e-01
1.60787785e+00 6.22633696e-01 1.03038681e+00 2.29183763e-01
1.10145584e-02 3.89371663e-01 -4.31112170e-01 1.45370319e-01
-6.22773319e-02 3.68025035e-01 2.01856717e-01 5.07770658e-01
-1.50869191e-01 -1.98987216e-01 6.86756790e-01 1.32904017e+00
-3.00592124e-01 -2.35773951e-01 -1.10186636e+00 4.17421341e-01
-1.57532513e+00 -1.24637651e+00 -3.68544757e-02 2.38470721e+00
1.00086892e+00 1.99618459e-01 -7.70452172e-02 3.65096956e-01
5.72565377e-01 -5.54381371e-01 -9.32079434e-01 -9.63749468e-01
-4.95311290e-01 1.11290824e+00 5.15313268e-01 -1.73367247e-01
-1.31998360e-01 7.44632423e-01 5.90297031e+00 4.43124950e-01
-1.71174800e+00 1.78503126e-01 4.17902172e-01 -3.10112625e-01
-3.84882241e-01 -2.63250947e-01 -4.96774912e-01 8.79705906e-01
1.79473221e+00 4.82038222e-02 8.31168234e-01 2.43936509e-01
7.40819424e-02 -2.76673883e-01 -9.39947307e-01 9.92949247e-01
-3.39164972e-01 -2.03284597e+00 2.21559420e-01 9.06490535e-03
6.43144429e-01 3.48455191e-01 1.91979825e-01 -3.37535679e-01
-2.54250437e-01 -1.11996388e+00 5.78591108e-01 9.99700487e-01
7.09197104e-01 -6.21560931e-01 2.39447668e-01 3.16300809e-01
-8.62632871e-01 -4.22829986e-01 -5.75596929e-01 -4.43199873e-01
-1.83442116e-01 7.11568773e-01 -2.84941643e-01 -4.34429109e-01
8.41691792e-01 3.27618301e-01 -2.47001991e-01 1.21967316e+00
3.39790821e-01 6.55461133e-01 -5.66171229e-01 -7.02280104e-01
-3.64485532e-01 -5.24615496e-02 2.40975693e-01 9.76009667e-01
5.85274160e-01 3.47679615e-01 -7.06577957e-01 1.17424226e+00
-3.09909225e-01 -2.10348725e-01 -8.28874707e-01 -3.07155341e-01
9.64688241e-01 8.06809366e-01 -1.34060788e+00 -2.15890184e-02
1.55809447e-01 8.91065240e-01 1.97043404e-01 -3.94460633e-02
-3.77330661e-01 -3.61009389e-01 5.72145581e-01 5.72303832e-01
1.18544377e-01 -6.60024643e-01 -8.00976396e-01 -5.02901912e-01
-1.03798777e-01 -3.18313211e-01 -3.78291279e-01 -5.28536201e-01
-7.12004304e-01 3.21468651e-01 -8.54896605e-01 -6.36719882e-01
4.21347320e-02 -8.21422577e-01 -8.62533867e-01 4.89696622e-01
-1.19778037e+00 -3.40255678e-01 -1.67576641e-01 3.92751336e-01
2.03322038e-01 -9.83385462e-03 1.11416745e+00 -5.36731966e-02
-3.03002626e-01 3.33215505e-01 5.08374453e-01 -4.17871475e-01
2.62627512e-01 -5.10674238e-01 5.81639767e-01 5.67091227e-01
2.48485446e-01 7.86118627e-01 4.40767378e-01 -5.44154584e-01
-1.91662538e+00 -8.99634659e-01 6.56308234e-01 -1.47558327e-04
3.96809608e-01 -6.57127261e-01 -1.25910974e+00 -1.55067250e-01
-8.31167400e-03 -1.52725652e-01 8.69667172e-01 -7.02268183e-01
-3.53595912e-01 -3.85935992e-01 -1.19909763e+00 7.12024152e-01
1.38260221e+00 -7.25510359e-01 -2.94582546e-01 -3.01104933e-02
2.79712945e-01 2.16997370e-01 -7.45912790e-01 3.38957518e-01
1.02495158e+00 -1.17945194e+00 7.49875546e-01 -7.30231553e-02
4.02247459e-01 -2.31965855e-01 -1.38390828e-02 -1.00224841e+00
-2.84174323e-01 -5.08404851e-01 -3.55401844e-01 8.15025389e-01
5.08427203e-01 -1.09383810e+00 6.18584156e-01 6.62163913e-01
-1.81149945e-01 -9.03941929e-01 -9.93735552e-01 -9.41917956e-01
2.17503950e-01 8.65287632e-02 3.91000360e-01 3.21631372e-01
3.86406094e-01 -4.47785258e-02 3.05927604e-01 -3.81118149e-01
1.76270828e-01 -1.35382423e-02 -1.92932487e-01 -1.23481548e+00
-3.45069200e-01 -8.01982820e-01 -6.43102050e-01 -4.40663576e-01
-3.37793492e-02 -1.00114739e+00 9.53762159e-02 -1.22635198e+00
2.03289568e-01 -5.46439230e-01 -6.64176226e-01 3.36612582e-01
4.53640789e-01 5.05116284e-01 4.48080413e-02 5.57990253e-01
-1.61280856e-01 2.80702591e-01 5.36365330e-01 2.68921610e-02
-2.76352137e-01 -3.69273782e-01 -1.26652122e-01 2.15229988e-01
1.19558251e+00 -5.28802693e-01 -3.85452241e-01 -4.18600053e-01
5.01510859e-01 -2.57389724e-01 3.47977847e-01 -1.67728841e+00
8.85467708e-01 4.45782542e-02 5.71068466e-01 1.66913167e-01
4.45231795e-01 -4.99513358e-01 5.94543099e-01 1.18526936e+00
-3.35000694e-01 2.28767291e-01 2.07419962e-01 3.54405105e-01
3.35832715e-01 -2.25796059e-01 9.23392892e-01 -1.47875354e-01
-7.89410353e-01 -1.11014009e-01 -1.14134598e+00 -2.74863422e-01
8.62078726e-01 -8.80078912e-01 -6.48690581e-01 2.59761840e-01
-3.16513658e-01 -5.21736622e-01 7.33446956e-01 2.04198316e-01
1.00585806e+00 -8.18259656e-01 -1.00534543e-01 3.82206976e-01
-2.24867821e-01 -7.21164167e-01 6.08638600e-02 5.31957328e-01
-6.16339445e-01 4.26821768e-01 -1.00983334e+00 -4.71749872e-01
-6.04212582e-01 2.90458083e-01 4.53396708e-01 1.48690343e-01
-4.29541707e-01 6.73423111e-01 -4.19491023e-01 1.36263415e-01
-2.04291329e-01 -5.54728732e-02 6.99831694e-02 -5.64013243e-01
6.14510655e-01 2.77781844e-01 3.44794154e-01 -2.59549655e-02
-4.59806502e-01 6.13404930e-01 1.27848268e-01 -1.04035906e-01
1.46851790e+00 1.99294388e-01 -5.66003323e-01 8.89093578e-01
5.82156301e-01 -4.86948490e-01 -7.26776540e-01 1.78675711e-01
2.78685361e-01 3.95029455e-01 -2.95736372e-01 -8.69324803e-01
-7.79546559e-01 1.05881810e+00 9.59656715e-01 -8.81209671e-02
1.15394461e+00 -3.72102529e-01 1.04889703e+00 7.46168971e-01
8.33942592e-01 -1.32712233e+00 2.91449785e-01 6.38049781e-01
3.74560982e-01 -4.65859175e-01 -3.09084207e-01 -2.33836006e-03
1.84495628e-01 1.37095666e+00 6.31639838e-01 -4.72960502e-01
7.38772273e-01 8.33641291e-01 -4.99029279e-01 -3.79344895e-02
-1.14885771e+00 1.10352926e-01 -2.46988237e-01 8.28942537e-01
6.66864574e-01 9.58212465e-02 -5.85399568e-01 4.17242497e-01
-6.34160340e-02 3.38904351e-01 5.71307719e-01 1.08514726e+00
-1.07680905e+00 -1.07895207e+00 7.05858916e-02 6.99566126e-01
-1.24224886e-01 -2.01471165e-01 -5.13495624e-01 -5.99860959e-02
4.46757674e-02 5.45915425e-01 2.51317501e-01 -7.24843204e-01
-2.07526699e-01 5.14879048e-01 7.80689716e-01 -3.19912881e-01
-8.74880433e-01 -7.28687823e-01 -4.47969168e-01 -3.17550093e-01
-1.22869126e-01 -2.78598636e-01 -2.06227803e+00 -3.91281426e-01
9.22875106e-02 -9.36973020e-02 1.23224640e+00 7.24948347e-01
9.01738465e-01 4.40731257e-01 3.26798081e-01 -7.11546957e-01
-1.63950190e-01 -3.11273962e-01 -3.32974494e-01 -8.39109812e-03
-4.12084877e-01 -4.29896206e-01 2.65550643e-01 -6.86005503e-03] | [8.181904792785645, 2.5354785919189453] |
e1930f7b-eaea-4253-acbe-af26a027163c | d-2lv-a-data-driven-and-local-verification | 2111.0709 | null | https://arxiv.org/abs/2111.07090v2 | https://arxiv.org/pdf/2111.07090v2.pdf | D$^2$LV: A Data-Driven and Local-Verification Approach for Image Copy Detection | Image copy detection is of great importance in real-life social media. In this paper, a data-driven and local-verification (D$^2$LV) approach is proposed to compete for Image Similarity Challenge: Matching Track at NeurIPS'21. In D$^2$LV, unsupervised pre-training substitutes the commonly-used supervised one. When training, we design a set of basic and six advanced transformations, and a simple but effective baseline learns robust representation. During testing, a global-local and local-global matching strategy is proposed. The strategy performs local-verification between reference and query images. Experiments demonstrate that the proposed method is effective. The proposed approach ranks first out of 1,103 participants on the Facebook AI Image Similarity Challenge: Matching Track. The code and trained models are available at https://github.com/WangWenhao0716/ISC-Track1-Submission. | ['Yi Yang', 'Weipu Zhang', 'Yifan Sun', 'Wenhao Wang'] | 2021-11-13 | null | null | null | null | ['unsupervised-pre-training'] | ['methodology'] | [ 3.34190398e-01 -1.79165632e-01 -3.26188177e-01 -6.60744488e-01
-1.07830870e+00 -2.52026826e-01 8.73731077e-01 1.60626024e-01
-7.28512645e-01 2.23367199e-01 1.11811168e-01 -3.18284519e-03
1.05912089e-01 -4.43585753e-01 -8.84097159e-01 -3.44602287e-01
-9.89267379e-02 2.59973526e-01 3.10682863e-01 -2.30999261e-01
3.65648538e-01 2.44715840e-01 -1.75668836e+00 5.12664855e-01
7.45999396e-01 1.14775014e+00 3.73403162e-01 7.01085746e-01
2.59493589e-01 4.82439399e-01 -2.94633865e-01 -7.54853189e-01
7.29411781e-01 -5.90988278e-01 -8.00188184e-01 -1.09794013e-01
9.18168664e-01 -3.27975273e-01 -4.06374246e-01 1.26307356e+00
7.80283749e-01 9.45870057e-02 4.45703894e-01 -1.52471435e+00
-5.12069523e-01 4.07512188e-01 -7.74861813e-01 4.10615146e-01
5.23629010e-01 1.50523394e-01 9.69766617e-01 -1.08999574e+00
7.68785775e-01 1.02422857e+00 6.27255380e-01 5.67158937e-01
-9.45562124e-01 -8.91102135e-01 -7.38781169e-02 5.12406528e-01
-1.72281933e+00 -7.36525297e-01 5.39419651e-01 -2.78515905e-01
7.22931325e-01 3.22386116e-01 4.35679406e-01 1.07338297e+00
-1.24247605e-02 1.03026056e+00 1.07299471e+00 -4.00066197e-01
9.94878262e-02 3.02247405e-01 1.59426238e-02 7.77889192e-01
8.49466305e-03 2.00629458e-01 -6.20067298e-01 -2.19119728e-01
4.39316630e-01 6.83406144e-02 -1.36542246e-01 -4.41470563e-01
-1.29566562e+00 5.48343778e-01 7.46549249e-01 4.65918481e-01
-1.09384939e-01 6.77240565e-02 5.16973972e-01 6.86739087e-01
3.86482567e-01 2.13516235e-01 1.77010268e-01 -1.16535492e-01
-1.13011336e+00 4.06119764e-01 2.87938833e-01 1.27437723e+00
5.54093540e-01 -5.73092341e-01 -3.33608687e-01 9.03127849e-01
1.50657356e-01 5.13419271e-01 7.29308605e-01 -9.72110808e-01
4.38858569e-01 4.57887530e-01 -1.13180526e-01 -1.20887125e+00
-1.66023701e-01 -4.03360367e-01 -9.49977636e-01 3.65099534e-02
3.28004390e-01 4.27626282e-01 -7.51851082e-01 1.77535224e+00
1.80858269e-01 5.40912390e-01 -2.21965611e-01 9.07269359e-01
8.49552512e-01 1.71828464e-01 -4.45786268e-02 2.03645959e-01
1.33481443e+00 -1.13909423e+00 -4.21880722e-01 -1.20939597e-01
7.01524377e-01 -8.54700506e-01 1.11487055e+00 1.61765605e-01
-1.42106235e+00 -7.94471860e-01 -1.05505455e+00 -2.08621338e-01
-4.14584845e-01 2.11077258e-01 2.44209513e-01 5.57892919e-01
-1.41740060e+00 5.75084805e-01 -3.95246476e-01 -6.55061901e-01
5.91180384e-01 3.11120689e-01 -4.93772238e-01 -2.93337375e-01
-1.14119112e+00 8.47608030e-01 3.70020829e-02 -2.39514083e-01
-7.07411110e-01 -6.43861115e-01 -5.58269739e-01 -3.15660417e-01
3.06276325e-02 -4.96120155e-01 1.23474586e+00 -9.44454670e-01
-1.11034691e+00 1.76549256e+00 -7.65525997e-02 -7.28838742e-01
9.13544118e-01 -8.79613981e-02 -4.31176633e-01 3.81675571e-01
3.19536597e-01 1.09452987e+00 9.42927599e-01 -1.01175392e+00
-6.58844471e-01 -2.11574152e-01 -1.54827535e-01 2.95052409e-01
-4.57819372e-01 2.46089593e-01 -9.08040285e-01 -6.73778772e-01
1.89814791e-02 -1.07499254e+00 -5.24237193e-02 4.28406328e-01
-1.05459444e-01 -2.54500300e-01 3.53732407e-01 -7.03994691e-01
1.09088540e+00 -2.33858871e+00 -2.71421880e-01 5.81607878e-01
4.21705008e-01 4.15018439e-01 -6.10368788e-01 3.15330714e-01
-1.44690394e-01 -6.55914694e-02 -2.39226535e-01 -7.72845149e-01
4.03117537e-02 -3.58923852e-01 -6.96311295e-02 5.51865101e-01
4.18895856e-02 1.08189964e+00 -9.17644918e-01 -5.10202467e-01
-1.60576031e-02 3.95151407e-01 -3.69931161e-01 2.32382074e-01
1.66897535e-01 1.33848518e-01 -2.21604601e-01 6.05801284e-01
9.89856541e-01 -3.93147856e-01 -3.18720192e-02 -3.40377957e-01
9.77726281e-02 4.90851291e-02 -1.02637458e+00 2.10171032e+00
-1.54338703e-01 5.53069353e-01 -2.17554271e-01 -9.92326498e-01
8.23910117e-01 4.23698984e-02 4.08279777e-01 -1.26700771e+00
2.88821280e-01 3.40014517e-01 -1.33291438e-01 -2.40228802e-01
3.83092821e-01 4.63760376e-01 6.06512763e-02 5.04037499e-01
1.04118913e-01 5.15478887e-02 4.30350572e-01 6.32760763e-01
1.29619229e+00 -4.84005697e-02 2.34591678e-01 -3.29388648e-01
6.75831854e-01 -4.04833227e-01 3.21328491e-01 9.21609402e-01
-7.63497472e-01 1.05564213e+00 1.56108961e-01 -1.90778136e-01
-1.01465797e+00 -9.22993183e-01 -1.98241547e-02 1.03446972e+00
4.96095121e-01 -6.20791495e-01 -9.39744413e-01 -6.57634139e-01
-1.88314170e-02 3.62237424e-01 -6.33244753e-01 -3.94013256e-01
-4.26231116e-01 -1.96815848e-01 6.21791065e-01 1.91306740e-01
1.01885259e+00 -1.07973599e+00 -4.77061450e-01 -2.52515644e-01
-4.66712594e-01 -1.18862998e+00 -9.93807197e-01 -5.31251490e-01
-5.15384436e-01 -9.80441868e-01 -1.02310669e+00 -8.88498366e-01
7.49419510e-01 8.47285867e-01 1.01499319e+00 5.29370368e-01
-5.80757320e-01 4.95545030e-01 -3.75009686e-01 -2.40168884e-01
-3.56687665e-01 -3.16648707e-02 -8.54629427e-02 3.56330603e-01
5.01979828e-01 -4.63222653e-01 -9.52060938e-01 6.20251596e-01
-8.28145325e-01 6.99924976e-02 7.80722022e-01 6.82503760e-01
6.39456451e-01 -5.77597141e-01 3.97588015e-01 -6.69775188e-01
7.18476176e-01 -3.50481480e-01 -5.03791094e-01 5.04044890e-01
-8.10205877e-01 -2.29991779e-01 2.20838755e-01 -4.25415963e-01
-5.87236226e-01 7.92047307e-02 -2.47658975e-02 -6.12380445e-01
-7.48584569e-02 2.96418071e-01 5.82432225e-02 -4.61994469e-01
8.74397576e-01 3.06864411e-01 1.69868171e-01 -1.99213043e-01
2.84160405e-01 6.41563356e-01 7.15260804e-01 -2.82494664e-01
1.07265329e+00 4.44776058e-01 -3.71646374e-01 -5.17874718e-01
-3.83908868e-01 -8.72151554e-01 -4.38382506e-01 -4.76765215e-01
5.05622149e-01 -1.14553273e+00 -6.38023317e-01 5.91483057e-01
-9.29493070e-01 -3.24075997e-01 -1.47248283e-01 4.29741591e-01
-5.89029074e-01 4.14868236e-01 -3.48078966e-01 -3.27446073e-01
-5.48311174e-01 -1.06631911e+00 9.42446411e-01 1.72526136e-01
-2.53817052e-01 -4.77144033e-01 1.63437322e-01 6.51436865e-01
7.11365581e-01 -3.76070500e-03 8.48872662e-02 -7.53569007e-01
-6.61223650e-01 -5.24939418e-01 -6.19580448e-01 2.69813120e-01
-7.28705227e-02 -2.99668729e-01 -8.87297928e-01 -6.31368101e-01
-2.81986177e-01 -5.72551131e-01 9.25926387e-01 6.57113567e-02
1.15704203e+00 3.40491720e-02 -3.29758227e-01 5.84390998e-01
1.10682487e+00 -3.42841409e-02 8.66563439e-01 4.41433489e-01
2.97691613e-01 4.61540908e-01 7.18847871e-01 3.25874060e-01
5.42931676e-01 8.45727682e-01 1.93514481e-01 -1.00131936e-01
-3.66093338e-01 -2.47279048e-01 3.99687022e-01 6.16085708e-01
4.99853492e-02 -1.01575148e-04 -8.38159859e-01 6.05368674e-01
-1.85405028e+00 -1.18876112e+00 1.24727905e-01 2.44052958e+00
8.18257809e-01 2.76435316e-01 3.70746136e-01 -7.45969415e-02
9.06179607e-01 -1.51283490e-02 -5.05287290e-01 -6.70001209e-02
-3.05896044e-01 1.36549920e-01 4.74636734e-01 4.62863415e-01
-1.15457344e+00 7.59591699e-01 5.13502216e+00 1.17793107e+00
-9.88994122e-01 3.54432136e-01 6.74922705e-01 -5.16009256e-02
-1.34936273e-01 -2.11770028e-01 -5.87211490e-01 6.09372079e-01
8.97382438e-01 -2.94421226e-01 3.06806028e-01 6.23837411e-01
-6.78318888e-02 -8.85265395e-02 -9.94731307e-01 1.41257727e+00
5.17549396e-01 -1.47472870e+00 -7.99435377e-02 -2.12689526e-02
6.61101580e-01 3.70429307e-01 2.95321882e-01 2.51249045e-01
-1.80966333e-01 -6.24662280e-01 7.06625819e-01 5.90743542e-01
8.53141963e-01 -4.85494673e-01 5.94658077e-01 1.39380455e-01
-1.25668252e+00 1.57942902e-02 -2.49377310e-01 3.99307013e-01
-1.27199322e-01 4.17486697e-01 -5.13757467e-01 5.89530528e-01
9.54977930e-01 9.19777334e-01 -9.66973066e-01 1.28454614e+00
5.20257801e-02 2.89741486e-01 -3.43076527e-01 8.43750462e-02
-4.64532524e-02 -1.76078472e-02 4.30921882e-01 1.30024290e+00
2.47982994e-01 3.19045484e-02 -9.45697129e-02 6.70111179e-01
-4.42725241e-01 2.12744296e-01 -7.04517603e-01 1.57828659e-01
4.22108203e-01 1.33708858e+00 -7.38857269e-01 -3.66695255e-01
-3.41917962e-01 1.36561620e+00 3.56716812e-01 9.07625854e-02
-8.25206459e-01 -4.44774985e-01 3.51091743e-01 1.39421955e-01
1.51382953e-01 5.51033914e-02 1.63320303e-01 -1.19887090e+00
3.02877754e-01 -1.09739387e+00 4.58580732e-01 -6.65488362e-01
-1.44197547e+00 7.00492918e-01 4.27772701e-02 -1.61270332e+00
-1.40221968e-01 -2.61021197e-01 -7.89123356e-01 5.07461846e-01
-1.52029467e+00 -1.19020617e+00 -5.55706680e-01 9.28155482e-01
3.56896967e-01 -4.76015598e-01 5.58350801e-01 7.76345491e-01
-3.51768374e-01 1.45258510e+00 1.01033188e-01 1.34064794e-01
1.14377558e+00 -8.21400642e-01 7.11936772e-01 8.54570746e-01
1.94104373e-01 5.49465597e-01 5.74584782e-01 -5.30961037e-01
-1.15976894e+00 -1.00916064e+00 1.12480307e+00 -1.06647722e-01
5.22398114e-01 -6.33169532e-01 -8.86600554e-01 3.12063217e-01
5.38668513e-01 2.78291941e-01 6.40475750e-01 -4.38436568e-01
-6.22698605e-01 -3.41742218e-01 -1.35308802e+00 7.25337267e-01
1.35149407e+00 -7.31870532e-01 -1.31690145e-01 5.72350085e-01
4.98387724e-01 -3.37062210e-01 -7.34971881e-01 3.26465666e-01
6.82187021e-01 -1.07751000e+00 1.10182714e+00 -2.55629659e-01
3.42092812e-01 -2.21015438e-01 -1.85805872e-01 -7.45831847e-01
-1.52844071e-01 -8.91787469e-01 1.62672698e-01 1.17319930e+00
3.10345501e-01 -5.53353906e-01 9.42416787e-01 3.97588700e-01
7.35079572e-02 -6.58392668e-01 -8.66477549e-01 -1.00929379e+00
-2.00597003e-01 -1.61574632e-01 3.03473830e-01 1.09785533e+00
-3.28762457e-02 -6.51942343e-02 -3.09602559e-01 -1.07225671e-01
9.29993153e-01 -1.17084309e-01 9.88447905e-01 -8.09207797e-01
-3.07660908e-01 -6.48004115e-01 -8.28695893e-01 -1.03944612e+00
-1.96336843e-02 -1.20880890e+00 -1.41802490e-01 -1.01995707e+00
4.50818568e-01 -2.81331450e-01 -5.76615512e-01 2.36675531e-01
-7.60160163e-02 5.90399265e-01 4.04072285e-01 3.86270523e-01
-9.87322628e-01 4.64341372e-01 9.38600719e-01 -2.45403454e-01
1.55183628e-01 4.22655791e-02 -4.68548000e-01 1.37408033e-01
1.12615108e+00 -3.29681069e-01 -4.65282172e-01 -2.44879261e-01
1.25648873e-02 -3.45058709e-01 5.40402472e-01 -1.20213854e+00
6.43870175e-01 3.18363518e-01 1.02521122e-01 -5.98439455e-01
3.54050279e-01 -5.71310520e-01 7.17451200e-02 5.97009540e-01
-8.69001925e-01 3.26568753e-01 -2.70469058e-02 3.53975117e-01
-2.84928858e-01 -1.62261799e-01 8.65555525e-01 7.27642998e-02
-7.03633964e-01 5.92756212e-01 1.27908751e-01 1.61791295e-01
1.02421570e+00 -3.33870471e-01 -3.61860394e-01 -6.15232885e-01
-5.05210340e-01 4.61833566e-01 3.26761723e-01 6.28164887e-01
8.93720329e-01 -1.65375948e+00 -9.85017300e-01 2.38892525e-01
6.70038581e-01 -6.55589759e-01 3.94774944e-01 1.15263486e+00
-3.78894866e-01 9.71679948e-03 -4.64018077e-01 -6.08843446e-01
-1.58112764e+00 4.03136432e-01 2.72898018e-01 -1.92076311e-01
-5.01457393e-01 1.08280003e+00 -9.48314592e-02 -4.10014391e-01
4.45986807e-01 1.76164716e-01 7.54579157e-02 -2.13692471e-01
8.32748890e-01 1.73056290e-01 1.29257649e-01 -7.94208050e-01
-3.94488692e-01 6.25642717e-01 -5.07809162e-01 -2.14314833e-01
9.96156871e-01 -3.99585366e-01 3.67548391e-02 1.08210810e-01
1.72522151e+00 -4.09733444e-01 -7.68419325e-01 -8.11121464e-01
6.80112392e-02 -7.70925701e-01 -1.72565624e-01 -5.34897983e-01
-1.05467916e+00 8.20143342e-01 1.25261641e+00 -4.55788663e-03
1.23061025e+00 -6.71678362e-03 8.34958375e-01 3.58505011e-01
2.40171805e-01 -1.14414918e+00 2.32154161e-01 1.57845154e-01
1.27836692e+00 -1.52895713e+00 -5.22474572e-02 -3.22399199e-01
-5.92782557e-01 6.87913358e-01 7.55047977e-01 -2.61215895e-01
6.78405106e-01 -8.05467367e-02 5.70612215e-02 -1.30961224e-01
-6.83912754e-01 -2.69718766e-01 5.07836699e-01 5.38941979e-01
3.25095683e-01 -2.28294700e-01 -3.77393126e-01 1.58425272e-01
-1.52084112e-01 2.77840290e-02 8.24699029e-02 1.01802313e+00
-1.77459896e-01 -1.24433994e+00 -8.07060301e-03 4.81479228e-01
-1.23160198e-01 -1.05918139e-01 -4.59089577e-01 6.87990248e-01
4.48601041e-03 7.46263921e-01 8.44510123e-02 -6.28600180e-01
4.29131031e-01 -3.10460389e-01 5.01794219e-01 -6.66937381e-02
-7.75326192e-01 -9.19878557e-02 -1.19442478e-01 -1.07778513e+00
-6.33309424e-01 -7.99499810e-01 -1.11887443e+00 -5.04751146e-01
-1.32326156e-01 -8.07208493e-02 6.67064428e-01 4.79673773e-01
6.87624872e-01 -1.68394834e-01 9.66446221e-01 -8.86315703e-01
-4.80037898e-01 -6.82245076e-01 -2.14568332e-01 9.03073132e-01
1.82042927e-01 -4.69857752e-01 -3.23142648e-01 5.53163700e-02] | [10.599766731262207, 0.8624497056007385] |
e5f12b88-f56c-41e3-9cca-7729ac79c494 | pixel-wise-deep-image-stitching | 2112.06171 | null | https://arxiv.org/abs/2112.06171v1 | https://arxiv.org/pdf/2112.06171v1.pdf | Pixel-wise Deep Image Stitching | Image stitching aims at stitching the images taken from different viewpoints into an image with a wider field of view. Existing methods warp the target image to the reference image using the estimated warp function, and a homography is one of the most commonly used warping functions. However, when images have large parallax due to non-planar scenes and translational motion of a camera, the homography cannot fully describe the mapping between two images. Existing approaches based on global or local homography estimation are not free from this problem and suffer from undesired artifacts due to parallax. In this paper, instead of relying on the homography-based warp, we propose a novel deep image stitching framework exploiting the pixel-wise warp field to handle the large-parallax problem. The proposed deep image stitching framework consists of two modules: Pixel-wise Warping Module (PWM) and Stitched Image Generating Module (SIGMo). PWM employs an optical flow estimation model to obtain pixel-wise warp of the whole image, and relocates the pixels of the target image with the obtained warp field. SIGMo blends the warped target image and the reference image while eliminating unwanted artifacts such as misalignments, seams, and holes that harm the plausibility of the stitched result. For training and evaluating the proposed framework, we build a large-scale dataset that includes image pairs with corresponding pixel-wise ground truth warp and sample stitched result images. We show that the results of the proposed framework are qualitatively superior to those of the conventional methods, especially when the images have large parallax. The code and the proposed dataset will be publicly available soon. | ['Kuk-Jin Yoon', 'Wooseong Jeong', 'Youngho Yoon', 'Yoonsu Kang', 'Hyeonseong Kim', 'Hyeokjun Kweon'] | 2021-12-12 | null | null | null | null | ['image-stitching', 'homography-estimation'] | ['computer-vision', 'computer-vision'] | [ 4.69589710e-01 -2.71001041e-01 1.50110871e-02 1.04033418e-01
-3.26903611e-01 -5.78096807e-01 5.49881041e-01 -4.83486623e-01
-2.31261030e-01 5.72635710e-01 1.95983112e-01 1.24065645e-01
-1.96196139e-03 -6.67597055e-01 -7.78062582e-01 -9.49368894e-01
4.39108253e-01 1.42078057e-01 3.98392677e-01 -1.05667278e-01
5.03988683e-01 2.80823886e-01 -1.28740525e+00 -9.16386545e-02
8.88947070e-01 7.30317473e-01 1.80425242e-01 4.46592361e-01
1.90829322e-01 2.84179002e-01 -6.02371335e-01 -2.69995600e-01
7.10980237e-01 -5.32654941e-01 -4.22712147e-01 4.60151315e-01
7.81532705e-01 -7.05277681e-01 -5.66397250e-01 1.27861965e+00
2.44318739e-01 1.97589695e-01 2.49180660e-01 -1.48040998e+00
-4.04375941e-01 1.61847457e-01 -1.10755622e+00 7.22051598e-03
1.88347384e-01 3.28362942e-01 5.34004033e-01 -5.17074645e-01
8.76626253e-01 1.16136479e+00 4.78102237e-01 1.10869475e-01
-1.25882375e+00 -9.23358738e-01 -4.39708233e-01 -2.04761457e-02
-1.25555313e+00 -3.25669557e-01 1.23058558e+00 -2.67509162e-01
3.72144103e-01 1.41859278e-01 6.69816315e-01 9.86158907e-01
6.64438009e-01 2.90139288e-01 1.14119196e+00 -3.88184816e-01
-1.11378424e-01 -5.19970879e-02 -1.19573921e-01 5.21785498e-01
4.12470549e-01 6.74078941e-01 -4.02662367e-01 -6.38666973e-02
1.16041148e+00 3.44439149e-01 -7.53162384e-01 -5.40587604e-01
-1.65091479e+00 4.51043099e-01 5.18777311e-01 4.05478388e-01
-1.36790469e-01 1.39305770e-01 1.08657092e-01 8.03283751e-02
7.06818029e-02 3.79357159e-01 2.55373448e-01 1.49277911e-01
-1.20724583e+00 9.26826000e-02 3.97208691e-01 9.58278477e-01
9.51134443e-01 2.67904162e-01 2.10525692e-01 5.60063541e-01
1.42846301e-01 5.50122201e-01 6.83025777e-01 -1.01480865e+00
5.69546759e-01 3.56892079e-01 1.96239904e-01 -1.66489565e+00
1.65317487e-02 -2.34936625e-01 -8.49530160e-01 3.55274558e-01
3.66035283e-01 -1.01470992e-01 -7.84511149e-01 1.46020710e+00
3.87626171e-01 5.66495180e-01 9.88559499e-02 1.09098399e+00
5.05219996e-01 7.96613693e-01 -5.97930133e-01 -2.41057649e-01
1.14949715e+00 -1.21201694e+00 -8.98900628e-01 -3.55925649e-01
2.22939357e-01 -1.14352679e+00 6.66083694e-01 2.83628255e-01
-9.72836435e-01 -7.07057238e-01 -1.41477203e+00 -2.06915230e-01
1.32004261e-01 -1.30894870e-01 9.06247795e-02 3.57736468e-01
-9.00680900e-01 5.01436591e-01 -7.29854822e-01 -2.29369298e-01
-6.13256842e-02 6.59135580e-02 -6.40132546e-01 -2.56933719e-01
-9.35757041e-01 8.05907428e-01 7.23615766e-01 7.12173358e-02
-7.41127908e-01 -6.35104716e-01 -8.81724596e-01 -3.89269888e-02
3.68461818e-01 -6.21041298e-01 6.90747976e-01 -1.23441458e+00
-1.26974142e+00 6.20997608e-01 3.57710682e-02 -2.30642468e-01
6.46353424e-01 -1.37861744e-01 -2.92379349e-01 1.46519750e-01
-5.61368130e-02 5.74582279e-01 1.38074863e+00 -1.53649068e+00
-3.42458308e-01 -2.19545126e-01 -3.09601486e-01 3.37255239e-01
-3.21916081e-02 -2.63344765e-01 -4.48656768e-01 -7.40481973e-01
1.45096958e-01 -9.24285829e-01 -1.36893997e-02 -8.23551938e-02
-5.28286397e-01 7.24145710e-01 1.38182843e+00 -7.89561510e-01
1.05352414e+00 -2.32876301e+00 4.19037230e-02 -5.00062928e-02
2.21788704e-01 3.32637280e-01 -4.64256674e-01 6.70881987e-01
-2.94588357e-01 -3.16103667e-01 -3.46613139e-01 -3.00826430e-01
-6.47923887e-01 2.18160629e-01 -4.50383276e-01 7.60457218e-01
-2.44829506e-01 7.54563928e-01 -1.07724369e+00 -4.89951998e-01
6.05321705e-01 5.69329858e-01 -2.39986241e-01 2.52585918e-01
1.39719725e-01 7.38378108e-01 -9.09575224e-02 2.90687948e-01
1.13721013e+00 2.20180839e-01 1.54429264e-02 -7.21918881e-01
-3.60429704e-01 -3.09617162e-01 -1.16032827e+00 1.82719076e+00
-2.42069200e-01 8.13844323e-01 -3.44966426e-02 -6.77034140e-01
1.10806358e+00 2.06823215e-01 6.71829581e-01 -4.11839187e-01
4.28400725e-01 3.68212610e-01 -1.93267539e-02 -4.51553047e-01
6.22626483e-01 -2.99182106e-02 3.76024216e-01 4.01404828e-01
3.63386013e-02 -3.76813710e-01 -4.60459851e-02 -1.77598838e-02
8.70849609e-01 1.47655308e-01 3.01078707e-01 -1.35601982e-01
5.54253638e-01 -1.42059354e-02 5.56072414e-01 3.16566944e-01
-1.36833712e-01 9.91593421e-01 2.62687027e-01 -5.94254911e-01
-1.49365687e+00 -8.36984992e-01 -9.52672865e-03 -6.34398535e-02
7.53907621e-01 -2.53827423e-01 -8.29854012e-01 -3.94183993e-01
-2.41747722e-01 4.94794726e-01 -4.09124017e-01 -1.63892686e-01
-6.70429289e-01 -3.17274094e-01 3.81935328e-01 9.68232378e-02
1.18512571e+00 -7.57196188e-01 -7.24422991e-01 5.67995422e-02
-4.23185945e-01 -1.39563072e+00 -1.01496625e+00 -4.89464730e-01
-1.08336377e+00 -1.14153838e+00 -9.52164710e-01 -8.42177987e-01
9.16987658e-01 9.75988746e-01 5.02544820e-01 1.52833164e-01
-1.60073638e-01 3.02697322e-03 -2.08689928e-01 3.06221664e-01
-5.01212895e-01 -5.18683612e-01 -1.57770440e-01 3.71522397e-01
-2.30482951e-01 -6.02775276e-01 -8.82765532e-01 7.57638752e-01
-1.49511635e+00 4.56400782e-01 4.72089201e-01 1.05363238e+00
2.29677066e-01 3.98630142e-01 -1.95316702e-01 -5.21259487e-01
2.01200008e-01 6.07708795e-03 -7.63711870e-01 2.15803157e-03
-4.30216700e-01 8.53786841e-02 4.03909802e-01 -4.46281552e-01
-1.06344593e+00 1.24059200e-01 1.97069988e-01 -8.56101274e-01
5.67230210e-03 2.26889789e-01 -9.82088074e-02 -3.64251912e-01
4.16057765e-01 3.75407904e-01 3.51161510e-01 -2.27580592e-01
2.84466296e-01 4.00436044e-01 9.95616734e-01 -1.71519056e-01
1.26755786e+00 8.60613108e-01 4.81578857e-02 -7.94187963e-01
-2.71026134e-01 -2.92734474e-01 -6.17242038e-01 -3.14026892e-01
9.62151289e-01 -6.33116663e-01 -4.37717795e-01 8.97567689e-01
-1.36387396e+00 1.84393432e-02 -7.88492635e-02 5.79076350e-01
-4.33415681e-01 1.08072507e+00 -3.65209311e-01 -3.37899208e-01
-3.72824788e-01 -1.46358907e+00 1.06981122e+00 3.85332197e-01
1.37741610e-01 -1.00346041e+00 3.28520507e-01 5.12005091e-01
3.60103309e-01 6.11009181e-01 6.16302788e-01 -1.32158995e-01
-8.13458383e-01 -2.69404531e-01 -1.84256077e-01 4.39842731e-01
4.36328709e-01 1.84835330e-01 -8.04781139e-01 -5.15084207e-01
3.98428410e-01 1.33360669e-01 6.58376634e-01 4.30974752e-01
4.52714741e-01 -3.24270219e-01 -3.24183494e-01 9.10629332e-01
1.66814983e+00 4.36005145e-01 1.03263581e+00 5.31268060e-01
8.47356439e-01 6.73806369e-01 7.17966259e-01 7.96776339e-02
-5.69459647e-02 1.02557385e+00 5.88353097e-01 -2.76103765e-01
-2.89478451e-01 -4.08741504e-01 4.93590474e-01 6.02274239e-01
-1.41687885e-01 -3.14522445e-01 -6.46077096e-01 4.39813644e-01
-1.82355547e+00 -8.91646624e-01 -5.68879507e-02 2.68587780e+00
5.04561067e-01 -1.43246755e-01 -2.84640700e-01 1.39190048e-01
1.02366662e+00 5.44825792e-01 -3.83385390e-01 -1.33094475e-01
-1.06387429e-01 -9.09724683e-02 7.13863313e-01 8.98253679e-01
-6.68978870e-01 9.22679484e-01 5.13237762e+00 7.53695726e-01
-1.36801732e+00 -3.28688286e-02 1.87819615e-01 2.95003176e-01
-3.12316924e-01 4.61251259e-01 -3.32934201e-01 5.15996635e-01
3.65374297e-01 -7.46414587e-02 4.91753221e-01 2.97190368e-01
2.63561547e-01 -3.62652898e-01 -7.78608680e-01 1.21952868e+00
3.27619553e-01 -1.23977077e+00 -2.56278999e-02 2.02983901e-01
8.86269331e-01 -2.57318199e-01 9.62049887e-02 -4.36042964e-01
-5.52888550e-02 -6.00175261e-01 5.55270791e-01 2.93665618e-01
7.41221189e-01 -5.77679873e-01 7.40560532e-01 2.16324896e-01
-1.02415383e+00 1.32714331e-01 -2.53299057e-01 2.68043786e-01
4.83532220e-01 6.16482973e-01 -6.36275291e-01 7.86852419e-01
4.16902632e-01 9.41461384e-01 -3.72506499e-01 9.44717467e-01
-1.50060669e-01 7.20918402e-02 -1.51339918e-01 7.61550009e-01
2.35375181e-01 -7.51879752e-01 9.31600392e-01 6.52287245e-01
6.70061231e-01 -8.42907652e-02 -1.74542129e-01 9.88438189e-01
2.24210843e-01 -2.30862126e-01 -9.64559793e-01 3.41443159e-02
4.54718292e-01 1.33461344e+00 -8.55114341e-01 -3.67755890e-01
-4.26158547e-01 1.30296981e+00 -4.39148456e-01 5.81851721e-01
-8.77118886e-01 -3.29653442e-01 5.80740333e-01 1.27049550e-01
1.03260018e-01 -4.28582937e-01 -8.36681575e-02 -1.41842699e+00
-7.44618252e-02 -1.04438007e+00 4.36410531e-02 -1.12949955e+00
-7.21902132e-01 7.06963062e-01 1.32085219e-01 -1.75626516e+00
-7.90381357e-02 -2.09923565e-01 -8.06598306e-01 7.83360898e-01
-1.37006259e+00 -1.20894670e+00 -8.34964693e-01 6.46140218e-01
5.86182415e-01 9.12459418e-02 2.42937341e-01 9.74644125e-02
-3.96295726e-01 2.91803479e-01 1.50177613e-01 1.66370004e-01
1.10994637e+00 -5.38395345e-01 3.43961447e-01 1.22015274e+00
-4.17354554e-02 6.28135443e-01 8.35145891e-01 -8.04317117e-01
-1.33944285e+00 -7.82656670e-01 4.95188445e-01 -7.69772977e-02
5.46262205e-01 -4.84548956e-02 -9.14570391e-01 7.34101534e-01
7.13046491e-01 7.48543069e-02 -6.60937577e-02 -9.24564779e-01
-3.43132794e-01 -2.52991855e-01 -1.16412437e+00 5.36600828e-01
6.78470552e-01 -2.49484554e-01 -4.36905175e-01 -1.71862543e-01
7.22333550e-01 -6.91682458e-01 -6.21367276e-01 2.73637503e-01
7.52022684e-01 -1.39875889e+00 1.01574111e+00 1.48037136e-01
6.92623258e-01 -6.78742409e-01 9.49531123e-02 -1.34711003e+00
-1.41488597e-01 -1.01154113e+00 3.32653791e-01 1.26465619e+00
-2.85658658e-01 -8.87306035e-01 5.21310627e-01 3.45166177e-01
-1.57581285e-01 -6.54318258e-02 -9.16023016e-01 -8.09291124e-01
-3.52516055e-01 1.51572488e-02 4.63512450e-01 1.13746083e+00
-1.78683802e-01 1.92403883e-01 -7.70521879e-01 3.20749015e-01
8.20131540e-01 1.79427177e-01 1.01447821e+00 -6.58327699e-01
-3.34439844e-01 -1.71976268e-01 -6.69791758e-01 -8.77221346e-01
-1.56530812e-01 -4.99638647e-01 9.54559743e-02 -9.61329818e-01
1.15874797e-01 -5.98968230e-02 2.54667133e-01 2.58078754e-01
3.06529622e-03 3.44620317e-01 3.57950419e-01 6.29435956e-01
2.99242198e-01 5.24396181e-01 1.76056278e+00 -7.56008103e-02
-3.50143075e-01 -3.59744966e-01 -1.23907782e-01 5.87076366e-01
5.20306826e-01 -4.42939937e-01 -5.72572708e-01 -5.78943491e-01
-1.77178517e-01 4.85238731e-01 4.37743366e-01 -1.10395920e+00
2.37507090e-01 -2.85533726e-01 1.70158520e-01 -3.91012967e-01
3.92748654e-01 -1.14744568e+00 7.19479978e-01 6.75444961e-01
-1.32911101e-01 2.55636960e-01 5.17980419e-02 5.10845244e-01
-4.49945718e-01 -3.04849118e-01 1.01857221e+00 1.26831010e-01
-3.97511482e-01 2.21838474e-01 1.26460135e-01 -3.90539467e-01
1.18542755e+00 -5.97467184e-01 -6.50897741e-01 -4.65105355e-01
-3.78943770e-03 -2.36291319e-01 1.00939417e+00 4.56517220e-01
8.43695402e-01 -1.33771563e+00 -3.72333348e-01 6.20010316e-01
-3.61108035e-02 1.05457744e-02 3.46513867e-01 1.04303753e+00
-1.00186658e+00 1.32891908e-01 -6.77477479e-01 -5.62015116e-01
-1.28900981e+00 8.53501260e-01 3.50310594e-01 -1.72603607e-01
-8.16415370e-01 2.59474397e-01 5.24430513e-01 4.84983101e-02
-1.03537627e-01 -3.49749446e-01 7.61160702e-02 -3.28183502e-01
5.01539767e-01 3.35574895e-01 -1.54549509e-01 -1.02518559e+00
-1.08292058e-01 1.10500062e+00 -4.27509323e-02 -4.55159068e-01
9.01013970e-01 -2.76648700e-01 -1.28401756e-01 -7.32229277e-02
1.38336074e+00 1.88445181e-01 -1.49493825e+00 -2.55476117e-01
-5.66172481e-01 -1.03277326e+00 2.01274291e-01 -2.94071227e-01
-1.51331031e+00 9.16606128e-01 5.72595596e-01 -1.45148054e-01
1.23358500e+00 -5.97988307e-01 1.28422117e+00 -3.05578619e-01
2.77351737e-01 -5.77109277e-01 3.04892421e-01 1.50904074e-01
8.52747142e-01 -9.76470411e-01 1.24322325e-01 -4.29864198e-01
-6.79658353e-01 1.37490809e+00 5.09750426e-01 -4.53978568e-01
2.10175857e-01 1.64677396e-01 1.49558961e-01 1.72806755e-02
-3.06978047e-01 1.21850140e-01 2.18551978e-01 7.54251063e-01
-8.78933147e-02 -4.33035165e-01 -3.47631574e-01 -1.93889320e-01
-1.39420957e-03 -8.58162865e-02 8.86963069e-01 8.14797640e-01
-2.86638439e-01 -1.18075216e+00 -8.82141471e-01 -2.80700445e-01
6.75907359e-02 6.18987232e-02 -2.28778645e-01 8.19995522e-01
8.95581022e-03 8.03462565e-01 -1.60045992e-03 -6.70142591e-01
9.57871452e-02 -3.65461439e-01 5.63884377e-01 -1.84726730e-01
-4.04643089e-01 4.78274792e-01 -2.78433233e-01 -7.14086354e-01
-5.97203970e-01 -3.43116254e-01 -1.11322927e+00 -5.02711177e-01
-2.95351893e-01 -1.89224333e-01 6.31944299e-01 8.60477686e-01
1.78890988e-01 1.54105639e-02 8.11089158e-01 -1.17214847e+00
-1.96161836e-01 -6.14216208e-01 -5.60378134e-01 6.55799627e-01
7.09795713e-01 -6.01838946e-01 -5.79215586e-01 3.65567505e-01] | [9.373757362365723, -2.3346121311187744] |
c1c2a842-41dc-4438-bd61-07fc71e3e5a7 | a-new-dataset-and-model-for-learning-to | 1805.07952 | null | http://arxiv.org/abs/1805.07952v1 | http://arxiv.org/pdf/1805.07952v1.pdf | A new dataset and model for learning to understand navigational instructions | In this paper, we present a state-of-the-art model and introduce a new
dataset for grounded language learning. Our goal is to develop a model that can
learn to follow new instructions given prior instruction-perception-action
examples. We based our work on the SAIL dataset which consists of navigational
instructions and actions in a maze-like environment. The new model we propose
achieves the best results to date on the SAIL dataset by using an improved
perceptual component that can represent relative positions of objects. We also
analyze the problems with the SAIL dataset regarding its size and balance. We
argue that performance on a small, fixed-size dataset is no longer a good
measure to differentiate state-of-the-art models. We introduce SAILx, a
synthetic dataset generator, and perform experiments where the size and balance
of the dataset are controlled. | ['Ozan Arkan Can', 'Deniz Yuret'] | 2018-05-21 | null | null | null | null | ['grounded-language-learning'] | ['natural-language-processing'] | [ 1.92895293e-01 3.20001155e-01 1.34733677e-01 -5.76852798e-01
-8.30204070e-01 -6.68950915e-01 8.08390141e-01 3.86361003e-01
-7.65679717e-01 7.26931691e-01 2.70929128e-01 -5.13239622e-01
-9.33439285e-02 -8.36236298e-01 -1.13452518e+00 -3.30274343e-01
-3.88401419e-01 8.28940213e-01 6.00613594e-01 -6.27222717e-01
5.81961334e-01 4.14357990e-01 -1.70806336e+00 5.64103007e-01
6.82923973e-01 5.48254848e-01 5.27738214e-01 7.90732801e-01
2.31104754e-02 9.60407674e-01 -6.05654895e-01 1.27514526e-01
2.92106122e-01 -7.04693675e-01 -1.10921967e+00 -1.40817970e-01
5.71084082e-01 -1.34000555e-01 -8.05464089e-02 5.57565212e-01
4.19867843e-01 4.82422054e-01 6.27610981e-01 -1.29323828e+00
-6.42079592e-01 8.53038728e-01 1.69040859e-01 1.05412014e-01
6.36912882e-01 1.74870893e-01 8.44909906e-01 -6.08226180e-01
7.36136436e-01 1.33369160e+00 5.72954655e-01 7.65749633e-01
-1.31616724e+00 -3.34290355e-01 3.41330767e-01 2.25596860e-01
-1.10070729e+00 -2.63820082e-01 7.83900976e-01 -3.61685187e-01
9.30014133e-01 1.39401659e-01 7.32302427e-01 1.22350371e+00
1.33984879e-01 9.77467835e-01 1.41528559e+00 -8.33336294e-01
6.96069837e-01 -1.78107414e-02 1.00512184e-01 8.39860559e-01
2.00274259e-01 3.37184310e-01 -7.10953891e-01 3.88091505e-01
7.64727175e-01 -5.01603067e-01 -2.31263131e-01 -1.08169270e+00
-1.36458576e+00 6.63532197e-01 5.22187710e-01 3.82539541e-01
-9.81659293e-02 3.02630991e-01 1.78022444e-01 3.42058867e-01
-3.64527740e-02 9.86922443e-01 -4.53083217e-01 -4.14928317e-01
-5.69061041e-01 5.46149373e-01 6.93589211e-01 9.83543217e-01
7.01149702e-01 -6.83170930e-02 -7.68133178e-02 5.08672357e-01
1.50490865e-01 2.03980297e-01 5.96408069e-01 -1.28157246e+00
3.98286134e-01 1.99173719e-01 3.59343529e-01 -6.82181895e-01
-6.42052829e-01 -3.43627274e-01 -1.57724805e-02 5.01421988e-01
6.35871530e-01 3.51754539e-02 -9.04451847e-01 1.95515251e+00
-7.77387545e-02 8.10428783e-02 3.50599319e-01 5.66063821e-01
8.26406717e-01 6.74745023e-01 -8.49732459e-02 1.32454306e-01
8.37644398e-01 -1.16090643e+00 -4.29217815e-01 -6.55643940e-01
1.10952377e+00 -2.06006944e-01 1.84138012e+00 7.32480049e-01
-1.02801299e+00 -9.96783614e-01 -1.25894201e+00 -1.71872720e-01
-7.70556569e-01 2.07105130e-02 7.75576532e-01 6.70218408e-01
-1.32118559e+00 4.09252077e-01 -8.83333206e-01 -5.48825085e-01
1.63834289e-01 2.59032369e-01 -3.57389748e-01 -1.64265260e-01
-7.77189732e-01 1.10466349e+00 7.55697489e-01 -3.11060637e-01
-1.36332178e+00 -5.49706161e-01 -1.25355959e+00 -1.30483419e-01
4.72479820e-01 -3.93889606e-01 1.58158875e+00 -5.28172076e-01
-1.53468204e+00 9.96388078e-01 9.00531858e-02 -4.40679967e-01
2.98640281e-01 -1.42704859e-01 -2.34515354e-01 -4.75940108e-02
1.50672346e-01 1.06090021e+00 2.24112988e-01 -1.99460685e+00
-4.88760948e-01 -2.02923805e-01 4.56336528e-01 1.44448951e-01
2.39693075e-01 -5.31252861e-01 -5.13940006e-02 -3.81480694e-01
1.13040023e-01 -1.12542200e+00 -2.79054016e-01 -3.31727773e-01
-1.63844541e-01 -1.21001266e-02 2.97623545e-01 -1.48317054e-01
8.55221570e-01 -2.20090222e+00 1.13933742e-01 -1.22079387e-01
-2.05750301e-01 5.38464636e-02 -5.57609677e-01 5.34449458e-01
-3.35418917e-02 1.12278774e-01 -8.76211151e-02 -5.66465974e-01
1.74013749e-01 4.77390856e-01 -3.78910631e-01 5.06996289e-02
-9.47926864e-02 9.20682192e-01 -1.31103396e+00 -2.90018857e-01
1.65326625e-01 1.43439099e-01 -9.45622087e-01 2.72263855e-01
-4.62688059e-01 6.04442358e-01 -1.96900800e-01 1.40607700e-01
2.21090749e-01 3.21466058e-01 1.62675064e-02 1.56070247e-01
-1.84855580e-01 5.35045683e-01 -1.17348421e+00 2.41616368e+00
-7.45172024e-01 7.16990352e-01 -4.14136171e-01 -7.74386466e-01
1.01829541e+00 -1.15071811e-01 1.13997785e-02 -8.67143393e-01
6.10901080e-02 9.75159630e-02 3.58632654e-01 -6.07530415e-01
5.87775171e-01 -1.13538042e-01 -3.29033673e-01 3.87147933e-01
1.92812055e-01 -7.23585963e-01 4.47563052e-01 1.17438577e-01
1.08639002e+00 6.17958248e-01 3.41978461e-01 -4.20948744e-01
2.33946130e-01 2.44657978e-01 4.07947004e-02 1.09181559e+00
-1.27072066e-01 6.52815878e-01 4.90733624e-01 -5.36378741e-01
-7.17382908e-01 -1.18878782e+00 1.74807027e-01 1.34922457e+00
9.47681069e-02 -6.04619861e-01 -7.53208816e-01 -7.76126742e-01
-4.41802114e-01 1.49939942e+00 -9.70976532e-01 -1.80549487e-01
-6.28982008e-01 -3.33009094e-01 4.18731958e-01 7.54716277e-01
4.61365759e-01 -1.47473586e+00 -1.28135133e+00 1.07808858e-01
-4.58845310e-02 -1.07257903e+00 2.63463221e-02 5.00867307e-01
-8.55229080e-01 -1.11990166e+00 -2.01065332e-01 -9.31645870e-01
6.83387697e-01 5.61497137e-02 1.47880709e+00 -1.99236065e-01
1.82556033e-01 6.14920259e-01 -5.63032329e-01 -7.50396907e-01
-5.92391372e-01 2.64804997e-02 -1.73168242e-01 -5.52452981e-01
1.86940446e-01 -5.14072716e-01 -2.29040608e-01 1.16701946e-01
-9.71369803e-01 2.61429369e-01 4.37803328e-01 6.45716608e-01
5.73923111e-01 -8.61731917e-03 3.33144933e-01 -9.57037568e-01
7.05486357e-01 -3.32351997e-02 -5.73157310e-01 1.57628268e-01
-2.06456497e-01 4.70823884e-01 6.37969911e-01 -3.61275196e-01
-9.32298005e-01 9.21949372e-02 -2.24121734e-01 2.14123711e-01
-6.23747051e-01 5.70651412e-01 -3.99529368e-01 -2.85377521e-02
9.41279769e-01 2.99298078e-01 -2.62036473e-01 -4.76556361e-01
7.48365879e-01 2.29602635e-01 6.86119854e-01 -9.54618096e-01
3.57683778e-01 2.08339930e-01 1.43032774e-01 -5.87552547e-01
-9.07951593e-01 -3.55464630e-02 -9.97466683e-01 -1.19863404e-02
6.81029618e-01 -6.12565041e-01 -7.26092041e-01 2.19597295e-01
-1.01984394e+00 -1.15571904e+00 -7.06583917e-01 4.79095817e-01
-1.26234818e+00 -1.04235880e-01 -3.64154607e-01 -4.83790964e-01
5.17415881e-01 -1.33906019e+00 9.41823304e-01 -1.55024543e-01
-3.49202842e-01 -1.10148120e+00 4.87314641e-01 2.41146043e-01
2.89373428e-01 4.29000199e-01 1.04867232e+00 -7.75328636e-01
-5.21543086e-01 1.42709672e-01 2.96085954e-01 1.51044890e-01
7.33208731e-02 -3.53234559e-01 -8.08006704e-01 -3.00040573e-01
6.17498197e-02 -8.09904516e-01 7.58786798e-01 7.76042268e-02
1.32066679e+00 -5.32595329e-02 -1.75820231e-01 4.66943324e-01
1.47643530e+00 6.28766179e-01 8.26326549e-01 7.06975162e-01
5.63974380e-01 5.61138332e-01 7.86843479e-01 4.06427421e-02
7.11407363e-01 6.95821226e-01 6.56505287e-01 2.62034535e-01
-1.61060348e-01 -6.09482706e-01 3.32202971e-01 6.50357306e-01
1.21665321e-01 -3.81292045e-01 -1.24029124e+00 7.29400039e-01
-1.65160918e+00 -8.46461833e-01 3.02670091e-01 2.05959940e+00
8.85592937e-01 5.45058191e-01 1.21599659e-01 2.71111578e-01
-1.50915518e-01 1.10764667e-01 -9.08228308e-02 -5.93059480e-01
1.72370806e-01 5.25848031e-01 6.68049455e-02 1.01709521e+00
-9.40292299e-01 1.12302423e+00 7.28824711e+00 3.23118240e-01
-9.67027962e-01 -5.60725704e-02 2.71943241e-01 4.18432504e-02
-1.44009531e-01 -1.06431782e-01 -7.44384229e-01 1.49670526e-01
1.03098452e+00 1.77426115e-01 4.27233130e-01 8.85789871e-01
2.17942204e-02 -3.33994150e-01 -1.80388367e+00 8.84056866e-01
5.15996039e-01 -1.28136313e+00 1.53121963e-01 -1.89830512e-01
6.28360271e-01 -3.01188603e-02 1.21089980e-01 7.70661175e-01
5.26270270e-01 -1.19526064e+00 9.52050030e-01 3.33734244e-01
4.61642027e-01 -7.27790773e-01 5.28831720e-01 5.43930948e-01
-8.15513372e-01 -1.69577003e-01 -1.83108136e-01 -4.37531561e-01
-7.42376074e-02 -1.82141498e-01 -9.90112841e-01 3.01443070e-01
4.60711598e-01 5.99228501e-01 -1.22293472e+00 1.10032594e+00
-6.44883811e-01 5.66525102e-01 -6.80813491e-02 -2.42905810e-01
5.33169806e-01 7.12374598e-02 1.41453251e-01 1.13331640e+00
3.57166857e-01 2.27356791e-01 4.36973006e-01 7.10610390e-01
2.09182367e-01 -5.43875545e-02 -9.78267431e-01 3.02713931e-01
3.43709707e-01 6.54441714e-01 -8.62305045e-01 -2.24148870e-01
-2.09074706e-01 5.22995234e-01 5.29999316e-01 2.74412811e-01
-6.39614761e-01 -2.83988684e-01 2.45858774e-01 1.77641541e-01
3.31327766e-01 -5.68124771e-01 -2.19239295e-01 -9.20861959e-01
-2.34900415e-01 -1.19956076e+00 8.87301266e-02 -1.19007564e+00
-7.23939836e-01 6.46849632e-01 5.83066940e-01 -1.05629611e+00
-4.31837678e-01 -9.88154948e-01 -2.93251216e-01 3.91789049e-01
-1.25794673e+00 -8.66843820e-01 -5.14661670e-01 3.72321248e-01
6.51161075e-01 -1.29438490e-01 1.05700159e+00 -1.72496483e-01
-1.58180803e-01 2.34032050e-01 -1.67700827e-01 7.70481452e-02
5.34773469e-01 -1.55649590e+00 5.30939817e-01 6.34871006e-01
5.26126087e-01 6.58315301e-01 9.87477005e-01 -3.16614300e-01
-1.02845490e+00 -6.94663465e-01 5.12796760e-01 -1.05537403e+00
3.21982056e-01 -7.31324732e-01 -7.53143072e-01 1.21996701e+00
3.16863060e-01 -1.54762655e-01 7.17052460e-01 1.76046997e-01
-2.28943199e-01 -6.42485097e-02 -1.03754759e+00 8.57321143e-01
1.33753598e+00 -3.96511048e-01 -1.19939101e+00 1.49801999e-01
6.62298083e-01 -6.47361934e-01 -3.12777340e-01 3.36996824e-01
4.01580989e-01 -1.33467102e+00 9.72018957e-01 -8.07008266e-01
4.30444419e-01 -3.50389004e-01 -4.42031085e-01 -2.01370931e+00
-3.55247378e-01 -2.54648328e-01 2.25328162e-01 9.84914839e-01
3.60615224e-01 -3.93402815e-01 8.72801960e-01 2.66698241e-01
-4.09159511e-01 -6.08765304e-01 -7.02209473e-01 -1.03880143e+00
2.53088295e-01 -7.22416341e-01 5.79435110e-01 6.28873944e-01
1.55585185e-01 6.18373632e-01 1.27714753e-01 -1.46284848e-01
3.00752729e-01 -6.55370168e-05 1.12807202e+00 -9.95441675e-01
-3.89439017e-01 -2.44563878e-01 -4.11527604e-01 -1.27659988e+00
3.23852241e-01 -7.76993334e-01 4.58995044e-01 -1.69971108e+00
-9.07394066e-02 -4.95630473e-01 -2.68386871e-01 6.62485421e-01
1.51561186e-01 -4.14138772e-02 4.80369359e-01 -3.57507348e-01
-7.56268561e-01 5.19257665e-01 1.35300326e+00 -1.79010615e-01
-4.29503620e-01 -3.34014684e-01 -6.73590302e-01 7.96983242e-01
1.00878513e+00 -3.76548976e-01 -1.03390014e+00 -6.58775330e-01
3.97541016e-01 -1.41830429e-01 3.83729339e-01 -1.57329082e+00
6.60013556e-02 -1.57203481e-01 3.04125905e-01 -5.91994643e-01
5.02840221e-01 -7.38325357e-01 -1.50060549e-01 5.31907380e-01
-9.54958320e-01 3.35579693e-01 6.61117554e-01 2.96987832e-01
-1.73724815e-01 -4.50993955e-01 6.05065703e-01 -4.46493298e-01
-1.11160648e+00 -3.79690945e-01 -5.04319012e-01 3.87554735e-01
9.96615350e-01 -1.26561314e-01 -4.27583814e-01 -5.29822171e-01
-7.61555314e-01 1.16029210e-01 6.64784849e-01 6.99351668e-01
6.57127142e-01 -1.22889447e+00 -5.91492116e-01 2.78898746e-01
3.88903946e-01 5.02351634e-02 -1.65798649e-01 1.34472072e-01
-7.97735453e-01 5.88137031e-01 -6.92366004e-01 -4.62832004e-01
-9.72657919e-01 9.66874063e-01 3.68109047e-01 -2.69380569e-01
-2.29283869e-01 8.36872339e-01 5.43584153e-02 -7.46396542e-01
3.83936912e-01 -9.27652121e-01 -3.29990476e-01 -1.66670546e-01
4.35694277e-01 1.26619726e-01 -2.28707660e-02 -4.15719211e-01
-2.58895487e-01 4.48324084e-01 2.03347728e-01 -5.86663127e-01
1.16722548e+00 9.84347090e-02 2.08989948e-01 1.01060438e+00
8.47090364e-01 7.91336074e-02 -1.28432858e+00 5.17795570e-02
-1.42471176e-02 -4.49500471e-01 -2.91031927e-01 -1.03359938e+00
-4.70674753e-01 1.16688073e+00 5.81752837e-01 8.09126645e-02
8.36786389e-01 3.65418615e-03 3.26756060e-01 9.30653036e-01
9.24043298e-01 -8.56467664e-01 6.74720168e-01 8.17012191e-01
1.15367091e+00 -1.20403135e+00 -1.18928149e-01 -1.32189453e-01
-6.68056965e-01 8.64790618e-01 9.14691627e-01 -2.98621710e-02
3.22217494e-01 1.95102096e-01 1.98174536e-01 -1.01776101e-01
-7.66810179e-01 -2.42527798e-01 1.09896168e-01 1.13402081e+00
4.71184999e-01 -6.37434125e-02 2.32894998e-02 4.03444827e-01
-8.59116495e-01 8.80949721e-02 8.00830066e-01 1.32798362e+00
-5.34058690e-01 -1.20409620e+00 -2.58616120e-01 -4.23537455e-02
1.61559004e-02 -7.87955523e-02 -5.77038646e-01 1.26322198e+00
4.24852490e-01 9.94342864e-01 5.01045138e-02 -2.66160190e-01
5.97689688e-01 1.12868145e-01 1.07854152e+00 -1.07357371e+00
-3.45642418e-01 -5.35915077e-01 1.74799636e-01 -7.68326581e-01
-3.94553035e-01 -5.67263782e-01 -1.53491580e+00 2.35072166e-01
3.60935330e-01 2.25929961e-01 5.92422962e-01 8.51446748e-01
1.46096498e-01 7.40099311e-01 1.26312032e-01 -1.17766142e+00
-3.70418340e-01 -8.04478288e-01 -3.40056807e-01 4.18498605e-01
4.84114110e-01 -7.66415298e-01 -1.28032267e-01 3.45106027e-03] | [4.317961692810059, 0.8304154872894287] |
6b79a8d2-c2d2-4c0a-ac4e-5d43acdf04b8 | planning-with-large-language-models-via | 2211.09935 | null | https://arxiv.org/abs/2211.09935v1 | https://arxiv.org/pdf/2211.09935v1.pdf | Planning with Large Language Models via Corrective Re-prompting | Extracting the common sense knowledge present in Large Language Models (LLMs) offers a path to designing intelligent, embodied agents. Related works have queried LLMs with a wide-range of contextual information, such as goals, sensor observations and scene descriptions, to generate high-level action plans for specific tasks; however these approaches often involve human intervention or additional machinery to enable sensor-motor interactions. In this work, we propose a prompting-based strategy for extracting executable plans from an LLM, which leverages a novel and readily-accessible source of information: precondition errors. Our approach assumes that actions are only afforded execution in certain contexts, i.e., implicit preconditions must be met for an action to execute (e.g., a door must be unlocked to open it), and that the embodied agent has the ability to determine if the action is/is not executable in the current context (e.g., detect if a precondition error is present). When an agent is unable to execute an action, our approach re-prompts the LLM with precondition error information to extract an executable corrective action to achieve the intended goal in the current context. We evaluate our approach in the VirtualHome simulation environment on 88 different tasks and 7 scenes. We evaluate different prompt templates and compare to methods that naively re-sample actions from the LLM. Our approach, using precondition errors, improves executability and semantic correctness of plans, while also reducing the number of re-prompts required when querying actions. | ['Stefanie Tellex', 'David Paulius', 'Ifrah Idrees', 'Eric Rosen', 'Vanya Cohen', 'Shreyas Sundara Raman'] | 2022-11-17 | null | null | null | null | ['common-sense-reasoning'] | ['reasoning'] | [ 8.63897324e-01 4.38469082e-01 2.42146645e-02 -2.59070724e-01
-6.21972263e-01 -8.37687612e-01 7.91601062e-01 3.64243299e-01
-4.23234552e-01 7.22923458e-01 3.83423686e-01 -5.23690522e-01
-1.27315789e-01 -8.60244632e-01 -7.41394758e-01 -1.55000165e-01
8.54583606e-02 2.50396430e-01 4.73899066e-01 -1.76347271e-01
3.94870162e-01 6.04038000e-01 -1.83074164e+00 2.54773527e-01
6.21028543e-01 6.85872555e-01 6.17628932e-01 7.81581581e-01
1.21123251e-02 1.29214680e+00 -6.03667319e-01 4.99730855e-01
2.06640549e-02 -5.22651315e-01 -1.30440915e+00 2.06708804e-01
-7.36977085e-02 -6.49078369e-01 6.12596273e-02 8.77890587e-01
-9.56998300e-03 3.62746745e-01 4.62898344e-01 -1.63980985e+00
1.20413281e-01 4.19038892e-01 2.11170763e-01 -2.33955979e-01
1.18532264e+00 6.29017711e-01 7.89273918e-01 -2.83082306e-01
8.11665118e-01 1.05687785e+00 2.31043518e-01 6.12543225e-01
-1.19092929e+00 -1.18466459e-01 4.64938402e-01 2.16187119e-01
-1.22180688e+00 -7.90596783e-01 5.88828027e-01 -3.92791629e-01
1.52164447e+00 4.52052414e-01 6.18614137e-01 1.12105906e+00
3.03256422e-01 4.25764799e-01 1.19910479e+00 -6.37745738e-01
7.66875207e-01 -8.94524306e-02 -4.50582281e-02 7.17352688e-01
7.11047053e-02 4.01710957e-01 -5.47397673e-01 -3.93056780e-01
6.82019413e-01 -2.32726023e-01 -5.26982844e-02 -1.73774749e-01
-1.41664267e+00 2.36445814e-01 -1.03832185e-01 4.14514065e-01
-7.72129893e-01 2.20516086e-01 3.09209675e-01 3.20781827e-01
-2.57672518e-01 7.38402069e-01 -4.90357518e-01 -5.19483209e-01
-3.65456492e-01 6.01100326e-01 1.03018892e+00 1.08076537e+00
9.04205322e-01 -1.85865223e-01 -8.70852098e-02 4.85096388e-02
9.15308148e-02 4.37269926e-01 2.01855317e-01 -1.35481346e+00
3.30513984e-01 1.06805944e+00 7.66535997e-01 -8.68340075e-01
-7.05685794e-01 3.79340589e-01 -8.87007341e-02 5.91972232e-01
4.12391722e-01 -1.17041014e-01 -7.18898535e-01 1.83268869e+00
6.04922414e-01 1.85025349e-01 4.27647650e-01 8.18634331e-01
3.80322039e-01 4.87055242e-01 3.49383503e-01 -2.92821616e-01
1.35152316e+00 -4.29674596e-01 -6.40897393e-01 -6.56231284e-01
9.96119916e-01 -3.91184360e-01 1.10885143e+00 2.85509288e-01
-8.17915618e-01 -3.19602460e-01 -1.04905260e+00 3.22238535e-01
-2.19033718e-01 -2.05838352e-01 6.31493628e-01 7.77627975e-02
-8.30545127e-01 4.91372049e-01 -1.10738146e+00 -6.50126278e-01
-1.10184945e-01 2.66089320e-01 -5.21470785e-01 -4.50895354e-02
-7.72273540e-01 9.54966903e-01 7.55991518e-01 -2.20081374e-01
-1.37511158e+00 -7.04076588e-02 -1.21245408e+00 -1.36137396e-01
1.14677966e+00 -5.61086953e-01 1.64370310e+00 -1.01708329e+00
-1.53863382e+00 3.97406608e-01 -2.77111918e-01 -4.00581270e-01
2.88055122e-01 -4.34924737e-02 -3.50982130e-01 7.65068978e-02
2.89627016e-01 4.83625263e-01 6.36718154e-01 -1.16019356e+00
-8.73838782e-01 -4.56499249e-01 9.12189901e-01 4.10795629e-01
2.90367335e-01 2.14687452e-01 -6.29632622e-02 7.65284002e-02
2.97468424e-01 -1.10443664e+00 -3.88656408e-01 -3.78286779e-01
-5.68582535e-01 -2.21661285e-01 4.32068467e-01 -3.52559626e-01
1.19246113e+00 -1.85754991e+00 1.64206848e-01 2.89710671e-01
1.09294519e-01 -1.82325393e-01 -2.14538798e-01 7.73076475e-01
1.76106289e-01 2.07990827e-03 -2.39292145e-01 1.44890323e-02
2.22455576e-01 4.81590420e-01 -3.52687955e-01 2.07855478e-01
-3.85466069e-02 6.64380193e-01 -1.04509115e+00 -4.68907595e-01
5.13398528e-01 2.69252416e-02 -5.28943956e-01 4.73478466e-01
-8.80412817e-01 6.59143090e-01 -8.36619735e-01 4.35552388e-01
-5.74518256e-02 -2.15713438e-02 5.33088744e-01 1.15058541e-01
-4.43994045e-01 7.95327663e-01 -1.50811410e+00 1.64636254e+00
-6.83252275e-01 1.96005255e-01 -7.32931495e-03 -6.26507163e-01
3.71974677e-01 5.08440197e-01 3.16852450e-01 -6.49574995e-01
-2.63273492e-02 2.21579492e-01 -1.99117109e-01 -8.56012046e-01
3.19917858e-01 9.13956314e-02 -4.02956426e-01 6.82507217e-01
-3.87975991e-01 -3.64769876e-01 2.12446302e-01 2.31399640e-01
1.72274292e+00 8.41680884e-01 9.38170314e-01 1.00825295e-01
5.41503429e-01 5.68137884e-01 6.51803792e-01 8.51189315e-01
-7.43634999e-02 -1.70419246e-01 3.96327406e-01 -5.64531565e-01
-7.62722969e-01 -6.25040531e-01 7.68780529e-01 1.13357246e+00
2.66881496e-01 -8.16167772e-01 -8.82935166e-01 -5.99442422e-01
-5.41377187e-01 1.16828847e+00 -2.57276326e-01 -9.30188075e-02
-7.09200859e-01 1.68904603e-01 4.77817476e-01 4.62235004e-01
3.86203349e-01 -1.49042928e+00 -1.87721086e+00 4.35496271e-01
-4.04391557e-01 -1.28632009e+00 -2.09912360e-01 2.22597227e-01
-6.85131907e-01 -1.42892301e+00 5.02281904e-01 -2.98219085e-01
8.28950226e-01 6.16170466e-02 9.35710311e-01 3.35788399e-01
-4.24931310e-02 7.63952911e-01 -4.05661613e-01 -2.78630257e-01
-6.71148717e-01 -2.79330939e-01 1.21202312e-01 -4.00829256e-01
2.97030598e-01 -4.15828824e-01 -5.37714437e-02 2.84960181e-01
-7.99015939e-01 4.99360412e-01 2.59342551e-01 3.42900515e-01
6.66824162e-01 3.52430403e-01 3.31893981e-01 -4.90388721e-01
6.68783188e-01 -7.36781508e-02 -7.53175557e-01 2.71711290e-01
-4.78314102e-01 3.41603965e-01 6.43331230e-01 -4.67547506e-01
-1.14633226e+00 3.42100024e-01 4.07118686e-02 1.13850772e-01
-8.73205364e-01 7.38896251e-01 -4.71712083e-01 4.21299398e-01
6.82452440e-01 2.19118357e-01 -3.16232294e-01 -1.88993886e-01
2.40348220e-01 4.32094008e-01 5.44463992e-01 -1.08813143e+00
5.76058269e-01 4.42017645e-01 -2.48443056e-02 -5.05831838e-01
-4.31543916e-01 -3.18382561e-01 -3.83691639e-01 -3.94308329e-01
6.78013384e-01 -5.67200899e-01 -1.02182555e+00 2.73689210e-01
-1.29152381e+00 -8.37622046e-01 -3.41822475e-01 3.88448536e-01
-1.06580019e+00 7.02435523e-02 -1.12852700e-01 -1.16414964e+00
8.25440064e-02 -1.37213588e+00 1.08415604e+00 -6.58406760e-04
-9.15163875e-01 -5.40175855e-01 -7.44895935e-02 4.82371729e-03
1.50778159e-01 3.97252947e-01 8.77132416e-01 -7.98630357e-01
-7.15066433e-01 -7.86037592e-04 3.67320359e-01 -1.36125669e-01
4.27281290e-01 -3.24338168e-01 -6.29779875e-01 1.93546135e-02
-1.41131684e-01 -2.96158582e-01 -2.04396039e-01 -8.25111419e-02
7.04910755e-01 -7.63500214e-01 -6.52882814e-01 -1.63090806e-02
1.22244632e+00 7.21590817e-01 7.94301867e-01 6.14785850e-01
2.46071547e-01 6.13575280e-01 8.73661876e-01 4.89283115e-01
6.16541982e-01 8.71892154e-01 4.92860705e-01 3.25660050e-01
1.13685928e-01 -4.61068839e-01 6.29903913e-01 -1.39682770e-01
-2.23036468e-01 -1.15808316e-01 -8.42360437e-01 4.78752375e-01
-2.01313996e+00 -1.10246480e+00 9.19554532e-02 2.17446494e+00
8.46615493e-01 2.11330369e-01 -6.91800267e-02 1.20738469e-01
2.92369634e-01 -2.39507761e-03 -7.51583397e-01 -3.11954260e-01
5.42004228e-01 -4.49693911e-02 2.35379860e-01 8.43950450e-01
-6.82911217e-01 1.15510154e+00 5.33950281e+00 1.59916684e-01
-6.41553640e-01 3.46769579e-02 -9.92221460e-02 1.01998977e-01
-3.23916793e-01 4.08659905e-01 -5.66933930e-01 -3.32550774e-03
9.81027842e-01 2.04562191e-02 7.58419514e-01 8.39725792e-01
5.26392758e-01 -7.14099884e-01 -1.58407903e+00 5.12541711e-01
-8.34243372e-02 -1.01946294e+00 -4.25082386e-01 -4.40898389e-02
1.09307766e-01 -3.10407192e-01 -6.19043350e-01 3.32275420e-01
5.16807437e-01 -7.74046779e-01 1.09099543e+00 4.65645075e-01
5.60872018e-01 -4.47386414e-01 2.37507880e-01 9.55109239e-01
-1.21261621e+00 -9.24321711e-02 2.80719966e-01 -7.59095848e-01
2.98225433e-01 3.28600872e-03 -1.06516719e+00 5.50367534e-01
5.34745336e-01 1.03165299e-01 -1.41544446e-01 5.00636935e-01
-7.46999443e-01 1.89837888e-01 -5.47981381e-01 -1.16208725e-01
1.03510804e-01 -1.04129814e-01 8.94113660e-01 5.87063491e-01
1.07522927e-01 5.16252577e-01 5.84246159e-01 9.40478325e-01
6.52457178e-01 -2.84166634e-01 -9.04270470e-01 -1.11037619e-01
6.18008494e-01 8.86147678e-01 -6.07131183e-01 -6.21637046e-01
-2.34563127e-01 8.96345377e-01 1.45113871e-01 5.66036642e-01
-6.89925134e-01 -5.17057553e-02 7.83086538e-01 1.11267015e-01
-2.15301931e-01 -4.29815382e-01 6.08406328e-02 -6.58157051e-01
2.57043809e-01 -1.16004181e+00 1.97324842e-01 -1.26227129e+00
-4.06804323e-01 5.38474321e-01 4.52056289e-01 -9.30051029e-01
-7.45437145e-01 -2.44124770e-01 -4.18467134e-01 6.86093271e-01
-1.13465333e+00 -9.77326512e-01 -4.04626966e-01 6.27864063e-01
5.91658533e-01 2.68540949e-01 1.16999078e+00 -3.71834040e-01
-2.05268770e-01 -3.03137690e-01 -1.10911417e+00 -2.42484376e-01
2.71056712e-01 -8.92782807e-01 2.71785468e-01 9.66672122e-01
-1.27326667e-01 7.96395898e-01 9.72210109e-01 -9.71660078e-01
-1.63616717e+00 -8.28391314e-01 1.01452589e+00 -5.54924369e-01
4.65167433e-01 -1.46851480e-01 -6.25477910e-01 1.32702732e+00
1.79719888e-02 -4.36711371e-01 4.02808934e-01 -2.44375125e-01
-2.32846484e-01 2.57276624e-01 -1.26059723e+00 1.03742146e+00
1.35424209e+00 -5.14335871e-01 -1.14230371e+00 3.25505942e-01
8.07707369e-01 -5.90558887e-01 -4.87876832e-01 4.20962214e-01
4.58051026e-01 -9.96522784e-01 7.42084086e-01 -8.49023044e-01
9.73815396e-02 -8.47157955e-01 -3.97356898e-01 -1.12053967e+00
1.11686088e-01 -7.33809471e-01 -1.42784983e-01 8.44956338e-01
2.67840028e-01 -7.36427188e-01 2.21385270e-01 1.24309361e+00
-3.23538899e-01 -5.18920839e-01 -9.68796551e-01 -6.21401966e-01
-7.89472759e-01 -1.08688688e+00 1.04463089e+00 5.66365004e-01
5.12942910e-01 2.78966486e-01 -2.16387324e-02 5.40550947e-01
1.28681257e-01 1.03070006e-01 9.55374062e-01 -9.18334365e-01
-1.26642808e-01 -5.90247139e-02 -1.82262808e-01 -9.59774852e-01
4.13663805e-01 -5.73306322e-01 5.18225968e-01 -1.96986318e+00
-1.80346534e-01 -5.31185031e-01 1.21460401e-01 1.20215106e+00
2.17622861e-01 -5.38029850e-01 2.50628293e-01 2.91542355e-02
-7.12864220e-01 9.10868645e-02 8.67332399e-01 -7.54289255e-02
-6.39563560e-01 -1.08728819e-01 -4.47199672e-01 1.06792581e+00
8.23148072e-01 -4.28486347e-01 -5.41822612e-01 -1.86601549e-01
5.64774930e-01 4.61329073e-01 7.22777903e-01 -1.18421888e+00
4.26785469e-01 -9.41021621e-01 -1.19866498e-01 -1.52662978e-01
4.62440431e-01 -1.33125782e+00 5.80241680e-01 4.87901360e-01
-4.55914617e-01 2.87972927e-01 2.06808060e-01 3.99524331e-01
2.08025336e-01 -3.07546347e-01 6.17180802e-02 -3.89501095e-01
-1.26955748e+00 -2.64200658e-01 -8.54660749e-01 -3.24961126e-01
1.29179585e+00 -4.38135415e-01 -2.57029802e-01 -1.92005411e-01
-7.82533109e-01 1.72624633e-01 7.96983957e-01 3.51063490e-01
8.11854661e-01 -9.28020954e-01 -1.03939392e-01 2.26321578e-01
3.95537287e-01 -5.46344258e-02 -1.65410608e-01 8.34084272e-01
-6.73526675e-02 2.89605677e-01 -1.60001405e-02 -3.53557885e-01
-1.19114697e+00 6.19314194e-01 3.29692185e-01 -1.03305094e-01
-8.61725450e-01 2.73254484e-01 -2.14413665e-02 -5.09918988e-01
1.48546606e-01 -7.18521833e-01 -1.60272315e-01 -4.24423367e-01
8.29953969e-01 1.91818759e-01 -7.18330557e-04 -5.73220849e-01
-8.16587508e-01 3.47570270e-01 3.65171850e-01 -5.07097423e-01
1.07598960e+00 -9.47596505e-02 -9.31246579e-02 4.87134099e-01
3.82823318e-01 7.12196454e-02 -1.35618424e+00 -1.06982201e-01
1.10312037e-01 -3.33263308e-01 -1.72588810e-01 -1.14258778e+00
-2.92950839e-01 9.67027694e-02 1.13712251e-01 2.09093839e-01
1.11998975e+00 1.71302706e-01 3.96476239e-01 8.43331814e-01
1.26861036e+00 -1.31191170e+00 1.68125749e-01 5.20361900e-01
8.71362507e-01 -9.76449311e-01 9.67158005e-02 -3.29349041e-01
-6.83772147e-01 8.02324593e-01 7.66171336e-01 4.71868366e-01
-9.99691114e-02 5.91593862e-01 -1.65953770e-01 -4.21800464e-01
-9.44177270e-01 -3.44015390e-01 -2.67480999e-01 6.89237833e-01
-1.28054544e-01 3.22163969e-01 -1.06962353e-01 3.34863275e-01
-2.10479889e-02 2.49438077e-01 6.75280094e-01 1.59740388e+00
-6.99649334e-01 -9.02055085e-01 -5.66314995e-01 2.64406890e-01
9.46512669e-02 6.52330965e-02 -5.59158146e-01 7.84883559e-01
1.22373372e-01 1.47977483e+00 -2.07096469e-02 -3.80817980e-01
7.06763089e-01 3.31114352e-01 6.31092370e-01 -9.84838068e-01
-4.64449912e-01 -1.40210137e-01 6.33443117e-01 -1.17491257e+00
-7.31400251e-01 -7.40582407e-01 -2.02428889e+00 8.49156603e-02
-1.07318901e-01 -1.84391961e-01 5.73197961e-01 1.47237492e+00
4.29165095e-01 6.35986745e-01 1.35258481e-01 -7.29736507e-01
-3.85988384e-01 -6.83987141e-01 1.50446683e-01 3.54974955e-01
3.84648561e-01 -7.54672468e-01 -2.12035865e-01 3.08836818e-01] | [4.4188337326049805, 0.9729396104812622] |
5faf8479-767b-4d39-84d7-7a1d3d3834f8 | on-the-impact-of-speech-recognition-errors-in | 2209.12944 | null | https://arxiv.org/abs/2209.12944v1 | https://arxiv.org/pdf/2209.12944v1.pdf | On the Impact of Speech Recognition Errors in Passage Retrieval for Spoken Question Answering | Interacting with a speech interface to query a Question Answering (QA) system is becoming increasingly popular. Typically, QA systems rely on passage retrieval to select candidate contexts and reading comprehension to extract the final answer. While there has been some attention to improving the reading comprehension part of QA systems against errors that automatic speech recognition (ASR) models introduce, the passage retrieval part remains unexplored. However, such errors can affect the performance of passage retrieval, leading to inferior end-to-end performance. To address this gap, we augment two existing large-scale passage ranking and open domain QA datasets with synthetic ASR noise and study the robustness of lexical and dense retrievers against questions with ASR noise. Furthermore, we study the generalizability of data augmentation techniques across different domains; with each domain being a different language dialect or accent. Finally, we create a new dataset with questions voiced by human users and use their transcriptions to show that the retrieval performance can further degrade when dealing with natural ASR noise instead of synthetic ASR noise. | ['Evangelos Kanoulas', 'Svitlana Vakulenko', 'Georgios Sidiropoulos'] | 2022-09-26 | null | null | null | null | ['passage-ranking', 'passage-retrieval'] | ['natural-language-processing', 'natural-language-processing'] | [ 4.04147416e-01 1.43782347e-01 3.43882024e-01 -3.71998042e-01
-1.73364365e+00 -8.12135100e-01 5.94527483e-01 2.70898432e-01
-5.18570125e-01 4.32987481e-01 8.04181576e-01 -5.78425586e-01
7.30565609e-03 -4.74778682e-01 -5.54423034e-01 -8.81589800e-02
4.45399553e-01 5.08431137e-01 4.84551787e-01 -7.87925065e-01
1.57847479e-01 -1.56653337e-02 -1.36364746e+00 6.66097581e-01
1.24677002e+00 7.42396712e-01 2.08008781e-01 9.72254217e-01
-1.91118583e-01 9.67270195e-01 -1.09086764e+00 -4.09706116e-01
-2.25125924e-02 -5.71997344e-01 -1.39043534e+00 -2.20750123e-01
7.63997853e-01 -1.52042791e-01 -4.43249106e-01 8.07769120e-01
8.61752808e-01 5.54734647e-01 4.16939497e-01 -5.51066399e-01
-1.02489173e+00 6.23354733e-01 3.02593917e-01 3.73577088e-01
1.12428558e+00 2.29988247e-01 1.10112250e+00 -8.27536881e-01
4.39861834e-01 1.28912401e+00 2.89211929e-01 7.50623643e-01
-1.30525613e+00 -6.56927079e-02 9.42737386e-02 3.64911258e-01
-1.24154484e+00 -9.82006669e-01 4.84431833e-01 1.10347159e-01
1.11740518e+00 7.18364775e-01 -1.35396540e-01 1.51634228e+00
-3.93007547e-01 9.72508907e-01 7.93414891e-01 -7.06189930e-01
2.18984038e-01 1.25859212e-02 5.26791573e-01 1.77424476e-01
-5.04488230e-01 -1.79701254e-01 -7.08716691e-01 -2.99699903e-01
-5.63849658e-02 -5.24682224e-01 -8.04616868e-01 2.35899284e-01
-1.09155965e+00 7.21907973e-01 2.21890882e-01 1.57883525e-01
-2.31650144e-01 -4.71297771e-01 3.80746096e-01 9.32895958e-01
3.16412330e-01 9.36492264e-01 -7.29039371e-01 -4.22511578e-01
-7.00601578e-01 3.41095030e-01 1.14910090e+00 7.57659674e-01
2.98229635e-01 -1.90378606e-01 -6.97715998e-01 1.54252470e+00
8.16393737e-03 7.40364134e-01 7.04820752e-01 -9.12335873e-01
7.69378126e-01 4.39467371e-01 2.50439912e-01 -6.85554802e-01
-1.99859485e-01 -2.31302693e-01 -2.47329026e-01 -5.00002921e-01
7.24196196e-01 -8.93700644e-02 -6.95145726e-01 1.74808550e+00
3.30001600e-02 -4.42293525e-01 3.89525354e-01 7.94184148e-01
9.43045497e-01 8.34100425e-01 2.83848755e-02 1.47540523e-02
1.50290835e+00 -1.10622287e+00 -8.29488575e-01 -4.68365401e-01
7.91660130e-01 -9.88025784e-01 1.91794777e+00 3.40341210e-01
-1.08485901e+00 -5.10245740e-01 -7.67535985e-01 -4.59222913e-01
-2.76938617e-01 -3.85202691e-02 -2.02248707e-01 7.32054055e-01
-1.02133477e+00 4.35558558e-02 -4.58246976e-01 -3.84461671e-01
-1.54635072e-01 -8.45786035e-02 -1.47270277e-01 -3.80693913e-01
-1.67288649e+00 1.10760951e+00 -1.71297014e-01 -2.58542746e-01
-7.14341104e-01 -6.72084332e-01 -8.86791527e-01 1.69539586e-01
4.64180350e-01 -6.58872545e-01 1.88602352e+00 -7.10230231e-01
-1.70984328e+00 6.07900262e-01 -4.19895142e-01 -4.64493692e-01
2.09755495e-01 -5.62516272e-01 -6.44575596e-01 2.22293779e-01
-3.07259429e-02 3.17048430e-01 6.37642682e-01 -8.83604765e-01
-2.85500944e-01 -4.79456425e-01 1.02037415e-01 5.64472437e-01
-2.03804433e-01 3.03950757e-01 -2.20366240e-01 -4.82960135e-01
-4.60442007e-02 -7.59307325e-01 1.61850024e-02 -7.46744156e-01
-4.74652767e-01 -5.12960136e-01 3.59501779e-01 -1.08492470e+00
1.44066787e+00 -2.21646786e+00 2.78235618e-02 -6.43895119e-02
-2.84184426e-01 4.15115148e-01 -5.53604126e-01 6.22327805e-01
2.41604194e-01 1.42347023e-01 -1.22903042e-01 -3.18854481e-01
1.19048499e-01 -4.75696474e-02 -5.98840356e-01 -8.11702758e-02
2.60750383e-01 8.84801447e-01 -6.97803736e-01 -8.68042707e-02
-9.57188532e-02 2.91445225e-01 -5.20612955e-01 5.40175974e-01
-5.25594652e-01 2.94735551e-01 -3.29385191e-01 4.99509394e-01
1.51578262e-01 -3.13179307e-02 -2.22600341e-01 2.09596291e-01
2.70525873e-01 1.22929454e+00 -7.98808813e-01 1.76180589e+00
-6.50473297e-01 5.40111780e-01 1.24490127e-01 -5.96479535e-01
8.06423068e-01 6.06755078e-01 -2.36257359e-01 -1.33061898e+00
-1.50264248e-01 2.85034120e-01 3.88679728e-02 -6.74346805e-01
8.65332663e-01 4.65624221e-02 -1.86148837e-01 3.49715739e-01
-4.73506004e-02 -2.05703571e-01 -4.45546657e-02 4.04732347e-01
1.58202863e+00 -3.08641464e-01 -1.32157266e-01 3.56814787e-02
5.44433236e-01 2.90312827e-01 -8.77615511e-02 1.10498309e+00
-1.85765311e-01 9.17512000e-01 9.21383873e-02 2.23675385e-01
-7.37245202e-01 -1.17227018e+00 -4.03752178e-02 1.54645789e+00
-7.82031342e-02 -3.16187769e-01 -9.39235747e-01 -6.82102740e-01
-2.73035347e-01 1.19325864e+00 -1.48117378e-01 -4.32138085e-01
-6.50396287e-01 -3.38368237e-01 9.76871312e-01 2.52927512e-01
2.01254725e-01 -1.22443354e+00 -1.78906828e-01 3.34593862e-01
-8.40619504e-01 -1.22646189e+00 -7.32918739e-01 -1.15398519e-01
-5.66107392e-01 -9.15891528e-01 -8.29490900e-01 -8.11305165e-01
6.67570457e-02 2.97292501e-01 1.68812549e+00 7.21418262e-02
1.19238392e-01 8.38275731e-01 -9.10723865e-01 -1.80309713e-01
-8.41675222e-01 5.17903030e-01 -6.60415664e-02 -2.25127727e-01
5.24331212e-01 -1.96310207e-01 -5.95978498e-01 5.01587331e-01
-9.40578163e-01 -2.39011839e-01 3.42678905e-01 7.29303122e-01
1.35744274e-01 -5.86826861e-01 1.07821715e+00 -5.88140607e-01
1.36811543e+00 -4.69180286e-01 -1.72475070e-01 5.69162250e-01
-2.57133186e-01 1.56620324e-01 6.16013587e-01 -4.14202601e-01
-1.21926415e+00 -3.14144075e-01 -6.32363737e-01 5.51444516e-02
-4.29194778e-01 5.91689885e-01 -2.87381977e-01 4.10401553e-01
1.11531806e+00 3.37497711e-01 6.85572103e-02 -7.50256658e-01
6.35516644e-01 1.13595629e+00 5.15950143e-01 -5.13324142e-01
4.59143966e-01 -1.34418309e-01 -9.23294783e-01 -1.14880943e+00
-9.48488295e-01 -6.87863767e-01 -1.20966107e-01 -5.71860874e-04
7.28551745e-01 -7.19242811e-01 -4.76645976e-01 1.77486837e-01
-1.21032453e+00 -3.21054488e-01 -3.07000071e-01 2.45695829e-01
-4.61197108e-01 3.64272267e-01 -6.76718295e-01 -8.34535480e-01
-4.30454075e-01 -1.28131485e+00 1.07934391e+00 -7.66067859e-03
-6.14366949e-01 -6.30325615e-01 1.65451229e-01 9.35025811e-01
5.92913687e-01 -6.49279356e-01 1.09220898e+00 -1.26853120e+00
-3.74525696e-01 -2.66992927e-01 1.82582200e-01 5.46408117e-01
-1.19369673e-02 -5.23499310e-01 -1.14091444e+00 -1.34110659e-01
1.25942245e-01 -7.05458403e-01 6.74231708e-01 -6.13637753e-02
8.14354181e-01 -4.50812489e-01 1.33664042e-01 -1.14887148e-01
7.53707349e-01 1.80808708e-01 7.14765847e-01 2.76283085e-01
2.88168579e-01 8.34916174e-01 5.03679574e-01 -1.81196809e-01
4.00738150e-01 7.09610283e-01 -7.65721798e-02 2.18739003e-01
-3.75818193e-01 -3.80999684e-01 7.21665323e-01 1.12351930e+00
7.39560783e-01 -6.47047341e-01 -1.10861778e+00 8.09663773e-01
-1.32244992e+00 -6.30533993e-01 2.22482588e-02 2.38229752e+00
1.22085106e+00 -1.02108583e-01 2.86181811e-02 1.69166997e-02
3.77787918e-01 1.02653287e-01 -3.09099108e-01 -3.12006116e-01
-2.73987859e-01 4.62027311e-01 1.81055386e-02 8.55527163e-01
-6.72512233e-01 9.37784553e-01 6.09273958e+00 8.28484535e-01
-8.33246887e-01 8.86641219e-02 5.64864218e-01 -1.94147378e-02
-4.26206708e-01 -1.36964485e-01 -6.07568324e-01 2.49019951e-01
1.44193566e+00 3.42015028e-02 6.11754358e-01 5.51047564e-01
8.96037668e-02 -2.12944537e-01 -1.24136472e+00 6.72855914e-01
2.93683589e-01 -8.80436838e-01 2.09116116e-01 -4.87338334e-01
2.25410610e-01 2.69085556e-01 1.73718855e-02 8.14738750e-01
2.59977669e-01 -1.17919433e+00 4.49009538e-01 3.75126153e-01
5.32588780e-01 -5.96755922e-01 5.59300244e-01 6.27014756e-01
-4.55384254e-01 7.52673075e-02 -2.17854217e-01 -7.18213990e-02
2.89008200e-01 -1.32641112e-02 -1.04236174e+00 3.58450800e-01
4.83736128e-01 -1.42542377e-01 -1.00350344e+00 9.17775750e-01
-1.06239401e-01 1.07129109e+00 -4.40105915e-01 -3.09983909e-01
7.94252381e-02 5.78844920e-02 7.47436643e-01 1.05036581e+00
9.21593159e-02 1.76731884e-01 -4.46132012e-02 5.53143740e-01
-2.99469352e-01 4.16886002e-01 -4.94441032e-01 -9.42820236e-02
7.23692656e-01 5.58228791e-01 -7.43043646e-02 -2.46170342e-01
-5.74674487e-01 1.23471618e+00 3.98961753e-01 6.81162655e-01
-2.15798602e-01 -5.71952879e-01 7.17569470e-01 1.22169375e-01
-1.55423269e-01 -1.42957121e-01 -4.90901396e-02 -1.31492138e+00
3.25758785e-01 -1.58701801e+00 4.82499927e-01 -8.26078296e-01
-1.43598759e+00 7.60151625e-01 -3.44685972e-01 -8.38703990e-01
-3.41050506e-01 -3.48744780e-01 -2.18186066e-01 1.09940851e+00
-1.43633294e+00 -4.60277230e-01 6.66054478e-03 5.16075850e-01
1.12131023e+00 -6.03573918e-02 1.11024356e+00 4.67162102e-01
-3.94181669e-01 8.17972958e-01 2.12281689e-01 3.07357192e-01
1.01607978e+00 -1.21329796e+00 6.60492361e-01 7.57270455e-01
4.69914198e-01 8.54044914e-01 6.81918323e-01 -4.86056149e-01
-1.42986393e+00 -7.34237075e-01 1.08451831e+00 -1.23620558e+00
5.29373527e-01 -4.50201929e-01 -1.38498533e+00 4.55800593e-01
5.89600325e-01 -3.66266519e-01 6.66728437e-01 4.28303659e-01
-4.41973358e-01 1.34909287e-01 -9.28773522e-01 8.73094201e-01
8.39026809e-01 -1.11249149e+00 -1.16929901e+00 2.38544941e-01
1.33261454e+00 -4.29524601e-01 -6.99024141e-01 3.86816710e-01
1.45505741e-01 -6.40258789e-01 1.03493786e+00 -8.78239393e-01
1.26394048e-01 -1.83297142e-01 -4.15374130e-01 -1.62773287e+00
2.03241184e-01 -6.40899539e-01 3.68118659e-02 1.29964340e+00
9.06928003e-01 -3.85877222e-01 2.62401193e-01 7.95922220e-01
-2.93297708e-01 -3.94326270e-01 -1.06449533e+00 -6.43793941e-01
3.27797383e-01 -6.58066511e-01 4.87570345e-01 7.58144975e-01
2.54095346e-01 1.06496680e+00 1.82218216e-02 2.39419386e-01
-9.50478837e-02 -2.65423298e-01 6.88383818e-01 -8.86551440e-01
-2.77932286e-01 -2.58183807e-01 1.14468671e-01 -1.59451306e+00
3.97864841e-02 -8.56960893e-01 3.99292797e-01 -1.43663704e+00
-2.51705796e-01 -2.36277357e-01 4.70030420e-02 -1.62409935e-02
-5.12532353e-01 -1.97515652e-01 1.83448568e-01 1.28513888e-01
-9.78059769e-01 8.82232785e-01 9.89896357e-01 -7.54390731e-02
-2.83474654e-01 1.79210678e-01 -7.42607474e-01 3.83003712e-01
6.24548912e-01 -3.14924002e-01 -5.24771094e-01 -8.36875677e-01
2.51431286e-01 4.92602468e-01 8.22108462e-02 -8.81754398e-01
2.42610902e-01 2.75534362e-01 -4.90952097e-02 -3.77112538e-01
3.58549714e-01 -4.75011796e-01 -6.81443870e-01 -1.16299331e-01
-9.70008492e-01 1.32021174e-01 2.27692097e-01 4.69804078e-01
-4.64448810e-01 -3.83022755e-01 4.91434485e-01 -5.99388853e-02
-3.07518452e-01 -1.99492320e-01 -7.57479131e-01 8.18211019e-01
1.64516523e-01 7.06574172e-02 -5.52665830e-01 -9.11250353e-01
-6.78552806e-01 3.68796170e-01 2.23239496e-01 8.90561283e-01
5.82736909e-01 -9.38381493e-01 -8.11543763e-01 1.17809631e-01
3.89333874e-01 3.78663186e-04 1.84989944e-01 5.69117010e-01
-1.36971101e-01 5.78642368e-01 6.34344578e-01 -4.33582038e-01
-1.21762347e+00 2.55648971e-01 5.08018911e-01 -5.41264527e-02
-3.69268626e-01 1.02167261e+00 -1.09950118e-01 -9.11092401e-01
6.30684853e-01 -3.45975757e-01 -3.81559849e-01 -1.03781177e-02
7.98381388e-01 3.14623952e-01 6.45898581e-01 -5.39341688e-01
-1.15248725e-01 -6.23481944e-02 -2.09762186e-01 -5.36342025e-01
7.95242012e-01 -5.01270175e-01 2.56812185e-01 4.64886904e-01
1.11869204e+00 4.71255064e-01 -5.90249360e-01 -5.38993895e-01
4.11491513e-01 -1.85475811e-01 -1.23504110e-01 -1.27887344e+00
-2.32581913e-01 8.12150717e-01 4.94029462e-01 5.13988078e-01
9.54041958e-01 1.53077304e-01 1.20354128e+00 9.21652317e-01
1.90149218e-01 -1.10636759e+00 1.83561593e-01 1.12425613e+00
1.05287707e+00 -1.44673932e+00 -7.97875404e-01 -6.31726608e-02
-8.17948043e-01 6.38386607e-01 5.67523003e-01 2.13754788e-01
2.93152869e-01 -2.99153388e-01 6.23564661e-01 -1.59006968e-01
-7.99900174e-01 -3.94781500e-01 5.26991129e-01 4.77624923e-01
6.29618764e-01 -8.09570327e-02 -1.09899350e-01 7.08453357e-01
-6.77778423e-01 -3.91771436e-01 3.83078873e-01 8.44916642e-01
-3.88651162e-01 -1.05842662e+00 -4.29254293e-01 5.10725081e-01
-6.69174075e-01 -5.92629552e-01 -6.83961272e-01 3.32291812e-01
-7.06413686e-01 1.63278270e+00 -8.42475966e-02 -1.95203006e-01
9.22078133e-01 7.29386985e-01 1.11939833e-01 -9.48227644e-01
-8.41385305e-01 -3.74812931e-01 5.97607255e-01 -5.11575878e-01
4.86166924e-02 -5.91779590e-01 -9.51130450e-01 2.10345790e-01
-4.57159400e-01 5.88272810e-01 4.75182533e-01 9.83436525e-01
5.25906682e-01 4.32423979e-01 4.02022690e-01 9.59476382e-02
-1.06467593e+00 -1.45213330e+00 -2.18676422e-02 6.93116426e-01
6.28047705e-01 -9.99140143e-02 -5.13903499e-01 -1.19226456e-01] | [11.551532745361328, 7.998539447784424] |
9b6b1756-b83b-4e71-8337-f957ac4a9dab | shape-illumination-and-reflectance-from | 2010.03592 | null | https://arxiv.org/abs/2010.03592v1 | https://arxiv.org/pdf/2010.03592v1.pdf | Shape, Illumination, and Reflectance from Shading | A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from a single image seems almost impossible in comparison -- there are an infinite number of shapes, paint, and lights that exactly reproduce a single image. However, certain explanations are more likely than others: surfaces tend to be smooth, paint tends to be uniform, and illumination tends to be natural. We therefore pose this problem as one of statistical inference, and define an optimization problem that searches for the *most likely* explanation of a single image. Our technique can be viewed as a superset of several classic computer vision problems (shape-from-shading, intrinsic images, color constancy, illumination estimation, etc) and outperforms all previous solutions to those constituent problems. | ['Jitendra Malik', 'Jonathan T. Barron'] | 2020-10-07 | null | null | null | null | ['color-constancy'] | ['computer-vision'] | [ 7.06005156e-01 2.04263619e-04 2.49923348e-01 -5.95421970e-01
-2.73510993e-01 -5.33429384e-01 6.52731717e-01 -2.40890354e-01
-1.45771028e-02 5.83556771e-01 -1.58431739e-01 -2.14680076e-01
3.08615360e-02 -4.19684380e-01 -6.60532713e-01 -7.47181237e-01
3.77166867e-01 5.01517773e-01 1.97852284e-01 -1.14291020e-01
6.31659746e-01 6.55857742e-01 -1.86016035e+00 -6.01621270e-02
5.84991395e-01 7.12809682e-01 5.14268339e-01 9.81359720e-01
-3.72091860e-01 4.85162616e-01 -2.65271604e-01 -2.30147108e-01
1.83430538e-01 -4.70258772e-01 -7.96417296e-01 8.60984623e-01
8.52422953e-01 -1.64464667e-01 7.08586499e-02 1.26656687e+00
-3.02605033e-02 1.80577382e-01 9.27613139e-01 -1.01707435e+00
-8.09798181e-01 -3.82732153e-01 -9.50281203e-01 -2.09037170e-01
6.67245746e-01 -2.43991911e-02 9.70461369e-01 -7.30441928e-01
4.56698090e-01 1.25674236e+00 3.25364411e-01 4.81000513e-01
-1.59286785e+00 1.45799935e-01 8.14590082e-02 -2.77424872e-01
-1.13271821e+00 -5.86564243e-01 7.88475931e-01 -2.85729438e-01
5.52892685e-01 7.34481335e-01 4.73664224e-01 4.94195253e-01
1.88530564e-01 5.70500970e-01 1.34477592e+00 -7.22188830e-01
1.43947393e-01 4.55328405e-01 -1.32106170e-01 8.07028055e-01
4.06773835e-01 -1.06388837e-01 -5.16677320e-01 -2.18379647e-01
9.31838274e-01 -1.06213354e-01 -6.01691604e-01 -4.64872777e-01
-1.11193132e+00 4.50474560e-01 1.46161988e-01 -3.52134667e-02
-7.48752207e-02 1.82539113e-02 -2.18763039e-01 2.12253615e-01
3.19756776e-01 7.63119936e-01 -4.86210823e-01 3.16136062e-01
-4.16058093e-01 2.74577588e-01 1.04709089e+00 9.06176865e-01
1.24887860e+00 -4.61956020e-03 7.02964425e-01 5.79407632e-01
3.50751549e-01 8.95394385e-01 -2.47938540e-02 -1.37425900e+00
3.98935517e-03 3.97141665e-01 4.07275707e-01 -1.00669825e+00
-1.10159233e-01 1.77131787e-01 -5.12183785e-01 6.60386741e-01
5.83375096e-01 5.73980734e-02 -9.20601010e-01 1.67635536e+00
3.13993454e-01 4.25216332e-02 -6.89661726e-02 9.05464530e-01
5.71800590e-01 5.37274241e-01 -5.79442859e-01 -3.28358442e-01
1.01674008e+00 -4.66788471e-01 -4.40758824e-01 -5.02551258e-01
-6.92962483e-02 -1.19554484e+00 1.15648949e+00 6.35637343e-01
-1.16152728e+00 -4.22917247e-01 -9.69017923e-01 -3.02700222e-01
-1.55533664e-02 -1.00969292e-01 7.19902456e-01 6.50035739e-01
-1.17320037e+00 5.55562437e-01 -3.11152816e-01 -4.94166344e-01
-3.45631599e-01 2.26740897e-01 -3.63861471e-01 -2.34448954e-01
-1.93824112e-01 9.42152023e-01 1.14807159e-01 9.22713354e-02
-4.57865924e-01 -2.56765008e-01 -7.36320913e-01 -4.42325115e-01
2.87543863e-01 -6.93272829e-01 1.03480935e+00 -1.37789583e+00
-1.42602313e+00 1.40734470e+00 -7.81935632e-01 2.79378623e-01
1.54782385e-01 -1.60025358e-01 -1.17126636e-01 -4.22806852e-02
-1.45421997e-01 2.97272861e-01 1.08666599e+00 -2.03658175e+00
-1.70165360e-01 -5.19989312e-01 7.90442824e-02 2.74567544e-01
4.02763188e-01 -4.17054519e-02 -5.24713755e-01 2.36196909e-02
6.40850008e-01 -8.34832966e-01 -3.15173268e-01 2.90955395e-01
-7.29648888e-01 1.42425194e-01 6.25542581e-01 -3.91773075e-01
4.23091948e-01 -2.17970800e+00 1.46384776e-01 3.24126124e-01
1.49598688e-01 -2.42522925e-01 -1.37557745e-01 -6.05636239e-02
-2.43031487e-01 4.88142408e-02 -2.87811130e-01 -3.56196493e-01
-2.05161899e-01 5.50676763e-01 -2.24565297e-01 7.98228383e-01
1.64141059e-01 4.46598828e-01 -7.76288509e-01 -5.74032068e-01
4.22262371e-01 4.21442568e-01 -2.46785879e-01 2.11127505e-01
-4.95072395e-01 5.41006088e-01 -4.24356669e-01 4.20067251e-01
8.78784001e-01 -2.57829636e-01 2.11226255e-01 3.16737518e-02
-4.39266682e-01 3.87306735e-02 -1.44128942e+00 1.52819073e+00
-3.96702230e-01 7.18374908e-01 2.50617057e-01 -8.55105758e-01
1.10993147e+00 1.25846207e-01 3.83690774e-01 -4.44802523e-01
1.26658291e-01 1.51986018e-01 -3.70932847e-01 -7.95574009e-01
4.82873589e-01 -4.63233531e-01 4.39395070e-01 5.46627700e-01
-5.60021043e-01 -8.23135972e-01 -2.60400921e-01 -7.91011825e-02
6.71586215e-01 3.13389778e-01 1.86929360e-01 -4.17562157e-01
3.07354331e-01 1.51048834e-03 5.17566860e-01 7.39312708e-01
1.62597805e-01 9.77510929e-01 3.86539161e-01 -6.21795952e-01
-1.17458129e+00 -1.22772110e+00 -1.73057705e-01 6.72288895e-01
6.24031901e-01 1.96484476e-01 -5.58669209e-01 1.39566392e-01
-3.54259694e-03 8.43903959e-01 -6.34170592e-01 4.73753810e-01
-3.13108325e-01 -7.60884821e-01 -2.24003389e-01 -7.80003741e-02
1.72961906e-01 -8.38490844e-01 -8.21033895e-01 -7.85586759e-02
-2.21179068e-01 -1.08680105e+00 -3.63469750e-01 1.02341563e-01
-9.16511893e-01 -1.21071315e+00 -3.56944859e-01 -6.98612511e-01
1.11147153e+00 8.43421280e-01 1.58523250e+00 5.25272846e-01
-6.01950109e-01 6.13822222e-01 2.77672824e-03 -5.61925173e-01
-3.25817138e-01 -9.30066645e-01 -9.90214199e-03 2.85131484e-01
1.30867943e-01 -5.21610439e-01 -4.40023571e-01 3.12651545e-01
-9.77933347e-01 1.56312361e-01 2.89904624e-01 3.34985584e-01
9.30307031e-01 -1.19936187e-02 -3.41538012e-01 -1.05037475e+00
1.13593280e-01 -3.41753587e-02 -6.62220538e-01 6.12472534e-01
-2.36281261e-01 3.06748509e-01 5.96687496e-01 -2.30429545e-01
-1.45065081e+00 3.18458289e-01 4.27354097e-01 -1.92399621e-01
-5.61945319e-01 -6.04669042e-02 -2.74089873e-01 -6.83546662e-02
7.14173436e-01 3.39380533e-01 1.87726505e-02 -4.32975948e-01
3.51473480e-01 2.31751680e-01 8.12567651e-01 -6.66471779e-01
7.85723984e-01 9.69889581e-01 4.52829421e-01 -1.49945807e+00
-1.04074967e+00 -5.73459625e-01 -7.51593947e-01 -1.61931440e-01
8.39262247e-01 -4.41565752e-01 -6.73610806e-01 1.52455136e-01
-1.27836514e+00 -2.24801943e-01 -1.53262958e-01 3.80239099e-01
-7.36376822e-01 4.66054171e-01 6.60657212e-02 -1.24937212e+00
2.47688010e-01 -9.05261636e-01 1.20689392e+00 3.88497889e-01
-4.79238033e-02 -1.13272083e+00 1.44032255e-01 2.69316107e-01
9.70496386e-02 5.01709580e-01 1.00872624e+00 2.04409391e-01
-7.79032171e-01 -7.93703049e-02 -4.74520534e-01 2.29731306e-01
3.72736573e-01 5.54152727e-01 -1.27196455e+00 -1.06256954e-01
4.23387915e-01 -2.71415800e-01 7.96071291e-01 6.55741394e-01
1.21829271e+00 -5.90183660e-02 -2.81025395e-02 7.66970515e-01
1.94701600e+00 7.67040253e-02 7.24281609e-01 -6.03380725e-02
6.05931282e-01 8.16142201e-01 2.82568902e-01 3.46094370e-01
2.15782925e-01 5.64749777e-01 8.14804375e-01 -3.62321794e-01
-6.27211183e-02 1.37217447e-01 9.96446386e-02 7.37097681e-01
-4.42654550e-01 -1.62231520e-01 -5.48026860e-01 3.68801892e-01
-1.42867351e+00 -9.74874198e-01 -6.69645548e-01 2.64382648e+00
4.69819814e-01 -9.32290852e-02 -1.53351948e-01 -2.09515635e-02
5.85446358e-01 -1.76699590e-02 -7.52029598e-01 -5.53516090e-01
-4.89445210e-01 -1.13815174e-01 5.20780683e-01 8.54543149e-01
-7.34067082e-01 4.58158344e-01 7.63980055e+00 1.62255809e-01
-1.05527401e+00 -4.11357939e-01 7.16124356e-01 3.41317743e-01
-1.08228242e+00 3.86897683e-01 -4.77571756e-01 -2.36276630e-02
3.28051299e-01 1.46714687e-01 7.73244262e-01 4.25039887e-01
2.40877271e-01 -7.44937479e-01 -1.27063811e+00 1.10343194e+00
3.76695365e-01 -8.50697815e-01 -6.00386970e-02 7.82055706e-02
8.38252187e-01 -1.62711694e-05 1.04780108e-01 -7.64415324e-01
3.97950590e-01 -1.10948086e+00 5.34597516e-01 7.60254741e-01
7.81211972e-01 -3.40899527e-01 2.64442712e-01 4.39996332e-01
-9.07273948e-01 4.18649942e-01 -6.95746481e-01 -1.08912595e-01
-8.80635306e-02 5.77407897e-01 -6.25009835e-01 3.86764228e-01
5.62175393e-01 4.38439667e-01 -4.35637206e-01 9.71127927e-01
-2.39366427e-01 -3.46593671e-02 -4.74045098e-01 -1.93890780e-01
-1.45402730e-01 -7.69841611e-01 4.33943868e-01 8.91766906e-01
2.50614226e-01 4.21287775e-01 1.51385441e-01 9.42116141e-01
3.01247150e-01 -9.71991643e-02 -8.08046103e-01 3.43778819e-01
-1.83944274e-02 1.04938030e+00 -7.26335049e-01 -1.01655886e-01
-6.68801188e-01 1.03552699e+00 1.27358869e-01 5.74541509e-01
-4.60985869e-01 4.21347097e-03 5.28631747e-01 3.45070846e-02
-7.39258602e-02 -3.10756266e-01 -5.50256252e-01 -1.35123551e+00
-5.74799366e-02 -6.55314684e-01 -8.13666284e-02 -1.32282472e+00
-1.19865084e+00 2.69691557e-01 -1.80095494e-01 -9.38963175e-01
7.54385889e-02 -9.64518666e-01 -7.51578689e-01 9.69341695e-01
-1.57068551e+00 -7.09336638e-01 -3.22326750e-01 7.74286807e-01
6.56273305e-01 3.23653489e-01 9.21409190e-01 -4.34130251e-01
-1.78043962e-01 -2.32484534e-01 2.95955241e-01 -3.92466277e-01
5.13371885e-01 -1.71469212e+00 2.48412132e-01 9.20581698e-01
3.80003512e-01 5.77242732e-01 1.28098929e+00 -2.74979323e-01
-1.88964128e+00 -4.41193283e-01 8.99532914e-01 -7.08676875e-01
5.38753569e-01 -1.02240711e-01 -8.80338788e-01 5.32035470e-01
1.06269836e-01 -1.39600202e-01 3.38930368e-01 2.02050716e-01
-4.93221790e-01 -3.71775441e-02 -9.20239687e-01 6.42673135e-01
7.73477376e-01 -5.31555176e-01 -4.10138398e-01 4.95918691e-01
2.51528829e-01 -2.21771851e-01 -5.11641979e-01 -9.88311023e-02
7.51059651e-01 -1.37090969e+00 1.10047305e+00 -5.13152361e-01
3.73512983e-01 -4.58455116e-01 -5.12602150e-01 -1.09801030e+00
-1.59440786e-01 -8.01531136e-01 5.54764271e-01 7.49158978e-01
4.99444097e-01 -4.81765062e-01 7.31759071e-01 1.10327137e+00
5.12991659e-02 -2.79204726e-01 -6.47775173e-01 -5.95215976e-01
-3.27961862e-01 -3.38539392e-01 3.57972503e-01 8.32177758e-01
-5.06148756e-01 3.70832980e-01 -4.24144953e-01 4.39529508e-01
1.31224477e+00 7.80514181e-01 1.06959355e+00 -1.60942900e+00
-5.09523273e-01 -1.91424727e-01 6.60818964e-02 -1.21412003e+00
-2.52833869e-02 -4.60304499e-01 4.05557364e-01 -1.56891632e+00
4.12213802e-01 -6.27452195e-01 1.60676077e-01 1.19721986e-01
-9.01769027e-02 7.76934698e-02 2.45619882e-02 1.84214830e-01
-3.98298711e-01 7.80506879e-02 1.56291103e+00 9.78206620e-02
-1.15261018e-01 1.01994932e-01 -7.26960063e-01 1.13169670e+00
6.46593571e-01 -1.56056792e-01 -4.27143276e-01 -9.55101430e-01
3.82242680e-01 2.60535091e-01 4.56863016e-01 -3.60865504e-01
2.30461247e-02 -7.72985578e-01 5.28601468e-01 -3.33481669e-01
7.49195814e-01 -9.13371265e-01 2.65942872e-01 1.67388860e-02
-1.36247560e-01 7.05393357e-03 -1.94178641e-01 5.31707585e-01
1.28325030e-01 -5.21175802e-01 8.33521426e-01 -6.64374292e-01
-7.54429638e-01 1.77701443e-01 -3.30600031e-02 6.56432807e-02
5.11086345e-01 -7.45562375e-01 -2.20089674e-01 -3.95262778e-01
-5.53078890e-01 -2.24712729e-01 9.65777695e-01 -6.22346997e-03
8.32109153e-01 -8.83034706e-01 -7.22150803e-01 2.52142370e-01
4.84334715e-02 1.59412608e-01 -2.16000542e-01 5.28977990e-01
-7.45312274e-01 4.23419513e-02 -6.57194480e-02 -6.88547492e-01
-1.32560289e+00 4.01772231e-01 3.38074684e-01 3.97187203e-01
-6.53944612e-01 8.46751750e-01 8.07446659e-01 -2.39250571e-01
-1.01250790e-01 -1.35802761e-01 2.17483670e-01 -6.36687458e-01
4.97435600e-01 1.69871688e-01 -3.79999220e-01 -6.73886776e-01
-1.99546739e-01 1.13183367e+00 2.55251050e-01 -1.52328402e-01
1.42267025e+00 -4.81372863e-01 -5.05657315e-01 8.06855142e-01
1.03103459e+00 1.82537258e-01 -1.44721806e+00 -3.00414562e-01
-2.37370700e-01 -9.94479179e-01 -8.22489336e-02 -4.02298093e-01
-8.84008527e-01 8.79202902e-01 2.67237425e-02 5.83068430e-01
1.25449562e+00 1.15411364e-01 1.76064268e-01 4.80358720e-01
3.85305673e-01 -9.00882363e-01 1.08603053e-01 3.36007476e-01
9.90243971e-01 -1.36163008e+00 5.00704050e-01 -5.80233335e-01
-4.67706800e-01 1.39135802e+00 4.67570841e-01 -2.09771827e-01
5.71075201e-01 2.40967542e-01 1.35475680e-01 -3.80861431e-01
-5.99123776e-01 -2.07133308e-01 4.45652068e-01 5.43335021e-01
4.75542456e-01 1.42556861e-01 4.13319409e-01 -5.26759446e-01
-9.45308432e-02 -5.10485530e-01 6.96165442e-01 5.43398321e-01
-7.93475151e-01 -8.52030933e-01 -8.39871228e-01 3.00991863e-01
-1.18287325e-01 1.50656521e-01 -5.39942205e-01 6.31784499e-01
1.62468910e-01 1.06154919e+00 8.25528055e-02 9.62920263e-02
1.93563104e-01 -3.07200730e-01 1.00964522e+00 -5.67116678e-01
3.19042623e-01 3.91106218e-01 -7.24696964e-02 -5.35667598e-01
-8.32296729e-01 -9.15480733e-01 -9.29731369e-01 -3.81852418e-01
-5.75196922e-01 -2.32073992e-01 8.50522280e-01 1.09004152e+00
-3.77597600e-01 -5.29163107e-02 7.87639856e-01 -9.17816460e-01
-1.68725714e-01 -2.62126297e-01 -1.03276443e+00 5.93705773e-01
7.56579578e-01 -4.20695782e-01 -5.75642705e-01 5.23703516e-01] | [9.86068344116211, -2.9506654739379883] |
84a1272e-32fc-4692-90ef-71a70b70d0ed | text-visual-prompting-for-efficient-2d | 2303.04995 | null | https://arxiv.org/abs/2303.04995v2 | https://arxiv.org/pdf/2303.04995v2.pdf | Text-Visual Prompting for Efficient 2D Temporal Video Grounding | In this paper, we study the problem of temporal video grounding (TVG), which aims to predict the starting/ending time points of moments described by a text sentence within a long untrimmed video. Benefiting from fine-grained 3D visual features, the TVG techniques have achieved remarkable progress in recent years. However, the high complexity of 3D convolutional neural networks (CNNs) makes extracting dense 3D visual features time-consuming, which calls for intensive memory and computing resources. Towards efficient TVG, we propose a novel text-visual prompting (TVP) framework, which incorporates optimized perturbation patterns (that we call 'prompts') into both visual inputs and textual features of a TVG model. In sharp contrast to 3D CNNs, we show that TVP allows us to effectively co-train vision encoder and language encoder in a 2D TVG model and improves the performance of crossmodal feature fusion using only low-complexity sparse 2D visual features. Further, we propose a Temporal-Distance IoU (TDIoU) loss for efficient learning of TVG. Experiments on two benchmark datasets, Charades-STA and ActivityNet Captions datasets, empirically show that the proposed TVP significantly boosts the performance of 2D TVG (e.g., 9.79% improvement on Charades-STA and 30.77% improvement on ActivityNet Captions) and achieves 5x inference acceleration over TVG using 3D visual features. Codes are available at Open.Intel. | ['Ke Ding', 'Sijia Liu', 'Jinghan Jia', 'Xin Chen', 'Yimeng Zhang'] | 2023-03-09 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Zhang_Text-Visual_Prompting_for_Efficient_2D_Temporal_Video_Grounding_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Zhang_Text-Visual_Prompting_for_Efficient_2D_Temporal_Video_Grounding_CVPR_2023_paper.pdf | cvpr-2023-1 | ['video-grounding', 'visual-prompting'] | ['computer-vision', 'computer-vision'] | [ 1.09195277e-01 -2.61329859e-01 -2.52433836e-01 -2.69087762e-01
-8.25669587e-01 -5.09526610e-01 6.94059491e-01 -6.60959259e-02
-4.35316771e-01 2.40870625e-01 4.07585084e-01 -3.83419752e-01
1.92096859e-01 -4.04889762e-01 -1.22178888e+00 -6.17274523e-01
-2.94765413e-01 -2.67352629e-02 2.48592421e-02 3.56880762e-02
2.17191912e-02 2.54659563e-01 -1.54113770e+00 5.21543860e-01
4.53138828e-01 1.50848472e+00 3.65796059e-01 7.62025654e-01
5.16368123e-03 1.12852585e+00 -3.31415415e-01 -2.06471428e-01
1.85408235e-01 -2.10514277e-01 -7.13121593e-01 2.41308182e-01
7.63413489e-01 -4.70575273e-01 -9.89712358e-01 8.39640021e-01
3.78184617e-01 2.37723008e-01 4.70455945e-01 -1.37744451e+00
-8.75376403e-01 3.68707895e-01 -6.73267305e-01 3.28398108e-01
4.92692560e-01 2.74797142e-01 1.19039083e+00 -1.03505337e+00
5.95758975e-01 1.23248899e+00 5.65343082e-01 6.25277102e-01
-1.00959170e+00 -3.87577385e-01 4.20386225e-01 5.92203319e-01
-1.29367232e+00 -2.56880879e-01 7.25029290e-01 -6.40225887e-01
1.33265591e+00 1.94732308e-01 6.76661670e-01 1.56889105e+00
1.72990590e-01 1.10199642e+00 8.04836333e-01 -1.08453631e-01
-1.02589587e-02 -3.05094421e-01 -6.05511069e-02 1.05871689e+00
-1.61313280e-01 5.28927147e-02 -9.99364257e-01 1.57617405e-01
6.21976018e-01 1.48526281e-01 -3.07676762e-01 -5.38703389e-02
-1.36993492e+00 8.01826537e-01 4.23197061e-01 1.89165264e-01
-3.22939098e-01 4.69124258e-01 5.99812865e-01 2.39350960e-01
5.96858025e-01 -4.52001169e-02 -3.36640716e-01 -4.28786159e-01
-9.49417353e-01 2.79754788e-01 4.01016712e-01 1.01223624e+00
6.81501687e-01 3.02726012e-02 -5.86795151e-01 5.15181243e-01
2.48846903e-01 7.83998072e-01 4.25782979e-01 -9.52561975e-01
8.13821137e-01 5.20879567e-01 -7.04917014e-02 -1.19370770e+00
-3.16690415e-01 -1.72602177e-01 -9.88248944e-01 -2.93698668e-01
2.35738158e-01 1.02685720e-01 -1.11948490e+00 1.77763581e+00
6.10637590e-02 4.63151067e-01 -1.94174603e-01 9.79889512e-01
1.01700747e+00 1.15437901e+00 -7.47531950e-02 -1.80441976e-01
1.22136116e+00 -9.65306103e-01 -6.01370275e-01 -2.24566936e-01
6.69898093e-01 -4.15525228e-01 1.23442078e+00 1.75432906e-01
-1.06811559e+00 -6.20924294e-01 -8.59120667e-01 -3.79527420e-01
-2.59180874e-01 6.92224503e-02 5.36819398e-01 -6.79847375e-02
-1.16865051e+00 4.58009571e-01 -1.05719543e+00 -2.71839947e-01
5.44512212e-01 3.24413180e-01 -4.60478544e-01 -1.31045431e-01
-1.24993312e+00 6.75665975e-01 3.29653323e-01 2.12683007e-01
-1.28087354e+00 -7.80381680e-01 -1.13725722e+00 4.86500822e-02
4.96944517e-01 -6.19328916e-01 1.25034869e+00 -6.76912487e-01
-1.35796595e+00 9.95923996e-01 -3.58851731e-01 -7.44983137e-01
5.71110964e-01 -4.87940073e-01 -2.92328030e-01 4.87978786e-01
1.13101140e-01 7.87152231e-01 1.08980191e+00 -7.60761082e-01
-5.14279664e-01 -1.53126881e-01 1.77691892e-01 1.28121629e-01
-3.31189603e-01 1.39838263e-01 -9.58631873e-01 -6.01692200e-01
-2.15337306e-01 -9.42204833e-01 -7.57679492e-02 1.73951134e-01
-4.43244070e-01 -3.25079709e-01 1.01872325e+00 -7.73993492e-01
1.19383359e+00 -2.20761824e+00 3.03703278e-01 -6.53863475e-02
4.68112081e-01 2.73221374e-01 -2.16459900e-01 2.83104360e-01
9.66095999e-02 -5.54210320e-02 -1.10603403e-02 -6.07579589e-01
2.04853624e-01 3.88931036e-01 -6.05476022e-01 4.88841057e-01
3.15567911e-01 1.24122775e+00 -8.44128847e-01 -6.43583119e-01
4.29821193e-01 6.73514783e-01 -7.68748164e-01 3.49030554e-01
-3.52731496e-01 2.89823472e-01 -4.26215708e-01 5.81792235e-01
3.02680254e-01 -7.20298111e-01 -7.75671378e-02 -3.17194372e-01
-3.82022304e-03 2.26398677e-01 -5.21600366e-01 2.00244308e+00
-4.87649262e-01 9.99681175e-01 -3.58118087e-01 -1.23230469e+00
7.05489218e-01 3.75151694e-01 6.36530638e-01 -9.75744724e-01
1.98545828e-01 -2.00271368e-01 -6.80212557e-01 -6.92064166e-01
4.65128899e-01 2.52765656e-01 -2.61218995e-01 9.64431092e-02
3.31537366e-01 3.03421110e-01 1.64705172e-01 4.20999169e-01
1.19793248e+00 3.93099964e-01 4.38328534e-02 1.82569548e-01
3.87952805e-01 -1.40711874e-01 5.82669258e-01 7.54188180e-01
-2.37869382e-01 6.12468243e-01 6.56095088e-01 -5.78657925e-01
-9.95631397e-01 -1.05359077e+00 3.72050732e-01 9.86272693e-01
1.62855580e-01 -7.94012427e-01 -5.12549222e-01 -7.86410689e-01
-4.78914008e-02 3.76781404e-01 -8.47989798e-01 -1.54568791e-01
-6.97249115e-01 -4.11464006e-01 4.93875772e-01 6.38729393e-01
5.69652915e-01 -7.65384376e-01 -6.70179904e-01 1.11843146e-01
-6.24239922e-01 -1.66036522e+00 -8.20443034e-01 1.16663031e-01
-6.77587211e-01 -7.30067194e-01 -6.88168705e-01 -6.48655117e-01
3.62281740e-01 4.64823782e-01 1.09638214e+00 -1.51865855e-01
-2.01474771e-01 6.14004910e-01 -5.23979843e-01 -1.09601475e-01
-3.19532938e-02 -1.34317145e-01 7.09578618e-02 2.27107495e-01
3.41995865e-01 -5.10346413e-01 -5.78469336e-01 7.64304698e-02
-7.82955766e-01 4.92389292e-01 4.22369748e-01 8.47065032e-01
8.37990999e-01 -3.01661879e-01 1.07279636e-01 -4.18304831e-01
6.70359731e-02 -3.68873537e-01 -7.65233576e-01 2.20291927e-01
-3.04944843e-01 8.45019445e-02 7.24249363e-01 -5.22590637e-01
-6.60321176e-01 4.25233915e-02 -4.38905209e-02 -1.22430336e+00
5.59718208e-03 6.18569791e-01 -1.51541913e-02 9.82489139e-02
2.64045775e-01 5.03660738e-01 -1.51219904e-01 -4.00685698e-01
3.30431283e-01 3.87328178e-01 7.25737691e-01 -4.51163530e-01
8.35241199e-01 5.13817966e-01 2.03873608e-02 -7.62188017e-01
-1.20182049e+00 -3.98772001e-01 -3.57282043e-01 -4.42881584e-01
1.07869661e+00 -1.23471475e+00 -1.06167257e+00 3.23387504e-01
-1.28191197e+00 -4.20610487e-01 -9.54378098e-02 5.30020535e-01
-8.53393972e-01 4.13221121e-01 -5.30482352e-01 -5.42729497e-01
-3.54690611e-01 -1.07212806e+00 1.38217604e+00 -3.21812220e-02
-6.87201917e-02 -8.98867667e-01 -2.01068893e-01 4.47834373e-01
5.25105707e-02 5.23161948e-01 6.38291180e-01 -2.40481392e-01
-8.18045676e-01 -7.85469115e-02 -3.31913799e-01 3.93093109e-01
-1.88815892e-01 -1.64644226e-01 -1.02091050e+00 -3.90363723e-01
-1.18862666e-01 -5.10198414e-01 1.02087617e+00 5.71184635e-01
1.52327108e+00 -5.42836845e-01 -2.04770476e-01 1.03159058e+00
1.37928116e+00 7.13136867e-02 4.00598228e-01 2.67945975e-01
1.02005327e+00 2.11923391e-01 7.34458029e-01 6.48047566e-01
4.62863237e-01 7.95299888e-01 6.48219943e-01 2.15463210e-02
-1.83035865e-01 -5.49059391e-01 7.77091563e-01 9.24786210e-01
-2.33823374e-01 -3.58068913e-01 -8.53462815e-01 5.70819438e-01
-2.14083862e+00 -1.14902282e+00 1.91919953e-01 1.82316601e+00
6.50353670e-01 9.85584781e-02 4.30150740e-02 3.23702991e-02
5.35835207e-01 6.53164983e-01 -5.29398441e-01 -1.93800345e-01
-1.94651663e-01 -6.74934611e-02 4.33440864e-01 4.02241945e-01
-1.33776271e+00 8.65513027e-01 5.19064856e+00 7.68426836e-01
-1.34596550e+00 1.53859809e-01 5.65661132e-01 -4.14598554e-01
-5.64647987e-02 -2.99555540e-01 -9.23626661e-01 6.29439890e-01
1.04387915e+00 -2.59501070e-01 4.82798576e-01 6.76110327e-01
5.67825258e-01 2.85701066e-01 -1.38889790e+00 1.60086894e+00
2.32818186e-01 -1.70057213e+00 2.20516637e-01 -3.05112754e-03
6.32528365e-01 4.12017047e-01 2.43817732e-01 2.65108228e-01
8.41511041e-03 -9.82769370e-01 1.08534372e+00 3.57325852e-01
1.00816476e+00 -5.29410899e-01 4.12931472e-01 1.79878920e-01
-1.30171847e+00 -5.54752089e-02 -2.74641752e-01 9.98717174e-03
1.84415579e-01 4.42885906e-01 -7.65622854e-01 6.40123248e-01
1.12983930e+00 1.28713131e+00 -3.88174564e-01 7.13357389e-01
-7.14399964e-02 7.45869219e-01 -2.24076465e-01 -5.06109558e-02
7.36949384e-01 1.09813124e-01 5.43189704e-01 1.17107940e+00
3.94951910e-01 -3.61300260e-02 2.93804109e-01 6.53841317e-01
-3.21879148e-01 -1.66496634e-01 -7.38786995e-01 -2.94010162e-01
1.72565088e-01 9.59629834e-01 -3.70371640e-01 -4.61502224e-01
-7.19097376e-01 1.18216443e+00 3.52673531e-01 5.03291309e-01
-1.32271469e+00 -1.54946178e-01 7.19943345e-01 -8.53118021e-03
6.72067940e-01 -4.30533648e-01 1.21762536e-01 -1.53628874e+00
1.60674661e-01 -7.56349027e-01 3.60278457e-01 -8.85800660e-01
-1.08790970e+00 6.40927911e-01 -3.09164319e-02 -1.50346649e+00
-2.76637673e-01 -7.57371545e-01 -2.91566044e-01 5.32836795e-01
-1.50007761e+00 -1.23314285e+00 -4.58485991e-01 1.05287695e+00
5.62638760e-01 1.21373110e-01 4.86228436e-01 3.93840909e-01
-4.69996840e-01 6.12618089e-01 7.84268305e-02 3.04867655e-01
4.21066910e-01 -1.09935033e+00 5.20705163e-01 8.49239826e-01
4.84740764e-01 1.51326761e-01 5.77720225e-01 -3.70667696e-01
-1.75860167e+00 -1.55445552e+00 1.17143583e+00 -3.82947087e-01
7.72608042e-01 -5.91201901e-01 -6.86686993e-01 9.11590457e-01
1.49634257e-01 2.50957817e-01 3.93966466e-01 -1.46515310e-01
-6.31919384e-01 -9.83488187e-02 -5.82071662e-01 7.18413591e-01
1.25637627e+00 -8.94046903e-01 -5.98540783e-01 5.76208353e-01
9.29238856e-01 -5.54517925e-01 -8.00756276e-01 2.67307848e-01
4.44092184e-01 -7.45025814e-01 1.08092570e+00 -5.99469960e-01
5.55729389e-01 -3.24642420e-01 -4.73584741e-01 -8.85822535e-01
-2.20822319e-01 -8.92831862e-01 -5.58950663e-01 8.16811740e-01
1.07587613e-01 -1.92932770e-01 6.95237696e-01 2.84354061e-01
-3.52791131e-01 -8.65545630e-01 -9.93746519e-01 -9.35048282e-01
-3.19479883e-01 -8.38787436e-01 2.66359508e-01 7.56528854e-01
-1.72511578e-01 3.90925109e-01 -8.23655307e-01 2.39043593e-01
6.07249200e-01 2.53115207e-01 5.18436074e-01 -8.15454781e-01
-3.18241298e-01 -2.17276379e-01 -6.33434653e-01 -1.54350042e+00
3.16221565e-01 -9.60612774e-01 3.21519822e-02 -1.51517141e+00
2.53039300e-01 1.98693693e-01 -3.78178895e-01 7.65724778e-01
-6.90746009e-02 3.00765008e-01 4.32615757e-01 -2.58456413e-02
-1.00522792e+00 8.27439308e-01 1.19347358e+00 -4.11905855e-01
1.24127800e-02 -3.80911887e-01 -2.97173947e-01 6.15159631e-01
4.06094134e-01 -2.66742438e-01 -4.35620666e-01 -8.44684541e-01
2.40580171e-01 1.41360089e-01 8.05776834e-01 -9.13318396e-01
2.57807463e-01 -1.13306949e-02 4.15684044e-01 -9.48964298e-01
6.58955276e-01 -6.75395310e-01 -2.39607170e-01 2.35504389e-01
-3.49575192e-01 9.72308293e-02 2.66689479e-01 7.41077840e-01
-4.34720337e-01 4.24474925e-01 4.69698757e-01 1.46120386e-02
-1.01086509e+00 8.03360641e-01 -3.28956038e-01 1.65910855e-01
8.83690536e-01 -1.27883449e-01 -2.38306805e-01 -5.57709634e-01
-6.54977679e-01 2.68008858e-01 1.84552059e-01 5.73478997e-01
9.65235651e-01 -1.49784911e+00 -5.11705041e-01 1.48763992e-02
1.27973571e-01 -6.36191368e-02 5.20245850e-01 9.49281931e-01
-3.45568597e-01 7.27675796e-01 -3.10692675e-02 -9.76927161e-01
-1.38004684e+00 7.60540068e-01 1.71251088e-01 -1.84451163e-01
-9.54986870e-01 9.63833451e-01 4.09480214e-01 1.59114733e-01
5.38416922e-01 -5.79162657e-01 5.65536460e-03 -3.53441350e-02
5.96589208e-01 2.98802499e-02 -5.15565164e-02 -7.25679815e-01
-4.68084991e-01 6.78919137e-01 -1.30563334e-01 8.96335207e-03
1.41967058e+00 -1.16967008e-01 3.05439681e-01 5.01243234e-01
1.64077866e+00 -4.69087660e-01 -1.70978546e+00 -5.41736782e-01
-7.00492635e-02 -4.36016321e-01 2.12968513e-01 -4.14789706e-01
-1.12019932e+00 1.18610036e+00 3.84067118e-01 1.21211454e-01
1.38842297e+00 3.22918564e-01 1.07193303e+00 5.13995588e-01
9.83175635e-02 -8.32972467e-01 3.62586200e-01 7.14665115e-01
9.99228120e-01 -1.22161043e+00 -3.23843658e-01 -3.40417475e-02
-6.93863332e-01 9.53422725e-01 5.43501019e-01 -2.40657441e-02
4.56741482e-01 -1.55860430e-03 -1.89659610e-01 -1.67934030e-01
-1.20530522e+00 -1.14128165e-01 5.11770427e-01 3.39069635e-01
5.69518730e-02 -9.88348797e-02 2.97485828e-01 4.95480359e-01
-1.51851065e-02 9.21202078e-02 2.31924713e-01 8.45604241e-01
-1.71160802e-01 -5.82709789e-01 -8.93574953e-02 3.30183208e-01
-4.52467978e-01 -2.32497990e-01 -3.03166620e-02 6.85662985e-01
8.64571929e-02 7.73617387e-01 2.30085507e-01 -7.61540771e-01
1.79427475e-01 -1.27762079e-01 5.87752759e-01 -2.98203379e-01
-2.85054356e-01 1.14328228e-01 3.27086513e-04 -1.08724201e+00
-6.61084414e-01 -6.01851761e-01 -1.12646580e+00 -4.68962938e-01
1.18126974e-01 2.91329604e-02 4.61434722e-01 9.63319242e-01
4.94528562e-01 4.83761936e-01 7.49218702e-01 -9.20075178e-01
-3.82435173e-01 -7.42868662e-01 -3.22856456e-01 4.74128544e-01
6.56145453e-01 -7.61896372e-01 -3.15842301e-01 4.73682374e-01] | [9.881659507751465, 0.7329277992248535] |
6aa38136-2522-4b42-b0ae-39c35dfb0f37 | incorporating-background-knowledge-into-video | null | null | https://aclanthology.org/D18-1433 | https://aclanthology.org/D18-1433.pdf | Incorporating Background Knowledge into Video Description Generation | Most previous efforts toward video captioning focus on generating generic descriptions, such as, {``}A man is talking.{''} We collect a news video dataset to generate enriched descriptions that include important background knowledge, such as named entities and related events, which allows the user to fully understand the video content. We develop an approach that uses video meta-data to retrieve topically related news documents for a video and extracts the events and named entities from these documents. Then, given the video as well as the extracted events and entities, we generate a description using a Knowledge-aware Video Description network. The model learns to incorporate entities found in the topically related documents into the description via an entity pointer network and the generation procedure is guided by the event and entity types from the topically related documents through a knowledge gate, which is a gating mechanism added to the model{'}s decoder that takes a one-hot vector of these types. We evaluate our approach on the new dataset of news videos we have collected, establishing the first benchmark for this dataset as well as proposing a new metric to evaluate these descriptions. | ['Shih-Fu Chang', 'Heng Ji', 'Clare Voss', 'Mohit Bansal', 'Spencer Whitehead'] | 2018-10-01 | null | null | null | emnlp-2018-10 | ['video-description'] | ['computer-vision'] | [ 3.09696466e-01 2.85241634e-01 -5.38825214e-01 -6.33692682e-01
-1.03536534e+00 -6.31007433e-01 7.69762158e-01 1.96052656e-01
-3.75069141e-01 8.67171288e-01 1.01317942e+00 3.58008415e-01
1.55771285e-01 -5.52073896e-01 -1.18161786e+00 -4.54959810e-01
-3.12037021e-01 3.40941638e-01 4.68733460e-01 -5.19390106e-02
1.72948599e-01 -2.04640076e-01 -1.80251360e+00 8.90581727e-01
2.19456419e-01 9.55059052e-01 2.76139557e-01 7.42335260e-01
-2.03115031e-01 1.21597373e+00 -7.17936277e-01 -4.89424258e-01
-9.56967175e-02 -6.91842198e-01 -1.00762260e+00 3.38843286e-01
4.72998828e-01 -5.65518737e-01 -8.42099369e-01 6.72035038e-01
3.22394192e-01 4.63653952e-01 6.37262702e-01 -1.25627863e+00
-6.27507210e-01 1.24545932e+00 -1.90594569e-01 4.13791388e-01
8.27217460e-01 7.51368850e-02 1.23204947e+00 -7.71834135e-01
1.45218134e+00 8.12633455e-01 4.04308647e-01 8.33327591e-01
-6.84791327e-01 -2.85826981e-01 3.82072270e-01 5.71991086e-01
-1.37586188e+00 -6.03225708e-01 6.68107212e-01 -4.05748248e-01
1.02997828e+00 1.18470624e-01 7.37259030e-01 1.60516346e+00
-3.62210989e-01 1.11378062e+00 1.11027144e-01 -1.07817017e-01
2.61293411e-01 1.70943022e-01 6.08926080e-02 5.81999123e-01
-4.72087897e-02 -2.63313055e-01 -8.26133728e-01 -1.05655052e-01
4.87356544e-01 -2.17268080e-01 -5.07460594e-01 -2.12107226e-01
-1.55017972e+00 6.15855098e-01 2.64687181e-01 2.05627695e-01
-6.94878519e-01 5.16660333e-01 7.18333662e-01 -2.23531261e-01
3.05054724e-01 4.99726951e-01 -2.88023174e-01 -2.36920342e-01
-9.07222033e-01 5.84756672e-01 1.00890362e+00 1.37306774e+00
6.97455049e-01 -3.17419052e-01 -8.28014851e-01 4.89044577e-01
1.39465645e-01 1.78582385e-01 2.58748621e-01 -1.18557155e+00
7.20270932e-01 4.36107159e-01 3.27553689e-01 -8.80627573e-01
-4.08414751e-02 -1.04899906e-01 -1.55118033e-01 -8.53188157e-01
5.04713319e-02 -2.74568349e-01 -9.21259046e-01 2.10825896e+00
1.65713727e-01 8.58488858e-01 2.36870989e-01 1.00671947e+00
1.43714440e+00 1.22434628e+00 4.43879247e-01 -1.97763011e-01
1.49967432e+00 -9.89610732e-01 -7.37146676e-01 -2.20916063e-01
5.34765482e-01 -2.95846224e-01 5.61191142e-01 -1.69662654e-01
-1.12921512e+00 -3.64491791e-01 -7.42913067e-01 -7.61930868e-02
-2.61979043e-01 1.49503360e-02 3.83047014e-01 -1.25494242e-01
-1.12310493e+00 3.90720457e-01 -4.91169602e-01 -6.98474705e-01
3.33307087e-01 1.41799510e-01 -3.89895022e-01 -1.89316303e-01
-1.46704292e+00 5.34494281e-01 9.95747745e-01 -2.91693926e-01
-1.47101045e+00 -6.75177038e-01 -1.31949794e+00 2.09410354e-01
6.69295490e-01 -1.08687007e+00 1.34199953e+00 -1.11717021e+00
-9.88618255e-01 7.86509037e-01 -3.47094297e-01 -5.78123152e-01
-6.42123148e-02 -8.10403749e-02 -4.40203071e-01 7.02677965e-01
3.13710719e-01 1.16287994e+00 6.78963363e-01 -1.38981092e+00
-9.52386677e-01 1.52587071e-01 7.07171381e-01 4.56250966e-01
-3.07767957e-01 1.93790764e-01 -1.13938689e+00 -7.71573663e-01
-4.56464589e-01 -8.12066138e-01 1.91294160e-02 -2.90138692e-01
-5.93119502e-01 -1.35164231e-01 6.56823099e-01 -8.19675684e-01
1.50775301e+00 -2.22908092e+00 4.27297562e-01 3.74486223e-02
1.77712008e-01 -1.88015476e-01 -3.06933075e-01 5.38291752e-01
-1.92996897e-02 4.01933752e-02 -2.18412459e-01 -3.29786003e-01
1.17581941e-01 1.74622789e-01 -3.53536367e-01 -8.14825520e-02
3.69531602e-01 7.34091043e-01 -1.33355808e+00 -6.41134501e-01
-2.04785481e-01 6.53688669e-01 -7.89991498e-01 4.62884933e-01
-8.75986278e-01 3.78615260e-01 -7.54459500e-01 3.60396951e-01
-1.31502189e-02 -4.59336132e-01 1.38081312e-01 -5.05817056e-01
8.97261139e-04 4.97894019e-01 -8.85174394e-01 2.07215071e+00
-1.85933173e-01 7.22994745e-01 -4.71616864e-01 -8.09002817e-01
4.52881992e-01 8.22088957e-01 6.64531350e-01 -2.60179996e-01
5.62086105e-02 -8.80386084e-02 -7.84493268e-01 -1.15247846e+00
7.27080286e-01 1.35373756e-01 -4.93259877e-01 4.30251479e-01
4.83337134e-01 3.68130058e-01 7.21655726e-01 7.73851752e-01
1.39615011e+00 5.71175098e-01 1.33791432e-01 2.61952430e-01
4.67543006e-01 3.49154621e-01 3.35079938e-01 6.61903620e-01
1.76366836e-01 7.41158426e-01 7.22425640e-01 -4.53990757e-01
-1.10523355e+00 -8.77040267e-01 4.49653506e-01 1.23850346e+00
2.63480663e-01 -1.07637119e+00 -8.12794626e-01 -7.34660625e-01
-3.11247855e-01 7.89284885e-01 -7.76385307e-01 -3.97628605e-01
-6.44673824e-01 -5.00892222e-01 3.88320357e-01 6.08461976e-01
3.74048233e-01 -1.24127626e+00 -3.61469328e-01 2.90621430e-01
-9.20273066e-01 -1.56428933e+00 -6.87019467e-01 -1.12088963e-01
-3.50832999e-01 -9.03815985e-01 -8.29764366e-01 -9.85665679e-01
7.22008765e-01 -1.44891605e-01 1.41855443e+00 -1.09529927e-01
-3.62221152e-02 6.17689013e-01 -6.99255049e-01 -5.23187686e-03
-4.26638931e-01 1.14948042e-01 -2.68367320e-01 3.24811965e-01
4.14381534e-01 -2.86626995e-01 -6.31230533e-01 5.13698757e-02
-1.03831959e+00 3.42075467e-01 3.64558160e-01 4.17497456e-01
5.41044354e-01 -1.19328484e-01 5.18611312e-01 -9.13480103e-01
2.75896668e-01 -1.00523436e+00 -1.05702989e-01 1.95789933e-01
2.50574887e-01 1.72067791e-01 5.15361011e-01 -4.50654089e-01
-1.12948847e+00 3.00465375e-01 2.57370640e-02 -4.89928633e-01
-2.09552526e-01 7.59890795e-01 -1.79036930e-01 6.18039429e-01
6.21131122e-01 3.93015683e-01 -8.29054594e-01 -2.43907124e-01
5.03444195e-01 4.57738489e-01 9.61247385e-01 -6.59860194e-01
6.06122613e-01 4.48052108e-01 -4.13959116e-01 -6.23571813e-01
-1.14955783e+00 -6.76340580e-01 -3.93678099e-01 -4.23585325e-01
1.10284841e+00 -1.23759913e+00 -3.73381644e-01 4.86833453e-02
-1.46994019e+00 2.80019790e-02 -4.94601816e-01 6.68258786e-01
-8.67921352e-01 1.29583105e-01 -6.40724182e-01 -3.24183702e-01
-2.59059519e-02 -1.00663579e+00 1.17209983e+00 3.07117671e-01
-3.52238268e-01 -8.56721997e-01 7.47920871e-02 2.11190671e-01
1.24414474e-01 5.04640162e-01 8.75881374e-01 -9.09535587e-01
-9.52708304e-01 -9.74197090e-02 -1.05457082e-01 1.01507671e-01
-1.74735457e-01 7.09622949e-02 -9.38621521e-01 -1.61425769e-02
-5.78138530e-01 -2.46656790e-01 8.67648065e-01 3.54503304e-01
1.13721097e+00 -8.15720379e-01 -6.22114062e-01 5.49309850e-01
1.35901070e+00 1.93700656e-01 5.80242932e-01 3.38454902e-01
6.86099231e-01 5.50071001e-01 3.38595271e-01 6.69886887e-01
7.75143564e-01 7.06380546e-01 3.87215257e-01 2.89964914e-01
-1.67225108e-01 -5.66649258e-01 6.96531951e-01 7.28557229e-01
-1.68137670e-01 -6.84904516e-01 -5.50582528e-01 9.67394292e-01
-1.94878721e+00 -1.51050019e+00 3.70643079e-01 1.92491722e+00
9.61018801e-01 1.65600460e-02 1.94025949e-01 -3.89756083e-01
9.94091690e-01 4.31186587e-01 -3.89057755e-01 7.80373719e-03
2.08514910e-02 -1.59925133e-01 2.04283699e-01 7.26680085e-02
-1.25024736e+00 9.60910857e-01 6.24355364e+00 3.68565470e-01
-9.93777037e-01 2.89816596e-03 2.97717601e-01 -3.42097372e-01
-4.93325561e-01 1.38939917e-01 -1.00357366e+00 5.57899892e-01
1.16080523e+00 -5.28639317e-01 1.48951650e-01 7.44875848e-01
2.63691932e-01 -1.29553908e-02 -1.49059749e+00 8.55805933e-01
6.00697756e-01 -1.74112260e+00 6.08257890e-01 -4.59309220e-01
8.05576801e-01 8.31703376e-03 -2.69624621e-01 4.45346445e-01
7.92495832e-02 -5.51968157e-01 9.32278275e-01 5.69726825e-01
8.14180851e-01 -5.57563603e-01 6.86917603e-01 1.32984724e-02
-1.36569905e+00 -1.09267555e-01 -1.90858394e-01 3.32165897e-01
5.64658165e-01 2.93240666e-01 -1.13714337e+00 5.20000875e-01
5.88444114e-01 1.20183325e+00 -2.60560632e-01 1.32518339e+00
-3.26521933e-01 6.28965676e-01 -1.40999079e-01 6.83232918e-02
4.00318414e-01 3.82276267e-01 7.31859028e-01 1.52911913e+00
3.72513741e-01 2.54926115e-01 8.95297900e-02 8.17420542e-01
-6.52352631e-01 3.92626934e-02 -6.40593290e-01 -3.57931226e-01
4.73110497e-01 1.16359282e+00 -7.00471103e-01 -8.05065334e-01
-6.19494140e-01 9.43881929e-01 4.25470695e-02 5.35092115e-01
-1.14329398e+00 -3.38446110e-01 4.15474027e-01 1.90080285e-01
5.49492955e-01 1.98513225e-01 6.30254984e-01 -1.45344126e+00
9.78701562e-02 -6.32145584e-01 6.79571927e-01 -1.28342283e+00
-8.77223730e-01 8.45363796e-01 4.02267724e-01 -1.25080180e+00
-6.63137734e-01 -1.35259032e-01 -4.37634140e-01 2.58618563e-01
-1.48484004e+00 -9.33451891e-01 -4.35875803e-01 6.38026476e-01
7.44351864e-01 1.54179782e-02 6.71633661e-01 5.49516737e-01
-4.37041104e-01 1.66645482e-01 -3.54012132e-01 3.99957418e-01
7.49956548e-01 -9.82238531e-01 4.79798645e-01 7.17210889e-01
2.96884656e-01 4.28063303e-01 8.07801485e-01 -7.75479496e-01
-1.27327406e+00 -1.31402564e+00 1.19226503e+00 -6.83261395e-01
6.24948204e-01 -4.00833040e-01 -6.98649347e-01 1.14942098e+00
2.85158336e-01 -4.47988585e-02 7.63995945e-01 -3.96121919e-01
-3.85481209e-01 1.86187699e-01 -7.39468217e-01 4.90490228e-01
1.34599972e+00 -5.95364630e-01 -8.68074536e-01 5.10715425e-01
1.05590093e+00 -5.65168560e-01 -7.41394460e-01 2.12930813e-01
3.40575099e-01 -5.07980347e-01 9.16452229e-01 -9.54082131e-01
8.52088392e-01 -3.57423306e-01 -9.77104083e-02 -1.26705670e+00
-1.40006185e-01 -6.28265560e-01 -4.13235009e-01 1.45206380e+00
7.58020103e-01 4.01848584e-01 6.99370384e-01 5.17245054e-01
-3.71361852e-01 -3.94976377e-01 -5.51011384e-01 -3.26759100e-01
-8.69688511e-01 -3.16762388e-01 5.70337772e-01 8.56470346e-01
1.99820638e-01 4.83064622e-01 -5.15768468e-01 2.71755308e-01
2.77498990e-01 3.68650327e-03 4.94523495e-01 -8.28135312e-01
-1.60930037e-01 1.10650562e-01 -4.12556499e-01 -1.10404050e+00
4.29827064e-01 -1.03564036e+00 3.05832624e-01 -1.91852152e+00
7.22406447e-01 -2.47866809e-02 -1.67743906e-01 5.23677647e-01
-2.01248959e-01 2.78913587e-01 1.14596270e-01 1.34276941e-01
-1.47615349e+00 3.37116539e-01 1.10502970e+00 -2.00527787e-01
-8.47336426e-02 -3.13714355e-01 -6.96809590e-01 7.07715273e-01
1.86590761e-01 -5.73064148e-01 -5.42396367e-01 -7.84873605e-01
4.83072996e-01 4.76130784e-01 3.86857718e-01 -1.01793242e+00
3.63199949e-01 -1.25687078e-01 2.49924019e-01 -3.89868677e-01
5.88110566e-01 -7.33003438e-01 3.82418871e-01 -1.29691496e-01
-8.00861478e-01 -2.89835744e-02 -7.08537875e-03 6.17370188e-01
-5.08544028e-01 -1.53618380e-01 2.47816086e-01 -4.27156270e-01
-1.39650285e+00 5.82378149e-01 -2.59132892e-01 3.24662507e-01
1.22939658e+00 -1.65253326e-01 -5.01186609e-01 -8.04801404e-01
-1.02124405e+00 3.82756710e-01 4.01933014e-01 7.91491389e-01
6.50573909e-01 -1.52528906e+00 -8.34964037e-01 -1.87624231e-01
6.18739367e-01 -5.78191504e-02 3.78564894e-01 3.79611045e-01
-3.03221047e-01 3.55363250e-01 -2.09577292e-01 -4.09878969e-01
-9.14528787e-01 6.88962340e-01 -1.40357409e-02 4.55582105e-02
-6.54008985e-01 8.67638826e-01 3.15916061e-01 2.19610721e-01
3.36637020e-01 -2.97085196e-01 -6.36228621e-01 3.04722846e-01
7.79729486e-01 -2.30794810e-02 -2.82259077e-01 -1.00522470e+00
-3.54918450e-01 3.99429351e-01 4.30634581e-02 -1.76970258e-01
1.46420097e+00 -3.04426849e-01 1.17209099e-01 3.14278454e-01
1.42016089e+00 -2.44848877e-01 -1.40608716e+00 -2.94921994e-01
1.86704665e-01 -1.92266345e-01 -3.61308515e-01 -6.40759647e-01
-1.04867017e+00 2.50315875e-01 -1.83223501e-01 -4.51914147e-02
9.91616249e-01 5.38959205e-01 1.08106470e+00 3.79351020e-01
2.75647998e-01 -9.81819928e-01 2.52707958e-01 4.95424092e-01
6.79871261e-01 -8.34240437e-01 -2.51877993e-01 -4.37489837e-01
-9.02737439e-01 9.23212171e-01 5.51693439e-01 1.01437636e-01
3.24900687e-01 1.63957641e-01 -1.89222172e-01 -3.17678243e-01
-1.16039824e+00 -3.30731302e-01 2.96990544e-01 4.93430555e-01
2.64629632e-01 -3.07241350e-01 -1.64863288e-01 7.41144001e-01
1.02868415e-01 4.72348720e-01 6.99345708e-01 9.82156992e-01
-5.12364388e-01 -7.77031600e-01 3.28783621e-03 3.58716726e-01
-5.57398200e-01 -6.19638190e-02 -2.65114874e-01 5.08977234e-01
2.47994646e-01 5.37991345e-01 3.48078430e-01 -4.12270755e-01
4.22780365e-01 2.98545510e-01 1.47610217e-01 -1.05933857e+00
-4.68058944e-01 -7.42465928e-02 5.46133518e-01 -6.86401784e-01
-8.87058318e-01 -5.46575606e-01 -1.44439697e+00 1.00553229e-01
1.02974035e-01 5.53000927e-01 5.88445187e-01 9.50415492e-01
5.08283734e-01 5.96937478e-01 5.17986894e-01 -8.29144955e-01
4.56854589e-02 -5.98709524e-01 -1.94739655e-01 9.09918249e-01
3.04564416e-01 -5.28554559e-01 -2.34626591e-01 8.79942298e-01] | [10.515061378479004, 0.6590191721916199] |
b546e1c7-528a-4374-9d48-3add488a8ce6 | reliability-check-an-analysis-of-gpt-3-s | 2306.06199 | null | https://arxiv.org/abs/2306.06199v1 | https://arxiv.org/pdf/2306.06199v1.pdf | Reliability Check: An Analysis of GPT-3's Response to Sensitive Topics and Prompt Wording | Large language models (LLMs) have become mainstream technology with their versatile use cases and impressive performance. Despite the countless out-of-the-box applications, LLMs are still not reliable. A lot of work is being done to improve the factual accuracy, consistency, and ethical standards of these models through fine-tuning, prompting, and Reinforcement Learning with Human Feedback (RLHF), but no systematic analysis of the responses of these models to different categories of statements, or on their potential vulnerabilities to simple prompting changes is available. In this work, we analyze what confuses GPT-3: how the model responds to certain sensitive topics and what effects the prompt wording has on the model response. We find that GPT-3 correctly disagrees with obvious Conspiracies and Stereotypes but makes mistakes with common Misconceptions and Controversies. The model responses are inconsistent across prompts and settings, highlighting GPT-3's unreliability. Dataset and code of our analysis is available in https://github.com/tanny411/GPT3-Reliability-Check. | ['Daniel G. Brown', 'Aisha Khatun'] | 2023-06-09 | null | null | null | null | ['misconceptions'] | ['miscellaneous'] | [-3.07799578e-01 3.53950441e-01 -4.62005973e-01 -6.64112985e-01
-8.46241355e-01 -7.18562543e-01 4.65178430e-01 2.89739162e-01
-2.39491627e-01 5.56372702e-01 5.82247913e-01 -8.69151890e-01
3.11033577e-02 -2.76521027e-01 -7.01567411e-01 -1.30626902e-01
5.57852864e-01 3.20267916e-01 8.07637647e-02 -2.63020128e-01
6.65088832e-01 -4.39697020e-02 -8.49351645e-01 4.64701265e-01
9.54083681e-01 3.93014699e-01 -4.13987599e-02 5.46947598e-01
-2.49407113e-01 1.37199235e+00 -7.15406299e-01 -4.84303683e-01
1.07362255e-01 -1.32982537e-01 -9.25798237e-01 -3.00795913e-01
6.14951015e-01 -5.32145023e-01 4.63883579e-02 8.77829611e-01
5.10042012e-01 -2.60843098e-01 2.06708685e-01 -1.24584877e+00
-9.36454535e-01 7.64550030e-01 -5.19718587e-01 2.23049223e-01
6.37440503e-01 4.23834115e-01 7.31570959e-01 -5.17270803e-01
6.28446996e-01 1.56756544e+00 8.95502508e-01 5.44501901e-01
-1.34450376e+00 -1.17623091e+00 2.66009450e-01 -1.74055900e-02
-1.29737568e+00 -5.93079627e-01 2.41716668e-01 -8.98025632e-01
9.97580707e-01 3.29834402e-01 4.06603515e-01 1.40332162e+00
4.93096441e-01 2.72056371e-01 1.58898878e+00 -3.08650643e-01
1.65120259e-01 9.10625219e-01 4.05842960e-01 3.93873036e-01
3.32403243e-01 1.79300115e-01 -6.30003035e-01 -7.08462536e-01
6.27034724e-01 -1.25743359e-01 -1.82753764e-02 2.52803862e-01
-9.05427158e-01 8.45082819e-01 1.13615610e-01 3.53014916e-01
-2.75637984e-01 -1.53475925e-01 1.52441874e-01 3.26998264e-01
5.82260549e-01 7.01437473e-01 -8.36164653e-01 -5.46199560e-01
-6.51096761e-01 5.03255606e-01 9.95800257e-01 6.00129902e-01
6.07436240e-01 -1.21354282e-01 -3.28663737e-02 9.36093032e-01
2.31533512e-01 5.69190979e-01 3.78286362e-01 -1.08023310e+00
3.51156741e-01 5.96405566e-01 5.47840893e-01 -1.37229502e+00
-7.12580442e-01 -3.36447805e-01 -2.88860768e-01 -1.03841536e-01
3.27572852e-01 -5.49448252e-01 -2.93921351e-01 1.69753051e+00
1.07654288e-01 -2.15629622e-01 -4.02243972e-01 6.29645586e-01
7.50643492e-01 4.72583234e-01 6.21597946e-01 -6.16657287e-02
1.02455902e+00 -4.48503107e-01 -7.20377862e-01 -7.63379335e-01
1.04387462e+00 -1.18073869e+00 1.29540730e+00 2.57558614e-01
-9.23493803e-01 -3.59115362e-01 -4.03955758e-01 8.20851475e-02
-1.32448496e-02 -2.04417005e-01 6.00571990e-01 6.74429417e-01
-1.07810926e+00 2.88666666e-01 -5.51180124e-01 -6.49508715e-01
9.41309184e-02 1.15245193e-01 -2.79188722e-01 7.17877671e-02
-1.25316358e+00 1.24967432e+00 -3.22760292e-03 -1.28719777e-01
-3.26650888e-01 -8.83258820e-01 -6.41089380e-01 -1.53048828e-01
6.80201709e-01 -3.45661491e-01 1.77978599e+00 -8.88907969e-01
-1.31774378e+00 5.36406398e-01 -1.87723026e-01 -1.89131066e-01
3.54746580e-01 -2.97753334e-01 -5.15130401e-01 -3.08847040e-01
2.50085086e-01 5.32032073e-01 4.58110631e-01 -1.15570247e+00
-6.07070804e-01 -1.08479977e-01 -7.06072077e-02 -1.77979022e-02
-1.26732916e-01 6.28942907e-01 2.40079582e-01 -4.81289804e-01
-2.09308758e-01 -9.77536261e-01 -2.46396273e-01 -4.91611809e-01
-3.18198025e-01 -3.86544853e-01 4.09435570e-01 -7.65044034e-01
1.76190662e+00 -2.02166820e+00 -7.53404856e-01 7.62716457e-02
2.32042313e-01 3.16341132e-01 -1.38613403e-01 9.34739053e-01
3.80885154e-02 9.14238214e-01 2.75498986e-01 1.29040226e-01
9.96908173e-02 -9.65561196e-02 -4.65310693e-01 2.60081410e-01
1.14857443e-01 1.08957052e+00 -8.15527201e-01 -3.69528711e-01
1.83890283e-01 3.47788066e-01 -7.04280496e-01 1.55201241e-01
-1.23173647e-01 4.55045313e-01 -3.43495727e-01 4.10048783e-01
5.53064346e-01 -6.19321823e-01 2.63330877e-01 3.11113387e-01
-2.65139043e-01 8.23728383e-01 -8.05447817e-01 7.94530034e-01
-1.62534386e-01 3.97747546e-01 1.49513409e-01 -4.47860152e-01
8.80397260e-01 2.26627320e-01 8.91563818e-02 -7.56789088e-01
-1.07748061e-01 2.47177482e-01 2.29000717e-01 -9.40066457e-01
4.10873473e-01 -2.43435696e-01 -1.72341809e-01 6.95920467e-01
-4.21696901e-01 -2.17250437e-01 -2.74813145e-01 4.21136290e-01
9.93327558e-01 -1.57892108e-01 4.83554244e-01 -3.56785536e-01
-1.84688985e-01 5.06170988e-02 6.87009871e-01 9.70991611e-01
-3.04968923e-01 1.71904370e-01 6.67797744e-01 -3.56865257e-01
-7.64559567e-01 -4.18168187e-01 7.01375008e-02 1.21663952e+00
-4.20593619e-01 -6.38310850e-01 -6.96118772e-01 -4.49145913e-01
1.24341831e-01 1.40372515e+00 -6.93793178e-01 -1.40839353e-01
-1.04097843e-01 -3.55733454e-01 4.51297432e-01 3.62642556e-01
1.83115348e-01 -9.21731055e-01 -7.75232911e-01 9.91955772e-02
-3.39804053e-01 -1.07689893e+00 -4.16714400e-01 -1.17622308e-01
-8.03815663e-01 -1.10066330e+00 -1.23463105e-03 -3.35987687e-01
5.64559460e-01 2.31024697e-01 1.10550845e+00 2.64212668e-01
4.58237678e-01 4.33114648e-01 -3.05832952e-01 -6.11787975e-01
-8.76788974e-01 -7.80486362e-03 3.19942683e-02 -4.74094510e-01
7.60452271e-01 -1.89833775e-01 -2.89276183e-01 3.69747281e-01
-7.10371912e-01 2.55373031e-01 5.81150830e-01 5.75540960e-01
-1.74648613e-01 -3.83938044e-01 5.17956197e-01 -1.45498645e+00
1.18628514e+00 -6.80550933e-01 -4.28416163e-01 2.29020342e-01
-9.36595500e-01 -3.16017449e-01 3.63057852e-01 -3.70052129e-01
-1.02266574e+00 -6.89654648e-01 -1.22125641e-01 2.02780500e-01
-5.07051110e-01 6.32688582e-01 5.17220557e-01 -1.09025175e-02
1.04705465e+00 -3.80840570e-01 -1.17488861e-01 -4.61607307e-01
-1.54512286e-01 9.67991233e-01 -1.00443866e-02 -6.39037490e-01
7.23919570e-01 -2.82370672e-02 -9.46074367e-01 -6.05684996e-01
-9.83640194e-01 -2.48213679e-01 -4.18135151e-02 -9.86167043e-02
3.75830948e-01 -8.97674978e-01 -7.32378840e-01 3.89775962e-01
-1.10568845e+00 -9.21653748e-01 3.10529917e-01 3.33858162e-01
-2.81750578e-02 1.43383875e-01 -7.51193523e-01 -9.98837173e-01
-3.32961917e-01 -9.64868605e-01 6.15713894e-01 3.58915657e-01
-1.22763085e+00 -9.69639301e-01 2.52601914e-02 7.27905333e-01
9.24797714e-01 -8.24617445e-02 1.11771238e+00 -9.42643762e-01
-8.64842534e-03 -3.54259163e-01 -2.93287858e-02 1.66940421e-01
2.11457118e-01 3.19610268e-01 -8.67992938e-01 -1.07089065e-01
1.51167557e-01 -5.16104758e-01 9.34456140e-02 3.85568291e-01
9.56869125e-01 -9.63175178e-01 -1.03815310e-01 8.08015540e-02
1.05569267e+00 2.84635425e-01 3.14269483e-01 5.06909907e-01
3.06891024e-01 9.01724219e-01 5.48697650e-01 4.45867211e-01
7.00810373e-01 3.77012014e-01 1.22218747e-02 1.63639501e-01
4.78009731e-01 -6.03114963e-01 6.32721841e-01 6.82780027e-01
5.38265109e-01 7.73045942e-02 -1.38339996e+00 2.91353464e-01
-1.71190333e+00 -8.02698970e-01 -9.83269140e-02 2.12038350e+00
7.45310724e-01 4.46243376e-01 -6.64609000e-02 -4.08315778e-01
4.75602090e-01 1.76055640e-01 -4.70844567e-01 -8.48294497e-01
6.75765499e-02 -2.12828845e-01 3.27324033e-01 8.16540420e-01
-4.60306227e-01 9.85923350e-01 7.13297558e+00 4.43459183e-01
-1.23302639e+00 9.28976461e-02 9.86196458e-01 3.10292840e-03
-6.96281075e-01 2.66753972e-01 -7.88211405e-01 4.71713334e-01
1.31049633e+00 -2.82181442e-01 2.76802331e-01 7.14976847e-01
7.49926984e-01 -4.09201086e-01 -8.56214643e-01 5.93802333e-01
-1.16518810e-01 -1.17687011e+00 -2.32041746e-01 -2.47040287e-01
6.00320220e-01 2.39324290e-02 5.46257086e-02 6.45884395e-01
7.09424853e-01 -1.07925987e+00 8.35373402e-01 3.84372264e-01
4.83686119e-01 -1.86505646e-01 7.68514693e-01 7.51791358e-01
-1.82303920e-01 -2.86498934e-01 -1.91598624e-01 -7.58729577e-01
-2.56454889e-02 3.07398498e-01 -1.25907850e+00 -1.69240102e-01
8.59779537e-01 3.46040279e-01 -7.26072729e-01 5.01467824e-01
-4.11951691e-01 1.23320031e+00 -1.21605381e-01 -1.35762557e-01
6.30432889e-02 1.42366305e-01 1.67904258e-01 1.22634363e+00
-7.32234791e-02 2.48938337e-01 2.73120254e-02 7.55168498e-01
1.01878673e-01 1.89725712e-01 -5.93697846e-01 -4.97214347e-01
8.63795817e-01 1.16754365e+00 -3.04421782e-01 -4.50586706e-01
-5.56901395e-01 1.69983581e-01 3.70353431e-01 6.68016553e-01
-5.11438966e-01 2.22817987e-01 6.50167286e-01 6.48015261e-01
-3.20006788e-01 -5.73075898e-02 -6.14724755e-01 -9.30175126e-01
-1.18549854e-01 -1.53164959e+00 2.24674597e-01 -1.03588605e+00
-1.28021038e+00 2.02729881e-01 6.08190745e-02 -5.65429866e-01
-2.54429221e-01 -3.17760468e-01 -5.14315367e-01 8.39648962e-01
-1.01736295e+00 -7.85879850e-01 -3.58008593e-02 1.31404400e-01
3.42989624e-01 3.49107057e-01 8.40935290e-01 -2.62288507e-02
-4.85381544e-01 6.29566252e-01 -3.05941880e-01 -1.92948319e-02
1.48341227e+00 -7.70734191e-01 6.15716934e-01 4.23990905e-01
-4.88511354e-01 1.28967190e+00 1.10803807e+00 -1.04446542e+00
-1.00587797e+00 -5.47208548e-01 1.27843547e+00 -8.71556163e-01
9.69223261e-01 -3.83420527e-01 -1.21159279e+00 1.15158975e+00
4.49667096e-01 -5.70060194e-01 1.06911290e+00 3.99532408e-01
-5.28360307e-01 1.35102928e-01 -9.26701903e-01 7.27628767e-01
5.68099260e-01 -6.49435401e-01 -5.34338355e-01 4.90477890e-01
8.18610370e-01 -4.91046309e-01 -8.30464661e-01 2.56418735e-01
6.51999354e-01 -9.75055516e-01 3.80980134e-01 -9.44042861e-01
4.70790923e-01 2.29797110e-01 -1.29591614e-01 -1.25170743e+00
-5.71721613e-01 -8.63137066e-01 3.96997511e-01 1.21088946e+00
6.10970020e-01 -1.00363696e+00 2.87836134e-01 1.47930658e+00
1.10039547e-01 -8.86678815e-01 -3.25999379e-01 -2.28991598e-01
3.65385681e-01 -5.95563650e-01 4.23749149e-01 1.40215027e+00
3.40908915e-01 4.12775069e-01 -5.14637649e-01 1.56432420e-01
1.32019535e-01 -1.74148515e-01 9.49283242e-01 -1.02802837e+00
-3.70873958e-01 -3.73804033e-01 3.41321260e-01 -6.30205631e-01
-1.44780621e-01 -5.18483281e-01 -3.50722194e-01 -1.57509851e+00
3.61614525e-01 -4.02064949e-01 4.33000959e-02 8.16536963e-01
-4.00673121e-01 -4.46327001e-01 3.92045110e-01 2.81313866e-01
-6.20577991e-01 5.51010780e-02 7.62643874e-01 2.75736541e-01
-3.59106094e-01 -1.67503521e-01 -1.45347881e+00 8.76132965e-01
1.15325928e+00 -6.20669246e-01 -1.27982140e-01 -5.79590261e-01
7.54687607e-01 8.51190016e-02 3.19864929e-01 -5.80749452e-01
2.92236924e-01 -6.45071089e-01 3.05513501e-01 -1.52787164e-01
-9.88243744e-02 -5.39351225e-01 4.07320738e-01 4.93003935e-01
-7.33930826e-01 3.96589994e-01 6.55845165e-01 6.23775162e-02
1.20147869e-01 -9.00566578e-02 3.95594269e-01 -1.89543784e-01
-5.86319864e-01 -2.41488650e-01 -7.24520743e-01 2.42511362e-01
6.50908232e-01 6.48859218e-02 -6.78094208e-01 -7.68953264e-01
-1.36567026e-01 4.46362913e-01 7.67120242e-01 7.00150073e-01
2.25715637e-01 -8.73099685e-01 -7.43656933e-01 7.81528875e-02
8.39568302e-02 -3.33902091e-01 4.53906298e-01 1.11236572e+00
-1.13026030e-01 7.16150522e-01 -5.92310838e-02 -2.35478610e-01
-1.17486858e+00 2.79456824e-01 2.94697076e-01 -1.83341950e-01
-9.37069729e-02 6.95566714e-01 1.91645101e-01 -8.44428301e-01
3.17678861e-02 -3.21721315e-01 -5.89456707e-02 -1.25401884e-01
5.21364629e-01 4.13768828e-01 -1.38041794e-01 -4.10436869e-01
-3.62721622e-01 2.37585038e-01 -4.53806460e-01 -1.86966896e-01
1.13300979e+00 -1.85419843e-01 -1.54188991e-01 8.68121862e-01
6.29770815e-01 3.09824407e-01 -9.23667014e-01 -2.03398734e-01
1.25554308e-01 -6.28349423e-01 -3.40084970e-01 -1.30743623e+00
-2.53085256e-01 7.62897074e-01 1.37353048e-01 3.46944153e-01
5.23442566e-01 -5.56175224e-02 4.29923624e-01 3.42874259e-01
4.35515791e-01 -1.18882585e+00 -7.79173821e-02 5.40717244e-01
1.04594564e+00 -1.43200862e+00 -6.52123541e-02 -1.37175620e-02
-9.69910204e-01 7.47414529e-01 9.68072414e-01 3.24102938e-01
4.74787980e-01 3.09757352e-01 7.70277441e-01 -7.36288577e-02
-1.24893689e+00 8.58237326e-01 -2.52854943e-01 3.27965647e-01
9.95960474e-01 3.97768378e-01 -6.35381818e-01 8.33955526e-01
-5.18631577e-01 2.17170611e-01 7.23322153e-01 8.14007580e-01
-4.80145365e-01 -9.58718538e-01 -7.53715277e-01 7.24244058e-01
-6.82196915e-01 -1.08850367e-01 -7.83404708e-01 8.15300524e-01
-2.03152388e-01 1.42929733e+00 -4.36929762e-01 -7.56359339e-01
2.40591109e-01 2.92008638e-01 -2.46704534e-01 -8.45071852e-01
-1.01991379e+00 6.28325418e-02 3.87053847e-01 -7.71461725e-01
1.43144308e-02 -8.63481760e-01 -1.01043797e+00 -7.96169519e-01
-2.06027463e-01 2.28928000e-01 5.12143075e-01 8.73542130e-01
6.78396940e-01 -1.39055047e-02 2.30507493e-01 -2.54204720e-01
-1.03156078e+00 -1.30026519e+00 -1.87186331e-01 3.66705537e-01
2.81771421e-01 -3.31073880e-01 -3.63533735e-01 -4.60664093e-01] | [9.943741798400879, 7.889563083648682] |
b5983da4-1266-4e11-ba0f-5c337ddadc71 | learning-to-re-weight-examples-with-optimal | 2208.02951 | null | https://arxiv.org/abs/2208.02951v1 | https://arxiv.org/pdf/2208.02951v1.pdf | Learning to Re-weight Examples with Optimal Transport for Imbalanced Classification | Imbalanced data pose challenges for deep learning based classification models. One of the most widely-used approaches for tackling imbalanced data is re-weighting, where training samples are associated with different weights in the loss function. Most of existing re-weighting approaches treat the example weights as the learnable parameter and optimize the weights on the meta set, entailing expensive bilevel optimization. In this paper, we propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view. Specifically, we view the training set as an imbalanced distribution over its samples, which is transported by OT to a balanced distribution obtained from the meta set. The weights of the training samples are the probability mass of the imbalanced distribution and learned by minimizing the OT distance between the two distributions. Compared with existing methods, our proposed one disengages the dependence of the weight learning on the concerned classifier at each iteration. Experiments on image, text and point cloud datasets demonstrate that our proposed re-weighting method has excellent performance, achieving state-of-the-art results in many cases and providing a promising tool for addressing the imbalanced classification issue. | ['Hongyuan Zha', 'Mingyuan Zhou', 'He Zhao', 'Meixi Zheng', 'Zhuo Li', 'Dandan Guo'] | 2022-08-05 | null | null | null | null | ['imbalanced-classification'] | ['miscellaneous'] | [-1.00973636e-01 -2.08542094e-01 -3.91592801e-01 -5.98462939e-01
-7.05665350e-01 5.20333694e-03 2.35518292e-01 5.27062535e-01
-6.14287913e-01 5.24781942e-01 -1.61559820e-01 1.40524775e-01
-4.21365768e-01 -9.59860384e-01 -6.39607906e-01 -1.05438483e+00
1.41324759e-01 8.24885786e-01 -1.13669727e-02 -1.57747209e-01
4.47646528e-01 4.43939269e-01 -1.64113498e+00 3.14775735e-01
1.19382882e+00 1.33253026e+00 -1.84728146e-01 2.36245558e-01
-4.26918834e-01 4.05418038e-01 -9.11063790e-01 -5.49350798e-01
2.45889530e-01 -7.27951666e-03 -7.28510916e-01 4.93417773e-03
3.76024604e-01 9.53926295e-02 -1.55297732e-02 1.16349506e+00
5.49715102e-01 5.96111231e-02 9.28086758e-01 -1.56245804e+00
-4.15195405e-01 2.75745273e-01 -1.04201734e+00 2.38525510e-01
-3.06945533e-01 -1.28179848e-01 9.98273015e-01 -7.85803020e-01
2.08411738e-01 1.11463714e+00 6.96029544e-01 3.81087571e-01
-1.20206439e+00 -8.13080072e-01 2.61130214e-01 6.36959553e-01
-1.36157942e+00 -7.47041032e-02 8.82105052e-01 -6.89553022e-01
4.98941272e-01 6.48903474e-02 7.02311814e-01 5.15711844e-01
1.96805388e-01 9.00189042e-01 7.33064175e-01 -2.11640224e-01
2.80211359e-01 1.25221565e-01 2.89029360e-01 3.00839245e-01
3.90568882e-01 -3.48152012e-01 -5.08582652e-01 -1.00402191e-01
-2.64980365e-02 1.93129152e-01 -2.84343898e-01 -6.93186879e-01
-1.02268887e+00 7.70695150e-01 6.11446381e-01 1.66280389e-01
-4.09392267e-01 2.89206691e-02 7.42787719e-01 2.93787807e-01
1.14331889e+00 1.29647687e-01 -5.65795600e-01 1.04674779e-01
-7.04062819e-01 6.27156794e-01 3.91728073e-01 5.28056383e-01
7.85199106e-01 -3.49745393e-01 -2.89168715e-01 1.10241067e+00
4.56077814e-01 2.44973257e-01 5.33133090e-01 -3.52631032e-01
9.95290339e-01 9.71991420e-01 1.87874720e-01 -1.29690826e+00
-3.49981606e-01 -6.14046156e-01 -9.76325929e-01 3.68636429e-01
5.30281126e-01 1.34823248e-01 -7.14164793e-01 1.50004816e+00
7.37146139e-01 1.32244989e-01 -5.95947765e-02 8.72377217e-01
3.24472070e-01 6.32835150e-01 5.06308824e-02 -1.40885353e-01
1.01386619e+00 -8.71237159e-01 -5.98179162e-01 4.73572612e-02
5.13498247e-01 -5.91724575e-01 1.04545951e+00 7.29654849e-01
-1.02192116e+00 -3.90264422e-01 -1.17179537e+00 7.75173083e-02
-2.85607129e-01 2.98126284e-02 1.24986365e-01 3.24123144e-01
-5.07080793e-01 8.60956132e-01 -6.01961374e-01 8.02713707e-02
8.47035468e-01 3.29802096e-01 -1.39728174e-01 -1.53288111e-01
-9.98141050e-01 8.86558354e-01 5.10772884e-01 2.02548608e-01
-7.30574012e-01 -1.03363514e+00 -5.80949664e-01 4.08824384e-02
-8.43233168e-02 -4.58239049e-01 9.08278883e-01 -9.84467506e-01
-1.15856683e+00 9.44874883e-01 2.02950779e-02 -2.56460160e-01
8.34460855e-01 -1.96401566e-01 -1.58802986e-01 -1.02458514e-01
2.01155804e-02 3.10890406e-01 1.19328356e+00 -1.31867886e+00
-8.25186431e-01 -7.70765424e-01 -2.04747513e-01 3.12340468e-01
-7.29707122e-01 -3.86946201e-01 -7.49619380e-02 -5.23566663e-01
1.89681455e-01 -4.09896165e-01 6.76477700e-02 2.33904496e-01
-2.50218064e-01 -5.53101540e-01 9.02098417e-01 -3.96195203e-01
1.36190987e+00 -2.14635324e+00 5.15731215e-01 1.57196894e-01
5.83437145e-01 4.27255720e-01 -1.28780410e-01 1.98042318e-01
-2.36720860e-01 -4.29942086e-03 -5.05720913e-01 -4.55892682e-01
8.79014134e-02 -3.32759172e-02 -1.05961584e-01 9.21996832e-01
2.87962675e-01 3.88817817e-01 -9.76216137e-01 -3.51816267e-01
1.60854742e-01 6.21939361e-01 -5.15057504e-01 4.32535917e-01
-2.75647998e-01 2.93975055e-01 -2.81978250e-01 2.46761262e-01
1.28140950e+00 1.08876459e-01 -1.42805502e-01 -4.55098659e-01
7.37830922e-02 8.35194215e-02 -1.18668854e+00 1.33247471e+00
-5.21466970e-01 2.76426315e-01 -1.55752912e-01 -1.47590208e+00
1.12347913e+00 -1.99943230e-01 5.86425126e-01 -7.31655777e-01
1.20118707e-01 4.67473865e-01 -3.01684234e-02 -8.64971280e-01
3.36342007e-01 -5.68623185e-01 7.15736002e-02 3.44724208e-01
5.86082181e-03 -9.42667350e-02 1.80461720e-01 -3.52351755e-01
5.22110164e-01 -7.16537237e-02 -3.41472821e-03 -3.92048359e-01
7.13323057e-01 -2.05688640e-01 6.65046334e-01 2.08109021e-01
-1.54399425e-01 5.77618599e-01 6.91812098e-01 -7.40139246e-01
-1.17441535e+00 -7.76338756e-01 -4.55394030e-01 7.74473250e-01
2.65960783e-01 -6.61298186e-02 -7.97142148e-01 -9.51068997e-01
2.59732664e-01 5.04032910e-01 -7.06300676e-01 -4.22482997e-01
-5.54170310e-01 -1.21302736e+00 3.23527902e-01 2.48306766e-01
5.02237082e-01 -6.41034186e-01 -4.35504645e-01 1.60729095e-01
-3.85881275e-01 -4.53874707e-01 -3.99049431e-01 1.17905565e-01
-9.40031230e-01 -1.08388031e+00 -8.76607358e-01 -6.37174785e-01
7.82711565e-01 2.41923004e-01 1.10665011e+00 3.36862266e-01
-3.69209170e-01 -1.03807047e-01 -2.19946280e-01 -5.48353136e-01
-5.02456464e-02 3.45069587e-01 -9.38227400e-02 5.56183517e-01
4.63437974e-01 -3.76011103e-01 -7.22986877e-01 3.92313153e-01
-1.10788059e+00 -3.16004783e-01 1.02888472e-01 8.95226419e-01
8.06222796e-01 3.64407688e-01 7.54574895e-01 -7.18249381e-01
5.63520908e-01 -8.65728438e-01 -5.04291892e-01 1.22113764e-01
-6.58545315e-01 4.59174961e-02 7.51626074e-01 -4.28197116e-01
-8.75006258e-01 -5.03242254e-01 -1.88571423e-01 -4.04857606e-01
5.22031896e-02 2.46460319e-01 -4.25183535e-01 1.09110922e-01
4.47952271e-01 -5.78388572e-02 4.18010503e-02 -4.40362245e-01
1.62590235e-01 8.39789629e-01 -9.69654247e-02 -6.82408452e-01
6.21120691e-01 7.18295455e-01 -8.86702165e-03 -5.61888516e-01
-1.14772153e+00 -4.47703183e-01 -6.43284798e-01 -2.44885936e-01
6.84105337e-01 -4.57608670e-01 -7.80097783e-01 9.95477140e-01
-1.14461040e+00 -9.70028564e-02 -6.41354859e-01 3.94258231e-01
-4.20677632e-01 1.18446812e-01 -1.29497692e-01 -7.23829031e-01
-3.03398788e-01 -1.15232623e+00 1.22936082e+00 3.59076224e-02
8.71612504e-02 -1.16387761e+00 2.50268459e-01 3.91990751e-01
4.33287114e-01 3.95545483e-01 1.42028689e+00 -5.83519161e-01
-1.77457735e-01 -4.85317439e-01 -3.41697812e-01 6.64171755e-01
-3.05867870e-03 -3.73284966e-02 -9.61270154e-01 -3.74798417e-01
3.25183958e-01 -3.77048045e-01 8.31833959e-01 3.02189827e-01
1.73845780e+00 -2.89907128e-01 -2.81087250e-01 6.99166477e-01
1.63566780e+00 6.71408549e-02 6.61812305e-01 5.09380877e-01
8.27062309e-01 7.40471601e-01 7.08515942e-01 5.06275475e-01
5.38580060e-01 6.39091909e-01 7.73232937e-01 -8.37151930e-02
1.68387383e-01 5.11228144e-02 -1.51149675e-01 1.01604486e+00
2.65731454e-01 -2.54782259e-01 -8.39971304e-01 5.95323026e-01
-1.98118234e+00 -7.30127037e-01 -1.57948181e-01 2.51426148e+00
9.36466575e-01 1.79312259e-01 6.12802766e-02 6.48475945e-01
8.52331817e-01 3.21281642e-01 -7.34479964e-01 -2.81170666e-01
2.51622379e-01 2.45383568e-02 2.28264451e-01 6.22709930e-01
-1.08172715e+00 3.54125887e-01 5.60675859e+00 1.16321194e+00
-1.24907136e+00 1.58627942e-01 8.36983740e-01 -3.34226340e-01
-5.60234427e-01 -4.45554942e-01 -7.90529132e-01 8.14545512e-01
3.97967160e-01 -2.69355685e-01 1.46325618e-01 6.01705372e-01
6.94567636e-02 -8.40768144e-02 -1.04394209e+00 9.85075355e-01
1.37523696e-01 -9.98781919e-01 1.10921785e-01 3.23862657e-02
6.61629260e-01 -1.01474874e-01 2.44609430e-01 1.92406908e-01
-2.09107384e-01 -9.53029513e-01 8.87251854e-01 6.57147706e-01
5.56114972e-01 -1.07544470e+00 9.68637705e-01 3.37321609e-01
-8.57873559e-01 -1.72242835e-01 -6.41712785e-01 -6.49752747e-03
-1.90803245e-01 1.28805447e+00 -4.37865883e-01 4.72899050e-01
7.72901595e-01 9.27294314e-01 -2.14424148e-01 1.17926657e+00
2.24696100e-01 3.94831240e-01 -8.58004913e-02 8.36757123e-02
-7.01491088e-02 -3.65106642e-01 4.77304816e-01 9.13037658e-01
1.56706914e-01 -4.45296675e-01 1.16419569e-01 6.38653338e-01
-4.30575848e-01 2.41478324e-01 -3.54071498e-01 3.81176025e-01
2.71226346e-01 1.20713401e+00 -5.62636018e-01 -2.47126207e-01
5.47896698e-02 5.73541999e-01 7.11100280e-01 9.61226299e-02
-9.29845393e-01 -6.95187688e-01 9.37562466e-01 1.14172414e-01
1.66856915e-01 1.35021001e-01 -5.73479176e-01 -1.11537910e+00
3.72886568e-01 -7.65529931e-01 4.44718957e-01 -2.52565593e-01
-1.69917321e+00 5.56362450e-01 7.84267187e-02 -1.55627537e+00
4.22725707e-01 -5.67632854e-01 -4.75502163e-01 8.61557901e-01
-2.04432511e+00 -7.09137142e-01 -5.33764303e-01 2.84339517e-01
5.67798734e-01 -5.60512543e-02 4.18164164e-01 8.72155607e-01
-7.01713622e-01 5.87505162e-01 2.39527494e-01 -2.51593769e-01
6.13013506e-01 -1.14750493e+00 5.87538108e-02 3.42664570e-01
-3.93257886e-01 1.62821710e-01 6.00112617e-01 -2.58764207e-01
-1.00652981e+00 -1.15519476e+00 8.06976318e-01 -1.86275184e-01
4.92967993e-01 -2.16676608e-01 -1.11682117e+00 1.53001979e-01
-5.53923473e-02 1.51772693e-01 7.24282742e-01 -1.71266705e-01
-4.01346356e-01 -7.89929569e-01 -1.58039236e+00 6.72205910e-02
7.66747952e-01 9.93625261e-04 -3.00038159e-01 4.15856510e-01
6.01471603e-01 -3.93685669e-01 -9.00084019e-01 5.68114519e-01
4.52879429e-01 -9.59938288e-01 8.03963840e-01 -7.70469725e-01
7.50199854e-01 -4.67685282e-01 -1.19193114e-01 -1.79702306e+00
-1.95672110e-01 2.36459419e-01 -8.09441134e-02 1.24929953e+00
1.26531780e-01 -6.92131579e-01 6.45466685e-01 1.57955319e-01
5.35569489e-02 -1.28249633e+00 -1.07288516e+00 -5.24800956e-01
3.89851511e-01 -4.26379561e-01 1.06538355e+00 9.01972532e-01
-3.88039857e-01 3.79558094e-02 -1.39259070e-01 1.68221090e-02
1.01385343e+00 -1.81924016e-03 5.55679083e-01 -1.44921827e+00
2.62399148e-02 -5.86558580e-01 -6.25361145e-01 -7.05663443e-01
2.69461274e-01 -1.06807160e+00 4.70408052e-02 -1.51276636e+00
1.70330092e-01 -8.62343132e-01 -3.63086164e-01 2.03809261e-01
-2.09040493e-01 2.32234076e-01 5.86211234e-02 2.77716219e-01
-5.46118617e-01 9.05880630e-01 1.28821826e+00 -6.52546346e-01
1.68731749e-01 1.30365074e-01 -7.22006381e-01 8.61529946e-01
8.04217935e-01 -8.59659374e-01 -4.20746118e-01 -8.98802876e-01
4.62029934e-01 -4.43362892e-01 1.01358876e-01 -8.01747024e-01
6.12843707e-02 -2.42107227e-01 3.27224404e-01 -5.86247027e-01
4.06846963e-02 -9.52247918e-01 -3.08358520e-01 3.81931663e-01
-4.29317355e-01 8.15519504e-03 3.01986909e-03 5.08431971e-01
-4.14206505e-01 -4.56793398e-01 1.28368258e+00 6.24421537e-02
-8.08978900e-02 5.38903534e-01 1.88687779e-02 4.29666996e-01
1.12465632e+00 -5.06142788e-02 -2.46455178e-01 4.48858924e-02
-4.69652951e-01 4.44716781e-01 2.71807373e-01 4.28369224e-01
6.87700927e-01 -1.51268208e+00 -7.99539745e-01 3.04743350e-01
2.53401041e-01 5.31649530e-01 3.27281445e-01 7.48914421e-01
-4.58905756e-01 -2.11658031e-01 -1.86933562e-01 -9.10290778e-01
-9.07701671e-01 3.68723929e-01 7.25685239e-01 -3.78981292e-01
-4.56259221e-01 7.75499463e-01 -3.41741964e-02 -7.76201129e-01
4.69348103e-01 -3.15358698e-01 -2.68615842e-01 6.59914672e-01
6.29337668e-01 8.10365498e-01 5.34130335e-01 -4.64426070e-01
-2.94961214e-01 8.26561153e-01 -3.31995308e-01 2.04644769e-01
1.57659769e+00 2.50937957e-02 -5.30524909e-01 6.58965945e-01
1.67357743e+00 -3.98513585e-01 -1.22119439e+00 -8.75193626e-02
-9.82078388e-02 -8.83428693e-01 -1.71943184e-03 -4.32865858e-01
-1.58191073e+00 1.10158587e+00 7.68465996e-01 3.29458684e-01
1.12069452e+00 -2.92433083e-01 8.71035159e-01 4.48323786e-02
2.87062973e-01 -1.18772101e+00 2.47050911e-01 4.15394276e-01
8.10140014e-01 -1.12149370e+00 -5.31872995e-02 -6.68394100e-03
-4.60634619e-01 1.04002964e+00 7.87357569e-01 -4.33654070e-01
8.72328222e-01 2.08771050e-01 9.02126953e-02 -2.46748492e-01
-4.43032384e-01 2.46231928e-01 1.54175758e-01 4.63702023e-01
2.62640119e-01 3.95709358e-04 -5.40353119e-01 3.42619330e-01
1.09058820e-01 -2.06134580e-02 2.90741235e-01 6.68470144e-01
-3.09316278e-01 -1.07693696e+00 -4.58800316e-01 6.31083131e-01
-3.57994705e-01 2.51870573e-01 1.90933287e-01 2.82176882e-01
6.17880225e-01 5.39201558e-01 4.89844203e-01 -3.14271718e-01
6.06855512e-01 -3.48867849e-02 4.27847415e-01 -4.57635731e-01
-5.08928895e-01 -4.00401115e-01 -4.70383972e-01 -3.34232301e-01
-3.73802900e-01 -4.71221983e-01 -1.02757621e+00 -2.18875527e-01
-5.04523098e-01 1.56445518e-01 8.47252071e-01 9.68438566e-01
2.91418374e-01 6.60194218e-01 1.06495357e+00 -1.12356889e+00
-8.21888685e-01 -7.30128706e-01 -5.92624128e-01 7.54517555e-01
6.59823239e-01 -8.06063294e-01 -5.39804101e-01 -2.04556778e-01] | [9.121203422546387, 3.8666651248931885] |
d9a54b1f-e363-4cd3-b6ef-aed6d020decd | audio-text-sentiment-analysis-using-deep | 1904.08138 | null | https://arxiv.org/abs/1904.08138v5 | https://arxiv.org/pdf/1904.08138v5.pdf | Complementary Fusion of Multi-Features and Multi-Modalities in Sentiment Analysis | Sentiment analysis, mostly based on text, has been rapidly developing in the last decade and has attracted widespread attention in both academia and industry. However, the information in the real world usually comes from multiple modalities, such as audio and text. Therefore, in this paper, based on audio and text, we consider the task of multimodal sentiment analysis and propose a novel fusion strategy including both multi-feature fusion and multi-modality fusion to improve the accuracy of audio-text sentiment analysis. We call it the DFF-ATMF (Deep Feature Fusion - Audio and Text Modality Fusion) model, which consists of two parallel branches, the audio modality based branch and the text modality based branch. Its core mechanisms are the fusion of multiple feature vectors and multiple modality attention. Experiments on the CMU-MOSI dataset and the recently released CMU-MOSEI dataset, both collected from YouTube for sentiment analysis, show the very competitive results of our DFF-ATMF model. Furthermore, by virtue of attention weight distribution heatmaps, we also demonstrate the deep features learned by using DFF-ATMF are complementary to each other and robust. Surprisingly, DFF-ATMF also achieves new state-of-the-art results on the IEMOCAP dataset, indicating that the proposed fusion strategy also has a good generalization ability for multimodal emotion recognition. | ['Ziqian Luo', 'Feiyang Chen', 'Dengfeng Ke', 'Yanyan Xu'] | 2019-04-17 | null | null | null | null | ['multimodal-emotion-recognition', 'multimodal-emotion-recognition'] | ['computer-vision', 'speech'] | [-1.29962703e-02 -4.94085550e-01 1.16759382e-01 -5.11688471e-01
-1.09031856e+00 -2.99459904e-01 5.01644671e-01 1.89610898e-01
-3.99956435e-01 4.61691022e-01 5.24020493e-01 1.17894344e-01
2.74764970e-02 -3.33043545e-01 -4.63865519e-01 -7.65453756e-01
3.66313279e-01 -1.35811970e-01 -3.57904620e-02 -5.14840305e-01
-3.91855696e-03 -1.48488209e-01 -1.80391359e+00 6.20299578e-01
7.47327924e-01 1.67773342e+00 -6.63307533e-02 4.66471672e-01
-3.14907640e-01 7.11772919e-01 -4.51728106e-01 -6.76400781e-01
-1.30481780e-01 -2.38011971e-01 -6.48593247e-01 -9.72817838e-02
1.88070178e-01 -8.16005245e-02 -2.68195689e-01 8.58684421e-01
8.61757159e-01 3.86847943e-01 5.56774378e-01 -1.52991462e+00
-4.23538089e-01 5.83253264e-01 -7.40785718e-01 1.53001333e-02
6.70286179e-01 -3.93798292e-01 1.13120174e+00 -1.16743171e+00
1.77182451e-01 1.22250974e+00 6.26054883e-01 2.49712244e-01
-6.26043916e-01 -8.57443154e-01 4.34068233e-01 5.07486165e-01
-1.31340063e+00 -3.89364839e-01 8.71264040e-01 -3.23137522e-01
8.78841043e-01 1.66105792e-01 4.93707538e-01 1.29031777e+00
2.09736973e-01 1.21711147e+00 8.93167496e-01 -3.29581141e-01
-6.70958534e-02 1.27281487e-01 7.61738792e-02 3.64937067e-01
-5.32316089e-01 -3.36330265e-01 -1.00842869e+00 -1.55004621e-01
1.73188552e-01 3.48925442e-01 -4.55648780e-01 1.23623528e-01
-1.29251873e+00 7.33939767e-01 2.92156428e-01 3.75993460e-01
-3.29516292e-01 5.40828779e-02 8.43689203e-01 4.02915925e-01
5.47088683e-01 -1.52027667e-01 -5.78131735e-01 -3.75578403e-01
-7.10036099e-01 6.71979934e-02 4.25889581e-01 6.57836616e-01
4.06850129e-01 1.03425711e-01 -3.17310281e-02 1.18385470e+00
5.37714124e-01 6.78232074e-01 9.31101859e-01 -4.50450391e-01
5.94521403e-01 5.36759973e-01 -1.36958003e-01 -1.22044647e+00
-6.03872776e-01 -9.37964767e-02 -9.31809127e-01 -2.08692387e-01
-6.65713549e-02 -4.10967082e-01 -6.23722196e-01 1.93869221e+00
2.76816189e-01 2.00513363e-01 1.59989998e-01 9.48587775e-01
1.27001333e+00 8.64855051e-01 5.55588193e-02 -1.24500416e-01
1.36933112e+00 -9.33314621e-01 -1.00071108e+00 1.63333237e-01
5.20837247e-01 -8.30652297e-01 9.38431799e-01 6.85269833e-01
-8.74923944e-01 -6.68270111e-01 -9.75764990e-01 -2.84509603e-02
-6.17549419e-01 2.18030795e-01 4.99374449e-01 5.77773094e-01
-7.58422792e-01 2.42052078e-01 -6.26284659e-01 -3.40037465e-01
2.04721272e-01 4.07299370e-01 -7.46233761e-01 1.45192817e-02
-1.43215644e+00 3.73199403e-01 3.11033189e-01 2.79672235e-01
-4.73755836e-01 -3.13918233e-01 -9.99129593e-01 2.76195318e-01
3.17625880e-01 -4.78171408e-01 1.17134607e+00 -1.25748539e+00
-1.64862716e+00 3.09481680e-01 -3.59677583e-01 -4.40691318e-03
5.96270338e-03 -4.23744142e-01 -9.19330120e-01 2.77464241e-01
-1.17981292e-01 6.91224277e-01 1.09823275e+00 -9.31693137e-01
-1.02050173e+00 -4.98993754e-01 -5.09210452e-02 2.84347773e-01
-1.07124174e+00 1.29889369e-01 -4.22314763e-01 -6.82825029e-01
-6.11588396e-02 -7.67954290e-01 3.27749550e-01 -3.76617253e-01
-3.35285008e-01 -3.79348159e-01 1.14022374e+00 -5.05459368e-01
1.53595388e+00 -2.48868179e+00 3.24128240e-01 7.41716474e-02
1.11216612e-01 3.97238731e-02 -2.84664571e-01 5.09974658e-01
-2.90047467e-01 6.66004792e-02 -3.92786339e-02 -7.80311942e-01
1.97174713e-01 -8.46733078e-02 -4.81442630e-01 2.15082705e-01
1.82050258e-01 7.90838957e-01 -5.78765273e-01 -3.46507758e-01
2.78454691e-01 7.19389439e-01 -3.29127550e-01 -2.58407984e-02
2.18207836e-01 3.39502782e-01 -3.91984969e-01 9.13173079e-01
5.36508441e-01 -8.18288475e-02 -1.47188857e-01 -5.50508857e-01
-6.35212287e-03 -1.71739414e-01 -1.12280452e+00 1.94558895e+00
-5.16149879e-01 5.51772535e-01 1.62289053e-01 -9.10862446e-01
7.95304358e-01 7.97595680e-01 6.25367880e-01 -7.15540409e-01
6.49548471e-01 1.61127657e-01 -2.41422087e-01 -5.49006522e-01
6.76312387e-01 -2.83865750e-01 -4.86287385e-01 3.60056430e-01
6.24043763e-01 6.81401566e-02 2.18783021e-01 1.53584331e-01
7.00913489e-01 -1.47315506e-02 3.17723192e-02 1.03875667e-01
8.88736606e-01 -4.77636456e-01 4.34445977e-01 2.83701271e-01
-2.79341191e-01 7.57533967e-01 3.66584390e-01 -3.46569624e-03
-4.51478839e-01 -5.86936414e-01 -1.46540314e-01 1.38811982e+00
2.47596323e-01 -8.46692026e-01 -4.46738034e-01 -8.50813270e-01
-1.01778917e-01 1.17601186e-01 -7.84500897e-01 -3.42501462e-01
-6.96490053e-03 -7.24789560e-01 4.53029692e-01 7.85997629e-01
4.27884042e-01 -9.07926559e-01 -2.29899406e-01 2.37894952e-01
-6.95473552e-01 -1.27091169e+00 -6.05882525e-01 2.31602177e-01
-4.16950464e-01 -6.97733939e-01 -8.62690151e-01 -6.85294271e-01
2.31627300e-02 3.95615518e-01 6.40900671e-01 -2.65301913e-01
1.45635217e-01 7.19127178e-01 -8.90515208e-01 -7.06306934e-01
1.69106618e-01 1.52127355e-01 -3.39289964e-03 7.28829324e-01
3.40897381e-01 -4.58596855e-01 -4.14320201e-01 4.19097394e-01
-1.09661198e+00 -2.52897382e-01 3.83884370e-01 9.43544269e-01
5.23199975e-01 2.54380614e-01 9.61395264e-01 -3.37402433e-01
6.23619318e-01 -7.26222098e-01 -6.51347823e-03 5.90446219e-02
1.24347035e-03 -4.18468505e-01 6.66787624e-01 -5.66035867e-01
-1.09380496e+00 -9.23127960e-03 -4.88420367e-01 -6.42118216e-01
-1.79270968e-01 9.53006387e-01 -4.30078268e-01 3.86644267e-02
1.10565215e-01 1.25665218e-01 -1.64807037e-01 -4.81392086e-01
1.35931522e-01 1.09345722e+00 5.71590662e-01 -3.73136401e-01
2.89654911e-01 4.48982716e-01 -3.60241354e-01 -8.93592179e-01
-6.97587371e-01 -6.24786556e-01 -1.91350967e-01 -4.02727753e-01
1.00802827e+00 -1.20459914e+00 -1.00917256e+00 8.74053419e-01
-8.99089158e-01 1.95968121e-01 5.30137271e-02 7.84924209e-01
-3.41496199e-01 3.96839201e-01 -6.79498136e-01 -9.07910049e-01
-4.37309712e-01 -1.29801750e+00 1.56518018e+00 2.37057015e-01
-1.11486144e-01 -9.97969449e-01 -3.34133804e-02 4.44652736e-01
3.49633664e-01 1.73270687e-01 7.82077491e-01 -8.33342075e-01
1.93782896e-01 -4.28983361e-01 -1.59512743e-01 5.15172303e-01
6.29307330e-02 2.42026038e-02 -1.35418475e+00 -2.49670222e-01
2.19604056e-02 -6.07238352e-01 1.00106716e+00 2.73250729e-01
1.12463784e+00 2.66534418e-01 1.42857432e-04 2.84764081e-01
1.21881235e+00 2.24622115e-01 5.25803149e-01 1.53800011e-01
6.89573944e-01 5.57425082e-01 6.65621340e-01 7.66927063e-01
6.12394869e-01 6.15009785e-01 6.26054406e-01 -1.05439425e-01
3.94400597e-01 5.22059835e-02 6.68044567e-01 1.25289464e+00
1.04249716e-01 -4.97646570e-01 -6.37128294e-01 4.65648532e-01
-2.10309339e+00 -8.17835152e-01 4.57170904e-02 2.00934148e+00
5.08589029e-01 1.55520719e-02 3.95475924e-01 6.55323327e-01
6.57515347e-01 8.07679594e-02 -2.26417854e-01 -4.04123396e-01
-3.51812541e-01 6.41785935e-02 -2.14579836e-01 8.24983716e-02
-1.47945046e+00 4.50966835e-01 5.35197067e+00 1.20701170e+00
-1.51594281e+00 2.67230272e-01 4.12140071e-01 -2.48755679e-01
-1.99843198e-01 -6.33551717e-01 -6.46530390e-01 6.36862040e-01
1.04579139e+00 9.76002961e-03 1.50112018e-01 4.79548395e-01
-7.81579614e-02 -1.97384004e-02 -7.96083152e-01 1.26757658e+00
2.52146214e-01 -7.79811502e-01 5.69058917e-02 -2.19398469e-01
4.88361359e-01 -2.44915988e-02 2.42386311e-01 6.55189574e-01
-3.24871868e-01 -8.12506795e-01 9.60447192e-01 4.37828779e-01
6.98790371e-01 -1.10353017e+00 1.20741427e+00 2.58635171e-02
-1.55851102e+00 -3.79443794e-01 1.11864731e-01 2.22078323e-01
3.31417322e-01 6.36452973e-01 8.44366103e-02 1.12033081e+00
1.07303894e+00 1.13389456e+00 -3.56146425e-01 7.86362171e-01
1.06748499e-01 5.12632608e-01 -3.66579443e-01 -9.09679849e-03
2.66704172e-01 1.13180526e-01 3.62907052e-01 1.27401328e+00
6.05288923e-01 -1.58967376e-01 1.91190243e-01 2.54047215e-01
-1.06864564e-01 4.43704844e-01 -3.09295475e-01 -2.35610798e-01
1.27702609e-01 1.62071013e+00 -4.25095677e-01 -2.77204812e-01
-7.96875477e-01 8.00282419e-01 -7.00972751e-02 3.51681650e-01
-1.01558447e+00 -7.15756953e-01 6.23184144e-01 -6.58837199e-01
5.33093393e-01 8.05580169e-02 4.85850722e-02 -1.38657045e+00
1.04912408e-01 -9.28775966e-01 4.93826032e-01 -9.21948612e-01
-1.39640439e+00 9.39505517e-01 -2.03408018e-01 -1.48170578e+00
-7.34299049e-02 -6.50088131e-01 -5.65860868e-01 7.02635527e-01
-1.56885481e+00 -1.20148933e+00 -4.09787297e-01 1.13090384e+00
4.79415894e-01 -1.80331796e-01 8.85961175e-01 7.86061347e-01
-7.62128949e-01 8.78707409e-01 2.16826484e-01 -8.12552348e-02
9.11886752e-01 -1.00627339e+00 -3.01108748e-01 4.49619889e-01
7.92590007e-02 3.13617885e-01 2.60906935e-01 -2.18538165e-01
-1.48348391e+00 -9.14074600e-01 6.36663079e-01 -1.36099473e-01
8.18680465e-01 -3.53271425e-01 -8.40289593e-01 4.04144883e-01
3.93122345e-01 -2.58851826e-01 1.07532048e+00 8.81638676e-02
-3.86452734e-01 -2.78676093e-01 -9.64457333e-01 2.71541476e-01
3.82030249e-01 -7.48007715e-01 -5.18979251e-01 1.06927417e-01
7.58430421e-01 -1.63635239e-01 -1.07284951e+00 6.74866080e-01
7.27075279e-01 -8.56702447e-01 6.01544142e-01 -3.67197543e-01
6.55696392e-01 -1.86264187e-01 -7.40893304e-01 -1.42807388e+00
-4.56881523e-02 -4.17814970e-01 -1.41723052e-01 1.57044327e+00
3.05274010e-01 -6.40440106e-01 2.80411005e-01 1.14518732e-01
-2.19289973e-01 -8.96466494e-01 -1.02759683e+00 -3.94843400e-01
-2.18038201e-01 -8.22774589e-01 6.18596911e-01 9.65288281e-01
4.84336019e-01 6.39145672e-01 -5.41849494e-01 -1.14455476e-01
3.30231152e-02 1.49933457e-01 5.25525630e-01 -1.27833307e+00
-2.16409236e-01 -6.08797610e-01 -4.78749096e-01 -9.25352216e-01
2.28918403e-01 -7.79293418e-01 -2.54223701e-02 -1.19888103e+00
1.49221137e-01 1.19485922e-01 -7.50800371e-01 5.69744706e-01
-2.44122669e-01 4.76767927e-01 3.75689119e-01 -5.24044000e-02
-8.71598721e-01 1.06306064e+00 9.77002442e-01 -1.71677232e-01
-5.49207367e-02 -2.13864729e-01 -8.46418917e-01 7.43793905e-01
4.00859088e-01 -2.41837814e-01 -2.26810485e-01 -2.86274523e-01
4.45338964e-01 1.81525260e-01 -3.55910906e-03 -8.89052868e-01
2.01172486e-01 3.01618636e-01 3.13066036e-01 -7.78196454e-01
9.17077243e-01 -1.06791103e+00 -2.60883659e-01 -1.38766333e-01
-1.25713751e-01 1.35120014e-02 4.89732176e-01 5.76283932e-01
-9.60103452e-01 6.61606044e-02 3.98327678e-01 4.24724817e-01
-7.69063413e-01 3.39793652e-01 -6.60394192e-01 -2.50370532e-01
7.07594573e-01 2.49236654e-02 -3.02259892e-01 -7.01181650e-01
-8.91678333e-01 4.68078375e-01 -1.59501806e-01 7.20884800e-01
6.91216528e-01 -1.72689748e+00 -5.74261367e-01 3.09562296e-01
3.58842224e-01 -3.73631060e-01 7.87387788e-01 1.35345149e+00
2.77027309e-01 3.57730627e-01 -3.99542488e-02 -6.40224457e-01
-1.31122077e+00 4.25090641e-01 4.85766046e-02 -8.93660784e-02
-5.37926741e-02 7.55758882e-01 4.06606555e-01 -5.07598996e-01
4.17167932e-01 -2.34529689e-01 -5.63427985e-01 6.05431616e-01
7.89036751e-01 2.62542903e-01 3.74048114e-01 -9.75421667e-01
-4.22979593e-01 8.20617378e-01 -4.18173075e-02 -2.46454358e-01
1.27373433e+00 -4.56661344e-01 2.58163959e-02 7.87820935e-01
1.45643544e+00 -4.06363346e-02 -6.05478704e-01 -4.09300655e-01
-4.38743711e-01 -2.78742135e-01 2.97231555e-01 -8.46657276e-01
-1.40526688e+00 1.22961402e+00 6.65158510e-01 4.00738984e-01
1.61783361e+00 -2.42772892e-01 1.15035141e+00 3.03834736e-01
1.20958120e-01 -1.04966140e+00 2.02424735e-01 5.93483388e-01
9.06157076e-01 -1.29607522e+00 -4.23030078e-01 -1.52568206e-01
-9.72580731e-01 1.16719365e+00 4.14581686e-01 2.09015816e-01
9.48490143e-01 1.91908389e-01 1.50425687e-01 9.54337884e-03
-8.34888220e-01 -1.82488695e-01 5.96431732e-01 2.71544337e-01
5.63566446e-01 -2.33328134e-01 -1.30709484e-01 1.33831203e+00
1.18747046e-02 -2.33255886e-02 3.02649915e-01 1.04476643e+00
-2.79878855e-01 -9.86202717e-01 -5.04403412e-01 4.13025737e-01
-7.59556830e-01 -7.84473419e-02 -2.62888938e-01 5.53796291e-01
3.68809956e-03 1.27947962e+00 -1.35464948e-02 -9.92222488e-01
4.50891018e-01 2.84068495e-01 2.40171939e-01 -2.09831595e-01
-9.49695110e-01 5.91937125e-01 -1.05820701e-01 -5.75901926e-01
-7.77173877e-01 -5.63191593e-01 -1.23963726e+00 -1.80535480e-01
-6.06429219e-01 2.14538321e-01 8.41196060e-01 1.02979052e+00
5.11565983e-01 7.51782656e-01 8.85810256e-01 -1.22438478e+00
-1.39194354e-01 -1.13333285e+00 -8.50052655e-01 4.50157881e-01
4.46758032e-01 -8.88382554e-01 -4.04964834e-01 -1.74795792e-01] | [13.231444358825684, 5.130100250244141] |
d96ca787-6393-43e3-ac7b-b1925b670e5b | material-classification-using-neural-networks | 1710.06854 | null | http://arxiv.org/abs/1710.06854v1 | http://arxiv.org/pdf/1710.06854v1.pdf | Material Classification using Neural Networks | The recognition and classification of the diversity of materials that exist
in the environment around us are a key visual competence that computer vision
systems focus on in recent years. Understanding the identification of materials
in distinct images involves a deep process that has made usage of the recent
progress in neural networks which has brought the potential to train
architectures to extract features for this challenging task. This project uses
state-of-the-art Convolutional Neural Network (CNN) techniques and Support
Vector Machine (SVM) classifiers in order to classify materials and analyze the
results. Building on various widely used material databases collected, a
selection of CNN architectures is evaluated to understand which is the best
approach to extract features in order to achieve outstanding results for the
task. The results gathered over four material datasets and nine CNNs outline
that the best overall performance of a CNN using a linear SVM can achieve up to
~92.5% mean average precision, while applying a new relevant direction in
computer vision, transfer learning. By limiting the amount of information
extracted from the layer before the last fully connected layer, transfer
learning aims at analyzing the contribution of shading information and
reflectance to identify which main characteristics decide the material category
the image belongs to. In addition to the main topic of my project, the
evaluation of the nine different CNN architectures, it is questioned if, by
using the transfer learning instead of extracting the information from the last
convolutional layer, the total accuracy of the system created improves. The
results of the comparison emphasize the fact that the accuracy and performance
of the system improve, especially in the datasets which consist of a large
number of images. | ['Anca Sticlaru'] | 2017-10-17 | null | null | null | null | ['material-classification'] | ['computer-vision'] | [ 3.14196587e-01 -2.63540089e-01 1.51648611e-01 -2.85923660e-01
-9.75955650e-02 -2.97341406e-01 6.17435336e-01 3.57099771e-02
-3.37213188e-01 4.88836974e-01 -2.28081524e-01 -2.01216966e-01
-3.66095543e-01 -1.01055467e+00 -5.74680090e-01 -9.73841250e-01
4.40710783e-02 2.17229530e-01 3.69902849e-01 -4.88229185e-01
6.34207428e-01 9.28363860e-01 -2.04898620e+00 7.60768473e-01
3.89745504e-01 1.43906009e+00 4.88383323e-01 5.98775685e-01
-3.66230667e-01 5.45830905e-01 -5.43012023e-01 -4.07174975e-02
5.25856435e-01 3.75471376e-02 -8.27935636e-01 9.06047001e-02
8.15858781e-01 -6.33911639e-02 -1.25990110e-03 7.72767484e-01
4.85474795e-01 -2.84726501e-01 7.80000389e-01 -8.34812045e-01
-5.91253459e-01 7.98776224e-02 -8.02315176e-02 2.85687238e-01
3.32826793e-01 1.22799098e-01 7.08275795e-01 -8.24729025e-01
3.75559479e-01 7.15954244e-01 8.84224057e-01 2.50914961e-01
-9.88245904e-01 -4.33509439e-01 -2.21034974e-01 3.19134593e-01
-1.13820517e+00 -2.54039429e-02 1.10171437e+00 -8.36494923e-01
1.14063072e+00 4.06647056e-01 8.22464168e-01 8.26969802e-01
1.48505464e-01 6.13957345e-01 1.56630814e+00 -7.81842470e-01
5.97300828e-02 6.93312645e-01 2.46025324e-01 7.03182817e-01
3.44126314e-01 7.06613958e-02 -3.75894845e-01 3.72668654e-01
5.01168489e-01 -2.26989135e-01 -1.32514343e-01 -4.34648842e-01
-8.93353522e-01 6.67434335e-01 7.68012106e-01 8.06569278e-01
-2.75222063e-01 -3.67756844e-01 3.65623116e-01 2.75785089e-01
3.76874417e-01 5.90067744e-01 -6.20775938e-01 2.01892152e-01
-9.35755491e-01 2.03402294e-03 9.75754917e-01 5.63575745e-01
9.08103943e-01 2.06368938e-01 1.39335051e-01 9.76552069e-01
1.60792902e-01 5.07110953e-01 4.90266293e-01 -4.34633195e-01
3.16974103e-01 1.09659088e+00 -2.32469529e-01 -1.14882672e+00
-4.81871307e-01 -4.49922979e-01 -5.55712640e-01 7.21872151e-01
6.98644519e-01 1.59479365e-01 -9.79159117e-01 8.58846545e-01
4.44308817e-02 -6.83528185e-01 -9.03922841e-02 6.91869199e-01
1.06264317e+00 4.69369829e-01 -3.02447021e-01 4.18662488e-01
1.14098334e+00 -7.01470733e-01 -1.31576374e-01 -1.37173131e-01
3.54015440e-01 -9.35102642e-01 8.86589229e-01 7.31569827e-01
-6.74911380e-01 -9.86059368e-01 -1.44689727e+00 1.62630513e-01
-1.10807157e+00 5.11729479e-01 6.57654464e-01 7.75469899e-01
-8.81365597e-01 8.16863716e-01 -4.43631679e-01 -4.70166951e-01
5.75186431e-01 7.29899228e-01 -4.49346513e-01 -1.53216973e-01
-8.07278156e-01 1.10258639e+00 5.17700553e-01 3.18166912e-01
-3.71514320e-01 -5.60817838e-01 -4.31834072e-01 -6.11806959e-02
-3.34133245e-02 -2.39634171e-01 4.46707428e-01 -1.65823793e+00
-1.36464953e+00 1.18905890e+00 3.47739607e-01 -1.86725691e-01
5.58429003e-01 3.44324711e-04 -3.58139694e-01 1.56455532e-01
-1.81303725e-01 5.60924649e-01 6.73786521e-01 -1.41972649e+00
-7.61985064e-01 -2.35307693e-01 -7.61531964e-02 -2.65437335e-01
-5.07503569e-01 1.41540468e-02 8.55126306e-02 -3.17851245e-01
1.81123018e-01 -9.55469251e-01 2.35373005e-01 -4.47961055e-02
-1.42968908e-01 -3.48650634e-01 9.19711411e-01 -7.22583950e-01
4.49738234e-01 -2.14915061e+00 -1.36400208e-01 2.60220885e-01
-5.27216941e-02 5.99735260e-01 1.36183605e-01 4.80673581e-01
-2.60063887e-01 -1.48305371e-01 -1.09976947e-01 3.27977896e-01
-2.08741248e-01 4.34241397e-03 7.06303418e-02 3.54254454e-01
4.51742977e-01 5.60640097e-01 -4.26808476e-01 -3.07284981e-01
6.16534650e-01 6.36720121e-01 5.31810932e-02 1.71289399e-01
2.04192363e-02 3.16891104e-01 -2.38085777e-01 6.33641481e-01
7.49562025e-01 -9.85707790e-02 -9.34386700e-02 -5.84981978e-01
-3.66376907e-01 9.45982262e-02 -1.08705723e+00 1.32451904e+00
-4.34461474e-01 1.35221088e+00 -1.46720141e-01 -1.33635223e+00
1.36200070e+00 1.09310851e-01 5.49189687e-01 -8.61676395e-01
3.64198506e-01 4.82085019e-01 2.85618067e-01 -8.20339262e-01
3.97094399e-01 2.15861097e-01 5.47914326e-01 7.49233440e-02
2.33581975e-01 -5.49455453e-03 1.19608864e-01 -4.89227116e-01
7.08861232e-01 2.71103770e-01 -6.15160242e-02 -5.59945107e-01
9.54421222e-01 2.08275259e-01 -9.07134265e-02 4.33831751e-01
-1.33201450e-01 6.24021769e-01 6.86222762e-02 -1.04521704e+00
-1.12343085e+00 -7.73615420e-01 -3.78786445e-01 9.97490108e-01
-1.51864812e-01 3.63170922e-01 -6.99484229e-01 -4.42435920e-01
1.31242415e-02 1.76525876e-01 -7.91766763e-01 -8.68580118e-03
-6.89082563e-01 -8.09498549e-01 8.49495530e-02 3.87094826e-01
7.90233254e-01 -1.49285448e+00 -8.28019261e-01 -7.23476782e-02
1.62230670e-01 -9.71733868e-01 7.75383353e-01 4.72080946e-01
-9.06652987e-01 -1.17513812e+00 -7.30464399e-01 -1.00967371e+00
6.57658458e-01 2.59570420e-01 1.18945849e+00 1.91631436e-01
-7.00264156e-01 3.66215914e-01 -4.16952491e-01 -8.50535631e-01
-3.39081883e-01 3.86372149e-01 -5.04088461e-01 8.30806792e-02
7.27538168e-01 -2.84725368e-01 -4.74506319e-01 5.99749312e-02
-6.13953412e-01 -1.04021244e-02 9.53538716e-01 5.76548398e-01
1.35468692e-01 4.42686751e-02 2.75888294e-01 -7.40560114e-01
2.75405943e-01 -2.07239076e-01 -4.06114370e-01 3.30065817e-01
-6.04446948e-01 -7.44418874e-02 5.76293766e-01 -1.92804292e-01
-8.57145071e-01 1.66753940e-02 -1.89683586e-01 1.59264654e-01
-6.38913393e-01 1.01434804e-01 -6.70541450e-02 -5.66479087e-01
8.37406397e-01 1.84882268e-01 5.29819205e-02 -2.97521383e-01
-9.98050794e-02 8.76148343e-01 2.81198114e-01 -4.44930971e-01
6.66595578e-01 4.84638602e-01 2.03451902e-01 -1.33409929e+00
-7.85028517e-01 -5.80891848e-01 -9.88729060e-01 -6.53354645e-01
9.29914832e-01 -5.37248135e-01 -6.27454042e-01 8.37167680e-01
-9.34651315e-01 -2.35338256e-01 -2.49062881e-01 4.00990129e-01
-4.10165995e-01 1.76673234e-02 -2.78746277e-01 -8.41705620e-01
-3.37608755e-01 -1.24058354e+00 6.59638047e-01 2.86863118e-01
-4.08114977e-02 -1.08253944e+00 -2.32381046e-01 6.19703948e-01
6.50227606e-01 2.96957582e-01 9.94955897e-01 -6.67827368e-01
-6.15943253e-01 -4.29853112e-01 -4.31370646e-01 8.54554296e-01
3.28176081e-01 2.20594570e-01 -1.40487671e+00 -2.07208782e-01
-5.33472863e-04 -2.34217197e-01 9.13454294e-01 2.62621105e-01
1.20460081e+00 2.29174942e-01 -6.15672879e-02 3.95411223e-01
1.80087256e+00 2.62545824e-01 8.46147954e-01 9.41990256e-01
6.91711128e-01 1.08062673e+00 2.94654936e-01 -1.35049790e-01
-2.47500781e-02 4.85889763e-01 6.67372406e-01 -3.29914242e-01
-5.18570662e-01 3.46188843e-01 1.38604581e-01 7.35362113e-01
-5.12445211e-01 1.91699654e-01 -9.29790258e-01 4.79460955e-01
-1.22902298e+00 -7.20673501e-01 -4.28912193e-01 2.22406745e+00
3.32810879e-01 4.20093387e-01 1.06604561e-01 8.28221202e-01
4.69936311e-01 -1.33355424e-01 -1.59011230e-01 -7.16502488e-01
-2.60719746e-01 6.10235989e-01 7.39187777e-01 4.58933637e-02
-1.15511584e+00 5.87979674e-01 6.69700289e+00 5.88970721e-01
-1.69820666e+00 -4.51428384e-01 4.43939507e-01 2.50002801e-01
2.56360710e-01 -4.77172673e-01 -6.71519876e-01 4.94557828e-01
8.96561801e-01 6.27265275e-01 3.89737397e-01 8.32321465e-01
-1.64265558e-01 -4.58490193e-01 -1.04287088e+00 7.82341897e-01
4.86054391e-01 -1.27884758e+00 -1.05491564e-01 1.49677573e-02
7.00781763e-01 1.50376141e-01 1.91355094e-01 -5.14534526e-02
-1.63999319e-01 -1.09408569e+00 6.41665757e-01 6.12125635e-01
2.09403649e-01 -4.93099540e-01 1.05606568e+00 8.08329880e-02
-8.67001593e-01 -3.31399858e-01 -4.58634973e-01 -3.05184722e-01
-5.33095717e-01 5.06207168e-01 -9.41034913e-01 7.06825435e-01
1.22376382e+00 4.97264624e-01 -9.84692156e-01 1.04695761e+00
-1.27873197e-01 4.43815261e-01 -1.39818594e-01 -4.47632700e-01
2.34293640e-01 -2.03121260e-01 1.25016421e-01 1.51170182e+00
6.07034415e-02 -5.35330057e-01 -4.99319434e-02 7.55843937e-01
3.38975638e-01 2.50306487e-01 -7.54042864e-01 2.02845991e-01
-9.74989012e-02 1.46872747e+00 -1.09275842e+00 -1.48138493e-01
-5.72902858e-01 5.67397058e-01 2.31628761e-01 -2.24779323e-02
-2.40264729e-01 -4.34533715e-01 1.51863948e-01 2.36797333e-01
5.81743002e-01 -2.39263371e-01 -6.69599771e-01 -4.26428884e-01
2.54819900e-01 -6.73552632e-01 1.20712500e-02 -1.11630177e+00
-1.44560373e+00 6.90066099e-01 -1.89837039e-01 -1.24557114e+00
2.13980466e-01 -1.48307168e+00 -4.69138145e-01 1.03446436e+00
-1.50073576e+00 -1.42660701e+00 -7.16594040e-01 2.66345143e-01
4.30501759e-01 -4.30199534e-01 8.05768251e-01 2.53419042e-01
-2.20537260e-01 1.73358127e-01 9.13231447e-02 4.65352833e-01
5.54485977e-01 -1.31611145e+00 -2.09988847e-01 4.43999380e-01
1.63713694e-01 1.39426455e-01 5.95325828e-01 -1.41719535e-01
-1.06910610e+00 -6.37140810e-01 6.64264262e-01 -3.82352442e-01
4.78081137e-01 -3.11241686e-01 -9.38447416e-01 1.53647915e-01
3.38283986e-01 -9.40506980e-02 7.71459162e-01 9.90731716e-02
-3.82106990e-01 -4.87342924e-01 -1.16646445e+00 4.16339487e-02
4.14619118e-01 -4.99703228e-01 -7.62497663e-01 2.69104302e-01
1.25212386e-01 -1.28614068e-01 -8.78202319e-01 3.24691951e-01
8.13282669e-01 -1.46489501e+00 1.13616347e+00 -4.04733777e-01
7.81112194e-01 -9.96800959e-02 -2.95342952e-01 -1.10147011e+00
-2.49556288e-01 3.60911369e-01 3.83735329e-01 1.20846057e+00
5.24857581e-01 -7.62527287e-01 1.18253756e+00 3.91749859e-01
-1.05898216e-01 -7.90395617e-01 -6.25888348e-01 -7.37100124e-01
2.58090913e-01 -2.46065408e-01 2.82137662e-01 7.77895272e-01
-6.89825058e-01 1.07019030e-01 5.94612509e-02 -7.31448904e-02
4.62475896e-01 2.85817653e-01 7.75224030e-01 -1.69823158e+00
4.57971022e-02 -6.35810494e-01 -8.05150449e-01 -3.57399672e-01
-3.85654229e-03 -8.59946251e-01 -4.12524827e-02 -1.71706259e+00
-4.51298952e-02 -6.15893662e-01 -4.75297809e-01 2.46939316e-01
2.21327305e-01 4.89121974e-01 2.71178097e-01 1.32547066e-01
-8.57589915e-02 -1.64218489e-02 1.22457266e+00 -4.63260800e-01
-1.70661882e-02 1.62049178e-02 -3.85821044e-01 7.74719119e-01
9.53485429e-01 -9.61094350e-02 -4.07881923e-02 -4.07914698e-01
2.96665758e-01 -7.23025918e-01 4.62437630e-01 -1.59097219e+00
1.95533689e-02 1.42071411e-01 9.72591817e-01 -7.22329378e-01
3.90007943e-01 -1.25372326e+00 4.54339869e-02 6.96101427e-01
-1.31705657e-01 -2.26146609e-01 2.63385147e-01 -1.11913994e-01
-2.42276862e-01 -6.05721116e-01 8.14772189e-01 -4.06135380e-01
-1.07577336e+00 -1.30381644e-01 -3.10430765e-01 -3.71951729e-01
1.01219070e+00 -8.23793948e-01 -2.69192576e-01 1.83344930e-01
-6.28821194e-01 -4.74771172e-01 3.24078292e-01 4.43211555e-01
3.66194993e-01 -1.09322345e+00 -5.55628538e-01 3.33120018e-01
2.79073179e-01 -1.92242652e-01 1.57064185e-01 6.03697479e-01
-9.13015127e-01 5.36305070e-01 -1.02053499e+00 -8.54125977e-01
-1.41964674e+00 4.55897272e-01 4.68835652e-01 -2.87763979e-02
-4.11920190e-01 6.99909151e-01 -2.86905140e-01 -3.08236092e-01
2.88432464e-03 -1.72661692e-01 -6.47820175e-01 1.04239911e-01
2.31129616e-01 5.77578306e-01 6.56944871e-01 -6.72660291e-01
-9.63856876e-02 8.70742798e-01 1.47731826e-01 4.16711241e-01
1.76882184e+00 3.15821499e-01 -3.87340724e-01 7.00105727e-01
1.30069709e+00 -5.49105555e-02 -1.04396987e+00 -1.16081666e-02
1.62747115e-01 -4.76206154e-01 7.49105141e-02 -1.05553925e+00
-1.22771549e+00 1.18478930e+00 1.06758845e+00 6.49937332e-01
1.08219266e+00 -3.73327762e-01 2.72433698e-01 4.06362504e-01
3.70807171e-01 -1.32346666e+00 5.44555709e-02 3.67058545e-01
8.67766559e-01 -1.52853918e+00 2.43567839e-01 -6.16475821e-01
-1.22019589e-01 1.72495878e+00 6.58343732e-01 -4.48177576e-01
7.54040480e-01 1.77539632e-01 2.16597155e-01 -4.02449816e-01
-6.96537048e-02 -2.95389503e-01 5.70290565e-01 9.21230674e-01
5.55006266e-01 1.24450445e-01 -7.99495876e-02 5.41067906e-02
-4.00163352e-01 -8.75953957e-02 3.45466852e-01 9.16970730e-01
-7.66373396e-01 -1.08399355e+00 -5.25558591e-01 6.29859567e-01
-4.23474818e-01 2.12053373e-01 -7.17387319e-01 1.07454169e+00
5.85601449e-01 9.45112586e-01 1.74100146e-01 -4.82597828e-01
3.37025225e-01 -1.09026190e-02 7.53727317e-01 -3.73225629e-01
-1.01940298e+00 -4.90260899e-01 3.28635834e-02 -2.58679211e-01
-9.09102619e-01 -4.16191190e-01 -7.24518597e-01 -2.25518867e-01
-3.44635308e-01 -1.33415520e-01 1.26514351e+00 1.09198153e+00
-3.11643004e-01 8.17187369e-01 7.56545186e-01 -1.12611449e+00
-1.83668554e-01 -1.03888714e+00 -3.67291361e-01 4.43534166e-01
1.38769746e-01 -7.39544213e-01 -2.96388835e-01 8.97876173e-02] | [10.131781578063965, -0.19076623022556305] |
d3058ca7-847c-48eb-a4c0-ce578aca06c8 | what-food-do-we-tweet-about-on-a-rainy-day | 2304.05041 | null | https://arxiv.org/abs/2304.05041v1 | https://arxiv.org/pdf/2304.05041v1.pdf | What Food Do We Tweet about on a Rainy Day? | Food choice is a complex phenomenon shaped by factors such as taste, ambience, culture or weather. In this paper, we explore food-related tweeting in different weather conditions. We inspect a Latvian food tweet dataset spanning the past decade in conjunction with a weather observation dataset consisting of average temperature, precipitation, and other phenomena. We find which weather conditions lead to specific food information sharing; automatically classify tweet sentiment and discuss how it changes depending on the weather. This research contributes to the growing area of large-scale social network data understanding of food consumers' choices and perceptions. | ['Matīss Rikters', 'Maija Kāle'] | 2023-04-11 | null | null | null | null | ['culture'] | ['speech'] | [-1.92576408e-01 -3.74427021e-01 -8.90714943e-01 -6.74121857e-01
4.50736731e-01 -7.26450920e-01 3.38155627e-01 1.29757988e+00
-2.93718517e-01 2.04492763e-01 9.68509555e-01 -2.07992330e-01
5.35717420e-02 -1.34453583e+00 -4.91697639e-01 -4.38084990e-01
-3.34227920e-01 -2.04706609e-01 -1.62978649e-01 -7.60568857e-01
2.56296664e-01 -5.13642848e-01 -1.25896060e+00 3.06318775e-02
7.25150526e-01 7.11861432e-01 6.81089535e-02 4.47453171e-01
-2.89237797e-01 4.73843247e-01 -1.93017758e-02 -1.45600423e-01
6.53392896e-02 -7.24389672e-01 -3.99794787e-01 1.54838741e-01
3.09707001e-02 1.57590955e-01 4.27168041e-01 1.20961452e+00
2.38522232e-01 3.56909260e-02 3.93312484e-01 -9.36379135e-01
-1.39072478e+00 1.34408176e+00 -5.23598969e-01 4.04685497e-01
5.91374457e-01 1.67153418e-01 9.68859017e-01 -3.17162164e-02
6.85098946e-01 1.10330749e+00 7.64813602e-01 -1.53696820e-01
-1.15559125e+00 -6.68832004e-01 5.38493574e-01 9.06375572e-02
-8.94593418e-01 -1.46133646e-01 8.82918656e-01 -6.68137610e-01
4.41497862e-01 2.12306634e-01 1.38044596e+00 1.04945123e+00
4.53225344e-01 2.87867427e-01 1.46877146e+00 -4.00725096e-01
5.20288587e-01 4.63464826e-01 5.61163008e-01 3.12053800e-01
4.32051033e-01 9.23716463e-03 -5.33006966e-01 -3.59536737e-01
3.18267159e-02 3.27869743e-01 1.75563935e-02 7.34345466e-02
-1.16535079e+00 1.54001343e+00 7.78219342e-01 3.69384080e-01
-8.02793384e-01 -4.68721509e-01 2.08162233e-01 8.97910953e-01
1.00544393e+00 5.54614127e-01 -8.10802877e-01 2.59595335e-01
-5.08980870e-01 2.58229584e-01 1.26037037e+00 3.09869498e-01
9.14806128e-01 -3.30296904e-01 4.64862049e-01 7.38240838e-01
7.52235234e-01 1.07465494e+00 6.83671832e-01 -2.41616055e-01
-4.60014194e-02 4.02204245e-01 2.80190408e-01 -1.82823026e+00
-9.43627357e-01 -1.09969504e-01 -4.08751875e-01 -2.81546950e-01
4.93349463e-01 -7.47555435e-01 -4.53865319e-01 1.70795715e+00
8.07103097e-01 -4.01863605e-01 -9.96269733e-02 8.78395081e-01
1.07009482e+00 4.41537231e-01 6.40211403e-01 -1.70286074e-01
1.72096097e+00 -4.60343421e-01 -9.40141439e-01 -2.32867464e-01
5.47249675e-01 -9.31061745e-01 7.36659765e-01 2.65427709e-01
-6.37499213e-01 -4.11295563e-01 -8.10989380e-01 4.61789906e-01
-1.00925171e+00 -5.98874748e-01 8.64132702e-01 8.24029803e-01
-7.62174368e-01 4.12086993e-01 -6.00901306e-01 -1.09335053e+00
-5.68219759e-02 -5.76146021e-02 -3.78851108e-02 1.62822142e-01
-1.50327682e+00 8.18529069e-01 2.53070801e-01 -2.97661662e-01
1.17326342e-01 -5.73051572e-01 -1.15438020e+00 -5.51231146e-01
4.34405804e-02 -6.41967356e-01 1.06986463e+00 -1.36808801e+00
-1.59704709e+00 6.45867586e-01 4.22481708e-02 -3.28101844e-01
-1.52184293e-01 1.23571992e-01 -1.21914625e+00 -3.01457733e-01
3.46972078e-01 4.91362751e-01 2.69502580e-01 -7.16718554e-01
-5.05522609e-01 -5.84514618e-01 -4.26343009e-02 1.65342763e-01
-4.42781001e-01 1.82222664e-01 6.11695051e-01 -5.29633641e-01
-1.78381056e-01 -1.16417885e+00 -5.30105531e-01 -2.32875481e-01
-1.89083397e-01 -4.08841431e-01 1.10035188e-01 -3.09549540e-01
1.15532172e+00 -2.36760926e+00 -3.81828487e-01 3.53546053e-01
-1.90905005e-01 -2.14189947e-01 -1.31229565e-01 8.31561923e-01
2.24560156e-01 4.08693403e-01 4.93220121e-01 4.08179462e-01
1.99400797e-01 1.86078608e-01 1.08645134e-01 8.21757495e-01
-6.13647848e-02 7.08978057e-01 -1.38503921e+00 -2.05240414e-01
3.94636840e-01 3.25871825e-01 -5.98830938e-01 -3.18551481e-01
-5.52815616e-01 4.04751271e-01 -7.23746419e-01 4.78129596e-01
7.31918454e-01 -4.26416397e-01 3.51787001e-01 -1.16749406e-01
-8.19968045e-01 5.67174673e-01 -8.84636045e-01 1.43609881e+00
-7.82364234e-02 2.53993958e-01 1.10966489e-01 -5.68736076e-01
1.14715111e+00 2.04928629e-02 5.04807353e-01 -9.89552200e-01
5.89060426e-01 -1.50093108e-01 7.97556490e-02 -8.37161660e-01
4.56433564e-01 -3.19105126e-02 -3.83272439e-01 5.86850047e-01
-5.38688004e-01 1.94077909e-01 3.73873651e-01 -2.39305705e-01
4.33673978e-01 -2.54729539e-01 8.56271625e-01 -1.05696559e+00
-1.83892660e-02 4.92164165e-01 4.17342752e-01 2.66635925e-01
-6.30336046e-01 -3.15747708e-01 -1.18712611e-01 -7.62769341e-01
-5.00828207e-01 -6.38640344e-01 -4.02246952e-01 1.55231166e+00
3.38306606e-01 -3.55075449e-01 -3.17537561e-02 -2.66177375e-02
3.29443365e-01 6.32563651e-01 -1.15478849e+00 2.68438309e-01
-2.02871785e-01 -1.26942194e+00 -3.71045172e-01 -3.44853885e-02
5.99735379e-01 -9.98807251e-01 -5.23082137e-01 3.76820505e-01
-3.31156731e-01 -6.23661816e-01 -6.86007738e-01 1.09671809e-01
-4.61812973e-01 -1.02420795e+00 -2.97284633e-01 -8.41825366e-01
2.24672660e-01 5.32207668e-01 1.56141996e+00 1.22998077e-02
1.79340869e-01 -1.46200601e-02 -9.32130694e-01 -9.81254697e-01
-2.76583374e-01 2.79055059e-01 9.37392190e-02 -9.28899422e-02
1.10003018e+00 -5.70050061e-01 -1.04504085e+00 2.43645981e-01
-9.02503312e-01 -2.47756734e-01 -2.19275907e-01 -4.09027329e-03
2.08387852e-01 2.22981989e-01 6.63035214e-01 -1.02323985e+00
5.62207580e-01 -1.71085107e+00 -1.95540428e-01 -2.15150550e-01
-6.79030478e-01 -5.83844483e-01 2.36483008e-01 -6.42429709e-01
-6.76441550e-01 5.74907325e-02 1.27022460e-01 1.12379766e+00
-4.83280003e-01 9.78977263e-01 5.58525205e-01 2.93158412e-01
8.27899516e-01 -5.50466895e-01 -1.60927817e-01 -2.94761151e-01
4.89763826e-01 6.05493307e-01 -2.00497881e-01 4.14989628e-02
4.01297867e-01 5.45935690e-01 -6.32941067e-01 -7.82932401e-01
-1.12875724e+00 -4.91537273e-01 -3.94814581e-01 -2.01459900e-01
1.18056941e+00 -1.27788985e+00 -7.13875175e-01 3.86171401e-01
-4.00375247e-01 -5.11399746e-01 9.18316692e-02 9.51389372e-01
3.30134183e-01 -1.91787899e-01 -6.69828773e-01 -4.79830056e-01
-2.95743674e-01 -5.39171219e-01 2.13596687e-01 4.70278054e-01
-1.00291371e+00 -1.55291343e+00 6.72232807e-01 -2.37793215e-02
7.85553217e-01 6.53135717e-01 5.02821386e-01 -3.48272443e-01
2.55362123e-01 4.06145155e-01 -6.19139289e-03 -5.03210247e-01
7.31914103e-01 1.37107119e-01 -3.77074182e-01 -1.79938570e-01
-9.09562409e-02 -3.10512394e-01 7.48064220e-01 8.63495827e-01
1.38864756e-01 -4.65507776e-01 -2.93884784e-01 8.23571831e-02
1.58006334e+00 3.13828528e-01 -1.20378993e-01 5.54919124e-01
2.87057310e-01 7.68854380e-01 3.80605370e-01 6.75594091e-01
1.16414487e+00 2.54500836e-01 2.37435982e-01 -3.36418301e-01
1.86676458e-01 -3.13315988e-01 5.84205925e-01 9.39679205e-01
5.07538915e-01 -3.01978886e-01 -5.77616632e-01 8.51902246e-01
-1.66710997e+00 -9.84839022e-01 -5.74426651e-01 1.53563547e+00
9.15268302e-01 -3.53833139e-01 6.85240090e-01 1.30403740e-02
5.27786016e-01 3.68630439e-01 -4.64795947e-01 -7.49439240e-01
-2.02484414e-01 -5.42686768e-02 9.36210454e-01 5.50332665e-01
-1.08976281e+00 5.28703570e-01 7.34238434e+00 -2.44144425e-01
-1.24769640e+00 -1.48195345e-02 6.65103674e-01 8.04135352e-02
-8.48526955e-01 -5.30093431e-01 -4.79781508e-01 4.95818079e-01
1.08557129e+00 -1.86646461e-01 5.43664992e-01 3.37681711e-01
6.62968874e-01 -5.11220574e-01 -6.89061224e-01 2.52150238e-01
1.07925668e-01 -8.25796247e-01 -6.45205855e-01 -2.36670952e-02
8.56975138e-01 4.85320300e-01 1.12393357e-01 -1.08848549e-02
1.19850373e+00 -5.48761010e-01 7.08940327e-01 1.07488744e-01
7.25398213e-02 -3.75723064e-01 2.37560719e-01 1.36914507e-01
-1.26163852e+00 -9.88945663e-02 -1.18493006e-01 -9.31972921e-01
3.23156863e-01 1.35007453e+00 -5.29231727e-01 1.21187821e-01
1.15287471e+00 1.46861267e+00 -3.89638394e-01 5.81733942e-01
-3.96209098e-02 1.02811182e+00 -5.23376048e-01 -5.54690123e-01
2.48747826e-01 -4.12907481e-01 9.64879170e-02 1.18015563e+00
2.17921764e-01 3.76259744e-01 6.25193775e-01 5.18547654e-01
2.44333893e-01 7.01975226e-01 -6.14482284e-01 -2.51780897e-01
3.02147478e-01 1.19921267e+00 -1.07116878e+00 -1.61956474e-01
-5.74436188e-01 5.81545651e-01 3.37182917e-02 9.37412828e-02
-4.33960289e-01 3.41697723e-01 1.00225031e+00 -6.26477897e-02
3.75232220e-01 -1.35436788e-01 -3.86369646e-01 -1.14345205e+00
-5.04110098e-01 -4.59001124e-01 5.10116875e-01 -3.84363502e-01
-1.96158111e+00 1.10861301e-01 -2.67474353e-01 -6.53599799e-01
1.06082007e-01 -1.01256199e-01 -5.93462229e-01 6.53165460e-01
-2.02390528e+00 -6.14571750e-01 -1.01262309e-01 6.20894432e-01
3.02090526e-01 5.12789428e-01 1.29081762e+00 3.99145663e-01
-4.05563742e-01 -1.84759572e-02 1.53352041e-02 1.57926276e-01
8.70401621e-01 -9.07236099e-01 4.65194821e-01 -4.38271351e-02
-1.45459637e-01 4.71263200e-01 1.04626226e+00 -9.14223313e-01
-1.25582814e+00 -1.15682185e+00 1.45975256e+00 -3.40109050e-01
1.15967584e+00 -1.40223846e-01 -2.24338755e-01 5.38306952e-01
7.61539340e-01 -4.88097608e-01 1.74391866e+00 6.91149414e-01
-5.18585861e-01 1.19164221e-01 -1.51832795e+00 4.07256782e-01
7.51249433e-01 -1.20960578e-01 -3.42596054e-01 5.91070533e-01
8.74940634e-01 7.95158222e-02 -1.44100058e+00 -1.99809015e-01
8.33674669e-01 -7.36079395e-01 6.76550925e-01 -3.25729758e-01
4.20903206e-01 -4.53200005e-02 -3.38714659e-01 -2.01851916e+00
-9.51769531e-01 -3.19332868e-01 8.21954608e-01 1.11023104e+00
5.88563979e-01 -9.31701720e-01 3.29381406e-01 6.77201688e-01
3.67684245e-01 -1.45602569e-01 -6.60601929e-02 -3.22215892e-02
1.50965184e-01 3.83148417e-02 1.27932107e+00 1.72053421e+00
5.26765585e-01 3.47495556e-01 -1.69966832e-01 5.31736005e-04
3.77134949e-01 5.63165784e-01 3.90989751e-01 -1.39101648e+00
-1.20140523e-01 -4.48923379e-01 1.52859256e-01 -4.53184307e-01
-2.55566329e-01 -7.96425223e-01 -2.84130722e-01 -1.24869359e+00
1.26995787e-01 -5.56499839e-01 -4.27262247e-01 3.33212942e-01
-3.25096957e-02 5.01372278e-01 2.75680512e-01 -1.05829164e-01
-5.73486865e-01 -2.53416747e-01 1.31597888e+00 -1.54405057e-01
-7.34501779e-01 -3.03976327e-01 -1.33984435e+00 5.36497712e-01
1.28004885e+00 -5.47576308e-01 -3.22015196e-01 -4.20368582e-01
1.15334129e+00 -1.76878229e-01 -1.93503574e-01 -2.82774240e-01
-2.86447406e-01 -8.12762856e-01 3.97523195e-01 -2.81907022e-01
-3.69132191e-01 -8.91581476e-01 5.88674128e-01 7.38464117e-01
-8.60123336e-01 4.00662035e-01 -6.60630176e-03 5.80787420e-01
6.79837167e-02 2.88383424e-01 3.69357616e-01 -3.93090457e-01
-3.81710589e-01 1.52044490e-01 -7.96555400e-01 -3.36366922e-01
7.97387302e-01 1.03111111e-01 -4.97081578e-01 -2.43821070e-01
-8.54308546e-01 4.82619315e-01 6.14661634e-01 7.47855604e-01
-3.26380610e-01 -1.46128333e+00 -1.08546293e+00 2.74362683e-01
2.24266469e-01 -7.60664701e-01 1.37329742e-01 8.16967428e-01
-2.45661736e-02 1.99393127e-02 -2.14227453e-01 -2.27069214e-01
-9.78730738e-01 6.57621741e-01 -1.57402545e-01 7.14453906e-02
-1.66651800e-01 4.99442220e-01 -3.50788236e-01 -5.85806608e-01
-4.39297736e-01 -8.28443289e-01 -8.94579589e-01 6.82028115e-01
8.26642871e-01 2.77073860e-01 -3.41727406e-01 -7.55861521e-01
-2.74527550e-01 6.73389077e-01 3.19235027e-01 3.61612380e-01
1.50624609e+00 -7.55876899e-01 -1.07305795e-01 1.00932539e+00
1.19109941e+00 -1.31502658e-01 -5.67605853e-01 -4.27497357e-01
-2.16463968e-01 -3.76303315e-01 2.18345642e-01 -1.04426742e+00
-1.25876641e+00 -2.21131612e-02 8.10150146e-01 1.16829276e+00
9.69759643e-01 -1.05992518e-02 1.12798345e+00 -6.55234903e-02
1.51260942e-01 -1.03243053e+00 -3.63718718e-01 3.00733596e-01
3.34200412e-01 -1.72991896e+00 2.44911816e-02 -4.14430827e-01
-5.15491784e-01 7.89634168e-01 -1.37473285e-01 -3.93190235e-01
1.74045026e+00 6.68315589e-02 6.44011676e-01 -3.77938002e-01
-4.82110411e-01 -3.59355986e-01 -4.76753637e-02 5.95128179e-01
9.06527460e-01 8.84901702e-01 -8.26475799e-01 3.32431108e-01
-8.00295532e-01 3.31975162e-01 3.91671062e-01 7.44019449e-01
-6.28520072e-01 -1.09843683e+00 -3.03903580e-01 4.36137766e-01
-5.02039194e-01 -2.57489905e-02 -3.52981895e-01 2.91435421e-01
5.53427637e-01 1.83046031e+00 2.50660211e-01 -3.03243816e-01
1.27713025e-01 -1.55803546e-01 1.06285401e-01 -4.85866606e-01
-1.22997105e+00 -1.84910223e-02 4.66418207e-01 -3.22750598e-01
-1.42231381e+00 -1.21625209e+00 -1.13652921e+00 -9.94684994e-01
-2.47098997e-01 1.75713256e-01 9.02326941e-01 7.98375726e-01
3.76766086e-01 7.92052299e-02 8.49843085e-01 -6.60426080e-01
1.33814335e-01 -9.52771306e-01 -7.65703082e-01 7.47115970e-01
5.05875945e-01 -2.52975434e-01 -3.23186308e-01 2.87736416e-01] | [11.532064437866211, 4.517716407775879] |
287c55ed-8ada-4e6c-9d64-86453c834388 | snlp-at-textgraphs-2022-shared-task | null | null | https://aclanthology.org/2022.textgraphs-1.13 | https://aclanthology.org/2022.textgraphs-1.13.pdf | SNLP at TextGraphs 2022 Shared Task: Unsupervised Natural Language Premise Selection in Mathematical Texts Using Sentence-MPNet | This paper describes our system for the submission to the TextGraphs 2022 shared task at COLING 2022: Natural Language Premise Selection (NLPS) from mathematical texts. The task of NLPS is about selecting mathematical statements called premises in a knowledge base written in natural language and mathematical formulae that are most likely to be used to prove a particular mathematical proof. We formulated this task as an unsupervised semantic similarity task by first obtaining contextualized embeddings of both the premises and mathematical proofs using sentence transformers. We then obtained the cosine similarity between the embeddings of premises and proofs and then selected premises with the highest cosine scores as the most probable. Our system improves over the baseline system that uses bag of words models based on term frequency inverse document frequency in terms of mean average precision (MAP) by about 23.5% (0.1516 versus 0.1228). | ['Ahmed Zahran', 'Evangelos Milios', 'Rosane Minghim', 'Haseeb Younis', 'Provia Kadusabe', 'Paul Trust'] | null | null | null | null | coling-textgraphs-2022-10 | ['mathematical-proofs'] | ['miscellaneous'] | [ 2.43914530e-01 1.91352323e-01 1.56760097e-01 -3.04000467e-01
-9.44250762e-01 -8.86023045e-01 1.16643119e+00 8.72691810e-01
-5.39017797e-01 8.29983830e-01 2.68826038e-01 -8.39305580e-01
-4.84190702e-01 -9.95227754e-01 -1.10788143e+00 -1.65139586e-01
-7.36193806e-02 3.52706492e-01 2.19689265e-01 -2.03634501e-01
9.41819489e-01 7.77093545e-02 -1.42692184e+00 3.74004364e-01
1.22890174e+00 5.52570283e-01 4.50162083e-01 1.01987112e+00
-3.32160592e-01 1.05659902e+00 -5.38865864e-01 -9.66841221e-01
-2.80575722e-01 -3.04866225e-01 -1.13217342e+00 -8.22516441e-01
7.42796957e-01 -1.60320580e-01 -6.65922016e-02 1.25207281e+00
4.00215574e-02 4.27930385e-01 1.05969143e+00 -1.32411277e+00
-1.00561678e+00 9.35841680e-01 1.71023220e-01 4.43073750e-01
9.59675133e-01 -4.34389740e-01 1.34671319e+00 -1.18506444e+00
7.98542440e-01 1.22568381e+00 5.16053736e-01 4.52533454e-01
-1.05313301e+00 -2.59557128e-01 -2.76092201e-01 8.24197948e-01
-1.24702930e+00 -5.29629946e-01 5.60338140e-01 -2.88268030e-01
1.67459953e+00 4.33446169e-01 6.72834888e-02 6.92470789e-01
3.28769505e-01 6.83085024e-01 6.45245492e-01 -8.69567811e-01
2.35575229e-01 5.53285420e-01 2.62436002e-01 8.39622080e-01
3.99993181e-01 -6.44583821e-01 -6.41817153e-01 -3.84156853e-01
1.18552506e-01 -6.28315747e-01 -1.14049308e-01 -4.48931911e-04
-1.64969158e+00 9.77842927e-01 -2.22754925e-02 3.99635315e-01
-3.07565629e-01 2.20475510e-01 6.08999312e-01 3.48892659e-01
2.39155233e-01 8.95050764e-01 -6.97037458e-01 -1.57697871e-01
-8.28230083e-01 7.92379081e-01 9.35048699e-01 1.08104622e+00
1.70221806e-01 -6.66825652e-01 -3.88168246e-02 6.74617708e-01
4.77584004e-01 8.45817626e-01 1.38998413e-02 -8.79885733e-01
7.36035764e-01 5.19740939e-01 3.28498006e-01 -1.40200126e+00
9.13850591e-02 1.74902245e-01 -2.27376014e-01 -5.13906360e-01
4.40378129e-01 8.34224299e-02 -1.65496141e-01 1.58750534e+00
1.45063445e-01 6.06004559e-02 6.27939224e-01 5.49063563e-01
1.17691386e+00 9.74769831e-01 4.52403054e-02 2.05126349e-02
1.40148854e+00 -7.71143973e-01 -7.06701279e-01 1.04004212e-01
9.27086234e-01 -1.05148911e+00 1.04244125e+00 3.07489127e-01
-1.06467628e+00 -2.27023378e-01 -1.09414887e+00 -4.00543749e-01
-7.38344371e-01 7.08306655e-02 5.18291056e-01 7.11151734e-02
-9.11244869e-01 6.73156083e-01 -3.22281599e-01 -2.75776356e-01
-1.37256151e-02 -1.44938841e-01 -2.47289672e-01 -4.45120275e-01
-1.65159011e+00 1.32157266e+00 4.15879041e-01 -3.72449845e-01
-6.03611231e-01 -1.21448433e+00 -1.36971295e+00 5.96976653e-02
1.64032727e-01 -7.60498762e-01 1.23932040e+00 -2.38145649e-01
-1.05576289e+00 9.66210663e-01 -4.87526476e-01 -7.62484610e-01
7.84781426e-02 -2.82599121e-01 -5.85181832e-01 3.92305672e-01
4.06898409e-01 4.43946749e-01 4.24981028e-01 -7.18859732e-01
-7.13636398e-01 1.18243985e-01 3.57265323e-01 4.94235307e-02
-1.51422814e-01 4.52355206e-01 -9.93259028e-02 -2.89160639e-01
-3.45118940e-02 -4.37228233e-01 2.57776827e-01 -2.24543080e-01
-3.40699941e-01 -1.16234374e+00 2.18209982e-01 -8.63254070e-01
1.13348138e+00 -1.79522896e+00 2.37856552e-01 1.46594688e-01
4.30377610e-02 7.88169354e-03 -4.26093340e-02 5.65618515e-01
5.65160662e-02 1.30050093e-01 1.62248284e-01 -2.07107142e-02
6.22756720e-01 -2.21881822e-01 -7.29866743e-01 1.25396878e-01
2.12393641e-01 7.31435120e-01 -1.49621725e+00 -7.70140648e-01
2.54995108e-01 1.44281983e-01 -2.35130623e-01 9.14734229e-02
-4.15539175e-01 -6.68403268e-01 -1.99167684e-01 1.83693960e-01
4.27091479e-01 -2.92649090e-01 2.35809594e-01 -9.40742493e-02
1.25512913e-01 1.14774585e+00 -9.18801486e-01 1.67606115e+00
-6.38503075e-01 8.39399993e-01 -4.62738991e-01 -9.95773673e-01
9.03828263e-01 3.22186649e-01 -8.52823332e-02 -3.48623991e-01
-1.58730730e-01 3.19106281e-01 -1.44624472e-01 -6.69003129e-01
5.04917264e-01 -3.06898713e-01 -2.46144220e-01 3.84440452e-01
2.28170946e-01 -8.14035237e-01 7.02222347e-01 1.04696178e+00
1.20670700e+00 2.62785945e-02 3.15715998e-01 -7.24897146e-01
9.43466246e-01 2.07197741e-01 1.09005302e-01 7.28651881e-01
1.00408003e-01 -2.78177205e-02 5.54740667e-01 -3.58886272e-01
-1.03479481e+00 -1.46553409e+00 -9.31184366e-02 7.20609128e-01
1.68672651e-02 -9.46394145e-01 -4.36696202e-01 -8.47600102e-01
3.35331708e-01 1.66768134e+00 -4.15730238e-01 -2.28000749e-02
-1.64290160e-01 2.84381002e-01 7.24042892e-01 2.13917568e-01
2.33669460e-01 -1.00349450e+00 -2.92869508e-01 -1.14060216e-01
-3.70202988e-01 -1.23751724e+00 -2.29080558e-01 2.09405702e-02
-4.92787242e-01 -1.28855073e+00 -4.21709478e-01 -1.10149777e+00
7.58818150e-01 -1.76169798e-01 1.21170318e+00 1.52251832e-02
-9.04048607e-02 3.17150742e-01 -2.96945542e-01 -6.25894070e-01
-7.25713909e-01 -5.10210574e-01 3.87407809e-01 -6.75166667e-01
8.31888139e-01 -1.38996974e-01 2.70337947e-02 -4.43781853e-01
-6.33462787e-01 4.56287600e-02 -1.52493622e-02 6.54018164e-01
1.18618868e-01 3.51085961e-01 4.79040921e-01 -5.70122778e-01
9.81514752e-01 -3.44818503e-01 -6.47092342e-01 9.30676401e-01
-4.89888340e-01 2.39358529e-01 1.01096261e+00 -1.07462913e-01
-9.84024405e-01 -5.13459027e-01 2.94013798e-01 -8.81546810e-02
-9.28905755e-02 6.99399114e-01 1.82622015e-01 4.78014886e-01
5.48862278e-01 5.20909786e-01 -9.39404294e-02 9.39761102e-02
6.91602290e-01 4.61186647e-01 6.41467392e-01 -1.00872028e+00
6.44474506e-01 -3.23691517e-01 -1.41867693e-03 -7.79579937e-01
-8.51213276e-01 -6.04369223e-01 -2.75732905e-01 4.39905152e-02
4.57273275e-01 -6.11403286e-01 -8.27743948e-01 -1.04606494e-01
-1.65571487e+00 1.34434123e-02 -2.16948912e-02 7.69924223e-01
-4.99819487e-01 8.64164352e-01 -5.08574367e-01 -8.98260891e-01
-5.91070712e-01 -5.56801438e-01 7.56322205e-01 2.27054432e-02
-8.09662223e-01 -1.44420493e+00 -4.40447964e-03 3.91088992e-01
6.58952892e-02 -1.21445537e-01 1.57453918e+00 -8.73067737e-01
-8.46056640e-02 -2.53810048e-01 -4.32558209e-01 6.01277173e-01
2.10837096e-01 3.51804346e-01 -5.86522162e-01 2.20057786e-01
-1.04802743e-01 -3.67757559e-01 7.04052567e-01 2.28046030e-01
7.75851190e-01 -5.97734451e-01 -1.85299516e-01 -8.26252997e-02
1.49444771e+00 -1.22669227e-01 7.10692108e-01 3.00169677e-01
8.41763690e-02 3.93867284e-01 6.77179515e-01 2.07851097e-01
4.58612472e-01 1.50964677e-01 -7.90401995e-02 7.25319386e-01
1.40125468e-01 -6.43681169e-01 4.61540997e-01 8.97053361e-01
2.72815555e-01 -1.68282047e-01 -1.21254694e+00 1.16650867e+00
-1.67047012e+00 -1.30957627e+00 -2.17436075e-01 2.09279180e+00
1.40681016e+00 3.48999143e-01 -2.50024915e-01 2.73944885e-01
5.59497654e-01 -3.53905827e-01 2.71985888e-01 -9.30242419e-01
-4.39911969e-02 3.55037898e-01 4.45146821e-02 9.29986179e-01
-1.02612770e+00 7.39119589e-01 5.79336929e+00 1.02213573e+00
-3.99135321e-01 -2.68110842e-01 4.71178535e-03 1.29348397e-01
-7.04777360e-01 1.25974983e-01 -7.77211249e-01 4.92788196e-01
1.17605507e+00 -8.40731382e-01 4.17328328e-01 6.77149951e-01
-1.05675146e-01 -4.58941400e-01 -1.57944655e+00 6.79850519e-01
4.36825633e-01 -1.66415989e+00 2.59833574e-01 -6.64644599e-01
6.86065316e-01 -2.23935395e-01 -1.58594817e-01 3.71328682e-01
3.54842901e-01 -8.54288578e-01 5.58738291e-01 7.61935711e-01
5.87813556e-01 -7.62971401e-01 9.63612437e-01 4.77329880e-01
-5.93886733e-01 3.73766392e-01 -5.11899769e-01 -3.74194443e-01
-1.88748583e-01 8.89189780e-01 -1.47774708e+00 5.53113103e-01
3.39646220e-01 6.45499945e-01 -2.94006318e-01 7.28725851e-01
-8.54173660e-01 6.03197813e-01 -4.44972724e-01 -1.13697302e+00
2.32468620e-01 1.50792431e-02 5.48494637e-01 1.51908457e+00
1.50199179e-02 -1.71579159e-05 -4.36864138e-01 1.30456507e+00
-1.67787373e-01 2.61795074e-01 -9.07551587e-01 -3.31359625e-01
7.28227377e-01 9.18314159e-01 -4.28754270e-01 -8.93082559e-01
-2.64637023e-01 9.68025982e-01 2.30103150e-01 7.35767931e-02
-1.01013649e+00 -1.17029226e+00 3.00572485e-01 -4.05250102e-01
1.82739645e-01 -1.73220247e-01 -1.41636059e-01 -1.13571846e+00
2.87389547e-01 -6.32779539e-01 2.63111025e-01 -1.06264591e+00
-1.62102294e+00 1.35129899e-01 1.56776920e-01 -6.33482993e-01
-9.09120664e-02 -8.12965453e-01 -7.71149039e-01 1.15440047e+00
-1.42877686e+00 -7.14286983e-01 4.06965405e-01 2.92330116e-01
5.38356423e-01 -5.54849580e-02 1.34609723e+00 -8.34747031e-02
1.45884737e-01 4.89816248e-01 1.81360900e-01 2.67824411e-01
6.44410074e-01 -1.56300735e+00 3.34459454e-01 8.85898650e-01
2.74941266e-01 1.36736739e+00 1.01404583e+00 -7.58478880e-01
-1.51719952e+00 -8.72870266e-01 2.47466874e+00 -7.23788440e-01
1.21041751e+00 -1.51209608e-01 -4.70540971e-01 2.13497892e-01
2.92305380e-01 -3.38549823e-01 6.04546845e-01 3.80711615e-01
-6.63544774e-01 9.57454592e-02 -1.19986808e+00 7.86129296e-01
4.85373348e-01 -1.00287151e+00 -1.47160864e+00 1.02385950e+00
8.44164610e-01 -1.44037992e-01 -9.99772251e-01 2.75156666e-02
3.46382618e-01 -1.08194545e-01 9.23536956e-01 -1.00606322e+00
1.20378006e+00 -3.97201806e-01 -5.32472610e-01 -1.12143958e+00
-9.41912085e-02 -4.82272357e-01 -1.38476759e-01 1.11751568e+00
9.64614511e-01 -1.46022558e-01 3.20812017e-01 7.10729063e-01
1.72771931e-01 -6.57506287e-01 -8.84169281e-01 -9.21343982e-01
2.93633878e-01 -6.22811258e-01 2.70415485e-01 9.51346099e-01
9.76334512e-01 6.58231020e-01 3.70584935e-01 9.98925418e-02
6.20749414e-01 3.66631418e-01 5.37592232e-01 -7.51134753e-01
1.11087471e-01 -5.19437432e-01 -5.48518240e-01 -8.81407440e-01
4.48879033e-01 -1.52039623e+00 2.95291960e-01 -1.95697510e+00
4.25562054e-01 -2.35421602e-02 -2.43713200e-01 2.78169662e-01
-4.16759789e-01 -5.39473891e-01 3.10965460e-02 -4.89080220e-01
-1.00283062e+00 4.13274914e-01 7.01545954e-01 -3.38970184e-01
4.48748261e-01 -2.09539369e-01 -4.93320853e-01 7.19620526e-01
6.66488647e-01 -2.49058753e-01 -4.19155598e-01 -4.67268676e-01
6.94297612e-01 -1.07690439e-01 6.04209602e-01 -6.35911584e-01
5.09669423e-01 -2.08365753e-01 -1.25320911e-01 -6.94472253e-01
-1.02536321e-01 -6.37005746e-01 -5.95231414e-01 2.98363864e-01
-8.36715341e-01 1.07581295e-01 4.44070876e-01 3.85731518e-01
8.03676471e-02 -7.28290677e-01 1.06638744e-01 9.81863141e-02
-7.26255119e-01 -5.89957476e-01 -3.51426005e-01 3.08536828e-01
8.45452487e-01 3.29954594e-01 -4.71455097e-01 -2.32592970e-01
-2.79326200e-01 2.64377624e-01 1.31350085e-01 4.29788262e-01
1.27335107e+00 -1.20156360e+00 -9.20321047e-01 -3.08056146e-01
1.03873178e-01 -2.15215832e-01 -1.96726441e-01 7.38077641e-01
-6.58146143e-01 9.88708258e-01 4.32120651e-01 -1.11235693e-01
-1.51838350e+00 6.99085534e-01 -3.96494679e-02 -2.05407336e-01
-3.67717117e-01 1.39061987e+00 -6.16473913e-01 -6.79915667e-01
3.66579264e-01 -7.46952713e-01 -1.50793996e-02 -4.13668364e-01
8.00399423e-01 3.89750034e-01 1.59949690e-01 -6.19976111e-02
-9.47080851e-01 3.05391550e-01 2.35238727e-02 -3.13589722e-02
1.40278375e+00 3.70224953e-01 -6.80431426e-01 4.80379820e-01
1.33224845e+00 2.54382551e-01 -8.16936269e-02 -3.42478305e-01
2.78291166e-01 -1.41470164e-01 -3.54414694e-02 -1.10001194e+00
-2.08224915e-03 7.39338934e-01 -5.11722922e-01 2.60886192e-01
4.24113393e-01 1.11633502e-02 7.34349489e-01 1.00191653e+00
1.86636940e-01 -1.15607285e+00 -3.40512991e-01 7.67491937e-01
9.04924691e-01 -1.22527051e+00 3.51803541e-01 -4.64848489e-01
-4.97807652e-01 1.57476985e+00 1.27441958e-01 -2.42040828e-01
4.44945663e-01 9.99601334e-02 -4.08965021e-01 -4.57359701e-01
-1.09992361e+00 3.78700882e-01 5.98096490e-01 4.51544344e-01
6.27744138e-01 1.86575174e-01 -5.62831283e-01 7.30854392e-01
-3.53243649e-01 7.35867620e-02 3.10653955e-01 7.54843891e-01
-3.46612930e-01 -6.20122433e-01 -7.16417283e-02 3.83613706e-01
-2.88919985e-01 -7.22590506e-01 -5.37313104e-01 4.20505613e-01
1.08222035e-03 1.36988866e+00 -1.23971350e-01 -2.58749306e-01
2.24698186e-02 3.67935091e-01 1.01964474e+00 -7.81560421e-01
-1.89524949e-01 -8.29533100e-01 6.08295619e-01 1.39193088e-01
-3.13937306e-01 -6.48128092e-01 -1.59478724e+00 -8.14045370e-01
-5.07359564e-01 6.53088212e-01 8.07786286e-01 1.27033067e+00
1.81901842e-01 4.12377179e-01 3.17032218e-01 1.19506329e-01
-8.42858911e-01 -8.95059526e-01 -2.52478689e-01 5.48847616e-01
5.26301824e-02 -2.68426299e-01 -6.70841455e-01 3.84934604e-01] | [9.42333984375, 7.302882194519043] |
00817363-a830-482b-be46-0e394b1083bd | summ-n-a-multi-stage-summarization-framework | 2110.1015 | null | https://arxiv.org/abs/2110.10150v2 | https://arxiv.org/pdf/2110.10150v2.pdf | Summ^N: A Multi-Stage Summarization Framework for Long Input Dialogues and Documents | Text summarization helps readers capture salient information from documents, news, interviews, and meetings. However, most state-of-the-art pretrained language models (LM) are unable to efficiently process long text for many summarization tasks. In this paper, we propose Summ$^N$, a simple, flexible, and effective multi-stage framework for input texts that are longer than the maximum context length of typical pretrained LMs. Summ$^N$ first splits the data samples and generates a coarse summary in multiple stages and then produces the final fine-grained summary based on it. Our framework can process input text of arbitrary length by adjusting the number of stages while keeping the LM input size fixed. Moreover, it can deal with both single-source documents and dialogues, and it can be used on top of different backbone abstractive summarization models. To the best of our knowledge, Summ$^N$ is the first multi-stage split-then-summarize framework for long input summarization. Our experiments demonstrate that Summ$^N$ outperforms previous state-of-the-art methods by improving ROUGE scores on three long meeting summarization datasets AMI, ICSI, and QMSum, two long TV series datasets from SummScreen, and a long document summarization dataset GovReport. Our data and code are available at https://github.com/psunlpgroup/Summ-N. | ['Rui Zhang', 'Dragomir Radev', 'Ahmed H. Awadallah', 'Budhaditya Deb', 'Chenguang Zhu', 'Chen Henry Wu', 'Ziming Mao', 'Ansong Ni', 'Yusen Zhang'] | 2021-10-16 | null | https://aclanthology.org/2022.acl-long.112 | https://aclanthology.org/2022.acl-long.112.pdf | acl-2022-5 | ['meeting-summarization'] | ['natural-language-processing'] | [ 2.8204560e-01 1.3943373e-01 -3.5472575e-01 -2.4079941e-01
-1.5353580e+00 -6.6102844e-01 4.6960136e-01 3.6317137e-01
-4.2390350e-01 9.4018483e-01 8.7537348e-01 -1.9978207e-01
3.6475915e-02 -4.1530064e-01 -5.3248632e-01 -2.0450053e-01
2.5521982e-01 6.2785906e-01 2.1064240e-01 -2.8288296e-01
5.3335166e-01 -2.4675602e-01 -1.0889043e+00 7.4006343e-01
1.3050145e+00 4.6389896e-01 3.7214369e-01 1.0301276e+00
-4.5862097e-01 5.1110303e-01 -1.0108653e+00 -3.6721495e-01
-2.7925518e-01 -7.8623104e-01 -1.0475286e+00 2.6994469e-03
6.0488814e-01 -2.2081213e-01 -2.2763821e-01 6.7843443e-01
9.2639339e-01 2.4913792e-01 5.6603611e-01 -7.3021358e-01
-4.6683386e-01 1.3874993e+00 -7.3587662e-01 5.0008082e-01
6.6454595e-01 -1.4188488e-01 1.2887894e+00 -9.1134518e-01
5.9438932e-01 1.2877852e+00 4.8548764e-01 5.6639242e-01
-1.0220833e+00 -6.0898381e-01 4.7842011e-01 -9.2477091e-02
-8.2478374e-01 -6.1527956e-01 6.7064142e-01 -6.4061098e-02
1.1563621e+00 6.0730904e-01 3.8622338e-01 1.1382344e+00
8.5299790e-02 1.3954958e+00 4.2789489e-01 -3.3910269e-01
9.8236121e-02 -4.0557396e-01 6.5337199e-01 3.7662551e-01
2.8259683e-01 -9.9046308e-01 -7.4237734e-01 -2.5557679e-01
1.4257668e-01 -1.9552498e-01 -4.1540331e-01 5.4155642e-01
-1.3843709e+00 6.3279265e-01 2.1214586e-02 4.4986367e-01
-3.7060323e-01 4.3877281e-02 7.1242356e-01 3.2575697e-01
8.3878988e-01 6.0238433e-01 -4.4511867e-01 -4.0892947e-01
-1.4858642e+00 3.3995047e-01 1.0870143e+00 1.0546638e+00
3.7211537e-01 1.3302609e-01 -6.6408032e-01 1.0441484e+00
-2.5286856e-01 7.0573753e-01 6.8219775e-01 -8.6556613e-01
1.1589830e+00 5.2873743e-01 -2.5625387e-02 -6.0112804e-01
-4.5829907e-01 -5.0041020e-01 -1.1433549e+00 -9.1443372e-01
-4.2086694e-02 -5.9243286e-01 -7.5010073e-01 1.5229441e+00
-1.3122325e-01 -8.9759961e-02 2.3010993e-01 3.2963875e-01
1.5899408e+00 1.1947925e+00 -2.7805054e-01 -7.0982051e-01
1.2310762e+00 -1.2024626e+00 -8.3874774e-01 -5.8299428e-01
5.9819883e-01 -8.5780579e-01 1.1765827e+00 3.2489696e-01
-1.5657495e+00 -4.6322742e-01 -8.9155877e-01 -3.3968455e-01
1.4257582e-01 4.8199630e-01 2.1410841e-01 8.6304829e-02
-1.1119608e+00 4.7316235e-01 -7.4013180e-01 -4.1980347e-01
2.4672550e-01 1.1484994e-01 1.1996692e-01 3.4122862e-02
-1.1239917e+00 4.8111644e-01 5.3123158e-01 6.4847415e-04
-4.0623292e-01 -5.9634626e-01 -7.9860365e-01 3.2311505e-01
6.2973827e-01 -1.0073469e+00 1.6645536e+00 -5.9058720e-01
-1.5515087e+00 4.9944922e-01 -7.2932249e-01 -4.7827035e-01
3.7575597e-01 -5.7515401e-01 -1.1295345e-01 1.5558748e-01
2.0691583e-01 4.1275853e-01 5.4748422e-01 -9.0085143e-01
-6.0725707e-01 -1.5116496e-01 -2.1751957e-01 4.3559206e-01
-2.3441176e-01 6.2694833e-02 -6.4190340e-01 -6.5459174e-01
-1.9867979e-02 -7.3531604e-01 -2.2777849e-01 -1.1135355e+00
-1.0436245e+00 -4.3013772e-01 5.1429558e-01 -9.0914845e-01
1.9392335e+00 -1.9369463e+00 3.8530016e-01 -2.5514343e-01
1.5688881e-02 4.2412955e-01 -4.4004807e-01 9.8181474e-01
3.1222221e-01 4.0698835e-01 -2.4172255e-01 -7.8301889e-01
8.3402097e-03 -1.6898829e-01 -4.9659327e-01 -9.1888845e-02
-1.8406545e-01 1.1023470e+00 -9.8932445e-01 -6.2319273e-01
-2.2749935e-01 -8.4819250e-02 -4.0694445e-01 9.3002766e-02
-4.1982219e-01 2.7740750e-01 -6.1613232e-01 2.4523993e-01
2.6541811e-01 -2.2291774e-01 1.0617382e-01 -1.8191865e-02
-2.1954963e-01 7.3194528e-01 -8.6853808e-01 1.8965265e+00
-4.0422437e-01 7.8142124e-01 -5.9057098e-02 -8.0913091e-01
7.4866724e-01 4.2486832e-01 1.7791978e-01 -4.6013841e-01
8.1956066e-02 4.3776956e-01 -3.4682661e-01 -3.9078197e-01
1.1980577e+00 2.5156623e-01 -5.9046173e-01 7.4497277e-01
3.5937622e-02 -4.9478555e-01 9.8679996e-01 6.7129761e-01
1.1234373e+00 -4.1965833e-01 4.5658630e-01 -4.2275634e-02
5.5154091e-01 -1.4434390e-01 5.7163459e-01 1.0703933e+00
2.3408441e-01 8.3543581e-01 6.7088968e-01 4.8329629e-02
-8.8209152e-01 -8.0727243e-01 3.1096888e-01 1.2955179e+00
-1.6537037e-01 -8.8635045e-01 -8.8673395e-01 -5.4990560e-01
-3.1092659e-01 1.0442023e+00 -1.1568581e-01 8.8159971e-02
-9.4888443e-01 -6.2783158e-01 7.1319848e-01 4.0367633e-01
5.9005940e-01 -1.3801557e+00 -1.6778581e-01 4.3828273e-01
-9.6316707e-01 -9.2472821e-01 -1.0907999e+00 -1.1011219e-01
-9.4637322e-01 -7.4830121e-01 -8.0035651e-01 -9.0477902e-01
3.9697653e-01 3.7304547e-01 1.3287715e+00 -1.6478044e-01
1.7515908e-01 2.5697312e-01 -5.2324468e-01 -6.5791029e-01
-6.2538230e-01 9.9747008e-01 -1.3173369e-01 -3.8193583e-01
1.3634446e-02 -4.6838066e-01 -4.7957009e-01 -1.2263243e-01
-9.4929790e-01 3.3624712e-01 7.0221376e-01 6.1641592e-01
5.4892373e-01 -2.0640089e-01 1.1792986e+00 -1.1825708e+00
1.2808679e+00 -3.4723330e-01 5.7972223e-02 4.3965903e-01
-1.9174252e-01 1.0494300e-01 8.1658006e-01 -3.8045698e-01
-1.0675080e+00 -5.5670476e-01 -2.7587873e-01 1.6748866e-01
2.3165545e-01 9.8952609e-01 -5.4450095e-02 9.3749416e-01
5.8660460e-01 5.0580961e-01 -3.8031745e-01 -5.3631705e-01
4.3098810e-01 9.7929651e-01 6.7732692e-01 -3.2195711e-01
4.9673140e-01 8.7803416e-02 -5.4838419e-01 -1.1870155e+00
-1.2834733e+00 -7.3892015e-01 -4.9660891e-01 1.3883635e-01
5.8011794e-01 -8.5938895e-01 -2.2973929e-01 5.9403735e-01
-1.3354743e+00 -4.1611433e-01 -4.5310354e-01 2.2433472e-01
-3.3467856e-01 6.0748374e-01 -7.9201007e-01 -5.9607446e-01
-1.2801003e+00 -6.2532747e-01 1.1447139e+00 4.0638706e-01
-6.6915166e-01 -8.4845567e-01 1.8839979e-01 4.7387934e-01
2.6027796e-01 8.9903496e-02 6.7642552e-01 -8.9053500e-01
-1.2971379e-01 -2.2987652e-01 1.6362588e-01 3.1886262e-01
1.6261770e-01 1.3057292e-01 -5.5053824e-01 -4.6601799e-01
-1.6471712e-01 -3.8669917e-01 1.4576976e+00 7.4375898e-01
9.5263410e-01 -8.0042887e-01 -2.1888705e-01 2.2607896e-01
7.5199825e-01 -2.5756881e-02 4.3696317e-01 8.6842313e-02
6.9593465e-01 2.5825894e-01 5.7861108e-01 5.1915926e-01
6.4163965e-01 2.0892262e-01 -2.0932981e-01 6.9947191e-02
4.6351332e-02 -2.3131397e-01 7.1760952e-01 1.6895200e+00
1.4355321e-01 -8.3643496e-01 -6.6391021e-01 7.0374709e-01
-2.0495465e+00 -1.2326936e+00 -1.4145464e-01 1.8717008e+00
1.1518139e+00 3.2174039e-01 9.3690269e-02 -4.4713696e-03
6.0760450e-01 7.6037973e-01 -5.5207807e-01 -6.5258604e-01
-1.5803294e-01 8.3333403e-02 8.6399257e-02 5.7987607e-01
-1.0044391e+00 9.7118664e-01 5.3459134e+00 1.0679631e+00
-8.7557054e-01 -8.8525169e-02 5.7947588e-01 -6.8052101e-01
-5.5192572e-01 -2.3470961e-01 -9.5285827e-01 5.2011943e-01
1.1774049e+00 -6.9740319e-01 -1.2534248e-02 5.5686331e-01
5.3059727e-01 -1.6223465e-01 -1.1749259e+00 8.3092034e-01
3.8566723e-01 -1.4645113e+00 2.9065576e-01 -3.6217746e-01
1.0090278e+00 1.9959164e-01 -1.4437902e-01 6.5937614e-01
2.1082035e-01 -7.7876985e-01 6.0169226e-01 3.9484519e-01
7.3397255e-01 -7.0944953e-01 8.1879807e-01 8.1570208e-01
-1.2127998e+00 1.4155377e-01 -2.7656800e-01 1.5433526e-01
6.1733323e-01 7.0362401e-01 -7.0883280e-01 8.5148376e-01
3.5161042e-01 8.1656504e-01 -5.8518183e-01 8.3906144e-01
-3.1134185e-01 9.2302865e-01 -2.8919780e-01 -3.0589733e-01
3.4598997e-01 4.1195028e-03 9.0530574e-01 1.6755273e+00
4.9750361e-01 3.6429629e-01 4.4340113e-01 3.5882130e-01
-4.9830955e-01 2.1646091e-01 -1.7010169e-01 -2.3621961e-01
6.9152403e-01 1.0310960e+00 -4.8659277e-01 -6.5822595e-01
-1.5371074e-01 1.0043956e+00 2.1586423e-01 4.4729894e-01
-4.9348915e-01 -5.2500081e-01 2.7496267e-02 -8.8790596e-02
2.4243034e-01 -1.5880553e-01 -2.6282486e-01 -1.5050420e+00
2.0743115e-01 -1.0780668e+00 5.8444017e-01 -5.4375154e-01
-1.0307660e+00 7.3288685e-01 1.2661789e-01 -9.9783802e-01
-5.2174652e-01 2.2687294e-01 -1.0880041e+00 6.7159694e-01
-1.2855600e+00 -9.4438887e-01 -2.2367771e-01 1.7460339e-01
1.4019723e+00 -3.8905855e-02 6.6508055e-01 -1.3464381e-01
-9.3998224e-01 5.2991945e-01 3.1659904e-01 7.8475187e-03
8.4475195e-01 -1.3064060e+00 8.4860623e-01 9.7393364e-01
8.1350036e-02 5.5218393e-01 8.1262851e-01 -7.5243998e-01
-1.1177506e+00 -1.1429334e+00 1.2350297e+00 -2.6665187e-01
3.5798675e-01 -1.8402250e-01 -9.5576763e-01 7.5944400e-01
6.8572062e-01 -7.8514832e-01 7.5244260e-01 2.3892909e-01
1.8733338e-01 -8.5164011e-02 -5.7053041e-01 7.3297632e-01
9.1460472e-01 -2.7425286e-01 -9.9235433e-01 2.9078871e-01
9.3900692e-01 -6.9779438e-01 -5.4077584e-01 2.3643348e-01
3.1054813e-01 -6.2535572e-01 6.7200756e-01 -3.3452037e-01
6.0373390e-01 1.7287038e-01 1.9265546e-01 -1.7148985e+00
-1.3147004e-01 -1.0697988e+00 -2.6985943e-01 1.5687063e+00
7.9972768e-01 -3.3443901e-01 5.4373819e-01 1.6373633e-01
-5.6852531e-01 -7.9631150e-01 -6.3921273e-01 -4.6409538e-01
8.9788921e-02 -2.6138541e-01 4.2026690e-01 4.4514939e-01
2.4364506e-01 8.9178693e-01 -3.8193828e-01 -2.8832752e-01
4.3173569e-01 4.7068432e-01 9.5330822e-01 -1.0458649e+00
-2.1174781e-01 -6.2424111e-01 5.5032480e-01 -1.4842587e+00
2.3393653e-01 -8.3164293e-01 1.5882911e-01 -2.2177334e+00
4.8024836e-01 1.6986519e-01 5.9524421e-02 3.7402210e-01
-6.8714797e-01 -2.1244098e-01 3.8362825e-01 2.9528126e-01
-1.1153795e+00 7.3764020e-01 1.2213490e+00 -2.6985338e-01
-7.7497131e-01 3.6998412e-01 -9.9689782e-01 7.9405659e-01
1.0174121e+00 -2.8072375e-01 -4.7402570e-01 -4.9130046e-01
1.9339849e-01 3.3489788e-01 -3.0813515e-01 -7.3016459e-01
4.0680891e-01 -1.5887682e-01 4.1135147e-02 -1.2527540e+00
4.6233106e-02 1.3018684e-01 -2.1489954e-01 1.8519509e-01
-7.2612691e-01 8.6930521e-02 2.7187219e-01 3.1936520e-01
-3.2821438e-01 -3.8736621e-01 3.2386830e-01 -2.5556403e-01
-2.6246649e-01 2.3103452e-01 -4.4569048e-01 7.4211645e-01
4.6421453e-01 5.5057552e-02 -5.9984922e-01 -6.6356409e-01
-3.5452449e-01 8.0599916e-01 8.0629490e-02 4.3996531e-01
5.7276839e-01 -9.2157495e-01 -1.3723230e+00 -2.6712391e-01
-1.9228826e-01 5.3119075e-01 4.6177945e-01 7.5144649e-01
-3.3450365e-01 6.5380681e-01 3.6292464e-01 -4.3749574e-01
-1.4992961e+00 6.8294458e-02 -1.8230361e-01 -9.3491840e-01
-6.6766173e-01 7.7644843e-01 1.5684210e-01 -3.0223942e-01
2.0670581e-01 -7.2814304e-01 -3.4011108e-01 5.3791130e-01
7.9576409e-01 6.1579078e-01 -8.1369951e-02 -3.8017204e-01
-7.7988319e-02 4.1576189e-01 -5.3362018e-01 -2.4248239e-01
1.3490673e+00 -4.8672083e-01 -2.4936517e-01 7.1173942e-01
8.7224829e-01 3.4695524e-01 -8.9359325e-01 -5.1524866e-01
7.7653937e-02 2.2801891e-01 -3.1497663e-01 -6.4994818e-01
-6.0317713e-01 6.1017525e-01 -4.6609569e-01 3.1344888e-01
1.1172184e+00 1.2700619e-01 1.2198348e+00 6.8570769e-01
-4.3917887e-02 -1.2418026e+00 3.2826698e-01 9.3872863e-01
1.2216212e+00 -1.0129719e+00 2.5704676e-01 -1.7258210e-01
-9.1614896e-01 9.4712192e-01 4.7349063e-01 9.6059203e-02
5.9048221e-02 3.3370338e-02 -1.3794273e-01 -8.3610132e-02
-1.0745966e+00 6.3616641e-02 5.0760531e-01 -7.0677191e-02
6.5759695e-01 7.9825550e-02 -6.0137701e-01 1.0634217e+00
-6.7311519e-01 -1.1200305e-01 8.4091091e-01 8.5515463e-01
-8.2441527e-01 -9.6286690e-01 -1.3195147e-01 7.7805603e-01
-7.1552324e-01 -3.2846376e-01 -6.1861140e-01 4.7953624e-01
-4.8350364e-01 1.2321552e+00 -1.3488157e-01 -8.0697984e-02
6.1863530e-01 1.4091907e-01 7.1298711e-02 -9.8908961e-01
-8.5341716e-01 2.4426173e-01 4.6880886e-01 -2.1793082e-01
-2.2867222e-01 -8.3462775e-01 -1.4012346e+00 -4.9003544e-01
-3.2551172e-01 5.2124661e-01 2.4344054e-01 9.1502446e-01
4.5040512e-01 7.9498941e-01 5.7733721e-01 -1.0440751e+00
-6.6629088e-01 -1.5045927e+00 -3.5207060e-01 1.9170849e-01
4.6478584e-01 2.8931519e-01 -3.9188644e-01 1.7387966e-02] | [12.539617538452148, 9.435843467712402] |
f705cbc6-d6bf-4219-b997-c9a7387010b0 | deep-dyna-q-integrating-planning-for-task | 1801.06176 | null | http://arxiv.org/abs/1801.06176v3 | http://arxiv.org/pdf/1801.06176v3.pdf | Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning | Training a task-completion dialogue agent via reinforcement learning (RL) is
costly because it requires many interactions with real users. One common
alternative is to use a user simulator. However, a user simulator usually lacks
the language complexity of human interlocutors and the biases in its design may
tend to degrade the agent. To address these issues, we present Deep Dyna-Q,
which to our knowledge is the first deep RL framework that integrates planning
for task-completion dialogue policy learning. We incorporate into the dialogue
agent a model of the environment, referred to as the world model, to mimic real
user response and generate simulated experience. During dialogue policy
learning, the world model is constantly updated with real user experience to
approach real user behavior, and in turn, the dialogue agent is optimized using
both real experience and simulated experience. The effectiveness of our
approach is demonstrated on a movie-ticket booking task in both simulated and
human-in-the-loop settings. | ['Shang-Yu Su', 'Kam-Fai Wong', 'Jingjing Liu', 'Jianfeng Gao', 'Xiujun Li', 'Baolin Peng'] | 2018-01-18 | deep-dyna-q-integrating-planning-for-task-1 | https://aclanthology.org/P18-1203 | https://aclanthology.org/P18-1203.pdf | acl-2018-7 | ['task-completion-dialogue-policy-learning'] | ['natural-language-processing'] | [-2.18229905e-01 6.37192965e-01 7.39067867e-02 -1.73694491e-01
-5.69357812e-01 -8.23587418e-01 7.93236852e-01 -1.37868628e-01
-6.90566838e-01 9.45299387e-01 2.36809134e-01 -1.96521133e-01
3.84923160e-01 -4.84848350e-01 -3.71471763e-01 -2.87153304e-01
8.36539492e-02 9.73138452e-01 4.58774306e-02 -6.94294274e-01
2.42918894e-01 1.44593656e-01 -1.37731874e+00 9.02293921e-02
9.25455809e-01 4.04226959e-01 6.63125157e-01 1.11607420e+00
9.93663967e-02 1.30512607e+00 -8.82713795e-01 -1.23269133e-01
2.02185646e-01 -7.24268258e-01 -9.07418728e-01 2.42371514e-01
-4.34564143e-01 -8.55666697e-01 -2.41848066e-01 7.34522820e-01
7.37690091e-01 5.69025993e-01 1.25702873e-01 -1.00292075e+00
-3.48503073e-03 6.43764913e-01 8.27513561e-02 -3.18732679e-01
9.10915732e-01 6.63242161e-01 8.25618327e-01 -4.51690912e-01
5.79330862e-01 1.46664464e+00 2.08867699e-01 8.80740166e-01
-1.13573647e+00 -1.97246775e-01 1.49371564e-01 -3.00273865e-01
-8.23219538e-01 -4.76688355e-01 6.11189187e-01 -2.95796573e-01
9.48459685e-01 -1.31946085e-02 9.65015054e-01 1.34192920e+00
2.60860980e-01 1.05003107e+00 1.14284503e+00 -4.83300269e-01
5.43048918e-01 6.73533976e-01 -4.74042296e-01 5.95835328e-01
-5.57453573e-01 4.22584683e-01 -4.57804441e-01 -4.04388815e-01
9.96705651e-01 -5.09253204e-01 -2.70797074e-01 -6.90793037e-01
-1.12567401e+00 9.50371265e-01 -4.18762676e-03 5.37184738e-02
-6.87825203e-01 1.46484543e-02 5.42462409e-01 6.73585415e-01
4.71580140e-02 1.17431378e+00 -4.54320520e-01 -7.84151077e-01
-2.66161174e-01 8.39438438e-01 1.48584294e+00 7.33630776e-01
3.19325507e-01 1.35372713e-01 -2.19649330e-01 1.08413744e+00
3.52116019e-01 4.35590893e-01 6.26020968e-01 -1.42631352e+00
3.11664551e-01 2.69979835e-01 8.60611141e-01 -4.45538312e-01
-5.91704369e-01 -1.09257124e-01 -3.44383717e-02 4.56179500e-01
5.98544896e-01 -8.39509726e-01 -2.06106901e-01 1.75564265e+00
5.03779471e-01 5.09922244e-02 5.38750470e-01 1.15479338e+00
5.67974925e-01 7.77133584e-01 3.27332206e-02 -4.31814522e-01
1.23287439e+00 -1.12582111e+00 -1.00282621e+00 -2.73055375e-01
8.03018153e-01 -6.74322605e-01 1.29202414e+00 6.78101838e-01
-1.39502335e+00 -5.90854585e-01 -8.89802456e-01 4.12316442e-01
9.02518854e-02 -2.52645671e-01 4.94125366e-01 4.01474506e-01
-9.74692106e-01 6.14746809e-01 -6.77992880e-01 -4.42772388e-01
-4.12695646e-01 4.62073684e-01 1.23510882e-01 3.20519596e-01
-1.52327204e+00 1.22132146e+00 3.51831168e-01 -1.68838322e-01
-1.25137627e+00 -2.03081757e-01 -9.59153771e-01 -7.06720203e-02
7.56264627e-01 -6.48276329e-01 2.31351352e+00 -1.08171022e+00
-2.84785795e+00 3.86441499e-01 3.64343852e-01 -3.26630354e-01
7.18684256e-01 -2.65469611e-01 -9.29078087e-02 -8.04192647e-02
-3.10453027e-01 7.18647778e-01 6.29697204e-01 -1.54793966e+00
-6.81205034e-01 4.52374294e-02 6.53938770e-01 1.04618108e+00
2.41582140e-01 -7.25310072e-02 -2.61700511e-01 -2.60152340e-01
-4.45816666e-01 -1.15869033e+00 -4.51274514e-01 -5.22219062e-01
-2.22065747e-02 -2.21022576e-01 4.81762916e-01 -2.84128994e-01
9.02556300e-01 -1.98774266e+00 2.27938786e-01 1.61487043e-01
1.17097124e-01 3.31835628e-01 -4.62904572e-01 8.80758762e-01
2.60019600e-01 -4.95344818e-01 3.14927578e-01 -4.68743116e-01
1.32014692e-01 2.40756825e-01 -1.70447394e-01 1.97159722e-01
-2.14938149e-01 8.75539720e-01 -1.40019751e+00 -2.84802347e-01
2.91540176e-01 1.29252419e-01 -7.23600090e-01 1.12782323e+00
-7.11318970e-01 9.23575699e-01 -5.31876266e-01 -1.41704947e-01
1.83584392e-01 5.63523509e-02 6.55602217e-01 5.09651423e-01
-2.29930565e-01 6.14468575e-01 -9.95492935e-01 1.73610377e+00
-9.04665828e-01 1.95054129e-01 3.91387731e-01 -4.25301671e-01
8.15808415e-01 7.23480463e-01 2.22113654e-01 -1.00488436e+00
3.00763011e-01 -5.45933060e-02 4.40951914e-01 -7.16142297e-01
7.92754948e-01 -2.99901562e-03 -2.03637391e-01 1.03934312e+00
-3.93788852e-02 -6.60384655e-01 -1.72227826e-02 2.05560192e-01
7.96626627e-01 4.30635273e-01 4.18603927e-01 8.22450500e-03
4.40911293e-01 -2.80436384e-03 3.50010246e-01 1.08601367e+00
-3.48523319e-01 1.26514077e-01 8.25222194e-01 -4.40860987e-01
-1.00722861e+00 -7.48222768e-01 3.97006482e-01 1.50771904e+00
1.29369512e-01 -2.60298610e-01 -1.12613618e+00 -6.04587138e-01
-3.41014773e-01 1.22267091e+00 -3.34550649e-01 -1.45973220e-01
-6.44743860e-01 -3.03852439e-01 3.06307167e-01 2.62275077e-02
4.11308885e-01 -1.77467692e+00 -1.20096087e+00 8.18028390e-01
-1.82611570e-01 -1.04060280e+00 -5.82171440e-01 -3.34523059e-02
-5.54293752e-01 -7.72412479e-01 -5.63972950e-01 -6.22148752e-01
3.02953184e-01 -6.00500517e-02 1.17847478e+00 1.86212044e-02
3.09361726e-01 5.52757800e-01 -4.51472342e-01 -3.28536481e-01
-1.21209252e+00 -2.61998847e-02 1.33470416e-01 -2.69422442e-01
-1.13121562e-01 -2.75959522e-01 -6.26106918e-01 3.99213195e-01
-6.05361879e-01 3.45131397e-01 2.64383584e-01 1.16259193e+00
-2.78955549e-01 -1.67724922e-01 7.10588098e-01 -1.08604872e+00
1.58371818e+00 -2.53752679e-01 -8.46509576e-01 9.67165753e-02
-3.88458490e-01 1.21307217e-01 1.00198305e+00 -6.96757376e-01
-1.33365369e+00 1.01952851e-01 5.46727004e-03 1.13223590e-01
-1.06397718e-01 3.85071665e-01 -4.97063212e-02 3.06719542e-01
7.05760896e-01 7.56224915e-02 4.06172454e-01 -3.70153897e-02
3.60208601e-01 7.24229634e-01 3.20356637e-01 -8.02010119e-01
4.60665524e-01 -2.30572686e-01 -6.85713232e-01 -7.11622655e-01
-5.20072281e-01 -5.30608371e-02 -3.83185625e-01 -4.62484449e-01
5.10742009e-01 -7.66823292e-01 -1.43248224e+00 6.33403361e-01
-1.19742739e+00 -1.25880826e+00 -1.44797832e-01 5.30151069e-01
-1.08749521e+00 5.89512885e-02 -6.74141169e-01 -1.24818039e+00
-1.25148207e-01 -1.45764518e+00 8.07763040e-01 4.24373388e-01
-5.65363407e-01 -1.11708724e+00 2.45872676e-01 1.21557847e-01
4.84794617e-01 -1.41835958e-01 6.14081562e-01 -7.67385483e-01
-2.42997259e-01 -6.43907413e-02 3.08766395e-01 -3.68729755e-02
-5.09175174e-02 -3.96977484e-01 -9.59562004e-01 -4.07787085e-01
1.25698999e-01 -9.68534112e-01 -2.77906746e-01 7.99497887e-02
7.49933958e-01 -4.82829928e-01 6.28334135e-02 -1.04241915e-01
7.27469444e-01 5.56413412e-01 4.06803668e-01 1.78601667e-01
2.91502446e-01 8.35812271e-01 1.11318564e+00 9.16857541e-01
5.98200619e-01 9.93083537e-01 2.69668221e-01 -1.63816318e-01
4.00599539e-01 -5.53219974e-01 5.60460091e-01 6.03349209e-01
1.92170367e-01 -4.75699991e-01 -6.58334553e-01 1.05064489e-01
-2.06755710e+00 -8.14969718e-01 5.35720825e-01 2.26672530e+00
1.00809491e+00 2.88523614e-01 4.55147505e-01 -3.86986017e-01
4.44772899e-01 8.06180909e-02 -5.93734324e-01 -8.60675693e-01
5.68191528e-01 -7.12959021e-02 3.74888778e-02 1.05970705e+00
-6.15735471e-01 1.38062656e+00 6.07107210e+00 8.06962103e-02
-9.13631499e-01 -1.09622329e-02 3.28867167e-01 2.77786255e-02
-1.52139589e-02 -4.71673422e-02 -3.49865466e-01 2.56260842e-01
1.13311827e+00 -4.65701967e-02 9.74334240e-01 7.12215781e-01
9.13634002e-01 -4.05560285e-01 -1.36507034e+00 6.33566916e-01
-1.70448378e-01 -7.68854499e-01 -5.19832134e-01 -2.04990827e-03
4.00899112e-01 -2.43262455e-01 -6.79172799e-02 8.57512951e-01
9.61508751e-01 -9.27524388e-01 4.72432256e-01 2.97950506e-01
4.58286941e-01 -8.73781085e-01 9.43401873e-01 9.28697228e-01
-4.99332875e-01 -1.26752526e-01 -6.12697452e-02 -2.36910865e-01
3.45768005e-01 -4.10130084e-01 -1.63402581e+00 -9.88809615e-02
1.99003145e-02 4.34057117e-02 7.02294037e-02 6.28979087e-01
-2.90785432e-01 4.46581960e-01 -3.50345224e-02 -4.97110903e-01
4.46585983e-01 -2.61269957e-01 4.74326760e-01 8.85693491e-01
-1.80859804e-01 2.80985475e-01 7.57970273e-01 6.06684864e-01
1.75143585e-01 1.88731089e-01 -7.61857033e-01 -1.22389300e-02
5.41309237e-01 1.11888552e+00 -3.03319782e-01 -3.49044472e-01
-7.64947385e-02 1.11417365e+00 3.84254068e-01 4.46784467e-01
-7.31208563e-01 -2.02108517e-01 5.55537105e-01 -1.17538646e-01
-1.36379808e-01 -1.81335092e-01 2.18302324e-01 -9.27304268e-01
-5.64679980e-01 -1.52199781e+00 -1.89066883e-02 -7.48781204e-01
-8.08315873e-01 6.50782764e-01 -7.07116798e-02 -1.05029881e+00
-9.92908120e-01 -2.37442210e-01 -4.38133568e-01 8.63516092e-01
-1.13811481e+00 -4.89324749e-01 -1.81474641e-01 3.83366704e-01
9.02523816e-01 -3.31106782e-01 1.09554076e+00 -1.65430173e-01
-4.17510659e-01 6.19454503e-01 -1.53919116e-01 -1.35178342e-01
9.00603950e-01 -1.47433186e+00 4.86020982e-01 -1.11022204e-01
-3.24650198e-01 5.38147390e-01 1.24487150e+00 -5.09033382e-01
-1.37814963e+00 -4.53973979e-01 4.99407202e-01 -3.51539612e-01
6.76483333e-01 -6.60666704e-01 -9.72598732e-01 5.03343165e-01
6.11655414e-01 -4.92091149e-01 5.16224325e-01 -6.93894401e-02
2.53183901e-01 2.98744053e-01 -1.13043702e+00 1.06669927e+00
5.12258649e-01 -3.79321665e-01 -5.97671509e-01 4.84820664e-01
8.55496287e-01 -1.05288339e+00 -7.21890926e-01 -6.99671581e-02
6.19721532e-01 -8.00255895e-01 5.41599095e-01 -5.72972357e-01
8.66215974e-02 -7.33671188e-02 4.08041537e-01 -1.89441264e+00
-5.78567311e-02 -1.22885513e+00 -1.99063793e-02 8.47263753e-01
4.14882779e-01 -6.88069284e-01 5.78167379e-01 8.64859879e-01
9.82973427e-02 -6.29757702e-01 -4.84492600e-01 -2.79712290e-01
-1.11109950e-01 -1.40234351e-01 5.79925239e-01 5.90312898e-01
6.16821766e-01 7.48380303e-01 -7.50268579e-01 -8.99231508e-02
1.21368460e-01 -2.23599628e-01 1.25134981e+00 -9.15363014e-01
-7.67366052e-01 -9.08945352e-02 4.81465697e-01 -1.44507563e+00
4.31937039e-01 -2.03464508e-01 6.25459254e-01 -1.15178776e+00
-2.47866392e-01 -4.17889595e-01 2.19795540e-01 -3.37416418e-02
-1.31709829e-01 -5.67297101e-01 4.51789081e-01 6.97429255e-02
-8.28663468e-01 9.23390388e-01 1.70288026e+00 3.37745905e-01
-9.40511823e-01 3.92028093e-01 -3.46790820e-01 7.45790720e-01
8.97239506e-01 -2.42528006e-01 -8.18401039e-01 -1.19883344e-01
1.05627887e-01 8.42911720e-01 -1.27326831e-01 -6.61603868e-01
1.62531063e-01 -3.67905617e-01 5.20026498e-02 -1.55999839e-01
6.45981789e-01 -6.56311572e-01 -2.70886093e-01 5.13385534e-01
-8.19685459e-01 2.00822845e-01 1.71400025e-01 3.88051063e-01
1.10608168e-01 -4.13615525e-01 7.14184761e-01 -4.45625633e-01
-4.94893551e-01 -1.28655136e-01 -1.17894876e+00 4.28933203e-02
9.31416154e-01 -1.48681467e-02 -3.28303576e-02 -1.23937261e+00
-5.14750421e-01 8.52246463e-01 3.76242101e-01 5.18695951e-01
5.04171729e-01 -8.23953390e-01 -5.79222620e-01 1.01712629e-01
1.19966760e-01 -3.98209132e-02 -1.72140524e-02 3.14219832e-01
-5.16806841e-01 3.27694088e-01 -1.38859168e-01 -3.62965882e-01
-9.51274455e-01 4.01920587e-01 7.03310847e-01 -5.98469198e-01
-5.42045057e-01 3.64997000e-01 2.99632698e-01 -1.03911757e+00
5.18856406e-01 7.19814375e-02 -5.52025497e-01 -1.34310946e-01
5.63004196e-01 -2.49207243e-02 -2.67619878e-01 -1.54809073e-01
2.81051725e-01 -2.37799361e-01 -3.13591361e-01 -9.36448574e-01
9.67673600e-01 -2.68356085e-01 2.62409240e-01 7.47410417e-01
5.97976387e-01 -1.68312237e-01 -1.63496447e+00 -2.95676529e-01
-4.48767096e-02 -4.45137769e-01 -3.01642179e-01 -1.11147833e+00
-2.75330842e-01 4.72176194e-01 4.31533337e-01 3.02526265e-01
5.53464770e-01 -4.24439132e-01 7.99383104e-01 8.93226206e-01
6.59290969e-01 -1.65238309e+00 5.71992040e-01 9.08108115e-01
9.99756157e-01 -1.34109807e+00 -2.80997843e-01 9.35233980e-02
-1.41588068e+00 1.03766298e+00 1.08499753e+00 -1.30767003e-01
1.87737659e-01 1.31625593e-01 6.55314744e-01 -9.74987447e-02
-1.24192631e+00 -2.06760745e-02 -3.93591493e-01 5.91340959e-01
5.75805902e-01 9.37957764e-02 -2.03841925e-01 1.23764440e-01
-4.96240139e-01 5.45917451e-02 9.59426641e-01 8.78899336e-01
-4.46025014e-01 -1.41101015e+00 -4.36067313e-01 -3.41706686e-02
-1.33118063e-01 2.71376044e-01 -3.97448421e-01 7.28194714e-01
-5.15344381e-01 1.20913637e+00 -1.85510237e-02 -1.56779617e-01
6.38112307e-01 4.02864292e-02 4.28522706e-01 -9.22045052e-01
-1.11324131e+00 1.75126806e-01 4.36467558e-01 -5.93680859e-01
1.31431133e-01 -4.44706500e-01 -1.44897842e+00 -1.39294297e-01
-2.31640130e-01 5.10382116e-01 5.75510144e-01 8.16578507e-01
1.15691759e-01 4.57844764e-01 1.07191610e+00 -1.02762842e+00
-1.06865478e+00 -1.16978002e+00 -4.53186572e-01 3.31405908e-01
4.73547250e-01 -5.46954155e-01 -9.61803421e-02 -5.35243213e-01] | [13.064281463623047, 8.043342590332031] |
1aa0bbf3-c744-4846-bc7b-c10a0869b95b | concad-contrastive-learning-based-cross | 2105.03037 | null | https://arxiv.org/abs/2105.03037v1 | https://arxiv.org/pdf/2105.03037v1.pdf | ConCAD: Contrastive Learning-based Cross Attention for Sleep Apnea Detection | With recent advancements in deep learning methods, automatically learning deep features from the original data is becoming an effective and widespread approach. However, the hand-crafted expert knowledge-based features are still insightful. These expert-curated features can increase the model's generalization and remind the model of some data characteristics, such as the time interval between two patterns. It is particularly advantageous in tasks with the clinically-relevant data, where the data are usually limited and complex. To keep both implicit deep features and expert-curated explicit features together, an effective fusion strategy is becoming indispensable. In this work, we focus on a specific clinical application, i.e., sleep apnea detection. In this context, we propose a contrastive learning-based cross attention framework for sleep apnea detection (named ConCAD). The cross attention mechanism can fuse the deep and expert features by automatically assigning attention weights based on their importance. Contrastive learning can learn better representations by keeping the instances of each class closer and pushing away instances from different classes in the embedding space concurrently. Furthermore, a new hybrid loss is designed to simultaneously conduct contrastive learning and classification by integrating a supervised contrastive loss with a cross-entropy loss. Our proposed framework can be easily integrated into standard deep learning models to utilize expert knowledge and contrastive learning to boost performance. As demonstrated on two public ECG dataset with sleep apnea annotation, ConCAD significantly improves the detection performance and outperforms state-of-art benchmark methods. | ['Fenglong Ma', 'Guanjie Huang'] | 2021-05-07 | null | null | null | null | ['sleep-apnea-detection'] | ['medical'] | [ 6.52392954e-02 -1.35535598e-01 -2.07495540e-01 -6.15018904e-01
-6.62302196e-01 -7.33430237e-02 3.09258848e-02 4.66282070e-01
-7.07092166e-01 6.83274806e-01 1.23663045e-01 -7.80801624e-02
-4.24785644e-01 -6.60721779e-01 -3.46376657e-01 -7.73776412e-01
-1.06807061e-01 1.56189039e-01 1.28649577e-01 -6.18288890e-02
1.26688397e-02 1.94703147e-01 -1.37479913e+00 1.00076124e-01
1.28797698e+00 1.29381227e+00 3.07970881e-01 1.45405680e-01
2.07623709e-02 5.74915767e-01 -5.00040233e-01 -2.54720271e-01
1.00913085e-01 -4.77960736e-01 -5.20375073e-01 -2.60280252e-01
9.75005701e-02 -1.22306988e-01 -2.79561341e-01 9.60025251e-01
8.50111306e-01 1.83711410e-01 4.30602044e-01 -1.11357892e+00
-5.89095116e-01 4.90915209e-01 -5.62278867e-01 8.64001215e-01
-1.13164205e-02 2.31256083e-01 1.22892320e+00 -7.86429584e-01
-1.64069265e-01 7.94329286e-01 7.32097983e-01 5.08248091e-01
-9.77559447e-01 -8.21346045e-01 3.46027017e-01 7.66251147e-01
-1.48194301e+00 -3.05181324e-01 1.09826005e+00 -3.23113561e-01
6.95693433e-01 3.48891407e-01 7.77036965e-01 8.40756297e-01
6.17969669e-02 7.61658311e-01 8.39570761e-01 -1.53978437e-01
8.74013305e-02 3.33860874e-01 1.73302740e-01 6.86282456e-01
1.27642646e-01 9.78798643e-02 -1.37232110e-01 -3.66020389e-02
3.33240449e-01 7.42389083e-01 -6.15325749e-01 -1.07347190e-01
-9.82018590e-01 8.10464025e-01 8.44348311e-01 4.74147826e-01
-5.61192632e-01 -1.75244078e-01 6.28811121e-01 -1.10436916e-01
4.20954674e-01 5.09866238e-01 -6.80183589e-01 -2.65857100e-01
-8.79905462e-01 -9.68813971e-02 4.55399722e-01 3.24952960e-01
6.43459499e-01 -1.13114424e-01 -5.58228970e-01 9.12331581e-01
2.31428057e-01 2.11567223e-01 7.50342607e-01 -5.37372708e-01
3.90703827e-01 9.84309554e-01 -2.48415083e-01 -1.12972033e+00
-5.46167195e-01 -9.66519237e-01 -1.02146292e+00 -3.98439206e-02
-1.44962221e-01 -1.64861262e-01 -6.82241201e-01 1.81755364e+00
1.72936499e-01 3.98619145e-01 -4.84073348e-02 9.93871868e-01
7.61775732e-01 5.35736203e-01 2.46199921e-01 -2.98108995e-01
1.45916808e+00 -8.53183091e-01 -7.74829328e-01 -2.23816708e-01
3.57942760e-01 -2.68636286e-01 1.20844126e+00 2.97427237e-01
-8.84906769e-01 -6.98322713e-01 -1.19931424e+00 -7.87749812e-02
-2.67587781e-01 2.73564339e-01 4.26783085e-01 2.98266828e-01
-5.60040295e-01 7.19145834e-01 -9.66657341e-01 3.09653673e-02
9.44500268e-01 4.61360246e-01 -1.05003648e-01 -1.76391210e-02
-1.44740796e+00 7.98394978e-01 4.62841839e-01 1.84919655e-01
-5.92714846e-01 -8.36510777e-01 -7.86646187e-01 5.06840527e-01
4.52946395e-01 -8.32673669e-01 9.16267097e-01 -8.83454382e-01
-1.21275258e+00 6.02294385e-01 1.65508613e-01 -6.77159727e-01
4.43580240e-01 -4.64971334e-01 -5.91360450e-01 1.85291409e-01
5.17783454e-03 2.78127104e-01 8.11292946e-01 -7.85285592e-01
-7.22361088e-01 -3.51615041e-01 1.07136384e-01 2.01904431e-01
-8.54798496e-01 -3.14144582e-01 -2.56342530e-01 -7.63501227e-01
-2.73546517e-01 -5.88849247e-01 -2.09957346e-01 3.03815246e-01
-3.24796200e-01 -4.11595404e-01 8.92773092e-01 -6.42987967e-01
1.68351638e+00 -2.46830630e+00 9.82043296e-02 4.24686037e-02
7.42338836e-01 7.48933971e-01 2.21329808e-01 -3.44144814e-02
-5.49395457e-02 5.03376685e-02 -4.17558640e-01 -1.26785785e-01
-8.47857967e-02 2.36037895e-01 1.77745685e-01 2.60377496e-01
3.61624569e-01 7.78535366e-01 -1.12008202e+00 -5.96657574e-01
2.95948744e-01 6.57067120e-01 -8.05718184e-01 3.09393227e-01
1.56017527e-01 3.95528376e-01 -5.39903343e-01 2.98389792e-01
4.05817270e-01 -5.31753540e-01 -1.81781724e-01 -5.31212449e-01
-1.83930174e-02 2.92851388e-01 -6.64585173e-01 1.69074261e+00
-7.07712770e-01 4.25586164e-01 -3.06360900e-01 -1.29415643e+00
8.32725942e-01 2.09609598e-01 4.65941101e-01 -6.15642548e-01
2.39423394e-01 9.75754336e-02 3.15967500e-01 -8.24543297e-01
-1.01409279e-01 -2.49358132e-01 2.47598425e-01 1.44199193e-01
-1.13492936e-01 3.81211191e-01 -1.08811878e-01 -8.59017968e-02
1.04763305e+00 -3.08919638e-01 6.66214883e-01 -2.43963748e-01
7.23863304e-01 -5.01636088e-01 1.02325988e+00 4.14843291e-01
-3.79903674e-01 3.98783147e-01 1.49025679e-01 -4.77471799e-01
-4.37755585e-01 -8.64527285e-01 -3.62559736e-01 7.69915342e-01
1.08683363e-01 -5.75480461e-01 -3.22633624e-01 -1.19560301e+00
2.68224180e-02 5.65038621e-01 -8.52664709e-01 -8.87366235e-01
-4.16134655e-01 -9.76313472e-01 3.24723572e-01 9.22591984e-01
6.66305900e-01 -9.57671404e-01 -9.47123766e-01 2.84809440e-01
-1.93767235e-01 -6.47092998e-01 -6.88288450e-01 3.44582468e-01
-8.18254113e-01 -1.07243514e+00 -8.11055243e-01 -5.86508512e-01
4.68275964e-01 1.30517734e-02 9.96495664e-01 2.38464311e-01
-5.54116726e-01 1.53993383e-01 -4.94763732e-01 -5.81958294e-01
8.17796066e-02 7.20997825e-02 -2.43352391e-02 3.28617990e-01
5.48949599e-01 -7.52792597e-01 -1.19968748e+00 1.06422126e-01
-6.97528601e-01 -1.40532821e-01 7.09659874e-01 1.11206269e+00
5.17637551e-01 1.41166165e-01 8.65901291e-01 -6.12735808e-01
6.06150448e-01 -7.36091852e-01 -1.10478647e-01 9.21870619e-02
-8.33592057e-01 1.03340372e-01 8.72522354e-01 -4.46131259e-01
-7.43558228e-01 -3.15450907e-01 -2.76564032e-01 -6.94028318e-01
1.26635596e-01 6.82258248e-01 -3.44191492e-01 2.92523503e-01
5.40174186e-01 2.79488802e-01 -3.00110076e-02 -5.32871842e-01
-4.63362783e-02 7.14933455e-01 2.53332883e-01 -2.62566388e-01
5.21265447e-01 2.60169178e-01 -1.29209384e-01 -4.78461325e-01
-1.12741768e+00 -4.68750924e-01 -3.25789273e-01 1.90200299e-01
8.96383047e-01 -7.58859992e-01 -6.09646738e-01 2.47511491e-01
-7.79988170e-01 1.98414978e-02 -5.62473238e-01 6.68221831e-01
-1.75106212e-01 4.07857656e-01 -1.45088345e-01 -5.93339145e-01
-6.08166158e-01 -1.17684889e+00 8.69274020e-01 4.89914924e-01
-7.12415352e-02 -1.11132324e+00 1.25347942e-01 8.49052370e-02
5.02350688e-01 1.28704473e-01 1.05562532e+00 -1.10389280e+00
-1.41818047e-01 -2.46081710e-01 -4.12889123e-01 7.86324620e-01
6.76230073e-01 -2.28681743e-01 -1.01833522e+00 -2.88940996e-01
9.30366740e-02 -1.10724740e-01 1.07124686e+00 2.68319339e-01
1.61974978e+00 -4.48177993e-01 -4.14671212e-01 6.22359216e-01
1.15172732e+00 3.66697580e-01 4.04888600e-01 1.48538619e-01
6.87873960e-01 1.97101712e-01 5.16863286e-01 6.74512386e-01
5.04582822e-01 6.92628980e-01 4.67139512e-01 -2.91084290e-01
5.12846410e-02 -8.99285544e-03 -5.95024787e-02 7.78550446e-01
-1.92846298e-01 3.44250873e-02 -6.59280658e-01 4.24363047e-01
-1.75865579e+00 -9.35414612e-01 4.11617368e-01 2.19187212e+00
1.04038668e+00 1.61576256e-01 8.96358415e-02 3.86658728e-01
6.98821723e-01 9.83493030e-02 -9.62515354e-01 -4.10361923e-02
2.37354547e-01 4.54126984e-01 -9.12444964e-02 4.79215570e-02
-1.30489612e+00 3.20353568e-01 4.59192085e+00 8.97981048e-01
-1.37910461e+00 3.37917984e-01 5.71220577e-01 -2.63818234e-01
-8.25247467e-02 -3.87184232e-01 -5.98274887e-01 9.47093725e-01
7.57922709e-01 -2.62759924e-01 1.67996764e-01 8.38619649e-01
2.91625887e-01 4.27918643e-01 -1.21899593e+00 1.30183065e+00
9.00720879e-02 -1.20588601e+00 -1.26289114e-01 -1.78293157e-02
3.21732104e-01 -6.11541271e-02 1.47353470e-01 6.50424600e-01
-3.52574497e-01 -8.32584202e-01 3.06667745e-01 6.17780149e-01
6.83191895e-01 -6.90503299e-01 9.60638523e-01 9.11649913e-02
-1.16243637e+00 -4.95873183e-01 -2.39463940e-01 1.51098073e-01
-7.46380761e-02 6.79336786e-01 -6.50198519e-01 6.80711269e-01
9.66659606e-01 1.25630546e+00 -5.97946346e-01 1.34737778e+00
-4.09738496e-02 6.68056905e-01 -2.23009169e-01 2.77125407e-02
1.29117191e-01 -2.07337812e-02 4.33716387e-01 1.00835931e+00
3.43630999e-01 2.34632641e-01 3.02613229e-01 9.23236787e-01
-1.26827911e-01 3.32689226e-01 -2.82625705e-01 1.60663649e-01
3.63521606e-01 1.31361306e+00 -2.60411948e-01 -4.23978508e-01
-5.23799181e-01 8.90496790e-01 3.63725275e-01 7.74214789e-02
-1.00312209e+00 -6.43718719e-01 5.94800293e-01 9.11055580e-02
4.35747236e-01 4.13093269e-01 -6.50365651e-02 -1.17807341e+00
7.23566264e-02 -7.14415610e-01 6.68686569e-01 -2.97747910e-01
-1.52519464e+00 7.68499851e-01 -1.85728073e-01 -1.55919361e+00
1.75017685e-01 -3.65319133e-01 -9.54668939e-01 8.19483399e-01
-1.74543178e+00 -7.28652358e-01 -5.39658844e-01 6.42692208e-01
5.24878740e-01 -9.69257727e-02 6.88163102e-01 8.52453113e-01
-8.55624557e-01 9.33759093e-01 -2.07068294e-01 1.05257101e-01
7.02913821e-01 -1.25521123e+00 -2.79348403e-01 5.11022568e-01
-1.09626502e-01 7.24738777e-01 4.23515916e-01 -2.61903375e-01
-7.41219282e-01 -1.32069600e+00 3.77147138e-01 -9.15572494e-02
4.05138314e-01 1.02915496e-01 -1.25721407e+00 3.68127853e-01
4.53080377e-03 4.66808110e-01 9.42347884e-01 8.02340657e-02
-1.78529948e-01 -6.59166396e-01 -1.06828952e+00 2.94337392e-01
9.16322827e-01 -4.05981869e-01 -8.05328250e-01 2.10899025e-01
5.99692523e-01 -1.56816542e-01 -8.13957512e-01 8.23816597e-01
5.86612046e-01 -7.92923272e-01 8.81380618e-01 -7.67057061e-01
2.61613071e-01 -2.65563935e-01 -4.18566633e-03 -1.43843496e+00
-4.07851279e-01 -4.95893151e-01 -3.67388427e-01 1.06118786e+00
3.15234601e-01 -8.09837401e-01 3.85920554e-01 4.28942174e-01
-4.93401974e-01 -1.23640203e+00 -8.92415822e-01 -5.68528056e-01
-1.32291481e-01 -1.78254489e-02 5.76460719e-01 1.03058028e+00
-3.65990326e-02 5.13677239e-01 -4.27294254e-01 1.32736340e-01
1.45378515e-01 1.39919877e-01 2.05279931e-01 -1.51675308e+00
-3.71507853e-01 -5.22505045e-01 -6.56558216e-01 -6.58975124e-01
4.22433801e-02 -1.10083807e+00 -9.82569456e-02 -1.42768598e+00
4.26279277e-01 -5.09950101e-01 -1.15947533e+00 7.39281595e-01
-7.35927999e-01 -1.33332266e-02 -3.20361108e-02 -3.49839702e-02
-6.13048851e-01 9.68144655e-01 1.16244328e+00 -2.63878495e-01
-4.20161933e-01 2.85852581e-01 -1.01310480e+00 8.27483594e-01
9.48618412e-01 -5.10367513e-01 -5.69465280e-01 -1.76087558e-01
-1.73485298e-02 -2.01570287e-01 4.85090464e-01 -1.11292255e+00
1.61436886e-01 1.95403203e-01 3.52239817e-01 -3.37484658e-01
3.53076130e-01 -1.00246656e+00 -3.00746500e-01 6.31629705e-01
-3.96675944e-01 2.48723086e-02 1.76867023e-01 7.86328793e-01
-3.10339451e-01 6.52418286e-02 8.12664807e-01 -1.72089264e-02
-5.65367162e-01 6.92983687e-01 8.95697623e-02 3.13978881e-01
1.02573597e+00 -4.83532958e-02 -1.14132732e-01 -6.60322979e-02
-9.43216264e-01 2.78386027e-01 -2.70185210e-02 4.03827012e-01
8.55378807e-01 -1.25392652e+00 -6.72474504e-01 2.67414063e-01
3.82546932e-01 -3.16053554e-02 6.25972509e-01 1.21516263e+00
-7.01905414e-02 1.79773390e-01 -1.10226318e-01 -6.14758670e-01
-1.10565150e+00 7.66631544e-01 4.84374791e-01 -2.84054130e-01
-7.71633208e-01 7.52005875e-01 4.61391985e-01 -3.14014778e-02
2.48413727e-01 -5.61898947e-01 -4.40342575e-01 7.51605630e-02
7.62294173e-01 3.44053835e-01 1.99915737e-01 -2.93998629e-01
-6.47947907e-01 5.60165524e-01 -3.14998299e-01 6.30463898e-01
1.33387899e+00 3.52558978e-02 5.65686896e-02 4.28385913e-01
1.34201932e+00 -6.01302180e-03 -1.22426331e+00 -4.05549943e-01
-2.46002764e-01 -3.38028163e-01 3.43854666e-01 -9.68684494e-01
-1.55937028e+00 1.32421243e+00 1.09407902e+00 -1.22855380e-02
1.49616659e+00 5.01628965e-03 1.00679100e+00 2.60628015e-01
-6.08537346e-02 -8.54132295e-01 2.03993782e-01 -6.03864044e-02
7.14434326e-01 -1.39631510e+00 -9.22263339e-02 -4.23445441e-02
-6.87299788e-01 8.83105636e-01 6.90740407e-01 -4.98141795e-02
9.34692979e-01 -6.63996637e-02 -4.97838780e-02 -1.73626617e-01
-5.42415142e-01 -1.45811945e-01 6.37734890e-01 3.18794131e-01
2.64900059e-01 3.98238637e-02 -4.27172005e-01 1.30131352e+00
3.29803318e-01 7.49208927e-02 4.06952435e-03 7.23939240e-01
-3.49586755e-01 -8.68640304e-01 1.36214674e-01 9.15411472e-01
-7.71602929e-01 -3.63967001e-01 1.04946159e-01 5.68296790e-01
3.94058317e-01 8.12793195e-01 2.30271686e-02 -5.62475085e-01
4.05256808e-01 2.07671919e-03 2.48250648e-01 -7.25788474e-01
-5.25895953e-01 -1.66634098e-01 -2.83140391e-01 -3.59757960e-01
-3.86083096e-01 -5.21702707e-01 -1.26995969e+00 2.04741791e-01
-4.32843357e-01 3.88831168e-01 2.33715549e-01 9.67316091e-01
6.76530242e-01 9.61695433e-01 8.28571796e-01 -5.74295282e-01
-6.18852556e-01 -8.49000752e-01 -3.75555336e-01 3.00598085e-01
7.04553723e-01 -9.17893827e-01 -4.47064757e-01 -1.56579599e-01] | [14.876240730285645, -2.1502602100372314] |
6258ec40-dc80-4268-98b7-6665abf080ea | a-composite-t60-regression-and-classification | 2302.04932 | null | https://arxiv.org/abs/2302.04932v1 | https://arxiv.org/pdf/2302.04932v1.pdf | A Composite T60 Regression and Classification Approach for Speech Dereverberation | Dereverberation is often performed directly on the reverberant audio signal, without knowledge of the acoustic environment. Reverberation time, T60, however, is an essential acoustic factor that reflects how reverberation may impact a signal. In this work, we propose to perform dereverberation while leveraging key acoustic information from the environment. More specifically, we develop a joint learning approach that uses a composite T60 module and a separate dereverberation module to simultaneously perform reverberation time estimation and dereverberation. The reverberation time module provides key features to the dereverberation module during fine tuning. We evaluate our approach in simulated and real environments, and compare against several approaches. The results show that this composite framework improves performance in environments. | ['Donald S. Williamson', 'Yuchen Liu', 'Yuying Li'] | 2023-02-09 | null | null | null | null | ['speech-dereverberation'] | ['speech'] | [-4.26875018e-02 -9.00230169e-01 7.48068750e-01 -1.22618586e-01
-1.16917157e+00 -6.69042468e-01 1.28644735e-01 1.39778838e-01
-2.64752626e-01 5.31040549e-01 3.89225990e-01 -2.98593432e-01
-1.62267312e-01 -4.31512207e-01 -5.30742168e-01 -9.15837049e-01
-4.08893377e-01 -4.72955704e-01 -9.25006270e-02 -2.15784922e-01
-6.11441443e-03 3.10921401e-01 -1.51078284e+00 7.26698637e-02
8.01953077e-01 1.11151409e+00 4.47670519e-01 1.51152503e+00
6.29651546e-01 5.17315745e-01 -1.51230228e+00 5.26392758e-01
1.49259105e-01 -4.60788846e-01 9.32483822e-02 -4.95815724e-01
1.98370308e-01 -2.42690239e-02 -1.86224967e-01 7.75368571e-01
1.01077211e+00 4.34050888e-01 3.59823972e-01 -7.22772002e-01
1.93382964e-01 8.35704863e-01 -1.10913344e-01 5.45982599e-01
5.92358172e-01 1.88468352e-01 9.51494038e-01 -7.02661693e-01
-3.08963746e-01 1.02038252e+00 8.70852411e-01 -1.16273291e-01
-1.06017900e+00 -1.08338833e+00 -5.80477342e-02 4.62980151e-01
-1.33476627e+00 -6.25293195e-01 1.10560083e+00 -3.09228390e-01
8.81803215e-01 5.21047354e-01 3.33389521e-01 9.39848304e-01
4.41165119e-01 3.31596911e-01 1.31037807e+00 -6.16810560e-01
1.96513727e-01 -6.04906864e-02 1.05479918e-01 6.03970699e-02
-1.88431799e-01 7.66262293e-01 -5.61924756e-01 -3.70974422e-01
1.84084028e-01 -4.85409915e-01 -8.64647508e-01 3.89005750e-01
-8.07787836e-01 1.47048578e-01 4.01000679e-01 2.19039440e-01
-9.51264426e-02 5.17630517e-01 9.34676081e-02 6.98506415e-01
3.72544765e-01 7.37044454e-01 -4.52799946e-01 -2.85659641e-01
-7.21899331e-01 1.51826754e-01 1.20900822e+00 2.03208968e-01
6.09177709e-01 4.45053965e-01 -2.65595764e-01 1.02960670e+00
4.66935247e-01 9.29749489e-01 1.79083571e-01 -5.37112355e-01
3.05341393e-01 -7.10956573e-01 3.96716088e-01 -1.04176664e+00
-5.42587221e-01 -1.10391259e+00 -4.16923225e-01 2.98062176e-01
2.79617250e-01 -6.35831118e-01 -7.31748700e-01 1.69376051e+00
2.73998022e-01 5.39293528e-01 -2.79517509e-02 9.00103092e-01
3.09951961e-01 8.91785443e-01 -2.23287374e-01 -2.60256678e-01
9.59508538e-01 -9.21210706e-01 -1.08726883e+00 -2.80869454e-01
1.46159247e-01 -1.40551114e+00 8.61789227e-01 9.32547390e-01
-6.72705591e-01 -9.92562175e-01 -1.49506176e+00 5.46016753e-01
-1.86365455e-01 -1.62301753e-02 3.97413224e-03 1.22268450e+00
-7.72765934e-01 4.79350537e-01 -7.77748346e-01 4.48861450e-01
-5.52645922e-01 4.66686711e-02 2.57706344e-01 2.55201340e-01
-1.49010611e+00 9.18629944e-01 -1.50913522e-01 2.76272506e-01
-1.33654320e+00 -1.02895868e+00 -6.77921057e-01 1.20209041e-03
3.18312913e-01 -2.00304493e-01 1.60772419e+00 -6.22390211e-01
-1.66869152e+00 -1.41718954e-01 -7.94936717e-02 -5.37050843e-01
4.02697921e-01 -7.46489525e-01 -1.20811439e+00 -1.45446315e-01
-5.79722345e-01 -5.57859898e-01 1.33247149e+00 -1.51303470e+00
-6.23932660e-01 1.41560182e-01 -7.50488415e-02 1.88739091e-01
-6.58914819e-02 -2.22490877e-01 1.44230286e-02 -9.32805479e-01
-1.13196215e-02 -6.49481595e-01 -3.01039696e-01 -5.00227213e-01
-3.45318973e-01 2.90435165e-01 6.84537113e-01 -9.83953118e-01
1.72807336e+00 -2.44597244e+00 -4.57684934e-01 2.70000100e-01
3.44052278e-02 3.86734307e-01 -2.70625539e-02 6.32479429e-01
-2.28490293e-01 -3.77731383e-01 2.07614318e-01 -4.75762844e-01
9.93126407e-02 -3.53213459e-01 -4.46743667e-01 5.69378555e-01
-2.02870041e-01 5.09227999e-02 -1.04971242e+00 -4.78395373e-02
4.60600942e-01 7.74232566e-01 -5.42509615e-01 6.09527111e-01
3.00032407e-01 6.76174998e-01 -5.86938187e-02 4.95379835e-01
7.50792801e-01 6.22683525e-01 -1.74098909e-01 -5.08333147e-01
-2.72777736e-01 4.51054603e-01 -1.34083140e+00 1.31662250e+00
-1.22228467e+00 7.21675932e-01 5.56635082e-01 -5.80143809e-01
1.03552401e+00 3.50019604e-01 1.19076543e-01 -7.32126296e-01
2.03200668e-01 4.38205689e-01 2.64871806e-01 -4.37166989e-01
2.01987356e-01 -4.29319665e-02 -5.14237881e-02 5.26075482e-01
7.86126405e-02 -4.58495706e-01 -1.92178383e-01 -2.84585744e-01
1.19552410e+00 -3.21125053e-02 5.04279315e-01 -9.94663388e-02
6.53633893e-01 -9.50030804e-01 4.45270956e-01 9.33866501e-01
-2.40719855e-01 4.78329152e-01 -1.55692324e-01 6.03001975e-02
-5.15484869e-01 -1.44842875e+00 -1.96702316e-01 1.23122346e+00
-1.76309086e-02 -3.41442466e-01 -7.86762297e-01 -8.39607716e-02
-4.64631580e-02 1.07201827e+00 -2.72554249e-01 -5.38158953e-01
-8.02505374e-01 -5.36539793e-01 5.74143708e-01 1.98628783e-01
1.32675216e-01 -5.04526198e-01 -3.38857263e-01 5.43954790e-01
-2.44100034e-01 -6.64353073e-01 -8.06633711e-01 7.65306294e-01
-2.34788597e-01 -5.82358241e-01 -2.83867419e-01 -3.34497243e-01
1.47970384e-02 4.29146051e-01 9.46045101e-01 -3.22469622e-01
-4.85113949e-01 4.24673975e-01 -5.16385138e-01 -8.08095515e-01
-6.14027500e-01 -2.95082122e-01 2.24842623e-01 2.14828774e-01
-3.90881658e-01 -1.31833446e+00 -7.21037447e-01 5.26272237e-01
-5.29054284e-01 -4.55657393e-01 4.32206243e-01 4.29666758e-01
3.34006399e-01 6.77021921e-01 6.14364743e-01 -4.66089249e-01
7.08050013e-01 -4.05298293e-01 -6.00886226e-01 1.49679631e-02
-3.81479502e-01 -3.51757854e-01 9.79352832e-01 -5.44703186e-01
-1.28438079e+00 -2.53249556e-01 -3.87476563e-01 -1.17128707e-01
-1.27377108e-01 4.19864595e-01 -6.30905509e-01 -2.70109605e-02
8.90889883e-01 3.11291721e-02 -5.21356344e-01 -8.39382887e-01
6.30991086e-02 9.96293366e-01 5.88061392e-01 -3.32707614e-01
1.11265290e+00 2.38806903e-01 -3.29367250e-01 -1.01777756e+00
-8.23993027e-01 -6.29628122e-01 -3.13751400e-02 -4.40863609e-01
1.99800953e-01 -9.43758607e-01 -5.88187575e-01 6.48499012e-01
-9.22639072e-01 -4.61879164e-01 1.71973467e-01 9.63045537e-01
-4.70644534e-01 6.23454452e-02 -3.48714381e-01 -1.25286198e+00
-2.26816908e-01 -8.68643701e-01 5.21490037e-01 1.05321929e-01
-2.31128305e-01 -9.71943974e-01 4.46011901e-01 2.05176875e-01
6.45155489e-01 3.06054652e-01 4.26217854e-01 -3.84639919e-01
-3.14538538e-01 -4.75451738e-01 4.95784461e-01 7.05196798e-01
5.79983711e-01 -3.37226808e-01 -1.63606882e+00 -4.10210460e-01
5.64923346e-01 7.67611414e-02 6.44091487e-01 4.98918533e-01
1.06911039e+00 -1.42537430e-01 -1.10777684e-01 6.78322971e-01
1.25130463e+00 6.27792835e-01 3.97415251e-01 6.19050153e-02
5.52534282e-01 1.80163607e-01 7.34344482e-01 7.24946976e-01
-7.79807940e-02 4.50213343e-01 2.46285111e-01 -2.85553753e-01
-4.79676157e-01 -1.53344452e-01 6.33985043e-01 1.16427982e+00
2.00937614e-01 -5.83107710e-01 -6.93151295e-01 3.08206826e-01
-1.15714025e+00 -6.51810825e-01 8.04928988e-02 2.39654875e+00
1.01428187e+00 4.85946499e-02 -4.35744435e-01 4.73176777e-01
4.47664559e-01 5.54312170e-01 -5.29346883e-01 -4.76172149e-01
7.50292167e-02 5.23400545e-01 4.50970441e-01 1.08393776e+00
-9.02516007e-01 3.01158398e-01 6.84219742e+00 8.84056509e-01
-1.25611830e+00 1.40150324e-01 2.92228371e-01 -9.20472220e-02
-2.91317254e-01 -2.01616541e-01 -4.79449391e-01 1.19254529e-01
1.02214062e+00 -3.74407768e-01 8.28407407e-01 5.24242043e-01
6.75783336e-01 -2.35379338e-01 -1.30601275e+00 8.57664168e-01
2.21014053e-01 -4.18123633e-01 -6.92567289e-01 -3.29106808e-01
4.19315606e-01 -2.95295000e-01 5.34205079e-01 4.09454495e-01
1.74483180e-01 -1.01857007e+00 9.29748237e-01 6.70246661e-01
2.72540212e-01 -9.95268822e-01 3.53857219e-01 2.93034166e-01
-1.34781885e+00 -2.69064277e-01 1.13201313e-01 -1.95465520e-01
2.46534064e-01 1.24938595e+00 -1.19726384e+00 6.87571287e-01
6.28832996e-01 2.00206354e-01 -2.30022028e-01 1.49439633e+00
-5.62823534e-01 1.16276824e+00 -2.59849459e-01 1.14347458e-01
-2.85987049e-01 2.73231357e-01 9.33427632e-01 1.49405396e+00
4.44897294e-01 4.62382857e-04 1.54874220e-01 4.43280011e-01
2.62565702e-01 -7.68080205e-02 1.47097996e-02 1.83200657e-01
6.67658985e-01 1.11500788e+00 -1.03044309e-01 5.61339781e-02
-5.69475107e-02 5.61809599e-01 -5.01962602e-01 8.88656437e-01
-1.15390301e+00 -8.96958828e-01 8.59259069e-01 -3.58281106e-01
4.07860667e-01 -2.64810294e-01 2.13552758e-01 -4.70727891e-01
-1.01920821e-01 -1.11798084e+00 -2.27593593e-02 -7.97168851e-01
-1.05310798e+00 7.35227287e-01 -1.71379596e-01 -1.55609059e+00
-5.55605963e-02 -3.59603107e-01 -7.23657370e-01 1.25772643e+00
-1.60536695e+00 -5.24593890e-01 -5.55562191e-02 4.13840622e-01
4.73617733e-01 2.99471110e-01 8.47370863e-01 5.42463243e-01
-3.15048873e-01 8.57377946e-01 2.61291862e-01 -2.60237634e-01
1.13976741e+00 -1.31802404e+00 2.36471742e-01 8.11704516e-01
1.57468587e-01 5.61437786e-01 1.59447265e+00 -2.91128397e-01
-1.33015597e+00 -1.08618176e+00 5.14133215e-01 -2.11593151e-01
8.17803323e-01 -6.78918302e-01 -7.54721165e-01 2.07826003e-01
2.19949782e-01 2.91357283e-02 9.94094729e-01 2.36163035e-01
-5.34480274e-01 -7.71192729e-01 -7.39648461e-01 3.88971299e-01
4.80771899e-01 -7.66019702e-01 -6.41844392e-01 6.98702270e-03
9.73832250e-01 -5.15399039e-01 -6.46432579e-01 2.33893216e-01
6.15114987e-01 -8.58466566e-01 1.18148518e+00 3.98334146e-01
-2.31168330e-01 -7.48240829e-01 -5.93163431e-01 -1.89125085e+00
-1.26995474e-01 -1.24762690e+00 -4.00204927e-01 1.34137654e+00
5.30868053e-01 -8.39500189e-01 -4.10035588e-02 -1.93421289e-01
-2.93480635e-01 -1.29576817e-01 -7.02065527e-01 -1.15688646e+00
-1.85618550e-01 -9.94297624e-01 7.01374233e-01 4.73022282e-01
-2.09375292e-01 1.54878795e-01 -6.42710686e-01 7.99679279e-01
7.20765769e-01 1.99643552e-01 7.56767511e-01 -6.96746528e-01
-9.26619649e-01 -8.99908468e-02 1.16864547e-01 -1.11877251e+00
-2.40563691e-01 -2.67516375e-01 8.61826003e-01 -1.01462984e+00
-5.61909795e-01 -3.53165984e-01 -1.07716048e+00 -3.02584786e-02
-6.23068273e-01 2.07444839e-02 3.21648642e-02 -5.10114610e-01
-2.44808316e-01 5.23478448e-01 1.12216604e+00 -1.10839702e-01
-4.88700330e-01 6.10112250e-01 -5.28711140e-01 8.38297546e-01
8.54160786e-01 -5.99633873e-01 -5.79335749e-01 -4.65734035e-01
-3.65230143e-02 2.17576280e-01 1.02008328e-01 -1.53510869e+00
2.48183146e-01 1.70627497e-02 2.17667401e-01 -5.23489892e-01
4.83530402e-01 -8.01687658e-01 2.84013480e-01 3.91428769e-01
-3.16555709e-01 -3.80988598e-01 3.29117298e-01 7.50465095e-01
-2.93478400e-01 2.01638997e-01 6.78934932e-01 1.82543010e-01
-2.09209800e-01 -2.06525661e-02 -6.80595458e-01 -3.26205403e-01
4.75839287e-01 6.28331751e-02 1.12685703e-01 -5.92830002e-01
-6.41812861e-01 -7.53700137e-02 -2.95085847e-01 3.47802699e-01
3.94812137e-01 -1.04926074e+00 -6.84687018e-01 4.58141305e-02
-1.62949204e-01 -5.92461348e-01 4.64317650e-01 7.37936437e-01
-4.91261855e-02 2.25781083e-01 2.73062617e-01 -4.89989549e-01
-1.35937834e+00 3.80938619e-01 7.11236835e-01 -2.70527061e-02
-1.81977078e-01 1.17736888e+00 3.30411792e-01 -2.10662410e-01
5.57255566e-01 -4.12342012e-01 -3.37999314e-01 1.13659181e-01
1.02233791e+00 5.51716566e-01 3.73344779e-01 -3.02078426e-01
-2.79900163e-01 4.43100452e-01 2.34236926e-01 -6.33026361e-01
9.63703632e-01 -5.57222188e-01 9.18306336e-02 1.10676301e+00
1.45460653e+00 6.47480369e-01 -1.18987274e+00 -2.62459189e-01
-2.08864987e-01 -6.23329222e-01 5.36676347e-01 -1.27717423e+00
-5.86758375e-01 7.46513665e-01 8.72438848e-01 2.67752349e-01
1.87156212e+00 -4.01970387e-01 7.99171865e-01 4.17368919e-01
4.90868419e-01 -1.11349857e+00 3.02150130e-01 5.47591388e-01
9.57775474e-01 -6.17786407e-01 -1.31483957e-01 -1.61133334e-01
3.38257626e-02 8.39752972e-01 3.75271410e-01 -1.53395221e-01
1.13295543e+00 7.08019853e-01 7.25347281e-01 4.52254474e-01
-6.58600986e-01 3.56555432e-02 2.62238353e-01 5.48579097e-01
3.80603105e-01 2.93239713e-01 4.78865802e-02 8.62366855e-01
-8.35971117e-01 -7.07620978e-01 8.34019184e-02 9.15092826e-01
-7.09375978e-01 -1.11239779e+00 -1.09639311e+00 5.72027043e-02
-5.13177931e-01 -2.78537571e-01 -1.08421005e-01 1.56240374e-01
2.11510062e-01 1.59035027e+00 -1.52699351e-01 -7.54875541e-01
7.98495710e-01 -2.30173409e-01 3.93121958e-01 -3.30419511e-01
-8.58469844e-01 7.38408506e-01 2.16504633e-01 -6.66358590e-01
3.48584279e-02 -5.02239466e-01 -9.46168542e-01 1.02163339e-02
-6.98951185e-01 4.57057744e-01 8.17341328e-01 8.21597815e-01
-1.91553473e-01 1.24387062e+00 1.48113632e+00 -8.50160897e-01
-5.83129466e-01 -1.08700705e+00 -8.31219554e-01 -1.44207388e-01
1.31387973e+00 -2.88684249e-01 -9.48400080e-01 -1.43807307e-02] | [15.076435089111328, 5.964961051940918] |
393b9a15-cdc9-43d6-b570-3f1265591c01 | using-convolution-neural-network-with-bert | null | null | https://aclanthology.org/2022.lrec-1.783 | https://aclanthology.org/2022.lrec-1.783.pdf | Using Convolution Neural Network with BERT for Stance Detection in Vietnamese | Stance detection is the task of automatically eliciting stance information towards a specific claim made by a primary author. While most studies have been done for high-resource languages, this work is dedicated to a low-resource language, namely Vietnamese. In this paper, we propose an architecture using transformers to detect stances in Vietnamese claims. This architecture exploits BERT to extract contextual word embeddings instead of using traditional word2vec models. Then, these embeddings are fed into CNN networks to extract local features to train the stance detection model. We performed extensive comparison experiments to show the effectiveness of the proposed method on a public dataset1 Experimental results show that this proposed model outperforms the previous methods by a large margin. It yielded an accuracy score of 75.57% averaged on four labels. This sets a new SOTA result for future research on this interesting problem in Vietnamese. | ['Bach Xuan Ngo', 'Anh Cong Phung', 'Oanh Tran'] | null | null | null | null | lrec-2022-6 | ['stance-detection'] | ['natural-language-processing'] | [ 1.23400711e-01 7.16655701e-02 -5.54491222e-01 -1.74718738e-01
-1.07993269e+00 -4.88166332e-01 9.54133034e-01 1.39370471e-01
-8.44082952e-01 7.48061419e-01 7.34183490e-01 -5.00822663e-01
4.93966758e-01 -8.29405665e-01 -3.73154342e-01 -6.60984099e-01
3.50546181e-01 4.74622011e-01 2.54776776e-01 -4.54928905e-01
7.71824777e-01 3.59722465e-01 -1.01601171e+00 4.07390118e-01
6.86178982e-01 6.52895749e-01 -1.90410569e-01 1.46405637e-01
-1.09464582e-02 9.72923994e-01 -9.07866120e-01 -8.47132385e-01
1.49740830e-01 -2.19362408e-01 -8.79462600e-01 -4.90855463e-02
1.92981437e-01 -7.95503631e-02 -1.92699850e-01 1.04844391e+00
7.98392355e-01 -2.50529945e-01 4.54127342e-01 -9.36803341e-01
-1.14810026e+00 1.03912067e+00 -5.70297897e-01 6.08460188e-01
7.48532861e-02 -1.53869212e-01 1.40107477e+00 -1.09648907e+00
9.95346606e-01 1.02368939e+00 6.14617944e-01 2.79022127e-01
-7.65778840e-01 -7.22709835e-01 -3.75861898e-02 5.41713417e-01
-9.45104480e-01 -2.08569422e-01 1.40524650e+00 -5.35409808e-01
8.08137238e-01 -3.61705087e-02 4.54715252e-01 1.46826875e+00
3.05965960e-01 8.82409096e-01 1.66987801e+00 -3.67775381e-01
-1.05549000e-01 2.02419057e-01 6.60917163e-01 5.87425232e-01
3.88921350e-01 -2.13397846e-01 -3.45345736e-01 -3.06903124e-01
1.96478114e-01 -3.29135209e-01 6.58918917e-02 2.24322110e-01
-1.32910466e+00 1.45495605e+00 5.31284392e-01 7.79812753e-01
-6.26551151e-01 -1.03384674e-01 9.18210268e-01 2.37571284e-01
8.63858879e-01 3.51143628e-01 -9.34592038e-02 -8.19979236e-02
-8.77273738e-01 4.59973961e-01 6.48838699e-01 4.01697099e-01
3.01740348e-01 9.09358710e-02 -5.41156650e-01 7.86073625e-01
5.19683771e-02 4.68335688e-01 4.13955063e-01 -4.74146962e-01
8.88410211e-01 8.18489611e-01 6.29980043e-02 -1.45650899e+00
-2.65858471e-01 -6.63232625e-01 -5.39736927e-01 1.13063924e-01
1.86965138e-01 -2.99919844e-01 -6.18448257e-01 1.44025075e+00
3.06645721e-01 -4.19224501e-01 1.25695869e-01 1.11299336e+00
8.10709536e-01 6.16482794e-01 2.42810361e-02 -1.63202971e-01
1.63604748e+00 -9.03040409e-01 -9.69934404e-01 -6.31727204e-02
4.73338306e-01 -1.24101043e+00 1.21693718e+00 3.04808944e-01
-8.37820828e-01 -2.69906610e-01 -1.17318225e+00 -8.29535872e-02
-3.23936433e-01 2.74272382e-01 2.85041362e-01 7.06783414e-01
-5.86557209e-01 2.55600631e-01 -4.29132074e-01 -2.68364489e-01
7.14156210e-01 -1.47360116e-01 2.47547179e-02 1.44516557e-01
-1.59154749e+00 1.07795858e+00 5.29830039e-01 8.26293826e-02
-7.99628079e-01 -2.84789413e-01 -6.42001808e-01 -2.54466802e-01
5.46294451e-01 -1.33758649e-01 1.03971279e+00 -7.41540670e-01
-1.15380859e+00 1.11874235e+00 -2.64352739e-01 -7.34950840e-01
5.28344274e-01 -3.41623098e-01 -6.66236281e-01 -8.57550092e-03
5.78886211e-01 -2.31114943e-02 5.77078819e-01 -1.10142064e+00
-4.41471666e-01 -2.31663018e-01 4.37171549e-01 -3.51876505e-02
-5.16996384e-01 6.30172968e-01 1.03477938e-02 -8.49649608e-01
1.22517003e-02 -8.80428612e-01 1.20131046e-01 -7.09923029e-01
-4.93418157e-01 -8.77013087e-01 1.02303886e+00 -8.81112099e-01
1.36129677e+00 -1.68845022e+00 -2.20861241e-01 -1.27513381e-03
1.09742321e-01 3.72389436e-01 1.34828821e-01 6.69297695e-01
-5.80185130e-02 2.66632855e-01 -2.43174493e-01 1.12100489e-01
1.30422741e-01 -5.62830418e-02 -3.65647197e-01 6.28649831e-01
2.30295688e-01 1.01625609e+00 -6.07609272e-01 -8.42729330e-01
-3.83558124e-01 3.46278280e-01 -4.13750142e-01 -6.53424039e-02
4.79811616e-03 -2.06910688e-02 -3.69755983e-01 7.50262916e-01
5.62329769e-01 -2.15673447e-03 4.54250991e-01 -2.68396765e-01
-3.05847287e-01 6.32822096e-01 -5.56501389e-01 1.35413945e+00
-4.42503095e-01 7.18920827e-01 -3.35991681e-01 -1.12354374e+00
1.18363607e+00 4.95097548e-01 3.20955724e-01 -8.60185146e-01
6.28959477e-01 3.28884631e-01 2.88644075e-01 -7.52305150e-01
4.46693301e-01 -3.28436971e-01 -4.89781559e-01 8.09807181e-01
-3.41056943e-01 3.22221637e-01 3.73587340e-01 8.96171629e-02
7.51797557e-01 -1.11005558e-02 3.51152539e-01 -4.33036029e-01
7.05250561e-01 3.20514202e-01 7.84831583e-01 2.52336174e-01
-4.30208057e-01 2.84282029e-01 7.13475168e-01 -5.24583459e-01
-1.18566501e+00 -6.00715697e-01 -9.19399038e-02 1.02092111e+00
-2.48485804e-01 -4.04097199e-01 -6.95769489e-01 -1.08921683e+00
-2.82040596e-01 7.12975383e-01 -9.26110268e-01 3.73282611e-01
-1.14513552e+00 -8.43985260e-01 7.48433232e-01 6.48337483e-01
8.99360061e-01 -1.39961541e+00 -8.28298092e-01 2.05051288e-01
-6.07905746e-01 -1.26490533e+00 -3.56865227e-01 -7.50892311e-02
-3.90918165e-01 -1.25332141e+00 -7.27140546e-01 -1.02319455e+00
1.17440850e-01 -7.64428601e-02 8.50539982e-01 9.58793461e-02
1.77771345e-01 -6.58651710e-01 -4.64354098e-01 -6.23198032e-01
-2.17829719e-01 3.76839161e-01 -5.62999099e-02 5.86395822e-02
6.38642907e-01 -1.56128660e-01 -4.65512335e-01 -6.40390366e-02
-7.09559023e-01 -3.01782727e-01 6.52217984e-01 8.75143826e-01
1.52798116e-01 -1.75499380e-01 7.64936924e-01 -1.21261203e+00
1.27635074e+00 -5.34185708e-01 -2.58421093e-01 4.89259213e-02
-6.67876780e-01 -8.28120112e-02 5.55707753e-01 -2.53382891e-01
-1.06816745e+00 -7.25618243e-01 -4.96549457e-01 2.45383695e-01
1.45201758e-01 8.00170004e-01 -1.00357100e-01 5.08576751e-01
4.97691363e-01 -8.17659721e-02 -3.31038594e-01 -3.21292847e-01
2.51637101e-01 1.07200778e+00 2.92268306e-01 -5.73888540e-01
7.57029831e-01 4.09373939e-01 -3.69080782e-01 -5.92165828e-01
-1.27434552e+00 -2.68616021e-01 -5.84913254e-01 -9.08998474e-02
1.08873594e+00 -5.92846572e-01 -6.77878559e-01 8.12135190e-02
-1.28289366e+00 1.31365389e-01 1.97654769e-01 2.89605021e-01
-1.64372697e-01 4.46562439e-01 -7.20841527e-01 -7.25559831e-01
-6.92862511e-01 -1.10340869e+00 6.40848339e-01 -1.91533759e-01
-4.81640399e-01 -1.00575113e+00 2.99056351e-01 9.43474412e-01
3.58175665e-01 4.93400663e-01 1.06566703e+00 -1.12294948e+00
4.71007563e-02 -2.14723349e-01 -3.59768301e-01 2.59776294e-01
2.35421839e-03 -1.74739257e-01 -1.03365171e+00 -1.27215400e-01
2.20449403e-01 -5.27959883e-01 8.79576087e-01 -1.37320068e-02
9.10185695e-01 -6.21424198e-01 2.09110081e-02 -8.94717947e-02
1.45276725e+00 1.78571388e-01 5.87686598e-01 1.01018512e+00
4.81609136e-01 4.05316174e-01 8.95171762e-01 3.11277330e-01
3.60801339e-01 5.95490217e-01 3.21283460e-01 -5.81370369e-02
-2.43690804e-01 -1.11851901e-01 3.97881955e-01 1.01984906e+00
-4.76325989e-01 -1.26334727e-01 -1.16645420e+00 8.17093849e-01
-1.76412332e+00 -1.23217726e+00 -3.77028227e-01 1.55086720e+00
8.57424676e-01 6.27653182e-01 3.08890671e-01 4.66140747e-01
6.39403462e-01 6.92753494e-01 -2.89674960e-02 -8.53275955e-01
-3.04885298e-01 4.97503698e-01 2.66318709e-01 4.45468426e-01
-1.34379351e+00 1.10641205e+00 5.78495359e+00 7.45532155e-01
-1.13390446e+00 7.75169611e-01 2.75807559e-01 9.02938321e-02
-3.77471358e-01 6.43513054e-02 -5.72777510e-01 3.97532403e-01
8.82595181e-01 -1.33875251e-01 -3.45982134e-01 7.17447519e-01
2.52834707e-01 2.74352491e-01 -3.65603089e-01 6.22618735e-01
4.92610097e-01 -1.56367111e+00 -1.55190527e-01 1.39988929e-01
8.53470206e-01 -1.58431586e-02 9.95624065e-02 4.05626059e-01
2.90306747e-01 -8.30798090e-01 7.73968756e-01 6.31641597e-02
4.52737480e-01 -1.12020075e+00 1.26639199e+00 3.57876360e-01
-6.71634734e-01 -1.03748672e-01 -3.93719107e-01 -1.47106633e-01
1.99109569e-01 6.93359137e-01 -1.15241301e+00 5.06736040e-01
3.94648045e-01 4.48009282e-01 -4.15874362e-01 4.59693551e-01
-7.33560741e-01 1.03403950e+00 1.68257982e-01 -3.63429815e-01
7.73855984e-01 1.01992451e-01 4.21546757e-01 1.42049098e+00
9.63712856e-02 -6.44559935e-02 2.95894444e-01 6.91392779e-01
-3.97999644e-01 4.02562559e-01 -6.44764364e-01 -1.10969819e-01
2.76159495e-01 1.33469009e+00 -6.39941394e-01 -5.78479648e-01
-3.81186604e-01 6.67254686e-01 4.86962944e-01 1.22243175e-02
-1.16696966e+00 -4.93978351e-01 2.71598846e-01 2.23242775e-01
2.88411081e-01 -3.20338428e-01 -5.98963320e-01 -1.14539540e+00
1.94943231e-02 -1.14769685e+00 3.18718165e-01 -2.62539268e-01
-1.19816113e+00 7.86699474e-01 -1.67789027e-01 -9.91716921e-01
-4.84423079e-02 -5.56021273e-01 -7.73757577e-01 8.23436797e-01
-1.61674237e+00 -1.46434021e+00 9.04235318e-02 4.13611233e-01
8.48383248e-01 -3.21274459e-01 7.02108622e-01 2.72843122e-01
-6.68011189e-01 4.86055225e-01 -2.88838655e-01 6.67443275e-01
7.52037466e-01 -9.64642942e-01 3.73135626e-01 1.10291183e+00
1.70252770e-01 7.84682155e-01 7.81766534e-01 -8.86599481e-01
-8.65763843e-01 -8.46309781e-01 1.88104165e+00 -3.85735512e-01
1.04487348e+00 -3.09340715e-01 -8.04350853e-01 5.94161510e-01
9.92754161e-01 -4.45800900e-01 8.55945647e-01 3.15480620e-01
-5.91079354e-01 2.16475084e-01 -1.00728667e+00 5.97944498e-01
8.65098298e-01 -5.85479617e-01 -1.19921923e+00 3.47498834e-01
4.93622541e-01 -3.07570193e-02 -8.74961913e-01 1.96551025e-01
4.67942119e-01 -7.10406363e-01 6.63568854e-01 -7.68934429e-01
9.00750101e-01 -1.87232643e-01 -3.57906610e-01 -1.13008153e+00
-3.77251625e-01 -1.15699962e-01 1.20030195e-01 1.37499237e+00
5.27496040e-01 -6.29203439e-01 5.14019430e-01 -1.27010509e-01
-1.23750567e-01 -9.38595116e-01 -7.74526775e-01 -5.31637430e-01
5.80847621e-01 -3.84234756e-01 7.23693430e-01 1.28634930e+00
-7.55666122e-02 7.57362127e-01 -3.74126136e-01 -6.54116869e-02
5.80310225e-01 6.90765738e-01 4.83062834e-01 -1.15985072e+00
1.73573568e-01 -3.78202468e-01 -1.48761109e-01 -4.41978067e-01
5.68510115e-01 -1.07984638e+00 -2.77826011e-01 -1.65634823e+00
4.55924988e-01 -2.79175848e-01 -3.52309257e-01 4.97354358e-01
-2.01747507e-01 6.11678183e-01 1.46655649e-01 2.97423422e-01
-1.52091667e-01 3.45727235e-01 1.22487271e+00 -4.63879347e-01
3.51267487e-01 -1.66071013e-01 -1.02345324e+00 8.04635167e-01
1.24639022e+00 -7.55276740e-01 -1.21499799e-01 -5.24985433e-01
2.36725584e-01 -2.79018611e-01 3.60095054e-01 -7.22934425e-01
-1.65363178e-02 -2.93611884e-01 7.01937452e-02 -9.61424887e-01
1.02487676e-01 -4.56851482e-01 -5.91475546e-01 5.28603137e-01
-4.82929856e-01 3.77707869e-01 -2.35533401e-01 1.75620615e-01
-3.36850494e-01 -3.62732083e-01 5.67285538e-01 -3.99903879e-02
-7.92478740e-01 1.60698704e-02 -3.16224813e-01 2.26289183e-01
1.04349387e+00 2.06436068e-01 -5.53898394e-01 -4.13995348e-02
-4.28985149e-01 -2.89776981e-01 2.07089484e-01 4.47985679e-01
6.59996986e-01 -1.50876796e+00 -1.19064081e+00 -1.55503854e-01
1.89856589e-01 -7.87759125e-01 -2.63296127e-01 1.04140377e+00
-5.27270257e-01 5.94470739e-01 -2.53860742e-01 -1.25290528e-01
-1.51311469e+00 5.74276865e-01 -2.61393398e-01 -5.40596068e-01
-5.86690545e-01 5.34278452e-01 -5.23218989e-01 -3.60431552e-01
-2.14005068e-01 -8.47518519e-02 -7.22369313e-01 5.60311019e-01
2.44083315e-01 1.89783409e-01 2.08436728e-01 -1.10866499e+00
-5.75667918e-01 4.05592114e-01 -8.19691494e-02 -2.93114275e-01
1.42092681e+00 3.07989597e-01 -2.31680796e-01 5.56956232e-01
1.28958082e+00 5.44193506e-01 -3.94224495e-01 -3.58239591e-01
3.02413285e-01 -5.11151135e-01 -8.54357705e-02 -6.79089367e-01
-9.52457190e-01 1.10628963e+00 2.61133999e-01 2.60570019e-01
6.77749097e-01 -5.20217232e-02 1.07758379e+00 2.85298347e-01
2.64058203e-01 -1.33363342e+00 1.76683411e-01 8.26055229e-01
1.09718585e+00 -1.23484731e+00 -5.78077789e-03 -4.02931347e-02
-9.84430254e-01 1.03961861e+00 3.44069034e-01 -5.31212389e-01
4.16166544e-01 6.55271560e-02 5.37387788e-01 -5.21083236e-01
-5.36625683e-01 -2.71084219e-01 2.29584008e-01 2.84034014e-01
9.83330727e-01 1.52942792e-01 -1.23416770e+00 4.76167828e-01
-5.06330729e-01 -3.75181735e-02 4.69608277e-01 1.02495122e+00
-5.01050770e-01 -1.28819156e+00 -2.97145993e-01 1.27978399e-01
-1.11221564e+00 -1.18732847e-01 -6.77747369e-01 1.09086788e+00
3.54718029e-01 1.18302178e+00 -2.93979287e-01 -3.75750303e-01
4.25856054e-01 2.51933753e-01 1.87022552e-01 -5.69401026e-01
-9.82798457e-01 7.24033341e-02 7.19660819e-01 -2.30069190e-01
-8.03376317e-01 -6.83156431e-01 -1.04463863e+00 -4.66291130e-01
-1.11754954e-01 3.15497905e-01 5.32055378e-01 1.02472043e+00
-1.25566840e-01 6.31936014e-01 6.34585440e-01 -2.67647654e-01
-7.34833658e-01 -1.30098641e+00 -2.42594406e-01 6.37420833e-01
1.64287277e-02 -7.96498775e-01 -5.54550439e-02 -2.34984428e-01] | [8.794142723083496, 10.147875785827637] |
dd5651b4-e6b2-4b5b-8b14-1a771e85d852 | pastnet-introducing-physical-inductive-biases | 2305.11421 | null | https://arxiv.org/abs/2305.11421v2 | https://arxiv.org/pdf/2305.11421v2.pdf | PastNet: Introducing Physical Inductive Biases for Spatio-temporal Video Prediction | In this paper, we investigate the challenge of spatio-temporal video prediction, which involves generating future videos based on historical data streams. Existing approaches typically utilize external information such as semantic maps to enhance video prediction, which often neglect the inherent physical knowledge embedded within videos. Furthermore, their high computational demands could impede their applications for high-resolution videos. To address these constraints, we introduce a novel approach called Physics-assisted Spatio-temporal Network (PastNet) for generating high-quality video predictions. The core of our PastNet lies in incorporating a spectral convolution operator in the Fourier domain, which efficiently introduces inductive biases from the underlying physical laws. Additionally, we employ a memory bank with the estimated intrinsic dimensionality to discretize local features during the processing of complex spatio-temporal signals, thereby reducing computational costs and facilitating efficient high-resolution video prediction. Extensive experiments on various widely-used datasets demonstrate the effectiveness and efficiency of the proposed PastNet compared with state-of-the-art methods, particularly in high-resolution scenarios. Our code is available at https://github.com/easylearningscores/PastNet. | ['Wei Xiong', 'Haixin Wang', 'Xian-Sheng Hua', 'Chong Chen', 'Xiao Luo', 'Fan Xu', 'Hao Wu'] | 2023-05-19 | null | null | null | null | ['video-prediction'] | ['computer-vision'] | [ 9.59923416e-02 -2.41235688e-01 -8.44007134e-02 -1.16280213e-01
-3.34769249e-01 -8.90259724e-03 5.22199214e-01 -3.69046241e-01
-1.93514735e-01 7.50298142e-01 3.11021954e-01 -5.63836321e-02
-1.75279096e-01 -9.53104138e-01 -9.34571803e-01 -6.45736933e-01
-2.78290898e-01 -3.23318183e-01 4.52592641e-01 3.12547758e-02
1.92327321e-01 3.55517566e-01 -1.64883459e+00 3.35073024e-01
9.65803146e-01 1.29257190e+00 5.83784699e-01 5.44715703e-01
2.50735581e-01 1.08490312e+00 6.19209558e-02 -2.24690214e-01
2.43848577e-01 -2.78736174e-01 -4.75961596e-01 -1.13272063e-01
-2.35521700e-02 -6.59156024e-01 -1.11889184e+00 8.61730993e-01
2.66460359e-01 5.13950109e-01 2.78310508e-01 -1.05101407e+00
-5.82036555e-01 1.20337225e-01 -2.66792059e-01 4.06302840e-01
4.48200881e-01 4.11622882e-01 8.00011456e-01 -1.07152486e+00
5.35342038e-01 9.53382313e-01 8.18872452e-01 3.71894538e-01
-1.02389717e+00 -7.16914415e-01 2.21760675e-01 5.63061118e-01
-1.67247391e+00 -6.27683938e-01 1.03905773e+00 -4.14855003e-01
8.47181976e-01 1.19294953e-02 8.75620186e-01 1.12903583e+00
3.25723082e-01 6.80229604e-01 7.57320762e-01 6.98830932e-02
1.40493467e-01 -1.82347238e-01 -6.40992761e-01 5.70199788e-01
-2.93225884e-01 3.52748930e-01 -9.61209297e-01 -1.71851411e-01
1.16237009e+00 1.16353840e-01 -5.91624320e-01 -1.07776895e-01
-1.37867379e+00 4.58712816e-01 3.38482141e-01 -4.33535278e-02
-7.33863652e-01 3.07522357e-01 3.72937202e-01 -1.33771643e-01
6.53594613e-01 1.03293791e-01 -2.69120395e-01 -2.36427203e-01
-1.12389600e+00 2.65647650e-01 2.58122236e-01 9.14489746e-01
6.15667641e-01 1.63394347e-01 4.77332659e-02 5.02410650e-01
2.70628124e-01 3.97855282e-01 2.94235617e-01 -1.28282928e+00
4.67862606e-01 -1.22940652e-02 4.37912613e-01 -1.23554373e+00
-1.79305270e-01 -2.27068767e-01 -1.11124325e+00 -3.08708221e-01
-4.42072609e-03 -1.32543683e-01 -5.05526721e-01 1.60200644e+00
4.37230468e-01 1.13410592e+00 -5.34180459e-03 1.27399886e+00
5.79753757e-01 1.24650037e+00 2.42879644e-01 -3.88984054e-01
8.37153256e-01 -8.80961835e-01 -6.02004409e-01 1.28522202e-01
2.33575076e-01 -6.77691877e-01 9.17582691e-01 3.50168675e-01
-1.06464994e+00 -8.60196710e-01 -9.38320637e-01 8.05632547e-02
-3.90313333e-03 9.29043889e-02 6.10243738e-01 -9.25264955e-02
-1.01234257e+00 1.04659283e+00 -1.10782325e+00 -1.05709426e-01
3.31686169e-01 1.63617328e-01 -5.74684776e-02 6.75119087e-02
-1.56144404e+00 3.52802396e-01 5.60684025e-01 1.94720641e-01
-8.05061638e-01 -1.09051967e+00 -7.91404843e-01 1.81568135e-02
3.79544169e-01 -7.16460407e-01 1.07217085e+00 -7.75508523e-01
-1.57080603e+00 7.23821968e-02 -3.09966803e-01 -5.08987546e-01
5.31346262e-01 -3.19824606e-01 -7.09236801e-01 5.18715322e-01
-9.58821625e-02 7.08219409e-01 9.31128085e-01 -1.03112483e+00
-6.33434474e-01 2.06580698e-01 9.67564806e-02 2.44520456e-01
-4.36516702e-01 -2.42858991e-01 -5.50352156e-01 -9.56884980e-01
2.23479513e-02 -7.61333406e-01 -2.66022414e-01 1.83139086e-01
-4.59195394e-03 9.86762568e-02 8.40769529e-01 -9.08796549e-01
1.27838778e+00 -2.15813375e+00 1.09344430e-01 -1.69129893e-02
2.28952929e-01 2.02744097e-01 -1.96702108e-02 3.91475350e-01
1.11124836e-01 -6.80426210e-02 7.44395182e-02 -7.10754469e-02
-2.22953454e-01 3.48740108e-02 -7.23471880e-01 3.53390515e-01
3.41213852e-01 7.42236853e-01 -9.91334200e-01 -6.81745172e-01
4.96628463e-01 1.01161265e+00 -6.79352462e-01 3.05471838e-01
-3.42679679e-01 8.15987825e-01 -8.44515622e-01 2.03689247e-01
6.18269622e-01 -6.36015534e-01 1.26573771e-01 -5.13892770e-01
-4.21484888e-01 5.43597400e-01 -1.03825533e+00 1.84050131e+00
-4.38071162e-01 4.95580018e-01 -1.13988504e-01 -9.55878794e-01
6.63435042e-01 5.22987187e-01 8.02282512e-01 -9.25433695e-01
-1.78580567e-01 -1.70743056e-02 -4.39735591e-01 -6.16839707e-01
7.07185626e-01 -1.67308822e-01 3.65187854e-01 2.05799997e-01
-1.12342708e-01 3.29031885e-01 -9.08150338e-03 2.03091830e-01
9.51134026e-01 7.67832100e-01 -2.25961879e-02 -1.15812957e-01
6.83461845e-01 -1.07429795e-01 9.70628619e-01 4.59093004e-01
-1.23370774e-01 5.92893779e-01 1.12806492e-01 -6.23664558e-01
-1.26426041e+00 -1.13078964e+00 -3.95653620e-02 7.25030184e-01
4.48329747e-01 -6.45128429e-01 -4.81357157e-01 -1.34599283e-01
-2.34175101e-01 4.26861495e-01 -2.80451834e-01 -7.62749836e-02
-8.09107363e-01 -6.67919993e-01 1.48359880e-01 6.06243134e-01
7.08795488e-01 -9.19078708e-01 -6.50726795e-01 4.54781950e-01
-6.02886498e-01 -1.42639136e+00 -2.69372076e-01 -6.27173781e-01
-9.74715054e-01 -7.31053174e-01 -6.46792293e-01 -3.95879686e-01
3.43471199e-01 3.36730719e-01 8.97590876e-01 8.74940455e-02
-2.46365219e-02 3.53357911e-01 -2.40890503e-01 1.70108244e-01
-1.23382904e-01 -1.61374938e-02 2.87731022e-01 1.81845680e-01
1.29722819e-01 -9.16396499e-01 -1.04065406e+00 3.02394629e-01
-7.37907827e-01 8.31695974e-01 4.32608247e-01 7.19885170e-01
7.76879966e-01 4.21760261e-01 6.18979454e-01 -3.25603634e-01
1.23664439e-01 -7.43389189e-01 -6.15966141e-01 6.91376999e-02
-1.57914713e-01 -1.74937978e-01 1.07589161e+00 -5.20020843e-01
-1.47690153e+00 2.28927447e-03 -1.21349320e-01 -8.08129013e-01
2.14336384e-02 4.72826064e-01 1.50102424e-02 -5.59723489e-02
2.08455488e-01 6.51106417e-01 -2.04168245e-01 -3.96851391e-01
3.28531414e-02 2.65549839e-01 5.80390453e-01 -6.48546755e-01
7.46423423e-01 6.66131496e-01 8.90865847e-02 -7.82320559e-01
-9.05004501e-01 -2.61044085e-01 -5.22460520e-01 -5.65629065e-01
8.23420048e-01 -1.32412946e+00 -6.82620645e-01 4.91383314e-01
-1.13297486e+00 -5.09388626e-01 -3.66047025e-02 8.16018522e-01
-7.59741783e-01 3.70601624e-01 -9.10431564e-01 -7.18226910e-01
-2.34938785e-01 -8.44298303e-01 8.43854547e-01 2.29635626e-01
-1.00649623e-02 -9.99691546e-01 -2.49696150e-01 2.72516936e-01
4.60880816e-01 1.87416375e-01 6.18295193e-01 2.80098796e-01
-1.13749278e+00 3.22220773e-01 -3.99647951e-01 1.70468464e-01
-9.56294984e-02 9.92231537e-04 -8.14632237e-01 -1.53086349e-01
7.04210624e-02 -1.10426880e-01 7.68970191e-01 4.19760078e-01
1.59482837e+00 -3.01785201e-01 -2.90953785e-01 7.81849146e-01
1.38241732e+00 1.17882490e-01 6.66981697e-01 5.24042733e-02
8.82534623e-01 4.30438966e-01 9.85050380e-01 9.65109229e-01
5.16730070e-01 6.49903238e-01 1.87699512e-01 1.11561380e-01
3.25980149e-02 -5.56797802e-01 3.25239748e-01 1.34955132e+00
-3.64187330e-01 -3.05939972e-01 -9.46723521e-01 5.16295075e-01
-2.11432981e+00 -1.12999904e+00 4.71080542e-02 1.97431219e+00
5.88483512e-01 8.26589614e-02 -6.88390881e-02 1.89732872e-02
7.82191873e-01 4.76160079e-01 -7.40192115e-01 3.15011799e-01
5.69758490e-02 -5.44293821e-02 4.12536114e-01 2.42017895e-01
-1.21427894e+00 8.80531549e-01 5.80859375e+00 9.15032268e-01
-1.22844815e+00 2.04431519e-01 5.91395974e-01 -2.34146491e-01
-1.58934116e-01 -6.87619224e-02 -4.85399425e-01 7.02773690e-01
1.14391267e+00 -2.48756781e-01 5.80491006e-01 6.46349490e-01
7.64344513e-01 2.87619624e-02 -8.82826865e-01 9.99962628e-01
-1.97009057e-01 -1.77077115e+00 1.95624873e-01 -1.14826553e-01
7.10027695e-01 1.30059734e-01 8.81947502e-02 -2.68573844e-04
-2.08614245e-01 -7.50195026e-01 7.98461795e-01 1.06802332e+00
9.06337380e-01 -7.73105025e-01 3.80073190e-01 2.61808306e-01
-1.67024040e+00 6.34463504e-02 -4.57239956e-01 -3.33813071e-01
5.42474568e-01 6.75981939e-01 -2.38785863e-01 5.36280811e-01
8.92804801e-01 1.29196203e+00 -8.13450515e-02 8.74214649e-01
3.39675322e-02 7.17164814e-01 -3.12269509e-01 3.75544786e-01
1.99964538e-01 -2.61945039e-01 4.71428275e-01 9.48998332e-01
7.08341241e-01 5.80497384e-01 2.04204679e-01 9.40241098e-01
-6.44574612e-02 -1.21375889e-01 -4.03022557e-01 -6.44332319e-02
5.05892396e-01 9.94702160e-01 -3.35743934e-01 -4.60049868e-01
-6.66459262e-01 8.57248902e-01 9.14671794e-02 5.73632002e-01
-1.26410460e+00 -1.40042707e-01 8.08676124e-01 3.45051497e-01
4.88020957e-01 -4.25311148e-01 4.73473817e-02 -1.44045019e+00
2.97511429e-01 -4.97142762e-01 1.28755972e-01 -1.14592969e+00
-1.14090621e+00 3.50198328e-01 -4.66803908e-02 -1.57397211e+00
-4.09931317e-02 -3.66518706e-01 -4.75559622e-01 7.08319783e-01
-1.64969182e+00 -9.55965161e-01 -4.47031140e-01 7.21229672e-01
4.41869289e-01 1.01862282e-01 4.00578737e-01 5.95379949e-01
-3.63197237e-01 4.65347022e-02 1.47244126e-01 -5.74122071e-02
4.45036232e-01 -5.88331461e-01 5.06798565e-01 9.51249897e-01
-2.27214396e-01 3.34711939e-01 6.71450794e-01 -7.49469876e-01
-1.59629428e+00 -1.48002839e+00 6.30273938e-01 1.04578838e-01
9.16536868e-01 -2.13272750e-01 -1.17280257e+00 5.53033710e-01
-1.70936897e-01 2.91174680e-01 5.63353598e-01 -4.04986471e-01
-1.19560368e-01 -1.81908607e-01 -8.09211612e-01 7.31431186e-01
1.41953671e+00 -6.76498473e-01 -2.12531447e-01 2.85753220e-01
8.45102787e-01 -4.39172000e-01 -1.21650231e+00 5.48290908e-01
5.72863042e-01 -1.03433752e+00 1.17495584e+00 -2.07085133e-01
8.54208589e-01 -4.10205215e-01 -9.22342688e-02 -9.94346380e-01
-6.00382328e-01 -6.95421755e-01 -5.49022853e-01 9.62142467e-01
-4.52206954e-02 -5.14330328e-01 7.18906879e-01 6.46237433e-01
-5.98686226e-02 -8.44134331e-01 -8.46032798e-01 -6.87144101e-01
-2.88496852e-01 -8.01788330e-01 6.71783507e-01 8.64640415e-01
-1.42749593e-01 -1.33737087e-01 -8.75375211e-01 5.27504861e-01
7.40043581e-01 1.13551691e-01 4.93821889e-01 -7.71911085e-01
-4.88704085e-01 -5.55922836e-02 -5.29203773e-01 -1.43690550e+00
2.29381517e-01 -4.74574804e-01 -1.00463785e-01 -1.26209223e+00
1.48787916e-01 -5.28593421e-01 -5.46532631e-01 -3.72678265e-02
-4.13599312e-02 3.13224196e-01 1.51943803e-01 4.45863873e-01
-8.10616195e-01 1.04214251e+00 1.33038521e+00 2.97156125e-01
1.95086543e-02 -4.16360378e-01 -1.21110193e-01 8.74563813e-01
1.03663707e+00 -2.79369414e-01 -5.86645246e-01 -4.53637481e-01
1.85088441e-01 4.69176561e-01 7.60434866e-01 -1.38865626e+00
2.74402857e-01 -5.06522357e-01 5.38276792e-01 -6.42803490e-01
6.96269274e-01 -5.95655024e-01 4.91213739e-01 2.33938962e-01
-1.82456464e-01 -3.31164785e-02 1.53705746e-01 7.57176936e-01
-3.38192016e-01 3.31929564e-01 6.36481345e-01 -9.52148587e-02
-9.35883343e-01 6.63684964e-01 -4.25762266e-01 -1.06959812e-01
9.46885288e-01 -3.37131023e-02 -1.38025045e-01 -4.53515053e-01
-5.65804422e-01 1.79003522e-01 6.37267530e-01 4.14956778e-01
8.33628118e-01 -1.56418157e+00 -4.11395878e-01 1.34385303e-01
-1.21642374e-01 -6.63280487e-02 9.17688191e-01 9.03037190e-01
-5.83184659e-01 4.12826657e-01 -1.80310547e-01 -6.10486209e-01
-8.51855278e-01 5.96295476e-01 2.96396732e-01 -5.08271204e-03
-1.05908525e+00 4.63765234e-01 4.37146157e-01 -1.38072893e-02
-1.00190893e-01 -6.07331023e-02 5.37600778e-02 -4.06925261e-01
6.42388880e-01 4.12336767e-01 -4.62176800e-01 -7.95208633e-01
-1.97874710e-01 4.97507364e-01 1.05734281e-01 1.09517490e-02
1.44339240e+00 -3.90089273e-01 1.25766024e-01 4.15295571e-01
1.08087718e+00 -4.57693309e-01 -1.93390691e+00 -4.94516373e-01
-3.00952584e-01 -7.42333829e-01 2.30108887e-01 -1.87451139e-01
-1.16279757e+00 8.80789161e-01 2.98280805e-01 -7.29521438e-02
1.38528872e+00 -3.47799301e-01 1.31710219e+00 2.10436642e-01
6.15601003e-01 -1.21452475e+00 2.46665813e-02 3.49626034e-01
7.85291910e-01 -1.16902077e+00 1.41908392e-01 -6.36908531e-01
-4.78599906e-01 1.01359534e+00 6.57508969e-01 -2.32216045e-01
8.10708821e-01 3.43202055e-02 -3.29651564e-01 1.11216679e-01
-1.08238816e+00 2.93194920e-01 2.12042287e-01 3.91825676e-01
3.35974008e-01 -8.46518390e-03 -4.90848087e-02 4.30876821e-01
-4.89757322e-02 4.35193121e-01 4.38352704e-01 7.96237886e-01
-7.95604810e-02 -6.18666947e-01 -1.08076297e-01 4.46714640e-01
-3.94152015e-01 -1.42404303e-01 4.31749225e-01 4.78775531e-01
1.63380355e-01 6.53480589e-01 2.26802111e-01 -5.60065508e-01
-1.35599166e-01 -1.28219083e-01 2.98290551e-01 -8.85473117e-02
1.43709928e-02 9.62440819e-02 -6.01938888e-02 -9.51614201e-01
-7.46698916e-01 -7.13610768e-01 -1.36463201e+00 -6.71731055e-01
1.71312243e-01 2.26799287e-02 3.34312111e-01 7.78349578e-01
7.91518807e-01 5.30763924e-01 5.11800528e-01 -1.24152470e+00
-9.53954011e-02 -6.07348204e-01 -3.40489805e-01 4.08740520e-01
2.92701215e-01 -7.95458794e-01 -1.48678645e-01 3.83746088e-01] | [10.566471099853516, -1.0261040925979614] |
124bd220-5b36-4532-8170-27b536190237 | data-resources-for-structural-bioinformatics | 2307.02171 | null | https://arxiv.org/abs/2307.02171v2 | https://arxiv.org/pdf/2307.02171v2.pdf | Data Resources for Structural Bioinformatics | While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Structural bioinformatics involves a variety of computational methods, all of which require input data. Typical inputs include protein structures and sequences, which are usually retrieved from a public or private database. This chapter introduces several key resources that make such data available, as well as a handful of tools that derive additional information from experimentally determined or computationally predicted protein structures and sequences. | ['Halima Mouhib', 'K. Anton Feenstra', 'Sanne Abeln', 'Olga Ivanova', 'Bas Stringer', 'Jose Gavaldá-Garciá'] | 2023-07-05 | null | null | null | null | ['protein-structure-prediction'] | ['miscellaneous'] | [ 4.33339119e-01 -2.10471183e-01 -2.35107571e-01 -2.45717421e-01
-4.40404803e-01 -6.18286431e-01 2.74709873e-02 5.04735231e-01
-2.38900453e-01 1.34694052e+00 -2.96744734e-01 -7.41364598e-01
7.02822057e-04 -3.92796814e-01 -5.63364863e-01 -1.21921206e+00
-1.00749008e-01 6.65700912e-01 3.13056916e-01 -4.92557824e-01
3.33620578e-01 8.84132266e-01 -1.55596566e+00 9.39498022e-02
8.86009336e-01 4.51014698e-01 7.10039020e-01 8.26636076e-01
-3.21535915e-01 6.28878117e-01 -4.00682926e-01 -5.21249235e-01
-3.18266839e-01 -7.57971346e-01 -9.65040982e-01 -1.20010838e-01
-3.03279996e-01 1.79866776e-01 3.63456905e-01 5.79708874e-01
5.82148612e-01 -2.65574634e-01 6.50437474e-01 -6.29459798e-01
-4.29535151e-01 -9.96222869e-02 -9.50958878e-02 2.95570016e-01
8.04312766e-01 4.13145512e-01 6.33706391e-01 -6.92378879e-01
9.78377938e-01 9.49078143e-01 6.20148242e-01 5.73649108e-01
-1.41783810e+00 -6.13067895e-02 -3.50832134e-01 3.15744817e-01
-1.06687617e+00 -3.11876327e-01 4.39376414e-01 -5.42132497e-01
1.60442150e+00 3.00670832e-01 7.95707643e-01 7.92692661e-01
6.76516593e-01 3.53795201e-01 1.10208762e+00 -5.28788090e-01
2.49352247e-01 -1.10331457e-02 3.45898509e-01 5.71401536e-01
1.91365004e-01 2.12025285e-01 -5.64067185e-01 -6.34103954e-01
1.91013351e-01 4.07865457e-03 -1.74342096e-01 -8.82564008e-01
-8.59412253e-01 6.72505736e-01 -2.22152486e-01 2.54249960e-01
-5.36993682e-01 -4.43404764e-01 4.67093706e-01 1.36815324e-01
-3.07017285e-03 2.95803308e-01 -1.04123509e+00 -3.60000312e-01
-6.04512215e-01 6.53971076e-01 8.61184895e-01 6.94798887e-01
7.97918320e-01 -2.89117724e-01 7.09259331e-01 6.98882282e-01
3.96253735e-01 2.82241821e-01 3.98550332e-01 -5.97085178e-01
-1.71115398e-01 3.08531106e-01 3.63694310e-01 -5.38113832e-01
-4.26973879e-01 5.23525655e-01 -4.64767694e-01 3.30278754e-01
5.37574828e-01 1.21207029e-01 -7.72222221e-01 1.35933971e+00
6.00092828e-01 -3.49727452e-01 2.79345453e-01 6.96767747e-01
1.05722165e+00 5.34834564e-01 4.87988502e-01 -9.48460996e-01
1.51451921e+00 -6.34115875e-01 -6.83271170e-01 3.08639616e-01
8.09541881e-01 -1.13889420e+00 4.46904004e-01 5.12032270e-01
-1.34948373e+00 -2.08551750e-01 -9.47201073e-01 -3.54265690e-01
-7.56998777e-01 -1.26997173e-01 6.39317393e-01 6.46603405e-01
-7.42239714e-01 9.07240391e-01 -1.20709372e+00 -7.40515292e-01
-1.44028649e-01 4.22997326e-01 -4.62545723e-01 3.14981878e-01
-1.19132435e+00 1.48476565e+00 5.89662313e-01 -3.85864973e-01
-3.57766002e-01 -6.89483345e-01 -5.76861739e-01 -3.84575933e-01
9.96636748e-02 -6.89529657e-01 1.22838318e+00 -4.48203117e-01
-1.45811820e+00 1.35646439e+00 -7.95442104e-01 -4.41428423e-01
-1.30424023e-01 2.48429030e-01 -1.30019233e-01 3.10673326e-01
-2.94026285e-01 2.75352508e-01 -1.87811665e-02 -9.62018430e-01
-3.58879000e-01 -4.68173474e-01 -1.55634403e-01 2.60291427e-01
5.97508252e-01 5.93709648e-01 6.92056119e-02 -4.10767674e-01
4.31853570e-02 -6.34440720e-01 -6.30089402e-01 -1.64438561e-01
-1.55089170e-01 -2.75853634e-01 5.52112579e-01 -6.34744406e-01
9.55941916e-01 -1.56988525e+00 4.24933463e-01 1.59394383e-01
2.79076993e-01 3.80638093e-01 3.12625736e-01 1.25180602e+00
-6.17391765e-01 -1.09992726e-02 -3.94140393e-01 4.49334681e-01
-2.60519058e-01 2.84077674e-01 -3.15226987e-03 4.75597352e-01
-2.77100876e-02 9.32978094e-01 -6.66715562e-01 -2.78822958e-01
5.99968553e-01 6.62207961e-01 -1.17169969e-01 1.11593612e-01
-2.46171460e-01 5.24131000e-01 -4.78366554e-01 6.24544203e-01
8.44762504e-01 -3.95788878e-01 8.03149819e-01 -5.01875952e-02
-3.70736271e-01 7.12489426e-01 -6.62897944e-01 1.16005433e+00
4.10105556e-01 -1.69868737e-01 7.58800805e-02 -1.11504662e+00
1.06278634e+00 4.09038574e-01 8.46567512e-01 -1.99595347e-01
-1.22233018e-01 1.31022245e-01 1.97920293e-01 -4.71731454e-01
-3.99861634e-02 -3.43318462e-01 4.80838984e-01 4.21244174e-01
-2.01756924e-01 5.83518147e-02 5.35041451e-01 2.08371907e-01
9.41578329e-01 5.43433428e-01 9.01232362e-01 -3.80319417e-01
1.06088591e+00 5.55862486e-01 5.65090477e-01 9.38489884e-02
-2.97068179e-01 -2.15898920e-03 5.95852673e-01 -8.87924254e-01
-1.53677225e+00 -8.29320729e-01 -3.24754119e-01 1.18927610e+00
1.64198875e-02 -8.98659110e-01 -1.07729173e+00 1.51650548e-01
-2.19817892e-01 -9.43544414e-03 -2.24870428e-01 9.32022929e-02
-5.78978717e-01 -1.30807877e+00 5.65356063e-03 6.74914345e-02
-1.68161467e-01 -1.26421165e+00 -7.63172328e-01 4.65072632e-01
6.37856647e-02 -5.17928779e-01 9.67649743e-02 6.93816602e-01
-1.06338060e+00 -1.56601501e+00 -4.24347013e-01 -8.68739903e-01
3.91065508e-01 1.99956477e-01 1.19530129e+00 4.08971429e-01
-6.88667774e-01 -1.15668468e-01 -3.04882079e-01 -5.98972440e-01
-6.05370462e-01 -3.33607718e-02 1.73762143e-01 -7.50093877e-01
1.18127298e+00 -8.81475806e-01 -5.03927052e-01 2.23134741e-01
-7.97657549e-01 1.86930522e-01 4.79791969e-01 8.64701033e-01
1.05949962e+00 -2.34599113e-01 1.95333824e-01 -9.59009290e-01
7.14258313e-01 -1.82135217e-02 -5.42160273e-01 4.84410971e-01
-8.02267075e-01 2.09221154e-01 5.19870758e-01 5.32636791e-02
-8.49626482e-01 5.30823588e-01 -7.31860280e-01 4.32037205e-01
-5.12171209e-01 5.41704237e-01 -4.44305390e-01 -2.06755102e-01
6.99853957e-01 7.12117791e-01 6.27637804e-01 -7.39609122e-01
-7.75658786e-02 3.82530510e-01 1.50216088e-01 -6.09929860e-01
3.65577340e-01 1.90515146e-01 1.23517245e-01 -8.54038656e-01
-2.80172825e-01 -5.78629613e-01 -1.01438594e+00 1.02399051e-01
6.59440100e-01 -2.02848718e-01 -1.31375670e+00 4.40778494e-01
-8.26607645e-01 -8.41479301e-02 3.34562987e-01 3.93256247e-01
-1.02742398e+00 1.01693261e+00 -7.69062877e-01 -6.58124149e-01
-5.65279722e-01 -1.63778675e+00 1.04477954e+00 -2.86292308e-03
-2.16236994e-01 -1.01108503e+00 3.18931490e-01 4.30113018e-01
1.13221765e-01 5.04879773e-01 1.21833873e+00 -4.26686287e-01
-2.88295031e-01 2.13073581e-01 3.34400028e-01 -1.62246510e-01
1.65809900e-01 4.91660655e-01 -4.00942266e-01 -2.95010149e-01
-5.56287877e-02 -4.63204414e-01 5.96173108e-01 4.23245102e-01
9.75117505e-01 -1.65055811e-01 -7.20631361e-01 3.72102827e-01
1.46909499e+00 5.64897895e-01 8.89824629e-01 5.33560216e-01
1.39041722e-01 8.46755683e-01 9.62652147e-01 2.27803871e-01
-1.96112916e-01 6.54752553e-01 2.15409249e-01 1.28066577e-02
4.64131415e-01 1.05663702e-01 2.35005140e-01 6.18371189e-01
-8.13513815e-01 9.57275778e-02 -1.04772329e+00 -1.14025846e-01
-1.63577497e+00 -1.21193230e+00 -4.23674583e-01 2.08860183e+00
1.49818003e+00 -1.42534018e-01 6.07956767e-01 1.31679073e-01
5.27832389e-01 -4.14879888e-01 -8.95342112e-01 -7.05775142e-01
-2.23415181e-01 4.48922008e-01 4.88370746e-01 5.17246246e-01
-8.99995148e-01 9.39662814e-01 8.50267124e+00 7.66261876e-01
-1.03925240e+00 -2.83061385e-01 3.48706037e-01 8.70907083e-02
4.40424420e-02 1.36575416e-01 -8.17290187e-01 3.81805956e-01
1.51459873e+00 -3.78345579e-01 1.65273741e-01 9.02323723e-01
6.16101682e-01 -3.04354340e-01 -7.86516666e-01 8.06403458e-01
-5.69418311e-01 -1.70783389e+00 -1.79694861e-01 4.34559643e-01
1.97612286e-01 -1.06137149e-01 -3.20983976e-01 -2.77112454e-01
3.76278132e-01 -1.14676547e+00 -8.63320474e-03 5.83863139e-01
4.05588895e-01 -9.46631491e-01 7.13709593e-01 5.52941740e-01
-1.03733528e+00 6.72057331e-01 -7.95531929e-01 -1.55259699e-01
3.36333692e-01 5.43744087e-01 -5.55144608e-01 5.07557929e-01
7.74365067e-01 6.90137684e-01 -1.96997643e-01 8.27328503e-01
-6.03432395e-02 3.23771954e-01 -2.71482199e-01 -4.08039719e-01
-1.16576672e-01 -7.50491679e-01 5.25073670e-02 1.07710576e+00
-3.43347758e-01 6.35930061e-01 1.29458830e-01 4.87584949e-01
5.54258585e-01 4.92970675e-01 -2.93386489e-01 -1.91310272e-01
1.26310259e-01 1.12998760e+00 -5.09680927e-01 -3.85127187e-01
-6.36543512e-01 6.48307979e-01 1.89003080e-01 2.66420364e-01
-7.00105548e-01 -3.98940891e-01 1.17678094e+00 2.35106707e-01
3.32042456e-01 -2.79642254e-01 2.37783417e-01 -7.37846673e-01
-3.26005608e-01 -1.13657212e+00 2.16634631e-01 -8.23044300e-01
-1.19300616e+00 6.34168386e-02 -1.19171187e-03 -4.93160397e-01
-1.55522943e-01 -1.21070576e+00 -9.20610651e-02 1.17544913e+00
-1.15046203e+00 -7.07273841e-01 2.41736040e-01 1.16498552e-01
1.72793478e-01 7.97948390e-02 1.08950293e+00 -4.34120186e-02
-5.73916256e-01 3.28537375e-01 8.81594718e-01 -4.01205629e-01
6.80019498e-01 -1.22076213e+00 4.36125934e-01 1.14956364e-01
-7.53416538e-01 1.26734364e+00 1.21546066e+00 -8.02372277e-01
-1.56728625e+00 -6.70939565e-01 1.00855839e+00 -5.81787705e-01
4.94389206e-01 -2.19443932e-01 -1.14218795e+00 4.96565670e-01
1.89863697e-01 -6.62287414e-01 1.33416247e+00 -1.36984766e-01
1.30086258e-01 5.47188640e-01 -1.31657493e+00 3.43149245e-01
9.04790521e-01 -2.30773658e-01 -6.33212686e-01 6.88265085e-01
2.43057966e-01 -5.67013562e-01 -1.47466838e+00 3.27915162e-01
7.58354545e-01 -1.15646541e+00 1.24225223e+00 -1.10316515e+00
1.98974684e-01 -4.06357348e-01 2.35440820e-01 -4.76390213e-01
-4.91504371e-01 -7.09320962e-01 -2.35940292e-01 4.72340047e-01
5.61192870e-01 -7.31703818e-01 1.09221327e+00 7.56304383e-01
4.02947282e-03 -1.19966531e+00 -5.50509453e-01 -6.54398859e-01
4.00998533e-01 3.17617834e-01 5.62774658e-01 5.65271556e-01
5.34565866e-01 4.95013058e-01 -1.50103971e-01 -4.42135453e-01
5.52010834e-01 2.72870272e-01 8.10848653e-01 -1.13423729e+00
-7.31039792e-02 -1.16842702e-01 -7.37732828e-01 -1.11971831e+00
-1.21526271e-01 -5.56194961e-01 -3.32700908e-01 -1.53798211e+00
5.61922908e-01 2.42961973e-01 1.20995000e-01 2.77902931e-01
-6.63259700e-02 -5.99562600e-02 -5.40063620e-01 3.81494135e-01
-3.23648691e-01 1.87516183e-01 1.15635622e+00 3.23833019e-01
-8.40612352e-02 -1.34135947e-01 -6.15863144e-01 4.78855163e-01
1.13738096e+00 -2.99015105e-01 -3.27089846e-01 5.66816747e-01
2.70193696e-01 -1.72673494e-01 -4.94870804e-02 -4.05101210e-01
-2.00566366e-01 -7.70485103e-01 3.84204149e-01 -1.27903545e+00
3.95682245e-01 -6.35377884e-01 6.68726027e-01 7.84097493e-01
9.53586586e-03 2.30638400e-01 7.49679059e-02 4.78260398e-01
2.56494302e-02 -3.77544552e-01 1.16175771e+00 -5.10906756e-01
-5.17029703e-01 1.95488244e-01 -1.03695107e+00 -4.58076596e-01
1.40463245e+00 -8.30686927e-01 -2.33355492e-01 -3.48382778e-02
-1.26966703e+00 5.24112843e-02 1.10063100e+00 -2.92336822e-01
3.46024275e-01 -7.76636183e-01 -1.87444389e-01 -5.63553609e-02
1.58223003e-01 -4.59921151e-01 1.28090695e-01 1.01868498e+00
-1.29574084e+00 1.10549319e+00 -4.19717312e-01 -5.80973744e-01
-1.97262836e+00 1.25805295e+00 5.78622162e-01 -1.50242940e-01
-2.94607848e-01 3.67339462e-01 1.47120982e-01 -5.72180748e-01
-1.41735390e-01 1.36143789e-02 -3.56479883e-01 -5.05263269e-01
6.94507837e-01 1.22547291e-01 2.73506701e-01 -8.56320381e-01
-4.88116175e-01 6.04944468e-01 -2.68611342e-01 4.97864276e-01
1.49201179e+00 -3.73030156e-01 -5.91917276e-01 1.50322676e-01
9.22179818e-01 -4.59247559e-01 -7.85196900e-01 -4.86242510e-02
1.77973911e-01 -5.43572493e-02 -6.47168577e-01 -6.82605088e-01
-2.87632823e-01 7.72043943e-01 5.39946437e-01 5.17106801e-02
1.02919078e+00 2.01985300e-01 8.58750939e-01 6.43179655e-01
4.07637835e-01 -1.06901729e+00 -4.72137839e-01 5.35320044e-01
5.41723728e-01 -8.80678415e-01 2.73877978e-01 -7.15030968e-01
-3.07511747e-01 1.14859927e+00 3.47393930e-01 2.93528467e-01
5.75288951e-01 4.38678801e-01 1.52392626e-01 -4.19310063e-01
-1.08020008e+00 -2.30328962e-01 -2.57608384e-01 9.24105406e-01
1.12558341e+00 -2.20651329e-01 -1.08787942e+00 2.35929325e-01
-3.98998231e-01 -1.21515669e-01 2.45150581e-01 1.53168523e+00
-9.17445838e-01 -2.02996707e+00 -5.39762914e-01 3.01302433e-01
-7.98508525e-01 -1.81081071e-01 -1.22669947e+00 4.56521779e-01
-2.27227822e-01 7.19288051e-01 -5.84774077e-01 7.46588036e-02
1.15735881e-01 4.99394089e-01 7.42596984e-01 -3.51211250e-01
-4.53919381e-01 1.44783109e-01 1.97759479e-01 -4.14331257e-01
-9.80369747e-01 -7.67702639e-01 -1.59682584e+00 -9.99962747e-01
-4.67643708e-01 7.84230292e-01 6.86333597e-01 7.56687939e-01
5.37522256e-01 9.94761586e-02 -7.14977607e-02 -6.30865932e-01
-6.51296303e-02 -7.13227928e-01 -7.55429685e-01 2.73721308e-01
7.66752474e-03 -7.19801843e-01 9.22139511e-02 5.87348104e-01] | [4.738345623016357, 5.319107532501221] |
b6260780-1607-49de-915e-3308e755cf01 | speaker-change-detection-for-transformer | 2302.08549 | null | https://arxiv.org/abs/2302.08549v1 | https://arxiv.org/pdf/2302.08549v1.pdf | Speaker Change Detection for Transformer Transducer ASR | Speaker change detection (SCD) is an important feature that improves the readability of the recognized words from an automatic speech recognition (ASR) system by breaking the word sequence into paragraphs at speaker change points. Existing SCD solutions either require additional ensemble for the time based decisions and recognized word sequences, or implement a tight integration between ASR and SCD, limiting the potential optimum performance for both tasks. To address these issues, we propose a novel framework for the SCD task, where an additional SCD module is built on top of an existing Transformer Transducer ASR (TT-ASR) network. Two variants of the SCD network are explored in this framework that naturally estimate speaker change probability for each word, while allowing the ASR and SCD to have independent optimization scheme for the best performance. Experiments show that our methods can significantly improve the F1 score on LibriCSS and Microsoft call center data sets without ASR degradation, compared with a joint SCD and ASR baseline. | ['Jinyu Li', 'Xiong Xiao', 'Min Hu', 'Zhuo Chen', 'Jian Wu'] | 2023-02-16 | null | null | null | null | ['change-detection'] | ['computer-vision'] | [ 4.08724666e-01 -2.34521143e-02 -8.68658870e-02 -5.52613556e-01
-1.26899946e+00 -6.34566188e-01 6.11567378e-01 -7.80447274e-02
-3.05842638e-01 1.89483896e-01 4.12929028e-01 -6.34363651e-01
4.46444094e-01 -1.91185489e-01 -4.90224689e-01 -6.18016124e-01
3.10964972e-01 2.44068317e-02 3.92357826e-01 -3.09868634e-01
2.40226790e-01 4.25439149e-01 -1.48195148e+00 1.88925833e-01
1.12618315e+00 8.60738158e-01 3.39932084e-01 1.01729596e+00
-2.45371416e-01 5.97642899e-01 -8.33016932e-01 -8.16216245e-02
1.02717645e-01 -4.80660111e-01 -6.08819187e-01 -5.64777330e-02
4.02808070e-01 -6.81746453e-02 -4.21999663e-01 1.03830600e+00
9.21023428e-01 3.11691344e-01 4.38402385e-01 -7.43622780e-01
-4.88562822e-01 9.44195330e-01 -4.34310585e-01 5.81253767e-01
5.34376740e-01 -1.84714999e-02 9.04088140e-01 -9.72949386e-01
-1.24977082e-01 1.44945002e+00 3.90166909e-01 7.17503965e-01
-1.02448308e+00 -7.27157593e-01 6.11055076e-01 3.11927319e-01
-1.56899273e+00 -1.26111615e+00 7.45742619e-01 -1.90190896e-01
1.25497985e+00 5.59305906e-01 1.78199932e-01 1.03976917e+00
-9.75775942e-02 9.51318800e-01 6.68949485e-01 -6.89598620e-01
2.29079947e-01 1.08516172e-01 6.17712855e-01 4.39593285e-01
-2.71779239e-01 -9.28013399e-02 -8.37770760e-01 1.49958715e-01
4.25898165e-01 -3.05484980e-01 -6.19286597e-01 1.85737446e-01
-1.00962305e+00 5.19099593e-01 -1.41078353e-01 3.07827711e-01
-2.76602566e-01 -1.68146983e-01 2.46376231e-01 3.43457252e-01
5.81944823e-01 1.29533470e-01 -3.36883008e-01 -4.15315688e-01
-9.89894450e-01 -2.03931436e-01 6.55537486e-01 1.10210526e+00
4.78810370e-01 3.19096476e-01 -6.00284040e-01 1.17762697e+00
4.45348799e-01 7.67122269e-01 1.04183829e+00 -5.11513412e-01
5.26078463e-01 3.43350589e-01 9.66479350e-03 -6.08245552e-01
-3.26496959e-02 -5.24263859e-01 -5.12197912e-01 -3.69137943e-01
8.07376727e-02 1.24327643e-02 -1.25249362e+00 1.71455169e+00
2.01699406e-01 2.75794059e-01 1.31775796e-01 5.68932474e-01
8.12444150e-01 1.02994323e+00 -2.42593959e-01 -5.20490110e-01
1.43021476e+00 -1.16547751e+00 -1.20824552e+00 -4.10322994e-01
4.13188457e-01 -7.49528229e-01 1.28286040e+00 2.85507619e-01
-1.13914526e+00 -5.22557080e-01 -1.21584630e+00 -2.06631809e-01
-1.68041274e-01 2.86708623e-01 -1.60764351e-01 9.83980775e-01
-1.33714390e+00 2.45774891e-02 -9.64575410e-01 -3.12279880e-01
-2.79602587e-01 2.44025260e-01 6.92708194e-02 1.72692999e-01
-1.42228591e+00 9.23092782e-01 -4.56915796e-02 4.00136054e-01
-7.91094542e-01 -5.29694855e-01 -9.04195726e-01 1.86489105e-01
2.36692876e-01 -1.21132120e-01 1.75792181e+00 -7.46299922e-01
-2.35011506e+00 6.16412222e-01 -8.15072119e-01 -4.22728151e-01
3.01222056e-01 -3.61311913e-01 -8.21970224e-01 -6.34616315e-02
-3.04131210e-01 2.11447015e-01 1.15325725e+00 -7.97210515e-01
-6.28331125e-01 -3.27041298e-01 -4.05703634e-01 3.96499038e-01
-3.40209424e-01 3.01178008e-01 -5.24406850e-01 -7.26430297e-01
1.64347127e-01 -6.94788814e-01 2.48447005e-02 -6.85603201e-01
-4.09687936e-01 -5.60289025e-01 7.05040455e-01 -1.22917163e+00
1.80410182e+00 -2.36328435e+00 8.84432811e-03 -3.08391880e-02
-1.64253339e-01 5.94706595e-01 -2.98121929e-01 2.99395770e-01
-1.00438304e-01 -1.87850781e-02 -1.33992463e-01 -5.22268057e-01
6.12806603e-02 7.09895138e-03 -4.93124485e-01 3.16468239e-01
1.69628069e-01 6.54740691e-01 -5.17037213e-01 -1.55784681e-01
9.78134871e-02 4.36576188e-01 -2.74731189e-01 5.02882481e-01
7.77507052e-02 1.13908887e-01 2.61854846e-02 2.27208436e-01
6.05240047e-01 1.92603394e-01 -6.43250882e-04 1.34212852e-01
-3.35090905e-01 1.14140773e+00 -1.21735454e+00 1.42660534e+00
-5.74126542e-01 6.11290991e-01 2.82048970e-01 -9.47762072e-01
1.13380468e+00 7.39453197e-01 -5.74035756e-02 -7.78135061e-01
-9.72041711e-02 4.89075705e-02 -4.34002047e-03 -3.50277185e-01
5.87790132e-01 -8.02863389e-02 -1.95852257e-02 2.82770663e-01
-1.13921143e-01 -4.61975783e-02 -1.70001626e-01 8.86971205e-02
1.08341241e+00 -4.17218596e-01 3.61405432e-01 -1.06299594e-01
8.96141589e-01 -5.80295742e-01 7.64738083e-01 7.38081813e-01
-3.33915710e-01 6.24818563e-01 1.12723015e-01 2.01344475e-01
-5.94853401e-01 -1.19290864e+00 1.34839073e-01 1.24241829e+00
7.32820258e-02 -2.69452870e-01 -8.07134867e-01 -5.67033648e-01
-2.85341173e-01 1.26381719e+00 -4.75155115e-02 -3.64760965e-01
-8.42193365e-01 -3.57823551e-01 7.53532350e-01 4.13078070e-01
2.13723585e-01 -6.63975120e-01 -1.40657229e-02 3.23454589e-01
-5.73601902e-01 -1.17732584e+00 -1.15699947e+00 2.32468843e-01
-4.77831274e-01 -3.39390457e-01 -6.19538128e-01 -9.21253264e-01
3.05354834e-01 5.38238823e-01 6.80167258e-01 -3.55716348e-01
1.81040376e-01 3.62089425e-01 -5.48313737e-01 -4.31599766e-01
-8.19654644e-01 2.91690737e-01 2.69423902e-01 3.57895970e-01
4.87742543e-01 -3.63000035e-01 -3.89329016e-01 4.68615025e-01
-6.18096709e-01 -9.20928195e-02 4.74274158e-01 5.08158684e-01
2.04832941e-01 -1.95620343e-01 9.99004424e-01 -3.74886572e-01
5.95655560e-01 -9.05450061e-02 -5.10919094e-01 4.64703977e-01
-8.03947687e-01 1.24690458e-01 4.52018291e-01 -5.00812650e-01
-1.28510904e+00 5.69764562e-02 -6.07565641e-01 -1.62692577e-01
-1.11574575e-01 3.10842812e-01 -6.42937422e-01 2.08163649e-01
4.02917206e-01 7.91874826e-01 1.08244866e-01 -6.57105744e-01
3.96279007e-01 1.49236619e+00 6.70130253e-01 -7.19361827e-02
6.12561941e-01 -1.66708604e-01 -9.69882190e-01 -1.30514979e+00
-6.27635896e-01 -9.80124533e-01 -4.22480196e-01 2.08902359e-03
5.22820711e-01 -1.15908992e+00 -3.75889659e-01 6.80214822e-01
-1.37591863e+00 -1.17711626e-01 -3.68761155e-03 5.95885575e-01
-2.96020091e-01 5.76092839e-01 -5.15096903e-01 -1.09384394e+00
-4.87866551e-01 -1.19955337e+00 1.24227536e+00 1.93165690e-01
-3.42003107e-01 -7.29512632e-01 3.99896912e-02 4.11413163e-01
6.00845635e-01 -6.90727949e-01 7.70414591e-01 -8.96012306e-01
-2.79041409e-01 -2.91248202e-01 1.83547363e-01 7.45779276e-01
5.10048032e-01 -9.25464407e-02 -1.24650514e+00 -4.60725456e-01
3.82275522e-01 3.52303028e-01 7.71360159e-01 4.80489075e-01
8.85214269e-01 -5.91613173e-01 -2.60466516e-01 2.88593292e-01
9.16093111e-01 6.73350513e-01 7.09966123e-01 -1.16658241e-01
5.83629251e-01 3.36939782e-01 2.95286387e-01 2.05758736e-01
4.41327035e-01 8.91731501e-01 -1.60548776e-01 9.99916494e-02
-3.28805655e-01 -1.75055116e-01 1.26088488e+00 1.67021120e+00
4.27851021e-01 -5.95733225e-01 -8.80986214e-01 6.17573082e-01
-1.54906094e+00 -8.65359426e-01 -5.81119955e-02 2.54859781e+00
1.11067498e+00 -1.36335883e-02 -4.08412144e-03 2.89701045e-01
1.15277898e+00 4.75027889e-01 -5.70095360e-01 -5.69392204e-01
-3.79186086e-02 5.02567440e-02 3.47948223e-01 9.20893192e-01
-7.28402078e-01 9.73771095e-01 6.90868759e+00 9.84370291e-01
-1.29870081e+00 2.07866192e-01 1.24544635e-01 -2.06577912e-01
-3.16778779e-01 -3.34985286e-01 -1.13450336e+00 4.02909756e-01
1.38384187e+00 -4.96249497e-01 5.67052484e-01 5.04211485e-01
7.37062454e-01 1.39929920e-01 -1.27987659e+00 1.19175911e+00
4.21623766e-01 -6.56397879e-01 5.69952577e-02 -3.05698484e-01
2.66119689e-01 -7.44239017e-02 -9.12276097e-04 4.73655701e-01
2.50391364e-01 -8.33284855e-01 8.63977730e-01 1.90645084e-01
7.31723607e-01 -5.42436957e-01 4.06360120e-01 4.69366252e-01
-1.21606708e+00 3.30078267e-02 -3.44287641e-02 6.36472106e-02
3.76559615e-01 6.33264840e-01 -1.10593569e+00 4.61373627e-01
2.95152366e-01 5.24931908e-01 -5.33881187e-01 7.83589542e-01
-3.33193868e-01 1.27820706e+00 -1.67829812e-01 -1.33414045e-01
-1.24237649e-01 6.27028495e-02 9.00668979e-01 1.57339823e+00
3.48482311e-01 7.59373829e-02 -5.15588820e-02 3.90015274e-01
-1.82441948e-03 1.49763644e-01 -2.90578127e-01 -9.91841704e-02
9.47006166e-01 9.40497458e-01 -3.28169703e-01 -2.89464742e-01
-2.01465920e-01 1.11399889e+00 2.43169725e-01 5.05878031e-01
-7.44191647e-01 -6.63194656e-01 9.19396460e-01 -8.71359929e-02
4.24899518e-01 -3.55557859e-01 -2.43466139e-01 -1.22953975e+00
2.54408091e-01 -1.11012232e+00 1.56569093e-01 -4.54440117e-01
-1.06450248e+00 5.49579501e-01 -4.99258488e-01 -1.15338314e+00
-2.64430285e-01 -2.71437585e-01 -6.56153619e-01 1.02377915e+00
-1.75932515e+00 -6.46201432e-01 -7.64723774e-03 3.31246793e-01
1.11565232e+00 -8.04905072e-02 6.51490808e-01 3.27437252e-01
-1.02267241e+00 1.03255248e+00 1.80209801e-01 -7.60547370e-02
9.11803424e-01 -1.33405328e+00 8.09604943e-01 1.45887113e+00
3.47962230e-02 6.63813651e-01 6.45368695e-01 -4.49609429e-01
-1.36258137e+00 -1.14055574e+00 1.13571692e+00 -3.96223396e-01
3.28134090e-01 -6.99245095e-01 -1.13103700e+00 7.54832864e-01
3.31615299e-01 -6.35064065e-01 7.16305435e-01 2.24517316e-01
-3.65702927e-01 -3.36951852e-01 -6.53713048e-01 6.21145546e-01
8.86243045e-01 -8.37857604e-01 -9.66832876e-01 2.13465840e-02
1.27220058e+00 -3.84952635e-01 -5.19297004e-01 8.89966935e-02
3.02166313e-01 -5.63467801e-01 6.65999293e-01 -2.50488043e-01
-7.75067732e-02 -4.68435705e-01 -2.83319324e-01 -1.69488490e+00
-4.00106221e-01 -1.07124865e+00 -1.87791646e-01 1.63686848e+00
6.04136765e-01 -7.56189227e-01 1.57477975e-01 5.99505544e-01
-4.81909513e-01 -4.28455733e-02 -1.14845085e+00 -1.09751642e+00
-1.63978249e-01 -5.81180990e-01 6.88762724e-01 6.26443207e-01
1.88450024e-01 8.16433311e-01 -2.25799322e-01 6.68744445e-01
2.32102349e-01 -3.32158476e-01 4.60621655e-01 -8.50655615e-01
-8.86004865e-02 -5.41889906e-01 -1.95289299e-01 -1.70961750e+00
1.70165151e-01 -7.80003369e-01 7.60753214e-01 -1.40885794e+00
-1.65015087e-01 -3.13644968e-02 -3.77615064e-01 2.97243595e-01
-5.63064277e-01 -4.96182084e-01 -2.27177441e-02 -7.17419907e-02
-4.96014625e-01 8.83356392e-01 7.34598696e-01 -2.28358239e-01
-5.41199386e-01 2.58124828e-01 -6.73604131e-01 3.86044085e-01
4.65188384e-01 -2.52107203e-01 -4.54686701e-01 -6.12182081e-01
-4.59558010e-01 1.69095740e-01 -1.77439466e-01 -7.91803598e-01
5.43059289e-01 3.91249172e-03 -1.84866935e-01 -7.93432117e-01
1.74612537e-01 -4.70678419e-01 -1.27216220e-01 2.51340538e-01
-7.21844852e-01 2.17325203e-02 1.11359484e-01 5.52913666e-01
-3.54496747e-01 -9.99295563e-02 9.46144640e-01 3.49590451e-01
-4.97373879e-01 -1.52251078e-02 -8.81991208e-01 -1.42787695e-01
7.38405585e-01 -2.26616517e-01 -1.97861910e-01 -6.01500392e-01
-3.76776576e-01 3.07710111e-01 -8.57002586e-02 8.52770984e-01
5.61812818e-01 -1.18029571e+00 -8.33038747e-01 3.74970824e-01
1.19561501e-01 6.65197372e-02 1.39511824e-01 7.62885511e-01
-4.52583060e-02 5.76991856e-01 5.35592973e-01 -5.82081974e-01
-1.45032144e+00 4.33597773e-01 4.71791834e-01 -6.29956573e-02
-4.05539572e-01 8.94838333e-01 3.16079319e-01 -5.85091531e-01
6.59260690e-01 -5.24186730e-01 -3.17715764e-01 7.44214654e-02
9.33258772e-01 5.08287251e-01 6.05522454e-01 -5.77331364e-01
-4.99633163e-01 3.61595243e-01 -4.24413502e-01 -4.65631962e-01
1.06710017e+00 -8.15977097e-01 4.93951403e-02 8.31497610e-01
1.13457298e+00 2.54852504e-01 -8.67654204e-01 -5.17513931e-01
1.18754968e-01 -2.50230208e-02 2.49615654e-01 -7.80276597e-01
-5.12591004e-01 9.15336370e-01 6.30175591e-01 2.91555077e-01
1.14180493e+00 -2.22330883e-01 9.62426722e-01 2.27036327e-01
-6.50152238e-03 -1.22933149e+00 -5.34861162e-02 8.42961907e-01
9.72481787e-01 -1.03699744e+00 -6.36247635e-01 -5.55424869e-01
-5.57163060e-01 9.56114948e-01 4.57893163e-01 3.71969074e-01
4.95467186e-01 2.71776438e-01 4.37960953e-01 3.06332350e-01
-8.56913447e-01 -2.52897590e-02 4.32915211e-01 4.53510731e-01
5.01527309e-01 8.07598084e-02 -3.15046638e-01 7.59541452e-01
-3.21307153e-01 -3.74026507e-01 5.87447882e-01 6.67841196e-01
-7.18205273e-01 -8.89038324e-01 -3.99833411e-01 1.43581316e-01
-3.72797847e-01 -2.52600044e-01 -3.85033190e-01 6.91146255e-02
-6.26686037e-01 1.34893358e+00 1.90150529e-01 -5.11036694e-01
6.13196850e-01 5.32239258e-01 -3.28822099e-02 -8.02442491e-01
-5.10066211e-01 2.74131954e-01 7.17945099e-02 -4.26984936e-01
1.90316048e-02 -8.15694451e-01 -1.03342032e+00 7.18560293e-02
-7.21827388e-01 2.85332501e-01 7.33672142e-01 1.04690421e+00
5.01518667e-01 7.26474166e-01 1.15082181e+00 -3.25658649e-01
-9.77172673e-01 -1.28711212e+00 -6.21813953e-01 -1.28203586e-01
7.22046673e-01 -1.82759359e-01 -5.88975310e-01 2.05226853e-01] | [14.562073707580566, 6.361776828765869] |
8d56dc9f-e473-4414-865a-2dd0682deb89 | euclidnet-deep-visual-reasoning-for | 2301.13007 | null | https://arxiv.org/abs/2301.13007v1 | https://arxiv.org/pdf/2301.13007v1.pdf | EuclidNet: Deep Visual Reasoning for Constructible Problems in Geometry | In this paper, we present a deep learning-based framework for solving geometric construction problems through visual reasoning, which is useful for automated geometry theorem proving. Constructible problems in geometry often ask for the sequence of straightedge-and-compass constructions to construct a given goal given some initial setup. Our EuclidNet framework leverages the neural network architecture Mask R-CNN to extract the visual features from the initial setup and goal configuration with extra points of intersection, and then generate possible construction steps as intermediary data models that are used as feedback in the training process for further refinement of the construction step sequence. This process is repeated recursively until either a solution is found, in which case we backtrack the path for a step-by-step construction guide, or the problem is identified as unsolvable. Our EuclidNet framework is validated on complex Japanese Sangaku geometry problems, demonstrating its capacity to leverage backtracking for deep visual reasoning of challenging problems. | ['Chee Wei Tan', 'Xintong Qi', 'Man Fai Wong'] | 2022-12-27 | null | null | null | null | ['visual-reasoning', 'automated-theorem-proving', 'automated-theorem-proving', 'visual-reasoning'] | ['computer-vision', 'miscellaneous', 'reasoning', 'reasoning'] | [-6.22245558e-02 5.22125542e-01 3.18868518e-01 3.54706636e-03
-5.97680449e-01 -1.09137309e+00 3.48745048e-01 3.69296908e-01
1.71397805e-01 4.22213525e-01 -7.45780915e-02 -1.13140249e+00
-2.28496492e-01 -1.18861473e+00 -1.07293963e+00 -3.05103838e-01
-2.67490178e-01 6.52740240e-01 -2.51053832e-02 -4.32148606e-01
4.67185497e-01 7.44595230e-01 -1.20970404e+00 3.91892910e-01
4.73975986e-01 4.59884912e-01 8.29550922e-02 9.23884273e-01
-1.56392068e-01 8.83048296e-01 -3.05450320e-01 -4.32822943e-01
4.43053663e-01 -2.39895970e-01 -1.63241422e+00 3.73065323e-02
5.25501192e-01 -5.30517876e-01 -5.70560843e-02 7.55803227e-01
-1.42006531e-01 -9.92250666e-02 5.13541460e-01 -1.32177043e+00
-5.38074672e-01 8.30963135e-01 -3.86523694e-01 -1.17270246e-01
6.02401614e-01 4.58796859e-01 1.38875735e+00 -1.01955986e+00
1.01393020e+00 1.12300360e+00 7.01852918e-01 2.24000514e-01
-1.30090690e+00 -3.67688060e-01 1.72015324e-01 2.32430845e-01
-1.38821471e+00 -6.06462359e-02 9.55952883e-01 -4.63546783e-01
1.13395548e+00 1.46454737e-01 1.15741670e+00 3.23374420e-01
5.51197445e-03 6.41988695e-01 2.03335404e-01 -6.75620615e-01
2.58470505e-01 -5.06182313e-01 -5.37026003e-02 1.51972902e+00
1.06183633e-01 8.90773237e-02 6.15561903e-02 1.30230129e-01
1.14766860e+00 -2.75769114e-01 8.96991715e-02 -6.50055707e-01
-1.13600588e+00 1.01013339e+00 1.09078097e+00 2.12857008e-01
-3.08843120e-03 5.71111739e-01 2.76375771e-01 2.57377774e-01
-1.52748376e-01 1.16160941e+00 -2.78018624e-01 2.00839996e-01
-8.41629326e-01 7.68064022e-01 5.81113577e-01 9.46720183e-01
9.91229475e-01 6.20498247e-02 9.93050858e-02 1.76237281e-02
-5.87553419e-02 9.26331431e-03 -6.25245035e-01 -1.23721564e+00
7.66249955e-01 9.81568933e-01 2.88519487e-02 -9.25070226e-01
-8.40048015e-01 -1.99192852e-01 -2.53182411e-01 6.96163833e-01
7.81421304e-01 -1.37185290e-01 -7.95360625e-01 1.41204059e+00
6.50134921e-01 1.04161784e-01 4.96420404e-03 9.95095611e-01
8.67836416e-01 7.82414019e-01 -1.43473268e-01 5.08465767e-01
9.94869888e-01 -8.66161883e-01 1.11212231e-01 1.89953044e-01
1.49080420e+00 -2.30029315e-01 8.73215139e-01 4.52473998e-01
-1.44338882e+00 -3.05982888e-01 -1.15171993e+00 -5.55485308e-01
-2.65050292e-01 2.30942550e-03 9.76729572e-01 6.56104013e-02
-1.16128349e+00 7.33606219e-01 -5.69334388e-01 1.56574085e-01
6.82338297e-01 1.61094368e-01 -3.27286482e-01 -2.96411365e-01
-7.96330690e-01 7.21383929e-01 7.14548826e-01 2.85704046e-01
-1.20071673e+00 -8.86838317e-01 -1.12393272e+00 2.89224297e-01
8.28141689e-01 -8.40559244e-01 1.34057522e+00 -5.67867577e-01
-9.83137310e-01 9.05594587e-01 9.76013467e-02 -4.75224376e-01
5.77176213e-01 5.05724251e-02 2.80227989e-01 1.91632897e-01
-3.05640954e-03 8.49966049e-01 4.03618246e-01 -1.31040037e+00
-4.16020036e-01 -3.28795403e-01 1.00181055e+00 1.82098135e-01
8.60731125e-01 -2.21014202e-01 -5.00939429e-01 -9.22058225e-02
6.02287710e-01 -8.76163661e-01 -3.50001663e-01 4.01359826e-01
-9.50294077e-01 -4.23125505e-01 6.60184503e-01 -6.29374385e-01
8.37083578e-01 -1.85161722e+00 4.29251611e-01 6.19788587e-01
5.88946879e-01 8.35166052e-02 -1.40130278e-02 4.86537844e-01
-3.30496103e-01 5.41113436e-01 -1.53142035e-01 -5.41370688e-03
-6.61620721e-02 -8.66512731e-02 -3.73178393e-01 3.51901501e-01
5.28614938e-01 1.34894645e+00 -1.03165138e+00 -4.37724918e-01
4.57378864e-01 -1.58482447e-01 -8.50960314e-01 2.07689971e-01
-8.24073255e-01 4.43723291e-01 -4.62234735e-01 4.36344922e-01
6.71859980e-01 -4.25774455e-01 2.98009515e-01 -8.96426812e-02
-2.77405977e-01 4.64482784e-01 -1.18396246e+00 1.92813456e+00
-5.26531518e-01 5.73677719e-01 -3.30983177e-02 -1.05785382e+00
7.62387931e-01 -3.85407507e-02 4.07328643e-02 -6.42781913e-01
4.04942147e-02 -3.58512290e-02 -3.45948711e-02 -5.28447390e-01
3.94852161e-01 2.53940541e-02 -1.86157659e-01 5.02339900e-01
-1.36795491e-01 -7.75524795e-01 2.60538071e-01 5.63926995e-01
9.73537624e-01 8.01783919e-01 2.53143430e-01 1.24604404e-02
4.03348714e-01 5.71074367e-01 2.57335126e-01 5.21633983e-01
5.04427075e-01 5.84322810e-01 1.12419343e+00 -9.73128498e-01
-1.41380060e+00 -1.17114699e+00 4.03872937e-01 6.87152207e-01
2.54509062e-01 -6.81577861e-01 -7.19654262e-01 -7.39918172e-01
-2.76870877e-01 9.62789178e-01 -7.48400331e-01 -2.71128844e-02
-9.85250592e-01 4.67218429e-01 5.17301917e-01 6.00370586e-01
2.07527637e-01 -1.11215055e+00 -1.05271661e+00 1.32038280e-01
-6.04981408e-02 -7.86659896e-01 1.22450285e-01 1.72518268e-01
-7.03572631e-01 -1.71281171e+00 -2.09263608e-01 -9.88572896e-01
1.08475232e+00 1.29786223e-01 1.07666278e+00 8.46115649e-01
-4.76594001e-01 6.51806593e-02 2.72584297e-02 -4.56882939e-02
-3.83100808e-01 -8.70386139e-02 -6.31538272e-01 -7.67309129e-01
-4.10340548e-01 -3.48549396e-01 -4.40605640e-01 -9.29207131e-02
-4.22584206e-01 9.04527187e-01 9.00312439e-02 5.78465760e-01
5.69312096e-01 1.75640613e-01 6.70144558e-02 -6.78770959e-01
3.13301474e-01 -4.08859164e-01 -1.17779839e+00 4.73520547e-01
-1.66805863e-01 4.67502117e-01 1.02586973e+00 7.70971552e-02
-7.20982373e-01 1.49764949e-02 1.03719577e-01 -6.45770848e-01
-7.01136962e-02 8.36443007e-01 2.84617171e-02 1.67317435e-01
7.61605203e-01 -9.34560150e-02 -4.44009513e-01 -1.66576311e-01
7.60290563e-01 -4.45917815e-01 6.13978386e-01 -1.11239588e+00
1.01115108e+00 3.19122165e-01 6.68851554e-01 -2.34119534e-01
-7.30304599e-01 7.29218572e-02 -7.83087015e-01 -1.00609474e-01
8.55815351e-01 -5.54623425e-01 -1.12262511e+00 6.54917955e-02
-1.52872872e+00 -4.83803034e-01 -1.89213544e-01 -1.33378938e-01
-6.27214253e-01 7.32899010e-02 -3.99188399e-01 -8.35973740e-01
-1.44548103e-01 -1.18583131e+00 1.03751349e+00 9.49029103e-02
-2.14552656e-01 -8.55143309e-01 -1.80661067e-01 2.05658585e-01
-2.30886325e-01 6.41710222e-01 1.64299154e+00 -3.35809231e-01
-1.16585851e+00 -4.90383059e-02 -3.17000329e-01 -3.46199065e-01
-3.24209839e-01 2.64062285e-01 -4.85932648e-01 4.60583903e-02
-6.83975935e-01 -5.69523156e-01 3.32861632e-01 1.28798157e-01
1.47688115e+00 -4.76927847e-01 -3.25922400e-01 8.06289196e-01
1.46862006e+00 -9.50778723e-02 6.62747264e-01 3.35258722e-01
9.20155346e-01 5.90793669e-01 2.21613809e-01 2.00054958e-01
5.92679501e-01 3.29250336e-01 8.13969970e-01 -3.10373038e-01
3.77912982e-03 -7.61693895e-01 -4.11444157e-01 -1.38643667e-01
-2.00106204e-01 1.36265472e-01 -1.40189075e+00 6.15051329e-01
-1.61424744e+00 -1.01274121e+00 -3.13932151e-01 1.89633048e+00
6.13222837e-01 3.59656751e-01 1.09617665e-01 4.89741087e-01
3.46866727e-01 -5.20933643e-02 -4.86871541e-01 -7.29100943e-01
3.89262080e-01 4.55120176e-01 2.17948496e-01 7.03474522e-01
-8.00128818e-01 1.27218425e+00 5.55095720e+00 4.18903202e-01
-9.87213433e-01 -5.83044529e-01 4.83486503e-01 1.33865803e-01
-5.55837274e-01 5.36179781e-01 -3.18151146e-01 -4.97337431e-01
1.92980424e-01 8.73862803e-02 8.30181062e-01 7.90187657e-01
8.53424147e-02 -2.08792388e-01 -1.50408626e+00 6.78836644e-01
-1.99117795e-01 -2.04865122e+00 -6.75735697e-02 -9.23427194e-02
3.55139911e-01 -6.01976931e-01 -1.68193221e-01 2.24356070e-01
7.16877103e-01 -1.27041197e+00 1.13092184e+00 2.20351785e-01
7.85638213e-01 -1.07130742e+00 2.46042274e-02 4.50313121e-01
-1.23571134e+00 -2.34711263e-02 9.30369496e-02 -3.46420437e-01
9.12009627e-02 -5.60738817e-02 -1.48267651e+00 8.54999363e-01
2.76611567e-01 4.72956389e-01 -4.74268764e-01 9.75606084e-01
-7.73501515e-01 2.38003463e-01 -3.15802902e-01 -5.71670234e-02
5.12246192e-01 -3.22420418e-01 4.23635632e-01 7.76855648e-01
9.04659703e-02 1.25234812e-01 2.65682966e-01 1.69745660e+00
1.13810807e-01 -2.47047380e-01 -8.40061128e-01 7.89756328e-02
3.38649213e-01 1.16998541e+00 -1.08273160e+00 -1.72914460e-01
-7.38633871e-02 5.63775778e-01 7.80308545e-01 5.01421332e-01
-8.54919255e-01 -4.16472793e-01 1.53383151e-01 1.76661655e-01
5.11317432e-01 -6.01756275e-01 -7.57339656e-01 -8.01026344e-01
-4.12514955e-02 -7.21555889e-01 2.12063432e-01 -1.50180984e+00
-2.39407957e-01 1.02115899e-01 1.96148515e-01 -8.95222008e-01
-2.80103862e-01 -5.79873562e-01 -1.14573395e+00 7.59901524e-01
-1.07426488e+00 -1.52965021e+00 -1.30049691e-01 4.60856020e-01
4.92567599e-01 2.92180717e-01 7.38024712e-01 -5.15193641e-01
-3.37253720e-01 2.81967819e-01 -6.39474034e-01 4.22973096e-01
-4.79721934e-01 -1.30070102e+00 8.32735360e-01 1.06092894e+00
4.52344120e-01 7.78868198e-01 6.02391601e-01 -6.15128219e-01
-1.53510022e+00 -8.08862269e-01 5.43485284e-01 -2.16454178e-01
4.84620333e-01 -6.35446548e-01 -7.56239772e-01 8.54020417e-01
-2.70134360e-01 -1.49404570e-01 3.33848670e-02 2.02335179e-01
-8.19478214e-01 3.83366227e-01 -9.88862991e-01 1.16456354e+00
1.33652043e+00 -4.09070164e-01 -6.98751867e-01 3.57179582e-01
9.45352376e-01 -8.41805816e-01 -4.35889572e-01 2.10860491e-01
3.89138043e-01 -8.09207559e-01 1.02710569e+00 -1.07906604e+00
9.84699190e-01 -6.39766157e-01 5.58042973e-02 -1.20248938e+00
-2.58006692e-01 -8.17537904e-01 4.59456816e-03 5.71140051e-01
7.15074360e-01 7.56363645e-02 7.49431670e-01 5.79178154e-01
-4.95012671e-01 -1.06749058e+00 -7.02586353e-01 -2.33766064e-01
2.46613964e-01 -7.92151392e-01 8.46033812e-01 8.32827568e-01
2.32095614e-01 4.59577829e-01 1.10247239e-01 1.56059533e-01
3.50263923e-01 5.44219017e-01 1.05045962e+00 -1.02758205e+00
-1.82426929e-01 -3.70365173e-01 -1.39105573e-01 -9.88946259e-01
2.61402398e-01 -1.14164054e+00 -2.06859425e-01 -2.03138471e+00
-2.37646535e-01 -7.56236255e-01 3.86090219e-01 8.15166771e-01
2.41047159e-01 -2.77992457e-01 3.69255304e-01 -2.19401270e-01
-6.49694085e-01 8.29609558e-02 1.55139863e+00 -2.44496375e-01
-1.94304794e-01 -2.49881744e-01 -6.44011438e-01 6.97693944e-01
5.38748741e-01 -1.12979054e-01 -4.56566006e-01 -7.28385031e-01
9.65743363e-01 5.03619611e-01 7.67794132e-01 -8.73940587e-01
1.73412085e-01 -4.36489731e-01 4.80108231e-01 -6.82969153e-01
2.40058839e-01 -8.31796050e-01 1.01051554e-01 5.36230922e-01
-5.67739189e-01 3.77698928e-01 3.99480432e-01 1.38198778e-01
4.93605852e-01 -3.93301308e-01 4.42448914e-01 -3.85018408e-01
-6.33095443e-01 1.40097499e-01 -9.58643481e-02 1.32908583e-01
1.07748425e+00 -5.90210736e-01 -3.85713249e-01 -3.67798388e-01
-8.46820176e-01 5.42944074e-01 5.56557357e-01 2.13975906e-01
8.63068044e-01 -1.12526155e+00 -5.86407006e-01 1.63563743e-01
1.58714682e-01 9.54909205e-01 7.12675303e-02 4.13280696e-01
-1.24165094e+00 1.45671949e-01 -6.02508411e-02 -4.85024720e-01
-1.08627307e+00 8.43098044e-01 5.21385670e-01 -3.41357708e-01
-1.08170891e+00 8.18025231e-01 3.45019341e-01 -4.67254490e-01
7.45229125e-02 -8.34555864e-01 1.47997821e-02 -6.97604179e-01
3.32038403e-01 1.85792238e-01 6.41361624e-02 -3.68921995e-01
-2.63130933e-01 5.95555782e-01 9.88426805e-02 -1.55150101e-01
1.35351348e+00 2.86920756e-01 -1.19224332e-01 1.06036097e-01
9.68662083e-01 -1.55236512e-01 -1.13983691e+00 4.47844528e-02
-1.91726908e-02 -7.61048645e-02 -3.43015373e-01 -7.33143926e-01
-8.47343504e-01 8.60232532e-01 -1.65232033e-01 1.55986622e-01
5.58412611e-01 3.06968212e-01 4.01171058e-01 8.09882700e-01
5.18636584e-01 -8.60637724e-01 2.24840090e-01 8.12232673e-01
1.22985435e+00 -8.18522871e-01 1.19507290e-01 -5.26565313e-01
-4.20534432e-01 1.52160203e+00 7.47584701e-01 -4.96947765e-01
2.33924553e-01 3.50817174e-01 -3.01484913e-01 -6.50134087e-01
-5.43221235e-01 8.53354856e-02 2.28368148e-01 3.96570414e-01
9.22616571e-02 -3.13093737e-02 1.49379462e-01 1.92119759e-02
-8.10025394e-01 -1.64628938e-01 5.58549583e-01 1.01826024e+00
-4.67768490e-01 -6.06038094e-01 -3.76462638e-01 3.28152138e-03
-3.53035033e-02 -6.61424249e-02 -4.41939473e-01 9.80174899e-01
3.47945452e-01 6.49867535e-01 2.46824220e-01 -2.23424152e-01
3.00532490e-01 -2.58164965e-02 1.05615199e+00 -7.22617090e-01
-5.83225846e-01 -2.26331234e-01 3.98324758e-01 -6.05738938e-01
1.00054085e-01 -3.28603387e-01 -2.13033915e+00 -3.65188330e-01
-3.20380718e-01 -1.20761357e-01 5.05215585e-01 1.12170327e+00
2.21172258e-01 5.92033625e-01 4.39111412e-01 -8.10563564e-01
5.82078937e-03 -3.05562347e-01 1.47170797e-01 4.26884174e-01
5.15928507e-01 -5.37739396e-01 3.59041095e-02 6.08186275e-02] | [9.094038009643555, 7.32992696762085] |
abb80976-1028-45bb-ab8f-28cd10fdbafd | some-of-the-variables-some-of-the-parameters | 2304.14214 | null | https://arxiv.org/abs/2304.14214v1 | https://arxiv.org/pdf/2304.14214v1.pdf | Some of the variables, some of the parameters, some of the times, with some physics known: Identification with partial information | Experimental data is often comprised of variables measured independently, at different sampling rates (non-uniform ${\Delta}$t between successive measurements); and at a specific time point only a subset of all variables may be sampled. Approaches to identifying dynamical systems from such data typically use interpolation, imputation or subsampling to reorganize or modify the training data $\textit{prior}$ to learning. Partial physical knowledge may also be available $\textit{a priori}$ (accurately or approximately), and data-driven techniques can complement this knowledge. Here we exploit neural network architectures based on numerical integration methods and $\textit{a priori}$ physical knowledge to identify the right-hand side of the underlying governing differential equations. Iterates of such neural-network models allow for learning from data sampled at arbitrary time points $\textit{without}$ data modification. Importantly, we integrate the network with available partial physical knowledge in "physics informed gray-boxes"; this enables learning unknown kinetic rates or microbial growth functions while simultaneously estimating experimental parameters. | ['Ioannis G. Kevrekidis', 'Michael Betenbaugh', 'Jose L. Avalos', 'Tianqi Cui', 'Tom S. Bertalan', 'Saurabh Malani'] | 2023-04-27 | null | null | null | null | ['numerical-integration'] | ['miscellaneous'] | [ 3.29438001e-01 -1.43756688e-01 -7.24014118e-02 -9.80496630e-02
-4.73347932e-01 -4.68938202e-01 3.77360493e-01 4.41352874e-01
-6.50765538e-01 1.50018847e+00 -7.01923013e-01 -5.17445803e-01
-5.36912978e-01 -9.14291799e-01 -1.13519394e+00 -9.75439250e-01
-3.02809328e-01 6.08099341e-01 -3.91326040e-01 1.94056556e-01
3.53191614e-01 8.34094703e-01 -1.56294203e+00 -2.60712147e-01
6.92471445e-01 1.18745553e+00 9.84242931e-02 9.96670067e-01
-1.56320840e-01 7.18426883e-01 -4.34282213e-01 3.81099761e-01
2.65171856e-01 -2.54033983e-01 -4.10639644e-01 -2.88628459e-01
-1.16560027e-01 -2.16481924e-01 -4.37575728e-01 8.88281286e-01
1.99035123e-01 6.13935351e-01 9.83853638e-01 -8.82105708e-01
-6.61195815e-01 3.06550890e-01 -1.07773848e-01 3.45079042e-02
-2.29333967e-01 6.00210607e-01 3.83394748e-01 -5.99377275e-01
2.79083550e-01 6.39077485e-01 1.00498497e+00 2.23867431e-01
-1.76362848e+00 -5.74947238e-01 2.83427417e-01 -1.50457844e-01
-1.65564299e+00 -3.95067275e-01 7.19321132e-01 -8.61643732e-01
9.41309214e-01 2.91490346e-01 8.09165180e-01 9.65479434e-01
3.79907668e-01 2.61032283e-01 1.18724477e+00 -2.75663704e-01
6.57355070e-01 1.17743291e-01 -6.57489672e-02 6.24591529e-01
2.86862910e-01 5.81166863e-01 -2.34799847e-01 -2.75231957e-01
1.42341447e+00 2.81756788e-01 -2.95639157e-01 -2.17880949e-01
-9.89831686e-01 6.21777594e-01 -3.28622311e-02 -8.60947967e-02
-5.68076968e-01 4.01392937e-01 2.48045608e-01 4.45557266e-01
5.00496745e-01 9.19872999e-01 -1.21034110e+00 -3.04706618e-02
-8.53914738e-01 2.39641383e-01 9.08051908e-01 8.09584379e-01
1.37138379e+00 4.24526960e-01 1.77926809e-01 5.56408286e-01
2.41113957e-02 7.15950966e-01 2.38342419e-01 -1.40071261e+00
-2.10967716e-02 4.66538221e-01 8.37592423e-01 -3.95546019e-01
-4.55038726e-01 -3.08155507e-01 -1.34136891e+00 4.36331689e-01
8.81459713e-01 -6.54456258e-01 -1.01374996e+00 1.78829169e+00
2.58821666e-01 3.21774751e-01 -1.46887943e-01 4.79748428e-01
1.97898626e-01 8.52046251e-01 -1.03200458e-01 -6.86866045e-01
7.11856663e-01 -2.63467133e-01 -2.22832814e-01 1.03564106e-01
3.71388555e-01 -2.14612991e-01 9.80842292e-01 5.12694895e-01
-1.12625861e+00 -5.87973356e-01 -9.30498481e-01 2.71039933e-01
-7.08082139e-01 -2.84280647e-02 3.50197226e-01 4.24341619e-01
-8.47934008e-01 1.31623995e+00 -1.25916815e+00 9.74460244e-02
3.92786600e-02 7.90930867e-01 6.74208254e-02 2.71580607e-01
-9.66471493e-01 7.31225669e-01 2.30130956e-01 4.05278593e-01
-1.03421330e+00 -1.15991580e+00 -6.57392323e-01 -2.65803516e-01
2.92582303e-01 -6.89607620e-01 1.02722514e+00 -6.09310210e-01
-1.78696239e+00 3.15927833e-01 -2.58605003e-01 -2.65343040e-01
4.38732415e-01 1.26147553e-01 -2.61027485e-01 -6.03266479e-03
-3.23846549e-01 4.10431117e-01 8.27014327e-01 -1.14680219e+00
4.01261784e-02 -3.22109491e-01 -9.18089524e-02 -1.85834274e-01
5.47123179e-02 -5.01456738e-01 1.28816023e-01 -4.19225186e-01
1.51703447e-01 -9.25873458e-01 -3.59870315e-01 2.44990110e-01
-2.84987837e-01 2.57633507e-01 5.98111749e-01 -6.00015819e-01
8.66463363e-01 -1.50497627e+00 1.71934918e-01 3.22661877e-01
1.32336706e-01 1.91960961e-01 1.01710983e-01 5.11968970e-01
-9.40107107e-02 2.26738140e-01 -5.14473557e-01 -1.42229885e-01
-1.90194264e-01 3.15946162e-01 -3.61320633e-03 5.26059866e-01
2.68943131e-01 4.59312826e-01 -7.54404902e-01 -6.98731393e-02
6.49348259e-01 6.18612468e-01 -3.64102781e-01 1.81676894e-01
-6.55107141e-01 1.12287951e+00 -4.34854090e-01 4.53144938e-01
4.62480396e-01 -4.30602014e-01 -2.10110508e-02 2.58316211e-02
-5.69689333e-01 5.74813671e-02 -1.52038991e+00 1.30764854e+00
-6.58506334e-01 3.10691655e-01 3.66860807e-01 -1.50743771e+00
9.30398345e-01 4.29352373e-01 8.26887190e-01 -2.54236370e-01
3.61369342e-01 1.71072572e-01 -6.01429120e-02 -4.24484521e-01
2.16536239e-01 -3.88877660e-01 2.89834321e-01 4.22998965e-01
2.04567276e-02 -5.28478384e-01 5.33141643e-02 -5.94199479e-01
9.96699750e-01 4.17042315e-01 2.85825610e-01 -5.84718108e-01
6.32079661e-01 1.10866129e-01 6.17860258e-01 1.14268386e+00
-1.47228882e-01 2.33165011e-01 4.69532788e-01 -5.65175593e-01
-1.50962102e+00 -9.68075633e-01 -4.53941315e-01 6.77929401e-01
-1.60370678e-01 4.25703615e-01 -4.91104543e-01 -1.32712433e-02
1.67445615e-01 7.05170512e-01 -1.05443454e+00 -1.45203128e-01
-6.26435697e-01 -8.55212152e-01 4.52893466e-01 5.85265696e-01
1.95719838e-01 -1.11461496e+00 -4.31827754e-01 5.70681989e-01
3.22925538e-01 -3.72197419e-01 3.97259258e-02 1.00006676e+00
-9.97646034e-01 -9.51504469e-01 -5.18430889e-01 -1.32086188e-01
8.81245136e-01 -3.87806416e-01 9.04772341e-01 -1.44326523e-01
-4.19722825e-01 2.18499810e-01 1.99874043e-01 -5.18803120e-01
-5.66589415e-01 -9.06957462e-02 3.28053713e-01 -2.81516254e-01
1.01792946e-01 -9.45746720e-01 -6.44873917e-01 1.69905275e-01
-7.34945118e-01 -1.06968045e-01 2.42863014e-01 8.89713943e-01
9.71708477e-01 2.51330078e-01 4.85502332e-01 -6.19213223e-01
2.95773387e-01 -4.01918828e-01 -1.13650918e+00 1.16315782e-01
-6.50098026e-01 5.63638628e-01 1.16904640e+00 -8.00083280e-01
-8.57950032e-01 -1.02813549e-01 7.08906427e-02 -7.40180433e-01
-4.54752654e-01 6.84328198e-01 7.06039369e-02 8.66902843e-02
6.00649774e-01 4.81527567e-01 2.99707115e-01 -5.06130934e-01
8.99084508e-02 1.68443188e-01 5.11190236e-01 -1.14452505e+00
4.14378971e-01 3.50647449e-01 4.64158535e-01 -8.04948449e-01
-4.04138237e-01 5.87251298e-02 -9.25953507e-01 -1.88385218e-01
4.98449087e-01 -6.92383587e-01 -1.34557796e+00 6.99093163e-01
-7.09699512e-01 -9.12165225e-01 -7.81574428e-01 7.53618598e-01
-6.65577590e-01 -1.61508366e-01 -7.08345354e-01 -1.24799705e+00
-8.70535821e-02 -1.12861490e+00 7.88602650e-01 1.88456908e-01
-2.10650668e-01 -1.36495781e+00 4.71664406e-02 -1.32121831e-01
4.74775672e-01 2.96240121e-01 9.64446604e-01 -3.91527414e-01
-5.70908844e-01 -4.58130926e-01 -1.67148590e-01 4.98360872e-01
3.52842748e-01 4.80090082e-01 -8.11127841e-01 -4.10555661e-01
2.26288080e-01 -1.95670441e-01 7.31150150e-01 9.77027237e-01
1.42659140e+00 -4.63649064e-01 -3.39054585e-01 5.22089899e-01
1.40539420e+00 4.89079118e-01 2.65623152e-01 -1.04443766e-01
5.58923721e-01 4.12042320e-01 -1.78557187e-01 8.00158501e-01
6.27783760e-02 -3.79369245e-03 2.25349009e-01 2.19123110e-01
5.00326395e-01 -7.64006376e-02 9.87387300e-02 5.93434453e-01
-2.78556198e-01 -4.77713458e-02 -8.88764679e-01 2.90383995e-01
-1.49075794e+00 -8.80309761e-01 6.30090199e-03 2.55943084e+00
1.15599799e+00 2.23516976e-03 -1.09489206e-02 8.44013989e-02
7.50470042e-01 -1.70973688e-01 -1.43168831e+00 -1.77057028e-01
4.18843143e-02 6.04964733e-01 8.62358749e-01 6.95364416e-01
-8.41783583e-01 3.01286668e-01 6.26504946e+00 4.86438096e-01
-1.48256075e+00 -1.45932078e-01 6.62064672e-01 -1.67299852e-01
-4.31301147e-02 1.27807960e-01 -6.39285028e-01 4.62883621e-01
1.35668230e+00 -1.05311908e-01 7.52564430e-01 4.34546590e-01
5.55476308e-01 -4.06778872e-01 -1.22038972e+00 4.91246134e-01
-6.40476882e-01 -1.53077686e+00 -3.04938078e-01 1.54937610e-01
7.28385627e-01 -3.23065035e-02 9.28365290e-02 3.00444007e-01
1.00328636e+00 -1.01482368e+00 4.08801377e-01 1.08917236e+00
9.56390798e-01 -5.00382960e-01 3.15809399e-01 6.84174836e-01
-1.21922767e+00 -1.71514880e-03 -2.94079155e-01 -6.21963501e-01
-6.52135611e-02 8.06400001e-01 -5.41908681e-01 3.25506151e-01
4.39618409e-01 4.88373637e-01 1.32011473e-02 6.48971975e-01
2.07471520e-01 5.80324233e-01 -7.75430381e-01 -2.27183193e-01
-1.42697245e-01 -6.60161316e-01 2.72943854e-01 6.30789101e-01
5.94805539e-01 2.92975903e-01 1.69575959e-01 1.17011034e+00
1.67979524e-01 -3.23386461e-01 -4.98673946e-01 -1.68625906e-01
6.52773678e-01 6.42039895e-01 -6.07762337e-01 -4.09384519e-01
-1.62288249e-01 4.36066866e-01 2.10679263e-01 7.69144595e-01
-5.47029495e-01 -1.69100031e-01 8.32658529e-01 1.97457865e-01
1.70481890e-01 -7.07902849e-01 -4.55618620e-01 -1.06372690e+00
-1.62225246e-01 -2.67176837e-01 1.01142712e-01 -8.44276011e-01
-1.36556780e+00 -6.93621561e-02 2.16238901e-01 -9.11144733e-01
-3.91090244e-01 -9.66963768e-01 -2.03900278e-01 1.32435763e+00
-1.08062685e+00 -4.55948740e-01 3.34890597e-02 4.24119204e-01
4.98884097e-02 1.46501698e-02 9.47271168e-01 -9.36566591e-02
-9.52430665e-01 1.12096734e-01 1.04734433e+00 1.23794228e-02
2.72647887e-01 -1.16674948e+00 9.62055773e-02 3.09136391e-01
-5.69471598e-01 7.44296670e-01 9.82859015e-01 -8.01058054e-01
-1.61709762e+00 -1.08330715e+00 3.45762074e-01 -3.92176032e-01
9.14159656e-01 -2.23778486e-01 -1.28687572e+00 6.91911459e-01
-2.18599379e-01 1.39798552e-01 3.43802005e-01 1.74352676e-02
-1.32774159e-01 -2.37701550e-01 -1.38201761e+00 4.81102347e-01
6.85441315e-01 -6.08918071e-01 -1.15628906e-01 2.51903921e-01
4.94248897e-01 -3.54391873e-01 -1.25471067e+00 5.47754884e-01
5.50076604e-01 -6.68966889e-01 1.04824126e+00 -7.47034729e-01
2.74599195e-01 -3.36557329e-01 -1.75532565e-01 -1.19005883e+00
-1.23776495e-01 -7.16431081e-01 -2.79635578e-01 7.69047439e-01
4.99841124e-01 -8.78185034e-01 9.05897677e-01 1.12974262e+00
7.95385391e-02 -6.33178711e-01 -9.83383119e-01 -8.85460556e-01
6.34435236e-01 -5.37660778e-01 4.81645495e-01 1.03441334e+00
-2.52068937e-01 -3.27168107e-01 -2.38379061e-01 3.74872059e-01
6.61873996e-01 -1.41251698e-01 4.93787020e-01 -1.33283126e+00
-5.30624449e-01 -4.51190919e-01 1.61712304e-01 -9.47169602e-01
1.67698070e-01 -3.88255388e-01 3.38553526e-02 -1.05649328e+00
-1.87683731e-01 -7.36718297e-01 -4.72070575e-01 3.18847656e-01
-5.83953448e-02 -1.92408383e-01 -5.04726708e-01 1.70118511e-01
2.00670049e-01 5.13569534e-01 1.13571393e+00 2.69557703e-02
-4.88003433e-01 -4.93160561e-02 -2.33644783e-01 6.58506989e-01
7.75361419e-01 -2.53524095e-01 -3.45762908e-01 -2.27762938e-01
1.61849305e-01 8.24545324e-01 7.19476759e-01 -1.04497600e+00
1.73690587e-01 -8.27815652e-01 6.90441191e-01 -4.84584749e-01
5.53474069e-01 -5.58641374e-01 6.77982032e-01 2.88537115e-01
-4.53904539e-01 -1.02325007e-01 4.29768354e-01 5.80062985e-01
2.99237162e-01 -3.14569026e-01 9.08308327e-01 -5.00441790e-01
1.02544250e-02 4.41052049e-01 -7.86874771e-01 -3.65510285e-02
5.83636224e-01 -2.64115602e-01 -4.52054515e-02 -1.99768692e-01
-1.01022029e+00 7.90039301e-02 5.50523400e-01 -3.90087396e-01
7.45590776e-02 -7.77689755e-01 -4.17478085e-01 3.30402136e-01
-2.54497081e-01 4.14038748e-01 4.34739590e-01 6.82374418e-01
-3.70811939e-01 2.37307340e-01 -9.95588899e-02 -4.59046781e-01
-3.08843136e-01 6.77413404e-01 6.94637239e-01 -1.44408420e-01
-4.77053747e-02 8.89833391e-01 -2.48030320e-01 -7.14058578e-01
-2.09165663e-01 -5.77669322e-01 4.24438089e-01 -7.71872327e-02
9.76631716e-02 6.09790146e-01 2.87212357e-02 -7.79017359e-02
1.44584045e-01 3.51574689e-01 1.18784107e-01 -2.29946062e-01
1.34622025e+00 -1.27873689e-01 -1.37866080e-01 1.15521812e+00
1.14603448e+00 -5.48619270e-01 -2.00137877e+00 -4.44912910e-01
-4.60687488e-01 -4.80768271e-02 -2.05059856e-01 -9.18176770e-01
-8.00531328e-01 9.74095881e-01 2.64095873e-01 3.45435530e-01
7.99688697e-01 -4.26069081e-01 2.34759375e-01 8.02065253e-01
2.79593468e-01 -1.27127981e+00 -2.50576705e-01 5.45966387e-01
6.03947759e-01 -1.05938530e+00 1.31416827e-01 1.62201807e-01
2.40941986e-01 1.16661155e+00 5.37385881e-01 -2.40188777e-01
9.48180079e-01 5.28966367e-01 -1.14161149e-01 1.75031886e-01
-6.02280378e-01 2.55873531e-01 -2.25240976e-01 5.28626025e-01
3.40199471e-01 -8.63356367e-02 1.37603432e-01 3.89322996e-01
1.07012540e-02 1.80579469e-01 3.89314324e-01 1.07287002e+00
-3.37263674e-01 -9.57968771e-01 -4.77879196e-01 8.25731277e-01
-3.27970199e-02 -6.55978546e-02 -4.31459025e-02 9.43261385e-01
1.70350030e-01 6.89887106e-01 9.50052440e-02 2.73849256e-02
5.58891967e-02 5.60382903e-01 5.94192207e-01 -2.08710998e-01
-2.80508220e-01 -4.10393141e-02 -1.64128512e-01 -9.12940949e-02
-1.68277815e-01 -1.10000598e+00 -1.40810192e+00 -6.92203999e-01
-1.06292635e-01 2.21731871e-01 5.77983558e-01 1.17965114e+00
3.58889908e-01 5.15732527e-01 4.71129924e-01 -1.24161041e+00
-5.39282978e-01 -9.46618617e-01 -7.66482413e-01 2.68305978e-03
5.99289834e-01 -6.61722004e-01 -6.06581092e-01 4.27436411e-01] | [6.469693660736084, 3.5164337158203125] |
0cecaaaa-7811-427a-8c6b-29b9e6a5411f | 190807644 | 1908.07644 | null | https://arxiv.org/abs/1908.07644v3 | https://arxiv.org/pdf/1908.07644v3.pdf | Saccader: Improving Accuracy of Hard Attention Models for Vision | Although deep convolutional neural networks achieve state-of-the-art performance across nearly all image classification tasks, their decisions are difficult to interpret. One approach that offers some level of interpretability by design is \textit{hard attention}, which uses only relevant portions of the image. However, training hard attention models with only class label supervision is challenging, and hard attention has proved difficult to scale to complex datasets. Here, we propose a novel hard attention model, which we term Saccader. Key to Saccader is a pretraining step that requires only class labels and provides initial attention locations for policy gradient optimization. Our best models narrow the gap to common ImageNet baselines, achieving $75\%$ top-1 and $91\%$ top-5 while attending to less than one-third of the image. | ['Gamaleldin F. Elsayed', 'Simon Kornblith', 'Quoc V. Le'] | 2019-08-20 | saccader-improving-accuracy-of-hard-attention | http://papers.nips.cc/paper/8359-saccader-improving-accuracy-of-hard-attention-models-for-vision | http://papers.nips.cc/paper/8359-saccader-improving-accuracy-of-hard-attention-models-for-vision.pdf | neurips-2019-12 | ['hard-attention'] | ['methodology'] | [ 1.26299649e-01 5.32632530e-01 -5.47145724e-01 -5.10185242e-01
-6.01248145e-01 -4.39085960e-01 6.00004494e-01 -1.61352716e-02
-8.25009465e-01 5.81239164e-01 2.05026548e-02 -5.97373605e-01
7.10736290e-02 -3.65223557e-01 -9.31310773e-01 -2.29696482e-01
3.61063153e-01 3.86333287e-01 5.26066795e-02 -1.49634749e-01
1.40372768e-01 2.80660957e-01 -1.16335773e+00 4.33353662e-01
6.36768818e-01 1.16858625e+00 2.88044661e-01 6.09663427e-01
-8.72424543e-02 1.00826824e+00 -6.43435538e-01 -4.51387227e-01
1.71598792e-01 -1.29264086e-01 -1.12674081e+00 -9.13437903e-02
7.61691213e-01 -4.83754158e-01 -2.43063807e-01 1.06062901e+00
2.48433903e-01 1.48319632e-01 7.55744815e-01 -1.13126421e+00
-1.26090026e+00 3.67678970e-01 -5.95499456e-01 6.36702716e-01
-1.79728329e-01 4.87876385e-01 1.28428590e+00 -7.46009707e-01
3.59619021e-01 1.26923633e+00 4.00333852e-01 6.68782175e-01
-1.37310028e+00 -5.93425751e-01 8.29572976e-01 1.53376162e-01
-9.46622014e-01 -3.69855016e-01 3.09993744e-01 -5.55079699e-01
1.36564636e+00 -6.60571009e-02 4.33198661e-01 1.04471064e+00
1.64388660e-02 8.97382617e-01 1.07813823e+00 -2.49884307e-01
-6.13453146e-03 -1.38800576e-01 4.84694988e-01 6.44482315e-01
5.03592677e-02 -1.19505726e-01 -9.33092237e-02 3.65483820e-01
8.05532813e-01 4.84396778e-02 -1.54999569e-01 1.32995158e-01
-9.30679202e-01 8.67368519e-01 9.14234161e-01 4.40800190e-02
-4.52123791e-01 6.86124980e-01 8.12222362e-02 1.61547780e-01
6.89805150e-01 7.17882276e-01 -4.68985468e-01 -1.24120347e-01
-6.60251260e-01 3.62840369e-02 2.85018772e-01 9.76924717e-01
8.50538731e-01 2.14496613e-01 -3.36899936e-01 8.40230107e-01
1.90516636e-01 3.75379980e-01 2.36391187e-01 -1.18679953e+00
5.21711051e-01 5.31648338e-01 3.53570767e-02 -6.80901587e-01
-3.92261237e-01 -6.26023173e-01 -6.37340069e-01 6.21339262e-01
4.17331159e-01 -1.67457700e-01 -1.48437369e+00 1.95764017e+00
-2.63268977e-01 -8.57357308e-02 -3.07128042e-01 9.05721486e-01
7.73162127e-01 4.83132869e-01 5.87039649e-01 4.61113334e-01
1.37126267e+00 -1.32871556e+00 -3.64502251e-01 -9.96513903e-01
2.83076733e-01 -5.44960558e-01 1.63847446e+00 2.28633925e-01
-1.18770635e+00 -6.30210996e-01 -1.01235604e+00 -4.64600325e-01
-3.97133410e-01 1.14962973e-01 6.75775945e-01 2.94513792e-01
-1.34680808e+00 4.69740450e-01 -8.80917490e-01 -2.34284610e-01
1.03507292e+00 6.54233158e-01 -1.61842942e-01 1.11439079e-02
-7.57893980e-01 1.11143529e+00 1.58574536e-01 -3.82323675e-02
-1.13278878e+00 -7.74544954e-01 -8.19575787e-01 3.18099439e-01
3.63509178e-01 -6.62332416e-01 1.66157115e+00 -1.27444422e+00
-1.28740287e+00 1.03908741e+00 -1.31973431e-01 -5.71812749e-01
3.10028881e-01 -5.94667375e-01 -3.93059477e-02 1.68705255e-01
3.02971210e-02 1.33838689e+00 9.92097378e-01 -1.15170264e+00
-6.78842843e-01 -9.07527730e-02 4.49445486e-01 1.91977367e-01
-3.95378917e-01 1.18271507e-01 -6.43651307e-01 -7.37715065e-01
-2.91450471e-01 -8.59674633e-01 -4.49329644e-01 8.28100368e-02
-2.27461025e-01 -3.55843425e-01 7.26076484e-01 -5.23135483e-01
1.10418057e+00 -2.02295971e+00 8.40789545e-03 -1.76072717e-01
5.55329740e-01 5.30073106e-01 -4.31904733e-01 -2.55452663e-01
-2.56704926e-01 6.66878164e-01 -1.48876524e-02 -5.73584259e-01
1.00969315e-01 3.14102978e-01 -5.19943655e-01 1.02243833e-01
7.29767084e-01 1.21008635e+00 -8.39279711e-01 -2.27299333e-01
3.17047060e-01 3.73035461e-01 -8.15630138e-01 9.15257260e-03
-4.81621236e-01 1.36579126e-01 -4.32295352e-01 4.90054905e-01
2.84544945e-01 -7.70442069e-01 -1.85926750e-01 -7.43786916e-02
1.18374871e-02 4.49050903e-01 -6.35845602e-01 1.40541863e+00
-3.41628879e-01 9.38780487e-01 2.92339493e-02 -1.03573620e+00
4.74736720e-01 2.24547274e-02 2.81547457e-01 -8.57747912e-01
2.83892334e-01 -8.75604153e-02 2.84662575e-01 -4.53032255e-01
3.69780988e-01 1.39958546e-01 9.72155705e-02 5.06740928e-01
2.78523833e-01 5.83934924e-03 8.36954117e-02 1.36655778e-01
1.06646049e+00 2.97612995e-01 2.66959459e-01 -5.03237665e-01
7.80470446e-02 -1.35969758e-01 5.67089736e-01 9.61409330e-01
-4.72692758e-01 7.58083642e-01 7.21597672e-01 -6.51147723e-01
-1.13104534e+00 -8.21246028e-01 1.02044992e-01 1.64357102e+00
9.85480938e-03 -1.64826021e-01 -1.06273782e+00 -8.58489811e-01
3.03165684e-03 6.13995969e-01 -8.75069141e-01 -2.57311672e-01
-5.43253958e-01 -6.14722133e-01 5.25573969e-01 8.97563100e-01
5.16141891e-01 -1.31097329e+00 -5.44856429e-01 7.21366405e-02
2.08442304e-02 -1.09526467e+00 -5.33012688e-01 3.23944539e-01
-6.35728180e-01 -9.09595490e-01 -6.76141560e-01 -6.59872949e-01
8.75978589e-01 1.86063215e-01 1.53929865e+00 3.06208074e-01
-1.73329219e-01 6.38303384e-02 -1.51798025e-01 -8.12372327e-01
4.50045392e-02 3.90434355e-01 -1.59617305e-01 -1.47940233e-01
5.28501272e-01 -2.52721936e-01 -8.68490696e-01 2.05584526e-01
-6.25001252e-01 7.06666782e-02 8.29622388e-01 8.30209196e-01
6.38644874e-01 -6.07353508e-01 6.25807464e-01 -9.35905635e-01
6.08923495e-01 -3.71170670e-01 -5.05346477e-01 -1.39508592e-02
-7.02272236e-01 3.05899233e-01 6.77034080e-01 -4.90699857e-01
-8.06974530e-01 -2.18430653e-01 -2.53820062e-01 -5.51254749e-01
-3.48132908e-01 3.28329206e-01 1.79349616e-01 -8.28583390e-02
7.86521196e-01 -2.87945420e-01 -2.78347228e-02 -4.70128298e-01
2.64014184e-01 5.02929270e-01 4.37730610e-01 -5.82503080e-01
4.24781710e-01 3.40112835e-01 -4.28703398e-01 -6.05805516e-01
-1.37287045e+00 -2.17861876e-01 -4.08416122e-01 3.94220091e-02
1.33169329e+00 -8.41177344e-01 -9.34230685e-01 3.55704755e-01
-8.69242013e-01 -9.88697350e-01 -3.51555645e-01 3.94335240e-01
-5.09071827e-01 -1.45601451e-01 -7.84444928e-01 -3.82565558e-01
-3.91982943e-01 -1.61901128e+00 9.29321170e-01 2.20526874e-01
-4.48322475e-01 -8.55218232e-01 -4.67366159e-01 3.64855707e-01
7.10598946e-01 -8.79607350e-02 1.00300443e+00 -5.28681457e-01
-6.94299817e-01 4.62036766e-02 -6.86094582e-01 6.26582623e-01
-1.10955328e-01 -1.95888821e-02 -1.21934223e+00 -2.76937574e-01
-3.24802458e-01 -6.68005407e-01 1.36127698e+00 6.87836349e-01
1.86504197e+00 -1.29969716e-01 -3.49599272e-01 7.83815265e-01
1.16683602e+00 1.62500918e-01 6.58957720e-01 5.01893520e-01
7.23142982e-01 1.15176283e-01 3.00045878e-01 2.75761914e-02
4.31676775e-01 5.41015506e-01 8.15201283e-01 -5.81352890e-01
-3.88109982e-01 -4.18863930e-02 1.27826959e-01 2.52947539e-01
-2.57916808e-01 -3.47559035e-01 -9.58726048e-01 6.08129799e-01
-1.65157294e+00 -8.60595167e-01 2.79775262e-01 1.91771078e+00
8.06795776e-01 6.22012794e-01 -1.84872180e-01 -3.15741301e-01
5.05487025e-01 3.06915820e-01 -7.26484299e-01 -6.10536039e-01
1.15721509e-01 5.16487837e-01 5.48685014e-01 6.96938217e-01
-1.25780427e+00 1.16292477e+00 7.24216413e+00 6.09423876e-01
-1.30866063e+00 4.67109717e-02 1.11086023e+00 -2.26481080e-01
-1.35140598e-01 5.95253073e-02 -9.67484415e-01 4.86122489e-01
6.71986878e-01 2.98037142e-01 4.89100546e-01 1.01805818e+00
5.66577278e-02 -8.40514079e-02 -1.22777283e+00 8.42497528e-01
1.68784827e-01 -1.20878279e+00 6.70014247e-02 1.26878530e-01
8.63420010e-01 4.79934245e-01 5.38017035e-01 5.34205616e-01
9.40587342e-01 -1.50713527e+00 8.08983743e-01 3.19592148e-01
1.08876443e+00 -5.59365690e-01 4.79799807e-01 2.44847089e-01
-8.26470494e-01 -3.40273410e-01 -3.42018843e-01 -2.14654669e-01
-8.51696953e-02 2.43143603e-01 -6.73290133e-01 -2.47357115e-01
1.02836442e+00 7.09929109e-01 -7.50111818e-01 7.84978867e-01
-6.70775414e-01 7.70771027e-01 -3.06253046e-01 6.32897019e-02
6.80877328e-01 1.72604159e-01 1.65736247e-02 1.18559372e+00
5.38429990e-02 2.25730509e-01 3.34960610e-01 9.29026663e-01
-5.86023986e-01 -3.76928359e-01 -3.68386239e-01 -1.32675812e-01
1.62701488e-01 1.03222001e+00 -5.98432839e-01 -4.72236484e-01
-5.57720482e-01 7.44087458e-01 8.49831522e-01 7.01505184e-01
-9.69335437e-01 -4.65587080e-01 9.96673048e-01 -1.08702583e-02
3.44746828e-01 -1.34763852e-01 -6.46518528e-01 -1.08958364e+00
-2.17048392e-01 -8.91104817e-01 3.47502410e-01 -1.00861228e+00
-9.87076342e-01 7.18164504e-01 -1.38557270e-01 -7.35631883e-01
-1.57901362e-01 -9.84843671e-01 -4.80360746e-01 1.00106788e+00
-1.85269380e+00 -1.08708096e+00 -4.06214386e-01 4.00240660e-01
7.88084149e-01 -1.07823409e-01 7.28101790e-01 2.48521030e-01
-7.22887218e-01 9.05988514e-01 -2.00598314e-01 3.36947054e-01
6.56991482e-01 -1.44023466e+00 6.28458321e-01 6.95264935e-01
-1.89543236e-02 6.82036459e-01 4.78037328e-01 -2.27234915e-01
-7.62080133e-01 -9.95981336e-01 6.15411878e-01 -5.81807137e-01
3.88523430e-01 -2.95942187e-01 -8.13260555e-01 1.25233507e+00
6.87360764e-01 3.32862437e-01 4.65911686e-01 3.98811519e-01
-4.67890590e-01 -8.83833542e-02 -8.48098576e-01 6.79408073e-01
9.96336102e-01 -5.34027755e-01 -5.58256984e-01 1.92833453e-01
7.91622519e-01 -4.23090696e-01 -7.46305764e-01 3.56140763e-01
2.31436774e-01 -5.05087793e-01 1.03565848e+00 -9.38432693e-01
7.06317544e-01 -7.61040822e-02 1.99666664e-01 -1.41291463e+00
-8.45241368e-01 -5.30511260e-01 -1.71732739e-01 8.14330697e-01
7.60952115e-01 -6.35400355e-01 7.98965096e-01 7.73693085e-01
-5.79283893e-01 -9.04292583e-01 -3.76592427e-01 -4.89571512e-01
3.42157364e-01 -4.19814050e-01 3.73910815e-01 8.39950860e-01
-2.83388764e-01 4.74747986e-01 -1.16814025e-01 -2.26116404e-02
5.62471390e-01 -1.84525281e-01 4.78919387e-01 -9.94561791e-01
-3.03158194e-01 -8.94924521e-01 -2.03246191e-01 -1.32617104e+00
3.04768533e-01 -7.47588277e-01 5.01465378e-03 -1.67708945e+00
1.26296923e-01 -5.45969248e-01 -5.74455261e-01 1.08667719e+00
-4.81541097e-01 6.20153189e-01 2.58649796e-01 1.25561580e-01
-6.76175177e-01 3.21841002e-01 1.39146554e+00 -3.24152112e-01
1.02392867e-01 -2.11861968e-01 -1.12789023e+00 9.92107213e-01
8.37971032e-01 -3.93827975e-01 -4.74305570e-01 -1.27562273e+00
1.41845137e-01 -5.41088521e-01 5.13579130e-01 -9.39903080e-01
9.76362079e-03 -4.74980086e-01 5.94606876e-01 -2.19748616e-01
4.26402867e-01 -4.22021538e-01 -4.57006902e-01 2.01685354e-01
-7.89237082e-01 1.82432875e-01 4.41015869e-01 3.35891277e-01
-1.67262822e-01 -2.24034041e-01 1.04131794e+00 -3.01056534e-01
-9.77456212e-01 5.92199087e-01 -3.35407048e-01 4.84169722e-01
1.01910412e+00 -9.12737027e-02 -6.87590003e-01 -3.25374782e-01
-8.09590638e-01 4.29307580e-01 4.00234282e-01 4.82576907e-01
3.36812168e-01 -1.09671032e+00 -5.51973403e-01 3.29306051e-02
-4.43566032e-02 3.29102278e-01 3.35515972e-04 4.55537707e-01
-5.36942184e-01 5.97858787e-01 -2.52306491e-01 -4.89423841e-01
-8.93458068e-01 5.57861030e-01 4.42755938e-01 -1.97797298e-01
-4.84274149e-01 1.23253655e+00 5.44376850e-01 -1.42813072e-01
3.26312870e-01 -5.06250978e-01 -2.85582483e-01 -2.25353062e-01
6.68286324e-01 -7.92955011e-02 1.62639618e-02 -3.98528248e-01
-2.53633738e-01 4.27723706e-01 -5.76302648e-01 -6.56136423e-02
1.32242978e+00 1.56749830e-01 8.16206262e-02 -5.76198101e-02
1.14057302e+00 -5.25371253e-01 -1.97470438e+00 -1.36381701e-01
-1.49658561e-01 -3.91969323e-01 1.83427259e-01 -1.00124753e+00
-1.14971495e+00 1.45193672e+00 3.91167223e-01 7.12210014e-02
1.07884371e+00 8.52975436e-03 5.38990557e-01 5.54330289e-01
-1.19155459e-02 -1.19718552e+00 4.35314536e-01 8.83173823e-01
8.54082823e-01 -1.44827211e+00 -1.09525181e-01 -3.79674211e-02
-6.55576825e-01 7.27409422e-01 1.15242219e+00 -2.30434924e-01
5.56157053e-01 3.20014209e-01 1.25868559e-01 -1.30086467e-01
-1.00689399e+00 -4.18341875e-01 3.20159256e-01 6.07857764e-01
4.83633131e-01 -1.57088965e-01 3.93066090e-03 4.81246233e-01
-7.25022797e-03 1.01361968e-01 1.87284395e-01 9.21906233e-01
-6.58853114e-01 -8.33709002e-01 4.38435562e-02 6.83427155e-01
-1.01607919e+00 -3.82516950e-01 -2.20093220e-01 6.88684225e-01
4.56010960e-02 6.60851479e-01 2.84421653e-01 -2.04949781e-01
2.81991422e-01 7.23704472e-02 1.76979586e-01 -7.75909066e-01
-6.34100258e-01 -1.56416818e-01 -9.39493775e-02 -6.15518868e-01
-6.75518066e-02 -2.24618956e-01 -1.24857044e+00 -2.53895551e-01
2.99074482e-02 -1.97456449e-01 5.77204883e-01 1.00571656e+00
6.82364285e-01 8.26028109e-01 8.99463370e-02 -1.00695670e+00
-7.07273781e-01 -1.02975905e+00 6.58861548e-02 5.45820236e-01
5.91312230e-01 -7.21316218e-01 -1.49407521e-01 2.77599543e-01] | [9.645176887512207, 1.7174293994903564] |
cc879adc-8359-4733-a4b5-9b288368d34f | reconstructing-spectral-functions-via | 2111.1476 | null | https://arxiv.org/abs/2111.14760v3 | https://arxiv.org/pdf/2111.14760v3.pdf | Reconstructing spectral functions via automatic differentiation | Reconstructing spectral functions from Euclidean Green's functions is an important inverse problem in many-body physics. However, the inversion is proved to be ill-posed in the realistic systems with noisy Green's functions. In this Letter, we propose an automatic differentiation(AD) framework as a generic tool for the spectral reconstruction from propagator observable. Exploiting the neural networks' regularization as a non-local smoothness regulator of the spectral function, we represent spectral functions by neural networks and use the propagator's reconstruction error to optimize the network parameters unsupervisedly. In the training process, except for the positive-definite form for the spectral function, there are no other explicit physical priors embedded into the neural networks. The reconstruction performance is assessed through relative entropy and mean square error for two different network representations. Compared to the maximum entropy method, the AD framework achieves better performance in the large-noise situation. It is noted that the freedom of introducing non-local regularization is an inherent advantage of the present framework and may lead to substantial improvements in solving inverse problems. | ['Kai Zhou', 'Shuzhe Shi', 'Lingxiao Wang'] | 2021-11-29 | null | null | null | null | ['spectral-reconstruction'] | ['computer-vision'] | [ 2.81288683e-01 1.84682012e-01 2.73640543e-01 -2.64857531e-01
-4.84220892e-01 5.54068536e-02 1.33351341e-01 -2.55097300e-01
-6.66941941e-01 1.10984778e+00 2.88512278e-02 2.78758556e-02
-4.75962073e-01 -7.02634573e-01 -5.14820039e-01 -1.32509077e+00
-4.98136654e-02 2.62389392e-01 -1.12188295e-01 -3.01053315e-01
1.55334368e-01 5.12205422e-01 -1.23595309e+00 -2.24016398e-01
1.15701771e+00 1.05561018e+00 -6.21954277e-02 3.49471629e-01
8.89543444e-02 7.24350929e-01 -2.78915197e-01 2.52992846e-02
1.71910733e-01 -6.66139424e-01 -7.57853389e-01 -2.73831397e-01
-4.34980005e-01 1.68880783e-02 -3.85379791e-01 1.44929671e+00
6.41859651e-01 5.61992526e-01 1.02654755e+00 -6.46033585e-01
-5.54315805e-01 2.10134059e-01 -2.77029067e-01 1.56413168e-01
1.17949560e-01 1.10626087e-01 6.03811026e-01 -6.89466774e-01
3.55652869e-01 8.76150310e-01 1.14713001e+00 4.97706294e-01
-1.42837477e+00 -1.71242371e-01 -5.87834358e-01 2.19381601e-01
-1.65568769e+00 -5.25044262e-01 1.19899833e+00 -4.91704613e-01
4.60746557e-01 3.90732795e-01 6.23434126e-01 6.42875075e-01
4.11718518e-01 2.72768050e-01 1.27147579e+00 -7.09842622e-01
1.90419286e-01 2.81656206e-01 3.04878175e-01 7.85161018e-01
2.00476557e-01 2.47623414e-01 -9.36363116e-02 -2.31807455e-01
8.48560095e-01 -3.10932159e-01 -6.21583045e-01 -1.76860884e-01
-9.14007008e-01 9.00323570e-01 4.29774731e-01 4.75952357e-01
-6.14520073e-01 3.46685439e-01 4.27147895e-01 -4.99369390e-03
7.04274893e-01 4.27856594e-01 -4.05521765e-02 1.73466951e-01
-9.48174834e-01 5.60714900e-02 8.97351086e-01 3.00375998e-01
8.23373258e-01 5.06082237e-01 -1.88057929e-01 7.71388710e-01
4.54731852e-01 5.43693304e-01 3.68283600e-01 -1.17038000e+00
-7.16414750e-02 7.47054741e-02 2.22847953e-01 -1.09782255e+00
-5.83431721e-01 -7.64911413e-01 -1.32766712e+00 2.80826449e-01
5.41183472e-01 -3.83349150e-01 -5.70210516e-01 1.72788513e+00
4.59617972e-01 1.10167198e-01 1.77535251e-01 1.28272617e+00
8.63514006e-01 6.33926690e-01 -1.72669038e-01 -5.54385304e-01
1.07672524e+00 -5.74222088e-01 -1.21657681e+00 1.80597380e-01
4.66108292e-01 -7.06742644e-01 4.94649768e-01 1.85438752e-01
-1.00981617e+00 -3.17361444e-01 -1.05945992e+00 9.14014056e-02
-1.47486597e-01 3.64715010e-01 4.69307482e-01 5.27202666e-01
-7.96436965e-01 1.13492393e+00 -7.77137816e-01 1.42490879e-01
2.31097713e-02 3.77313197e-01 -1.81676865e-01 5.58226228e-01
-1.43484867e+00 1.12176418e+00 5.90686917e-01 6.31231487e-01
-3.09990823e-01 -5.19373238e-01 -6.59420073e-01 -1.57050658e-02
3.65016125e-02 -6.01367533e-01 8.03877771e-01 -1.22649252e+00
-1.96579731e+00 5.35280168e-01 9.02263448e-02 -2.92746216e-01
5.24378121e-01 8.27358514e-02 -5.14487624e-01 3.78775656e-01
-2.53605153e-02 -8.08492526e-02 8.93172801e-01 -1.01800787e+00
5.23492336e-01 -6.43757954e-02 -2.85013080e-01 2.40017828e-02
-3.72404009e-02 -3.06765795e-01 1.45248279e-01 -6.55140996e-01
5.36747694e-01 -8.13517928e-01 -3.96822542e-01 3.43275396e-03
-3.28946173e-01 1.54294282e-01 2.90100783e-01 -1.16268861e+00
9.65081036e-01 -2.14094591e+00 1.35754794e-01 6.03592396e-01
1.16350405e-01 2.12252259e-01 3.48201960e-01 3.60579878e-01
-2.54996240e-01 -1.87602133e-01 -6.71788275e-01 1.20567143e-01
-1.99975014e-01 1.87576443e-01 2.39673689e-01 1.03690147e+00
5.85095435e-02 5.92844546e-01 -6.37628496e-01 -5.16966045e-01
6.75916150e-02 7.61468232e-01 -5.33349693e-01 4.40891720e-02
6.97031096e-02 1.00028110e+00 -6.25091791e-01 1.10482797e-02
8.39091897e-01 -4.19079304e-01 9.35745332e-03 -5.22682190e-01
-1.71057880e-01 9.22916085e-03 -1.28467834e+00 1.60372508e+00
-3.64898294e-01 3.38591129e-01 5.91112852e-01 -1.67196786e+00
8.86637688e-01 6.20445848e-01 5.97311914e-01 -5.54006457e-01
2.34342784e-01 4.09114838e-01 1.60364121e-01 -8.64542663e-01
2.42142513e-01 -8.19419384e-01 2.25421041e-01 2.37940148e-01
6.86755255e-02 1.16620727e-01 3.47943231e-02 -2.21888274e-01
7.96180487e-01 2.09833518e-01 4.40395504e-01 -7.98845589e-01
1.10478938e+00 -2.36799791e-01 6.59929693e-01 5.67442417e-01
4.37949933e-02 6.27383530e-01 1.72286615e-01 -3.96299154e-01
-8.71041656e-01 -7.85315990e-01 -5.52790880e-01 4.88265067e-01
3.95687036e-02 6.59485534e-02 -8.29678297e-01 -7.37662539e-02
-2.60922551e-01 6.94063663e-01 -3.23976129e-01 -2.64260858e-01
-6.73320711e-01 -1.29001701e+00 5.68529427e-01 3.26013304e-02
7.89298534e-01 -1.05419493e+00 -3.48175466e-01 2.37553135e-01
-3.81746799e-01 -8.11561704e-01 -3.33222836e-01 3.96584302e-01
-9.08241928e-01 -8.08115959e-01 -9.72172856e-01 -3.79498392e-01
8.24457407e-01 -3.57926846e-01 7.59463251e-01 5.81011362e-02
-2.44769871e-01 3.69592905e-01 -1.22019306e-01 7.15686306e-02
-7.27188766e-01 -2.11519822e-01 4.48027067e-02 2.72022873e-01
-1.34014189e-01 -8.05829883e-01 -6.72721028e-01 3.57992388e-02
-8.21908474e-01 -1.02362603e-01 3.95296961e-01 1.14064789e+00
5.16222894e-01 2.22727314e-01 7.69424021e-01 -7.21313596e-01
8.56612325e-01 -4.77210879e-01 -6.77774668e-01 -4.11001705e-02
-6.26248777e-01 6.41944110e-01 8.39268148e-01 -2.28317082e-01
-1.39204752e+00 7.68528357e-02 -5.28937340e-01 -1.17319591e-01
5.21359071e-02 6.38540149e-01 1.43404409e-01 -6.58713579e-01
9.66603160e-01 3.91519308e-01 4.17859614e-01 -7.42884815e-01
1.28162012e-01 3.78315896e-01 4.85357791e-01 -8.27754915e-01
6.61298633e-01 3.71096134e-01 5.25070608e-01 -1.00945067e+00
-7.76328444e-01 -5.74312687e-01 -4.93929595e-01 -2.12838188e-01
9.37395632e-01 -5.76332867e-01 -1.14723575e+00 3.28365833e-01
-1.34938169e+00 1.12521641e-01 -4.15264815e-01 8.33446622e-01
-6.46191299e-01 7.74906814e-01 -7.05245197e-01 -1.13754642e+00
-5.72480083e-01 -1.21518981e+00 5.24375558e-01 1.80438310e-01
1.04392089e-01 -1.35159171e+00 7.82042071e-02 1.71349943e-02
5.35720646e-01 3.79125029e-01 7.70782888e-01 -3.79764497e-01
-3.72892618e-01 -2.22772107e-01 -1.72382668e-01 8.42503846e-01
-1.83753595e-01 -3.79205048e-01 -1.02154708e+00 -8.34950954e-02
8.74661148e-01 6.90784827e-02 8.13033640e-01 6.32005513e-01
1.18302274e+00 -5.20342290e-01 -9.08257719e-03 7.49515891e-01
1.55206299e+00 8.66663381e-02 6.81635141e-01 -1.78376585e-02
4.82452035e-01 5.93627870e-01 9.67190936e-02 5.19126475e-01
-3.54443014e-01 4.30020362e-01 2.17924699e-01 -9.25329849e-02
9.96961743e-02 2.31680661e-01 3.23078007e-01 1.29610693e+00
-6.20937109e-01 1.92971230e-01 -6.20542705e-01 1.74479932e-01
-1.74531913e+00 -1.17371011e+00 -6.13865137e-01 2.33196473e+00
9.39017415e-01 -2.35443830e-01 -2.90309519e-01 2.64392555e-01
7.21120954e-01 1.04315266e-01 -3.25801998e-01 -3.52845252e-01
-5.19918017e-02 3.22453976e-01 6.68657959e-01 7.49672771e-01
-9.93711591e-01 1.90164968e-01 6.34267807e+00 1.08625603e+00
-1.12751770e+00 4.36454207e-01 3.04862916e-01 3.55898708e-01
-1.66980028e-01 1.57851484e-02 -3.48064959e-01 6.27966404e-01
9.52137947e-01 3.35454866e-02 6.63987815e-01 5.23177326e-01
4.17800397e-01 -2.44289577e-01 -5.80122590e-01 9.59868073e-01
-2.32096523e-01 -1.27074647e+00 -5.18887162e-01 -5.08689657e-02
6.05041862e-01 -1.52615279e-01 -2.27092460e-01 -1.00139059e-01
-3.00233036e-01 -1.02480042e+00 5.77885509e-01 1.05008650e+00
8.09762359e-01 -7.43460596e-01 9.28884804e-01 7.07298517e-01
-8.56454968e-01 3.74239713e-01 -4.09286201e-01 -1.38379306e-01
3.85621816e-01 1.14753091e+00 -4.96506900e-01 6.33896470e-01
2.71339625e-01 4.44610387e-01 -2.64174026e-03 9.68583941e-01
-1.16175637e-02 6.00605011e-01 -4.89501566e-01 4.21485081e-02
8.21925253e-02 -1.07041740e+00 8.34164679e-01 1.10562778e+00
3.89477998e-01 2.34906480e-01 -6.27528504e-02 1.39439738e+00
1.59808487e-01 2.78055817e-01 -5.03779113e-01 -7.57439062e-02
-2.34356612e-01 1.25481570e+00 -7.44237065e-01 -1.45709366e-01
-1.27847433e-01 8.52001250e-01 -1.81900516e-01 7.97140002e-01
-7.08443284e-01 -4.73417938e-01 8.90136287e-02 2.07089826e-01
-7.81441480e-02 -1.64708152e-01 -2.17071205e-01 -1.01441014e+00
1.02232270e-01 -4.11930650e-01 1.70495380e-02 -5.94784737e-01
-1.34391510e+00 4.03335720e-01 1.70810685e-01 -1.17301226e+00
-2.90304035e-01 -6.18448317e-01 -5.97367167e-01 1.17840981e+00
-1.27283561e+00 -6.37915432e-01 -3.64468507e-02 4.44607198e-01
-2.99704641e-01 -6.58518746e-02 8.45938027e-01 4.92159009e-01
-3.05823088e-01 1.14424147e-01 7.87549555e-01 2.69056354e-02
2.10992485e-01 -1.13349617e+00 -4.08840239e-01 4.87406164e-01
-4.05870974e-01 6.13992751e-01 1.13396776e+00 -5.76505601e-01
-1.14353085e+00 -5.60728908e-01 4.74075735e-01 3.99862051e-01
6.33514106e-01 1.53215695e-02 -1.17196214e+00 4.11008298e-01
2.11099982e-01 4.02288765e-01 4.76090312e-01 -1.10573195e-01
3.76703441e-01 -7.97872916e-02 -1.42227745e+00 1.75232783e-01
6.10980630e-01 -5.27868569e-01 -4.09984261e-01 6.30287051e-01
3.79105538e-01 -2.71868259e-01 -1.03750694e+00 4.84289736e-01
3.17193121e-01 -1.03300190e+00 1.18687582e+00 -2.64882892e-01
2.06677273e-01 -3.34253490e-01 8.25160071e-02 -1.26520634e+00
-3.23896646e-01 -7.58750796e-01 1.60233751e-01 9.31258023e-01
1.73377141e-01 -1.05477262e+00 6.12552285e-01 3.68546009e-01
-2.08304420e-01 -6.16928518e-01 -1.22810459e+00 -8.54591250e-01
1.11194178e-01 -2.20118761e-01 -7.88739845e-02 7.99589276e-01
-1.44255370e-01 1.69680700e-01 -6.45133376e-01 1.21052302e-01
8.69565308e-01 -2.15101689e-01 1.12200446e-01 -1.48822010e+00
-5.64173579e-01 -1.19273983e-01 -1.38292447e-01 -1.01184404e+00
4.57645535e-01 -1.19873536e+00 3.83182675e-01 -1.17030013e+00
-9.65204090e-02 -4.02909577e-01 -3.11650425e-01 -1.25097975e-01
2.30622008e-01 2.16791816e-02 -2.53132045e-01 2.54006147e-01
-1.93492204e-01 9.64167714e-01 1.53575778e+00 1.22963917e-02
-1.74261168e-01 3.00659716e-01 -1.68444052e-01 1.19706821e+00
7.78236270e-01 -7.06776321e-01 -2.35240623e-01 1.50584802e-01
3.04809272e-01 4.76030380e-01 5.59257329e-01 -1.08645844e+00
2.52983928e-01 -4.87563834e-02 2.67218322e-01 -2.50361383e-01
6.53155923e-01 -7.72557974e-01 5.25060117e-01 4.81085509e-01
-1.31225064e-01 -3.88730824e-01 -2.93679330e-02 5.78324318e-01
-2.08310023e-01 -1.10106480e+00 1.13044584e+00 -3.75257701e-01
-1.95671886e-01 -1.93734810e-01 -4.60087657e-01 1.46898374e-01
4.62822646e-01 -1.74002737e-01 1.34904280e-01 -3.38453054e-01
-1.09308100e+00 -4.01141226e-01 1.99704289e-01 -6.21287525e-01
5.23838162e-01 -1.40833354e+00 -3.74403924e-01 2.79209286e-01
-5.01241028e-01 -1.44131839e-01 5.03638625e-01 1.49788451e+00
-8.42686057e-01 2.37910464e-01 -5.48280403e-02 -4.63547915e-01
-7.76240528e-01 3.30604047e-01 8.60551536e-01 -3.14030081e-01
-7.09167719e-01 4.33719844e-01 1.04753874e-01 -5.00014484e-01
-1.47712633e-01 -7.63999671e-02 -1.95214257e-01 -2.27555215e-01
1.48929521e-01 7.16252506e-01 -1.06827496e-03 -1.00781763e+00
-1.47207871e-01 6.54597461e-01 4.52264667e-01 -2.61385739e-01
1.30289090e+00 3.79360579e-02 -5.53606689e-01 4.90996510e-01
1.43543839e+00 3.73940752e-03 -9.31569099e-01 -2.07657665e-01
-9.68198031e-02 2.10833997e-02 2.59183288e-01 -5.54243684e-01
-1.04905951e+00 8.23513031e-01 6.23283446e-01 2.94966996e-01
9.59730029e-01 -4.03029591e-01 6.46171153e-01 5.07457495e-01
9.91324857e-02 -1.45299780e+00 -1.56253308e-01 4.23120886e-01
1.09955549e+00 -1.10868776e+00 2.67787188e-01 -5.09422660e-01
-1.81528404e-01 1.20512056e+00 -1.52236018e-02 -3.48735482e-01
9.24103737e-01 1.23440474e-02 -1.93820983e-01 -2.37773120e-01
3.11597604e-02 -6.34121075e-02 5.74440658e-01 3.24404657e-01
6.11231506e-01 5.23856562e-03 -8.76242220e-01 4.19473112e-01
5.74640185e-02 9.16154683e-02 4.65676904e-01 4.91581887e-01
-4.39507604e-01 -7.19542980e-01 -6.94768310e-01 3.11828554e-01
-6.49974346e-01 -1.68682020e-02 2.26716205e-01 6.08733296e-01
1.14243552e-01 6.93797410e-01 -4.37039346e-01 2.10951969e-01
-1.93605516e-02 3.79830152e-01 4.94748652e-01 -2.25060448e-01
-4.22920376e-01 2.30077773e-01 9.59900394e-02 -3.72534126e-01
-7.84783900e-01 -4.18004870e-01 -1.65109050e+00 -2.02016726e-01
-4.40201461e-01 4.99064028e-01 8.04933071e-01 1.07776940e+00
-5.27300052e-02 7.59117544e-01 2.14170605e-01 -8.66738141e-01
-8.58207047e-01 -8.96959722e-01 -8.94158900e-01 4.27986264e-01
3.93038839e-01 -8.39675903e-01 -6.83503211e-01 -1.19156979e-01] | [12.054479598999023, -2.4909660816192627] |
73868239-cad9-4c46-8a98-a534026250b3 | generalizable-prediction-of-academic | 1912.00463 | null | https://arxiv.org/abs/1912.00463v1 | https://arxiv.org/pdf/1912.00463v1.pdf | Generalizable prediction of academic performance from short texts on social media | It has already been established that digital traces can be used to predict various human attributes. In most cases, however, predictive models rely on features that are specific to a particular source of digital trace data. In contrast, short texts written by users $-$ tweets, posts, or comments $-$ are ubiquitous across multiple platforms. In this paper, we explore the predictive power of short texts with respect to the academic performance of their authors. We use data from a representative panel of Russian students that includes information about their educational outcomes and activity on a popular networking site, VK. We build a model to predict academic performance from users' posts on VK and then apply it to a different context. In particular, we show that the model could reproduce rankings of schools and universities from the posts of their students on social media. We also find that the same model could predict academic performance from tweets as well as from VK posts. The generalizability of a model trained on a relatively small data set could be explained by the use of continuous word representations trained on a much larger corpus of social media posts. This also allows for greater interpretability of model predictions. | ['Ivan Smirnov'] | 2019-12-01 | null | null | null | null | ['small-data'] | ['computer-vision'] | [-2.57079959e-01 2.15144902e-01 -3.08473468e-01 -3.30920517e-01
-7.97381997e-01 -4.68146682e-01 8.86552036e-01 1.09331703e+00
-5.75461388e-01 5.80860436e-01 7.11505771e-01 -4.90308732e-01
-3.27867329e-01 -1.21668875e+00 -5.95162690e-01 -3.02541554e-02
2.99413055e-01 2.00311244e-01 2.71347433e-01 -3.65174443e-01
4.84015852e-01 3.53507668e-01 -1.59204924e+00 1.69417441e-01
7.59640753e-01 5.18572152e-01 2.24589154e-01 5.55206537e-01
-2.03426525e-01 9.49873149e-01 -6.85224175e-01 -5.82474172e-01
-9.57958251e-02 -1.67440295e-01 -9.30460632e-01 -2.01986834e-01
6.37921810e-01 -1.27242878e-01 -6.17270231e-01 7.94145346e-01
1.42108619e-01 2.88151741e-01 5.63666165e-01 -8.37446809e-01
-7.67049134e-01 7.58367836e-01 -1.18878655e-01 4.34433162e-01
7.95759678e-01 -3.59391756e-02 1.30246556e+00 -3.95512581e-01
8.92401576e-01 6.48530245e-01 8.55880976e-01 -9.31981653e-02
-1.37346721e+00 -6.71056569e-01 9.37630609e-02 1.74026519e-01
-1.30861604e+00 -3.33673745e-01 5.46521604e-01 -8.71515691e-01
4.54913735e-01 2.17710093e-01 9.44011509e-01 1.18432164e+00
1.49421990e-01 4.70707834e-01 1.16756487e+00 -4.30128157e-01
-2.41165593e-01 3.21678460e-01 6.85346067e-01 8.04216743e-01
3.42674315e-01 -3.95923704e-01 -5.95013738e-01 -3.25475574e-01
1.82105884e-01 1.17136613e-01 -1.19033709e-01 3.36995155e-01
-1.00225365e+00 7.89739370e-01 1.17706694e-01 4.71771419e-01
-1.04405232e-01 -1.31207362e-01 1.77524537e-01 5.56748629e-01
8.64608347e-01 6.53632343e-01 -3.86641264e-01 -5.05506158e-01
-9.82353389e-01 4.03191030e-01 1.06924605e+00 5.04808187e-01
1.01241970e+00 -3.97063404e-01 1.84238181e-02 8.98843527e-01
3.08345705e-01 1.13895401e-01 9.30353343e-01 -6.20920181e-01
3.30559701e-01 8.56351078e-01 1.49502426e-01 -1.38658655e+00
-4.67165709e-01 -3.84496003e-01 -1.82977244e-02 -3.67719203e-01
9.17838633e-01 -3.44274253e-01 -4.19879049e-01 1.56848395e+00
1.65452078e-01 4.82565582e-01 -1.92420334e-01 4.59387749e-01
1.12306058e+00 4.81421292e-01 1.52973294e-01 8.90632123e-02
1.09659719e+00 -1.45070687e-01 -3.81434321e-01 -1.75174177e-01
1.07454789e+00 -7.38673985e-01 9.43507075e-01 1.99712023e-01
-9.33241487e-01 -5.91771007e-01 -8.05637240e-01 -9.74422395e-02
-7.02651799e-01 -3.37132603e-01 5.37802517e-01 7.03832626e-01
-9.75797057e-01 1.11751521e+00 -7.71354854e-01 -6.34749949e-01
1.11716576e-01 2.10755169e-01 -1.93272114e-01 1.73747092e-01
-1.13768971e+00 8.43243718e-01 -2.50221223e-01 -5.68976521e-01
-7.22582862e-02 -7.55709469e-01 -7.50045776e-01 -5.31089120e-02
-1.09753117e-01 -1.24062113e-01 1.19244993e+00 -1.08934581e+00
-1.38764215e+00 1.13719082e+00 -1.16804972e-01 -1.66069627e-01
3.53322208e-01 -2.10058063e-01 -6.26803458e-01 -2.06845984e-01
2.45434687e-01 -4.69375968e-01 8.73769000e-02 -4.45278853e-01
-5.74790895e-01 -4.76707697e-01 -5.70624955e-02 -3.46041530e-01
-8.93778503e-01 8.80331099e-02 -2.54534692e-01 -3.65714043e-01
1.39351259e-03 -9.83065724e-01 -1.77957013e-01 -7.09466040e-01
-1.66065454e-01 -6.64272368e-01 2.45916352e-01 -6.02048218e-01
1.64802051e+00 -2.04318213e+00 -2.29282573e-01 4.04034942e-01
2.14927480e-01 -8.38904083e-02 3.53071429e-02 8.76236498e-01
2.73071855e-01 4.47336286e-01 5.94036460e-01 -2.18593478e-01
7.78360516e-02 -6.47324026e-02 -1.14565209e-01 7.19346285e-01
-2.38268882e-01 6.09678388e-01 -9.18466866e-01 -5.10798514e-01
-2.73151323e-02 1.12020291e-01 -5.53425312e-01 -1.00297280e-01
-8.69496632e-03 2.92351302e-02 -8.43543530e-01 1.38894230e-01
-1.37427459e-02 -4.87948000e-01 3.16559374e-01 5.27176619e-01
-6.01828933e-01 9.20957744e-01 -6.76655114e-01 1.32599318e+00
-4.14564550e-01 1.36569405e+00 -3.20507616e-01 -9.75247085e-01
1.03704548e+00 2.67037094e-01 4.79435027e-01 -5.72769105e-01
1.51961386e-01 5.11896275e-02 2.27882131e-03 -5.83832979e-01
8.11762035e-01 1.40581772e-01 -1.61934316e-01 8.47692192e-01
-1.69244975e-01 1.14036687e-01 3.08293313e-01 3.45701873e-01
1.20848620e+00 4.86193337e-02 1.49035618e-01 -4.00292009e-01
3.33367795e-01 1.19216226e-01 4.00515944e-01 7.97260642e-01
-4.18724939e-02 3.93845469e-01 5.72654545e-01 -5.00428855e-01
-8.95441711e-01 -7.07750201e-01 -6.04136050e-01 1.57440662e+00
-2.62243211e-01 -9.19650257e-01 -3.60386997e-01 -2.42670760e-01
3.95341694e-01 7.03246117e-01 -5.66841066e-01 1.03313185e-01
-4.27409619e-01 -7.58955896e-01 4.27323490e-01 -9.37015936e-03
-1.42241955e-01 -6.22524202e-01 -2.42808655e-01 3.07096601e-01
-1.24112610e-02 -1.01366746e+00 7.28998631e-02 -2.87028223e-01
-6.57563627e-01 -1.11711109e+00 -3.10557991e-01 -7.46233881e-01
3.76235634e-01 8.03986564e-02 1.19200885e+00 3.84701043e-01
2.51534283e-01 6.03816152e-01 -3.54612023e-01 -6.41327083e-01
-4.18068022e-01 5.65340400e-01 2.26740152e-01 -1.80141826e-04
7.78671741e-01 -6.55213416e-01 -3.02462935e-01 3.93896103e-02
-5.24272263e-01 -1.34146497e-01 4.52556014e-02 3.15513015e-01
1.83234047e-02 -4.34928894e-01 7.18392968e-01 -1.35681546e+00
6.71133697e-01 -1.07356966e+00 -4.21455979e-01 -8.70309845e-02
-8.11744630e-01 -2.40818724e-01 6.16753876e-01 -4.78852272e-01
-6.79567575e-01 -3.24651092e-01 -2.50421941e-01 2.28314370e-01
-1.63224831e-01 9.67080414e-01 5.69337487e-01 1.33018747e-01
7.16146231e-01 8.08818564e-02 -2.51072682e-02 -5.91823220e-01
-1.36073396e-01 9.75019753e-01 4.95765433e-02 -6.11911058e-01
6.81565285e-01 -1.05733164e-02 2.07637493e-02 -1.22742474e+00
-1.11930156e+00 -5.57432830e-01 -4.23050284e-01 -4.29004908e-01
4.04849499e-01 -1.07126629e+00 -1.08025765e+00 1.83822647e-01
-5.50722003e-01 -4.29941058e-01 -1.90487895e-02 7.41911113e-01
-9.07751322e-02 1.00435160e-01 -9.94855940e-01 -4.18682218e-01
2.84592479e-01 -7.58117318e-01 2.95897573e-01 3.95163834e-01
-7.49070406e-01 -1.31230628e+00 3.58589739e-01 6.01796806e-01
2.27088720e-01 3.70847285e-01 8.41760457e-01 -1.37871110e+00
-2.96374083e-01 -6.15110338e-01 1.43423691e-01 -6.87499717e-02
-1.53577058e-02 4.11097914e-01 -8.55856061e-01 -1.24978155e-01
-5.64489067e-01 -3.90808672e-01 6.86684489e-01 1.03422381e-01
1.07651007e+00 -4.14218664e-01 -4.55293298e-01 1.45844862e-01
1.29842830e+00 -4.16121960e-01 2.40493461e-01 7.97155857e-01
5.60855329e-01 6.43247008e-01 3.78341824e-02 5.30005753e-01
6.74575150e-01 4.39642936e-01 -8.47675726e-02 3.99790615e-01
3.52825493e-01 -5.48181832e-01 4.43257838e-01 1.22365236e+00
-3.29976946e-01 -4.74639377e-03 -1.39435208e+00 7.00050950e-01
-1.66451395e+00 -1.17168927e+00 -6.62499785e-01 2.16193342e+00
8.42740238e-01 3.54400575e-01 3.53343844e-01 -6.48326948e-02
4.30217981e-01 4.13975805e-01 5.46092205e-02 -4.86533165e-01
3.09892982e-01 4.85673457e-01 6.89944923e-01 5.11534691e-01
-5.72819591e-01 6.79753065e-01 6.88042164e+00 4.72789586e-01
-9.93742287e-01 5.21205626e-02 5.97082376e-01 -2.92223603e-01
-5.48761904e-01 -1.24426596e-01 -8.90973747e-01 4.91309911e-01
1.63754392e+00 -6.79813266e-01 8.83702561e-02 6.25339866e-01
3.21021140e-01 -6.32008491e-03 -1.10601997e+00 4.33428794e-01
8.39814171e-02 -1.37983012e+00 -3.57337832e-01 3.24135125e-01
9.35056329e-01 3.28603983e-01 5.96626997e-02 4.55551207e-01
6.88626170e-01 -9.75824535e-01 5.63670814e-01 7.56034672e-01
3.99420232e-01 -6.55753374e-01 3.47105235e-01 5.87665081e-01
-5.56992233e-01 -1.88881814e-01 -1.96022734e-01 -7.56783247e-01
-4.63613749e-01 6.35332704e-01 -1.20258415e+00 1.79247305e-01
5.18152714e-01 9.99119222e-01 -9.26909983e-01 7.85947621e-01
1.31008746e-02 1.22571647e+00 -1.46875203e-01 -5.23492038e-01
3.31233382e-01 -4.27144527e-01 2.50377029e-01 1.29206383e+00
5.35974979e-01 2.06564620e-01 1.30897447e-01 4.69252914e-01
-3.12651724e-01 5.69891512e-01 -9.14802790e-01 -4.90074039e-01
4.29777473e-01 1.23777020e+00 -3.94182771e-01 -2.68224120e-01
-1.06807423e+00 3.27455938e-01 8.49297941e-01 2.47948304e-01
-2.71158010e-01 -3.21527332e-01 8.21791172e-01 9.08634365e-01
-2.64538407e-01 -3.89072657e-01 -8.33732635e-02 -1.06059539e+00
-5.34399033e-01 -4.46882814e-01 3.62817615e-01 -5.13772130e-01
-1.31177568e+00 1.66739210e-01 -5.22623241e-01 -8.06211233e-01
-2.56714344e-01 -6.12925529e-01 -8.36517453e-01 9.54751849e-01
-1.20657468e+00 -6.41551018e-01 -2.71477729e-01 4.55206245e-01
2.14494884e-01 -1.22462884e-01 6.87328041e-01 1.41972810e-01
-8.54996383e-01 3.30420256e-01 4.49600697e-01 5.88176310e-01
8.73032570e-01 -1.19732213e+00 1.40162989e-01 5.63023686e-01
3.41814071e-01 6.09199286e-01 7.74466276e-01 -6.84440017e-01
-1.13627267e+00 -9.05475140e-01 1.46329749e+00 -1.04898143e+00
1.21426010e+00 2.09258005e-01 -7.82024324e-01 1.20238841e+00
2.24437714e-01 -3.65504265e-01 1.44918311e+00 1.06927598e+00
-2.05949415e-02 1.19859800e-02 -6.56906664e-01 6.21556938e-01
8.54761183e-01 -8.65325689e-01 -6.75767958e-01 6.00906253e-01
3.59269291e-01 -2.01637968e-01 -1.29403138e+00 -3.08773011e-01
7.79514432e-01 -8.65731657e-01 8.11637461e-01 -1.04424548e+00
9.94980454e-01 3.55884194e-01 -6.81991875e-02 -1.39082456e+00
-5.49444139e-01 -4.44305450e-01 3.20356131e-01 1.44235015e+00
5.67521811e-01 -7.19288945e-01 8.25464666e-01 1.10737157e+00
-1.44237429e-01 -6.40869021e-01 -6.48677707e-01 -3.24888945e-01
5.08011639e-01 -5.87184489e-01 6.78353190e-01 1.46774828e+00
6.32447064e-01 1.19068995e-01 1.14694508e-02 -7.40894452e-02
2.44983733e-01 3.08985710e-01 8.50310087e-01 -1.92067444e+00
-1.01798780e-01 -5.38350284e-01 -5.02814472e-01 -6.71952128e-01
5.28348923e-01 -1.22761285e+00 -4.59279388e-01 -1.40487516e+00
1.91040367e-01 -6.89420700e-01 -3.66774142e-01 1.19274132e-01
-9.88788307e-02 3.09191763e-01 3.49744558e-02 3.21990728e-01
-4.34474856e-01 -7.22290203e-02 1.17092240e+00 2.41995290e-01
-4.25476789e-01 8.53514299e-02 -8.60997021e-01 9.66530621e-01
8.53189886e-01 -4.38550204e-01 -4.88491058e-02 -1.67090982e-01
9.07231808e-01 9.88854542e-02 1.48199335e-01 -7.80859351e-01
2.00633183e-01 -4.83897358e-01 6.16456747e-01 2.92814616e-02
1.32528722e-01 -3.11970532e-01 -4.64686677e-02 2.28253767e-01
-7.10831404e-01 1.99636906e-01 -5.52439578e-02 5.58092892e-01
-1.06384546e-01 -3.87524426e-01 3.57041508e-01 -2.23278075e-01
-4.29793656e-01 2.04772919e-01 -8.65820765e-01 1.31327197e-01
8.09602261e-01 -2.43764162e-01 -4.83239919e-01 -5.34454882e-01
-6.90480113e-01 -3.71308252e-02 6.29261136e-01 4.00798559e-01
1.41413480e-01 -1.22107565e+00 -8.66072416e-01 2.01994672e-01
5.31138703e-02 -5.01335561e-01 -2.50555962e-01 7.29491949e-01
-3.35775614e-01 3.72594744e-01 -7.05046132e-02 -1.15737185e-01
-1.21209955e+00 7.26902708e-02 -7.06125721e-02 6.60855025e-02
-6.36250973e-01 4.93023962e-01 -4.55620736e-01 -2.19067931e-01
-2.58809477e-01 -1.26400456e-01 -6.67715013e-01 6.21143103e-01
4.28527027e-01 5.23402512e-01 -1.37816429e-01 -8.11528504e-01
2.77686045e-02 7.01282322e-02 -1.01050988e-01 -1.22148648e-01
1.71019542e+00 -9.35676396e-02 1.29629880e-01 9.62641776e-01
1.14926887e+00 6.77637517e-01 -6.05352402e-01 -4.21438068e-01
2.46295959e-01 -6.57684088e-01 4.09911610e-02 -2.33377889e-01
-8.12917352e-01 4.16039854e-01 4.15732004e-02 8.11844409e-01
4.33238387e-01 2.06213649e-02 6.35572374e-01 2.48677924e-01
1.55582607e-01 -1.28241110e+00 -1.06083930e-01 5.72531641e-01
2.18084663e-01 -1.10792828e+00 1.13633610e-01 2.42931419e-03
-2.54962683e-01 1.07407367e+00 4.63812798e-01 -1.86525166e-01
9.01008725e-01 -4.00080532e-01 -1.06466316e-01 -1.45749658e-01
-9.06964004e-01 -4.20555100e-02 2.93540120e-01 1.17323674e-01
1.08888471e+00 2.49256626e-01 -5.86252034e-01 7.27383971e-01
-7.35338032e-01 1.77429579e-02 1.30215776e+00 5.85038960e-01
-6.45705760e-01 -1.12474263e+00 -2.50209600e-01 1.06296098e+00
-1.05509281e+00 1.47974566e-02 -4.14284587e-01 7.55051196e-01
-5.97243756e-02 1.11936915e+00 3.48613113e-01 -5.89173794e-01
5.24717793e-02 5.76129794e-01 1.38369039e-01 -8.16799104e-01
-7.98513234e-01 -7.08406150e-01 4.91119713e-01 -3.12802047e-01
-3.35328877e-01 -1.23045278e+00 -8.08255255e-01 -1.00971115e+00
-6.02908991e-02 2.90814400e-01 5.07155836e-01 1.05666924e+00
3.32794070e-01 3.08702618e-01 6.04835987e-01 -3.55732441e-01
-2.17903674e-01 -1.06916535e+00 -7.02560961e-01 7.38071978e-01
3.86550516e-01 -3.47873122e-01 -4.12085503e-01 -1.02279164e-01] | [9.322514533996582, 9.989459037780762] |
71febb9d-b483-4fa0-9e29-5e9288b96f80 | lat-latent-translation-with-cycle-consistency | 2207.04858 | null | https://arxiv.org/abs/2207.04858v2 | https://arxiv.org/pdf/2207.04858v2.pdf | LaT: Latent Translation with Cycle-Consistency for Video-Text Retrieval | Video-text retrieval is a class of cross-modal representation learning problems, where the goal is to select the video which corresponds to the text query between a given text query and a pool of candidate videos. The contrastive paradigm of vision-language pretraining has shown promising success with large-scale datasets and unified transformer architecture, and demonstrated the power of a joint latent space. Despite this, the intrinsic divergence between the visual domain and textual domain is still far from being eliminated, and projecting different modalities into a joint latent space might result in the distorting of the information inside the single modality. To overcome the above issue, we present a novel mechanism for learning the translation relationship from a source modality space $\mathcal{S}$ to a target modality space $\mathcal{T}$ without the need for a joint latent space, which bridges the gap between visual and textual domains. Furthermore, to keep cycle consistency between translations, we adopt a cycle loss involving both forward translations from $\mathcal{S}$ to the predicted target space $\mathcal{T'}$, and backward translations from $\mathcal{T'}$ back to $\mathcal{S}$. Extensive experiments conducted on MSR-VTT, MSVD, and DiDeMo datasets demonstrate the superiority and effectiveness of our LaT approach compared with vanilla state-of-the-art methods. | ['Lele Cheng', 'Xiaofeng Guo', 'Mengying Hu', 'Haofan Wang', 'Feiyue Ni', 'Chunhui Liu', 'Jinbin Bai'] | 2022-07-11 | null | null | null | null | ['video-text-retrieval'] | ['computer-vision'] | [ 2.27551684e-01 -4.26985711e-01 -2.72626698e-01 -3.33983839e-01
-9.58016753e-01 -5.17692983e-01 6.85645282e-01 -2.96206713e-01
-4.40935552e-01 3.86797518e-01 2.21722826e-01 -1.70841873e-01
-6.93596676e-02 -5.58589697e-01 -9.25715506e-01 -7.09012628e-01
1.89556614e-01 3.51511896e-01 1.80938199e-01 -2.08097789e-02
-2.52725407e-02 -7.55224302e-02 -1.48635924e+00 7.46627152e-01
6.46556616e-01 1.15245640e+00 4.00582790e-01 1.51184350e-01
-2.05071449e-01 6.95507109e-01 -4.43608046e-01 -4.70441967e-01
2.83014268e-01 -5.72928250e-01 -5.15300870e-01 4.39157858e-02
7.67966747e-01 -3.86447996e-01 -9.38813984e-01 1.26577461e+00
2.17820525e-01 2.45976716e-01 7.26171553e-01 -1.27623343e+00
-1.08792245e+00 3.44343722e-01 -8.17833185e-01 6.32064641e-02
3.52077991e-01 1.51126102e-01 1.16301000e+00 -1.16372037e+00
8.79506469e-01 1.33635175e+00 2.07273901e-01 3.26368839e-01
-1.23793316e+00 -9.84295845e-01 4.11572397e-01 3.86720151e-01
-1.53903043e+00 -3.91756415e-01 7.25330293e-01 -5.51074684e-01
9.04517949e-01 2.02574581e-01 4.59970474e-01 1.29317105e+00
1.81866258e-01 9.68762696e-01 9.34732497e-01 -3.84837717e-01
-1.08635828e-01 2.09586129e-01 -1.24981597e-01 8.36723268e-01
-9.38738585e-02 -1.66819654e-02 -8.95025074e-01 1.85049269e-02
7.98838556e-01 1.83321491e-01 -4.45671260e-01 -6.70292795e-01
-1.33846939e+00 9.49424684e-01 2.36869544e-01 3.22858959e-01
-1.45404696e-01 2.64708579e-01 3.69644016e-01 4.07172769e-01
3.55982929e-01 1.09060504e-01 -3.25363636e-01 7.41635859e-02
-1.28888416e+00 -5.17117828e-02 1.50193810e-01 1.19172978e+00
8.33102345e-01 1.49005905e-01 -4.47227150e-01 7.38630831e-01
5.14350712e-01 6.70118451e-01 4.11397755e-01 -9.96793747e-01
9.10328925e-01 6.44961536e-01 1.01719601e-02 -9.62118924e-01
2.59088218e-01 -2.14848548e-01 -7.52370775e-01 -1.34247810e-01
2.42956981e-01 1.38965711e-01 -9.57529783e-01 1.90498102e+00
-3.88308913e-02 3.62025574e-02 -6.53096065e-02 1.00694728e+00
7.63491511e-01 9.75747943e-01 -7.69329397e-03 -4.36572373e-01
1.26390958e+00 -1.05573392e+00 -5.77645600e-01 -4.50059474e-01
3.24084938e-01 -9.49695170e-01 1.35051084e+00 1.34302765e-01
-1.19981146e+00 -5.66417694e-01 -9.00658131e-01 -3.06052178e-01
-1.58267662e-01 3.77592832e-01 4.13121879e-01 2.56158292e-01
-9.59466696e-01 2.36570448e-01 -7.76302695e-01 -2.09912509e-01
1.80061355e-01 1.63815409e-01 -5.23903489e-01 -3.85973662e-01
-1.26028490e+00 6.24575853e-01 3.14232439e-01 4.14408706e-02
-1.02117276e+00 -4.38927412e-01 -9.40367162e-01 1.27944171e-01
5.27645707e-01 -5.84068716e-01 8.38833153e-01 -1.09932768e+00
-1.10979927e+00 8.62458646e-01 -3.70367795e-01 -2.26258025e-01
4.87370640e-01 -2.33224273e-01 -3.55377078e-01 4.27777380e-01
3.27636272e-01 8.79331052e-01 1.25288773e+00 -1.13141954e+00
-4.81900305e-01 -4.61908042e-01 2.71098688e-02 4.08610404e-01
-5.22244334e-01 5.94968945e-02 -1.07754731e+00 -8.40984523e-01
4.60165054e-01 -9.92393851e-01 3.13461006e-01 1.28440440e-01
-5.99661656e-02 -1.45565003e-01 8.77275944e-01 -7.64694989e-01
1.24759805e+00 -2.29716706e+00 4.87592578e-01 1.11712754e-01
1.85985684e-01 5.36290668e-02 -2.18883052e-01 4.13468719e-01
-1.77537605e-01 -1.85420051e-01 1.83847263e-01 -3.61662805e-01
6.36580437e-02 1.20756365e-01 -6.57244802e-01 5.29421508e-01
-2.38378033e-01 8.51606309e-01 -7.84840226e-01 -6.34419560e-01
2.21886501e-01 5.45710027e-01 -5.35430491e-01 3.89712118e-02
-3.98999780e-01 2.66648889e-01 -4.45392847e-01 6.02906108e-01
4.13351536e-01 -4.12691265e-01 2.02455521e-01 -5.64555109e-01
1.32417760e-03 2.66646981e-01 -1.09414434e+00 2.01307631e+00
1.78632233e-02 6.31125391e-01 1.17665119e-02 -1.10517192e+00
7.74208307e-01 3.45258594e-01 7.55532265e-01 -1.04848325e+00
6.02676161e-02 -3.22731249e-02 -2.72026330e-01 -3.26199710e-01
4.64680076e-01 -2.85296887e-01 -1.28949672e-01 4.93792027e-01
2.90424854e-01 2.98571549e-02 2.40196124e-01 3.15513462e-01
8.13341498e-01 4.58802432e-01 -3.39137077e-01 1.13790356e-01
4.55867529e-01 -5.47008887e-02 4.97495413e-01 7.11386204e-01
-2.24902794e-01 5.40935695e-01 4.68739867e-01 -2.31554389e-01
-1.01130652e+00 -1.21716261e+00 8.28534514e-02 1.26377726e+00
3.61428857e-01 -4.64145690e-01 -5.60424149e-01 -6.37859404e-01
-3.04938525e-01 7.32359052e-01 -4.50851232e-01 -5.64298272e-01
-5.16427100e-01 -3.41992527e-01 5.34570754e-01 4.49482858e-01
5.87726772e-01 -9.54366744e-01 -3.85875672e-01 -1.13471828e-01
-7.93539405e-01 -1.22811568e+00 -9.64670479e-01 -6.11406192e-02
-7.43307173e-01 -6.88274622e-01 -8.01114321e-01 -8.17328751e-01
6.18048489e-01 5.84239960e-01 1.02075589e+00 -5.65393157e-02
-1.31352171e-01 5.25977731e-01 -3.36822271e-01 8.02427679e-02
-1.81466371e-01 -3.03393632e-01 5.50642312e-02 1.69067055e-01
5.21084487e-01 -2.47961029e-01 -6.88333154e-01 3.26256216e-01
-1.01181269e+00 3.23737144e-01 3.58670413e-01 9.39790726e-01
7.64401436e-01 9.11249667e-02 9.09669790e-03 -3.51988614e-01
1.99372277e-01 -2.83411056e-01 -5.69844604e-01 4.45525765e-01
-4.35341388e-01 8.27595368e-02 3.89699280e-01 -6.74495876e-01
-8.75439644e-01 -1.14347808e-01 3.61232996e-01 -1.22948575e+00
3.42425644e-01 5.97161710e-01 -2.12313592e-01 4.36490744e-01
3.04308444e-01 7.76991904e-01 -2.89875641e-02 -3.29016209e-01
4.65519667e-01 3.74377578e-01 4.91869897e-01 -5.68629563e-01
8.92892182e-01 4.94456887e-01 -3.48158032e-01 -4.54001784e-01
-6.30125940e-01 -3.08408916e-01 -5.28190017e-01 -1.00690641e-01
9.46479201e-01 -1.26828563e+00 -4.55344260e-01 1.99307323e-01
-9.28170800e-01 -7.24656582e-02 -2.49145716e-01 6.95431352e-01
-5.93717039e-01 6.34761155e-01 -6.29781544e-01 -4.02143896e-01
-2.26741448e-01 -1.41005147e+00 1.14794564e+00 -4.67564799e-02
-1.28771707e-01 -6.95976019e-01 -2.89185584e-01 7.36145377e-01
6.87853843e-02 -3.83391291e-01 1.18726611e+00 -3.26869607e-01
-8.90616596e-01 -3.13097030e-01 -4.81194407e-01 3.98921937e-01
4.48561199e-02 -9.95543301e-02 -5.24557233e-01 -8.13350499e-01
9.02317539e-02 -4.37949061e-01 1.08781695e+00 3.32333177e-01
9.54296529e-01 -1.67319506e-01 -4.25766051e-01 5.80972731e-01
1.22413051e+00 3.06640536e-01 7.14163184e-01 2.51698464e-01
6.68458819e-01 2.98706412e-01 5.83676577e-01 1.21904813e-01
4.75655079e-01 7.84362674e-01 3.38594794e-01 -4.37996723e-02
-2.22980186e-01 -4.62057263e-01 7.81079471e-01 8.01060081e-01
2.74518192e-01 -2.49622613e-01 -6.29380763e-01 4.76604223e-01
-1.79899311e+00 -1.10463881e+00 3.48044634e-01 2.37621641e+00
8.17134202e-01 1.35698512e-01 -2.64755130e-01 -2.74729878e-01
6.40198588e-01 4.12513405e-01 -4.37313974e-01 8.40552375e-02
-1.55714855e-01 -4.17112460e-04 1.91680878e-01 2.60117382e-01
-1.02674556e+00 1.13707745e+00 5.27687263e+00 9.80193257e-01
-1.41882205e+00 1.56232774e-01 3.13124746e-01 -3.56627107e-01
-4.33158517e-01 2.14887589e-01 -6.89228892e-01 5.22986770e-01
5.47462642e-01 2.82078590e-02 4.62471396e-01 5.49664080e-01
8.26088190e-02 -2.18279529e-02 -1.41286695e+00 1.16648257e+00
3.40969175e-01 -1.27458477e+00 4.17815328e-01 -1.24867745e-02
6.12036765e-01 6.27640681e-03 4.29232150e-01 6.23859465e-01
7.66790956e-02 -9.67490256e-01 9.96569037e-01 3.18794459e-01
1.23392904e+00 -2.79220998e-01 2.32746795e-01 3.88239145e-01
-1.39398241e+00 -2.53120828e-02 -3.99125755e-01 2.87764639e-01
-6.72838539e-02 1.87195018e-01 -4.93359864e-01 5.47228515e-01
9.82286990e-01 7.43928790e-01 -5.81628740e-01 4.27504539e-01
3.07737421e-02 2.98054576e-01 -1.47267118e-01 4.46989566e-01
2.99378633e-01 -3.92434418e-01 5.27911484e-01 9.82439399e-01
5.03855586e-01 -1.30032018e-01 4.37047213e-01 9.60413456e-01
-1.37831092e-01 3.96561138e-02 -5.79068244e-01 -3.34495276e-01
2.97850162e-01 7.04991579e-01 -5.30419409e-01 -3.61307025e-01
-6.71983600e-01 1.20962548e+00 1.44789845e-01 7.44190156e-01
-1.09343028e+00 -1.15492225e-01 4.46379989e-01 1.00871675e-01
5.58178127e-01 -2.41564393e-01 -2.56724078e-02 -1.67731416e+00
3.21707666e-01 -1.01632285e+00 5.36814868e-01 -9.77884769e-01
-9.87347245e-01 5.00003636e-01 2.29830757e-01 -1.66530299e+00
-1.64365321e-01 -3.21874648e-01 -2.94995848e-02 9.31821823e-01
-1.27204978e+00 -1.36455464e+00 -5.90438433e-02 1.08122873e+00
7.23762155e-01 -5.65143466e-01 6.70346439e-01 4.63640660e-01
-2.31391743e-01 8.09510648e-01 3.79218310e-01 2.83420265e-01
9.53867435e-01 -6.56614304e-01 -1.09474756e-01 8.87203455e-01
3.84062022e-01 6.49146914e-01 5.68786144e-01 -6.06892645e-01
-1.58037639e+00 -1.00474620e+00 7.28498459e-01 -3.69106919e-01
5.96977711e-01 -4.21860367e-01 -9.90609765e-01 1.05142581e+00
2.72583932e-01 -1.32356584e-01 4.29814786e-01 -2.10283533e-01
-8.28688145e-01 -2.56180823e-01 -6.94213629e-01 8.28319967e-01
7.72488892e-01 -9.67688620e-01 -6.88549638e-01 1.97130114e-01
7.37355053e-01 -4.01018053e-01 -6.67797327e-01 4.05953348e-01
5.97333372e-01 -8.65027666e-01 1.16002142e+00 -4.36691016e-01
6.02443874e-01 -3.13567698e-01 -5.10857344e-01 -9.29256737e-01
-2.90998816e-01 -3.38158160e-01 -1.18611932e-01 1.16258466e+00
1.28140703e-01 -1.84347272e-01 6.37475491e-01 3.96007419e-01
-3.75236161e-02 -4.18141693e-01 -1.22503686e+00 -5.25778174e-01
3.13805580e-01 -4.18856144e-01 1.48352638e-01 1.01689112e+00
-1.16941549e-01 5.55425584e-01 -6.15551829e-01 6.83043823e-02
5.47907174e-01 4.25548047e-01 4.64722842e-01 -7.43916333e-01
-4.08822685e-01 -3.71995866e-01 -1.09310247e-01 -1.39467227e+00
1.84770897e-01 -8.97752047e-01 -3.36758196e-02 -1.53455961e+00
5.43753922e-01 -1.86931133e-01 -4.66927171e-01 5.14654934e-01
2.56891064e-02 1.92158625e-01 4.20117885e-01 5.21730244e-01
-6.36490226e-01 7.84452438e-01 1.34457576e+00 -5.98213971e-01
-1.71071514e-02 -4.13057715e-01 -5.26506305e-01 6.39492035e-01
1.72721550e-01 -4.46365476e-01 -7.96624184e-01 -9.41358864e-01
1.96120411e-01 5.35759032e-01 3.52401882e-01 -5.61934233e-01
2.77916223e-01 -3.59320790e-01 3.91740710e-01 -8.27042878e-01
8.32899094e-01 -8.45153928e-01 1.69795677e-01 2.50045151e-01
-4.40636456e-01 5.75775318e-02 9.48850159e-03 5.92039347e-01
-4.19095099e-01 1.81280285e-01 7.18433380e-01 -1.50065646e-01
-6.76991820e-01 3.90569359e-01 -2.05502406e-01 -4.82979678e-02
9.46638107e-01 -4.12418127e-01 -3.13985109e-01 -4.64853555e-01
-6.98336124e-01 3.52458030e-01 5.13525069e-01 8.42111945e-01
7.60346115e-01 -1.47209656e+00 -5.58261037e-01 3.64848256e-01
2.22348928e-01 -2.45619714e-01 4.22611117e-01 9.10715163e-01
-8.22090730e-02 5.79055846e-01 -9.31065455e-02 -8.43387067e-01
-1.14833868e+00 7.29026020e-01 2.88545847e-01 -2.74719656e-01
-5.89647174e-01 9.57978785e-01 6.92303360e-01 -1.73528731e-01
4.97633278e-01 -1.35440797e-01 -2.55207419e-02 1.00959934e-01
3.12107116e-01 3.44081298e-02 -8.35995674e-02 -9.44465280e-01
-3.89813095e-01 4.94619727e-01 -2.25807324e-01 -2.80974388e-01
9.87681150e-01 -4.83829528e-01 -1.24981381e-01 5.37940085e-01
1.37947381e+00 -3.04068506e-01 -1.25570142e+00 -5.49824536e-01
-3.31095427e-01 -6.43445492e-01 -5.65863736e-02 -6.14385962e-01
-1.13116693e+00 1.07321632e+00 7.84396648e-01 -2.29308605e-01
1.13263452e+00 1.50536418e-01 7.95695603e-01 2.45436370e-01
4.10916805e-01 -1.11259961e+00 6.10053301e-01 5.37453413e-01
8.13369632e-01 -1.20692968e+00 2.29529068e-02 -1.36892736e-01
-8.53624105e-01 8.31336796e-01 6.21640742e-01 6.22391216e-02
4.82014358e-01 -3.10837150e-01 -6.75798133e-02 -2.41730914e-01
-9.65140820e-01 8.13728049e-02 5.11301756e-01 2.78787345e-01
4.18756902e-01 -1.56815097e-01 -7.47394748e-04 4.62152123e-01
1.56316206e-01 4.41175839e-03 2.26454884e-01 8.72733235e-01
-1.46693766e-01 -1.05616772e+00 -3.64497572e-01 2.79667079e-01
-3.53116542e-01 -2.00613111e-01 -8.32464024e-02 6.76976800e-01
2.09065035e-01 7.01921642e-01 7.76844546e-02 -2.43781805e-01
1.82196930e-01 3.84974033e-01 5.87194085e-01 -5.62609494e-01
-1.78384930e-01 8.58970761e-01 -3.96043599e-01 -4.34335023e-01
-4.05226052e-01 -6.52297080e-01 -1.15960538e+00 -7.91038424e-02
-1.61055297e-01 1.86704412e-01 2.63389885e-01 1.03725183e+00
2.49921337e-01 2.62508750e-01 5.22722960e-01 -6.29049897e-01
-6.01193309e-01 -6.91964626e-01 -4.58911598e-01 5.88498950e-01
1.72496855e-01 -7.96895981e-01 -1.47797748e-01 4.07604724e-01] | [10.282781600952148, 0.9867562055587769] |
6caed314-3df7-4c01-9a32-d189ffa1dc5e | deep-learning-serves-traffic-safety-analysis | 2203.10939 | null | https://arxiv.org/abs/2203.10939v2 | https://arxiv.org/pdf/2203.10939v2.pdf | Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review | This paper explores Deep Learning (DL) methods that are used or have the potential to be used for traffic video analysis, emphasizing driving safety for both Autonomous Vehicles (AVs) and human-operated vehicles. We present a typical processing pipeline, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video enhancement, video stabilization, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modeling and anomaly detection. Our main goal is to guide traffic analysts to develop their own custom-built processing frameworks by selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL-based algorithms proposed for each step. We also review existing open-source tools and public datasets that can help train DL models. To be more specific, we review exemplary traffic problems and mentioned requires steps for each problem. Besides, we investigate connections to the closely related research areas of drivers' cognition evaluation, Crowd-sourcing-based monitoring systems, Edge Computing in roadside infrastructures, Automated Driving Systems (ADS)-equipped vehicles, and highlight the missing gaps. Finally, we review commercial implementations of traffic monitoring systems, their future outlook, and open problems and remaining challenges for widespread use of such systems. | ['Hongbin Yu', 'Yan Chen', 'Brendan Russo', 'Hao Wang', 'Huayu Li', 'Xiwen Chen', 'Abolfazl Razi'] | 2022-03-07 | null | null | null | null | ['video-stabilization', 'video-enhancement'] | ['computer-vision', 'computer-vision'] | [-2.09648892e-01 -2.80391991e-01 -2.61267245e-01 -5.41301250e-01
-3.97742510e-01 -2.44209096e-01 3.88322622e-01 9.43532437e-02
-4.76571202e-01 3.50592077e-01 -2.21185222e-01 -8.43213737e-01
-2.84003559e-02 -7.77803183e-01 -5.18642187e-01 -6.38497770e-01
-9.75063816e-02 3.57448280e-01 7.94388473e-01 -3.94797713e-01
1.48375809e-01 9.58540738e-01 -2.31874418e+00 4.13224995e-01
6.51365042e-01 1.42221677e+00 -1.68662563e-01 9.31579053e-01
-2.47528240e-01 1.02919781e+00 -4.27362531e-01 -6.26876652e-01
3.20694119e-01 2.45340720e-01 -3.01160544e-01 3.00914291e-02
6.02671862e-01 -4.46077496e-01 -8.85405302e-01 6.96158230e-01
3.93423975e-01 2.71088421e-01 5.32958150e-01 -2.04235578e+00
-6.89874440e-02 -8.46881494e-02 -1.48482680e-01 9.29858029e-01
-1.62732471e-02 8.03363860e-01 3.56390238e-01 -7.87670672e-01
5.85445523e-01 1.09048474e+00 5.88572085e-01 4.62699264e-01
-6.11572623e-01 -6.27154350e-01 1.41000792e-01 1.35415399e+00
-1.22805882e+00 -8.97294521e-01 5.32482624e-01 -6.39850259e-01
1.22732139e+00 1.90997630e-01 5.97984552e-01 1.14596796e+00
3.89091074e-01 1.20173037e+00 4.55183059e-01 2.13893037e-02
3.20924580e-01 3.32087398e-01 5.70558012e-01 6.48047268e-01
2.22094655e-01 3.81916672e-01 -4.37666059e-01 3.54961962e-01
-1.25601232e-01 -3.32753450e-01 4.77300286e-01 -1.37966603e-01
-8.45089078e-01 6.99853837e-01 -1.34428054e-01 -1.03917770e-01
-5.37195921e-01 1.51016936e-01 1.01199281e+00 3.98768961e-01
4.18286026e-01 -4.63871747e-01 -2.11035728e-01 -3.16922158e-01
-8.56175542e-01 5.18796861e-01 4.58331019e-01 1.28674221e+00
8.58851552e-01 5.34868479e-01 -6.64453804e-01 4.35970277e-01
2.28565931e-01 5.05120397e-01 -1.73086032e-01 -1.29706264e+00
3.73995662e-01 3.20836246e-01 -5.69316894e-02 -9.35602367e-01
-5.60885608e-01 1.99426953e-02 -3.60843807e-01 5.96687317e-01
2.13974655e-01 -2.32366756e-01 -6.20161414e-01 1.07336366e+00
2.89211243e-01 5.67073643e-01 -4.92937677e-02 6.20350480e-01
1.02155340e+00 5.61302543e-01 4.38073903e-01 -4.17173877e-02
1.46298754e+00 -1.04499245e+00 -9.42319155e-01 -3.43081921e-01
8.83412778e-01 -4.62280482e-01 5.65944612e-01 2.94195920e-01
-1.13280559e+00 -7.65914142e-01 -7.68177032e-01 -8.23114961e-02
-9.67371702e-01 2.34902855e-02 4.79735553e-01 9.44765329e-01
-1.13894212e+00 9.66671631e-02 -7.37526536e-01 -3.15155298e-01
8.75871062e-01 2.97413170e-01 -8.74430016e-02 3.15416069e-03
-1.33129168e+00 1.08385432e+00 1.32044017e-01 -4.31015715e-02
-1.25450432e+00 -7.96881139e-01 -9.68172014e-01 -1.79651171e-01
5.13604879e-01 -5.10911942e-01 1.32268524e+00 -5.92834890e-01
-1.04140306e+00 1.01164126e+00 -5.02820194e-01 -9.72393513e-01
5.97854257e-01 -1.11788511e-01 -1.13463020e+00 1.77481279e-01
1.89899042e-01 7.73552537e-01 7.50505626e-01 -8.26248765e-01
-1.37653089e+00 -1.24951348e-01 -9.36274976e-02 -2.25799888e-01
-2.73588463e-03 4.46044207e-01 -7.18479931e-01 -1.77499622e-01
-8.44342411e-01 -6.39738917e-01 -2.01808631e-01 1.20414518e-01
-2.50279605e-01 -4.42894280e-01 1.40990067e+00 -6.17636025e-01
1.50279653e+00 -2.22560501e+00 -7.05212176e-01 1.85715005e-01
3.18419784e-01 8.20483148e-01 -1.63486660e-01 1.64330944e-01
5.21432944e-02 -2.24055365e-01 1.72242031e-01 -3.74713391e-01
1.13135561e-01 2.73627251e-01 -1.90328564e-02 4.87313867e-01
3.27389687e-01 1.04448736e+00 -9.19988692e-01 -5.68258166e-01
1.09029865e+00 3.49116415e-01 -3.07680339e-01 -7.03363568e-02
7.91521091e-03 3.12849909e-01 -1.24126002e-01 8.24656308e-01
7.84371138e-01 5.76355934e-01 -6.51651382e-01 -2.93155283e-01
-5.60638785e-01 2.49398738e-01 -1.31877601e+00 7.53257692e-01
-3.88887733e-01 1.58683336e+00 2.10094899e-01 -1.19045460e+00
5.56900203e-01 2.65076756e-01 7.25288391e-01 -1.10405934e+00
3.13635856e-01 2.58121490e-02 -2.20214516e-01 -1.27267098e+00
5.26367366e-01 5.54353893e-01 3.15150946e-01 1.22721374e-01
-2.39313766e-02 6.69307530e-01 7.56680727e-01 1.28371403e-01
1.18181396e+00 -3.87116849e-01 -1.00648232e-01 9.39733684e-02
9.79355156e-01 2.62329757e-01 3.85655522e-01 6.38503850e-01
-9.35041964e-01 -2.99692489e-02 6.00428820e-01 -8.26035798e-01
-1.00741553e+00 -1.01750815e+00 -2.26182550e-01 1.18927634e+00
1.63723201e-01 -3.11248869e-01 -9.01929855e-01 -6.82883263e-01
6.25782907e-02 1.13661253e+00 -3.38110209e-01 -3.15814376e-01
-7.18203425e-01 -5.44640660e-01 6.68308437e-01 8.44806075e-01
6.16945863e-01 -1.08677161e+00 -6.74446523e-01 1.66657358e-01
-2.46612936e-01 -1.55903864e+00 -1.23772457e-01 -4.06782836e-01
-3.56409907e-01 -1.18728542e+00 -3.23782936e-02 -6.09888732e-01
2.90849209e-01 7.56668985e-01 1.09407794e+00 1.19581327e-01
-4.51178968e-01 6.92087531e-01 -1.75759736e-02 -8.32453310e-01
-4.87905800e-01 -3.23274493e-01 3.16833496e-01 3.42467606e-01
1.23813212e+00 2.20914166e-02 -5.59804142e-01 6.06413722e-01
-6.86472535e-01 -2.48171523e-01 3.08617532e-01 1.07860960e-01
3.62059563e-01 2.12924749e-01 4.96951401e-01 -3.31493080e-01
4.95723963e-01 -7.13524759e-01 -6.84940875e-01 -1.25873253e-01
-5.39397538e-01 -4.18865800e-01 2.75082648e-01 7.06402436e-02
-9.61482227e-01 -1.05095446e-01 -6.37756884e-01 -5.84028065e-01
-8.92298579e-01 -1.83629468e-01 -2.97306657e-01 -1.51947141e-01
5.65363109e-01 1.16207516e-02 1.88166663e-01 -1.32468818e-02
3.70967329e-01 8.15858006e-01 5.62370241e-01 -6.60681129e-02
5.52918196e-01 8.50422263e-01 2.51927450e-02 -1.09375656e+00
-4.45125431e-01 -7.34124780e-01 -6.19970739e-01 -9.42065716e-01
1.12994516e+00 -8.20663512e-01 -1.01098573e+00 6.13583386e-01
-1.19431782e+00 -2.69661307e-01 -4.50275481e-01 5.16895533e-01
-6.98445797e-01 1.86756968e-01 -4.69252557e-01 -9.73477304e-01
7.75301531e-02 -1.41104567e+00 1.09531105e+00 1.94609910e-01
1.94110293e-02 -1.02382386e+00 -1.07686587e-01 7.23630130e-01
5.58588445e-01 4.76456024e-02 4.44050461e-01 -6.53275788e-01
-7.95998812e-01 -3.44294727e-01 -3.20872933e-01 5.52726686e-01
-4.37910885e-01 3.58895123e-01 -1.23943913e+00 1.67336389e-01
-3.28777969e-01 3.35902274e-01 1.01933074e+00 7.99926937e-01
1.44438481e+00 -4.10171188e-02 -7.17570662e-01 6.18001163e-01
8.94238412e-01 5.01722574e-01 1.05181324e+00 5.40998697e-01
5.54946601e-01 1.01325023e+00 8.80789220e-01 1.87232211e-01
6.44343913e-01 6.15896583e-01 5.58383465e-01 -4.44209203e-02
-3.06365252e-01 2.05689207e-01 7.60549664e-01 2.10573673e-01
-1.39457539e-01 -4.27305788e-01 -8.56915236e-01 6.81819141e-01
-2.01514840e+00 -1.50205266e+00 -8.95248771e-01 2.00007725e+00
-2.45808497e-01 4.50856090e-01 6.50137603e-01 3.33407849e-01
8.97009611e-01 6.24310458e-03 -5.36874175e-01 -7.12560236e-01
-9.55746323e-02 -1.39992744e-01 8.56277466e-01 4.77374256e-01
-1.31690931e+00 1.17223942e+00 7.10376835e+00 1.03714192e+00
-8.48548532e-01 2.55742610e-01 6.75858557e-01 -2.46193126e-01
1.27484366e-01 -3.91120046e-01 -1.09420443e+00 7.70542979e-01
1.67832112e+00 -9.42712128e-02 1.82438731e-01 1.05167007e+00
9.93818521e-01 -1.90395519e-01 -9.69685495e-01 1.08475244e+00
-7.42196292e-02 -1.63447404e+00 -1.14210054e-01 -2.93315370e-02
3.12746525e-01 4.49863523e-01 -9.13454220e-02 5.41671813e-01
-1.25360578e-01 -6.41589701e-01 8.57344091e-01 5.65970957e-01
3.90831679e-01 -8.79573166e-01 7.80649185e-01 -9.68595445e-02
-1.44765711e+00 -3.32398236e-01 -1.72812343e-01 1.86337084e-02
7.61313677e-01 5.81771135e-01 -3.55854183e-01 2.78981507e-01
9.16448057e-01 7.97742963e-01 -7.16303706e-01 1.28835917e+00
1.28842473e-01 6.19535923e-01 -1.03444897e-01 1.98882818e-01
4.43957299e-01 -9.20284614e-02 8.81855607e-01 1.69533730e+00
1.84472218e-01 -2.50624150e-01 -5.54750897e-02 6.57189548e-01
4.22207475e-01 -2.38830298e-01 -1.00703835e+00 3.65993738e-01
4.16197062e-01 1.43033934e+00 -5.35939813e-01 -6.07390821e-01
-9.52955484e-01 4.54342186e-01 -3.27003598e-01 5.03264308e-01
-1.52468288e+00 -6.01947486e-01 1.44256043e+00 6.08236372e-01
1.00095563e-01 -3.38011414e-01 -3.72233331e-01 -6.35364234e-01
3.62026840e-02 -4.99266922e-01 4.77789998e-01 -7.36981273e-01
-8.31622660e-01 3.80857915e-01 2.79400587e-01 -1.45756865e+00
-5.81064587e-03 -1.15253890e+00 -9.97807205e-01 2.80019730e-01
-1.94068301e+00 -8.70049715e-01 -5.68253398e-01 9.03531551e-01
8.94829571e-01 -7.20653713e-01 -1.64827958e-01 1.16945136e+00
-1.06514990e+00 5.11669934e-01 -1.92624047e-01 6.06793575e-02
4.64704752e-01 -7.64487505e-01 6.39455855e-01 9.94855344e-01
-3.36748064e-01 -2.93901056e-01 5.63879073e-01 -4.60316986e-01
-1.28778946e+00 -1.61143672e+00 8.86459529e-01 -6.21645331e-01
7.47939885e-01 -2.25684389e-01 -6.23205900e-01 7.97705710e-01
1.41889587e-01 -8.22187588e-03 5.66720128e-01 -4.09637243e-01
1.00638270e-01 -5.68829119e-01 -1.08610678e+00 7.29602814e-01
1.15977967e+00 -2.33439848e-01 -2.60792598e-02 4.54741657e-01
2.48877913e-01 -3.08643550e-01 -1.89059362e-01 1.72637165e-01
2.98020691e-01 -1.29351497e+00 1.07954454e+00 -8.27425241e-01
-1.63409308e-01 -5.47587633e-01 1.43078029e-01 -7.91326106e-01
-3.84968817e-01 -6.70950890e-01 -5.89326859e-01 1.05168891e+00
1.59583181e-01 -6.20020390e-01 6.75670028e-01 7.87917137e-01
-8.78400147e-01 -3.92929554e-01 -9.62874234e-01 -9.13191617e-01
-4.27162707e-01 -1.68861425e+00 5.36742270e-01 3.13070267e-01
-4.58746105e-01 -4.69931168e-03 -2.36270368e-01 3.12504053e-01
5.75792789e-01 -6.79596186e-01 9.13087666e-01 -1.13152099e+00
6.71985805e-01 -7.76806474e-01 -1.04556704e+00 -8.42690527e-01
2.84442246e-01 -6.56218529e-01 -1.79179013e-01 -1.47409368e+00
-3.91615123e-01 -2.11676106e-01 -9.83527005e-02 1.79014653e-01
1.40536487e-01 2.68167615e-01 -1.59763590e-01 -2.53939807e-01
-9.79578972e-01 1.47239313e-01 7.14665771e-01 -2.24136770e-01
-4.95929085e-02 2.96410978e-01 -4.47566092e-01 8.25511694e-01
9.11003113e-01 -2.31616855e-01 -2.85757035e-01 -4.70701158e-01
5.58974408e-02 -5.46836317e-01 8.91838372e-01 -1.35683501e+00
6.73698545e-01 -2.50064015e-01 3.43925506e-02 -1.10777903e+00
7.78679624e-02 -9.71381485e-01 -8.35091025e-02 3.07618439e-01
-3.39037515e-02 2.50400037e-01 5.28066218e-01 4.45494324e-01
-2.13503122e-01 -4.81252261e-02 8.61790001e-01 1.84791476e-01
-1.68907261e+00 6.84514403e-01 -1.39750564e+00 -8.71388689e-02
1.85201955e+00 -6.21925890e-01 -3.43477070e-01 -4.51421827e-01
-7.42886245e-01 8.09867322e-01 -9.26936567e-02 9.13450181e-01
5.93430579e-01 -1.48224068e+00 -8.49898040e-01 4.53567237e-01
3.07026386e-01 -5.16575456e-01 6.99524224e-01 1.23736024e+00
-6.49730980e-01 8.28293145e-01 -3.29101205e-01 -7.71937668e-01
-1.22642136e+00 9.50567305e-01 3.80444318e-01 1.92288458e-01
-5.71035564e-01 3.66824389e-01 -3.16483118e-02 3.87246534e-02
4.58550245e-01 -2.05044061e-01 -4.23329055e-01 2.27731824e-01
9.59282815e-01 1.38644814e+00 6.24385178e-01 -1.07321525e+00
-6.27066076e-01 3.75455052e-01 1.70377210e-01 2.54898667e-01
7.84537077e-01 -6.16178155e-01 3.62946182e-01 1.63020417e-01
1.01171219e+00 -4.23870116e-01 -1.12844181e+00 8.55143666e-02
-1.04995398e-02 -2.88429499e-01 3.28788459e-01 -1.93792209e-01
-1.46553862e+00 1.23217952e+00 1.03242016e+00 4.15621608e-01
1.10341227e+00 8.03164952e-03 1.15187490e+00 3.15920204e-01
1.16932742e-01 -1.63095391e+00 -3.65850508e-01 6.05606437e-01
3.56343180e-01 -1.49668646e+00 -6.28861308e-01 -3.26245010e-01
-7.97240794e-01 1.10235906e+00 8.27436805e-01 1.66953877e-01
9.45630491e-01 4.18912381e-01 6.81022406e-02 -4.07049090e-01
-9.03186381e-01 -7.78355598e-01 3.58984411e-01 1.11951983e+00
-8.93873274e-02 -1.43697128e-01 1.36330828e-01 2.10122988e-01
2.28889391e-01 4.28659245e-02 3.35823894e-01 6.36703074e-01
-6.13347411e-01 -8.01654994e-01 -3.60334575e-01 6.32920682e-01
-1.86489806e-01 1.77228346e-01 -5.32245487e-02 6.59345567e-01
6.23385072e-01 1.32190502e+00 5.72487175e-01 -5.30865431e-01
7.12647438e-01 1.56251431e-01 -1.58735991e-01 -6.11445941e-02
-2.52591312e-01 -4.96120185e-01 4.78073120e-01 -1.04671907e+00
-2.98108667e-01 -7.98598230e-01 -9.98078048e-01 -9.34623957e-01
1.37086153e-01 -2.76256412e-01 7.02428758e-01 1.05978441e+00
6.21394515e-01 7.27541149e-01 4.88262832e-01 -9.35497344e-01
4.95941699e-01 -2.93820530e-01 -1.82890594e-01 2.18051955e-01
4.51018840e-01 -8.75424385e-01 -3.43649149e-01 1.60815105e-01] | [7.702057838439941, -0.5402663946151733] |
cd13c24e-756d-4f16-900a-5e4de2b780c3 | real-time-visual-tracking-and-identification | 1810.06411 | null | http://arxiv.org/abs/1810.06411v2 | http://arxiv.org/pdf/1810.06411v2.pdf | Real-Time Visual Tracking and Identification for a Team of Homogeneous Humanoid Robots | The use of a team of humanoid robots to collaborate in completing a task is
an increasingly important field of research. One of the challenges in achieving
collaboration, is mutual identification and tracking of the robots. This work
presents a real-time vision-based approach to the detection and tracking of
robots of known appearance, based on the images captured by a stationary robot.
A Histogram of Oriented Gradients descriptor is used to detect the robots and
the robot headings are estimated by a multiclass classifier. The tracked robots
report their own heading estimate from magnetometer readings. For tracking, a
cost function based on position and heading is applied to each of the
tracklets, and a globally optimal labeling of the detected robots is found
using the Hungarian algorithm. The complete identification and tracking system
was tested using two igus Humanoid Open Platform robots on a soccer field. We
expect that a similar system can be used with other humanoid robots, such as
Nao and DARwIn-OP | ['Hafez Farazi', 'Sven Behnke'] | 2018-10-15 | null | null | null | null | ['real-time-visual-tracking'] | ['computer-vision'] | [-4.46986258e-01 -1.84639338e-02 3.07875544e-01 -1.86175570e-01
4.47973050e-02 -5.06451249e-01 3.49803030e-01 1.33082047e-01
-8.13687861e-01 6.63006127e-01 -7.56527007e-01 3.72920573e-01
-2.91595399e-01 -1.61705196e-01 -5.31432450e-01 -7.15694785e-01
-4.21586722e-01 1.22491872e+00 6.30571425e-01 -2.96408623e-01
3.40940714e-01 6.32824063e-01 -1.75477993e+00 -4.11025524e-01
3.14898610e-01 8.97160947e-01 9.99825656e-01 7.89475918e-01
4.35448200e-01 7.50175178e-01 -6.03216171e-01 2.14408860e-01
6.17889464e-01 -2.12941140e-01 -7.17079699e-01 3.81145954e-01
1.25402316e-01 -1.63425311e-01 5.86171858e-02 1.07279229e+00
2.86777645e-01 2.70338595e-01 6.24793947e-01 -1.77032769e+00
2.21844241e-01 4.61253196e-01 -4.47500020e-01 -2.74342865e-01
5.83330393e-01 -3.31309065e-02 4.77502882e-01 -6.23509705e-01
9.09415305e-01 1.35825586e+00 9.18683469e-01 1.64767072e-01
-8.64446878e-01 -6.84619427e-01 -2.68788040e-01 5.39528489e-01
-1.48038423e+00 -1.32432684e-01 1.93100855e-01 -7.08106697e-01
5.14594078e-01 -4.07714933e-01 8.29209089e-01 4.71787900e-01
5.30486226e-01 3.10339510e-01 1.05103433e+00 -8.09822142e-01
2.36234337e-01 4.62747186e-01 4.22962420e-02 9.80333090e-01
5.27894735e-01 -1.39295027e-01 -3.38584036e-01 -6.82965145e-02
7.68841624e-01 1.39283463e-01 2.88280584e-02 -1.19620407e+00
-1.47274077e+00 8.30101430e-01 4.13662732e-01 3.83558214e-01
-5.81438959e-01 1.30539566e-01 3.00307602e-01 2.83716083e-01
-1.29200339e-01 6.22009218e-01 -3.62770110e-01 -4.69371714e-02
-1.14037186e-01 3.38971645e-01 1.06874549e+00 1.13533020e+00
9.52825785e-01 -3.41086507e-01 5.02885461e-01 5.60876369e-01
4.46607977e-01 7.81722009e-01 3.63920599e-01 -1.18668962e+00
-4.37806435e-02 7.45037079e-01 6.81964517e-01 -1.24700081e+00
-9.39773500e-01 2.51088321e-01 2.54839696e-02 8.96365047e-01
6.85329974e-01 -4.05967742e-01 -5.20760179e-01 1.26132333e+00
6.41989231e-01 -5.74939609e-01 2.01022029e-01 1.16831136e+00
2.40657985e-01 2.54344046e-01 -3.53982985e-01 2.88117044e-02
1.69785714e+00 -9.35720563e-01 -7.25948215e-01 -2.98413098e-01
6.97294652e-01 -7.94992447e-01 -8.63791034e-02 5.54056942e-01
-6.23660028e-01 -7.58397639e-01 -1.14000237e+00 5.15762746e-01
-3.65341812e-01 6.76167488e-01 3.62784356e-01 1.81371987e-01
-1.06313169e+00 4.87903267e-01 -1.09662747e+00 -1.28556490e+00
-4.50948089e-01 7.42209673e-01 -7.25124717e-01 8.77387002e-02
-7.86105752e-01 1.58533967e+00 6.73775077e-01 5.33342175e-02
-9.33773160e-01 3.73627067e-01 -1.00130320e+00 -4.84016389e-01
2.45414674e-01 -1.94968909e-01 1.32989907e+00 -7.53064811e-01
-1.39571309e+00 1.09685922e+00 4.19634998e-01 -4.47985500e-01
4.82440650e-01 -3.25997651e-01 -1.82056725e-01 2.75499731e-01
7.41785765e-01 7.26325691e-01 7.91115999e-01 -1.34247673e+00
-1.36294901e+00 -6.25985682e-01 -3.57480645e-01 5.53845584e-01
3.16078179e-02 1.35242850e-01 -1.15686968e-01 9.72187072e-02
3.83952051e-01 -1.52232099e+00 -2.09116846e-01 8.77731293e-02
5.10123819e-02 -3.22213173e-01 9.57374156e-01 -2.94449031e-01
6.69932589e-02 -2.08560395e+00 2.86065459e-01 1.04826942e-01
-5.28348871e-02 -1.20223165e-01 2.60522604e-01 4.27670747e-01
4.84638035e-01 -1.00546157e+00 3.29375952e-01 -8.46072435e-02
-6.76911101e-02 2.01046005e-01 3.13286096e-01 1.01518452e+00
-4.75179583e-01 1.73855439e-01 -1.09955370e+00 -5.13522983e-01
2.89526850e-01 4.41157892e-02 1.92062125e-01 2.31610849e-01
3.56740952e-01 4.68979865e-01 -3.31913590e-01 3.08981568e-01
5.19868851e-01 1.27287745e-01 5.58281064e-01 5.31265326e-02
-7.08581984e-01 -2.75107205e-01 -1.53925347e+00 1.50529838e+00
-2.18795463e-01 7.27350891e-01 9.03669178e-01 -9.04788196e-01
1.52229571e+00 2.66840488e-01 7.63657093e-01 -1.65920138e-01
4.26177442e-01 5.56633770e-01 -6.25342354e-02 -4.54881728e-01
8.33910823e-01 2.58726388e-01 -3.60274881e-01 4.29180324e-01
3.38376820e-01 -2.92098522e-01 3.66067976e-01 -1.84975773e-01
1.06915379e+00 3.99096787e-01 3.90206128e-01 -4.84760374e-01
3.45648885e-01 7.54317462e-01 3.92572105e-01 7.96250105e-01
-5.00389636e-01 9.13129002e-02 -3.54656696e-01 -6.86753094e-01
-1.07313502e+00 -6.15330935e-01 -6.46987259e-02 1.14802611e+00
8.09397519e-01 1.68993950e-01 -6.63784564e-01 -2.82941908e-01
3.64682943e-01 6.32306635e-02 -4.52428371e-01 -7.75488243e-02
-5.63035846e-01 -8.94360840e-02 5.51162362e-02 2.27059782e-01
3.12168926e-01 -1.23007607e+00 -1.63446856e+00 4.84925658e-01
-8.94155651e-02 -1.24928641e+00 1.14526428e-01 7.70461619e-01
-4.27099138e-01 -1.27037168e+00 -7.94936359e-01 -1.45193684e+00
9.02624369e-01 6.99251056e-01 3.92173797e-01 -2.36993313e-01
-3.83683890e-01 7.95766175e-01 -6.72222137e-01 -6.40227735e-01
-3.80644649e-01 -1.72649801e-01 8.45592976e-01 -1.12582296e-01
3.37129354e-01 3.39579247e-02 -2.28392497e-01 9.78223801e-01
6.56021237e-02 -3.74228776e-01 6.03842556e-01 6.51693583e-01
1.93231180e-01 1.74342781e-01 -6.37992937e-03 -9.58407857e-03
2.39964679e-01 -1.73477933e-01 -1.00185049e+00 4.77003492e-02
-1.79906294e-01 -1.25835344e-01 3.66964400e-01 -5.75693965e-01
-7.33071446e-01 9.23925638e-01 7.53897011e-01 -3.98595423e-01
-4.31628734e-01 5.57823293e-03 2.63927370e-01 -5.60186625e-01
6.86440408e-01 -4.69515957e-02 5.12094557e-01 -3.59766185e-01
1.83699131e-01 9.68740165e-01 9.63440120e-01 -1.21502928e-01
4.99575645e-01 5.74978530e-01 6.52437359e-02 -8.91795337e-01
-1.06063500e-01 -1.05100286e+00 -1.01873469e+00 -8.35393369e-01
9.91592228e-01 -1.06044197e+00 -1.14451611e+00 8.03618670e-01
-1.54231024e+00 -2.74018645e-01 -7.94130117e-02 1.18536019e+00
-1.00162184e+00 2.53270358e-01 -3.53992790e-01 -1.05400419e+00
-1.06036417e-01 -1.17961001e+00 1.05847919e+00 4.74159032e-01
-2.39664719e-01 -6.33415699e-01 3.65247011e-01 7.20127225e-02
7.28191459e-04 -5.16116321e-02 -7.23403320e-02 -8.09817731e-01
-3.42122801e-02 -4.54124093e-01 2.26447940e-01 -1.44233689e-01
1.61230713e-01 -2.97113329e-01 -4.01588231e-01 -6.48757637e-01
2.81536818e-01 -3.41549009e-01 1.50984168e-01 3.67768675e-01
-2.99442202e-01 2.67369509e-01 -1.00614786e+00 -7.86161944e-02
1.08099103e+00 6.16943061e-01 -1.71497986e-02 9.71513808e-01
5.85196137e-01 9.32608426e-01 1.49736142e+00 6.10869765e-01
5.05942166e-01 9.67580020e-01 6.34071469e-01 2.77047127e-01
3.16102713e-01 1.60821199e-01 6.86489344e-01 5.02808154e-01
-2.49742847e-02 9.73349065e-02 -1.09107351e+00 5.73529780e-01
-2.31528258e+00 -5.79518735e-01 -5.08540511e-01 2.10133338e+00
-5.88385761e-02 -1.05471000e-01 2.47439265e-01 1.80645436e-01
1.48942649e+00 -8.97124767e-01 -1.81052223e-01 -1.65848672e-01
3.74475867e-01 -5.51293969e-01 1.00511539e+00 2.40147904e-01
-1.41162241e+00 8.14990699e-01 5.96583414e+00 1.03362732e-01
-8.98996353e-01 -1.21769108e-01 -4.29156482e-01 5.74158967e-01
1.21428633e+00 1.64343417e-01 -1.14446628e+00 4.02490616e-01
5.16077936e-01 3.13712060e-02 2.92463839e-01 1.42223024e+00
-1.98760480e-01 -8.33741486e-01 -9.25278544e-01 9.50878263e-01
2.50711262e-01 -4.17467833e-01 -9.31324422e-01 9.85121876e-02
4.50460464e-01 7.21828593e-03 -4.11045879e-01 1.64417684e-01
7.42715776e-01 -2.22603977e-01 1.20208335e+00 6.14467204e-01
8.35028067e-02 -7.30276704e-01 1.08397198e+00 5.98455548e-01
-1.37784708e+00 -5.64714491e-01 -7.27590263e-01 -5.35045087e-01
3.15502584e-01 1.69361290e-02 -1.44494593e+00 5.30763030e-01
1.12895799e+00 5.26131630e-01 -3.38003933e-01 1.45182538e+00
-5.75601645e-02 -4.49575722e-01 -5.33153176e-01 -6.17250621e-01
1.64279744e-01 -3.86228353e-01 7.49623597e-01 8.56622756e-01
6.42596722e-01 -2.79156208e-01 8.61238658e-01 2.76050150e-01
7.50590026e-01 1.91005599e-02 -7.60365009e-01 5.53843975e-01
5.02941787e-01 1.70408654e+00 -1.28138924e+00 -2.43299320e-01
-1.18000731e-02 8.28195870e-01 2.87861824e-01 -3.01805258e-01
-5.20005941e-01 -7.24518299e-01 2.50690907e-01 -1.26497865e-01
5.71077764e-01 -6.00112319e-01 2.67375976e-01 -4.41681921e-01
-2.11271450e-01 -5.06441534e-01 3.06015283e-01 -9.74027038e-01
-8.73301864e-01 4.92893934e-01 9.29889679e-02 -1.74505770e+00
-5.00651598e-01 -8.65290582e-01 -1.05138712e-01 4.57717866e-01
-6.69671655e-01 -8.71297657e-01 -6.75081372e-01 3.34577829e-01
3.01712036e-01 -4.73443687e-01 4.30626333e-01 -1.65015906e-01
-5.53660765e-02 -1.73579052e-01 1.51776820e-01 6.28207177e-02
1.00224292e+00 -1.16951406e+00 -1.49438649e-01 3.41826767e-01
-1.08846530e-01 1.90857634e-01 1.12403429e+00 -8.83097947e-01
-1.54492939e+00 -7.26016641e-01 5.14935195e-01 -4.23234910e-01
7.20840216e-01 -4.25990105e-01 -3.51437718e-01 7.83238113e-01
1.98546886e-01 -1.21044725e-01 -9.85894203e-02 -4.07700360e-01
5.86246908e-01 -3.63372378e-02 -1.12144995e+00 8.79420713e-02
6.71478927e-01 1.49126828e-01 -6.85822845e-01 6.50766373e-01
2.50636488e-01 -5.57190120e-01 -8.25063050e-01 1.70066759e-01
7.19117939e-01 -5.98389208e-01 5.36640286e-01 2.07295641e-02
-5.15897453e-01 -6.65731788e-01 8.10561851e-02 -1.46944642e+00
-5.04394472e-01 -4.97692883e-01 5.72345912e-01 8.84853601e-01
-2.68002212e-01 -6.11885786e-01 5.63245356e-01 -6.65679947e-02
-1.59301206e-01 3.00202519e-01 -9.29702818e-01 -1.21638000e+00
-6.20972216e-01 3.43202174e-01 -2.04465583e-01 6.79201186e-01
6.54360473e-01 4.38396096e-01 -5.05422652e-01 2.56414443e-01
8.53634238e-01 -1.10557020e-01 1.31008828e+00 -1.83089721e+00
9.17010754e-02 9.02783722e-02 -1.14786828e+00 -6.94678903e-01
2.72066504e-01 -5.48263490e-01 9.89309669e-01 -1.37889469e+00
-1.83978707e-01 -4.78335023e-01 3.76691818e-01 5.05769312e-01
3.90776604e-01 1.11516319e-01 3.69781852e-01 3.86302292e-01
-1.04824471e+00 1.64001644e-01 7.79288650e-01 1.86098263e-01
-7.40872249e-02 -2.31673364e-02 3.65108699e-01 8.89618099e-01
5.88413000e-01 -8.47371876e-01 2.96053052e-01 -1.08549252e-01
-1.60360500e-01 2.64249384e-01 3.71202141e-01 -1.70530736e+00
1.02501988e+00 2.56166905e-01 2.85537213e-01 -6.57225490e-01
4.62936878e-01 -1.13805139e+00 4.55298781e-01 1.14587951e+00
8.55605900e-02 4.04955357e-01 -2.34520622e-02 4.66799706e-01
-1.14454374e-01 -7.51771927e-01 7.37485290e-01 -4.31387007e-01
-1.24714279e+00 -3.79842252e-01 -9.67784524e-01 -7.08565950e-01
1.68435919e+00 -1.78922489e-01 -4.82490584e-02 -3.49563122e-01
-5.62909365e-01 4.83523607e-01 8.34849179e-01 3.80960464e-01
3.39530557e-01 -1.18383527e+00 -5.56241095e-01 -1.87905990e-02
2.58106530e-01 -3.45043242e-01 -2.27599099e-01 9.93346751e-01
-9.29014862e-01 3.76621097e-01 -9.76752281e-01 -1.06909847e+00
-1.40765870e+00 6.37287199e-01 2.53686309e-01 1.56556502e-01
-4.84855145e-01 4.05842185e-01 -7.32374862e-02 -6.74878061e-01
2.70297289e-01 1.18525930e-01 -5.71141481e-01 8.35860893e-02
3.75272304e-01 8.49608064e-01 1.65372677e-02 -1.20729482e+00
-6.04422688e-01 8.79475236e-01 1.49324238e-01 -2.41017148e-01
1.11905158e+00 -4.22124475e-01 -2.25624457e-01 4.57165688e-01
6.38114274e-01 -4.69588459e-01 -1.24394989e+00 -6.48859516e-02
1.92082882e-01 -1.46801695e-01 -4.62641388e-01 -2.72703469e-01
-4.95079696e-01 2.91651070e-01 1.06910765e+00 3.50864500e-01
4.90986288e-01 8.26901644e-02 1.58763200e-01 8.57603788e-01
1.34289014e+00 -1.36236727e+00 1.77520812e-01 7.91479647e-01
7.02031851e-01 -1.35128140e+00 2.93283984e-02 -1.98427409e-01
-7.97843814e-01 1.30869877e+00 6.92890346e-01 -3.49993825e-01
1.15599252e-01 5.02424598e-01 4.89416748e-01 -1.72454327e-01
-1.93901569e-01 -4.50536102e-01 -4.36100721e-01 9.93716061e-01
-2.54610181e-01 8.85335207e-02 -4.66738820e-01 -9.79979858e-02
-2.50748783e-01 -3.70730639e-01 8.91763568e-01 1.49870539e+00
-1.11634338e+00 -7.14494467e-01 -1.21359766e+00 -1.58886120e-01
-4.42707352e-02 8.52898061e-01 -3.60279620e-01 9.30155933e-01
1.99534997e-01 1.22644603e+00 3.26398045e-01 -4.59273547e-01
4.65843171e-01 -1.68120474e-01 5.05687296e-01 -5.37912667e-01
-4.98635381e-01 -1.74697712e-01 1.36741512e-02 -3.75614643e-01
-4.91801798e-01 -1.08261025e+00 -1.45232546e+00 1.75044388e-01
-5.06695628e-01 5.55451095e-01 1.23169851e+00 7.56104469e-01
-5.70857013e-03 -3.95074226e-02 6.88145578e-01 -1.59437668e+00
-6.15110815e-01 -1.07151353e+00 -1.00947988e+00 2.69841164e-01
-1.30122947e-02 -1.49625731e+00 -3.36032957e-01 -8.55619274e-03] | [7.254027366638184, -2.0572972297668457] |
162f6acd-e083-4e40-89f6-66b2e8ec40f5 | do-we-need-online-nlu-tools | 2011.09825 | null | https://arxiv.org/abs/2011.09825v1 | https://arxiv.org/pdf/2011.09825v1.pdf | Do We Need Online NLU Tools? | The intent recognition is an essential algorithm of any conversational AI application. It is responsible for the classification of an input message into meaningful classes. In many bot development platforms, we can configure the NLU pipeline. Several intent recognition services are currently available as an API, or we choose from many open-source alternatives. However, there is no comparison of intent recognition services and open-source algorithms. Many factors make the selection of the right approach to the intent recognition challenging in practice. In this paper, we suggest criteria to choose the best intent recognition algorithm for an application. We present a dataset for evaluation. Finally, we compare selected public NLU services with selected open-source algorithms for intent recognition. | ['Jan Šedivý', 'Jakub Konrád', 'Jan Pichl', 'Petr Marek', 'Petr Lorenc'] | 2020-11-19 | null | null | null | null | ['intent-recognition'] | ['natural-language-processing'] | [ 2.25623652e-01 -3.68741572e-01 -2.63523787e-01 -5.15140891e-01
-2.92789012e-01 -8.51064444e-01 9.17805970e-01 -3.56021881e-01
-3.12378794e-01 2.69875109e-01 3.59601736e-01 -4.90056694e-01
3.25545780e-02 -5.07209957e-01 2.97852308e-01 -5.39982736e-01
3.50261740e-02 8.38095486e-01 5.91110528e-01 -2.84765750e-01
7.20053554e-01 4.61255133e-01 -1.64519429e+00 7.30978966e-01
5.73915839e-01 7.79940963e-01 2.83341318e-01 1.02246320e+00
-5.16731858e-01 1.24580324e+00 -1.02655852e+00 -4.00631636e-01
2.70948768e-01 -4.47708398e-01 -1.40133834e+00 -3.67794961e-01
-1.18334942e-01 -5.75038433e-01 -8.44281688e-02 6.80930316e-01
3.52511793e-01 2.33076960e-02 7.37460017e-01 -1.88218665e+00
-3.68072838e-01 7.32322395e-01 2.37641916e-01 5.01824737e-01
1.02697945e+00 5.75611174e-01 1.13139379e+00 -3.16894412e-01
9.09787893e-01 9.85633850e-01 5.03506541e-01 6.35593116e-01
-8.93600702e-01 -4.79031891e-01 -2.43323550e-01 4.73164350e-01
-1.01775193e+00 -5.90018034e-01 6.29920840e-01 -8.12137902e-01
1.41534269e+00 7.02532709e-01 4.24264997e-01 1.51374853e+00
2.00753674e-01 8.71412337e-01 1.10333991e+00 -1.47460401e-01
3.08787376e-01 1.80220548e-02 8.93608391e-01 4.53435332e-01
-3.27230766e-02 -2.56237984e-01 -6.11488342e-01 -8.10287535e-01
3.23897034e-01 1.39217926e-02 1.84195727e-01 1.75276279e-01
-8.26720774e-01 9.57853317e-01 1.00545034e-01 6.83104277e-01
-2.72138208e-01 -1.26019731e-01 6.01648688e-01 5.58388710e-01
5.03586352e-01 5.08016944e-01 -1.93459958e-01 -8.06851745e-01
-3.99570614e-01 2.72969842e-01 1.44569182e+00 8.08510125e-01
8.75654757e-01 -3.31573755e-01 -1.76766604e-01 7.05797255e-01
4.03414607e-01 1.07042365e-01 6.62408948e-01 -8.90146315e-01
-6.44053379e-03 8.44352424e-01 -5.19165136e-02 -1.03470397e+00
-3.55025738e-01 3.95100862e-01 -2.74140775e-01 1.93226486e-01
5.65765202e-01 -3.62851679e-01 -6.27118289e-01 1.02373111e+00
1.52362421e-01 1.82699263e-02 1.91367775e-01 6.78840458e-01
1.21604872e+00 6.19998634e-01 9.59786326e-02 -1.09111235e-01
1.42936683e+00 -7.96798706e-01 -7.19560564e-01 -7.06964135e-01
6.36180699e-01 -8.93758178e-01 9.65120792e-01 9.08490196e-02
-3.20031226e-01 -6.11013100e-02 -6.64633989e-01 -4.21474352e-02
-6.65516555e-01 -1.66792750e-01 1.26571667e+00 9.73626792e-01
-9.92908537e-01 2.35770777e-01 -4.97529268e-01 -9.74445403e-01
-7.96540156e-02 4.27464664e-01 -1.48556098e-01 3.04559022e-01
-9.51949418e-01 1.04369795e+00 3.57684672e-01 -5.19551456e-01
-7.61712909e-01 1.46636320e-02 -4.62086320e-01 -2.70711869e-01
3.51143718e-01 -3.33408564e-01 1.69613218e+00 -8.27184796e-01
-1.69769585e+00 9.81675565e-01 -1.65195733e-01 -4.06018615e-01
-3.42144445e-02 2.46567816e-01 -2.45270446e-01 -1.40883808e-03
3.29445690e-01 5.00575006e-01 9.57176447e-01 -6.78678691e-01
-1.06766868e+00 -1.51969671e-01 6.79720759e-01 1.36345759e-01
-3.22515190e-01 1.06912279e+00 -8.15592781e-02 -2.30504394e-01
-2.55118161e-01 -7.79092252e-01 -5.92315160e-02 -5.34435570e-01
-3.28783207e-02 -7.68099129e-01 1.35076535e+00 -6.89900696e-01
1.18440890e+00 -1.96977317e+00 -1.73132628e-01 -2.13419825e-01
1.71498865e-01 1.22276857e-01 -5.02697267e-02 7.54481494e-01
2.90327311e-01 3.29303026e-01 1.57758504e-01 -9.92948785e-02
1.76378727e-01 3.12659949e-01 -3.46399248e-01 1.94288284e-01
8.64788704e-03 8.50044668e-01 -8.75110447e-01 -5.99791825e-01
2.64474422e-01 5.68730151e-03 -5.30965388e-01 5.90532839e-01
-3.68727088e-01 3.65982771e-01 -7.06622958e-01 6.74914002e-01
1.80335626e-01 -1.54155836e-01 2.42719784e-01 1.72237217e-01
-3.70135844e-01 8.85730743e-01 -7.68055975e-01 1.48264670e+00
-4.55997616e-01 9.75313187e-01 2.29852736e-01 -6.31720304e-01
9.09798443e-01 5.46828270e-01 6.44950092e-01 2.82871097e-01
4.52633709e-01 1.14708267e-01 4.72099721e-01 -5.57409406e-01
4.32963908e-01 3.77484560e-01 -3.66671920e-01 1.23844635e+00
3.71288359e-01 -1.05399102e-01 5.56810379e-01 2.98091203e-01
1.84048223e+00 -1.79611310e-01 7.66908824e-01 -1.31326824e-01
3.31231892e-01 4.57233042e-01 4.02209789e-01 1.02685332e+00
-6.85075462e-01 1.33980975e-01 5.72036684e-01 -9.96617615e-01
-4.73825604e-01 -3.22351903e-01 -1.60623752e-02 1.66613019e+00
-1.63651586e-01 -7.95333326e-01 -7.35110521e-01 -9.96500373e-01
-5.44905126e-01 5.19596159e-01 -6.30452633e-02 3.34281981e-01
-3.27386737e-01 -6.04418278e-01 9.59992111e-01 -8.61570612e-02
7.02218056e-01 -1.67679989e+00 -8.74772966e-01 2.88499147e-02
-6.74717188e-01 -1.14070821e+00 -3.38998467e-01 1.43960580e-01
-1.86345086e-01 -1.08320177e+00 1.02813534e-01 -6.80229664e-01
2.76199937e-01 5.37858486e-01 9.48835969e-01 3.12750220e-01
-7.57993758e-02 4.69161570e-01 -9.48514938e-01 -2.97858477e-01
-9.40468371e-01 3.55702937e-01 1.90735668e-01 -6.20673504e-03
8.82270873e-01 -5.50899625e-01 9.69071016e-02 3.45285922e-01
-5.45309663e-01 1.18112937e-01 3.01945269e-01 3.08203310e-01
-5.63996434e-01 1.34400994e-01 2.11028025e-01 -6.28580570e-01
1.20380032e+00 -6.94706798e-01 -2.25908145e-01 5.12720346e-02
-2.36766353e-01 -3.34790111e-01 5.37257552e-01 -3.87658298e-01
-1.14822650e+00 2.26287246e-01 -6.18532717e-01 4.59423009e-03
-8.88726115e-01 3.38791758e-01 1.58123765e-02 -3.19966644e-01
8.42464924e-01 9.99149904e-02 -1.17181309e-01 -4.44618225e-01
2.50892103e-01 1.61223137e+00 1.24746993e-01 -4.82777029e-01
4.10666674e-01 1.58096701e-01 -7.40443707e-01 -1.18167198e+00
-5.11763275e-01 -9.21363533e-01 -6.69375002e-01 -5.37840545e-01
9.14248049e-01 -2.18577355e-01 -8.99098277e-01 5.48165023e-01
-1.81025100e+00 -4.47134972e-01 7.72914886e-02 -6.04215935e-02
-6.04071677e-01 4.49175686e-01 -6.81871235e-01 -1.05138648e+00
-6.26967609e-01 -1.50006270e+00 6.05518043e-01 3.11870992e-01
-8.22899103e-01 -6.97270811e-01 2.62621880e-01 6.95582509e-01
5.55639744e-01 -4.52115387e-01 3.47415149e-01 -1.56860852e+00
-1.86377123e-01 -3.13478559e-01 -1.78153664e-01 -1.57376260e-01
3.88649642e-01 2.27259994e-01 -1.22447181e+00 2.08325669e-01
1.62257537e-01 -4.26555753e-01 3.20723474e-01 -9.83023643e-02
6.21377349e-01 -7.68644810e-01 -4.69193697e-01 2.55379796e-01
7.04725683e-01 7.24175334e-01 5.58029294e-01 3.68476987e-01
2.96929449e-01 6.23965859e-01 4.93111253e-01 4.27069455e-01
2.58953631e-01 8.05033624e-01 1.01122007e-01 7.25981295e-01
1.13393866e-01 -4.48936261e-02 7.08229303e-01 4.87011641e-01
-2.34180659e-01 -3.08576107e-01 -1.31674194e+00 1.08221665e-01
-1.98481917e+00 -1.46718299e+00 2.07850393e-02 1.57443416e+00
6.14985764e-01 3.86696085e-02 5.06957352e-01 -1.15978405e-01
5.74170530e-01 2.36148998e-01 -1.33718595e-01 -7.33381093e-01
2.99214840e-01 -1.56793892e-01 2.07498912e-02 4.89916205e-01
-1.26421940e+00 1.22091484e+00 7.69409513e+00 8.94208729e-01
-1.07098353e+00 5.19477129e-01 3.26422781e-01 4.50003475e-01
1.36852175e-01 4.64592934e-01 -9.30574000e-01 3.79125088e-01
1.02428746e+00 -2.14893281e-01 6.57368183e-01 1.31648636e+00
-2.84147944e-04 -6.92161918e-02 -1.02605581e+00 8.62505317e-01
2.22199753e-01 -1.29814148e+00 -3.16854149e-01 9.52976793e-02
5.38229197e-02 4.14050668e-01 -6.95392430e-01 4.75562900e-01
8.00076425e-01 -5.02362967e-01 1.37195930e-01 2.45544333e-02
3.44884247e-01 -1.19219877e-01 4.83573258e-01 7.34337389e-01
-9.59253848e-01 -2.70032912e-01 -1.34726539e-01 -6.40179932e-01
9.58847627e-02 -7.99826346e-03 -1.11256838e+00 1.35308668e-01
7.71350980e-01 6.05580091e-01 -5.09996355e-01 8.30060959e-01
-2.30967239e-01 6.10472798e-01 -5.43348789e-01 -6.73862159e-01
8.40114579e-02 -3.84847343e-01 9.80361700e-01 1.37183869e+00
-1.50635302e-01 1.46519572e-01 5.67997575e-01 5.99410176e-01
3.37449133e-01 1.60821185e-01 -1.28240943e+00 -3.60856235e-01
3.95426780e-01 1.52594948e+00 -9.81405020e-01 -1.59033239e-01
-4.26699907e-01 1.20406008e+00 3.40459645e-01 -5.67614399e-02
-5.52049696e-01 -3.10498774e-01 1.14998770e+00 -3.21201116e-01
-3.34153622e-01 -2.63410389e-01 -1.63888380e-01 -1.16673934e+00
-4.68572766e-01 -1.32601821e+00 7.37506509e-01 -5.92094421e-01
-1.33070004e+00 9.15181637e-01 2.85036057e-01 -1.00883079e+00
-7.48689055e-01 -7.34502554e-01 -1.38453889e+00 3.62932801e-01
-6.95520937e-01 -1.24900067e+00 -1.22844428e-01 1.94413289e-01
1.06058896e+00 -5.61465144e-01 1.18577790e+00 1.70281962e-01
-7.99036026e-01 -5.50365113e-02 -6.38014257e-01 3.81667167e-01
5.07001400e-01 -8.55473042e-01 7.15887606e-01 1.00621796e+00
3.80295396e-01 8.95315766e-01 7.99748838e-01 -8.65369022e-01
-1.49480999e+00 -4.04277086e-01 1.04181039e+00 -7.24464059e-01
9.55497742e-01 -3.28888893e-01 -4.56520289e-01 1.04342186e+00
7.02871323e-01 -4.62571651e-01 8.57054293e-01 3.94197196e-01
-2.42708847e-01 3.28546584e-01 -1.20070803e+00 8.03774953e-01
1.17185712e+00 -4.24506903e-01 -7.65018523e-01 6.44281089e-01
5.90126753e-01 -1.43057093e-01 -5.96825719e-01 1.39687881e-02
5.49410105e-01 -1.18998885e+00 6.57351613e-01 -7.43740976e-01
8.89248848e-02 -1.47442237e-01 4.09181565e-02 -1.01717281e+00
-4.28528726e-01 -1.05856705e+00 -1.06458537e-01 1.35526180e+00
3.55012208e-01 -9.56555247e-01 7.24970222e-01 9.11527932e-01
2.61114333e-02 -2.07990527e-01 -8.95271659e-01 -4.81195897e-01
-5.15489042e-01 -8.46337140e-01 5.21024227e-01 7.20715046e-01
8.86943817e-01 8.72085631e-01 -2.74702191e-01 -1.24441601e-01
3.39892328e-01 3.06680799e-01 1.19434249e+00 -1.16036236e+00
-2.56424874e-01 -6.79238677e-01 -6.67187572e-01 -1.22439492e+00
3.47010225e-01 -8.13232720e-01 9.97675881e-02 -1.63792276e+00
2.18011856e-01 -6.01104975e-01 3.89793724e-01 9.56758440e-01
1.40156791e-01 2.36428380e-01 3.46227199e-01 5.87083101e-01
-5.47857106e-01 -1.89683344e-02 3.66150141e-01 -2.69985080e-01
-3.43420386e-01 2.42585734e-01 -6.41644657e-01 1.03113294e+00
1.40997517e+00 -5.35817564e-01 -2.59439051e-01 -1.74925685e-01
4.38529020e-03 -3.05423081e-01 -6.17505284e-03 -1.18942964e+00
4.00287032e-01 -6.97742939e-01 -4.51758742e-01 -6.63866222e-01
3.84703428e-01 -7.75276065e-01 5.89429550e-02 4.53845173e-01
-9.03040916e-03 -3.90951604e-01 -3.54524523e-01 -1.13722300e-02
2.80524522e-01 -8.45082939e-01 5.13420522e-01 -1.75516337e-01
-1.24079299e+00 1.65659219e-01 -1.26018155e+00 -1.54287308e-01
1.10494792e+00 -1.83333382e-01 -5.75947583e-01 -7.25109756e-01
-1.84048519e-01 -5.46027832e-02 3.99924904e-01 7.30097175e-01
4.14401680e-01 -7.44710147e-01 -3.83688360e-01 1.54489443e-01
2.28421524e-01 -8.11333179e-01 -3.92257690e-01 6.23762786e-01
-6.84940398e-01 6.86932087e-01 -4.73523319e-01 -3.41256529e-01
-1.53128076e+00 3.33949417e-01 1.57159507e-01 -3.19720566e-01
-4.86208528e-01 4.18264389e-01 -1.67893291e-01 -8.07455778e-01
2.32703418e-01 1.16313569e-01 -6.33857667e-01 -1.13733992e-01
9.35701847e-01 4.02849466e-01 -1.66159347e-01 -8.04443836e-01
-5.33468962e-01 -8.59669372e-02 4.95176800e-02 -3.19600105e-01
8.91790569e-01 7.68297985e-02 -4.39313889e-01 4.08166617e-01
7.99535811e-01 -2.69141018e-01 -3.91485244e-01 2.11881265e-01
2.05893531e-01 -4.88602281e-01 -3.24491203e-01 -4.19585764e-01
-4.25406128e-01 2.64041066e-01 1.43345773e-01 9.87338662e-01
8.18840444e-01 7.80255273e-02 5.47224581e-01 8.95992875e-01
7.49986589e-01 -8.10778022e-01 -1.40459063e-02 1.18364441e+00
8.91461313e-01 -1.21949995e+00 -2.10024998e-01 -5.76809645e-01
-8.70158494e-01 9.24339592e-01 7.54194677e-01 7.36387670e-02
6.41262829e-01 5.92431247e-01 5.72288513e-01 -3.19485307e-01
-1.01150632e+00 -5.07130265e-01 -1.99414358e-01 9.99605298e-01
5.11071563e-01 -7.60631263e-02 -7.78416276e-01 6.19462967e-01
-2.69242525e-01 -5.69058955e-02 5.48258364e-01 1.15668428e+00
-6.84140921e-01 -1.44666016e+00 -4.00628358e-01 7.92724192e-01
-3.45377892e-01 6.39984459e-02 -1.19601953e+00 1.58172011e-01
-2.30326187e-02 1.69819748e+00 -1.01199187e-01 -8.88400316e-01
-1.10035226e-01 5.44862926e-01 -9.09168422e-02 -9.41002011e-01
-1.16267288e+00 -3.95807832e-01 7.21482694e-01 -5.84471703e-01
-3.62156391e-01 -6.98366225e-01 -1.01737547e+00 -5.91847062e-01
-3.96926612e-01 2.13505730e-01 6.45334721e-01 1.16219664e+00
4.01774138e-01 -2.19395086e-01 6.06101692e-01 -9.54948425e-01
-7.76306242e-02 -1.31172204e+00 2.24089231e-02 2.12170973e-01
-3.03140134e-01 -4.91439432e-01 -6.77359223e-01 5.26518151e-02] | [12.605376243591309, 7.683715343475342] |
f257d4ac-db8c-417c-9c48-2f1b5d19d0de | paparazzi-a-deep-dive-into-the-capabilities | 2302.10282 | null | https://arxiv.org/abs/2302.10282v1 | https://arxiv.org/pdf/2302.10282v1.pdf | Paparazzi: A Deep Dive into the Capabilities of Language and Vision Models for Grounding Viewpoint Descriptions | Existing language and vision models achieve impressive performance in image-text understanding. Yet, it is an open question to what extent they can be used for language understanding in 3D environments and whether they implicitly acquire 3D object knowledge, e.g. about different views of an object. In this paper, we investigate whether a state-of-the-art language and vision model, CLIP, is able to ground perspective descriptions of a 3D object and identify canonical views of common objects based on text queries. We present an evaluation framework that uses a circling camera around a 3D object to generate images from different viewpoints and evaluate them in terms of their similarity to natural language descriptions. We find that a pre-trained CLIP model performs poorly on most canonical views and that fine-tuning using hard negative sampling and random contrasting yields good results even under conditions with little available training data. | ['Sina Zarrieß', 'Kai Lawonn', 'Monique Meuschke', 'Jan Hombeck', 'Henrik Voigt'] | 2023-02-13 | null | null | null | null | ['open-question'] | ['natural-language-processing'] | [ 1.79150492e-01 1.56056702e-01 -7.92094171e-02 -5.01909435e-01
-7.01875865e-01 -9.54593956e-01 1.05423164e+00 -3.18020999e-01
-1.42376274e-01 1.61654830e-01 2.67038971e-01 -2.80361861e-01
3.85360837e-01 -4.94310290e-01 -8.96304011e-01 -2.22096696e-01
5.09728730e-01 1.11246371e+00 2.51482129e-01 -1.24030367e-01
3.86874139e-01 5.17004132e-01 -1.70738506e+00 7.01344430e-01
2.33610719e-01 5.02018213e-01 5.17539740e-01 7.87250042e-01
-2.49255732e-01 7.88105786e-01 -4.69793111e-01 -5.45483112e-01
4.20495152e-01 -2.34791771e-01 -8.70150983e-01 6.19995952e-01
1.12653589e+00 -5.93880177e-01 -1.84527978e-01 1.06343699e+00
2.39447981e-01 -1.47902608e-01 7.64302373e-01 -1.10230231e+00
-9.57041621e-01 1.23086140e-01 -3.36173147e-01 4.65301089e-02
9.79535460e-01 2.00013116e-01 1.06814420e+00 -1.30158103e+00
9.97290730e-01 1.61076188e+00 3.18733633e-01 6.98877513e-01
-1.50930631e+00 -1.72185421e-01 3.77887666e-01 2.43359759e-01
-1.33876026e+00 -4.46685016e-01 6.75644934e-01 -5.55888295e-01
1.31172657e+00 1.24913186e-01 6.83009505e-01 1.23261845e+00
8.45688507e-02 9.19323146e-01 1.26672411e+00 -6.81336641e-01
1.05323792e-01 7.08705425e-01 -7.07997605e-02 5.32791138e-01
1.89979166e-01 3.81438099e-02 -6.67516410e-01 -1.03235796e-01
8.30946386e-01 -2.14523062e-01 -4.18584317e-01 -1.17254245e+00
-1.27768350e+00 8.21314037e-01 2.51382470e-01 1.41946957e-01
-2.87969440e-01 -1.16247460e-01 5.47519736e-02 3.01691443e-01
3.76871407e-01 6.56925738e-01 -5.72689176e-01 1.71721593e-01
-7.77876198e-01 4.38030899e-01 1.01531792e+00 1.41059470e+00
7.74730206e-01 -2.42379997e-02 7.85339028e-02 4.37238157e-01
2.14702994e-01 7.78831899e-01 3.97732221e-02 -1.17405069e+00
3.06625962e-01 5.42790473e-01 1.88133001e-01 -9.01739955e-01
-4.84830746e-03 -4.55098972e-02 -3.68952781e-01 5.30810058e-01
3.62314761e-01 3.92017692e-01 -9.36143458e-01 1.70072305e+00
1.14823081e-01 -5.76231666e-02 4.00057524e-01 1.02868176e+00
8.86922538e-01 4.77699757e-01 -2.45498314e-01 2.11088848e-03
1.31143808e+00 -8.41907024e-01 -2.88941652e-01 -7.18862355e-01
2.89981037e-01 -9.82387364e-01 1.11313701e+00 3.54978561e-01
-1.24254334e+00 -7.97041893e-01 -6.89627945e-01 -4.40109640e-01
-3.27332437e-01 6.61454946e-02 2.91058749e-01 4.99367833e-01
-1.23554909e+00 2.07801424e-02 -5.80756426e-01 -7.84457445e-01
2.61354208e-01 2.71529835e-02 -6.66522086e-01 -5.24210036e-01
-6.39612198e-01 1.29273629e+00 3.76560658e-01 -4.08637255e-01
-1.48129594e+00 -4.27080840e-01 -9.99656737e-01 -1.52546644e-01
6.01645529e-01 -1.09760475e+00 1.27307296e+00 -1.18142712e+00
-1.11111712e+00 1.64372921e+00 -3.65654200e-01 -3.62321764e-01
5.63327789e-01 -3.27894300e-01 5.30910268e-02 4.58103210e-01
2.28799894e-01 1.13386083e+00 1.14297545e+00 -1.90453207e+00
-1.49627671e-01 -7.27323949e-01 5.95011234e-01 6.45862341e-01
2.61505812e-01 -1.20352149e-01 -7.29776859e-01 -3.00228000e-01
2.06691206e-01 -1.12123716e+00 -1.02183431e-01 4.07298535e-01
-4.27249402e-01 4.14954536e-02 7.12660611e-01 -4.31323558e-01
2.07088619e-01 -1.74269712e+00 2.11433366e-01 -3.86111140e-02
-1.17845051e-02 2.49846593e-01 -3.07481140e-01 6.23964906e-01
-4.97214198e-02 1.33207485e-01 1.30370229e-01 -2.47062430e-01
-1.71846375e-01 3.51944983e-01 -5.57643294e-01 2.74736226e-01
3.08386534e-01 8.61307979e-01 -8.93284023e-01 -2.94754893e-01
5.12505770e-01 5.54576695e-01 -5.60441077e-01 3.85970771e-01
-6.56675637e-01 4.06012714e-01 -4.84384567e-01 4.74871308e-01
6.32463336e-01 -4.93747354e-01 2.36559808e-01 -2.76396275e-01
6.62795901e-02 1.10285945e-01 -9.26368058e-01 1.88698113e+00
-4.82806832e-01 7.79779792e-01 6.62588002e-03 -9.72827017e-01
9.10040557e-01 3.54555845e-01 -1.31743401e-01 -4.33642209e-01
-1.23117231e-01 -8.30033422e-02 -2.75184453e-01 -7.82494128e-01
3.70743692e-01 -2.52467960e-01 1.50338799e-01 6.10468090e-01
1.37832671e-01 -8.56007218e-01 -7.54988864e-02 3.87446523e-01
7.04112411e-01 2.50333965e-01 4.16506618e-01 -1.24339581e-01
5.60511529e-01 2.91649014e-01 -1.95069969e-01 1.01920867e+00
2.71946080e-02 1.02519393e+00 2.64946043e-01 -5.16383529e-01
-1.32433820e+00 -1.30451179e+00 9.85415056e-02 8.95014524e-01
4.01535213e-01 -2.42721543e-01 -4.46637243e-01 -6.09351099e-01
-8.84669125e-02 1.19940162e+00 -5.77860832e-01 1.90648824e-01
-1.46928966e-01 -4.80708964e-02 1.00164950e-01 3.33843827e-01
2.62143761e-01 -1.01989079e+00 -9.06406045e-01 -3.55680138e-01
-1.86480522e-01 -1.46843445e+00 -1.89097792e-01 -8.84927511e-02
-8.04508686e-01 -1.13509119e+00 -7.55613863e-01 -9.34310496e-01
9.75093544e-01 9.05413091e-01 1.74877477e+00 -1.02527708e-01
-1.25533000e-01 1.11858463e+00 -2.91565120e-01 -5.51534295e-01
-7.41709709e-01 -4.22747135e-01 -8.06275904e-02 -2.32608423e-01
6.62509322e-01 -4.45459276e-01 -3.25144440e-01 2.94594467e-01
-8.61833453e-01 3.21330130e-01 6.62983060e-01 6.04677260e-01
5.69357038e-01 -5.39806128e-01 -2.00778083e-03 -8.33842635e-01
3.90942991e-01 -8.48336592e-02 -4.27387744e-01 4.81805027e-01
-2.94195086e-01 9.51222330e-02 3.86894733e-01 -4.83818561e-01
-9.95097160e-01 2.78297693e-01 1.99923083e-01 -8.74413967e-01
-4.82524455e-01 9.60607603e-02 -1.68287575e-01 1.04473017e-01
7.79927373e-01 4.47829425e-01 1.19981378e-01 -2.77035415e-01
8.12659323e-01 2.77949631e-01 3.74946415e-01 -5.18290102e-01
8.30245256e-01 9.66563523e-01 -3.24692428e-01 -1.01056612e+00
-1.28353512e+00 -5.94094992e-01 -8.83996844e-01 -1.93104632e-02
1.00851023e+00 -1.23561192e+00 -2.73088843e-01 6.31200522e-02
-1.54771292e+00 -7.18900561e-02 -1.23895638e-01 3.87800068e-01
-1.02013350e+00 3.27381313e-01 -2.14378238e-02 -6.34028018e-01
-1.39398009e-01 -1.05559635e+00 1.46421528e+00 -4.69448492e-02
-3.19471687e-01 -8.21486473e-01 -7.46624321e-02 6.48028135e-01
1.43811867e-01 -1.43235132e-01 9.90142584e-01 -6.87780619e-01
-9.48870122e-01 -1.15024440e-01 -3.20706338e-01 4.67507392e-01
-1.74123496e-01 -2.36289978e-01 -1.21172297e+00 -3.15907270e-01
2.96298623e-01 -8.33580434e-01 6.64240539e-01 3.85165542e-01
8.11810136e-01 -1.83234915e-01 -3.04825783e-01 4.00047094e-01
1.54908657e+00 8.85867774e-02 5.60036778e-01 1.05398491e-01
5.44075072e-01 7.55807161e-01 3.98522407e-01 1.61424931e-02
3.15042585e-01 6.35056078e-01 5.74633479e-01 2.88050212e-02
-3.43594253e-02 -4.53260720e-01 1.17927745e-01 2.74431765e-01
1.32144764e-01 -4.72904474e-01 -8.88695180e-01 7.83192635e-01
-1.50295699e+00 -1.12718678e+00 2.63466954e-01 2.04233813e+00
5.32327235e-01 2.63437986e-01 -2.71915078e-01 -4.30775970e-01
5.53518832e-01 2.95375198e-01 -7.62678921e-01 -2.98294187e-01
-1.81183338e-01 -1.38454437e-01 1.16228148e-01 4.90072966e-01
-7.78491199e-01 1.06883812e+00 6.86202335e+00 2.61312366e-01
-8.79340053e-01 -1.09339096e-01 3.89126718e-01 9.71388817e-02
-4.91256148e-01 2.58816391e-01 -7.97130346e-01 -3.85160714e-01
2.45923638e-01 -1.32354975e-01 2.94404656e-01 9.69469905e-01
1.74413159e-01 -1.45761654e-01 -1.50116444e+00 1.10345888e+00
8.06252539e-01 -1.25781357e+00 6.77633524e-01 -6.41122833e-02
8.00467432e-01 2.12922797e-01 -5.02287000e-02 5.37502058e-02
4.05087054e-01 -1.07685149e+00 7.72954881e-01 5.49730837e-01
4.87512141e-01 -1.93106696e-01 4.98902828e-01 8.24544430e-01
-5.21834552e-01 3.50354165e-01 -4.84699488e-01 -5.70035391e-02
3.21708351e-01 3.03893741e-02 -1.24625278e+00 3.08684111e-01
6.64439380e-01 6.16566658e-01 -7.34672487e-01 5.60642540e-01
-2.69939810e-01 9.50400755e-02 -1.96641564e-01 -6.26626760e-02
2.08767414e-01 -9.54747722e-02 7.20367789e-01 8.88933003e-01
1.98305443e-01 3.32788303e-02 3.11286569e-01 1.23349047e+00
1.07841775e-01 -1.64092720e-01 -1.21432793e+00 9.72241983e-02
1.73415452e-01 9.38097239e-01 -3.97389889e-01 -4.87650901e-01
-6.66530430e-01 9.43908095e-01 3.08894187e-01 4.90527123e-01
-3.80804539e-01 3.07917267e-01 4.33092713e-01 2.04988375e-01
6.47309184e-01 -3.89160663e-01 2.26822272e-02 -1.45279396e+00
-1.85067095e-02 -1.04394078e+00 7.17065409e-02 -1.71108508e+00
-1.29987550e+00 6.48902416e-01 2.34863073e-01 -1.30642188e+00
-5.42645693e-01 -9.34151411e-01 -3.88244241e-01 7.13036060e-01
-1.30776525e+00 -1.37163424e+00 -4.05109048e-01 6.61768913e-01
9.62047875e-01 -2.21613735e-01 1.04017842e+00 -6.02062166e-01
3.74280423e-01 -5.00867926e-02 -1.46910369e-01 -1.84361860e-02
6.01487935e-01 -1.22842884e+00 5.22991300e-01 4.46392268e-01
9.63041842e-01 7.31491685e-01 9.86646295e-01 -3.81909549e-01
-1.54662347e+00 -8.19502473e-01 8.71204436e-01 -1.03467309e+00
3.22177231e-01 -5.13691962e-01 -9.69781220e-01 9.21400607e-01
5.29027581e-01 -5.71607938e-03 5.01830578e-01 -9.64354426e-02
-7.84750402e-01 2.78480351e-01 -8.81891131e-01 7.68275380e-01
1.01997423e+00 -9.32047963e-01 -1.06288505e+00 6.00692868e-01
5.60851812e-01 -3.52034271e-01 -4.50520843e-01 1.88194230e-01
5.39717495e-01 -1.32155895e+00 1.31543136e+00 -9.14408386e-01
6.15689874e-01 -3.59701335e-01 -4.43259537e-01 -1.11084461e+00
3.21294963e-02 -1.86007455e-01 2.85987973e-01 7.41459191e-01
3.04366112e-01 -1.81085959e-01 7.27708697e-01 4.58001256e-01
2.17391834e-01 -3.56072903e-01 -6.29518151e-01 -6.77413106e-01
3.39949057e-02 -5.45500159e-01 -9.23154131e-02 8.18718493e-01
-3.87312800e-01 9.22358692e-01 -2.62467295e-01 2.89360732e-01
6.34409845e-01 5.51615715e-01 1.22576475e+00 -9.92620111e-01
-2.47368485e-01 -7.13308305e-02 -5.82776189e-01 -1.38487756e+00
4.53865856e-01 -8.35292518e-01 -1.09631531e-01 -1.60937428e+00
5.24173975e-01 1.12062544e-01 3.51748466e-01 1.39259726e-01
1.66261658e-01 1.64602920e-01 4.08252001e-01 2.97121972e-01
-7.21127152e-01 5.32262743e-01 1.39479637e+00 -2.30362371e-01
2.20884774e-02 -1.24415338e-01 -7.15773046e-01 1.03855956e+00
4.98966455e-01 -1.91485494e-01 -7.14504242e-01 -9.36556876e-01
2.25662187e-01 1.56861424e-01 8.70638847e-01 -6.46315634e-01
4.86424118e-02 -1.88892171e-01 5.39360762e-01 -9.51728106e-01
7.78965294e-01 -9.18617547e-01 1.50381163e-01 1.68248370e-01
-6.53694451e-01 2.29252115e-01 1.86597794e-01 7.97538817e-01
-2.22057834e-01 -3.80957395e-01 5.21996498e-01 -8.71188819e-01
-8.87952924e-01 7.43283033e-02 -3.21056575e-01 2.94837534e-01
8.82993877e-01 -4.15048808e-01 -2.06411973e-01 -8.59857321e-01
-7.42730260e-01 3.94766256e-02 1.04066384e+00 6.59873486e-01
8.93122077e-01 -1.10158193e+00 -8.11159611e-01 3.77202988e-01
5.65466344e-01 1.47132389e-02 7.59782791e-02 1.91878319e-01
-5.61176598e-01 5.84699929e-01 -5.00794314e-02 -1.10054648e+00
-1.44399631e+00 8.31011951e-01 4.20537025e-01 6.21209890e-02
-6.16823316e-01 7.29285657e-01 7.74171233e-01 -5.67364216e-01
1.00192487e-01 -1.61312729e-01 -5.92133142e-02 -2.76977330e-01
5.57372808e-01 -3.74338955e-01 -2.20137626e-01 -9.57233489e-01
-3.15582752e-01 1.02143383e+00 -2.02619240e-01 -4.15502340e-01
1.04112375e+00 -3.04687858e-01 8.45830813e-02 5.69196999e-01
1.22810566e+00 -1.58768296e-01 -1.20502555e+00 -4.10517722e-01
-2.46323317e-01 -6.90869451e-01 -1.88207254e-01 -7.72868156e-01
-6.11078143e-01 1.15535057e+00 4.62703496e-01 1.43795848e-01
8.54567170e-01 5.63843787e-01 1.31646186e-01 7.95761526e-01
4.19739157e-01 -5.71329057e-01 4.42746699e-01 6.89535975e-01
1.20827448e+00 -1.56114280e+00 1.69452980e-01 -5.20115674e-01
-9.40528333e-01 1.06994092e+00 6.97330117e-01 -2.35703155e-01
5.03944874e-01 -9.24159884e-02 3.51098657e-01 -4.60661709e-01
-1.12487292e+00 -3.93246740e-01 4.73057449e-01 1.01095927e+00
1.82006449e-01 -7.76848570e-02 4.38616097e-01 -1.06491983e-01
-2.56574541e-01 -1.70717508e-01 6.78973079e-01 6.43413544e-01
-3.37590545e-01 -6.30981386e-01 -3.18139941e-01 7.60500059e-02
-1.99997813e-01 -8.47792849e-02 -9.38826740e-01 9.70794916e-01
-6.85816556e-02 8.39196861e-01 1.20473981e-01 -8.36410746e-02
3.20374280e-01 1.13714620e-01 8.62778127e-01 -1.06751096e+00
-7.05583543e-02 2.62555219e-02 8.71334150e-02 -3.69110882e-01
-8.46205056e-01 -6.85583353e-01 -8.02033186e-01 3.79201353e-01
-3.85459930e-01 -2.07787052e-01 5.27998447e-01 1.00131536e+00
2.12302133e-01 -2.02598467e-01 3.93681079e-01 -1.03441215e+00
-6.79691195e-01 -6.03914440e-01 -3.66907895e-01 7.27036536e-01
3.67648423e-01 -4.32145357e-01 -4.62171167e-01 4.73439544e-01] | [8.598396301269531, -3.0563087463378906] |
a2f463eb-ebdf-458c-9e13-3c3ec5648d10 | causal-bandits-for-linear-structural-equation | 2208.12764 | null | https://arxiv.org/abs/2208.12764v3 | https://arxiv.org/pdf/2208.12764v3.pdf | Causal Bandits for Linear Structural Equation Models | This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model to minimize cumulative regret with respect to the best intervention in hindsight. This is, naturally, posed as a causal bandit problem. The focus is on causal bandits for linear structural equation models (SEMs) and soft interventions. It is assumed that the graph's structure is known and has $N$ nodes. Two linear mechanisms, one soft intervention and one observational, are assumed for each node, giving rise to $2^N$ possible interventions. Majority of the existing causal bandit algorithms assume that at least the interventional distributions of the reward node's parents are fully specified. However, there are $2^N$ such distributions (one corresponding to each intervention), acquiring which becomes prohibitive even in moderate-sized graphs. This paper dispenses with the assumption of knowing these distributions or their marginals. Two algorithms are proposed for the frequentist (UCB-based) and Bayesian (Thompson Sampling-based) settings. The key idea of these algorithms is to avoid directly estimating the $2^N$ reward distributions and instead estimate the parameters that fully specify the SEMs (linear in $N$) and use them to compute the rewards. In both algorithms, under boundedness assumptions on noise and the parameter space, the cumulative regrets scale as $\tilde{\cal O} (d^{L+\frac{1}{2}} \sqrt{NT})$, where $d$ is the graph's maximum degree, and $L$ is the length of its longest causal path. Additionally, a minimax lower of $\Omega(d^{\frac{L}{2}-2}\sqrt{T})$ is presented, which suggests that the achievable and lower bounds conform in their scaling behavior with respect to the horizon $T$ and graph parameters $d$ and $L$. | ['Ali Tajer', 'Prasanna Sattigeri', 'Karthikeyan Shanmugam', 'Burak Varici'] | 2022-08-26 | null | null | null | null | ['thompson-sampling'] | ['methodology'] | [ 3.80137861e-01 6.23724461e-01 -7.58632541e-01 -1.50131807e-01
-5.02747118e-01 -5.50709486e-01 2.08660647e-01 1.47889838e-01
-5.19342005e-01 1.01035690e+00 -1.17205614e-02 -8.17218542e-01
-9.10270870e-01 -1.01349211e+00 -1.00738740e+00 -7.32455373e-01
-5.47111690e-01 4.37077194e-01 -1.40617922e-01 1.88738391e-01
1.45330250e-01 2.40697891e-01 -1.12873781e+00 -4.24171150e-01
9.32889342e-01 8.91978204e-01 1.62813231e-01 6.05143607e-01
8.35343078e-02 6.61648989e-01 -3.42155933e-01 -7.19728887e-01
1.66012332e-01 -6.98909700e-01 -6.48918569e-01 -1.10335216e-01
-2.65641540e-01 -4.61190879e-01 -4.59192157e-01 1.22911119e+00
2.45425537e-01 6.13898300e-02 7.96056569e-01 -1.10051441e+00
-3.23097289e-01 9.87576723e-01 -9.71875668e-01 1.87344983e-01
2.04878926e-01 -7.93093517e-02 1.23358190e+00 1.28373891e-01
3.68115097e-01 1.27003181e+00 3.81005764e-01 1.83630213e-01
-1.41132033e+00 -8.65447521e-01 5.13626277e-01 -1.55968308e-01
-1.16451812e+00 -1.51722401e-01 5.99140704e-01 -4.41127628e-01
4.68728811e-01 3.60723078e-01 5.80854833e-01 8.61817777e-01
-2.50104293e-02 6.59337878e-01 1.03223908e+00 -7.45862842e-01
4.44598883e-01 -1.07095622e-01 2.09958851e-01 6.28042996e-01
6.49161279e-01 5.07571101e-01 -3.81926268e-01 -3.82518858e-01
9.86413419e-01 3.38723063e-02 -2.20201001e-01 -1.86261773e-01
-6.05238855e-01 1.17141211e+00 2.32393861e-01 -1.05313197e-01
-6.54060781e-01 8.11737716e-01 2.86159180e-02 8.53037089e-02
3.69279802e-01 1.05732689e-02 -1.95993200e-01 -9.86108929e-02
-7.09783494e-01 1.40337840e-01 6.11983895e-01 1.08449197e+00
5.04751444e-01 -1.09177999e-01 -2.51005501e-01 5.45389473e-01
3.66700798e-01 7.73316860e-01 -4.95353818e-01 -1.00278926e+00
6.62120283e-01 3.67046654e-01 5.88721216e-01 -8.07512820e-01
-2.67236888e-01 -5.14994383e-01 -7.65971363e-01 -1.36463210e-01
7.01643944e-01 -5.50905645e-01 -7.36612201e-01 2.14185715e+00
3.14062655e-01 -2.74583902e-02 -5.50201952e-01 6.33172750e-01
1.43269617e-02 5.17669737e-01 1.48776323e-01 -9.14892077e-01
1.17296004e+00 -1.75819606e-01 -5.26554108e-01 -5.25565565e-01
3.23811561e-01 -3.65722656e-01 9.24487650e-01 2.64138460e-01
-1.18483114e+00 2.37411588e-01 -7.11113393e-01 6.43302202e-01
3.65134269e-01 -2.79643118e-01 8.94488871e-01 1.07610238e+00
-7.21961856e-01 4.59070712e-01 -6.88850522e-01 6.18005842e-02
3.83820176e-01 4.93525952e-01 2.35748023e-01 -4.18537974e-01
-1.02458501e+00 4.28408056e-01 -6.56817332e-02 2.10526645e-01
-1.14265704e+00 -4.97164935e-01 -3.21408719e-01 2.42301881e-01
8.43015075e-01 -5.60691714e-01 1.07199502e+00 -7.81806588e-01
-1.12014198e+00 3.36423725e-01 -1.97486296e-01 -4.71776843e-01
5.18962145e-01 1.90691561e-01 1.21725313e-01 4.39207591e-02
2.47292414e-01 8.96182060e-02 7.08336711e-01 -1.08030713e+00
-6.67092323e-01 -5.55593550e-01 4.04791743e-01 4.58470471e-02
-8.73026475e-02 1.14984132e-01 -3.08121264e-01 -3.93492222e-01
7.83123747e-02 -1.01584160e+00 -5.01075029e-01 -4.33269083e-01
-6.82650208e-01 3.36222462e-02 -2.52450481e-02 -4.51301455e-01
1.45419848e+00 -1.86158109e+00 2.26043910e-02 5.95647693e-01
3.56884822e-02 -2.65873462e-01 1.31787911e-01 5.15285194e-01
7.14666620e-02 3.18593979e-01 -1.12986811e-01 1.99914891e-02
1.22137047e-01 2.28729799e-01 -1.75846756e-01 6.89388156e-01
-5.14833629e-01 4.93149638e-01 -6.91450596e-01 -9.99200940e-02
-1.37392685e-01 8.69866461e-02 -4.24927056e-01 -7.13739023e-02
-3.09635252e-01 1.55463755e-01 -7.71536231e-01 2.43781060e-01
6.13384187e-01 -4.67449456e-01 7.75310218e-01 4.22705024e-01
-1.26495689e-01 1.05348930e-01 -1.49859893e+00 9.97140884e-01
-1.63858309e-01 -9.95704830e-02 2.71129459e-01 -1.25237715e+00
4.19615716e-01 2.76732773e-01 5.47512293e-01 -5.84078550e-01
2.21338883e-01 -3.12620238e-03 8.35576057e-02 -2.32565224e-01
-1.89505786e-01 -4.68656719e-01 -1.93465903e-01 7.09873855e-01
-2.43492186e-01 2.93294519e-01 2.21911177e-01 2.90801972e-01
1.36152315e+00 -2.21037462e-01 2.65691787e-01 -3.44941556e-01
-2.13659704e-01 -1.91019624e-01 7.69988775e-01 1.28659081e+00
-4.35859971e-02 -1.33528739e-01 1.40040076e+00 -1.11900652e-02
-8.86157691e-01 -1.02272105e+00 1.61031503e-02 1.05937052e+00
1.80331752e-01 8.60234052e-02 -7.91292310e-01 -5.51618874e-01
6.79891780e-02 1.05076182e+00 -9.27489698e-01 1.53525546e-02
-1.62607148e-01 -1.02880490e+00 2.01858535e-01 3.56503248e-01
2.26431981e-01 -7.51798034e-01 -7.64882267e-01 1.69473916e-01
-2.39514083e-01 -5.09847641e-01 -4.92302716e-01 2.95819610e-01
-8.19651246e-01 -1.19345534e+00 -4.51215714e-01 -4.72399369e-02
8.48476350e-01 1.01676814e-01 7.32901812e-01 -2.75395364e-01
-1.94319576e-01 3.52112263e-01 -2.01252803e-01 -5.35386801e-01
3.35288830e-02 -2.99586803e-01 -1.49554282e-01 -1.17764048e-01
-4.26763631e-02 -6.21810317e-01 -9.37272370e-01 9.55882743e-02
-6.77080691e-01 -1.71866521e-01 5.89188099e-01 7.15811253e-01
5.62479734e-01 1.97696000e-01 5.22906423e-01 -1.02444327e+00
5.19184172e-01 -4.75049049e-01 -1.14170599e+00 3.49040002e-01
-7.04087794e-01 1.78514928e-01 3.27419281e-01 -4.13704306e-01
-1.02842009e+00 -5.78685775e-02 4.20524925e-01 -2.93024421e-01
8.81860703e-02 8.24957967e-01 -7.26346597e-02 3.21724862e-01
4.78069752e-01 -1.37228459e-01 -1.33741364e-01 -3.45601320e-01
3.93308967e-01 2.32943848e-01 1.04384474e-01 -7.76410818e-01
3.64218026e-01 3.65323156e-01 3.03138703e-01 -4.11069721e-01
-8.77007186e-01 1.21943787e-01 1.17117828e-02 -2.10916787e-01
5.67725003e-01 -6.05596483e-01 -1.51131129e+00 -1.98548764e-01
-7.10118949e-01 -4.45653915e-01 -2.65934199e-01 7.23482132e-01
-8.01995873e-01 7.24474415e-02 -3.87746274e-01 -1.75508845e+00
-1.15758814e-02 -9.76547360e-01 3.44770670e-01 1.17782973e-01
-9.26255435e-03 -6.79765522e-01 -2.40489870e-01 4.20353293e-01
7.70879760e-02 2.97308266e-01 1.26069915e+00 -1.89281225e-01
-7.95501173e-01 -3.41657817e-01 -3.15058053e-01 -7.99793899e-02
-4.80095707e-02 -1.68000787e-01 -3.72662216e-01 -3.42521340e-01
-1.44707233e-01 6.21796818e-03 5.58327675e-01 1.19233203e+00
9.08060551e-01 -8.71300280e-01 -5.81577420e-01 4.14951406e-02
1.35562110e+00 7.07465291e-01 3.42819959e-01 -1.21516339e-01
1.84945881e-01 5.89467287e-01 4.77311820e-01 8.01875651e-01
2.65571415e-01 4.57088977e-01 8.34475100e-01 1.40802234e-01
4.94961143e-01 -3.80292147e-01 1.93028301e-01 -1.96615700e-02
-9.54161957e-02 -4.60439593e-01 -7.62344837e-01 7.19096065e-01
-1.90601647e+00 -9.00719404e-01 -1.69009238e-01 2.82623649e+00
8.80554736e-01 2.73315042e-01 3.76911312e-01 -1.44026622e-01
9.21000540e-01 -1.27862200e-01 -7.12409019e-01 -4.34332162e-01
2.22249940e-01 4.09519732e-01 9.76449847e-01 5.80417931e-01
-5.82703471e-01 4.52164978e-01 5.83008671e+00 9.17951047e-01
-6.20086074e-01 9.97243673e-02 9.73999918e-01 -6.28152847e-01
-4.08040851e-01 5.00123680e-01 -7.59995580e-01 7.06212282e-01
1.14278889e+00 -2.77542770e-01 7.68113077e-01 5.40054500e-01
6.17002189e-01 -6.46241009e-01 -1.02719045e+00 4.49019164e-01
-5.77898264e-01 -1.17689240e+00 -5.35304248e-01 4.87170070e-01
7.05787778e-01 -3.52404505e-01 4.64920364e-02 -6.33328184e-02
1.25259554e+00 -1.03689730e+00 7.60237575e-01 2.99737722e-01
1.03057015e+00 -1.11427391e+00 3.23196501e-01 6.92874908e-01
-8.88018787e-01 -4.65306014e-01 -4.85697947e-02 -1.94417775e-01
2.75281072e-01 8.44443321e-01 -7.05891848e-01 5.94261229e-01
8.59144211e-01 -4.15634476e-02 4.42789674e-01 8.40206027e-01
-4.44049001e-01 8.13039601e-01 -5.11060655e-01 -1.79663271e-01
1.75752893e-01 -3.37962806e-01 3.47318202e-01 6.12162352e-01
3.53970677e-01 5.91539502e-01 2.29510382e-01 7.35447586e-01
-1.34595439e-01 -6.65868539e-03 -2.76097119e-01 -1.49710283e-01
8.42999279e-01 6.03719473e-01 -8.19442153e-01 -4.70221154e-02
-1.51121944e-01 3.71062845e-01 1.32956326e-01 5.13865411e-01
-9.59763467e-01 -2.36425057e-01 4.46717978e-01 3.18329930e-01
3.94922674e-01 7.61686265e-02 -3.99706483e-01 -5.23953736e-01
-1.31237403e-01 -4.32860672e-01 7.41992116e-01 -4.25831467e-01
-1.06244421e+00 -1.83707565e-01 4.12665218e-01 -5.18704116e-01
-2.55393237e-01 -7.52376840e-02 -3.17009419e-01 9.25484657e-01
-9.89797890e-01 -7.42284715e-01 4.33930576e-01 6.40342772e-01
-1.13457464e-01 4.82441872e-01 5.42880654e-01 1.10823393e-01
-7.45709240e-01 5.69744289e-01 4.40039396e-01 -7.07870200e-02
1.17957152e-01 -9.98805642e-01 -3.79470855e-01 9.32197869e-01
-3.01612735e-01 6.52671516e-01 1.03143859e+00 -8.13115597e-01
-1.35561991e+00 -7.67857552e-01 6.88252211e-01 1.59710929e-01
6.85626209e-01 -2.72675008e-01 -2.60845065e-01 8.81340981e-01
-5.15206233e-02 -1.04272261e-01 5.13171732e-01 3.95657569e-01
-1.74234807e-01 -3.02599102e-01 -1.26952684e+00 7.19727993e-01
1.16512990e+00 8.31029937e-03 2.30405137e-01 4.13982898e-01
6.14163220e-01 -1.09675311e-01 -9.15663064e-01 3.32413822e-01
4.23890859e-01 -9.08431947e-01 6.36312246e-01 -5.60193837e-01
2.24179313e-01 8.58706161e-02 -2.10260168e-01 -9.78821397e-01
-1.93698660e-01 -8.77621055e-01 1.29421249e-01 1.02763319e+00
6.39259279e-01 -7.18772411e-01 8.69083703e-01 8.44405651e-01
2.22821862e-01 -5.60544312e-01 -1.35502374e+00 -5.73870301e-01
1.34663820e-01 -3.92677188e-01 3.12879264e-01 7.46249616e-01
1.81375928e-02 1.72767624e-01 -5.14364183e-01 2.29441747e-01
9.69825149e-01 1.85909778e-01 3.37213218e-01 -1.16382301e+00
-7.25147188e-01 -2.34264612e-01 3.19572687e-01 -8.43687773e-01
-1.28380299e-01 -3.16106856e-01 1.22872298e-03 -1.37961888e+00
6.66839600e-01 -8.75052154e-01 -2.09185466e-01 6.16061866e-01
-5.38235903e-03 -6.24094605e-01 -5.39828874e-02 -1.37582988e-01
-2.63089925e-01 3.37554783e-01 9.41926658e-01 8.66725370e-02
-2.57579267e-01 4.28000540e-01 -9.79757249e-01 5.85827231e-01
4.70893681e-01 -7.32331932e-01 -7.65981078e-01 -3.20354879e-01
6.30708933e-01 1.20379519e+00 4.16445673e-01 5.66657074e-02
1.00764520e-01 -7.95252025e-01 -1.28444627e-01 -4.22782362e-01
1.27162963e-01 -5.97667813e-01 6.37687683e-01 5.90186894e-01
-5.21513820e-01 -2.13371709e-01 -1.51706398e-01 1.06320441e+00
4.09235537e-01 -4.08922523e-01 6.59099281e-01 -2.69782573e-01
3.28764886e-01 2.40732878e-01 -3.24752420e-01 -1.02140628e-01
1.03895509e+00 1.88635383e-02 -3.95207554e-01 -8.07214200e-01
-7.12282240e-01 2.61129171e-01 1.25279531e-01 -2.21622705e-01
1.48232847e-01 -8.69014978e-01 -4.72085357e-01 -4.02018428e-01
-3.93107444e-01 8.35710987e-02 5.72665155e-01 9.08613086e-01
4.28423397e-02 4.43091571e-01 3.01953882e-01 -2.36180112e-01
-8.61829877e-01 7.14864850e-01 2.69247919e-01 -4.88863081e-01
-4.31974158e-02 1.00210178e+00 2.38683492e-01 1.91151887e-01
2.60690898e-01 5.57875484e-02 2.72868812e-01 -6.73061684e-02
1.65124103e-01 6.74136937e-01 -3.70704591e-01 5.05386852e-02
-2.32908055e-01 -8.63656178e-02 -1.23502217e-01 -3.89178336e-01
1.37791717e+00 -2.50521868e-01 -3.75964671e-01 1.50339976e-01
6.43622398e-01 -3.66926603e-02 -1.47830391e+00 -2.73706049e-01
5.49736321e-02 -4.46168274e-01 6.70301169e-02 -8.68306279e-01
-1.02356136e+00 5.44593453e-01 4.35696363e-01 5.51906168e-01
1.02786696e+00 1.05060995e-01 -5.96366487e-02 -2.65656769e-01
5.19403338e-01 -9.89851296e-01 -1.53865725e-01 9.43961516e-02
4.81642365e-01 -6.43166423e-01 1.47304311e-01 -4.39239532e-01
-3.14388216e-01 4.71227646e-01 2.14807019e-01 -4.40780185e-02
5.94753146e-01 1.13753855e-01 -7.82187462e-01 -1.34748623e-01
-7.16457188e-01 -6.93876222e-02 -1.45322487e-01 3.26162636e-01
3.09924811e-01 4.57616836e-01 -7.55574346e-01 7.78954566e-01
-4.97309864e-02 -3.09723504e-02 5.74407816e-01 8.82703066e-01
-4.88919228e-01 -1.20461965e+00 -4.48165566e-01 7.94962823e-01
-7.20768929e-01 -1.60966173e-01 -6.93496093e-02 7.80184388e-01
-1.36040524e-01 1.32321310e+00 -1.13462610e-02 1.98525935e-01
2.66067237e-01 -1.78271994e-01 5.84367692e-01 -3.20532709e-01
-1.44472703e-01 5.22303641e-01 2.54371136e-01 -3.86966556e-01
-2.10489199e-01 -8.60839903e-01 -1.05735052e+00 -7.11726129e-01
-4.29769009e-01 3.20223868e-01 5.10079682e-01 9.17904556e-01
1.58368513e-01 3.28946412e-01 7.73235381e-01 -3.20428371e-01
-7.32054174e-01 -7.36967921e-01 -9.35030103e-01 -1.04521513e-01
-1.23097934e-03 -8.06537092e-01 -3.69255126e-01 -2.95223117e-01] | [4.719142913818359, 3.462061643600464] |
796d11e9-5f90-4958-8a64-704cb54fdb87 | composition-aware-image-aesthetics-assessment | 1907.10801 | null | https://arxiv.org/abs/1907.10801v1 | https://arxiv.org/pdf/1907.10801v1.pdf | Composition-Aware Image Aesthetics Assessment | Automatic image aesthetics assessment is important for a wide variety of applications such as on-line photo suggestion, photo album management and image retrieval. Previous methods have focused on mapping the holistic image content to a high or low aesthetics rating. However, the composition information of an image characterizes the harmony of its visual elements according to the principles of art, and provides richer information for learning aesthetics. In this work, we propose to model the image composition information as the mutual dependency of its local regions, and design a novel architecture to leverage such information to boost the performance of aesthetics assessment. To achieve this, we densely partition an image into local regions and compute aesthetics-preserving features over the regions to characterize the aesthetics properties of image content. With the feature representation of local regions, we build a region composition graph in which each node denotes one region and any two nodes are connected by an edge weighted by the similarity of the region features. We perform reasoning on this graph via graph convolution, in which the activation of each node is determined by its highly correlated neighbors. Our method naturally uncovers the mutual dependency of local regions in the network training procedure, and achieves the state-of-the-art performance on the benchmark visual aesthetics datasets. | ['Nagendra Kamath', 'Subhabrata Bhattachary', 'Rohit Puri', 'Dong Liu'] | 2019-07-25 | null | null | null | null | ['aesthetics-quality-assessment'] | ['computer-vision'] | [-4.36062217e-02 -2.11547688e-02 -2.53809541e-01 -4.97112215e-01
-1.18652798e-01 -4.38707530e-01 3.97637635e-01 3.76773745e-01
5.75750396e-02 -1.37134060e-01 5.47197163e-01 1.05341792e-01
-2.84545243e-01 -1.01978683e+00 -3.72467160e-01 -7.41179287e-01
1.31544501e-01 -1.04903728e-01 -1.49226978e-01 -3.74997348e-01
1.83307752e-01 4.87382174e-01 -1.47635746e+00 4.63410437e-01
8.54958415e-01 1.55210412e+00 -5.74620776e-02 2.46415168e-01
-1.90857083e-01 6.65596128e-01 -3.92388254e-01 -5.00451744e-01
2.67445058e-01 -5.52186489e-01 -7.81287372e-01 2.94673383e-01
1.20472588e-01 4.50184569e-02 -2.54829496e-01 1.26021636e+00
2.95027912e-01 2.28962079e-01 7.75637686e-01 -1.38975048e+00
-1.17223370e+00 4.39907879e-01 -8.73001873e-01 -2.01460674e-01
1.29922047e-01 2.64088720e-01 1.58742464e+00 -6.82137966e-01
5.05405366e-01 1.22174776e+00 3.51399451e-01 1.20154008e-01
-1.15322626e+00 -4.40156728e-01 2.97790706e-01 4.07530218e-01
-1.52806520e+00 -1.39237964e-03 1.18594468e+00 -3.74050587e-01
4.27754521e-01 3.00907433e-01 1.08814251e+00 5.09013772e-01
-2.33209096e-02 7.65298367e-01 1.04047322e+00 -2.50773877e-01
3.30380201e-01 2.69161984e-02 -3.03931564e-01 7.13156939e-01
-2.75529474e-01 -3.06100249e-01 -6.49036527e-01 2.27913678e-01
7.59093285e-01 1.52193427e-01 -1.14424370e-01 -4.79295403e-01
-1.00954735e+00 9.17795658e-01 1.30518115e+00 2.36715898e-01
-5.21442294e-01 1.96786627e-01 2.13418439e-01 1.34005889e-01
5.53525627e-01 5.56595862e-01 -4.68134284e-02 3.08543801e-01
-5.47373474e-01 -2.84450173e-01 3.23754132e-01 5.51755428e-01
1.14147365e+00 -2.62393862e-01 -3.44824135e-01 1.07352948e+00
4.39213037e-01 1.43528551e-01 3.64107162e-01 -1.08193362e+00
4.35334519e-02 1.14152884e+00 -3.70503366e-01 -1.50328350e+00
-2.32991666e-01 -4.19007003e-01 -1.18335295e+00 4.06135529e-01
9.09526870e-02 4.82584119e-01 -5.93925774e-01 1.77397513e+00
3.74766618e-01 -3.34253579e-01 -4.81453314e-02 1.04466343e+00
8.77670228e-01 6.22472286e-01 1.75031975e-01 8.16747323e-02
1.51918483e+00 -1.04575896e+00 -5.28432012e-01 -1.58552900e-01
2.14122117e-01 -8.58392417e-01 1.50177503e+00 1.17159106e-01
-1.02585864e+00 -5.10573864e-01 -8.62893820e-01 -1.46350339e-01
-4.90092307e-01 1.85961246e-01 6.24711096e-01 1.70411393e-01
-1.10400367e+00 6.78891122e-01 -2.15042308e-01 -3.50245535e-01
5.74816048e-01 4.76385653e-02 -4.57744807e-01 3.29904594e-02
-1.01422310e+00 6.47365212e-01 3.08499455e-01 1.21209852e-01
-3.23395193e-01 -5.96585929e-01 -9.92094874e-01 4.15059239e-01
8.92650411e-02 -7.38536179e-01 6.86239958e-01 -1.36758864e+00
-1.29841352e+00 9.64950979e-01 1.49080113e-01 1.21642478e-01
3.97164635e-02 2.78698534e-01 -5.06069720e-01 2.39121273e-01
9.44133028e-02 9.05496657e-01 7.93217957e-01 -1.40029728e+00
-3.17291796e-01 -3.37219715e-01 3.30027282e-01 4.65309411e-01
-8.97580385e-01 -5.95977642e-02 -7.06084549e-01 -7.38542080e-01
2.60122985e-01 -6.01394117e-01 -2.22336590e-01 4.10900593e-01
-6.05551481e-01 -1.49181351e-01 5.78319192e-01 -4.06939209e-01
1.27332914e+00 -2.31966472e+00 1.41334400e-01 7.01400220e-01
4.55698431e-01 -1.61832944e-01 -4.61131662e-01 3.59936744e-01
-2.23126382e-01 3.02984178e-01 -1.41392291e-01 -9.14962888e-02
1.68991998e-01 -2.65705492e-02 -1.92282791e-03 3.16856891e-01
3.74192119e-01 1.22105658e+00 -9.65724289e-01 -6.52486801e-01
2.66522557e-01 5.85641861e-01 -4.86268044e-01 3.57537389e-01
-4.12066579e-02 2.77348220e-01 -5.31967461e-01 7.09151447e-01
4.65859085e-01 -5.95856309e-01 3.95579301e-02 -7.06714392e-01
1.56173110e-01 -6.81702942e-02 -9.32939947e-01 1.64831305e+00
-6.36819124e-01 5.65005183e-01 -2.14506105e-01 -6.76521659e-01
1.19494390e+00 -2.66360790e-01 5.83871305e-01 -1.09343171e+00
1.40602902e-01 -1.29253134e-01 -1.30696580e-01 -5.70648909e-01
4.08276260e-01 -6.19632378e-02 -7.60055408e-02 6.50297523e-01
-1.94095477e-01 -9.24007222e-02 -9.37473625e-02 1.95744574e-01
8.80298078e-01 -7.86415786e-02 4.58595306e-01 -1.74030825e-01
5.28773010e-01 -3.78729403e-01 2.43777230e-01 2.10120931e-01
-7.59857222e-02 6.93569839e-01 6.00943744e-01 -5.95946550e-01
-9.89937961e-01 -1.14550543e+00 1.24888405e-01 1.21819711e+00
5.24461925e-01 -6.15980923e-01 -8.22495699e-01 -5.56706786e-01
-8.89136121e-02 3.70911658e-01 -1.00094354e+00 -6.71820462e-01
-1.86328977e-01 -4.57628161e-01 1.04870893e-01 3.84287715e-01
6.77412093e-01 -1.45630908e+00 -2.71733165e-01 -3.87325346e-01
-3.57620686e-01 -8.11175346e-01 -7.97040761e-01 -7.44388402e-02
-4.15476441e-01 -1.06277227e+00 -5.77111125e-01 -8.77912104e-01
1.06012058e+00 5.01399100e-01 1.35624576e+00 2.14182362e-01
-3.93373728e-01 2.83732414e-01 -4.34373736e-01 6.57514483e-02
-1.56171411e-01 -6.28343597e-02 -3.50434601e-01 6.77371502e-01
3.11066955e-02 -7.30998635e-01 -1.17331672e+00 4.29918826e-01
-1.07153976e+00 1.65697962e-01 8.09087515e-01 7.21960127e-01
9.05636430e-01 2.71608949e-01 1.56743437e-01 -5.88743806e-01
7.58045673e-01 -4.90052670e-01 -1.55127957e-01 5.43691695e-01
-6.84050918e-01 1.04541294e-01 5.00502050e-01 -2.69264758e-01
-8.68797958e-01 4.48152311e-02 1.40992060e-01 -5.91709614e-01
2.46215500e-02 7.14439571e-01 -5.10326982e-01 -3.35359216e-01
6.25290453e-01 9.42104403e-03 4.22908645e-03 -2.15085626e-01
7.98065424e-01 3.68551493e-01 4.51969445e-01 -4.59131181e-01
7.73111880e-01 3.96419406e-01 1.74564451e-01 -3.89147788e-01
-1.06142759e+00 -5.27581334e-01 -4.19554770e-01 -6.08810782e-01
8.99775445e-01 -7.36042082e-01 -1.00818622e+00 2.17851445e-01
-1.02986717e+00 -1.41106499e-02 -6.60702109e-01 1.44349756e-02
-4.00168449e-01 4.43322033e-01 -2.39481509e-01 -6.53799832e-01
-2.88197011e-01 -1.09292614e+00 1.14858174e+00 4.64886218e-01
-1.57452554e-01 -1.01528585e+00 -1.42522166e-02 3.25726897e-01
3.76394063e-01 3.32977116e-01 1.19385421e+00 -7.15495944e-02
-3.93601924e-01 -2.13376880e-01 -8.20203006e-01 4.44264710e-01
1.27710834e-01 6.93586618e-02 -1.01582932e+00 1.20428137e-01
-2.36108109e-01 -3.79379869e-01 8.80444169e-01 3.21386874e-01
1.74495900e+00 -5.20185888e-01 1.28069654e-01 6.98460996e-01
1.47766840e+00 -2.01916039e-01 8.31789136e-01 3.12768698e-01
9.79621410e-01 9.50765550e-01 4.32891935e-01 4.90386665e-01
4.41341221e-01 6.28058672e-01 8.31288755e-01 -6.28734171e-01
-1.99685082e-01 -4.37426418e-01 1.89518020e-01 5.93850493e-01
-1.00506581e-01 -1.82344228e-01 -6.46635771e-01 3.39148849e-01
-1.94561768e+00 -8.25605512e-01 8.63246098e-02 2.14482117e+00
7.70365715e-01 -2.49722108e-01 1.03162833e-01 -1.76774696e-01
9.09632623e-01 4.58566725e-01 -5.24815023e-01 -4.24742877e-01
-2.75565118e-01 -3.71983051e-02 2.02221796e-01 2.62543082e-01
-9.59210277e-01 9.92101312e-01 5.83337212e+00 1.03179252e+00
-9.60303128e-01 -1.50710002e-01 1.22270155e+00 -9.02886540e-02
-7.08604038e-01 -6.90539554e-02 1.62612468e-01 3.03000271e-01
2.53744245e-01 1.41267432e-02 6.91772282e-01 8.41669619e-01
1.76877141e-01 -2.83946539e-03 -8.01834166e-01 1.12303460e+00
1.71586886e-01 -1.28817821e+00 4.48232502e-01 1.25235260e-01
8.21779132e-01 -4.36405689e-01 5.10486722e-01 -1.29893810e-01
1.32590279e-01 -1.24780810e+00 6.19510412e-01 6.12237096e-01
8.24809492e-01 -9.30314243e-01 5.04384279e-01 -1.54515594e-01
-1.50648594e+00 -5.28382771e-02 -3.72436911e-01 7.89606869e-02
-1.98914155e-01 6.65785372e-01 -4.39748019e-01 3.99956375e-01
8.73549044e-01 8.04444671e-01 -7.97510922e-01 8.86315942e-01
-2.84719944e-01 1.59855962e-01 6.60202876e-02 1.26093859e-02
2.43467510e-01 -6.26476288e-01 1.06747605e-01 9.48721826e-01
2.39056185e-01 -5.70414774e-02 8.84358734e-02 1.12281358e+00
-4.37281072e-01 5.44134438e-01 -5.71186185e-01 -3.29598971e-02
1.34485140e-01 1.84721351e+00 -9.17926550e-01 -4.19164076e-02
-2.01600432e-01 1.08036399e+00 6.17968678e-01 3.33641231e-01
-6.51080191e-01 -2.92685002e-01 8.04623365e-01 5.80943637e-02
1.21088391e-02 1.76004514e-01 -5.99787414e-01 -8.38567793e-01
1.57754436e-01 -5.48552871e-01 4.09152746e-01 -1.16865659e+00
-1.57003367e+00 7.41348207e-01 -4.51726556e-01 -1.57139945e+00
2.13007838e-01 -4.10422474e-01 -1.11207426e+00 8.17603350e-01
-1.44965935e+00 -1.48714519e+00 -8.75656784e-01 7.31778204e-01
9.31488127e-02 -1.17907993e-01 6.98251903e-01 -4.69485037e-02
-3.33377004e-01 5.95204473e-01 -1.00450464e-01 1.45005405e-01
5.51596999e-01 -1.29539406e+00 2.12885186e-01 5.75875819e-01
3.20308089e-01 5.37415266e-01 3.85777593e-01 -3.11611742e-01
-9.12453175e-01 -1.13876963e+00 8.15017998e-01 1.02443367e-01
7.50096440e-01 -1.29211694e-01 -7.59101391e-01 -8.19535032e-02
3.38543206e-01 3.55186790e-01 9.49412942e-01 3.19701493e-01
-9.63760436e-01 -3.53487253e-01 -1.00907969e+00 8.28889489e-01
1.04042673e+00 -7.40555942e-01 -2.85004396e-02 4.34469044e-01
6.98395371e-01 1.52427405e-01 -1.04015875e+00 1.66683152e-01
6.74578667e-01 -1.17240250e+00 1.18952322e+00 -6.08836293e-01
1.02779150e+00 -4.30574745e-01 -1.27388850e-01 -1.42467093e+00
-7.39516020e-01 -2.77275711e-01 2.77352422e-01 1.29298711e+00
3.94140005e-01 -2.21630305e-01 6.99985683e-01 5.28881192e-01
-4.63152006e-02 -1.04463077e+00 -6.82314694e-01 -3.64449412e-01
-3.25396627e-01 -2.57180870e-01 8.31663787e-01 8.14397156e-01
-1.94774978e-02 3.22502881e-01 -2.77354270e-01 -5.52741438e-02
3.27788949e-01 5.09407878e-01 4.76668596e-01 -1.14570427e+00
-2.33644143e-01 -1.15608180e+00 -5.48720539e-01 -4.85955954e-01
3.74490656e-02 -1.04347479e+00 1.26725286e-02 -1.66510594e+00
6.02956891e-01 -4.49307382e-01 -6.99865997e-01 6.34142995e-01
-3.01737607e-01 7.58960962e-01 2.94852585e-01 2.51415819e-01
-1.00418007e+00 8.46607268e-01 1.61639369e+00 -4.68272805e-01
-3.11936103e-02 -2.92000145e-01 -1.11584139e+00 7.38548815e-01
7.62838304e-01 -9.00012627e-02 -4.65130419e-01 -2.48205498e-01
6.75817966e-01 -3.83736163e-01 5.81851184e-01 -8.49303842e-01
2.32481599e-01 -4.01666343e-01 6.86073780e-01 -1.00750268e-01
3.40847522e-01 -8.93838525e-01 6.16925284e-02 1.38849959e-01
-6.66792154e-01 1.46200005e-02 -2.03844696e-01 5.07790148e-01
-5.23727596e-01 7.08979145e-02 8.97121131e-01 -1.11267447e-01
-6.90369248e-01 6.01166964e-01 2.22405046e-01 8.17201752e-03
9.69056249e-01 -1.72085419e-01 -3.62338394e-01 -6.42773509e-01
-3.51369083e-01 4.05822657e-02 7.80689001e-01 5.50366163e-01
9.26079750e-01 -1.88116431e+00 -4.79254454e-01 1.79913342e-01
6.98440492e-01 -5.93709834e-02 5.88463306e-01 5.98567903e-01
-3.68798286e-01 -3.31472129e-01 -5.73194861e-01 -4.98272866e-01
-1.17935872e+00 6.01784945e-01 3.34967136e-01 -1.94671661e-01
-3.83878022e-01 8.38375270e-01 8.51383567e-01 -1.16222195e-01
5.84356301e-02 8.68673399e-02 -6.04598880e-01 2.06772730e-01
3.51869851e-01 7.53825158e-02 -1.91044256e-01 -8.73988509e-01
-2.11426258e-01 9.05776560e-01 1.38920859e-01 2.44328473e-02
1.25401425e+00 -1.62344769e-01 -4.97821420e-01 2.72980541e-01
1.48203003e+00 -1.65031552e-01 -1.02556777e+00 -3.12936604e-01
-3.09188485e-01 -5.91050327e-01 2.10146755e-01 -8.61000419e-01
-1.76596415e+00 8.43764126e-01 4.44385409e-01 2.13126808e-01
1.66319013e+00 4.08223331e-01 5.85682452e-01 8.61811861e-02
-1.36509061e-01 -1.14591813e+00 6.48046315e-01 1.38296500e-01
1.07299268e+00 -1.28261662e+00 2.85137258e-02 -3.89148265e-01
-1.02584851e+00 1.06807506e+00 6.17807388e-01 -1.30169079e-01
6.20840192e-01 -2.77592570e-01 7.69588053e-02 -5.70630193e-01
-2.65503705e-01 -4.48690563e-01 1.01164281e+00 5.30428052e-01
3.06446046e-01 2.50910461e-01 5.62212281e-02 5.90203941e-01
-1.91664591e-01 -6.99530900e-01 -2.41289884e-02 2.81750888e-01
-3.95903111e-01 -8.79209638e-01 -8.65093768e-02 3.59216958e-01
6.06230041e-03 -2.49622792e-01 -8.06795359e-01 3.95315528e-01
2.54845649e-01 7.98501730e-01 1.85648263e-01 -7.56127536e-01
2.37163231e-01 -3.40070188e-01 1.42071053e-01 -2.77068585e-01
-6.88937604e-01 5.04252650e-02 -3.22920442e-01 -8.63820195e-01
-2.90767431e-01 -4.22604918e-01 -1.16225147e+00 -3.85438114e-01
6.17352314e-02 -1.15896702e-01 7.56680071e-01 7.52051473e-01
4.68329757e-01 6.90102577e-01 1.11691105e+00 -6.56984568e-01
5.00322413e-03 -5.79372704e-01 -7.29141176e-01 7.85863638e-01
1.02802189e-02 -5.58980823e-01 -1.37971923e-01 -5.29723652e-02] | [11.516581535339355, -1.0237187147140503] |
eb3a5118-9281-4047-9b78-a4bb6e8ebd6f | adversarially-trained-actor-critic-for | 2202.02446 | null | https://arxiv.org/abs/2202.02446v2 | https://arxiv.org/pdf/2202.02446v2.pdf | Adversarially Trained Actor Critic for Offline Reinforcement Learning | We propose Adversarially Trained Actor Critic (ATAC), a new model-free algorithm for offline reinforcement learning (RL) under insufficient data coverage, based on the concept of relative pessimism. ATAC is designed as a two-player Stackelberg game: A policy actor competes against an adversarially trained value critic, who finds data-consistent scenarios where the actor is inferior to the data-collection behavior policy. We prove that, when the actor attains no regret in the two-player game, running ATAC produces a policy that provably 1) outperforms the behavior policy over a wide range of hyperparameters that control the degree of pessimism, and 2) competes with the best policy covered by data with appropriately chosen hyperparameters. Compared with existing works, notably our framework offers both theoretical guarantees for general function approximation and a deep RL implementation scalable to complex environments and large datasets. In the D4RL benchmark, ATAC consistently outperforms state-of-the-art offline RL algorithms on a range of continuous control tasks. | ['Alekh Agarwal', 'Nan Jiang', 'Tengyang Xie', 'Ching-An Cheng'] | 2022-02-05 | null | null | null | null | ['d4rl'] | ['robots'] | [-2.45245054e-01 5.45383990e-01 -6.18817985e-01 9.66433063e-02
-1.28800356e+00 -9.28318083e-01 3.15640539e-01 3.48133408e-02
-8.43577564e-01 1.04887080e+00 4.40602414e-02 -5.63023627e-01
-1.12883531e-01 -5.14474332e-01 -1.17297876e+00 -7.75306284e-01
-3.30026597e-01 8.92931938e-01 -6.61463439e-02 -3.14679384e-01
1.45449657e-02 2.23725699e-02 -1.13855529e+00 -1.27537176e-01
6.43690526e-01 1.27618122e+00 -1.40649393e-01 7.67542660e-01
4.13768470e-01 1.24923873e+00 -7.73084819e-01 -3.56673121e-01
7.71874726e-01 -3.83623987e-01 -6.90697968e-01 -2.15207636e-01
3.17169912e-02 -7.29428768e-01 -1.98732898e-01 1.17568743e+00
4.73035663e-01 1.38546258e-01 8.75873640e-02 -1.41593945e+00
-2.33240902e-01 9.24727380e-01 -4.26664203e-01 -1.48833051e-01
1.41746953e-01 8.37231755e-01 1.11057067e+00 4.49324213e-02
5.76055944e-01 1.54839611e+00 4.08234090e-01 1.07887983e+00
-1.34336364e+00 -5.50036967e-01 3.97281915e-01 -4.68306512e-01
-6.28372967e-01 -2.19718307e-01 4.52309638e-01 -1.16326790e-02
8.01259816e-01 1.64076626e-01 8.35383773e-01 1.49815166e+00
1.51594743e-01 1.04896438e+00 1.34629571e+00 -4.29068990e-02
9.02349412e-01 -2.51761228e-01 -6.55911922e-01 6.57574117e-01
1.68546140e-01 8.37632000e-01 -3.26499999e-01 -5.97505629e-01
7.35229611e-01 -3.13910335e-01 6.96306825e-02 -4.57016140e-01
-9.29387987e-01 9.29455578e-01 2.13295981e-01 -3.91627401e-01
-6.46908402e-01 9.07845438e-01 6.65447950e-01 8.12185168e-01
2.37903401e-01 9.93496120e-01 -7.80779064e-01 -5.38356721e-01
-4.34393585e-01 9.87965584e-01 9.97426093e-01 9.83065486e-01
2.29750589e-01 5.17984986e-01 -4.49203879e-01 2.01905102e-01
1.37584612e-01 7.85843253e-01 4.37914371e-01 -1.83300054e+00
7.21741974e-01 1.19320787e-01 9.51487124e-01 -2.64148414e-01
-1.49591282e-01 -4.30174679e-01 -1.39444321e-01 8.09421897e-01
7.43187904e-01 -6.85002685e-01 -4.99307036e-01 2.06691504e+00
4.73854750e-01 -1.13718532e-01 4.01318401e-01 1.08183694e+00
-1.14293672e-01 4.16597873e-01 4.28872481e-02 -5.67979336e-01
9.71157074e-01 -7.56791949e-01 -6.52997375e-01 -3.19260150e-01
4.15597618e-01 -1.81791693e-01 1.23118758e+00 6.36035025e-01
-1.66511405e+00 4.27043214e-02 -9.91532028e-01 3.20841938e-01
2.09267795e-01 -5.79228222e-01 4.84280527e-01 5.21701336e-01
-8.93509626e-01 8.51824105e-01 -1.04948294e+00 3.30960751e-01
6.21587694e-01 2.71809489e-01 8.22850242e-02 3.20647687e-01
-9.88284826e-01 8.70562732e-01 4.06951040e-01 -1.67526424e-01
-2.06061053e+00 -7.44465411e-01 -5.33925951e-01 2.00254172e-02
1.30942190e+00 -4.58442360e-01 2.08712006e+00 -1.47159839e+00
-2.01110816e+00 5.65882564e-01 5.04259944e-01 -1.20836890e+00
1.36981082e+00 -3.66889775e-01 7.18268529e-02 -5.36969211e-03
-4.99094725e-02 4.77646858e-01 1.03845763e+00 -1.27964795e+00
-6.71488643e-01 -2.56659240e-01 5.52969098e-01 4.42206800e-01
3.64874466e-03 -2.15748698e-01 1.45749636e-02 -3.93829167e-01
-7.00123072e-01 -9.85441387e-01 -7.08821416e-01 1.02813438e-01
-2.40463972e-01 -2.41944849e-01 6.05693877e-01 -1.52541995e-01
9.57527041e-01 -1.69397938e+00 4.74637710e-02 9.82197002e-02
1.84976369e-01 2.25985050e-01 -1.34726673e-01 3.46910447e-01
4.25501615e-01 1.46375105e-01 -3.75663266e-02 -3.65672916e-01
4.26506162e-01 4.89408463e-01 -6.51727021e-01 7.61856735e-01
-2.85277784e-01 9.11079109e-01 -1.19988430e+00 -2.11079553e-01
-4.02635299e-02 -4.40759778e-01 -8.17376435e-01 5.52089393e-01
-1.10513985e+00 5.00731349e-01 -8.01497400e-01 4.46359396e-01
3.27670991e-01 2.14833636e-02 4.44061488e-01 6.88290060e-01
-3.10491361e-02 -7.99332485e-02 -9.73796487e-01 1.42934287e+00
-3.99600387e-01 1.51726216e-01 3.90097320e-01 -8.66452873e-01
7.08625555e-01 3.63099426e-01 5.99522769e-01 -7.46505141e-01
4.09940153e-01 2.62006551e-01 -2.41783947e-01 -4.02618051e-01
2.67516792e-01 -1.54552311e-01 -3.49050373e-01 4.98856157e-01
-1.96456060e-01 -1.52191982e-01 -2.41033569e-01 -2.52274722e-02
1.42603302e+00 3.96093667e-01 3.79367292e-01 -3.67699444e-01
9.35272723e-02 1.54493839e-01 8.57994378e-01 1.34223318e+00
-6.83650732e-01 -9.09640193e-02 1.22958243e+00 -6.62371516e-01
-1.30505574e+00 -9.23317850e-01 5.36616623e-01 1.32755327e+00
9.58554968e-02 -1.03593744e-01 -9.00485933e-01 -1.04497385e+00
5.90096593e-01 9.45661128e-01 -8.45941365e-01 -1.08120389e-01
-5.16321421e-01 -1.41450893e-02 6.82061195e-01 3.21897626e-01
5.28494596e-01 -1.22743344e+00 -1.06062365e+00 3.55843753e-01
1.32051036e-01 -9.03167427e-01 -7.39528775e-01 1.68125674e-01
-7.02211201e-01 -1.26882064e+00 -3.28514636e-01 -8.20869654e-02
4.05524403e-01 -2.42066279e-01 1.19888890e+00 -1.83724046e-01
1.75475255e-01 5.55647552e-01 -8.62567350e-02 -6.91769600e-01
-8.95190120e-01 -1.98243707e-01 1.94096550e-01 -4.12022263e-01
-2.27218524e-01 -2.85915047e-01 -8.42892408e-01 1.98257297e-01
-6.09858036e-01 -1.78227738e-01 1.08586162e-01 8.49545419e-01
6.95145249e-01 -1.70872509e-01 7.80778944e-01 -9.51242983e-01
8.96612406e-01 -5.29188335e-01 -1.56259406e+00 2.19145343e-01
-8.64501834e-01 5.21464348e-01 1.33863556e+00 -7.58138418e-01
-8.58227611e-01 4.78128865e-02 1.90034926e-01 -9.87292051e-01
3.14961433e-01 -1.12772413e-01 -6.72355935e-04 5.93733378e-02
9.80663061e-01 1.61504686e-01 5.51563442e-01 -1.97179556e-01
3.46770912e-01 1.70988038e-01 4.04622942e-01 -1.31948125e+00
5.19681275e-01 4.38882738e-01 2.01770231e-01 -1.06102536e-02
-1.02045584e+00 1.40927926e-01 2.87111849e-01 -3.96456420e-01
5.76114118e-01 -9.60619390e-01 -1.70220625e+00 1.95051923e-01
-7.01222718e-01 -9.62220371e-01 -8.70667934e-01 1.71881884e-01
-1.45838761e+00 -9.99151692e-02 -2.14746088e-01 -1.38951290e+00
-3.97757113e-01 -1.18257022e+00 8.88863087e-01 5.96468002e-02
2.31761023e-01 -9.35453355e-01 2.90151209e-01 1.55082926e-01
3.82760167e-01 8.41901422e-01 5.49903631e-01 -6.49650812e-01
-4.72018570e-01 1.42613918e-01 5.58257639e-01 3.99345249e-01
-5.01791894e-01 -2.84546226e-01 -6.97609127e-01 -8.52254272e-01
-3.14998850e-02 -1.26345098e+00 3.94575387e-01 4.19073075e-01
1.60591114e+00 -1.19106805e+00 9.16914269e-02 5.62756360e-01
1.49410403e+00 3.36286247e-01 3.16144288e-01 6.31847501e-01
1.12782024e-01 2.00285658e-01 9.17333245e-01 1.03426516e+00
1.58766568e-01 3.05598557e-01 1.20009279e+00 3.44887733e-01
6.95038736e-01 -8.45533192e-01 6.95137441e-01 -3.56571347e-01
2.69628689e-02 -2.31626928e-01 -5.51932395e-01 3.48447025e-01
-2.37298822e+00 -1.06679010e+00 6.07013464e-01 2.60206699e+00
1.16498852e+00 5.27529478e-01 6.71573937e-01 -3.18393379e-01
2.57420182e-01 2.64701903e-01 -1.53202665e+00 -7.16029942e-01
7.89687410e-02 2.49027342e-01 1.27487195e+00 4.87105548e-01
-8.89577746e-01 1.11787319e+00 6.50437880e+00 9.37628925e-01
-7.42276728e-01 1.47857413e-01 7.56149411e-01 -6.63727820e-01
-3.03743362e-01 6.83691427e-02 -4.99011457e-01 4.85692292e-01
1.05666173e+00 -4.12506729e-01 1.31406403e+00 1.43665314e+00
4.94890094e-01 2.34370250e-02 -1.17973042e+00 5.98318279e-01
-6.18569195e-01 -1.43610418e+00 -5.75954735e-01 1.78901181e-01
9.50905025e-01 1.44695342e-01 2.33679309e-01 7.54404068e-01
1.47541177e+00 -1.10482955e+00 1.24582410e+00 3.31729919e-01
7.45945990e-01 -1.18765855e+00 2.60791093e-01 7.25930691e-01
-5.15221238e-01 -8.32223237e-01 -3.57144296e-01 8.88317171e-03
-2.65070736e-01 -2.00145155e-01 -6.78733647e-01 -1.90435406e-02
5.07699370e-01 4.69390601e-02 1.55165076e-01 5.16876519e-01
-2.83611596e-01 6.74860179e-01 -3.31737846e-01 -2.32094914e-01
7.67449260e-01 -2.09177304e-02 6.67463660e-01 4.24101800e-01
-1.77634656e-01 8.51518884e-02 6.40466869e-01 8.81274700e-01
-3.35228175e-01 -1.93873271e-01 -6.22226357e-01 -1.87050328e-01
7.12908626e-01 8.47040832e-01 2.12430283e-02 -9.78934541e-02
1.47641689e-01 5.92701197e-01 7.50949025e-01 3.05787921e-01
-9.46336627e-01 1.86090305e-01 9.34454203e-01 -1.29819810e-01
1.92213163e-01 -3.70125659e-03 -7.92355016e-02 -7.55194247e-01
-8.55846852e-02 -1.29267693e+00 7.12772310e-01 -4.35044199e-01
-1.16949904e+00 7.31502622e-02 -1.80368662e-01 -1.12938833e+00
-5.89636922e-01 -3.92176747e-01 -5.11662483e-01 4.34353769e-01
-1.27128637e+00 -6.12674713e-01 4.12783384e-01 5.88186026e-01
4.60734159e-01 -2.90325880e-01 6.55908823e-01 -5.48661113e-01
-4.52019840e-01 7.59664059e-01 5.48509836e-01 -2.81848848e-01
3.68770361e-01 -1.63258457e+00 2.81319767e-01 4.57356155e-01
-4.84392554e-01 5.50814196e-02 1.04478157e+00 -4.65777010e-01
-1.92585361e+00 -1.17795944e+00 -3.42204213e-01 -2.89041072e-01
8.30722690e-01 -3.06215167e-01 -3.96684587e-01 8.09399247e-01
5.45115992e-02 3.60741764e-01 -1.03590757e-01 -1.84158355e-01
-3.59920800e-01 -3.30054790e-01 -1.69638789e+00 8.60847771e-01
9.17835891e-01 -1.06968343e-01 -2.18984768e-01 5.83417952e-01
1.09665740e+00 -9.68973041e-01 -8.07891548e-01 -6.27636462e-02
5.35840213e-01 -7.34935939e-01 6.49248779e-01 -1.42049110e+00
2.86156446e-01 1.81468904e-01 -1.67323694e-01 -1.42749000e+00
1.71923250e-01 -1.66653490e+00 -5.68453848e-01 3.84500802e-01
1.02616921e-01 -6.66095912e-01 8.66332889e-01 6.30523562e-01
1.00668125e-01 -1.01083159e+00 -1.32130539e+00 -1.19159162e+00
6.59807980e-01 -3.34398746e-01 7.10393250e-01 3.29648077e-01
-7.16436356e-02 -3.07551205e-01 -7.77406335e-01 2.46410239e-02
9.79577363e-01 6.46757521e-03 9.01947141e-01 -6.31186247e-01
-7.37080157e-01 -4.25790966e-01 3.68529201e-01 -1.00426412e+00
5.57013154e-01 -4.45942789e-01 2.90594190e-01 -9.08120215e-01
-1.64106712e-01 -5.75683594e-01 -1.46111354e-01 6.22198045e-01
4.61663045e-02 -6.27782464e-01 3.81027341e-01 1.30337894e-01
-1.14086235e+00 7.48317838e-01 1.65549231e+00 3.27368267e-02
-2.89242744e-01 2.67411411e-01 -8.00028443e-01 4.61607367e-01
8.77224028e-01 -5.89670837e-01 -5.71208060e-01 -1.47120476e-01
4.40882206e-01 8.51252973e-01 2.11359635e-01 -5.98048151e-01
-7.54470974e-02 -9.01472807e-01 -2.30655633e-02 -8.26865360e-02
9.37682018e-02 -8.68234158e-01 -1.88435420e-01 9.29476619e-01
-9.82464075e-01 1.06038257e-01 -1.74101014e-02 9.42258179e-01
5.57363629e-01 -8.49613845e-02 1.16936600e+00 -4.45735782e-01
-8.82178694e-02 5.29309392e-01 -2.58371502e-01 8.97916198e-01
1.36420023e+00 3.50799501e-01 -5.33241332e-01 -7.31289983e-01
-3.63113463e-01 9.84683633e-01 4.03711706e-01 2.20662028e-01
3.38115722e-01 -1.17498243e+00 -6.08070672e-01 -1.00651376e-01
-1.27161816e-01 1.71581656e-01 -6.68812394e-02 3.03946465e-01
-2.63118625e-01 1.39158200e-02 4.91081960e-02 -2.02874571e-01
-7.14046955e-01 9.22491908e-01 8.93807471e-01 -6.69254601e-01
-5.92836022e-01 4.43747938e-01 -1.55313045e-01 -4.18267399e-01
5.43157101e-01 -2.53574818e-01 4.79798824e-01 -5.00585914e-01
4.73226994e-01 5.74811876e-01 -2.92063653e-01 1.10749051e-01
8.42858255e-02 -3.00176859e-01 3.31398658e-02 -5.25261641e-01
1.16365743e+00 2.39284739e-01 5.44218600e-01 2.99673945e-01
8.45529795e-01 -3.04852575e-01 -2.36250925e+00 -2.28367969e-01
-1.04768381e-01 -4.88381863e-01 5.31462543e-02 -1.23272228e+00
-9.55175996e-01 1.82714105e-01 4.14826483e-01 3.49497497e-01
9.01656508e-01 -3.34297031e-01 6.01497054e-01 6.54785872e-01
7.33525753e-01 -1.63286543e+00 3.10319185e-01 4.41442341e-01
9.49942231e-01 -1.18986511e+00 -1.23287171e-01 7.14640498e-01
-1.35646749e+00 8.48529339e-01 8.39493513e-01 -6.54841125e-01
1.95793077e-01 4.89329427e-01 -8.98130834e-02 2.73440778e-02
-1.44630897e+00 -1.14432432e-01 -4.62539554e-01 5.57465672e-01
-5.72578967e-01 3.32520425e-01 -1.44696429e-01 5.63424766e-01
-2.33746096e-01 -3.17639746e-02 4.08149004e-01 1.06562304e+00
-6.22163296e-01 -8.76933515e-01 -3.88472706e-01 2.04430848e-01
-7.24085689e-01 4.82188880e-01 -2.39822686e-01 1.01034200e+00
-2.74813026e-01 9.06900942e-01 9.79093239e-02 1.69783402e-02
2.83452034e-01 -3.28840256e-01 5.78560889e-01 -3.34373340e-02
-8.73952627e-01 7.28486106e-02 1.20117366e-01 -1.24743712e+00
1.38345659e-02 -5.56579649e-01 -1.32786548e+00 -5.24334013e-01
1.41430527e-01 1.62015900e-01 6.12087250e-01 9.24302995e-01
2.18401179e-01 2.46708810e-01 1.19850492e+00 -2.75043428e-01
-1.85398209e+00 -5.86640239e-01 -5.00678182e-01 3.29001486e-01
7.20091164e-01 -4.92064923e-01 -3.75576496e-01 -6.71563983e-01] | [4.096884727478027, 2.342595100402832] |
5dc5c406-e8f3-43af-b53f-10a8227407dd | time-efficient-and-high-quality-graph | 2101.07026 | null | https://arxiv.org/abs/2101.07026v1 | https://arxiv.org/pdf/2101.07026v1.pdf | Time-Efficient and High-Quality Graph Partitioning for Graph Dynamic Scaling | The dynamic scaling of distributed computations plays an important role in the utilization of elastic computational resources, such as the cloud. It enables the provisioning and de-provisioning of resources to match dynamic resource availability and demands. In the case of distributed graph processing, changing the number of the graph partitions while maintaining high partitioning quality imposes serious computational overheads as typically a time-consuming graph partitioning algorithm needs to execute each time repartitioning is required. In this paper, we propose a dynamic scaling method that can efficiently change the number of graph partitions while keeping its quality high. Our idea is based on two techniques: preprocessing and very fast edge partitioning, called graph edge ordering and chunk-based edge partitioning, respectively. The former converts the graph data into an ordered edge list in such a way that edges with high locality are closer to each other. The latter immediately divides the ordered edge list into an arbitrary number of high-quality partitions. The evaluation with the real-world billion-scale graphs demonstrates that our proposed approach significantly reduces the repartitioning time, while the partitioning quality it achieves is on par with that of the best existing static method. | ['Georgios Theodoropoulos', 'Wentong Cai', 'Toyotaro Suzumura', 'Nikos Tziritas', 'Masatoshi Hanai'] | 2021-01-18 | null | null | null | null | ['graph-partitioning'] | ['graphs'] | [-3.86466771e-01 -1.34659737e-01 1.14299543e-03 -7.96549767e-03
-5.86088449e-02 -6.90799057e-01 -5.23127913e-02 7.21074283e-01
-3.09431642e-01 5.43893516e-01 -1.29917175e-01 -4.91639018e-01
-4.19752568e-01 -1.47531080e+00 -2.42524117e-01 -7.73085773e-01
-4.00245339e-01 1.03056419e+00 8.96119416e-01 -1.68339093e-03
2.51083702e-01 7.85700500e-01 -1.63819671e+00 1.03341006e-01
9.18048501e-01 9.47878897e-01 2.33094901e-01 7.03751802e-01
-3.81461769e-01 4.13863748e-01 -4.33762789e-01 -5.77635765e-02
6.31874263e-01 -3.31938237e-01 -7.78272212e-01 2.18545124e-01
-1.00521281e-01 -1.99394554e-01 -5.01298793e-02 9.62380767e-01
4.97536302e-01 3.94852549e-01 1.70401543e-01 -1.42598104e+00
-2.03700766e-01 5.93212485e-01 -9.46563303e-01 5.03511131e-01
2.25388542e-01 -1.70070156e-01 7.99104810e-01 -4.56128538e-01
8.22919071e-01 6.22032046e-01 4.50083822e-01 -2.59044439e-01
-1.14497745e+00 -6.09361887e-01 1.18130602e-01 3.68483961e-01
-1.88582194e+00 -3.36125702e-01 6.20794713e-01 -3.64915818e-01
9.79532897e-01 4.58599091e-01 8.41886699e-01 -5.11043608e-01
3.33915442e-01 -2.16846079e-01 6.90750480e-01 -4.92035359e-01
6.73515737e-01 -1.38859436e-01 9.43520293e-02 3.59916300e-01
7.01857567e-01 -3.88295293e-01 -4.73236829e-01 -5.07901132e-01
6.04404807e-01 -5.51427230e-02 -3.34894121e-01 -6.39387429e-01
-9.35481548e-01 4.27419841e-01 3.47513378e-01 6.05921805e-01
-8.61808777e-01 7.47653544e-02 6.96966588e-01 3.05510610e-01
5.24355471e-01 1.16579384e-01 -3.32881927e-01 4.09096517e-02
-1.33282149e+00 -3.11618317e-02 1.00973964e+00 1.04010510e+00
1.06652677e+00 -2.74744868e-01 2.96949167e-02 4.96298939e-01
-5.19849285e-02 2.79773444e-01 1.68647096e-01 -4.19092655e-01
2.92964071e-01 9.35702801e-01 -1.66511945e-02 -1.51080108e+00
-5.57268798e-01 -3.04922193e-01 -1.15056789e+00 -2.11775184e-01
1.38360173e-01 -5.47680594e-02 -6.17504179e-01 1.41042507e+00
9.48831260e-01 2.84269154e-01 -2.89564848e-01 8.99552882e-01
3.50850672e-01 7.78196394e-01 -7.23835304e-02 -5.57738781e-01
1.42087626e+00 -8.06746483e-01 -6.68076873e-01 4.38108772e-01
4.56258684e-01 -9.95302320e-01 5.70595920e-01 1.59269556e-01
-1.15756273e+00 -3.42776865e-01 -7.99837768e-01 3.00601482e-01
-3.22198898e-01 -2.57700503e-01 6.79296792e-01 6.83419764e-01
-1.52916324e+00 3.55705470e-01 -7.54769981e-01 -3.52971822e-01
-2.30739370e-01 4.68227386e-01 -4.78265047e-01 -7.28944838e-02
-7.36753106e-01 3.18638980e-01 7.94788599e-01 -1.30070657e-01
-2.36460805e-01 -7.00753987e-01 -4.91538882e-01 5.73786974e-01
7.02710807e-01 -7.41727710e-01 5.93734503e-01 -6.63158894e-01
-1.14906943e+00 5.49244225e-01 1.15697227e-01 -2.25493014e-01
1.16418771e-01 5.12783527e-01 -3.86598676e-01 4.17991579e-01
3.52497436e-02 -7.69258961e-02 6.41866982e-01 -9.24534559e-01
-6.24110579e-01 -5.29808879e-01 -6.92966301e-03 4.56926137e-01
-6.23684943e-01 -9.11054388e-03 -6.42376423e-01 -1.37646720e-01
3.32950711e-01 -9.31182146e-01 -3.56292993e-01 -6.21563077e-01
-3.56478363e-01 -2.24934667e-01 5.66817462e-01 -2.31104791e-01
1.76896226e+00 -2.03114414e+00 1.78225353e-01 5.79353392e-01
7.59367466e-01 8.90016258e-02 2.53407329e-01 9.82093811e-01
-5.74310534e-02 5.47180250e-02 1.04130112e-01 1.91601738e-01
-8.09547827e-02 7.02800676e-02 1.51762918e-01 5.18783629e-01
-5.78920543e-01 3.50830078e-01 -8.03023636e-01 -5.60334504e-01
7.14315241e-03 6.90000281e-02 -7.88133919e-01 3.09263468e-01
1.34512916e-01 4.39617708e-02 -2.33905032e-01 3.33451957e-01
1.09563923e+00 -4.92069840e-01 7.42681921e-01 -2.30874747e-01
-3.44751120e-01 -5.40853925e-02 -1.67428851e+00 1.09648860e+00
-3.24793071e-01 5.50666824e-02 3.99442703e-01 -8.57774496e-01
9.54255342e-01 2.51518369e-01 9.38392103e-01 -5.86669266e-01
-8.11791420e-03 2.20646903e-01 1.07525289e-01 -1.14816412e-01
8.87250781e-01 2.39150226e-02 -1.13282569e-01 8.07978570e-01
-4.69960928e-01 3.81894112e-02 6.90895677e-01 5.01400948e-01
1.34442496e+00 -4.25036818e-01 4.65929747e-01 -7.27427483e-01
5.66515744e-01 1.99043170e-01 6.55633152e-01 2.47302637e-01
-1.14660330e-01 -2.47452334e-02 6.50140464e-01 -6.54435813e-01
-1.25925434e+00 -6.78304553e-01 2.30557218e-01 1.02577066e+00
3.41747880e-01 -6.18682802e-01 -7.16699243e-01 -1.69468522e-01
1.50037304e-01 2.83638388e-01 -2.05051020e-01 -3.91287170e-02
-4.89021182e-01 -6.62658870e-01 -1.93804517e-01 2.57935584e-01
3.28832328e-01 -7.93106675e-01 -7.79322445e-01 3.85887027e-01
7.90225863e-02 -1.04692161e+00 -6.36368871e-01 7.08668400e-03
-6.37202144e-01 -1.13293207e+00 -1.29493251e-01 -6.57295108e-01
9.49403584e-01 7.15610683e-01 1.25061727e+00 6.10969305e-01
-1.85962617e-01 7.30624795e-02 -5.65878570e-01 9.11439285e-02
-6.33004308e-02 3.41197848e-01 -5.40020354e-02 6.96031600e-02
1.41236797e-01 -9.97872353e-01 -6.69894516e-01 3.13224316e-01
-1.14723361e+00 2.07940698e-01 2.03886226e-01 3.75233293e-01
8.97672415e-01 9.34091210e-01 5.32901287e-01 -1.26521313e+00
7.97252417e-01 -7.81705260e-01 -8.29671919e-01 1.36811644e-01
-8.53130817e-01 -1.82870880e-01 1.15935063e+00 -1.15559101e-01
-5.61272621e-01 -1.20509155e-01 2.71344364e-01 -3.91084880e-01
3.12372923e-01 5.77875078e-01 -8.66807550e-02 -1.10411555e-01
2.49166057e-01 1.25932157e-01 -2.88895518e-01 -2.42414579e-01
3.44400972e-01 3.72567892e-01 1.68885648e-01 -4.74874526e-01
7.09995985e-01 3.88619542e-01 2.16844171e-01 -4.18738216e-01
1.42047524e-01 -7.88429976e-01 -7.56412268e-01 -2.93457508e-01
4.38549906e-01 -4.76733595e-01 -8.27469587e-01 2.96404958e-01
-7.88338900e-01 -2.80361950e-01 -2.38832355e-01 9.78761166e-02
-2.07674384e-01 4.06846374e-01 -5.49711347e-01 -5.70348799e-01
-5.15093803e-01 -1.01785672e+00 7.79691398e-01 1.70776933e-01
1.02040790e-01 -8.18906724e-01 2.59836137e-01 -2.23070651e-01
7.36776650e-01 4.37440097e-01 9.96531963e-01 -7.35574663e-01
-7.29570448e-01 -2.21868142e-01 -4.52066720e-01 -4.97143179e-01
1.35309517e-01 1.66851431e-01 -6.14440143e-02 -6.56191707e-01
-2.90271938e-01 4.03186530e-01 2.02824637e-01 1.47864655e-01
9.41100836e-01 -2.40131214e-01 -4.51764196e-01 5.82472801e-01
1.96403146e+00 3.17276657e-01 4.95631635e-01 1.99990004e-01
7.93255568e-01 3.64504755e-01 5.86522758e-01 7.11465359e-01
5.04988134e-01 6.90318167e-01 3.46447825e-01 -9.48961377e-02
-3.29560786e-02 8.62724707e-02 -2.81898856e-01 1.27781248e+00
-1.10063687e-01 -6.23306155e-01 -1.14606726e+00 7.13922024e-01
-1.95983756e+00 -7.32116520e-01 -3.68912131e-01 2.54695082e+00
4.83390719e-01 2.24778857e-02 2.80947000e-01 3.66350889e-01
1.05867219e+00 8.84983018e-02 -2.58545280e-01 -6.95702910e-01
4.93541598e-01 1.17608540e-01 6.93162620e-01 3.83192122e-01
-3.59398007e-01 8.76229942e-01 5.74140692e+00 5.95500052e-01
-1.05373263e+00 1.41308159e-01 4.48084205e-01 -5.89688942e-02
-4.06245112e-01 2.39817888e-01 -4.17786181e-01 7.26679325e-01
1.23768795e+00 -8.24828923e-01 6.30294681e-01 8.62628460e-01
2.99442291e-01 -3.84334296e-01 -5.96539497e-01 9.53819931e-01
-2.40035146e-01 -1.33996785e+00 -1.45275518e-01 2.97591120e-01
6.69906676e-01 -1.79637209e-01 -5.70621073e-01 -1.25828311e-01
2.79895157e-01 -4.46234733e-01 4.55428600e-01 2.26516962e-01
7.67855883e-01 -1.20660114e+00 8.02167773e-01 4.21131015e-01
-1.85212088e+00 1.57082990e-01 -3.74115914e-01 -1.74284846e-01
3.43362361e-01 1.19269311e+00 -7.46347845e-01 9.56508398e-01
7.84551501e-01 -8.58996212e-02 -2.51656085e-01 1.03599453e+00
2.85629034e-01 2.68808365e-01 -4.93844271e-01 2.78919131e-01
-1.42002612e-01 -6.40930831e-01 4.68259424e-01 9.81413007e-01
2.82991976e-01 4.79203284e-01 6.50491536e-01 2.82136947e-01
-2.01485768e-01 6.30855620e-01 -4.16026801e-01 4.15494144e-02
1.00242317e+00 1.47523940e+00 -1.48895085e+00 -6.79560661e-01
-2.29519561e-01 7.41290152e-01 5.15797973e-01 3.20524462e-02
-7.40796030e-01 -5.54767668e-01 4.85026926e-01 5.10784566e-01
4.02179331e-01 -5.37609875e-01 -5.57274893e-02 -7.75515378e-01
8.16650391e-02 -6.46808147e-01 5.74166119e-01 -3.30967486e-01
-9.53535140e-01 1.07204497e+00 -1.23245776e-01 -8.65122437e-01
-3.96897793e-02 1.47101626e-01 -4.75877464e-01 8.24345112e-01
-1.23365593e+00 -7.57240713e-01 -6.42059684e-01 6.70888960e-01
1.38311476e-01 2.58813560e-01 6.04048908e-01 6.98479712e-01
-5.36996126e-01 3.75679344e-01 -8.45153034e-02 -3.42443019e-01
4.97844368e-01 -1.11100900e+00 2.30964556e-01 1.26771140e+00
-2.31917903e-01 4.81044978e-01 6.87691391e-01 -8.08702826e-01
-1.56846428e+00 -7.58586287e-01 8.97455812e-01 4.19218570e-01
7.45931983e-01 -3.44568074e-01 -1.00265634e+00 3.73822808e-01
2.51709402e-01 3.56159031e-01 7.20344305e-01 9.62985009e-02
2.35225465e-02 -3.95143330e-01 -1.33423495e+00 2.52911001e-01
9.59407628e-01 -6.78505376e-02 2.25892246e-01 4.62567985e-01
7.31242061e-01 -5.27683973e-01 -1.15359795e+00 1.84441790e-01
1.74845114e-01 -1.12455750e+00 5.62009454e-01 -3.66291374e-01
-8.62804353e-02 -5.65634489e-01 -1.63958818e-02 -1.23683214e+00
-8.47910821e-01 -8.24691713e-01 1.05600387e-01 1.10428631e+00
2.23449990e-02 -9.20135677e-01 7.76547074e-01 7.31356442e-01
7.68624991e-02 -8.81444454e-01 -8.58085692e-01 -7.11323678e-01
-5.70183277e-01 6.87507838e-02 1.15082157e+00 1.10831845e+00
1.62702501e-01 3.31186056e-01 -1.39783546e-02 4.33633417e-01
5.36917627e-01 7.25966692e-01 1.03512526e+00 -1.13711751e+00
-3.32385540e-01 -3.21455449e-01 -7.00368941e-01 -5.45122325e-01
-2.67227918e-01 -9.34850574e-01 -3.80458623e-01 -1.69275308e+00
2.37738386e-01 -9.70102906e-01 -1.43842757e-01 4.05123383e-01
-9.27608907e-02 1.32882640e-01 2.31406525e-01 4.53110307e-01
-7.97684073e-01 2.03608051e-02 9.76096630e-01 4.39195573e-01
-5.93438208e-01 -1.87530190e-01 -4.59529608e-01 3.65492046e-01
7.19384432e-01 -5.99369943e-01 -6.92520380e-01 -1.97548687e-01
4.29451495e-01 4.12755251e-01 -4.01265919e-01 -9.65504169e-01
6.78228319e-01 -3.74792337e-01 -2.12136418e-01 -6.86352313e-01
-2.36379340e-01 -1.28659499e+00 9.66279387e-01 5.76640189e-01
2.83370614e-01 8.15998614e-01 1.72546148e-01 5.27613997e-01
-1.56171739e-01 1.42237470e-01 7.93005228e-01 2.40558367e-02
-6.67318940e-01 6.34682298e-01 -1.06125705e-01 -7.66626969e-02
1.52346110e+00 -2.42457807e-01 -1.41999334e-01 -1.54284030e-01
-6.36291921e-01 4.07333195e-01 9.42798674e-01 2.11758409e-02
2.35408485e-01 -1.28399122e+00 -6.72029197e-01 6.42024726e-02
-8.32445174e-02 8.56641755e-02 5.38644612e-01 9.58564699e-01
-1.05061996e+00 1.59023464e-01 -3.13038617e-01 -4.83610600e-01
-1.32579064e+00 1.08009481e+00 2.04077344e-02 -7.81717002e-01
-8.55623960e-01 5.53704262e-01 -4.42705601e-02 1.31044507e-01
-4.60859120e-01 1.02473460e-01 7.82435834e-02 4.44588512e-02
4.07341480e-01 6.95521832e-01 4.43226159e-01 -5.05279720e-01
-5.19004107e-01 3.23232263e-01 8.01890045e-02 2.34260410e-01
1.39821744e+00 -4.81047660e-01 -8.71890485e-01 2.94538662e-02
8.61633301e-01 4.88887846e-01 -6.26208246e-01 -9.56378691e-03
-3.89989465e-02 -9.72572386e-01 1.09828927e-01 -1.81497797e-01
-1.38469052e+00 1.85782239e-02 2.86917016e-02 9.93437290e-01
1.68427467e+00 -1.82177931e-01 1.06311035e+00 -2.81350583e-01
8.76489818e-01 -1.00842917e+00 -4.32695329e-01 8.13838542e-02
2.05199495e-01 -4.77491587e-01 3.23892564e-01 -9.54383850e-01
-3.08052540e-01 9.07489836e-01 5.89631796e-01 -3.59800994e-01
7.03362763e-01 6.43360078e-01 -5.22985637e-01 -5.31331360e-01
-8.37461889e-01 -1.14776991e-01 -8.28696862e-02 2.82188892e-01
1.05209187e-01 5.98973572e-01 -9.28331494e-01 2.63412595e-01
-3.22744548e-01 -1.13336630e-01 6.40536606e-01 7.79898822e-01
-6.39608562e-01 -1.26754713e+00 -3.20014030e-01 5.46263993e-01
-1.80705249e-01 -3.54911834e-02 1.21107381e-02 5.58981538e-01
1.07845947e-01 8.07065308e-01 5.10181189e-01 -3.17606330e-01
3.56319964e-01 -1.47325814e-01 2.62901396e-01 -8.10495317e-01
-6.94827676e-01 7.85369724e-02 5.00620678e-02 -6.07933044e-01
-1.90975331e-02 -2.03341708e-01 -1.57373631e+00 -9.49428082e-01
-4.44066972e-01 6.13097489e-01 5.51757872e-01 3.64593238e-01
9.21010852e-01 7.89157271e-01 9.23378646e-01 -6.20488226e-01
6.91293413e-03 -4.59346563e-01 -9.21981156e-01 2.34229714e-01
-1.83308423e-01 -6.30511642e-01 -2.59148538e-01 -1.28859028e-01] | [7.046477794647217, 5.16167688369751] |
cf2a7326-e9c1-46df-9d38-66e364dee45a | nearly-optimal-hierarchical-clustering-for | 2306.0995 | null | https://arxiv.org/abs/2306.09950v1 | https://arxiv.org/pdf/2306.09950v1.pdf | Nearly-Optimal Hierarchical Clustering for Well-Clustered Graphs | This paper presents two efficient hierarchical clustering (HC) algorithms with respect to Dasgupta's cost function. For any input graph $G$ with a clear cluster-structure, our designed algorithms run in nearly-linear time in the input size of $G$, and return an $O(1)$-approximate HC tree with respect to Dasgupta's cost function. We compare the performance of our algorithm against the previous state-of-the-art on synthetic and real-world datasets and show that our designed algorithm produces comparable or better HC trees with much lower running time. | ['He Sun', 'Bogdan-Adrian Manghiuc', 'Steinar Laenen'] | 2023-06-16 | null | null | null | null | ['clustering'] | ['methodology'] | [-5.72314821e-02 2.77121514e-01 8.59858692e-02 -2.69943535e-01
-8.88940334e-01 -5.04569769e-01 7.44835958e-02 5.91386974e-01
-3.69120747e-01 3.78751516e-01 -2.54023671e-01 -5.65243602e-01
-4.58782256e-01 -1.25548947e+00 -6.28989577e-01 -7.27903664e-01
-8.27000916e-01 8.26182783e-01 7.17736959e-01 2.14062944e-01
4.39281046e-01 1.72865555e-01 -1.43755412e+00 -1.44419104e-01
7.79290378e-01 9.13283050e-01 -1.62557457e-02 9.67938066e-01
1.64677396e-01 4.26765829e-01 -4.80597109e-01 -4.88191664e-01
6.22718811e-01 -6.37878120e-01 -1.36045718e+00 4.31187302e-01
6.58961833e-02 5.21780074e-01 -5.20416737e-01 1.06395841e+00
2.82076657e-01 -2.21925914e-01 5.68704307e-01 -1.13880670e+00
-2.25527883e-01 1.13290775e+00 -1.11904836e+00 -7.29185417e-02
1.40233293e-01 -2.94877030e-02 9.73230302e-01 -4.80545700e-01
7.55007982e-01 1.30810714e+00 8.71876776e-01 -2.43018940e-02
-1.68523240e+00 -6.05837047e-01 -1.13523208e-01 1.07045680e-01
-1.98935390e+00 1.12317791e-02 5.07293463e-01 -1.04328498e-01
8.32671285e-01 4.34945554e-01 5.28764904e-01 -9.15955007e-02
-2.16541260e-01 3.87545735e-01 1.33397985e+00 -6.24435663e-01
4.24472809e-01 -3.40906709e-01 3.62018526e-01 1.04223979e+00
5.90721965e-01 -8.03894699e-02 2.74622664e-02 -3.86320293e-01
2.94799119e-01 -3.17638427e-01 -2.06803475e-02 -7.03966498e-01
-9.79246914e-01 8.65322053e-01 6.09361470e-01 3.93235534e-01
-5.13741821e-02 6.13814712e-01 3.22150558e-01 2.80535102e-01
1.30149007e-01 7.20250085e-02 -1.85648054e-01 1.15069963e-01
-1.06162250e+00 9.79488641e-02 8.43507886e-01 1.34637010e+00
9.10070777e-01 -2.09398434e-01 5.25307000e-01 6.66129410e-01
7.98347369e-02 4.80565488e-01 8.54428392e-03 -1.40418470e+00
2.94949204e-01 8.10253620e-01 -2.17316881e-01 -1.20769227e+00
-3.59585017e-01 -2.37659425e-01 -9.94793415e-01 -2.37856749e-02
3.34401906e-01 2.77753830e-01 -7.68160462e-01 1.67505956e+00
5.34169495e-01 -1.35889202e-01 -1.22287951e-01 1.59869537e-01
3.46870422e-01 7.82963932e-01 -1.65537924e-01 -7.10992336e-01
1.24746752e+00 -7.83500552e-01 -3.55508983e-01 1.18158497e-01
9.81766999e-01 -6.48183167e-01 8.40027153e-01 4.77195978e-01
-1.49752498e+00 -3.00090015e-01 -9.39426661e-01 2.76329488e-01
-4.30556834e-01 -3.09356868e-01 7.44491637e-01 1.29542589e+00
-1.56638026e+00 6.66097164e-01 -7.90575445e-01 -8.50544691e-01
1.97553277e-01 5.87452054e-01 -1.55723020e-01 -3.36117297e-01
-4.10784394e-01 3.69788557e-01 6.96346879e-01 -2.19101876e-01
-7.01518118e-01 -2.71874100e-01 -5.81334412e-01 1.67268753e-01
7.55360365e-01 -6.60163760e-01 9.01879191e-01 -2.62139410e-01
-8.56802523e-01 9.72712874e-01 -3.34673226e-02 -5.41790009e-01
3.00105929e-01 4.48325276e-01 -9.86559540e-02 4.78759319e-01
-1.90580375e-02 4.29318160e-01 3.25000942e-01 -1.67063749e+00
-6.41310155e-01 -7.21974254e-01 -1.56195819e-01 -5.98256430e-03
-2.48425692e-01 -2.77653919e-03 -8.52810383e-01 -3.75674516e-01
3.15267056e-01 -1.03333068e+00 -7.99871624e-01 -3.26592088e-01
-5.41977584e-01 -3.24462146e-01 7.50923634e-01 -1.56945392e-01
1.88996124e+00 -2.10128546e+00 1.27669603e-01 8.37593257e-01
6.64373815e-01 -7.76238814e-02 4.18560915e-02 8.43571424e-01
-5.80410250e-02 3.25986624e-01 -8.33302200e-01 -1.05236042e-02
1.02792218e-01 2.65417188e-01 5.67071378e-01 6.41769290e-01
-8.34483504e-01 3.36822331e-01 -7.51618922e-01 -9.90497530e-01
7.47962520e-02 -2.57309258e-01 -4.96843070e-01 1.47096500e-01
1.93336800e-01 -5.76176167e-01 -6.87502278e-03 5.69179893e-01
8.66001248e-01 -4.18056905e-01 9.30323720e-01 1.29066616e-01
1.74771436e-02 -3.15118104e-01 -1.46997809e+00 1.37293112e+00
1.48749696e-02 2.61655867e-01 5.99180043e-01 -1.38642561e+00
7.96860456e-01 5.13894930e-02 6.68194830e-01 -2.92195380e-01
9.94020551e-02 4.75980759e-01 5.31197786e-02 -3.58265191e-02
1.83955446e-01 7.69169852e-02 -4.46676552e-01 8.40130448e-01
-3.03380549e-01 -1.15509190e-01 4.64505374e-01 8.05941641e-01
1.81189191e+00 -5.71725965e-01 4.45926636e-01 -8.61432135e-01
3.61237139e-01 1.59090891e-01 2.27457553e-01 9.04402494e-01
-2.69248694e-01 2.12577730e-01 5.57090580e-01 -3.71754616e-01
-1.03819191e+00 -9.97504592e-01 1.91742092e-01 1.04036987e+00
1.31310001e-01 -7.74903238e-01 -1.39256191e+00 -5.53683877e-01
-1.53422490e-01 6.88617676e-02 -7.60099709e-01 3.11429590e-01
-6.70307934e-01 -8.66019368e-01 4.08411384e-01 2.50968695e-01
5.25420129e-01 -8.00358593e-01 -5.78085065e-01 2.85191000e-01
-2.80495137e-02 -9.35397565e-01 -4.70941484e-01 1.19199805e-01
-1.09227848e+00 -1.49362266e+00 -2.25571916e-01 -1.20827639e+00
9.53155518e-01 6.27798140e-01 1.24508297e+00 4.81003493e-01
-5.42010009e-01 2.89275199e-01 -4.45608228e-01 2.96640098e-01
-2.17978656e-01 2.57096678e-01 -2.24742323e-01 -4.39372033e-01
2.71019727e-01 -8.54057074e-01 -8.64982009e-01 2.52352297e-01
-8.81492615e-01 -3.09139252e-01 3.44826192e-01 5.50001681e-01
6.83873951e-01 8.66133153e-01 2.74999198e-02 -1.42133307e+00
4.80595201e-01 -3.26665580e-01 -8.49143505e-01 1.28413484e-01
-1.02414942e+00 3.37603465e-02 8.24705720e-01 2.14671254e-01
-4.36530083e-01 4.26921904e-01 6.15163073e-02 -1.35167226e-01
1.42286092e-01 3.55433792e-01 -7.90132731e-02 -1.67849571e-01
6.24063313e-01 8.07692334e-02 -2.02255219e-01 -3.84200841e-01
6.81798697e-01 5.25598109e-01 7.03404069e-01 -6.29583657e-01
1.03192067e+00 7.07638860e-01 4.33333725e-01 -5.11611640e-01
-3.67884964e-01 -7.02865779e-01 -6.85501397e-01 -5.83028793e-02
5.24751902e-01 -5.32096446e-01 -9.51120019e-01 3.05512279e-01
-4.83206898e-01 -3.73477846e-01 6.83873147e-02 -1.57224923e-01
-6.54392600e-01 7.64777899e-01 -6.97370112e-01 -8.19108486e-01
-3.75979751e-01 -9.08196509e-01 7.20684946e-01 -3.27243805e-01
1.66472927e-01 -7.24337161e-01 1.21564403e-01 1.82292655e-01
4.91506234e-02 6.88517869e-01 1.28790152e+00 -3.16751301e-01
-7.30834901e-01 -4.86158915e-02 -4.66375738e-01 -2.66106457e-01
-2.35155076e-01 1.26169339e-01 -3.91437262e-01 -7.68066287e-01
-2.25394338e-01 -9.79306642e-03 6.51884496e-01 3.64051521e-01
1.53620577e+00 -6.92818820e-01 -6.43600821e-01 4.81694072e-01
2.04003310e+00 4.40994471e-01 6.29917443e-01 1.10583827e-01
5.08701146e-01 6.35160565e-01 5.27199864e-01 3.27110469e-01
5.83855152e-01 3.61181259e-01 4.36145961e-01 -2.56350398e-01
-1.51706324e-03 -9.57578570e-02 -7.41544515e-02 1.30504405e+00
7.13580623e-02 -1.50780797e-01 -1.14047325e+00 1.01878500e+00
-2.04603553e+00 -8.13543200e-01 -5.71943343e-01 2.26211882e+00
6.29276633e-01 2.00596035e-01 6.81725025e-01 7.08024681e-01
9.26431537e-01 4.80578840e-02 -1.96255863e-01 -6.63079143e-01
2.74679005e-01 7.99500227e-01 8.85468364e-01 5.24872959e-01
-8.01415980e-01 9.99378264e-01 7.40817356e+00 1.17795813e+00
-3.30852658e-01 2.41237000e-01 6.44341111e-01 5.63454926e-02
-1.85561061e-01 3.33812922e-01 -1.64938062e-01 2.88935542e-01
1.30928874e+00 -5.57775199e-01 6.99995637e-01 9.56403852e-01
-5.79897575e-02 -1.94477975e-01 -9.79262590e-01 1.01149142e+00
-2.71434784e-01 -1.33117795e+00 -3.09053838e-01 5.03520906e-01
6.45796835e-01 -2.10700214e-01 -3.35367471e-01 1.60486363e-02
1.05980706e+00 -8.96706998e-01 2.30119094e-01 -3.96870822e-01
7.87224412e-01 -1.28992689e+00 5.94218612e-01 2.02231094e-01
-1.89834762e+00 -1.49622560e-01 -3.41066420e-01 1.67659089e-01
-1.10565417e-01 6.50577188e-01 -5.20449579e-01 7.39728212e-01
1.16666627e+00 4.77884151e-02 -6.17496431e-01 8.51011574e-01
3.51398885e-01 6.27599359e-01 -6.60336256e-01 -4.59848680e-02
3.87149006e-01 -3.29351485e-01 -8.95658433e-02 1.29809296e+00
5.83763421e-01 7.57109404e-01 4.92813230e-01 2.20960021e-01
-2.28292957e-01 2.91700929e-01 -7.96091676e-01 -1.69507731e-02
1.06223345e+00 9.71257985e-01 -1.39269269e+00 -5.65839827e-01
-2.24180855e-02 6.77956879e-01 4.25614655e-01 -1.74995139e-01
-5.93540907e-01 -1.01775920e+00 1.17801152e-01 4.57073838e-01
5.80286443e-01 -4.12610501e-01 -2.82344818e-01 -4.68144000e-01
-2.84777999e-01 -7.88133919e-01 1.07083869e+00 -3.42673898e-01
-1.07546604e+00 8.42504084e-01 5.54775484e-02 -8.17084670e-01
-2.74863318e-02 -3.63585889e-01 -3.29427302e-01 2.10788533e-01
-7.13967741e-01 -7.81817913e-01 -1.61530688e-01 9.82996583e-01
2.04037920e-01 4.59680170e-01 7.58453250e-01 1.56868771e-02
-3.33200365e-01 6.43239975e-01 3.99639934e-01 -1.00327551e-01
2.90565491e-01 -1.47227967e+00 3.25994700e-01 1.17769396e+00
-1.67539284e-01 4.67611343e-01 7.77465224e-01 -2.36486539e-01
-1.56685233e+00 -9.32490051e-01 6.42226338e-01 -1.26354098e-01
4.62297559e-01 -4.42451239e-01 -6.52112603e-01 7.21984982e-01
5.03072798e-01 -1.35787323e-01 8.25739682e-01 2.72764355e-01
-4.91752297e-01 -4.88466650e-01 -1.55041325e+00 4.95338440e-01
1.63040626e+00 -2.16432169e-01 -1.48417801e-01 4.15502727e-01
8.11583102e-01 1.19817220e-02 -1.28094828e+00 4.12725031e-01
2.63512492e-01 -1.27488482e+00 8.27601135e-01 3.12979519e-02
-2.81390045e-02 -5.80846250e-01 -2.11039051e-01 -9.65174913e-01
-6.77068293e-01 -9.64166880e-01 1.07954286e-01 8.81495357e-01
3.56588185e-01 -4.74406123e-01 8.90308499e-01 1.24641441e-01
1.15194999e-01 -7.06354320e-01 -9.13527906e-01 -8.64798248e-01
1.64414555e-01 -2.48503104e-01 6.19798124e-01 9.66270745e-01
4.71142590e-01 3.82572472e-01 -7.26172850e-02 2.01478928e-01
1.25274539e+00 6.91894174e-01 1.07464230e+00 -1.32776499e+00
-2.40724489e-01 -3.76568228e-01 -2.26354375e-01 -6.41859829e-01
-1.92350358e-01 -8.79181266e-01 -4.37747780e-03 -1.66618145e+00
6.21713102e-01 -6.02362752e-01 -3.64601500e-02 4.07690734e-01
-2.35118177e-02 4.48409498e-01 3.05911243e-01 1.21103697e-01
-1.02942348e+00 5.31718992e-02 6.55644894e-01 1.77527145e-01
-2.80240998e-02 -3.04474503e-01 -7.53545702e-01 5.95981240e-01
6.39572144e-01 -7.80522108e-01 -3.94705445e-01 -2.10648224e-01
-1.64684847e-01 4.30535853e-01 -5.11483967e-01 -1.07831669e+00
3.70591253e-01 -6.63855374e-02 -3.71758252e-01 -8.42854142e-01
-9.64420289e-02 -9.48421836e-01 6.23872042e-01 1.12048793e+00
-1.42562792e-01 6.59482062e-01 -1.94878027e-01 6.57009602e-01
-3.07230931e-02 3.22872773e-02 1.06350696e+00 -4.38477725e-01
-2.74199456e-01 3.52044761e-01 -3.74032944e-01 -3.28508355e-02
1.39765704e+00 -6.25727057e-01 -5.94185114e-01 -2.67089695e-01
-7.66748846e-01 4.77642626e-01 9.32280004e-01 -3.17587823e-01
3.15473437e-01 -1.05252528e+00 -4.94937271e-01 -3.00511509e-01
-9.34833381e-03 5.92176504e-02 6.37666211e-02 6.20810330e-01
-1.07076609e+00 3.32683206e-01 1.21346191e-01 -6.09032035e-01
-1.59794986e+00 1.19100189e+00 -8.29623863e-02 -6.76958382e-01
-5.09952903e-01 6.87582314e-01 4.49361503e-02 -4.54332411e-01
1.95293114e-01 3.49508710e-02 5.53818405e-01 -2.77961403e-01
6.06740825e-02 6.71270967e-01 -2.08456844e-01 -4.21296358e-01
-4.93003607e-01 7.18909740e-01 9.62094665e-02 -2.35245988e-01
1.27678823e+00 -2.61151344e-01 -5.13364494e-01 -1.43921142e-02
1.25018859e+00 -1.00821527e-02 -5.56649864e-01 -2.19936371e-01
3.85840029e-01 -6.74515247e-01 -2.80986100e-01 -4.08345073e-01
-1.15628326e+00 5.00208735e-01 5.52568316e-01 1.01907158e+00
1.66818905e+00 2.73497522e-01 7.91196525e-01 3.30154777e-01
1.00408626e+00 -1.27298534e+00 -1.39532119e-01 -1.07802302e-01
4.18322086e-02 -5.78125060e-01 3.61711860e-01 -1.15350485e+00
-3.54278564e-01 6.53848588e-01 3.30816507e-01 -4.16056603e-01
9.43938076e-01 2.39292786e-01 -3.60085875e-01 -4.96663928e-01
-1.00468862e+00 -4.12927806e-01 -7.22527683e-01 6.77967668e-01
6.02875650e-02 4.32279229e-01 -9.99251246e-01 -2.64460389e-02
-4.74324793e-01 -3.12988877e-01 6.25582278e-01 1.13823581e+00
-9.39173818e-01 -1.23943841e+00 -4.06941205e-01 3.35627526e-01
-4.69562024e-01 -7.68224373e-02 -6.45811141e-01 1.13065660e+00
1.88685185e-03 1.19112980e+00 -7.58177564e-02 -4.04888570e-01
1.05435371e-01 -2.14892060e-01 5.44086754e-01 -4.73334581e-01
-7.76595235e-01 3.66081864e-01 1.60828516e-01 -8.53047788e-01
-6.37829423e-01 -3.82673651e-01 -1.30315077e+00 -1.06969976e+00
-2.18983337e-01 6.90316081e-01 3.35342795e-01 4.51791108e-01
3.76716882e-01 5.16601615e-02 1.17586160e+00 -3.02345783e-01
-1.38124809e-01 -7.77944028e-01 -8.81508589e-01 3.19504052e-01
-3.37816805e-01 -1.04709797e-01 -4.19296414e-01 1.65986478e-01] | [6.9443359375, 5.176884651184082] |
8e1070e0-dd8d-473c-9214-cb8aab2c8cfe | human-pose-transfer-with-disentangled-feature | 2107.10984 | null | https://arxiv.org/abs/2107.10984v3 | https://arxiv.org/pdf/2107.10984v3.pdf | Human Pose Transfer with Augmented Disentangled Feature Consistency | Deep generative models have made great progress in synthesizing images with arbitrary human poses and transferring poses of one person to others. Though many different methods have been proposed to generate images with high visual fidelity, the main challenge remains and comes from two fundamental issues: pose ambiguity and appearance inconsistency. To alleviate the current limitations and improve the quality of the synthesized images, we propose a pose transfer network with augmented Disentangled Feature Consistency (DFC-Net) to facilitate human pose transfer. Given a pair of images containing the source and target person, DFC-Net extracts pose and static information from the source and target respectively, then synthesizes an image of the target person with the desired pose from the source. Moreover, DFC-Net leverages disentangled feature consistency losses in the adversarial training to strengthen the transfer coherence and integrates a keypoint amplifier to enhance the pose feature extraction. With the help of the disentangled feature consistency losses, we further propose a novel data augmentation scheme that introduces unpaired support data with the augmented consistency constraints to improve the generality and robustness of DFC-Net. Extensive experimental results on Mixamo-Pose and EDN-10k have demonstrated DFC-Net achieves state-of-the-art performance on pose transfer. | ['Gangyi Ding', 'Zheng Guan', 'Jian Tang', 'Bo Jiang', 'Zhengping Che', 'Chengxiang Yin', 'Kun Wu'] | 2021-07-23 | null | null | null | null | ['pose-transfer'] | ['computer-vision'] | [ 1.79177955e-01 1.79858327e-01 1.66573063e-01 -2.05732629e-01
-5.92680395e-01 -4.93076235e-01 5.52481890e-01 -8.85426581e-01
-9.12446156e-02 7.14973271e-01 3.12168002e-01 3.85454774e-01
6.94658048e-03 -5.72543442e-01 -8.62568557e-01 -7.64932573e-01
2.75603622e-01 3.34445357e-01 -1.71095729e-01 -3.79766792e-01
-3.39917183e-01 2.28519619e-01 -1.15352094e+00 3.38804610e-02
8.50050986e-01 9.77143168e-01 -8.72299075e-02 4.81664896e-01
6.88531578e-01 4.74897921e-01 -7.69059300e-01 -8.79580259e-01
8.38457108e-01 -5.96903384e-01 -3.22960675e-01 3.60661656e-01
8.83553684e-01 -7.56222963e-01 -1.00428069e+00 8.82955730e-01
8.46976161e-01 -2.96729943e-03 4.57390487e-01 -1.69386983e+00
-9.06708062e-01 1.68437198e-01 -7.52984226e-01 -2.47606963e-01
5.27924001e-01 5.53179860e-01 4.65058416e-01 -8.94546807e-01
6.04874849e-01 1.45438075e+00 6.29256248e-01 8.63004208e-01
-1.24134099e+00 -1.15387297e+00 9.96140465e-02 -6.88036755e-02
-1.43822420e+00 -3.42140496e-01 8.59742582e-01 -2.81837553e-01
1.87359750e-01 1.55351385e-01 7.69516766e-01 1.69177616e+00
-4.69650179e-02 7.11117327e-01 1.12722969e+00 -9.29969698e-02
-3.47444713e-01 2.89307199e-02 -6.60967052e-01 8.56959879e-01
3.41332853e-01 4.85937566e-01 -7.53272295e-01 2.55424976e-01
1.26086390e+00 1.31854206e-01 -5.01796126e-01 -6.92131341e-01
-1.54794765e+00 6.34241402e-01 8.91278565e-01 -3.27008039e-01
-1.72702268e-01 2.42930636e-01 1.82678923e-01 8.71261209e-02
1.79796785e-01 4.53601569e-01 -4.80905883e-02 2.50030726e-01
-5.41827917e-01 5.86051822e-01 3.60837817e-01 1.22102189e+00
4.91686642e-01 1.62775174e-01 -5.77192903e-01 4.33369249e-01
2.36996084e-01 9.73827899e-01 1.32396773e-01 -8.75916719e-01
9.33992803e-01 5.67647576e-01 2.46241078e-01 -1.28719938e+00
-3.83154042e-02 -7.09787905e-01 -1.03600943e+00 3.00392687e-01
3.12819600e-01 -3.72152179e-01 -1.03521085e+00 2.17054605e+00
3.83788526e-01 2.12458804e-01 -3.75789567e-03 1.33727145e+00
7.82783568e-01 4.95032668e-01 -2.05277354e-01 2.11595953e-01
1.29903603e+00 -9.73532021e-01 -6.25880182e-01 -4.67475295e-01
-1.80795625e-01 -6.71153009e-01 8.04955423e-01 1.01593040e-01
-1.09981382e+00 -7.83198774e-01 -1.19138205e+00 -2.17200905e-01
1.26402900e-01 4.48287368e-01 5.65249801e-01 4.49376494e-01
-5.22291899e-01 2.98138946e-01 -7.30325639e-01 8.14783499e-02
4.91210520e-01 4.58470374e-01 -6.98472500e-01 -1.33388638e-01
-1.30270195e+00 7.18406737e-01 1.32201150e-01 4.61158097e-01
-9.80630934e-01 -7.42810249e-01 -1.10804617e+00 -1.03429310e-01
4.81598616e-01 -1.20840693e+00 8.77254069e-01 -8.05230498e-01
-1.43550944e+00 6.42870426e-01 2.97652483e-01 -5.69485221e-03
9.95488703e-01 -3.63752663e-01 -3.52738231e-01 1.73268497e-01
2.69607723e-01 1.07520473e+00 1.02720189e+00 -1.52959573e+00
-3.40983123e-01 -4.46666718e-01 -3.53803895e-02 5.52329123e-01
-2.07710385e-01 -4.72698689e-01 -7.33360529e-01 -1.06935370e+00
5.86360181e-03 -1.26180291e+00 4.70615141e-02 4.60439205e-01
-7.17710257e-01 2.68233597e-01 7.80660927e-01 -8.68451476e-01
6.63397074e-01 -2.23212814e+00 7.64739335e-01 4.65535186e-02
4.60498542e-01 2.07342312e-01 -3.20996374e-01 2.13304743e-01
-1.45374596e-01 -3.81156206e-01 -1.20295295e-02 -7.22205341e-01
5.92651144e-02 1.58305258e-01 -4.86639142e-01 5.14909387e-01
4.93024051e-01 1.23761904e+00 -8.59691143e-01 -2.97607422e-01
2.03124881e-01 8.66414070e-01 -6.89119041e-01 4.39068407e-01
1.74755305e-02 9.50819910e-01 -4.26856786e-01 3.05926830e-01
8.37386012e-01 -2.70085126e-01 -1.38596356e-01 -7.21503794e-01
3.64198834e-01 -1.97682396e-01 -1.23114586e+00 1.91918969e+00
-1.41993493e-01 2.61902958e-01 -7.39903003e-02 -4.46818143e-01
7.01861799e-01 3.23223501e-01 3.37442845e-01 -5.85899889e-01
2.87650079e-01 1.01315388e-02 1.13459766e-01 -3.61682355e-01
3.42519671e-01 -2.45241538e-01 -2.88588107e-01 2.06550192e-02
2.26742849e-01 -8.55880976e-02 -2.38411397e-01 2.72601366e-01
6.07005596e-01 4.71685559e-01 -1.48929074e-01 1.57841384e-01
3.51493299e-01 -5.06289244e-01 6.68352544e-01 2.43577689e-01
-3.32735598e-01 1.12710798e+00 3.20194811e-01 -1.82541102e-01
-1.13853109e+00 -1.63207603e+00 3.17775190e-01 6.66215479e-01
4.81909156e-01 -1.65539563e-01 -7.08066881e-01 -7.20728815e-01
7.23669082e-02 1.75371692e-01 -8.92381549e-01 -5.20046055e-01
-6.16506219e-01 -2.53370315e-01 7.00166464e-01 6.45388603e-01
9.96552050e-01 -7.43449628e-01 -2.12960094e-01 -1.69999570e-01
-6.15759671e-01 -1.27983940e+00 -1.06237936e+00 -5.78177810e-01
-3.16597372e-01 -8.97931933e-01 -1.06985164e+00 -7.41659224e-01
1.20181561e+00 2.81700522e-01 6.50309026e-01 -2.18033433e-01
-4.13112819e-01 1.25802800e-01 -1.38129950e-01 -1.48458108e-01
-9.31630284e-02 -1.73099041e-01 2.65524209e-01 3.89569134e-01
-3.57906878e-01 -7.03086019e-01 -1.04616535e+00 5.48416197e-01
-7.42117345e-01 5.00412464e-01 8.20726991e-01 9.57543910e-01
2.73629576e-01 -1.42092481e-01 4.08726305e-01 -5.21539509e-01
2.78876811e-01 -1.00566596e-01 -2.88863868e-01 7.46406093e-02
-3.20882231e-01 3.20016369e-02 4.94935393e-01 -6.96502447e-01
-1.12163782e+00 2.18276829e-01 6.22700788e-02 -9.21640813e-01
2.37167746e-01 -1.27987772e-01 -7.14144945e-01 -1.08281478e-01
6.22396529e-01 3.64096165e-01 3.29942644e-01 -1.34331375e-01
5.07555544e-01 2.43865654e-01 1.13661754e+00 -6.45100236e-01
1.46703696e+00 4.80213106e-01 1.41669750e-01 -3.15343350e-01
-9.03933644e-01 3.91543321e-02 -4.30523962e-01 -2.39827737e-01
9.94520664e-01 -1.38043165e+00 -8.70684266e-01 7.92777598e-01
-9.70783651e-01 3.97062749e-02 -2.05991283e-01 3.54723960e-01
-5.64686000e-01 2.27073491e-01 -4.66843784e-01 -2.79709876e-01
-3.22030604e-01 -1.25966024e+00 1.45534599e+00 3.50262076e-01
-3.87123153e-02 -5.48849881e-01 -1.18278064e-01 7.22275555e-01
1.50462240e-01 6.74861252e-01 3.52890432e-01 6.25283197e-02
-8.26379240e-01 -3.69802415e-01 -2.67915815e-01 4.05269623e-01
3.45772326e-01 -4.10653621e-01 -6.64799869e-01 -6.92901134e-01
-3.43398124e-01 -5.46893656e-01 5.60127556e-01 5.65449856e-02
8.44112337e-01 -5.22563875e-01 -3.22448939e-01 9.15876091e-01
1.06968033e+00 -3.40594113e-01 7.51262307e-01 -8.04103315e-02
1.18792987e+00 4.98029023e-01 3.96718562e-01 2.78795630e-01
4.75247860e-01 9.33181703e-01 3.48608941e-01 -2.47604743e-01
-5.27126551e-01 -8.23404491e-01 4.91943747e-01 4.66181189e-01
-2.66414523e-01 -1.01743050e-01 -3.12612087e-01 2.41526932e-01
-1.70776606e+00 -9.41265285e-01 3.00608724e-01 2.11719370e+00
8.70369852e-01 9.75898653e-02 1.31628454e-01 -1.12386504e-02
6.82487488e-01 1.50741130e-01 -6.92733526e-01 5.62037647e-01
-5.08531518e-02 1.46745136e-02 3.56784433e-01 3.80412489e-01
-9.73577976e-01 7.04174995e-01 4.84456491e+00 6.62140369e-01
-1.14888263e+00 -1.11548409e-01 4.25839216e-01 -3.44460130e-01
-5.65094091e-02 -3.12031418e-01 -7.29674101e-01 5.40219426e-01
1.12824537e-01 -5.40997237e-02 4.27510619e-01 5.90855896e-01
-7.31635541e-02 3.37889612e-01 -1.16574168e+00 1.04145563e+00
3.22352856e-01 -1.04829204e+00 3.33703130e-01 1.39671445e-01
8.99671078e-01 -6.06462240e-01 7.70357549e-01 3.19041461e-01
1.08387440e-01 -1.13594019e+00 9.84826207e-01 6.03111684e-01
1.21653843e+00 -8.91463757e-01 5.17610073e-01 1.47240862e-01
-1.03592396e+00 6.28204830e-03 -1.80118456e-02 -4.44199368e-02
1.98507100e-01 1.65468857e-01 -5.46739340e-01 9.06303167e-01
4.76025432e-01 6.73880994e-01 -7.05323696e-01 5.83268285e-01
-5.09096503e-01 -2.91020516e-02 -7.88457394e-02 5.19123971e-01
-4.33392711e-02 -8.68322775e-02 7.17691720e-01 6.45392656e-01
1.99032664e-01 -5.92260482e-03 2.68224210e-01 1.12130749e+00
-1.38062626e-01 -4.10674602e-01 -3.73647928e-01 1.98876113e-01
5.16098261e-01 1.25968695e+00 -2.18095407e-01 -1.30761757e-01
-6.78651333e-02 1.55521345e+00 2.93560773e-01 4.13530648e-01
-1.11931002e+00 -2.72805423e-01 8.56896400e-01 2.81335264e-01
2.55105048e-01 -1.39210939e-01 -2.18721181e-02 -1.42746401e+00
3.84692073e-01 -1.19972980e+00 5.19771948e-02 -9.60701883e-01
-1.34077990e+00 5.93055964e-01 9.54501331e-02 -1.59030008e+00
-2.66968966e-01 -4.87422973e-01 -3.93263012e-01 1.10554802e+00
-1.00776851e+00 -1.77331614e+00 -6.97418451e-01 7.34102607e-01
1.90396219e-01 -1.35587141e-01 5.40324867e-01 3.88161838e-01
-5.79243243e-01 1.09272206e+00 -4.54221785e-01 6.20895922e-01
1.05661523e+00 -1.03093255e+00 5.12246549e-01 9.82783854e-01
-1.78867102e-01 8.09897721e-01 5.60883701e-01 -6.43572330e-01
-1.45230055e+00 -1.35193980e+00 2.14463115e-01 -6.98621809e-01
8.08025151e-03 -6.99111223e-01 -4.21342045e-01 7.38862753e-01
6.04582541e-02 3.18766177e-01 2.98737288e-01 -4.40319866e-01
-6.08719885e-01 -2.14863598e-01 -1.07387853e+00 9.38017488e-01
1.28697455e+00 -5.04995883e-01 -4.04534847e-01 1.77930400e-01
9.41108048e-01 -9.17620480e-01 -7.02776134e-01 4.59133714e-01
6.78130388e-01 -8.13093185e-01 1.32074273e+00 -4.72663432e-01
7.43966997e-01 -5.39924562e-01 3.16620879e-02 -1.44780600e+00
-4.12621737e-01 -7.29418039e-01 -5.06372564e-02 1.21870005e+00
5.87050477e-03 -5.92498243e-01 8.06457996e-01 5.24113595e-01
6.89738393e-02 -7.94205427e-01 -7.88372219e-01 -9.14702177e-01
1.01127908e-01 1.71497941e-01 5.99748850e-01 6.94725513e-01
-3.45923811e-01 5.22580743e-01 -1.07042718e+00 4.35690314e-01
8.54905725e-01 4.44030687e-02 1.29723930e+00 -7.07623482e-01
-6.17244840e-01 -1.29700685e-02 -5.84422350e-01 -1.30465209e+00
-1.14535224e-02 -6.75795436e-01 9.23420489e-02 -1.15392029e+00
2.71049470e-01 -2.11590961e-01 1.79747730e-01 4.64828998e-01
-5.53580463e-01 5.58428168e-01 6.17056191e-01 9.90532935e-02
-2.10569575e-01 9.37129915e-01 2.03423548e+00 -3.23613137e-02
1.57356292e-01 -1.22498788e-01 -9.19457257e-01 4.06892806e-01
2.54152864e-01 -1.58218294e-01 -6.82253122e-01 -4.49271381e-01
1.63631290e-01 1.87455401e-01 9.71244514e-01 -1.12621474e+00
8.11656266e-02 2.43546683e-02 1.00354576e+00 -3.30446690e-01
6.87539577e-01 -8.39729190e-01 5.33907175e-01 5.72990775e-01
-1.69976413e-01 -8.42172503e-02 4.52591442e-02 8.23683381e-01
-5.34286052e-02 5.28023839e-01 8.62931430e-01 1.56210855e-01
-3.06368709e-01 7.63813078e-01 5.58833659e-01 9.57930535e-02
1.11281991e+00 -1.04751468e-01 -3.81933689e-01 -6.20921195e-01
-6.00506425e-01 3.10092837e-01 5.38883150e-01 8.20640504e-01
6.82434440e-01 -1.82265174e+00 -9.42559719e-01 6.14200532e-01
2.78748125e-01 2.68634766e-01 4.74159777e-01 6.88952446e-01
-3.31905454e-01 1.77573070e-01 -5.24324417e-01 -4.41544533e-01
-1.07737577e+00 6.06737494e-01 4.52603251e-01 -1.11801401e-01
-7.00912118e-01 9.13801730e-01 7.03020692e-01 -5.04279733e-01
1.38314158e-01 5.48117906e-02 2.59305865e-01 -2.90640265e-01
3.20024639e-01 2.41108865e-01 -3.86664271e-01 -9.75230396e-01
-3.30992520e-01 6.13868237e-01 -8.78031775e-02 -3.03914577e-01
1.07221568e+00 -6.34879097e-02 3.07836741e-01 -1.29747674e-01
1.30028677e+00 1.53153881e-01 -1.98187172e+00 -1.81862131e-01
-1.12586474e+00 -8.66364717e-01 -3.66064191e-01 -1.03107727e+00
-1.42797327e+00 7.13911891e-01 5.71592450e-01 -6.67436779e-01
1.10099471e+00 -1.66112423e-01 9.00565207e-01 -2.40672212e-02
5.04460514e-01 -5.29948592e-01 6.96327150e-01 9.44011658e-02
1.31598043e+00 -1.14695752e+00 1.01279747e-02 -8.08692634e-01
-7.60178328e-01 6.75183237e-01 1.07596827e+00 -3.58606189e-01
2.64118403e-01 4.74163555e-02 -1.57083888e-02 -4.82326560e-02
-2.39661843e-01 1.66966110e-01 7.65288115e-01 8.07680607e-01
-1.90407913e-02 6.39913529e-02 3.13075520e-02 7.74563193e-01
-4.96833682e-01 -8.65430534e-02 1.63866296e-01 5.69260180e-01
1.75646886e-01 -9.70904052e-01 -4.69581634e-01 -3.69183235e-02
-8.45274851e-02 1.50549129e-01 -3.88362408e-01 8.41481686e-01
4.67638075e-01 5.61509788e-01 -1.74749538e-01 -6.73822582e-01
5.33831596e-01 -2.83054233e-01 9.46738899e-01 -4.70685810e-01
-2.83877462e-01 -2.43577324e-02 -2.37918526e-01 -5.50490975e-01
-1.23350136e-01 -4.84757364e-01 -1.06453502e+00 -3.25714558e-01
-1.03678107e-01 -1.96072355e-01 1.69083223e-01 6.74524069e-01
4.76990938e-01 7.49574184e-01 6.81906343e-01 -1.10236454e+00
-7.67204940e-01 -8.59491825e-01 -4.12352353e-01 8.70443225e-01
4.94142056e-01 -9.65075195e-01 -1.78796127e-01 1.47743583e-01] | [11.97868537902832, -0.8345183730125427] |
3d4cccc6-0849-4f38-a554-1ca4165a08b1 | dapr-a-benchmark-on-document-aware-passage | 2305.13915 | null | https://arxiv.org/abs/2305.13915v1 | https://arxiv.org/pdf/2305.13915v1.pdf | DAPR: A Benchmark on Document-Aware Passage Retrieval | Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr | ['Iryna Gurevych', 'Nils Reimers', 'Kexin Wang'] | 2023-05-23 | null | null | null | null | ['passage-retrieval'] | ['natural-language-processing'] | [-4.83216345e-02 -7.99344242e-01 -4.05700237e-01 -2.34103948e-02
-1.81326056e+00 -6.81518137e-01 9.09718275e-01 6.48898780e-01
-6.55382156e-01 7.63774633e-01 6.64597213e-01 -1.76523194e-01
-5.51602483e-01 -7.18317151e-01 -3.91265243e-01 -4.37211186e-01
2.20628425e-01 5.65659404e-01 5.21036804e-01 -5.32024384e-01
9.93004739e-01 3.32588971e-01 -1.27724564e+00 6.81785226e-01
7.47014940e-01 5.88478208e-01 2.69671381e-01 8.26299429e-01
-4.11581665e-01 6.72977746e-01 -1.01270509e+00 -4.21131372e-01
-1.17696919e-01 -3.25767189e-01 -1.13204098e+00 -7.39173830e-01
4.42848474e-01 -6.07734263e-01 -5.21409273e-01 7.95856953e-01
9.52780843e-01 6.03722036e-01 8.45663130e-01 -5.32071352e-01
-1.35682726e+00 8.56566310e-01 -5.88144481e-01 6.64441586e-01
6.50563002e-01 -5.02980173e-01 1.43978322e+00 -1.04089272e+00
6.95549369e-01 1.24248517e+00 3.32165152e-01 6.06974185e-01
-6.15524113e-01 -2.34722242e-01 1.37832582e-01 3.53522241e-01
-1.47486866e+00 -3.58345807e-01 6.42431140e-01 1.86022725e-02
1.36643529e+00 5.53844571e-01 7.90251195e-02 1.28266859e+00
-3.70991230e-02 1.18986917e+00 3.52737397e-01 -5.57989001e-01
8.88135135e-02 -2.04023838e-01 9.33737099e-01 -6.69284090e-02
3.26812238e-01 -2.79895246e-01 -2.27046728e-01 -3.72495621e-01
2.38247365e-01 4.11413610e-01 -5.85770786e-01 5.33888459e-01
-1.04123640e+00 8.21188152e-01 3.81065339e-01 7.97738194e-01
-3.36967677e-01 -4.30872403e-02 7.34020829e-01 4.77921814e-01
5.28591990e-01 7.98155010e-01 -3.18540305e-01 -7.69540444e-02
-1.23195231e+00 8.18162084e-01 9.12438869e-01 7.75711596e-01
3.19391251e-01 -6.76026583e-01 -1.00451791e+00 1.48152125e+00
1.98954210e-01 4.50154632e-01 8.61666858e-01 -6.08657956e-01
8.12927067e-01 3.17158103e-01 3.70436162e-01 -1.03234661e+00
-2.23965019e-01 -3.79792005e-01 -7.22507775e-01 -6.90336883e-01
7.37806931e-02 5.73758818e-02 -9.22555923e-01 1.23239970e+00
-1.12944372e-01 -1.51640192e-01 3.08144122e-01 1.00038517e+00
1.32471025e+00 1.35424602e+00 -1.24756232e-01 -1.89949870e-01
1.19882083e+00 -1.38481522e+00 -6.71010017e-01 -5.74011356e-02
7.24492908e-01 -1.12330890e+00 1.03846896e+00 -1.18159568e-02
-1.19584394e+00 -3.64603609e-01 -9.53705072e-01 -6.39554143e-01
-7.33365417e-01 3.12686026e-01 2.22801775e-01 9.62606147e-02
-1.24060309e+00 6.60362899e-01 -4.12210107e-01 -5.28946042e-01
3.40946913e-02 -1.16914324e-01 -6.23725206e-02 -7.00997055e-01
-1.72597158e+00 8.51380765e-01 3.29250365e-01 1.30534530e-01
-5.75737298e-01 -7.19563663e-01 -3.88976514e-01 4.14854407e-01
3.25555652e-01 -7.71999538e-01 1.43268597e+00 -2.40301818e-01
-1.17695963e+00 6.22169614e-01 -3.22357565e-02 -3.40516120e-01
3.01601708e-01 -5.93145370e-01 -4.55619723e-01 3.27473491e-01
1.35920435e-01 3.48093867e-01 4.27297831e-01 -9.68720973e-01
-6.17728114e-01 -2.81525612e-01 3.57125878e-01 4.22669560e-01
-3.55193108e-01 4.65873599e-01 -9.44037735e-01 -6.01045191e-01
-3.54187131e-01 -6.62160516e-01 -1.19404353e-01 -6.52004778e-01
-3.67252082e-01 -8.74135315e-01 5.63327968e-01 -6.91393018e-01
1.69247162e+00 -1.98235989e+00 -8.06074291e-02 -3.52383628e-02
-1.33974105e-01 5.34181416e-01 -6.66694999e-01 1.11731708e+00
2.98148215e-01 4.28103775e-01 2.26358384e-01 -2.98515350e-01
1.75043732e-01 -3.23686957e-01 -8.75057936e-01 6.65793149e-03
-1.67056069e-01 1.10524845e+00 -9.19871390e-01 -5.01599133e-01
-3.01093996e-01 6.76392078e-01 -1.76274329e-01 4.18743305e-02
-1.00849621e-01 -1.49986237e-01 -1.06740344e+00 6.92979574e-01
2.91360140e-01 -3.57173026e-01 -3.39811742e-01 3.01016062e-01
5.61095625e-02 6.44620895e-01 -5.96451223e-01 1.90592301e+00
-4.01517749e-01 7.38563061e-01 -5.02112389e-01 -6.91989183e-01
8.29727054e-01 4.18674082e-01 2.47210771e-01 -1.05975080e+00
1.90409049e-02 5.23081124e-01 -3.11139673e-01 -5.00961006e-01
1.25397205e+00 3.66275012e-01 -4.41013277e-02 5.61060488e-01
-2.39036754e-01 4.56616692e-02 7.20931828e-01 6.19942665e-01
1.35463071e+00 -1.42360732e-01 2.02405259e-01 3.85617418e-03
4.71077561e-01 6.76792860e-02 -6.26070276e-02 1.40348351e+00
3.75865586e-02 9.84107196e-01 1.17488630e-01 -9.08243507e-02
-8.37759972e-01 -8.09378266e-01 -4.98751141e-02 1.33415067e+00
1.67939216e-01 -6.16847634e-01 -4.88877654e-01 -6.02938116e-01
1.80115998e-02 5.82666934e-01 -5.56665242e-01 -2.89237112e-01
-6.76117957e-01 -6.94102943e-01 5.15534401e-01 5.30738056e-01
1.92589551e-01 -1.38413155e+00 -1.56252652e-01 3.42167646e-01
-5.60843110e-01 -7.04642177e-01 -6.70290530e-01 -3.51757318e-01
-7.68558204e-01 -6.94312036e-01 -1.59988773e+00 -7.78568566e-01
2.77530044e-01 6.73378348e-01 1.36344922e+00 4.87273335e-01
-2.61799961e-01 5.77073932e-01 -1.05380785e+00 -2.87093341e-01
-7.99957197e-03 6.56807125e-01 -3.94355834e-01 -6.07370377e-01
6.73474491e-01 -2.93540806e-01 -8.51206779e-01 2.80520804e-02
-1.11005986e+00 -6.05025411e-01 7.04489470e-01 8.12330246e-01
5.77331305e-01 -6.90995455e-02 9.61155355e-01 -7.19119966e-01
1.59749031e+00 -6.23264372e-01 -2.00197771e-01 8.45604241e-01
-5.92553020e-01 -1.42965913e-01 5.47583520e-01 -4.58328336e-01
-8.76343906e-01 -1.04124641e+00 -2.47418433e-01 -1.88449666e-01
8.36066008e-02 1.03385389e+00 4.92736995e-01 5.12067735e-01
8.54564190e-01 3.20363194e-01 -7.54934728e-01 -7.23733068e-01
2.25512996e-01 1.00878000e+00 2.25786306e-02 -8.46087575e-01
3.01029176e-01 3.18430876e-03 -4.25284863e-01 -6.19139194e-01
-1.01640999e+00 -1.14421654e+00 -2.69878268e-01 -4.60451692e-02
3.85315418e-01 -6.62841558e-01 -6.49742410e-02 1.64998129e-01
-1.29127419e+00 -2.86487844e-02 -1.37070283e-01 5.19998670e-01
-5.21395691e-02 4.56219703e-01 -9.19421911e-01 -5.54601729e-01
-1.14946568e+00 -9.40010905e-01 1.29305291e+00 3.14113319e-01
-7.61054605e-02 -8.18174362e-01 5.25481164e-01 2.90404439e-01
7.55914867e-01 -3.35185647e-01 7.99746633e-01 -1.04615331e+00
-3.47432792e-01 -8.56856227e-01 -2.45188609e-01 9.62553769e-02
2.95820571e-02 1.94348022e-01 -6.99323654e-01 -4.85979825e-01
-4.84431028e-01 -5.23840785e-01 1.54372180e+00 3.95202458e-01
1.16529632e+00 -2.25220904e-01 -4.93632019e-01 -2.50651866e-01
1.36772704e+00 3.14681172e-01 7.41628647e-01 5.66236079e-01
3.67716849e-01 5.83339155e-01 7.60055900e-01 2.86465615e-01
1.98761687e-01 5.71524739e-01 -2.72713393e-01 3.80084902e-01
-1.97203413e-01 -7.00110570e-02 2.53925562e-01 1.05149579e+00
-1.35058105e-01 -8.87111187e-01 -9.50171590e-01 8.31995666e-01
-2.02420568e+00 -1.06383908e+00 2.64993787e-01 1.97658920e+00
9.69524443e-01 -9.08873454e-02 -2.11084262e-01 2.37571988e-02
6.73103988e-01 4.21809375e-01 -3.97065282e-01 -3.86403054e-01
8.34917054e-02 1.07368626e-01 1.74424890e-02 4.87424761e-01
-9.66461062e-01 8.24074984e-01 5.78453541e+00 1.24932694e+00
-8.81437838e-01 -1.10797964e-01 4.14710611e-01 -3.42421800e-01
-2.52761334e-01 -1.86640084e-01 -1.17553365e+00 2.60404170e-01
1.10176659e+00 -5.19863367e-01 2.64992297e-01 7.09304750e-01
-6.74415305e-02 1.09179221e-01 -1.04897046e+00 8.66758883e-01
4.98184890e-01 -1.24554491e+00 6.53496981e-01 -3.64987046e-01
7.00375259e-01 2.43523791e-01 7.44618326e-02 8.21485221e-01
1.57234907e-01 -7.88722575e-01 3.25263053e-01 7.01388597e-01
2.81779617e-01 -7.59507239e-01 9.46816266e-01 3.00192833e-01
-7.92757988e-01 -2.69473959e-02 -8.04795980e-01 2.89260954e-01
3.05763837e-02 5.96565187e-01 -4.07341152e-01 8.69563580e-01
8.35405052e-01 9.11509097e-01 -7.98343599e-01 1.44804561e+00
-3.26765031e-02 5.43908179e-01 -1.37589946e-01 -5.61960518e-01
5.67528069e-01 6.90237731e-02 6.22260869e-01 1.55960965e+00
5.04498303e-01 1.31582737e-01 3.63377780e-02 4.87080336e-01
-4.53656077e-01 6.39935493e-01 -4.68196750e-01 -2.10051075e-01
5.37241161e-01 1.15162206e+00 -6.08539939e-01 -5.07703245e-01
-3.32387090e-01 7.64342487e-01 4.34782773e-01 7.04897404e-01
-4.03858095e-01 -9.66952682e-01 8.37742090e-02 -3.14342320e-01
1.79148287e-01 1.23772912e-01 2.81383902e-01 -1.30345583e+00
3.93224865e-01 -6.61298871e-01 7.13651597e-01 -8.01720262e-01
-1.68479955e+00 6.42475128e-01 1.25551403e-01 -1.15687883e+00
-3.67346138e-01 -4.00625169e-01 -6.17757261e-01 6.73776627e-01
-1.95655787e+00 -8.26178372e-01 8.40116218e-02 4.67564434e-01
7.99254477e-01 -8.82696509e-02 8.30287755e-01 6.55649364e-01
-4.95480567e-01 6.18862569e-01 8.21465969e-01 3.06988478e-01
1.14010513e+00 -1.16462457e+00 2.98760176e-01 6.07729971e-01
3.15708339e-01 1.14974606e+00 2.91013300e-01 -4.78839725e-01
-1.19896221e+00 -9.50498939e-01 1.20016110e+00 -5.43479383e-01
5.41141987e-01 9.77652743e-02 -1.13199139e+00 4.47088569e-01
4.62442577e-01 -2.74269849e-01 7.02613771e-01 3.86265218e-01
-4.62701321e-01 -1.13483801e-01 -7.80381739e-01 9.44752872e-01
7.79622257e-01 -6.06303036e-01 -9.37502265e-01 5.13979614e-01
9.05393898e-01 -2.69246161e-01 -8.13365340e-01 2.98800051e-01
5.75861454e-01 -3.76432031e-01 1.28446770e+00 -6.84439540e-01
7.03902602e-01 -1.29213572e-01 -2.43273854e-01 -1.29150987e+00
-3.45662177e-01 -1.74108699e-01 -2.97689825e-01 1.53336811e+00
5.98635495e-01 -4.60602611e-01 1.57397777e-01 5.36656976e-01
-1.58797756e-01 -8.65050316e-01 -6.22006893e-01 -6.91596448e-01
6.44807637e-01 -1.36061072e-01 6.89068019e-01 7.79539585e-01
8.54136869e-02 5.47249973e-01 -1.51888490e-01 -1.73457935e-01
9.85069722e-02 4.59522843e-01 2.76943862e-01 -1.04307008e+00
-5.20011969e-02 -8.81696939e-01 -1.88739877e-02 -1.24522591e+00
1.60125986e-01 -1.01847994e+00 1.27303481e-01 -2.12324977e+00
6.55902326e-01 -2.05457136e-02 -7.76483834e-01 3.90000194e-01
-5.05465388e-01 9.20587555e-02 1.14833929e-01 5.43990254e-01
-1.25060046e+00 4.55162644e-01 1.26504028e+00 -5.40616632e-01
-1.92605048e-01 -7.81418383e-02 -9.19779778e-01 7.22351894e-02
9.10717010e-01 -5.48417687e-01 -4.61944163e-01 -8.62794876e-01
4.46523905e-01 8.53503719e-02 8.27960745e-02 -6.92119300e-01
6.50954902e-01 1.02508873e-01 3.12132865e-01 -8.94648612e-01
1.64357677e-01 -4.14186269e-01 -5.22653639e-01 -9.66239572e-02
-1.04184234e+00 1.66309372e-01 7.19101131e-02 5.38069606e-01
-5.61747193e-01 -6.77397847e-01 2.07971439e-01 -3.09707582e-01
-5.96999228e-01 3.15697700e-01 -3.06586206e-01 2.89422661e-01
2.56833553e-01 3.44632834e-01 -9.22187567e-01 -4.44408447e-01
-2.76444227e-01 4.73853976e-01 5.28235100e-02 8.89482796e-01
8.34359288e-01 -1.29756784e+00 -1.21574712e+00 -6.06413662e-01
3.99389774e-01 -9.17319283e-02 4.80008364e-01 5.20358741e-01
-3.35775584e-01 1.08887482e+00 2.82836497e-01 -1.35108873e-01
-1.19752276e+00 5.66627085e-01 3.76409404e-02 -7.93153763e-01
-6.71390057e-01 6.29549265e-01 -8.13900232e-02 -2.20886126e-01
3.02262843e-01 -2.04029560e-01 -9.20918167e-01 3.18394482e-01
1.31365883e+00 4.35237408e-01 3.30881536e-01 -2.58075595e-01
-1.17509760e-01 6.84714496e-01 -9.13366199e-01 -8.02635252e-02
1.23480201e+00 -2.23030537e-01 -3.11843187e-01 3.53224576e-01
1.58077955e+00 -3.63925248e-02 -3.57596576e-01 -5.17487586e-01
1.60381898e-01 -3.19107115e-01 1.97656438e-01 -1.10894275e+00
-8.84639978e-01 8.84656787e-01 2.44335771e-01 3.76936615e-01
1.04051054e+00 -2.34876350e-02 9.98672783e-01 1.15580273e+00
2.98359841e-01 -1.12413502e+00 -2.49425210e-02 8.72264504e-01
1.26075768e+00 -1.17398417e+00 1.31185919e-01 4.28845286e-01
-3.29340279e-01 1.15506828e+00 2.58000255e-01 -2.25309446e-01
5.61885357e-01 -2.91243076e-01 1.12942718e-01 -2.74320364e-01
-8.79236937e-01 -1.58715487e-01 6.81529880e-01 -8.82618304e-04
7.00546443e-01 -2.56745666e-01 -8.18950891e-01 5.69028854e-01
3.55422609e-02 1.46558648e-02 3.06335360e-01 1.12359989e+00
-3.97155315e-01 -1.10975158e+00 -2.21059561e-01 6.88668907e-01
-1.10229647e+00 -4.85569477e-01 -6.90954983e-01 5.47573388e-01
-8.77731740e-01 1.11755741e+00 -2.24347144e-01 7.15093389e-02
3.95244390e-01 7.64404163e-02 2.55472869e-01 -5.73787093e-01
-6.29622340e-01 8.22481066e-02 5.15830144e-02 -2.66755104e-01
-5.16400278e-01 -5.54257214e-01 -9.39161658e-01 -1.99527904e-01
-5.55943191e-01 6.39235377e-01 3.98519337e-01 7.33372688e-01
4.13838059e-01 5.14737904e-01 4.51696336e-01 -7.06692457e-01
-6.42246962e-01 -1.35207725e+00 -4.85528529e-01 2.58634418e-01
5.34954548e-01 -2.97943562e-01 -3.62536550e-01 -4.18295890e-01] | [11.501471519470215, 7.667174816131592] |
5e4ea4fa-80b8-44c2-bb33-1824ac7e1269 | is-ai-the-better-programming-partner-human | 2306.05153 | null | https://arxiv.org/abs/2306.05153v2 | https://arxiv.org/pdf/2306.05153v2.pdf | Is AI the better programming partner? Human-Human Pair Programming vs. Human-AI pAIr Programming | The emergence of large-language models (LLMs) that excel at code generation and commercial products such as GitHub's Copilot has sparked interest in human-AI pair programming (referred to as "pAIr programming") where an AI system collaborates with a human programmer. While traditional pair programming between humans has been extensively studied, it remains uncertain whether its findings can be applied to human-AI pair programming. We compare human-human and human-AI pair programming, exploring their similarities and differences in interaction, measures, benefits, and challenges. We find that the effectiveness of both approaches is mixed in the literature (though the measures used for pAIr programming are not as comprehensive). We summarize moderating factors on the success of human-human pair programming, which provides opportunities for pAIr programming research. For example, mismatched expertise makes pair programming less productive, therefore well-designed AI programming assistants may adapt to differences in expertise levels. | ['Tongshuang Wu', 'Qianou Ma', 'Kenneth Koedinger'] | 2023-06-08 | null | null | null | null | ['code-generation'] | ['computer-code'] | [-3.88789624e-01 5.97694218e-01 -2.11184565e-02 -3.91037792e-01
-3.56251925e-01 -8.11834335e-01 6.62446976e-01 6.24519348e-01
-2.15795591e-01 -1.71978891e-01 9.82136726e-02 -6.29048765e-01
-1.25637472e-01 -5.17726421e-01 -6.84510648e-01 -9.95576382e-02
2.40936384e-01 5.60532749e-01 -2.17667997e-01 -4.41061109e-01
5.80742121e-01 -8.12652558e-02 -1.49291766e+00 2.15237632e-01
1.24774444e+00 -2.37946227e-01 2.93172836e-01 8.43011916e-01
-2.37415716e-01 1.24977434e+00 -4.99974132e-01 -4.79745537e-01
5.18034637e-01 -4.61838812e-01 -6.85408056e-01 -5.42827189e-01
6.13209248e-01 -1.91372231e-01 -1.19042508e-02 8.66203249e-01
3.86365265e-01 -3.35911602e-01 4.26548511e-01 -1.84386837e+00
-1.20241594e+00 1.07432926e+00 -4.18610662e-01 -2.01639429e-01
6.01076841e-01 4.80186135e-01 8.54189336e-01 -7.39941657e-01
5.82778752e-01 1.29533780e+00 9.87093449e-01 5.35942972e-01
-1.37343693e+00 -6.06209457e-01 -1.20037131e-01 -4.78392512e-01
-1.19460309e+00 -2.84604788e-01 3.59793991e-01 -1.15499389e+00
1.13227534e+00 -1.60040557e-01 8.65891278e-01 5.43530345e-01
4.34330255e-01 8.17876101e-01 1.00619471e+00 -1.02156174e+00
-1.47417501e-01 7.23555028e-01 5.25895536e-01 7.10044682e-01
5.60260594e-01 -5.67497611e-02 -4.94889975e-01 -6.05694830e-01
6.88143492e-01 -4.41476218e-02 1.60453305e-01 -3.57113034e-01
-1.54477251e+00 5.22648215e-01 2.10914597e-01 8.53319347e-01
-3.72363091e-01 3.96517426e-01 4.64156389e-01 8.09566796e-01
-1.20236548e-02 1.27271688e+00 -4.58974726e-02 -6.26605093e-01
-5.89409590e-01 9.76670265e-01 1.26768064e+00 1.46125984e+00
6.22931540e-01 -1.38704568e-01 3.08849234e-02 6.21207297e-01
3.37730557e-01 4.33531284e-01 -1.38345920e-02 -1.31540155e+00
2.40554973e-01 9.01341677e-01 4.06525373e-01 -1.24985969e+00
-9.36338827e-02 7.07938299e-02 8.50784406e-03 3.81050467e-01
6.07146740e-01 -3.28856409e-01 -2.62006730e-01 1.61433983e+00
-2.48340562e-01 -5.72702289e-01 -5.64916700e-04 8.08889687e-01
5.56953490e-01 5.95752001e-01 4.68553692e-01 4.04348463e-01
1.05881202e+00 -1.42607629e+00 -1.68779567e-01 -7.84299612e-01
9.32380974e-01 -5.51796734e-01 1.30120707e+00 3.00440401e-01
-1.57889462e+00 -6.74247921e-01 -7.07045496e-01 -4.24021721e-01
-2.10225508e-01 7.92636871e-02 9.66046095e-01 6.90547168e-01
-1.37169087e+00 2.57379860e-01 -8.43136966e-01 -6.67635143e-01
-1.74668968e-01 1.38412520e-01 -1.59297600e-01 -1.17612958e-01
-8.57073307e-01 1.27736413e+00 3.13976333e-02 -2.16631293e-01
-7.54858315e-01 -8.39322090e-01 -6.34992182e-01 8.14909209e-03
2.17250939e-02 -8.25890541e-01 1.69883442e+00 -1.65368235e+00
-1.06212962e+00 1.19336760e+00 2.28252947e-01 -1.24956883e-01
3.53549480e-01 -8.42576995e-02 8.38913247e-02 -4.17179018e-01
4.39465374e-01 6.42867565e-01 3.30665380e-01 -1.25840580e+00
-5.83634675e-01 -3.92127037e-01 5.39460182e-01 2.90953189e-01
-1.40172109e-01 4.91276056e-01 -6.28290921e-02 -5.22805631e-01
-3.34946126e-01 -1.07361996e+00 -2.20987216e-01 2.47103378e-01
6.49740458e-01 -6.29082680e-01 5.36540039e-02 -5.73267221e-01
1.29205370e+00 -2.23553157e+00 3.82918030e-01 5.35048842e-02
8.70265663e-01 1.30723521e-01 -2.33016729e-01 1.08377934e+00
3.52947921e-01 3.90175909e-01 9.66818929e-02 1.49140432e-01
4.48134571e-01 -1.73933700e-01 8.32418166e-03 4.90023792e-02
-1.82079598e-01 8.99902344e-01 -1.27084160e+00 -3.74838859e-01
-3.30273718e-01 2.32441500e-01 -8.05435479e-01 4.79840726e-01
-2.14302853e-01 2.86571737e-02 -3.24293047e-01 7.89778233e-01
2.85132498e-01 -2.58226842e-01 2.66620398e-01 7.19099045e-01
-5.82019091e-01 8.22986364e-02 -4.06918913e-01 1.57269907e+00
-4.33313996e-01 1.03326273e+00 5.50581813e-01 -2.75578141e-01
1.18698490e+00 4.75437731e-01 -1.88564882e-02 -5.08037269e-01
-9.72523317e-02 4.21895742e-01 7.58080781e-01 -6.59310579e-01
4.67682362e-01 6.84579015e-02 -1.08329497e-01 9.60525990e-01
-2.97928751e-01 -7.71608531e-01 2.59508878e-01 4.88931865e-01
1.19844973e+00 1.62330642e-02 2.52755284e-01 -6.62412703e-01
-2.31807958e-02 6.49460316e-01 4.23307657e-01 1.19767344e+00
-4.28966999e-01 -4.80165333e-03 6.79546833e-01 -4.92840797e-01
-1.39741361e+00 -6.54071271e-01 2.14434043e-01 1.49914694e+00
8.92176405e-02 -9.38131809e-01 -9.68735695e-01 -1.65261954e-01
3.18103492e-01 8.73657763e-01 -2.41743192e-01 4.29316610e-02
-4.89625424e-01 1.65727019e-01 9.04626608e-01 6.43344700e-01
1.52219698e-01 -1.16199648e+00 -1.10582805e+00 1.73039868e-01
1.98609233e-01 -4.33918357e-01 -3.05200517e-01 -1.09252967e-01
-6.61036491e-01 -6.18991613e-01 -6.22010708e-01 -1.08749962e+00
7.68700778e-01 5.66448987e-01 1.68485129e+00 8.92941952e-01
-1.15815021e-01 1.03971696e+00 -3.19941193e-01 -9.68723774e-01
-9.58559573e-01 -6.43761456e-03 5.26239574e-02 -1.02734280e+00
7.31141806e-01 -4.06667471e-01 -8.30465555e-02 7.28205070e-02
-4.48127300e-01 4.45397526e-01 7.78415501e-01 6.75454795e-01
-5.51342726e-01 -4.67252403e-01 4.21647549e-01 -9.58242714e-01
1.21889961e+00 -7.45062649e-01 -4.51145530e-01 6.05412185e-01
-9.32189643e-01 -4.00060087e-01 3.80165547e-01 -5.18174112e-01
-9.36147988e-01 -4.47584718e-01 7.58768260e-01 1.00459844e-01
-5.58880568e-02 8.99336517e-01 4.70647007e-01 -4.59994644e-01
1.17578673e+00 -2.47602507e-01 2.01330662e-01 1.10087454e-01
1.62733659e-01 9.07443106e-01 3.14886034e-01 -1.30344427e+00
6.68538034e-01 -4.21911120e-01 -8.62934530e-01 -7.68587351e-01
1.01182699e-01 -3.73556316e-02 -4.11140770e-01 -1.00737549e-01
6.71227217e-01 -1.18775666e+00 -6.93242252e-01 3.65292937e-01
-1.35487616e+00 -8.81031811e-01 3.54220629e-01 3.61878633e-01
-4.92328167e-01 -2.56224419e-03 -7.66462803e-01 -9.81155097e-01
-2.11011291e-01 -1.34052265e+00 7.59375393e-01 4.85847145e-01
-1.01910627e+00 -8.95489216e-01 3.12704116e-01 5.62140703e-01
7.84851849e-01 -1.95322081e-01 1.42277515e+00 -6.32956505e-01
-5.86930275e-01 -2.75323153e-01 -2.30137840e-01 7.92561099e-02
-3.78717422e-01 4.51134831e-01 -4.25313860e-01 -3.49357165e-02
-2.58940339e-01 -5.44733346e-01 -2.37456784e-01 1.65102240e-02
2.95820802e-01 -1.65999129e-01 -4.78201061e-01 -5.55062294e-02
1.09868991e+00 5.14948070e-01 2.57229894e-01 2.94013649e-01
6.22376144e-01 9.36495781e-01 6.87512875e-01 1.24023132e-01
8.75088215e-01 3.90037745e-01 -5.10093391e-01 2.32183233e-01
4.33351427e-01 -3.74392271e-01 6.21312976e-01 8.29156399e-01
-1.34798244e-01 -1.33153340e-02 -2.01972556e+00 7.58103073e-01
-2.03626704e+00 -6.39338315e-01 -1.89160034e-01 1.87185252e+00
7.65502274e-01 5.19441031e-02 2.17800841e-01 -5.34076333e-01
4.82011884e-01 -2.92057514e-01 -1.94047928e-01 -7.80012906e-01
5.33422530e-01 -1.12843268e-01 -1.16572715e-02 4.56789732e-01
-2.41267368e-01 8.97898138e-01 7.28066301e+00 -9.88458991e-02
-7.28414059e-01 1.12733275e-01 3.01314473e-01 3.19757521e-01
-6.75462544e-01 5.20799398e-01 -3.33709091e-01 2.96573281e-01
9.17648375e-01 -8.37538421e-01 7.06359088e-01 1.16593564e+00
-1.17064603e-01 -1.36374205e-01 -1.67833567e+00 7.38822937e-01
1.81405827e-01 -8.58596623e-01 -4.34840292e-01 -2.79246777e-01
7.20655024e-01 -1.42596707e-01 -1.83354124e-01 8.28667402e-01
5.40197611e-01 -1.02867365e+00 9.76551950e-01 3.91930193e-01
-3.69832329e-02 -4.38368231e-01 4.53345656e-01 6.81608021e-01
-6.42358541e-01 -3.56768399e-01 -1.17082395e-01 -8.04107845e-01
-1.31961539e-01 5.18980362e-02 -8.25364411e-01 -2.48717502e-01
5.51515400e-01 2.50551462e-01 -5.77133477e-01 4.74113494e-01
1.85835645e-01 2.33903229e-01 1.30851671e-01 -3.03552747e-01
6.73547089e-02 -3.83981466e-01 4.40172583e-01 1.14290607e+00
2.33944971e-02 3.85888427e-01 4.56703663e-01 1.67156923e+00
3.17417413e-01 -2.70745158e-03 -1.10792553e+00 -1.10629308e+00
8.93500149e-01 9.78452921e-01 -4.99710530e-01 -4.12456602e-01
-9.40972328e-01 6.44798636e-01 4.46335882e-01 2.20238611e-01
-4.70256418e-01 -6.26866758e-01 5.89610398e-01 2.74480700e-01
-7.55811930e-01 -6.50622308e-01 -6.46826327e-01 -8.82369518e-01
-2.55376473e-02 -1.64552915e+00 -2.68817484e-01 -9.53952968e-01
-1.23101389e+00 4.34736133e-01 1.31688893e-01 -4.49039459e-01
-3.26792538e-01 -3.75840515e-01 -7.20902264e-01 9.24728572e-01
-4.40924913e-01 -1.34258378e+00 -7.15935409e-01 -1.49305373e-01
3.24893594e-01 -3.43095571e-01 6.83263779e-01 2.68714931e-02
-2.69157916e-01 6.05023682e-01 -3.95166397e-01 -6.78158626e-02
9.80851471e-01 -1.14309144e+00 1.03630209e+00 5.52466691e-01
-2.08787322e-01 1.34436667e+00 6.87684476e-01 -8.19410563e-01
-1.98099232e+00 -1.51415214e-01 1.26675141e+00 -1.10434997e+00
5.74987352e-01 -4.97861475e-01 -8.38528454e-01 1.13135326e+00
4.50773090e-01 -6.30906284e-01 4.03848082e-01 2.29885697e-01
-4.84434873e-01 2.05159947e-01 -9.62903798e-01 9.83280718e-01
1.08526957e+00 -8.61396611e-01 -7.60652304e-01 2.69576877e-01
7.74892807e-01 -3.38829994e-01 -9.73543823e-01 -2.26924226e-01
8.64836216e-01 -1.01407695e+00 6.16913557e-01 -3.49150926e-01
7.95077801e-01 -5.76242469e-02 1.63661912e-01 -1.17170811e+00
-5.91830552e-01 -8.52218568e-01 5.73166430e-01 1.19600093e+00
4.50947970e-01 -8.08583021e-01 1.78795993e-01 1.88345802e+00
-2.74087399e-01 -3.72545093e-01 2.63715476e-01 -4.32282448e-01
4.01011676e-01 5.59577681e-02 5.24270356e-01 1.42381823e+00
9.95839119e-01 -2.82648206e-02 8.74186382e-02 -6.28126338e-02
2.32599080e-01 -1.32550910e-01 1.34342921e+00 -1.34191787e+00
-6.39456093e-01 -7.05430329e-01 -3.06183070e-01 -6.18646204e-01
3.62679869e-01 -1.09746826e+00 1.98452279e-01 -1.24125159e+00
2.81532407e-01 -8.03681314e-01 4.52597886e-01 5.60084760e-01
-2.16178939e-01 -5.67718327e-01 6.51416361e-01 3.78343016e-01
-2.97107130e-01 -8.73271823e-02 7.29075432e-01 2.87916344e-02
-5.81038713e-01 -4.61460382e-01 -1.19029629e+00 7.14920044e-01
4.59102064e-01 -3.87236834e-01 -4.00603324e-01 -1.08993781e+00
8.02523136e-01 4.41824436e-01 2.72444189e-01 -1.08572400e+00
8.20738316e-01 -5.48944235e-01 -3.45556647e-01 5.13573229e-01
-4.64364558e-01 -9.94952381e-01 4.32397842e-01 4.42814738e-01
-6.46935403e-01 7.55643189e-01 1.76016569e-01 -6.48453608e-02
-1.69667602e-01 -5.45592546e-01 3.98499608e-01 -4.14626122e-01
-4.34206158e-01 -3.03064376e-01 -7.11046040e-01 -1.20797306e-02
1.26983190e+00 -2.45797694e-01 -4.06717062e-01 -4.07331467e-01
1.81366447e-02 6.45740092e-01 1.18424547e+00 5.02930582e-01
3.48174833e-02 -1.06472242e+00 -6.47587001e-01 1.14911430e-01
5.05014598e-01 -4.96735983e-02 -1.50701880e-01 7.59857833e-01
-9.90560055e-01 4.05177683e-01 -4.79304940e-01 -3.95765305e-01
-1.20961726e+00 3.19795102e-01 1.64363667e-01 3.90806586e-01
-4.14858907e-01 8.04994822e-01 2.71081209e-01 -7.85357893e-01
2.20678821e-01 -1.71992019e-01 4.76156473e-01 -3.22585136e-01
6.00996494e-01 4.92134094e-01 -6.29684448e-01 -6.14100583e-02
-1.87610403e-01 3.78846973e-01 -2.85355002e-01 -2.75276303e-01
1.20016968e+00 1.34682298e-01 -8.48012745e-01 8.15232933e-01
4.21047300e-01 -7.96401575e-02 -6.31459713e-01 6.42357394e-02
1.82678506e-01 -7.07562745e-01 -3.12037498e-01 -7.88773596e-01
-2.82633901e-01 8.44307244e-01 1.79869607e-01 3.19267362e-01
4.35822815e-01 -9.42553673e-03 2.34563038e-01 6.62368476e-01
7.34338343e-01 -1.02889287e+00 3.56639437e-02 5.57327449e-01
1.12733722e+00 -1.18923652e+00 -2.52222836e-01 -1.26114428e-01
-1.16270864e+00 1.11495590e+00 1.41789997e+00 -9.26157758e-02
3.54958326e-01 4.24787432e-01 1.50827557e-01 -5.18690407e-01
-1.01861560e+00 5.60603499e-01 -1.69045329e-01 6.75095379e-01
1.31188893e+00 2.65503436e-01 -5.73204458e-01 7.83279240e-01
-1.14951573e-01 4.55410570e-01 6.73424065e-01 1.39674556e+00
-3.00257772e-01 -1.21830368e+00 -3.50978225e-01 1.59861609e-01
4.40420024e-02 -1.08557783e-01 -9.08885539e-01 7.98078001e-01
4.64795418e-02 8.13568354e-01 2.66631275e-01 -4.30661291e-01
1.80040300e-01 3.11308712e-01 4.53095764e-01 -9.41368580e-01
-1.46276629e+00 -6.22024715e-01 1.66541561e-01 -2.72299439e-01
-1.23760998e-01 -4.83954459e-01 -1.27760684e+00 -8.92574370e-01
-6.17472790e-02 1.98668972e-01 5.48833549e-01 5.55844069e-01
6.91608012e-01 -1.01834238e-01 -3.65295149e-02 -8.50211918e-01
-3.87926608e-01 -8.46814394e-01 -3.18776071e-01 2.49143064e-01
1.03091381e-01 -2.70368218e-01 -1.78045079e-01 -8.29766691e-03] | [8.189321517944336, 7.615159034729004] |
67773d5b-a433-4c0a-93af-5ed2869e02db | face-deblurring-based-on-separable | 2112.09833 | null | https://arxiv.org/abs/2112.09833v1 | https://arxiv.org/pdf/2112.09833v1.pdf | Face Deblurring Based on Separable Normalization and Adaptive Denormalization | Face deblurring aims to restore a clear face image from a blurred input image with more explicit structure and facial details. However, most conventional image and face deblurring methods focus on the whole generated image resolution without consideration of special face part texture and generally produce unsufficient details. Considering that faces and backgrounds have different distribution information, in this study, we designed an effective face deblurring network based on separable normalization and adaptive denormalization (SNADNet). First, We fine-tuned the face parsing network to obtain an accurate face structure. Then, we divided the face parsing feature into face foreground and background. Moreover, we constructed a new feature adaptive denormalization to regularize fafcial structures as a condition of the auxiliary to generate more harmonious and undistorted face structure. In addition, we proposed a texture extractor and multi-patch discriminator to enhance the generated facial texture information. Experimental results on both CelebA and CelebA-HQ datasets demonstrate that the proposed face deblurring network restores face structure with more facial details and performs favorably against state-of-the-art methods in terms of structured similarity indexing method (SSIM), peak signal-to-noise ratio (PSNR), Frechet inception distance (FID) and L1, and qualitative comparisons. | ['Xiaojie Li', 'Jiancheng Lv', 'Hao Zhang', 'Xian Zhang'] | 2021-12-18 | null | null | null | null | ['face-parsing'] | ['computer-vision'] | [ 3.36303532e-01 -2.42889687e-01 2.09168360e-01 -4.15292114e-01
-3.90444875e-01 -3.44376981e-01 4.00292575e-01 -1.05348587e+00
9.50417891e-02 7.03099132e-01 6.51374936e-01 3.62021506e-01
-2.35465780e-01 -7.14563012e-01 -4.43779856e-01 -1.14461887e+00
3.81396681e-01 -4.80008684e-02 -2.38110855e-01 -2.24814042e-01
1.29841015e-01 8.60694766e-01 -1.95007992e+00 1.98272750e-01
9.77539957e-01 1.08831429e+00 -2.76235361e-02 3.70888323e-01
-6.08159415e-02 4.97812122e-01 -6.07589960e-01 -3.59746635e-01
2.52342790e-01 -6.01599097e-01 -6.42825723e-01 3.11075121e-01
1.02808988e+00 -6.25466168e-01 -4.06559587e-01 1.43803251e+00
7.47172177e-01 -2.85637770e-02 7.77192593e-01 -8.14949393e-01
-1.21164191e+00 1.09442016e-02 -1.00537276e+00 5.16836524e-01
2.08888754e-01 1.21159345e-01 1.47005498e-01 -1.09682572e+00
6.76230371e-01 1.69075847e+00 6.16678536e-01 8.35504115e-01
-1.16541350e+00 -9.14573550e-01 -2.69348353e-01 4.96007174e-01
-1.40440392e+00 -9.83526349e-01 9.68226016e-01 -8.05261582e-02
2.76977748e-01 4.92680699e-01 1.67542219e-01 8.64902139e-01
2.29800075e-01 2.07151175e-01 1.23518014e+00 -2.57048070e-01
-2.04157755e-01 -3.65986556e-01 -1.00216478e-01 6.86412513e-01
3.15874279e-01 2.60949761e-01 -2.23453462e-01 1.06189929e-01
1.07830608e+00 1.10978424e-03 -6.72069550e-01 1.56551301e-01
-6.14146233e-01 3.38827699e-01 1.87269285e-01 5.25108218e-01
-3.72116029e-01 -2.20127523e-01 3.95418592e-02 1.34579256e-01
6.81418955e-01 -1.09691940e-01 -1.04187593e-01 3.31479043e-01
-1.04344821e+00 8.06184777e-04 2.78432161e-01 4.51129287e-01
6.73614979e-01 2.90753722e-01 -3.65844548e-01 1.35310936e+00
1.55773431e-01 8.26067686e-01 5.97913325e-01 -1.06029546e+00
6.21940233e-02 2.71444261e-01 -1.89604804e-01 -1.43225634e+00
5.98680265e-02 -3.35014403e-01 -1.45555043e+00 1.40633732e-01
1.38243049e-01 1.86606254e-02 -1.06555831e+00 1.71728432e+00
4.44804102e-01 4.77362156e-01 -3.63264270e-02 1.28386760e+00
1.05757272e+00 5.75678587e-01 -2.76314557e-01 -5.92074275e-01
1.57888567e+00 -6.48266673e-01 -1.21639395e+00 -1.06480114e-01
-2.95496732e-01 -1.06925166e+00 7.93338299e-01 2.93534040e-01
-1.24518132e+00 -9.31182742e-01 -8.27271879e-01 -1.89851850e-01
2.00761855e-01 4.01526034e-01 1.35561436e-01 8.67501020e-01
-1.35078275e+00 4.46991652e-01 -4.20335114e-01 -1.72996864e-01
7.09154546e-01 2.18491837e-01 -6.73627734e-01 -4.54807073e-01
-1.04755783e+00 7.31372237e-01 -1.12935401e-01 6.22254610e-01
-9.42373872e-01 -5.10969281e-01 -8.68568957e-01 1.12826101e-01
1.35320410e-01 -6.77723110e-01 6.77367270e-01 -1.15835297e+00
-1.56069291e+00 8.63323569e-01 -3.90161544e-01 2.93538570e-01
1.80079609e-01 9.47297737e-03 -7.91993201e-01 2.73045868e-01
-1.33883014e-01 4.49951440e-01 1.50295031e+00 -1.26831031e+00
-2.48668835e-01 -7.91296303e-01 -5.84311366e-01 2.85660326e-01
-2.80919999e-01 3.18976045e-01 -4.30394769e-01 -1.05327380e+00
2.85871178e-01 -3.59885901e-01 4.24624801e-01 7.11287409e-02
-4.99746017e-02 1.15338497e-01 1.25353456e+00 -1.32650876e+00
1.17864454e+00 -2.17763662e+00 3.79974395e-01 -4.02117195e-03
3.42192113e-01 4.94487315e-01 -5.28330564e-01 -3.24075520e-01
-5.50549388e-01 -6.73492765e-03 -2.38877386e-01 -1.23165078e-01
-5.16312301e-01 -8.76816362e-03 -5.19594401e-02 8.90600026e-01
7.58494362e-02 6.32410526e-01 -4.14238662e-01 -4.47740793e-01
8.65705535e-02 9.04560924e-01 -5.29592633e-01 3.17662090e-01
3.12542945e-01 4.30703163e-01 -1.66543379e-01 9.46618915e-01
1.45848048e+00 1.15177102e-01 -2.64792796e-02 -7.62158155e-01
1.25606820e-01 -5.68058848e-01 -1.17694962e+00 1.26883578e+00
-3.02639276e-01 5.02643526e-01 7.20203936e-01 -7.41960227e-01
1.05025363e+00 1.49382636e-01 3.90884072e-01 -6.42634213e-01
4.36880261e-01 1.03498124e-01 -3.17284971e-01 -7.42124975e-01
2.65133113e-01 -1.59980476e-01 5.81492662e-01 1.98130161e-01
-5.86583838e-02 1.40732303e-01 -3.08664173e-01 -3.01770747e-01
5.59694171e-01 -9.34618413e-02 -1.27283633e-01 -4.76790935e-01
1.05240309e+00 -5.99438787e-01 4.20572639e-01 6.91889450e-02
-2.06704542e-01 1.02419972e+00 1.08035035e-01 -3.38197589e-01
-8.79325449e-01 -8.95238578e-01 -3.62557352e-01 8.39280725e-01
4.22920048e-01 1.08111508e-01 -1.29747391e+00 -4.45930421e-01
-3.70881438e-01 3.47296596e-01 -6.57951772e-01 -2.65395373e-01
-6.65565372e-01 -9.85344946e-01 6.23663187e-01 7.11873248e-02
1.06320202e+00 -9.88934278e-01 2.07334623e-01 -2.41096109e-01
-5.49753726e-01 -6.83602691e-01 -1.18130410e+00 -7.50497699e-01
-6.63069963e-01 -1.30001700e+00 -1.02559638e+00 -1.13077712e+00
9.24641252e-01 5.62019348e-01 7.31809199e-01 2.36339092e-01
-5.73712111e-01 6.41864538e-02 5.43976314e-02 4.33365464e-01
-4.27696764e-01 -4.94137853e-01 1.28306866e-01 4.79173094e-01
-1.72960586e-04 -6.03170633e-01 -8.14813375e-01 5.31457126e-01
-1.14456356e+00 -1.65360242e-01 4.91330802e-01 9.84793603e-01
3.18921149e-01 5.06679595e-01 4.70415801e-01 -1.82221755e-01
8.78477097e-01 -1.15035199e-01 -3.67830515e-01 2.89037138e-01
-7.25870192e-01 -4.86921147e-02 3.56120288e-01 -5.41166008e-01
-1.69932985e+00 -3.91150028e-01 -6.28336072e-02 -6.38412714e-01
-3.22454482e-01 -1.07153527e-01 -6.32648110e-01 -2.72543371e-01
6.83574736e-01 5.72102070e-01 5.52729666e-01 -7.39820421e-01
3.77676755e-01 9.47608292e-01 9.55765188e-01 -5.18574297e-01
7.89570808e-01 4.77619439e-01 -4.18939441e-02 -8.70864749e-01
-3.83353055e-01 4.20977362e-02 -3.36426079e-01 -3.02380025e-01
8.42463493e-01 -8.99736464e-01 -8.12071502e-01 1.02633345e+00
-1.18539047e+00 2.83346087e-01 1.50416136e-01 1.75163016e-01
-1.50915056e-01 7.89288640e-01 -8.68559062e-01 -4.29831564e-01
-6.59019530e-01 -1.11306620e+00 1.01545632e+00 5.48441052e-01
3.95193636e-01 -5.48019588e-01 -1.70298651e-01 5.97826540e-01
8.85577977e-01 1.15398332e-01 6.76082313e-01 6.40999302e-02
-3.81961495e-01 1.45754993e-01 -7.04573035e-01 7.15373456e-01
7.17681289e-01 -1.79367095e-01 -1.13894165e+00 -4.26450044e-01
4.70090121e-01 1.05778426e-01 8.02729964e-01 5.61455488e-01
1.23006642e+00 -7.21058071e-01 -1.40585467e-01 8.22558880e-01
1.19486237e+00 4.75627705e-02 1.13753057e+00 -7.95135647e-03
6.53277338e-01 7.46797621e-01 2.23842382e-01 8.16438645e-02
1.28281247e-02 7.18218029e-01 3.13009918e-01 -2.35282511e-01
-9.24958348e-01 8.61114562e-02 3.83528411e-01 5.55705428e-01
-3.03037286e-01 -2.87283882e-02 -2.64081031e-01 4.82267141e-01
-1.32693815e+00 -1.17854476e+00 8.05110410e-02 1.92953026e+00
1.12779570e+00 -6.20693386e-01 -3.88539255e-01 -1.35691717e-01
1.36413074e+00 1.86110571e-01 -4.05841559e-01 1.08428478e-01
-6.33080840e-01 2.59537339e-01 2.74237871e-01 5.82180500e-01
-8.34752083e-01 8.96050990e-01 5.87566900e+00 1.32888222e+00
-1.23250639e+00 2.29023725e-01 1.11579788e+00 3.11985854e-02
-1.00304022e-01 -5.15085757e-01 -6.74208522e-01 6.03317857e-01
5.20007908e-01 3.28949280e-02 9.18075919e-01 6.09636843e-01
2.75136173e-01 7.77773410e-02 -4.52848107e-01 1.48542011e+00
4.51878309e-01 -1.11146677e+00 9.15249884e-02 -8.38845447e-02
7.34803140e-01 -6.13476574e-01 2.24381879e-01 -1.66304380e-01
-1.96091712e-01 -1.39108849e+00 4.70939964e-01 8.37501347e-01
1.29183233e+00 -6.43527746e-01 7.57938862e-01 -7.70374238e-02
-1.06126666e+00 5.86862005e-02 -4.03079152e-01 3.66090417e-01
-9.68090221e-02 5.88170171e-01 -1.89620912e-01 6.16723657e-01
8.98552716e-01 6.22491241e-01 -5.31096101e-01 6.79144502e-01
-7.53261298e-02 3.49096239e-01 -4.23392057e-02 6.85886085e-01
-4.96178061e-01 -3.57073069e-01 5.95553458e-01 8.16401482e-01
5.38991153e-01 5.15786231e-01 -5.56980073e-01 8.51695478e-01
-1.78734094e-01 3.12165897e-02 -1.00007154e-01 2.96567172e-01
5.00877678e-01 1.33431149e+00 -5.01160681e-01 -3.44890743e-01
-1.14762351e-01 1.15968239e+00 -2.16483980e-01 4.17029262e-01
-8.73467684e-01 -3.08016241e-01 9.70069528e-01 2.97419757e-01
3.12782794e-01 2.58954436e-01 -1.47386581e-01 -1.37230873e+00
-2.82097235e-02 -1.12530529e+00 1.24857172e-01 -9.11802530e-01
-1.44686174e+00 9.17661488e-01 -5.52427322e-02 -9.31613624e-01
1.11556321e-01 -2.43754238e-01 -3.50075930e-01 1.25879657e+00
-1.50493956e+00 -1.17120278e+00 -8.20803583e-01 8.02500546e-01
6.26837611e-01 -2.64097691e-01 3.94366294e-01 6.14737928e-01
-7.82182217e-01 6.57087386e-01 1.16215823e-02 -3.57747264e-02
1.00232506e+00 -3.97127211e-01 5.93353361e-02 9.96719897e-01
-5.36163449e-01 6.62970424e-01 6.87449396e-01 -8.50541651e-01
-1.34271371e+00 -1.15246403e+00 4.56373185e-01 2.35516950e-02
1.02738347e-02 1.82634845e-01 -1.10178864e+00 2.23412782e-01
2.85792589e-01 2.28348061e-01 1.21621862e-02 -5.03262639e-01
-2.81159431e-01 -4.23202962e-01 -1.65985179e+00 4.46291149e-01
1.09999752e+00 -3.74783278e-01 -5.67249358e-01 -4.50494327e-02
3.20010751e-01 -4.05580342e-01 -7.22255349e-01 6.17962420e-01
6.58527017e-01 -1.08600008e+00 1.13702369e+00 -1.61147982e-01
3.45558822e-01 -5.92915237e-01 -7.45587125e-02 -1.06025696e+00
-6.53656125e-01 -5.37057102e-01 1.23413697e-01 1.53849125e+00
-3.24877918e-01 -6.93766296e-01 5.21932125e-01 3.10619354e-01
-1.38313016e-02 -3.87527734e-01 -8.13067019e-01 -4.69006926e-01
-2.95290679e-01 3.84339809e-01 9.16424155e-01 1.03261292e+00
-6.94984078e-01 1.40021890e-01 -6.32272601e-01 3.28177899e-01
9.78943765e-01 1.68495160e-02 3.54258209e-01 -1.13570869e+00
2.12689444e-01 -4.45117831e-01 -1.76221237e-01 -8.36444676e-01
2.26877809e-01 -5.85581124e-01 -1.24943443e-01 -1.20976508e+00
3.77046287e-01 -6.58534989e-02 -3.19527206e-03 4.14375544e-01
-2.50317693e-01 6.55703783e-01 -3.22450101e-01 4.16666448e-01
1.35964274e-01 7.11900771e-01 1.63409305e+00 -1.56019896e-01
-2.56836489e-02 -2.71829456e-01 -9.35803413e-01 4.59417164e-01
4.89112288e-01 -2.12465569e-01 -2.84414738e-01 -4.74378049e-01
-4.83508557e-01 1.65435463e-01 4.94327039e-01 -7.63379872e-01
1.11285150e-01 -3.19707155e-01 8.60288680e-01 -1.94138095e-01
2.94439793e-01 -6.89520299e-01 6.70264065e-01 2.32285410e-01
-3.09446361e-04 -2.63242483e-01 1.91550657e-01 4.39017534e-01
-2.75858104e-01 9.10759941e-02 1.23088181e+00 1.10403180e-01
-4.33220208e-01 3.66346896e-01 -3.82661968e-02 -2.92250812e-01
8.14706743e-01 -4.90855336e-01 -7.20656931e-01 -2.86954135e-01
-5.28397739e-01 -4.65408593e-01 6.06124759e-01 5.30435085e-01
8.62032354e-01 -1.36674082e+00 -9.64682102e-01 7.54548550e-01
-5.21934092e-01 -2.03669310e-01 7.15529263e-01 7.47277617e-01
-5.58726430e-01 9.15549919e-02 -6.07863367e-01 -3.52788955e-01
-1.68962407e+00 4.12766278e-01 5.87370276e-01 3.21266562e-01
-4.02674645e-01 8.53572786e-01 5.42074800e-01 -2.73726583e-02
-2.54233647e-03 -2.71180924e-02 -3.53975475e-01 3.25949602e-02
8.93143594e-01 5.66663742e-01 1.59549892e-01 -1.16630602e+00
-2.65993357e-01 9.46779549e-01 -5.11644967e-02 2.32297808e-01
1.21936607e+00 -5.54615676e-01 -7.87978113e-01 -7.12978959e-01
1.13780081e+00 1.67428240e-01 -1.29942393e+00 -8.75788182e-02
-5.55963039e-01 -8.12646925e-01 4.12610680e-01 -7.50212789e-01
-1.62975156e+00 4.62417722e-01 1.16408050e+00 -1.52404889e-01
1.78252089e+00 -1.18969694e-01 7.49498487e-01 -3.65593195e-01
4.91010845e-02 -5.01262546e-01 2.79490471e-01 1.65614635e-01
1.15037036e+00 -8.00314665e-01 -2.03215070e-02 -5.95943153e-01
-2.26282313e-01 1.17987549e+00 6.95565403e-01 -1.43956915e-02
6.98727250e-01 2.61197358e-01 -1.94519367e-02 -1.51265681e-01
-1.78427413e-01 1.67977244e-01 5.10511637e-01 5.33818305e-01
1.30530819e-01 -3.88966709e-01 -2.68382013e-01 8.35392296e-01
-8.42332691e-02 1.80840805e-01 2.98398226e-01 3.01205516e-01
-6.61161125e-01 -7.10695744e-01 -1.02871859e+00 1.06648654e-01
-6.98637247e-01 -1.50756806e-01 -2.56908834e-02 3.07180226e-01
3.04043323e-01 1.10802662e+00 -1.53963743e-02 -2.86799073e-01
1.04096413e-01 -1.60769731e-01 7.95754135e-01 -1.86543241e-01
-1.06763646e-01 3.10260296e-01 -2.21739247e-01 -5.42092562e-01
-4.43484098e-01 -2.61674792e-01 -6.98079824e-01 -6.31867766e-01
-4.95870292e-01 -7.61298910e-02 5.33887327e-01 7.44275093e-01
6.24019980e-01 4.55938578e-01 7.52638280e-01 -1.03468621e+00
-3.20651174e-01 -1.25938225e+00 -6.72806740e-01 2.92260349e-01
5.44429004e-01 -6.36946499e-01 -5.77318311e-01 5.47900379e-01] | [12.839801788330078, 0.05429908633232117] |
94f2057c-93a0-4ff9-8ce4-1c30ccb5c6e1 | deep-learning-driven-natural-languages-text | 2208.04415 | null | https://arxiv.org/abs/2208.04415v1 | https://arxiv.org/pdf/2208.04415v1.pdf | Deep Learning Driven Natural Languages Text to SQL Query Conversion: A Survey | With the future striving toward data-centric decision-making, seamless access to databases is of utmost importance. There is extensive research on creating an efficient text-to-sql (TEXT2SQL) model to access data from the database. Using a Natural language is one of the best interfaces that can bridge the gap between the data and results by accessing the database efficiently, especially for non-technical users. It will open the doors and create tremendous interest among users who are well versed in technical skills or not very skilled in query languages. Even if numerous deep learning-based algorithms are proposed or studied, there still is very challenging to have a generic model to solve the data query issues using natural language in a real-work scenario. The reason is the use of different datasets in different studies, which comes with its limitations and assumptions. At the same time, we do lack a thorough understanding of these proposed models and their limitations with the specific dataset it is trained on. In this paper, we try to present a holistic overview of 24 recent neural network models studied in the last couple of years, including their architectures involving convolutional neural networks, recurrent neural networks, pointer networks, reinforcement learning, generative models, etc. We also give an overview of the 11 datasets that are widely used to train the models for TEXT2SQL technologies. We also discuss the future application possibilities of TEXT2SQL technologies for seamless data queries. | ['Sanjeev Vijayakumar', 'Prabhav Nalhe', 'Parth Nagarkar', 'Ayush Kumar'] | 2022-08-08 | null | null | null | null | ['text-to-sql'] | ['computer-code'] | [-4.65898246e-01 -8.19693599e-03 -3.69014218e-02 -5.65550506e-01
-3.82904530e-01 -2.50004768e-01 5.19102573e-01 3.58613908e-01
-4.31985676e-01 6.69225335e-01 1.30462684e-02 -4.12784249e-01
-3.43799412e-01 -1.24426961e+00 -6.14719331e-01 -2.33201444e-01
2.71188498e-01 9.73839283e-01 1.86142489e-01 -7.19585240e-01
3.36140454e-01 7.68321276e-01 -1.96369982e+00 3.62718314e-01
7.11789966e-01 1.27207971e+00 4.09669608e-01 5.56706071e-01
-1.03906763e+00 1.20003700e+00 -6.83916628e-01 -3.54070902e-01
-1.07903562e-01 1.22263983e-01 -1.01704335e+00 -4.57967192e-01
2.42862597e-01 -2.88140506e-01 -1.82830274e-01 6.66054726e-01
6.69404745e-01 -5.77779226e-02 1.73122063e-01 -1.18066704e+00
-6.99387968e-01 4.42075729e-01 7.55420849e-02 -3.63763608e-02
4.82292742e-01 3.06248441e-02 5.70836961e-01 -9.50537086e-01
6.21059895e-01 1.07598293e+00 5.27506292e-01 1.42369911e-01
-9.45428491e-01 -1.35135338e-01 -2.57876843e-01 2.88566709e-01
-1.22823119e+00 -2.72826076e-01 6.54337764e-01 -4.51247126e-01
1.46027112e+00 3.50594938e-01 4.57275957e-01 1.01819289e+00
2.98811436e-01 7.40996599e-01 8.39430571e-01 -6.68139756e-01
1.53230518e-01 5.79643071e-01 3.97192329e-01 4.77965981e-01
2.00117696e-02 -1.89038962e-02 -7.25957811e-01 -1.61633670e-01
7.64485717e-01 3.85276437e-01 9.14644673e-02 -4.94070947e-01
-9.52821195e-01 7.78492868e-01 3.65030527e-01 8.41345847e-01
-7.11021781e-01 -1.87436119e-01 5.78381658e-01 5.25094390e-01
-5.72799891e-02 4.50864166e-01 -5.92030585e-01 -4.47528809e-01
-9.09635782e-01 4.89484578e-01 1.16661632e+00 1.34924543e+00
8.07078183e-01 2.48834759e-01 -6.88689202e-02 8.50336611e-01
2.19123065e-01 3.56551588e-01 6.78158283e-01 -6.56398594e-01
2.86994755e-01 8.38199198e-01 1.28332198e-01 -1.15213418e+00
-2.73947001e-01 -2.23661646e-01 -1.03587925e+00 1.43480346e-01
2.32298017e-01 1.57822236e-01 -6.25921428e-01 1.22338676e+00
8.58959332e-02 -7.97985196e-01 1.46280259e-01 5.03064930e-01
1.09363484e+00 6.81946456e-01 -6.14938850e-04 -2.25681085e-02
1.36035323e+00 -6.36572003e-01 -9.45341229e-01 1.07960142e-01
5.00850022e-01 -9.45572019e-01 1.42034972e+00 4.27305192e-01
-1.19795680e+00 -1.05768549e+00 -8.06016505e-01 -3.52204263e-01
-1.23239136e+00 -9.15324911e-02 4.98043776e-01 7.25370824e-01
-1.06870914e+00 3.88691366e-01 -8.73265564e-01 -9.12525594e-01
1.24420179e-02 3.78140837e-01 -1.08473547e-01 9.93366018e-02
-1.41000772e+00 8.39525938e-01 6.80197656e-01 1.25519902e-01
-4.02518392e-01 -6.95414364e-01 -5.23575068e-01 1.51820794e-01
6.10329807e-01 -6.82283998e-01 1.16436946e+00 -3.52859527e-01
-1.14535153e+00 7.89501667e-01 -1.53105527e-01 -5.05773544e-01
3.91908944e-01 -4.41965789e-01 -6.60645187e-01 -3.50518703e-01
-6.81719780e-02 3.13469887e-01 2.40715474e-01 -1.02291441e+00
-5.19924343e-01 -5.59636056e-01 3.91398231e-03 -1.89766467e-01
-4.31906134e-01 2.77509868e-01 -7.94258595e-01 -4.74712819e-01
-2.50147551e-01 -5.29216349e-01 -4.80675660e-02 -1.50435776e-01
-4.58092630e-01 -5.68885803e-01 7.87092447e-01 -6.77959859e-01
1.55747628e+00 -1.91961884e+00 -3.45148951e-01 1.20909356e-01
1.33863702e-01 5.21433115e-01 2.75892317e-01 1.27162457e+00
7.15764835e-02 2.30303898e-01 8.14555287e-02 5.14144972e-02
1.71474665e-01 3.80451471e-01 -5.45266330e-01 -5.45824170e-01
2.52357841e-01 9.87946630e-01 -3.76197547e-01 -6.03379488e-01
1.98128700e-01 5.51005244e-01 -3.98414344e-01 7.74469316e-01
-4.29166049e-01 -2.38895286e-02 -5.46064258e-01 5.86449802e-01
5.98154485e-01 -2.17113853e-01 6.56118095e-02 -2.60807216e-01
-2.55681306e-01 2.35595435e-01 -1.37210071e+00 1.60265040e+00
-5.71421087e-01 4.70566690e-01 -1.64071977e-01 -1.08581305e+00
1.33481503e+00 3.75894755e-01 4.44457799e-01 -1.16996562e+00
-3.02807420e-01 3.58345181e-01 -5.21833956e-01 -1.15741146e+00
8.08253825e-01 -3.53307882e-03 -6.97866753e-02 3.66094351e-01
7.52020702e-02 4.52908427e-02 3.03672910e-01 6.29794523e-02
7.88817286e-01 1.76269084e-01 1.01766214e-01 -6.16328418e-02
5.99593043e-01 6.29553348e-02 3.05152684e-01 9.27141309e-01
6.76524788e-02 5.19696176e-01 4.40513968e-01 -8.13023210e-01
-1.04060006e+00 -9.66094315e-01 1.55961901e-01 1.21764278e+00
-3.93800974e-01 -3.93722147e-01 -5.85179090e-01 -3.20304394e-01
3.88589054e-02 9.87626910e-01 -1.29479527e-01 -1.62475314e-02
-4.87268955e-01 -3.33978325e-01 5.80996096e-01 4.52070087e-01
7.94246793e-01 -1.68576002e+00 -8.36466312e-01 3.86469156e-01
-2.19580203e-01 -9.89757359e-01 5.44142500e-02 2.78489053e-01
-9.13497269e-01 -7.69751191e-01 -4.14990664e-01 -6.50473893e-01
1.07950103e-02 -1.79689452e-01 1.65587175e+00 5.58761992e-02
-4.96415704e-01 3.60507667e-01 -2.22466573e-01 -7.33957231e-01
-4.09173787e-01 5.16039431e-01 -2.14776158e-01 -2.33981267e-01
1.00596011e+00 -2.92580575e-01 -3.42576981e-01 2.26792216e-01
-1.33650446e+00 -7.20028430e-02 3.98382038e-01 7.50871956e-01
5.70709229e-01 2.82055885e-01 6.61721408e-01 -1.03724980e+00
1.04240096e+00 -6.03139400e-01 -5.38328171e-01 5.69516718e-01
-1.04681945e+00 2.41840988e-01 5.97841263e-01 1.45452335e-01
-1.13782859e+00 -2.97054261e-01 -5.90737700e-01 -2.16816455e-01
-5.93234181e-01 9.45745528e-01 -1.87091097e-01 4.06616777e-01
8.05446863e-01 4.86226350e-01 1.91275522e-01 -7.06697583e-01
2.73589075e-01 9.25846100e-01 2.97589958e-01 -6.22925460e-01
2.55287558e-01 9.17671919e-02 -4.84453410e-01 -9.28975940e-01
-2.18208209e-01 -3.08279186e-01 -6.61266863e-01 7.34107988e-03
8.62203896e-01 -4.16246086e-01 -9.55299318e-01 4.38126177e-01
-1.21854484e+00 -4.94785830e-02 -5.10288298e-01 1.33620828e-01
-7.43859708e-01 1.41260102e-01 -5.23034871e-01 -9.27840650e-01
-5.63146949e-01 -1.16760206e+00 6.79932594e-01 3.28346461e-01
-2.16252282e-01 -9.67839003e-01 -1.34155586e-01 5.29773831e-01
1.22237682e+00 6.37273937e-02 1.22839522e+00 -8.04674029e-01
-7.62076318e-01 -4.96471286e-01 -2.69061595e-01 4.01610315e-01
2.91082442e-01 1.43475235e-01 -8.87251019e-01 -7.15350062e-02
3.12250376e-01 -6.27118587e-01 3.36209536e-01 8.20727050e-02
1.38852370e+00 -1.34321362e-01 -1.40652657e-01 1.58887029e-01
1.71236002e+00 4.76268589e-01 8.79525781e-01 2.68790096e-01
4.34238881e-01 9.11184371e-01 6.70568109e-01 4.24306452e-01
5.76635897e-01 6.26346767e-01 4.14767563e-01 -1.24879472e-01
2.81875879e-01 -3.38700294e-01 2.47248951e-02 8.81521642e-01
4.06244397e-03 -2.42685094e-01 -1.29305589e+00 4.20939595e-01
-1.85785651e+00 -9.03234422e-01 -7.91624784e-02 2.38931990e+00
8.59797001e-01 1.12758324e-01 6.82990998e-02 7.83272088e-02
4.04698759e-01 -1.59233764e-01 -5.62394679e-01 -6.45516872e-01
-5.69409057e-02 4.08862740e-01 5.43339364e-02 2.41880804e-01
-7.05568314e-01 9.13328409e-01 6.40454769e+00 6.42839730e-01
-1.28837788e+00 -1.32253587e-01 4.98145491e-01 5.54960594e-02
-1.65379539e-01 -2.43915692e-01 -9.39735651e-01 3.50092471e-01
1.34050226e+00 -1.38281941e-01 3.42068732e-01 9.17259872e-01
3.27236146e-01 -6.54369518e-02 -1.09170067e+00 1.14597309e+00
-2.17868522e-01 -1.49150014e+00 1.76434651e-01 -8.33653361e-02
3.10460515e-02 2.86768794e-01 -1.32989720e-01 4.84408110e-01
9.03191119e-02 -1.12218022e+00 2.75525808e-01 1.11347783e+00
3.40338349e-01 -7.56897211e-01 8.63822758e-01 4.12407935e-01
-7.72036612e-01 3.66625302e-02 -4.14581567e-01 1.91137195e-01
-4.04444672e-02 5.87070286e-01 -6.80077374e-01 7.83295572e-01
1.12308204e+00 1.42921552e-01 -5.83115041e-01 8.45399857e-01
5.61159790e-01 2.35189289e-01 -4.16627079e-01 -3.17747086e-01
5.61519377e-02 -1.08707152e-01 -5.97139224e-02 1.08865130e+00
4.15916830e-01 -4.40237582e-01 2.38755438e-02 1.29987788e+00
2.86627471e-01 4.67020065e-01 -1.00884151e+00 -4.11265403e-01
3.09378356e-01 9.12092566e-01 -1.84041470e-01 -2.91387349e-01
-7.06124902e-01 6.71374202e-01 2.66302109e-01 5.05301833e-01
-3.93767536e-01 -7.36231387e-01 3.40051085e-01 5.65486908e-01
-2.25717109e-02 -3.80398571e-01 -1.68699458e-01 -8.82514715e-01
5.36788106e-01 -1.27647781e+00 4.83930647e-01 -1.09209907e+00
-1.37077868e+00 9.40474808e-01 6.93041831e-02 -7.34572828e-01
-5.95251560e-01 -5.07951856e-01 -1.42629027e-01 1.22537363e+00
-1.38150275e+00 -1.03004837e+00 -4.79735494e-01 7.85724580e-01
3.97270709e-01 -6.40342772e-01 1.11956120e+00 6.80066586e-01
-4.07063633e-01 3.55464786e-01 7.14585036e-02 1.91756591e-01
6.96446180e-01 -1.14790499e+00 4.17137206e-01 2.25291252e-01
7.44556785e-02 1.27775526e+00 4.66396362e-01 -5.11916459e-01
-1.68145692e+00 -7.70291030e-01 1.24863446e+00 -3.38638395e-01
4.06970531e-01 -3.48399311e-01 -1.28135657e+00 5.95226407e-01
6.52908325e-01 -2.37365931e-01 7.64668405e-01 1.55129924e-01
1.14001306e-02 -6.13041818e-01 -9.48796332e-01 3.76756430e-01
4.72824633e-01 -8.25823367e-01 -5.17919898e-01 3.47668141e-01
7.74092793e-01 -1.54007941e-01 -1.24236941e+00 2.81043857e-01
4.39343452e-01 -1.47534096e+00 8.98298800e-01 -9.00046945e-01
1.92673445e-01 -5.07407356e-03 -4.00137693e-01 -6.97695613e-01
2.02337503e-01 -5.36247492e-01 2.21387465e-02 1.41218305e+00
3.52937818e-01 -8.12436938e-01 1.03560770e+00 9.80513573e-01
1.35914832e-01 -1.04066896e+00 -5.92354059e-01 -7.09748328e-01
1.73209101e-01 -6.35259271e-01 9.53417778e-01 8.06421816e-01
-3.40667963e-01 1.82991862e-01 -2.49406323e-01 -2.11999267e-01
1.82363898e-01 1.91733479e-01 1.10154390e+00 -1.40557551e+00
-1.79169863e-01 -3.46091509e-01 -2.66590416e-01 -1.07747138e+00
-5.11796415e-01 -5.55213153e-01 -3.86959523e-01 -1.62360716e+00
-2.12273598e-01 -5.29137909e-01 -3.14075351e-01 3.45930487e-01
3.27723503e-01 -5.24796724e-01 1.10721536e-01 2.78700024e-01
-1.39961213e-01 4.69746232e-01 9.30999994e-01 -9.71249714e-02
-3.69061798e-01 7.13960156e-02 -7.40867674e-01 1.77584365e-01
9.18318033e-01 -3.59155476e-01 -5.96533418e-01 -6.01358652e-01
6.67321563e-01 2.73298591e-01 1.30188361e-01 -1.07912517e+00
6.94186389e-01 -1.32397428e-01 1.24025963e-01 -1.09145987e+00
2.48162001e-01 -1.00207865e+00 3.47141385e-01 2.79698372e-01
-4.58862662e-01 4.68660653e-01 1.40080452e-01 1.73958674e-01
-8.31743717e-01 -3.42475742e-01 4.23088074e-01 -3.99000496e-01
-6.73656285e-01 2.74360716e-01 -2.87874460e-01 2.54744571e-02
7.43055820e-01 -1.25967905e-01 -8.55536461e-02 -5.54805756e-01
-8.64609420e-01 3.22034270e-01 1.77830666e-01 8.16111028e-01
6.16382360e-01 -1.34300244e+00 -3.75242472e-01 6.36198819e-01
3.62296224e-01 7.81492442e-02 1.83945179e-01 4.27182734e-01
-8.35991204e-01 1.00666738e+00 -4.56210643e-01 -5.91100752e-01
-8.40234458e-01 8.64175439e-01 3.71243387e-01 -5.46875000e-01
-1.81586280e-01 3.25947374e-01 -3.64843637e-01 -8.62669826e-01
5.11277199e-01 -2.90087074e-01 -2.22432449e-01 9.34538469e-02
2.65996784e-01 2.98673540e-01 5.22052407e-01 -1.77480921e-01
-9.64610577e-02 3.65957648e-01 -2.68473297e-01 1.06178112e-01
1.32852376e+00 -1.36327874e-02 -3.63264978e-01 8.53515267e-01
1.12121546e+00 -3.31737489e-01 -3.41627181e-01 -4.02328759e-01
3.94528538e-01 -1.63462386e-01 -1.00792684e-01 -7.68472910e-01
-1.17800713e+00 1.24385428e+00 8.44552755e-01 8.51879478e-01
1.11672819e+00 -2.12317467e-01 7.14713633e-01 8.05264473e-01
4.86325592e-01 -1.45678997e+00 1.97370090e-02 4.99096721e-01
1.24289131e+00 -1.43289495e+00 -4.35878426e-01 -1.29623517e-01
-4.31567907e-01 1.48347998e+00 5.97027719e-01 2.00630948e-01
1.00443923e+00 2.79967964e-01 2.33410403e-01 -5.64905524e-01
-6.41457736e-01 -1.27292290e-01 -2.22502559e-01 6.62751913e-01
8.94515574e-01 -3.37274998e-01 -1.95315585e-01 3.60387981e-01
-2.71824092e-01 5.75188160e-01 1.73212171e-01 1.29369020e+00
-2.40975350e-01 -1.47326660e+00 -3.65543485e-01 6.06066406e-01
-4.45654452e-01 1.25423583e-04 -2.38110095e-01 8.98246109e-01
-5.11177853e-02 9.45424378e-01 9.08285752e-02 -2.84603298e-01
7.65440822e-01 5.78033149e-01 -3.95641178e-02 -3.99780601e-01
-8.23036790e-01 -2.83800125e-01 -2.22693733e-03 -6.09964073e-01
-1.04500793e-01 -3.25190157e-01 -1.24806261e+00 -5.66469729e-01
6.05172180e-02 1.60029411e-01 8.41483831e-01 5.31715870e-01
9.36526358e-01 3.38886917e-01 3.31324816e-01 -1.16773985e-01
-5.07133245e-01 -1.03913343e+00 -4.73700523e-01 3.79637241e-01
-7.16166422e-02 -3.14991653e-01 4.21259016e-01 9.54361260e-02] | [9.817914962768555, 7.820693492889404] |
61a7df5d-8fb8-45dc-b6eb-3423197cb19f | comparative-analysis-of-methods-for-cloud | 2012.0693 | null | https://arxiv.org/abs/2012.06930v3 | https://arxiv.org/pdf/2012.06930v3.pdf | Comparative Analysis of Methods for Cloud Segmentation in Ground-Based Infrared Images | The increasing penetration of photovoltaic systems in the power grid makes it vulnerable to cloud shadow projection. Real-time cloud segmentation in ground-based infrared images is important to reduce the noise in intra-hour global solar irradiance forecasting. We present a comparison between discriminative and generative models for cloud segmentation. The performances of supervised and unsupervised learning methods in cloud segmentation are evaluated. The discriminative models are solved in the primal formulation to make them feasible in real-time applications. The performances are compared using the j-statistic. Infrared image preprocessing to remove stationary artifacts increases the overall performance in the analyzed methods. The inclusion of features from neighboring pixels in the feature vectors leads to a performance improvement in some of the cases. Markov Random Fields achieve the best performance in both unsupervised and supervised generative models. Discriminative models solved in the primal yield a dramatically lower computing time along with high performance in the segmentation. Generative and discriminative models are comparable when preprocessing is applied to the infrared images. | ['Manel Martínez-Ramón', 'Guillermo Terrén-Serrano'] | 2020-12-13 | null | null | null | null | ['solar-irradiance-forecasting'] | ['time-series'] | [ 2.96788424e-01 -7.38728881e-01 1.10515833e-01 -3.17121327e-01
-6.94244087e-01 -8.34053814e-01 5.66984296e-01 -2.78732955e-01
-1.61178365e-01 8.24204028e-01 -2.47997403e-01 -2.36539826e-01
-1.99890181e-01 -8.91598105e-01 -1.70016423e-01 -1.57048404e+00
2.70725846e-01 3.07022095e-01 -2.13662282e-01 4.58004028e-01
2.78352320e-01 6.82129085e-01 -1.62076819e+00 8.94759521e-02
1.48071289e+00 7.48052478e-01 7.01450884e-01 7.74902642e-01
-2.20070630e-01 3.96001756e-01 -6.07294679e-01 4.82050329e-01
4.74728167e-01 -5.49632430e-01 -3.71013314e-01 5.57159603e-01
3.93598944e-01 -2.96649020e-02 3.22519362e-01 1.09166586e+00
5.78304052e-01 7.10174162e-03 9.33531523e-01 -1.15254104e+00
-5.53809516e-02 -9.77347344e-02 -7.73462296e-01 2.78645515e-01
2.22715959e-01 7.88675994e-02 5.27293384e-01 -7.30194747e-01
2.74944425e-01 6.18277788e-01 6.00963533e-01 -1.79201946e-01
-1.26803958e+00 -2.98645139e-01 2.91152429e-02 3.45200539e-01
-1.33330321e+00 -3.88269536e-02 7.74001300e-01 -6.13733411e-01
1.06276441e+00 7.84466088e-01 9.79306340e-01 2.47435793e-01
2.20862344e-01 4.24886614e-01 2.00544524e+00 -7.39509821e-01
4.58707869e-01 1.49502590e-01 3.02661285e-02 1.81923643e-01
5.15033603e-01 1.66690990e-01 -2.06672862e-01 -1.14003614e-01
5.58230460e-01 1.03931380e-02 -3.05237293e-01 1.34060100e-01
-5.88709712e-01 8.17295671e-01 4.03583437e-01 6.03719831e-01
-3.92006606e-01 5.80475405e-02 -1.89719692e-01 8.14725365e-03
7.58846402e-01 1.65216371e-01 -4.28179443e-01 1.23772718e-01
-1.56847143e+00 2.47941837e-02 6.17114067e-01 9.65885818e-01
8.02136898e-01 5.57515383e-01 -1.67034253e-01 4.94177192e-01
3.15414071e-01 1.21603441e+00 1.25847146e-01 -9.23690975e-01
2.77675781e-02 3.30439717e-01 1.49408402e-02 -4.88811493e-01
-3.44459653e-01 -7.78507292e-01 -9.52614784e-01 4.80059892e-01
2.04276711e-01 -1.54007539e-01 -1.34932053e+00 5.76722622e-01
1.21453457e-01 3.81111843e-03 1.97409261e-02 6.61641955e-01
5.31090319e-01 1.14921546e+00 -2.94309948e-02 -9.55109119e-01
9.25894797e-01 -8.36894572e-01 -7.81001687e-01 1.21266358e-01
3.47191870e-01 -1.20770526e+00 3.27680141e-01 4.82944131e-01
-6.82286561e-01 -4.88117933e-01 -5.58313251e-01 3.49532366e-01
-6.37685359e-01 5.17053843e-01 4.03001964e-01 9.19537842e-01
-1.24433804e+00 3.71585727e-01 -6.86402440e-01 -3.52892429e-01
9.47086811e-02 3.05673689e-01 3.05376440e-01 1.03138991e-01
-3.03777963e-01 9.95984316e-01 2.17083499e-01 3.51759255e-01
-3.64244312e-01 -3.98723155e-01 -4.41433191e-01 5.67649454e-02
9.24080163e-02 -5.69918990e-01 9.81871128e-01 -1.39021480e+00
-1.39767170e+00 5.18686414e-01 -7.45731533e-01 -2.17863619e-01
5.35147667e-01 1.21696495e-01 -8.11101943e-02 1.94807917e-01
-4.20078486e-02 2.88009644e-01 1.05760968e+00 -1.73378420e+00
-8.82857502e-01 -1.58238158e-01 -4.81566817e-01 3.46926004e-01
2.96138465e-01 -3.37810636e-01 -6.37496337e-02 -5.53465426e-01
3.37306291e-01 -1.08349943e+00 -3.84571284e-01 -5.92690885e-01
-3.04306358e-01 -1.33775607e-01 1.31454158e+00 -9.89379644e-01
6.76482201e-01 -1.69639742e+00 -2.30801836e-01 6.38103604e-01
-3.99924845e-01 1.21718474e-01 2.85724223e-01 4.67695206e-01
-2.50231117e-01 -8.61532092e-02 -4.23662812e-01 -2.66340643e-01
-3.03315401e-01 6.75958574e-01 -1.70313105e-01 6.61823928e-01
-6.19673580e-02 8.66510630e-01 -5.63892841e-01 -3.18999499e-01
7.29656160e-01 4.55964059e-01 -2.36637574e-02 -1.10498920e-01
-9.40229893e-02 6.63890660e-01 -2.45308161e-01 6.97107971e-01
1.13664484e+00 1.03281766e-01 2.04510212e-01 6.31588697e-02
-6.28940284e-01 2.93674157e-03 -1.04296148e+00 1.08733833e+00
-5.15075862e-01 7.88508475e-01 -1.48174331e-01 -9.83885586e-01
8.10436368e-01 2.57464916e-01 6.22497261e-01 -9.58684206e-01
-2.04217181e-01 3.05773079e-01 -1.80278793e-01 -2.38797799e-01
3.74069542e-01 -8.59539360e-02 5.48273683e-01 1.24708442e-02
-1.63062274e-01 -8.07710648e-01 3.16065669e-01 -1.90840185e-01
1.12831235e-01 3.73472959e-01 1.77772447e-01 -7.58697510e-01
4.83723044e-01 2.16436327e-01 6.28236592e-01 6.31376505e-01
3.75289112e-01 7.62236655e-01 -2.28996575e-02 -3.15707833e-01
-8.84441018e-01 -9.22882497e-01 -3.44227374e-01 4.16973501e-01
6.43184185e-02 -1.64874382e-02 -8.49387884e-01 -3.90485972e-01
-4.26623896e-02 1.01709342e+00 -8.26083198e-02 6.27910435e-01
-1.76120058e-01 -1.39363694e+00 -4.25392866e-01 5.05250931e-01
5.89273632e-01 -8.47311854e-01 -6.50620878e-01 6.73688054e-02
-1.46671250e-01 -1.04566371e+00 2.14786425e-01 5.89962900e-01
-1.40758479e+00 -9.10949767e-01 -7.81293511e-01 -5.63845694e-01
1.04115415e+00 6.11284733e-01 1.26950336e+00 4.60555442e-02
-4.82902050e-01 6.93167090e-01 -3.88422102e-01 -6.95092022e-01
-1.01647668e-01 -6.43662214e-02 -2.85929710e-01 -4.29928601e-01
3.18948537e-01 -5.06635487e-01 -3.82434011e-01 8.84119421e-02
-7.71855056e-01 -5.56789199e-03 2.61615276e-01 6.44913018e-01
9.21533346e-01 6.01284921e-01 -9.83157828e-02 -7.90815830e-01
7.75964707e-02 2.39809956e-02 -1.54597163e+00 1.72683492e-01
-1.04216921e+00 -2.15751514e-01 3.52746516e-01 2.30715618e-01
-1.23634052e+00 3.87396038e-01 1.75283298e-01 -1.67744935e-01
-3.40037853e-01 3.52829367e-01 1.70658436e-02 -5.13983965e-01
1.73352405e-01 4.12120938e-01 -4.71537590e-01 -5.54418385e-01
9.26837549e-02 4.10596997e-01 7.43927583e-02 -1.76553592e-01
1.36439335e+00 5.53516567e-01 3.85655254e-01 -1.42210531e+00
-5.55433333e-01 -9.94486570e-01 -8.65632474e-01 -4.02866155e-01
9.79044855e-01 -9.99252975e-01 -2.79805958e-01 6.81718469e-01
-1.02544153e+00 -1.88966125e-01 -5.92012346e-01 3.85092407e-01
-4.53388751e-01 4.95022416e-01 1.00171883e-02 -1.32949102e+00
-4.24262434e-01 -1.15038621e+00 1.00012374e+00 7.41184771e-01
4.99194264e-01 -1.13357460e+00 1.12239383e-01 4.21230435e-01
2.97708958e-01 2.82807440e-01 7.17999101e-01 5.71349710e-02
-1.02053845e+00 1.10249192e-01 -1.84404209e-01 7.12098539e-01
2.98271447e-01 4.89863336e-01 -1.47366703e+00 -3.04187745e-01
1.34954810e-01 5.43778837e-01 1.00618994e+00 9.50451970e-01
1.06815672e+00 -2.06349507e-01 -1.99119836e-01 6.30575478e-01
2.17791677e+00 5.96587896e-01 8.32437277e-01 1.86564595e-01
6.33671224e-01 4.00312334e-01 5.52941263e-01 3.86735827e-01
-9.28603858e-02 3.21106285e-01 4.19303179e-01 -7.06039429e-01
1.38866410e-01 3.57090086e-01 9.99444947e-02 1.06309843e+00
-6.29518867e-01 -1.94451377e-01 -8.58138859e-01 6.71771109e-01
-1.77112651e+00 -1.28193355e+00 -9.51630771e-01 2.33058763e+00
3.72102201e-01 -2.89731532e-01 -1.21816836e-01 3.53386164e-01
4.00642365e-01 5.56767508e-02 -1.93895539e-03 -5.26132226e-01
-3.15216899e-01 5.86043000e-01 1.04755294e+00 8.31600547e-01
-1.13579118e+00 3.82241100e-01 7.01746559e+00 6.54461086e-01
-1.25152373e+00 3.52001429e-01 8.10514987e-01 9.86889899e-02
-4.30879146e-01 3.46903920e-01 -7.01456785e-01 7.35528231e-01
6.96900606e-01 1.15316242e-01 4.11232114e-01 5.94437718e-01
8.13965797e-01 -1.26159358e+00 -3.49125355e-01 1.02514637e+00
6.41814843e-02 -1.21259367e+00 -2.93193549e-01 3.74247253e-01
1.52474284e+00 2.83735991e-01 -1.58861682e-01 -3.87570351e-01
-2.34915659e-01 -9.41561580e-01 3.95420611e-01 9.93841767e-01
5.56104064e-01 -9.78302002e-01 9.94697630e-01 4.41461354e-01
-1.11270595e+00 3.10497191e-02 -5.58099866e-01 -1.43960476e-01
-3.11748553e-02 1.28498530e+00 -6.46055102e-01 1.16166842e+00
7.57592618e-01 5.05274236e-01 -5.76062322e-01 1.53051984e+00
-2.80904531e-01 8.21231723e-01 -7.51378775e-01 2.67056435e-01
2.36391172e-01 -1.30135274e+00 4.58768189e-01 1.28950119e+00
3.50043535e-01 -1.12015270e-02 3.73338282e-01 6.46086752e-01
5.68171620e-01 1.06196329e-02 -6.14154518e-01 1.03146702e-01
-2.25144759e-01 1.36038625e+00 -9.97173965e-01 -2.40386039e-01
-4.12278831e-01 9.63092387e-01 -7.06459939e-01 7.34449208e-01
-5.95154464e-01 -4.23488505e-02 3.01836878e-01 1.00690924e-01
3.50346535e-01 -3.85322481e-01 -7.06586897e-01 -9.42004502e-01
1.10450260e-01 -4.72081155e-01 -1.30649507e-02 -1.07828307e+00
-1.08949435e+00 2.49369174e-01 2.07031056e-01 -1.23231399e+00
-3.61823559e-01 -6.34360790e-01 -9.95721459e-01 1.42519736e+00
-1.98532975e+00 -1.10968423e+00 -6.18251204e-01 3.46168905e-01
6.90933228e-01 1.47130907e-01 8.40660512e-01 -3.97753380e-02
-2.95186222e-01 -1.96341664e-01 1.00643086e+00 -4.00691539e-01
9.70360413e-02 -1.55139005e+00 -1.14348330e-01 1.27370763e+00
4.04732794e-01 -2.00928729e-02 7.04550505e-01 -5.91032565e-01
-1.04139030e+00 -9.27661240e-01 8.79017532e-01 -1.06822714e-01
2.39098314e-02 -1.10904582e-01 -7.16986835e-01 2.69176394e-01
6.28091335e-01 -1.46706402e-01 4.90291327e-01 -1.00619689e-01
1.96368247e-01 -3.76155883e-01 -1.11139739e+00 -1.09505467e-02
2.40568340e-01 -5.75620234e-01 -1.73475191e-01 8.49246681e-01
-1.48619443e-01 -1.47818401e-01 -6.22800946e-01 2.85465181e-01
2.34132469e-01 -1.10668004e+00 6.72536969e-01 2.88430333e-01
-2.55090278e-02 -7.20979095e-01 2.70753831e-01 -1.14760613e+00
-3.59447390e-01 -5.74337661e-01 4.73522455e-01 1.20071220e+00
4.36271578e-01 -8.19232047e-01 7.88695812e-01 1.69717684e-01
1.05816282e-01 -2.99873322e-01 -1.02244675e+00 -7.67259240e-01
-1.15116514e-01 -1.10482760e-01 9.48128849e-03 8.78176630e-01
-6.80907428e-01 -1.34315103e-01 1.37755185e-01 5.32608509e-01
8.66475821e-01 8.42398226e-01 5.48516870e-01 -1.40499079e+00
7.31391981e-02 -1.70540780e-01 -2.75609791e-01 -4.99090016e-01
-1.15122959e-01 -5.38412869e-01 1.29576012e-01 -2.03829288e+00
3.38777632e-01 -5.35826981e-01 5.72158508e-02 3.15580964e-01
-1.43571451e-01 3.77101570e-01 4.10589367e-01 2.72511303e-01
2.72469163e-01 2.74151415e-01 1.02742660e+00 -2.46303037e-01
-2.72350281e-01 3.77195656e-01 1.04180366e-01 7.63059378e-01
1.09859252e+00 -4.53186482e-01 -3.81648779e-01 -3.22097689e-01
2.68649273e-02 -3.19940537e-01 4.21226948e-01 -1.18052077e+00
9.09194723e-02 -1.69536397e-01 8.45440447e-01 -1.09957838e+00
1.84355199e-01 -1.18294692e+00 4.79171991e-01 3.69928420e-01
6.58784270e-01 1.21503465e-01 1.69119745e-01 1.91318572e-01
-2.97927260e-01 -6.32831395e-01 1.00458503e+00 -1.61875948e-01
-6.50906622e-01 -7.10480660e-02 -5.96751630e-01 -5.50533652e-01
9.10617411e-01 -7.36039877e-01 -5.36415204e-02 -5.53680241e-01
-6.39320612e-01 -2.36292835e-02 5.99737525e-01 -2.13320106e-01
1.52880862e-01 -6.73100173e-01 -4.98675585e-01 -7.60015426e-03
-3.37621182e-01 -2.07943413e-02 6.76016733e-02 1.19406533e+00
-8.96442115e-01 4.65643078e-01 1.13882553e-02 -9.56751764e-01
-1.52418554e+00 1.57401234e-01 6.01636052e-01 -3.34624916e-01
-3.54100913e-01 5.05706728e-01 4.95960526e-02 4.90091220e-02
-7.09271282e-02 -6.33871198e-01 -1.28198773e-01 3.62286061e-01
-9.32140350e-02 5.79723775e-01 3.53052735e-01 -7.22585082e-01
-2.05624655e-01 8.18805993e-01 4.68699753e-01 3.02541591e-02
1.23025727e+00 -1.38620615e-01 -5.24478018e-01 5.48194408e-01
8.53070736e-01 3.08932781e-01 -1.02604747e+00 2.80540556e-01
-9.85799059e-02 -5.36126494e-01 6.24460340e-01 -1.09035552e+00
-1.27251613e+00 8.20667386e-01 1.02621675e+00 4.20992076e-01
1.73739755e+00 -7.04183698e-01 1.15155689e-01 4.51319106e-02
5.44104517e-01 -1.27961183e+00 -7.88373470e-01 3.22830647e-01
3.67558807e-01 -1.19530857e+00 7.38498986e-01 -8.96627009e-01
-4.67089146e-01 1.19371319e+00 1.36567960e-02 -1.41181037e-01
5.19573867e-01 4.16728705e-01 3.30531359e-01 9.45672095e-02
-1.47386685e-01 -6.53363526e-01 3.08300793e-01 7.95197427e-01
3.49269092e-01 2.56636649e-01 -5.70982754e-01 -5.20194829e-01
1.70699343e-01 -2.18730643e-01 4.31782842e-01 1.14406228e+00
-3.94947648e-01 -1.15635252e+00 -8.26874256e-01 5.17032087e-01
-2.35111713e-01 -2.36666381e-01 -2.23306671e-01 6.93096995e-01
4.00394976e-01 1.20633042e+00 2.63664901e-01 4.74294811e-01
-8.24365243e-02 2.08362997e-01 5.63398242e-01 -3.16002458e-01
-8.58969331e-01 8.06591928e-01 -2.01779112e-01 -3.67319763e-01
-9.33344483e-01 -9.25623417e-01 -9.53507364e-01 -4.54781093e-02
-8.61184835e-01 3.85445029e-01 1.15082729e+00 1.08696675e+00
-1.09623417e-01 4.80039269e-01 9.70276177e-01 -9.98559833e-01
-3.22272964e-02 -7.72476375e-01 -8.87669921e-01 -3.22056592e-01
1.97371915e-01 -2.39850417e-01 -4.77901340e-01 5.05447805e-01] | [9.723876953125, -1.7698118686676025] |
9936aaba-6722-42de-b215-4975fa4ce3a6 | univariate-long-term-municipal-water-demand | 2105.08486 | null | https://arxiv.org/abs/2105.08486v1 | https://arxiv.org/pdf/2105.08486v1.pdf | Univariate Long-Term Municipal Water Demand Forecasting | This study describes an investigation into the modelling of citywide water consumption in London, Canada. Multiple modelling techniques were evaluated for the task of univariate time series forecasting with water consumption, including linear regression, Facebook's Prophet method, recurrent neural networks, and convolutional neural networks. Prophet was identified as the model of choice, having achieved a mean absolute percentage error of 2.51%, averaged across a 5-fold cross validation. Prophet was also found to have other advantages deemed valuable to water demand management stakeholders, including inherent interpretability and graceful handling of missing data. The implementation for the methods described in this paper has been open sourced, as they may be adaptable by other municipalities. | ['Daniel Hsia', 'Matthew A. S. Ross', 'Blake VanBerlo'] | 2021-05-18 | null | null | null | null | ['univariate-time-series-forecasting'] | ['time-series'] | [-3.46207112e-01 3.34879637e-01 -2.24706963e-01 -1.68404296e-01
-5.65852642e-01 -2.14461342e-01 6.66486621e-01 4.11097229e-01
-2.82234490e-01 6.28206551e-01 8.99154365e-01 -8.35274458e-01
-2.68967450e-01 -1.03114998e+00 1.23708688e-01 -1.00008512e+00
-5.28830230e-01 -4.05054763e-02 -2.70306766e-01 -4.46861982e-01
1.53896496e-01 4.27180797e-01 -1.39367306e+00 9.66545418e-02
7.54886746e-01 7.50699580e-01 -7.00626373e-02 6.08112872e-01
3.63539793e-02 1.39492989e+00 -3.98597181e-01 -2.63979528e-02
1.30634412e-01 -4.01773527e-02 -8.06426048e-01 -4.18184668e-01
-2.29932427e-01 -4.42908585e-01 -2.09387615e-01 2.13021338e-01
8.04188132e-01 9.58516598e-02 5.17543018e-01 -1.17513788e+00
-3.77698332e-01 6.72276556e-01 1.30077107e-02 3.91053230e-01
3.98954481e-01 3.77075166e-01 6.94518268e-01 -5.88278294e-01
1.45213991e-01 9.46570754e-01 1.29007411e+00 -8.63216892e-02
-1.06391025e+00 -8.38509917e-01 -2.01727867e-01 -5.28236739e-02
-1.66336012e+00 -6.71389580e-01 3.21073145e-01 -7.59755194e-01
2.04428983e+00 5.74611962e-01 1.17776239e+00 5.18833280e-01
2.50407279e-01 4.87175256e-01 1.07187617e+00 -2.09704131e-01
3.91457856e-01 2.12252706e-01 -1.43835515e-01 8.45295712e-02
1.93386123e-01 2.01681644e-01 1.65068284e-01 -5.48422158e-01
2.24632457e-01 -2.92313509e-02 1.80285558e-01 6.99909568e-01
-6.25871956e-01 1.11262321e+00 7.09981024e-01 5.68872392e-01
-7.87999749e-01 2.21935079e-01 6.12330019e-01 1.23397157e-01
1.22186840e+00 1.52158856e-01 -6.93680048e-01 -2.18744487e-01
-1.13146126e+00 9.95054469e-02 1.11218750e+00 6.45367026e-01
2.76949853e-01 5.41034698e-01 1.54557213e-01 5.27197301e-01
9.40737665e-01 4.30617481e-01 6.72794342e-01 -7.02510238e-01
3.82346511e-01 5.41990280e-01 3.35731804e-01 -1.13204098e+00
-1.19585788e+00 -7.37291723e-02 -1.08063424e+00 -2.34307405e-02
2.26792961e-01 -7.72813499e-01 -8.76689672e-01 1.15882623e+00
4.83614132e-02 -2.20622309e-02 3.76442105e-01 2.04534918e-01
1.16927469e+00 1.00392437e+00 7.48468995e-01 -3.95046026e-01
8.45542371e-01 -5.04018843e-01 -7.45165706e-01 -1.15646057e-01
9.78964448e-01 -4.92989272e-01 1.02044344e-01 -1.57449067e-01
-9.65286255e-01 2.02494785e-02 -6.54844701e-01 1.77157104e-01
-8.14594090e-01 -2.02601478e-01 4.83140320e-01 9.20724273e-01
-1.23419023e+00 6.21759951e-01 -1.17270458e+00 -5.70458174e-01
4.43576187e-01 3.70757520e-01 1.02664351e-01 3.97098303e-01
-1.38077617e+00 1.38469994e+00 3.13569009e-01 5.14541864e-01
-1.94639966e-01 -6.86577022e-01 -9.68389571e-01 2.49600206e-02
-8.54126632e-01 -3.77599657e-01 1.47492325e+00 -8.17443609e-01
-1.21267247e+00 3.28422129e-01 -1.45491689e-01 -6.00907624e-01
6.59397781e-01 1.21796548e-01 -8.87229979e-01 -3.79209071e-01
2.56037682e-01 1.28174558e-01 -1.00371968e-02 -4.40256804e-01
-7.22785413e-01 -9.72512141e-02 -4.97048378e-01 7.82570466e-02
-2.50378698e-01 7.86482245e-02 5.05943656e-01 -4.54872817e-01
-7.19229057e-02 -7.65713990e-01 -7.44242430e-01 -3.22808385e-01
-8.67913887e-02 -4.47166502e-01 4.60588515e-01 -1.24354672e+00
1.72502840e+00 -1.85199487e+00 -8.10018778e-01 5.90010345e-01
-9.49532688e-02 3.94536734e-01 2.33675495e-01 1.26535666e+00
-1.80517524e-01 4.94357884e-01 -5.45287840e-02 -1.51784020e-03
-4.99112457e-02 1.53523073e-01 4.75478768e-02 7.77611554e-01
1.34749964e-01 9.45189595e-01 -1.02571619e+00 -3.14200073e-02
4.24687058e-01 8.84983718e-01 1.02524914e-01 -1.87786773e-01
1.33067573e-04 3.38255495e-01 -5.45004547e-01 5.06157160e-01
5.56537211e-01 -3.20882529e-01 2.29958385e-01 8.29363614e-02
-8.72590899e-01 4.27270323e-01 -1.06947637e+00 7.40512013e-01
-6.15406394e-01 9.09125805e-01 -4.30643499e-01 -4.60418642e-01
1.04766607e+00 1.06614316e+00 7.42338479e-01 -6.27521276e-01
6.53111115e-02 6.13153398e-01 -4.34314422e-02 -1.02443755e+00
3.88277918e-01 9.23286229e-02 1.92850307e-01 4.31882590e-01
-6.01118147e-01 -2.03494392e-02 3.72297727e-02 -3.01754624e-01
8.23261142e-01 1.41640787e-03 6.20176971e-01 -5.54561555e-01
-1.68396812e-02 4.44683164e-01 8.94835815e-02 2.46757403e-01
-1.73337534e-01 2.73505092e-01 -6.14597090e-02 -8.75379682e-01
-1.10176718e+00 -1.03193708e-01 -5.18574238e-01 9.40740407e-01
-6.57772720e-01 -2.97984660e-01 -2.87874460e-01 2.76997447e-01
4.36627455e-02 1.16118371e+00 -7.17651606e-01 3.32126975e-01
-5.06699383e-01 -1.27024794e+00 6.11608148e-01 5.80108881e-01
4.55014646e-01 -1.15626085e+00 -1.19329858e+00 9.31583941e-01
-8.84631872e-02 -4.92886484e-01 3.19663808e-02 3.77437770e-01
-9.10821795e-01 -8.61435890e-01 -8.14770758e-01 -5.14455736e-01
2.61791945e-01 1.68999329e-01 1.05482638e+00 8.61202702e-02
-3.24510410e-02 1.01847842e-01 -2.33200133e-01 -7.45409608e-01
-3.34740162e-01 2.81837583e-01 -3.59420419e-01 -5.24756074e-01
9.21874702e-01 -5.54821074e-01 -9.27200019e-01 -6.70231208e-02
-7.25454032e-01 -5.97298779e-02 1.42059147e-01 4.36566770e-01
-2.17950597e-01 1.02666758e-01 9.18925047e-01 -5.10334671e-01
8.52005005e-01 -1.41564834e+00 -4.28945035e-01 -1.54982030e-01
-1.02199590e+00 -4.91056859e-01 2.09736764e-01 -3.39598618e-02
-7.83414006e-01 4.26901758e-01 -5.29453814e-01 4.66125160e-01
-1.85721681e-01 1.24959886e+00 6.10961974e-01 1.55323714e-01
8.34674656e-01 1.99234635e-02 1.58511266e-01 -4.74705130e-01
8.52782130e-02 1.01148546e+00 -1.35778233e-01 3.64918411e-01
4.58129406e-01 3.27335805e-01 -4.26949412e-01 -1.05007815e+00
-2.49216139e-01 -7.46700287e-01 -7.32974648e-01 -1.89071283e-01
7.46884525e-01 -1.57831788e+00 -7.56041467e-01 7.30667889e-01
-9.08101320e-01 -7.60347605e-01 -5.80137148e-02 2.86113948e-01
-9.49402899e-02 -3.05261403e-01 -3.90777737e-01 -1.26510489e+00
-8.74524653e-01 -7.12890387e-01 4.89024490e-01 3.20489079e-01
-9.37664986e-01 -1.54276478e+00 2.13223487e-01 -3.48137081e-01
1.31147265e+00 8.77512574e-01 4.63400036e-01 -7.82303810e-01
2.96577573e-01 -4.01624680e-01 -4.63993624e-02 -1.16349041e-01
4.17604953e-01 3.76040787e-01 -1.19191635e+00 -3.41625929e-01
-5.18021464e-01 1.95362881e-01 3.63959312e-01 6.85016751e-01
4.71025378e-01 -1.09410751e+00 -4.33453500e-01 1.20571628e-01
1.54806471e+00 4.63396579e-01 6.94441676e-01 8.30060601e-01
2.62096554e-01 6.54832304e-01 5.33716828e-02 9.12612796e-01
1.00832903e+00 1.58398211e-01 4.95962411e-01 -3.82100224e-01
3.12851340e-01 -2.44662743e-02 2.61636704e-01 7.30363071e-01
-4.02933389e-01 -6.54098392e-02 -1.46177256e+00 1.03445911e+00
-1.94935346e+00 -1.08038890e+00 -7.53279388e-01 1.60204840e+00
5.47242582e-01 -2.56755143e-01 5.71916461e-01 2.97977477e-01
1.41715795e-01 2.14036122e-01 -5.03098786e-01 -7.28317559e-01
-1.08559623e-01 8.42617750e-02 1.05416274e+00 3.59083652e-01
-1.10502911e+00 3.75007093e-01 7.43167400e+00 1.35590449e-01
-8.77753675e-01 1.88195661e-01 8.50845039e-01 2.12215871e-01
-2.49357611e-01 -2.17307448e-01 -5.94414234e-01 5.59364617e-01
1.80848742e+00 -4.83423293e-01 2.10620910e-02 5.82683861e-01
1.15993154e+00 -2.37715960e-01 -4.35819149e-01 9.30710509e-03
-5.84077597e-01 -1.32984054e+00 -6.12100184e-01 8.47642869e-02
9.59113359e-01 8.69140387e-01 -9.61785242e-02 7.72357360e-02
9.24646735e-01 -1.31311905e+00 5.42560220e-01 5.72175622e-01
4.75375831e-01 -6.97289526e-01 1.13908994e+00 3.01506579e-01
-1.37675250e+00 -4.82714504e-01 -3.51405740e-02 -6.71844184e-01
3.48674536e-01 4.12608624e-01 -9.57147479e-01 2.84066498e-01
1.09763944e+00 1.13411152e+00 -4.25344735e-01 1.43895638e+00
1.47166893e-01 9.56786573e-01 -6.45039618e-01 -3.14601779e-01
7.49798298e-01 1.64973885e-01 -9.15247649e-02 1.55188286e+00
6.72394156e-01 4.01155442e-01 -2.77936440e-02 7.55734444e-02
7.70711005e-01 4.42345530e-01 -7.87254095e-01 1.69825628e-01
6.46673203e-01 7.95649827e-01 -4.02886301e-01 -2.44961426e-01
-7.20048249e-01 2.11014390e-01 -3.65341783e-01 4.32524949e-01
-2.91368932e-01 -2.85831273e-01 6.53455853e-01 2.25093439e-02
1.90118089e-01 -3.60691547e-02 -5.33110023e-01 -4.01643753e-01
-5.85125685e-01 -3.49569678e-01 3.62895817e-01 -7.21484423e-01
-1.21504664e+00 4.70477968e-01 5.29980473e-02 -1.20869625e+00
-6.77839160e-01 -1.02727197e-01 -8.53926480e-01 1.34313452e+00
-1.62471437e+00 -1.20303237e+00 -2.91338176e-01 2.99488634e-01
4.21830088e-01 -3.22449505e-02 1.39614677e+00 3.69670898e-01
-6.03689969e-01 2.86729354e-02 6.13668680e-01 -1.74096953e-02
-1.37134194e-01 -1.05211461e+00 7.12652981e-01 3.01290452e-01
-7.99243331e-01 2.04018489e-01 9.16962922e-01 -6.90281034e-01
-8.98773313e-01 -1.46704590e+00 1.49326754e+00 -1.32379651e-01
8.80143523e-01 3.51366043e-01 -7.97555029e-01 9.88808393e-01
5.40979028e-01 -3.98660451e-01 9.53312159e-01 -1.30315498e-01
6.81782812e-02 2.26247132e-01 -1.37273812e+00 3.81916165e-01
6.93974271e-02 -1.70774907e-01 -5.26757352e-02 7.07851887e-01
3.98613155e-01 -3.01064014e-01 -1.58788919e+00 1.08415604e-01
9.85848606e-01 -6.77486658e-01 7.79941678e-01 -2.83587426e-01
1.23469904e-01 6.65196078e-03 -5.64223342e-02 -1.47668779e+00
-7.72054374e-01 -6.90338790e-01 -1.29457964e-02 1.15711129e+00
7.53277421e-01 -1.00870311e+00 5.63144505e-01 1.29889774e+00
9.74059254e-02 -4.39704508e-01 -1.11461020e+00 -3.27665418e-01
4.59395558e-01 -5.32897115e-01 9.87678587e-01 1.13594246e+00
4.56331789e-01 -8.88026059e-02 -5.40262699e-01 1.93732381e-01
3.32922153e-02 -4.11724925e-01 3.60748589e-01 -1.31594145e+00
4.82379526e-01 -6.10229731e-01 -2.57088095e-01 -2.99089700e-01
-3.51728052e-01 -7.33589947e-01 -2.42141753e-01 -1.98127198e+00
-2.98108339e-01 -4.48083997e-01 -1.92907393e-01 1.08197534e+00
3.89958888e-01 2.36228243e-01 8.56496766e-02 4.29986596e-01
4.34436142e-01 2.47016102e-01 6.74892366e-01 -2.97083944e-01
-8.20037901e-01 5.51646113e-01 -8.05247605e-01 5.95088065e-01
1.41596735e+00 -4.89269078e-01 -7.23907202e-02 -4.00578678e-01
5.01225770e-01 -7.35001788e-02 1.13182172e-01 -7.46184528e-01
3.73590171e-01 -3.05985183e-01 3.92370731e-01 -6.61811650e-01
-4.39699627e-02 -1.11062682e+00 1.21119380e+00 1.04214585e+00
-1.97704479e-01 4.40489799e-01 6.70334399e-01 4.38517798e-03
1.04345076e-01 -5.56587614e-02 3.43379676e-01 -2.52237588e-01
-6.28677428e-01 5.01149846e-03 -1.09632778e+00 -6.69662714e-01
9.51760352e-01 -2.67330617e-01 -3.32271606e-01 -6.14087164e-01
-9.90306735e-01 4.84226137e-01 -1.08471476e-01 2.49250829e-01
1.16499536e-01 -1.27237713e+00 -1.08591592e+00 -6.69473335e-02
7.31923878e-02 -2.42908821e-01 7.30150640e-02 8.62134039e-01
-6.31864488e-01 5.49616873e-01 1.35362789e-01 -2.62049496e-01
-8.31086099e-01 1.64632779e-02 7.15089679e-01 -1.24576744e-02
-9.27481472e-01 2.72399366e-01 -9.12447751e-01 -5.18166900e-01
9.77735221e-02 -4.71375793e-01 -7.91700661e-01 7.21472800e-01
6.21861517e-01 9.01414573e-01 1.45943150e-01 -1.09268844e+00
-2.36180604e-01 4.15731251e-01 5.05785644e-01 1.74461499e-01
2.08013368e+00 -4.61280882e-01 -9.68225375e-02 8.25608730e-01
1.30035520e+00 -7.60881603e-01 -1.01796520e+00 -1.40472844e-01
3.13859314e-01 -5.72193377e-02 3.39838803e-01 -1.05459130e+00
-1.02604294e+00 3.91264677e-01 1.02111328e+00 9.00625885e-01
1.01547694e+00 -5.02115548e-01 6.66244328e-01 1.49096414e-01
-1.02436386e-01 -1.03051591e+00 -1.00422633e+00 4.00666833e-01
9.70553935e-01 -1.19189560e+00 1.65747687e-01 2.02165887e-01
-2.74416476e-01 1.37289131e+00 -1.62898675e-01 1.53805867e-01
1.48198342e+00 3.10285509e-01 3.65402371e-01 -3.04794639e-01
-8.40118289e-01 -2.55409181e-01 -6.42729625e-02 5.68389356e-01
7.71305084e-01 4.46375012e-01 -3.35200697e-01 9.21247751e-02
-3.13826144e-01 3.92689407e-01 4.63244021e-01 9.06341553e-01
-3.31176877e-01 -4.41565782e-01 -3.25427413e-01 7.59441078e-01
-6.36154413e-01 -2.92337328e-01 1.55851245e-01 8.71132195e-01
-2.68301994e-01 1.40016544e+00 2.71086782e-01 -1.28724828e-01
2.85820633e-01 -7.10947067e-02 -6.11677229e-01 -1.30944371e-01
-1.23528457e+00 1.65397942e-01 5.42009771e-01 -2.87947834e-01
-9.00186837e-01 -1.14796066e+00 -9.99230683e-01 -7.04716444e-01
-1.18794918e-01 6.09961748e-02 8.52549374e-01 9.58333671e-01
2.98389822e-01 2.98133850e-01 9.97078001e-01 -1.14911449e+00
-8.02734420e-02 -1.57238638e+00 -5.06152689e-01 -1.69948921e-01
6.76153600e-01 2.72893608e-02 -3.92080724e-01 -9.84853059e-02] | [6.414000988006592, 2.998826503753662] |
8bccfeff-317f-409d-a998-81d4ed811dd7 | contrast-and-clustering-learning-neighborhood | 2301.13428 | null | https://arxiv.org/abs/2301.13428v3 | https://arxiv.org/pdf/2301.13428v3.pdf | Contrast and Clustering: Learning Neighborhood Pair Representation for Source-free Domain Adaptation | Unsupervised domain adaptation uses source data from different distributions to solve the problem of classifying data from unlabeled target domains. However, conventional methods require access to source data, which often raise concerns about data privacy. In this paper, we consider a more practical but challenging setting where the source domain data is unavailable and the target domain data is unlabeled. Specifically, we address the domain discrepancy problem from the perspective of contrastive learning. The key idea of our work is to learn a domain-invariant feature by 1) performing clustering directly in the original feature space with nearest neighbors; 2) constructing truly hard negative pairs by extended neighbors without introducing additional computational complexity; and 3) combining noise-contrastive estimation theory to gain computational advantage. We conduct careful ablation studies and extensive experiments on three common benchmarks: VisDA, Office-Home, and Office-31. The results demonstrate the superiority of our methods compared with other state-of-the-art works. | ['Haojie Fang', 'Yingjian Li', 'Yonggang Li', 'Xiangbin Zhu', 'Yuqi Chen'] | 2023-01-31 | null | null | null | null | ['source-free-domain-adaptation'] | ['computer-vision'] | [ 2.21128508e-01 -1.68562576e-01 -4.75956708e-01 -7.10075974e-01
-1.08891261e+00 -8.38889003e-01 4.77520764e-01 7.02916086e-02
-5.30670702e-01 1.09168196e+00 -3.83629315e-02 -1.69488952e-01
-1.01581298e-01 -5.82053959e-01 -5.44451416e-01 -9.19645250e-01
2.38902807e-01 5.01967490e-01 3.57201286e-02 7.33323246e-02
6.90943236e-03 1.39953449e-01 -1.25283742e+00 -9.30222124e-02
1.14596772e+00 1.12390447e+00 -3.25806141e-01 -7.20727220e-02
1.62081942e-02 5.01007557e-01 -4.77504343e-01 -3.78726542e-01
8.55377376e-01 -4.40850288e-01 -7.19573677e-01 3.78062427e-01
3.61466169e-01 -3.49822640e-01 -1.60127774e-01 1.42258775e+00
4.39201951e-01 2.79680610e-01 8.12259078e-01 -1.71510172e+00
-9.86758411e-01 2.22041294e-01 -9.35671628e-01 9.45255458e-02
6.57883063e-02 -1.45638615e-01 7.55645514e-01 -7.24506855e-01
6.80343866e-01 1.01317346e+00 3.71693373e-01 5.97743690e-01
-1.47556722e+00 -1.13921857e+00 1.94692656e-01 1.31828561e-01
-1.54087472e+00 -5.76894283e-01 8.75430167e-01 -4.11756247e-01
8.01745355e-02 -2.51997961e-03 -1.31406203e-01 1.29297638e+00
-5.29788077e-01 7.56004512e-01 1.32581627e+00 -2.73788005e-01
6.28182232e-01 5.33358037e-01 3.29857558e-01 1.38093844e-01
4.53127474e-01 3.51887494e-01 -2.96034366e-01 -6.87395036e-01
4.74649489e-01 2.81052530e-01 -2.87627906e-01 -1.09426868e+00
-1.16118765e+00 1.01119876e+00 1.55283347e-01 -4.22642715e-02
-5.49821146e-02 -6.11245275e-01 3.28800410e-01 7.15090454e-01
6.13036633e-01 5.53731658e-02 -7.24568784e-01 2.57873744e-01
-6.58631086e-01 1.97743878e-01 8.53793263e-01 1.37784410e+00
8.98026645e-01 -3.48282278e-01 1.09663002e-01 8.86721790e-01
2.05810428e-01 5.85604727e-01 5.08188486e-01 -9.29301441e-01
7.95461476e-01 3.88111264e-01 4.43980008e-01 -7.00762391e-01
-5.35687841e-02 -2.08201915e-01 -8.58187973e-01 5.39577231e-02
9.36454833e-01 -4.19723988e-01 -7.39731908e-01 1.88684344e+00
6.91641688e-01 2.72722155e-01 4.18092996e-01 9.22077298e-01
5.07342517e-01 3.85247052e-01 1.85535494e-02 -2.67436832e-01
1.01989114e+00 -7.75703490e-01 -5.76987445e-01 -2.91589171e-01
5.62319934e-01 -4.51580673e-01 1.01862967e+00 2.62734950e-01
-4.68261987e-01 -2.90030271e-01 -1.09729695e+00 -5.15737087e-02
-5.09824216e-01 -3.07903602e-03 4.71063912e-01 8.01875353e-01
-4.41204906e-01 3.46653283e-01 -5.38327396e-01 -4.12543982e-01
7.97022045e-01 3.56395364e-01 -7.09805369e-01 -3.80952954e-01
-1.12028515e+00 2.91647494e-01 4.03270304e-01 -4.92139459e-01
-5.15010715e-01 -7.01474786e-01 -8.86642456e-01 -9.56350639e-02
7.35662162e-01 -4.76601899e-01 1.20851994e+00 -1.07979059e+00
-1.27817476e+00 1.04062998e+00 -1.90851882e-01 -3.32921773e-01
6.40212774e-01 -1.36156738e-01 -6.33234262e-01 -1.53939098e-01
3.64428401e-01 2.71481901e-01 9.16923881e-01 -1.35353267e+00
-8.16022754e-01 -8.62356186e-01 -2.01142505e-01 2.58907914e-01
-6.09781265e-01 -2.64280349e-01 -3.40531111e-01 -6.80932045e-01
1.33069962e-01 -8.19922864e-01 -2.48354882e-01 2.87768394e-01
-4.53585982e-01 -1.25126168e-01 9.96682703e-01 -4.38485920e-01
9.00178313e-01 -2.59424305e+00 -3.09296399e-01 4.80759144e-01
4.30737525e-01 2.55731702e-01 -1.59356609e-01 -2.90547889e-02
-2.62758404e-01 -6.05983324e-02 -5.15282869e-01 -1.65487021e-01
3.09110302e-02 5.66322915e-03 -3.81729275e-01 8.32086444e-01
-8.27767774e-02 5.25417984e-01 -9.39232409e-01 -4.65366423e-01
4.13337685e-02 8.69539529e-02 -5.23226202e-01 1.79951951e-01
1.30341783e-01 5.72078586e-01 -7.51222253e-01 7.74576962e-01
1.24126983e+00 -3.98953915e-01 2.72865891e-01 8.02064613e-02
3.57972592e-01 9.94594991e-02 -1.49179983e+00 1.63599443e+00
-5.19146696e-02 2.76295364e-01 2.28911027e-01 -1.32423460e+00
9.89205480e-01 6.77414313e-02 4.80836481e-01 -7.71482706e-01
1.14590637e-01 1.59507111e-01 -2.71921426e-01 -1.39622986e-01
8.43330026e-02 -1.68138698e-01 -3.22258323e-01 4.02520239e-01
-3.26228775e-02 2.47964934e-01 -2.88101465e-01 -8.03204626e-02
1.03368700e+00 -2.29407340e-01 6.81734741e-01 -2.13926211e-01
3.87396723e-01 -4.08284590e-02 9.55674410e-01 6.77144527e-01
-7.20020354e-01 6.53103769e-01 4.93701875e-01 -1.89385131e-01
-7.64550745e-01 -1.46126127e+00 -7.17766061e-02 1.12626314e+00
3.39672178e-01 5.49190603e-02 -6.46131098e-01 -1.32732511e+00
2.75328547e-01 6.16587996e-01 -5.47677517e-01 -1.39692485e-01
-1.86704367e-01 -6.87516570e-01 3.19283336e-01 4.41382825e-01
6.85225070e-01 -4.58775997e-01 5.48994839e-02 -9.79458168e-02
-3.73560339e-01 -1.00310576e+00 -7.41247356e-01 4.14469898e-01
-9.12473321e-01 -1.12260425e+00 -8.19580317e-01 -9.69931722e-01
8.60631764e-01 5.55625498e-01 9.83251989e-01 -5.79060972e-01
7.44927898e-02 2.35300109e-01 -1.62874997e-01 -3.88394713e-01
-6.56673536e-02 1.89029813e-01 2.25086764e-01 1.00315094e-01
1.06700277e+00 -8.01891685e-01 -3.90790254e-01 5.88049829e-01
-9.02252734e-01 -6.56249940e-01 5.11613071e-01 1.09006906e+00
8.18565726e-01 1.54770479e-01 9.02257621e-01 -1.50226152e+00
5.07032990e-01 -8.65067363e-01 -8.02308440e-01 2.72864908e-01
-7.06383586e-01 -7.85916001e-02 7.98030138e-01 -6.26126647e-01
-1.20542634e+00 4.56091583e-01 4.41378713e-01 -3.60553086e-01
-4.15433705e-01 -1.45941395e-02 -8.59266996e-01 1.42660096e-01
9.24952269e-01 2.41432950e-01 1.20743260e-01 -4.51983243e-01
3.84060323e-01 1.03923273e+00 5.93436897e-01 -7.32601941e-01
1.18835747e+00 6.75286889e-01 -3.30290914e-01 -5.63752592e-01
-8.61017227e-01 -7.87123919e-01 -6.77960277e-01 6.32672012e-01
3.95843357e-01 -1.20073724e+00 -5.23553193e-01 3.38602334e-01
-5.68019271e-01 -6.98671713e-02 -4.63001907e-01 4.71282065e-01
-4.83428270e-01 6.84379935e-01 -1.42718971e-01 -5.94470918e-01
-4.65052128e-02 -7.41524816e-01 7.86272824e-01 1.83127791e-01
3.74343037e-03 -8.59567642e-01 -1.72499754e-02 3.74046594e-01
4.62799072e-02 1.83869660e-01 7.20281363e-01 -1.40188956e+00
-3.54323119e-01 -1.69151038e-01 -4.70267326e-01 5.59240580e-01
5.18937290e-01 -7.55232334e-01 -1.06054521e+00 -4.01296943e-01
1.98830619e-01 -4.72601920e-01 6.53495371e-01 2.54301935e-01
1.39056087e+00 -2.68604755e-01 -5.78362226e-01 6.55275106e-01
1.28143215e+00 2.51798838e-01 4.21968728e-01 2.35605434e-01
3.95321250e-01 6.27195835e-01 1.09290969e+00 6.52998209e-01
3.77166271e-01 3.55259120e-01 1.88993186e-01 -5.80501519e-02
4.50956464e-01 -4.90499020e-01 2.14822982e-02 1.41416356e-01
5.43935239e-01 -1.95878386e-01 -7.08451390e-01 8.09518993e-01
-1.93015194e+00 -8.40164185e-01 2.84150660e-01 2.59821701e+00
9.33700383e-01 -7.79142901e-02 3.05774987e-01 -1.18320972e-01
1.01806045e+00 -2.91407052e-02 -1.01288486e+00 2.76029319e-01
-6.90080002e-02 7.98083246e-02 7.91176617e-01 2.76822317e-02
-1.63227034e+00 5.76826453e-01 5.99485254e+00 8.74236643e-01
-8.42821717e-01 1.11908779e-01 8.33560169e-01 -1.51441649e-01
-1.33725762e-01 -3.70269679e-02 -7.03696787e-01 6.05012298e-01
5.60164034e-01 -3.82560939e-01 4.93133068e-01 1.32303393e+00
-2.89485067e-01 4.93596084e-02 -1.41729701e+00 1.32173300e+00
-8.53691399e-02 -8.27750385e-01 -4.32230502e-01 2.53882438e-01
7.28204072e-01 -3.36262723e-03 2.71970004e-01 4.84266013e-01
6.82531953e-01 -7.13659883e-01 2.20912755e-01 4.65481216e-03
9.22866881e-01 -7.85083532e-01 5.77755213e-01 5.14279127e-01
-8.80439699e-01 -1.78469077e-01 -5.28666854e-01 9.25605446e-02
-2.63015062e-01 8.04383695e-01 -5.88007629e-01 3.93624455e-01
7.75800407e-01 8.67039204e-01 -3.01763088e-01 8.43624532e-01
9.38975736e-02 6.25731468e-01 -5.01259625e-01 2.00126886e-01
-1.62310123e-01 -1.66667044e-01 3.18699390e-01 7.59459615e-01
3.63499731e-01 1.59422204e-01 3.93065929e-01 8.52546334e-01
-4.37936604e-01 1.90911368e-01 -9.83216524e-01 2.14195307e-02
1.00050771e+00 9.72057223e-01 -3.56035531e-01 -1.80241376e-01
-7.14295268e-01 1.14136302e+00 4.12404448e-01 5.45174241e-01
-7.10001290e-01 -4.95011359e-01 1.06684935e+00 3.77884023e-02
4.33488071e-01 1.12008944e-01 -3.43550533e-01 -1.40964246e+00
3.13177019e-01 -9.19446349e-01 8.34626377e-01 -1.89169541e-01
-2.09382153e+00 1.72057137e-01 -1.02294818e-01 -1.71681297e+00
-2.19224513e-01 -3.94656152e-01 -1.78384334e-01 8.85202646e-01
-1.65133834e+00 -8.15280795e-01 -1.11439683e-01 1.11085999e+00
1.21242076e-01 -3.20301831e-01 8.80002856e-01 4.18648213e-01
-3.83793354e-01 1.12833464e+00 8.31394792e-01 3.87686223e-01
1.27074981e+00 -1.17980933e+00 2.03074425e-01 6.49544716e-01
-1.07543856e-01 7.07073450e-01 2.04369158e-01 -4.83537257e-01
-1.04204381e+00 -1.36160016e+00 7.50031710e-01 -5.31983674e-01
4.77977782e-01 -5.62485456e-01 -9.31431055e-01 8.78882170e-01
-2.03211933e-01 5.83976567e-01 1.18001938e+00 1.59085721e-01
-8.92011225e-01 -3.45685095e-01 -1.93061292e+00 3.30673009e-01
1.13865328e+00 -3.99012059e-01 -6.38288856e-01 2.48327494e-01
5.70086360e-01 -3.17108929e-01 -7.83167899e-01 6.24524690e-02
3.09500754e-01 -7.43149996e-01 1.06403351e+00 -7.05481768e-01
1.08426966e-01 -3.96097422e-01 -4.52499062e-01 -1.38050044e+00
-2.02236682e-01 -5.15335321e-01 9.61493924e-02 1.58556533e+00
3.23127776e-01 -1.04487574e+00 1.02359176e+00 8.90670776e-01
6.24683857e-01 -4.47770692e-02 -1.06059420e+00 -1.07093096e+00
3.22233886e-01 -1.85548082e-01 7.55302608e-01 1.49629402e+00
1.23820733e-02 3.51719409e-01 -4.53532010e-01 2.82791227e-01
8.76469672e-01 2.78977662e-01 9.29129779e-01 -1.52802467e+00
-1.72152892e-01 1.96055338e-01 -2.38321915e-01 -1.18197298e+00
4.19529378e-01 -7.44383097e-01 2.45151874e-02 -8.51240873e-01
3.22729886e-01 -5.91135263e-01 -4.97606784e-01 5.45745909e-01
-1.55614302e-01 -4.22117747e-02 -1.42544005e-02 2.39439741e-01
-8.40346873e-01 4.92765725e-01 8.63817990e-01 -1.62432194e-01
-1.91544622e-01 2.26885319e-01 -1.37035549e+00 6.48407936e-01
7.88063824e-01 -8.18323553e-01 -7.97879338e-01 -2.44183138e-01
-4.22878176e-01 -1.34297431e-01 3.57596904e-01 -8.10987353e-01
1.10757537e-01 -4.13819820e-01 5.45811176e-01 -5.13152599e-01
5.91831207e-02 -1.41173828e+00 -2.67235100e-01 1.77153554e-02
-3.48404139e-01 -4.72261935e-01 -8.75667706e-02 9.95688438e-01
-2.88329422e-01 2.15507839e-02 8.85628819e-01 1.25683665e-01
-8.22655320e-01 5.39612591e-01 8.72598439e-02 5.60963154e-01
1.21691155e+00 -8.58002305e-02 -3.58294845e-01 -3.93711179e-01
-6.31271422e-01 3.34377110e-01 8.03439319e-01 3.84292036e-01
3.65596950e-01 -1.50816190e+00 -5.04370928e-01 4.13112938e-01
6.60831153e-01 8.10517892e-02 1.00368418e-01 3.80840808e-01
2.35782623e-01 1.00314520e-01 -4.53644320e-02 -5.72714269e-01
-1.10397029e+00 9.98957098e-01 7.22147077e-02 -1.47760838e-01
-3.42745334e-01 6.74973905e-01 5.58349133e-01 -9.67780650e-01
3.58294904e-01 1.48226647e-02 4.60735820e-02 7.30165839e-03
6.08018935e-01 4.74782825e-01 -1.19337216e-01 -3.26715142e-01
-5.33145130e-01 2.06355944e-01 -3.66442323e-01 3.87708470e-03
1.21552455e+00 -4.40381616e-01 1.98018193e-01 6.37684092e-02
1.57187557e+00 6.11707754e-02 -1.33203745e+00 -9.68927622e-01
5.94681986e-02 -8.12600434e-01 -3.34114075e-01 -7.56121933e-01
-1.08337986e+00 6.45709574e-01 9.15132046e-01 -7.45812953e-02
1.40401912e+00 6.99852556e-02 7.54579425e-01 5.85174859e-01
4.05366153e-01 -1.32592392e+00 -2.17185244e-01 2.81281888e-01
2.68572897e-01 -1.88214552e+00 -1.64756134e-01 -5.38082302e-01
-7.41051257e-01 6.86912417e-01 7.96221197e-01 -1.72079727e-02
9.95752752e-01 9.91943404e-02 1.69504523e-01 1.91746086e-01
-3.23564708e-01 -1.66282207e-01 2.05255821e-02 1.25756943e+00
9.94748399e-02 1.37285337e-01 -1.52520269e-01 1.21657419e+00
1.03486583e-01 2.00672358e-01 2.27178037e-01 1.11091530e+00
-6.38288260e-02 -1.35479724e+00 -4.37095165e-01 5.58171928e-01
-5.02854943e-01 -1.43692493e-02 -4.68031853e-01 8.27759922e-01
1.16501987e-01 1.04420829e+00 -8.53764936e-02 -1.92447558e-01
3.04661840e-01 1.68074265e-01 2.78795511e-02 -6.24114156e-01
-2.08139718e-02 -1.32018402e-01 -2.31597632e-01 -3.81740153e-01
-3.34535360e-01 -8.95520866e-01 -1.05967951e+00 -3.00168216e-01
-1.26350984e-01 2.27261499e-01 2.69677192e-01 6.70776904e-01
6.47447586e-01 -1.15355596e-01 9.75755394e-01 -1.77336067e-01
-1.18108392e+00 -6.36444032e-01 -9.70480084e-01 7.58474708e-01
5.52412331e-01 -7.36339450e-01 -4.47626919e-01 1.50631756e-01] | [10.389314651489258, 3.1874606609344482] |
82e6b57f-72e4-4cca-b3b2-5dc98d04d803 | interpretable-sparsification-of-brain-graphs | 2306.14375 | null | https://arxiv.org/abs/2306.14375v1 | https://arxiv.org/pdf/2306.14375v1.pdf | Interpretable Sparsification of Brain Graphs: Better Practices and Effective Designs for Graph Neural Networks | Brain graphs, which model the structural and functional relationships between brain regions, are crucial in neuroscientific and clinical applications involving graph classification. However, dense brain graphs pose computational challenges including high runtime and memory usage and limited interpretability. In this paper, we investigate effective designs in Graph Neural Networks (GNNs) to sparsify brain graphs by eliminating noisy edges. While prior works remove noisy edges based on explainability or task-irrelevant properties, their effectiveness in enhancing performance with sparsified graphs is not guaranteed. Moreover, existing approaches often overlook collective edge removal across multiple graphs. To address these issues, we introduce an iterative framework to analyze different sparsification models. Our findings are as follows: (i) methods prioritizing interpretability may not be suitable for graph sparsification as they can degrade GNNs' performance in graph classification tasks; (ii) simultaneously learning edge selection with GNN training is more beneficial than post-training; (iii) a shared edge selection across graphs outperforms separate selection for each graph; and (iv) task-relevant gradient information aids in edge selection. Based on these insights, we propose a new model, Interpretable Graph Sparsification (IGS), which enhances graph classification performance by up to 5.1% with 55.0% fewer edges. The retained edges identified by IGS provide neuroscientific interpretations and are supported by well-established literature. | ['Yujun Yan', 'Danai Koutra', 'Xiang Zhang', 'Marlena Duda', 'Gaotang Li'] | 2023-06-26 | null | null | null | null | ['graph-classification'] | ['graphs'] | [ 5.07858336e-01 5.27128756e-01 -1.98539436e-01 -3.68301839e-01
1.75909668e-01 -3.36140543e-01 2.37173513e-01 3.60913992e-01
-3.49896938e-01 7.85407722e-01 2.82266676e-01 -4.07578230e-01
-6.83199763e-01 -7.20766127e-01 -5.91850936e-01 -3.39205176e-01
-5.14502227e-01 4.34004754e-01 8.82110521e-02 -2.42657229e-01
-8.97010937e-02 6.29095435e-01 -1.19477963e+00 -2.73943320e-02
1.23043072e+00 6.58024669e-01 3.11789572e-01 2.60909677e-01
1.65674575e-02 4.03363317e-01 -3.19034100e-01 -4.35275793e-01
3.31960917e-01 -4.37954098e-01 -6.10458016e-01 -3.68337072e-02
4.19361353e-01 -1.35545120e-01 -6.25976026e-01 1.26950800e+00
3.90856951e-01 1.32264018e-01 4.55998749e-01 -1.35797846e+00
-7.71070659e-01 1.23545909e+00 -5.14635384e-01 5.49188614e-01
-1.66000500e-01 1.63064823e-01 1.25046051e+00 -5.72294235e-01
7.84578383e-01 9.25668418e-01 8.42323124e-01 4.70133454e-01
-1.26884663e+00 -6.55611813e-01 4.78122622e-01 7.40395710e-02
-1.30631483e+00 -2.50204474e-01 9.03134406e-01 -1.42724603e-01
9.20007408e-01 4.89501745e-01 1.31755602e+00 1.11774254e+00
4.17322874e-01 4.25839454e-01 9.55396235e-01 8.70507732e-02
1.27077878e-01 -3.62122685e-01 5.22312045e-01 8.09324622e-01
1.07107747e+00 -8.47457051e-02 -6.11118317e-01 8.35821033e-02
8.54907870e-01 4.12011594e-02 -3.83370996e-01 -2.20703155e-01
-1.05780625e+00 8.52075160e-01 8.86933804e-01 3.95375967e-01
-5.94151676e-01 2.56102681e-01 4.82073128e-01 4.01209772e-01
5.35361111e-01 8.50284696e-01 -1.32965818e-01 2.48212963e-01
-9.16101694e-01 -9.04324651e-02 6.18360341e-01 8.04451048e-01
5.98436177e-01 5.54807067e-01 -5.17328158e-02 7.51757264e-01
1.14256941e-01 2.52333611e-01 3.36651444e-01 -3.46735060e-01
3.07401478e-01 9.16334093e-01 -7.23742604e-01 -1.35960984e+00
-1.05446017e+00 -9.42561865e-01 -1.35021663e+00 -2.19121292e-01
2.76751190e-01 -1.51344389e-01 -1.08935964e+00 1.88446617e+00
1.40115060e-02 1.76874459e-01 -3.98677737e-01 9.41854477e-01
1.21145773e+00 -1.41140550e-01 2.51574785e-01 -8.59398171e-02
1.27585471e+00 -7.44591296e-01 -7.49087155e-01 -6.83163404e-01
6.74430013e-01 -1.84738189e-01 1.03273141e+00 2.56787091e-01
-9.61518645e-01 -2.31104627e-01 -1.01660895e+00 2.66941171e-02
-2.85063416e-01 -1.09884284e-01 1.28478539e+00 7.46312141e-01
-1.58009446e+00 5.79326630e-01 -9.21380460e-01 -2.22268358e-01
9.16073799e-01 6.95855439e-01 -4.86302435e-01 -1.70324240e-02
-1.18328846e+00 7.26074576e-01 4.55413491e-01 3.17020237e-01
-7.69949257e-01 -6.91554666e-01 -8.74998331e-01 4.38759834e-01
3.84348005e-01 -9.77171123e-01 4.17602658e-01 -1.08937454e+00
-9.81054723e-01 5.60278475e-01 -2.66001206e-02 -6.66798234e-01
4.29151416e-01 2.07381845e-01 -2.52699643e-01 4.25303996e-01
-7.52064884e-02 7.08418667e-01 6.61996186e-01 -1.08039296e+00
-2.17190124e-02 -6.26629293e-01 -1.98371653e-02 3.43560636e-01
-7.23864615e-01 -3.93124759e-01 -2.19855309e-01 -8.53939354e-01
5.76978624e-01 -9.13778543e-01 -4.30245697e-01 -2.93374360e-01
-6.66790187e-01 1.30264878e-01 6.35397375e-01 -6.96326792e-01
1.25131357e+00 -1.78405237e+00 1.19009167e-01 6.68522418e-01
1.24445415e+00 7.80173615e-02 -4.05678451e-01 -2.12215837e-02
-3.41560811e-01 3.07455927e-01 -1.50681704e-01 -1.34712890e-01
-2.66353786e-01 1.25313714e-01 1.53990477e-01 5.54475784e-01
1.51176542e-01 1.22950578e+00 -1.00779593e+00 -1.62343174e-01
-2.87394561e-02 4.69862968e-01 -6.48999333e-01 -5.15524030e-01
2.22952694e-01 2.72952527e-01 -4.45808113e-01 5.37839413e-01
5.94438612e-01 -5.25140762e-01 6.95200324e-01 -3.79993945e-01
4.34881210e-01 2.08444521e-01 -1.03737783e+00 1.11378098e+00
-5.83449155e-02 6.17195904e-01 8.10466781e-02 -1.41285002e+00
9.40299273e-01 -2.12639235e-02 5.01700044e-01 -6.45621240e-01
2.05516160e-01 9.70055908e-02 6.07947588e-01 -2.36222938e-01
3.26462001e-01 -4.98799793e-03 3.68920088e-01 4.87250686e-01
1.69958740e-01 1.62384082e-02 3.60723108e-01 5.33822179e-01
1.59290290e+00 -4.71720845e-01 4.04190630e-01 -7.02465594e-01
-3.24210967e-03 -3.10985744e-01 3.85274827e-01 9.27355349e-01
-2.83214062e-01 3.25087279e-01 7.70918727e-01 -5.63420355e-01
-7.95717776e-01 -9.36031997e-01 1.19988352e-01 9.76689816e-01
1.32993788e-01 -4.46887463e-01 -7.68339097e-01 -7.23885775e-01
-5.12042344e-02 3.78768474e-01 -8.31855059e-01 -5.27246475e-01
-3.93338621e-01 -9.58653927e-01 5.11952162e-01 5.54063141e-01
3.46036226e-01 -1.07798982e+00 -3.74078393e-01 -2.79985610e-02
-2.51073297e-03 -1.08269489e+00 -5.44893324e-01 4.38502103e-01
-1.15179741e+00 -1.10840237e+00 -3.15491170e-01 -8.53460670e-01
1.47997916e+00 7.36784160e-01 1.04611695e+00 7.04516709e-01
-2.01689735e-01 2.70032644e-01 -2.52794325e-01 -3.20411414e-01
-7.11624026e-02 3.91639739e-01 1.83116689e-01 -2.86821097e-01
5.00165112e-02 -9.02489960e-01 -5.94755411e-01 1.91513553e-01
-1.02210748e+00 2.94972003e-01 7.85413444e-01 9.55112576e-01
5.00447869e-01 1.08412050e-01 9.73339915e-01 -1.37831104e+00
1.10969543e+00 -4.95849103e-01 -3.57651263e-01 1.88854143e-01
-8.38157892e-01 2.54184097e-01 7.75795698e-01 -5.99473834e-01
-7.63502479e-01 -7.78901950e-02 -2.14566495e-02 -1.97079718e-01
2.10072443e-01 1.04024529e+00 2.96274200e-02 -5.62032282e-01
8.87667000e-01 4.16994318e-02 1.95843756e-01 4.67984192e-02
1.19036980e-01 -9.93082225e-02 9.58220959e-02 -2.94020176e-01
6.62695825e-01 4.20002609e-01 2.64712155e-01 -9.22062039e-01
-5.17325401e-01 -2.26848766e-01 -4.82866794e-01 -3.91986281e-01
5.00117421e-01 -5.51932156e-01 -6.02447093e-01 4.13314179e-02
-7.48147368e-01 -5.40860415e-01 -1.18799321e-01 6.65976405e-01
-2.92522144e-02 5.68993390e-01 -6.54503703e-01 -4.78334486e-01
-6.07025504e-01 -1.23494601e+00 7.44784236e-01 2.11390704e-01
-5.04563034e-01 -1.25135899e+00 -5.44980168e-01 4.08424824e-01
4.84408200e-01 2.10927024e-01 9.32819068e-01 -7.97655463e-01
-3.74201119e-01 -3.69113758e-02 -4.78576064e-01 -1.71323065e-02
1.18093915e-01 -3.22385132e-01 -5.32779515e-01 -3.04799557e-01
-2.87470549e-01 -1.72872424e-01 9.87734258e-01 7.70283639e-01
1.36946929e+00 -3.79013658e-01 -3.56603265e-01 6.69197798e-01
1.10851920e+00 -7.78369457e-02 5.29010534e-01 8.74174759e-02
9.59630966e-01 5.45164585e-01 -1.95040777e-01 2.43751466e-01
2.91294277e-01 6.49628267e-02 4.19073462e-01 -5.01795471e-01
-4.18707222e-01 -7.19371364e-02 1.58389032e-01 8.43897581e-01
-3.75431806e-01 -2.99834341e-01 -9.87447262e-01 4.46982563e-01
-1.64710438e+00 -7.52308786e-01 -4.17167217e-01 2.06015563e+00
6.41109049e-01 4.18336868e-01 1.25943884e-01 3.15546989e-04
7.77544856e-01 1.27834752e-01 -7.57894576e-01 -1.09034479e-02
-3.38777721e-01 3.99541497e-01 7.00384796e-01 4.57862973e-01
-6.13882840e-01 9.80976343e-01 6.11347437e+00 5.12134850e-01
-1.02105916e+00 3.33044603e-02 1.02183855e+00 -2.32117921e-02
-7.70159841e-01 -1.49024474e-02 -4.56825823e-01 2.44186074e-01
6.34241879e-01 -2.92169243e-01 7.62264013e-01 6.61660194e-01
1.87905818e-01 1.29429728e-01 -8.03246558e-01 8.20832074e-01
1.85672849e-01 -1.24445009e+00 3.95678014e-01 1.86867550e-01
6.89434946e-01 8.48925337e-02 -5.95168322e-02 2.54907250e-01
4.42735672e-01 -1.28291380e+00 4.78314191e-01 2.36275375e-01
5.56104839e-01 -6.59387946e-01 6.73560143e-01 -3.14008854e-02
-1.20394397e+00 1.00083359e-01 -4.09584165e-01 -6.43148646e-02
-6.89063892e-02 9.55793440e-01 -1.00305545e+00 5.41424632e-01
3.97289515e-01 4.70476002e-01 -8.46973419e-01 9.87931073e-01
-4.58835900e-01 8.31358969e-01 -4.36470687e-01 -2.58340806e-01
2.02705637e-01 -3.81606758e-01 6.16248250e-01 1.02118909e+00
2.69565165e-01 1.40571266e-01 7.53996149e-02 8.79996419e-01
-3.85626256e-01 8.55375752e-02 -7.67170548e-01 -3.77541065e-01
3.43575746e-01 1.44855607e+00 -1.66701913e+00 -1.70517236e-01
-2.73753762e-01 7.08137214e-01 7.05236971e-01 5.97458422e-01
-7.21348405e-01 -2.14259923e-01 3.72620225e-01 2.94124901e-01
-7.18614608e-02 -3.19687217e-01 -8.52308929e-01 -9.71942902e-01
-1.04081541e-01 -7.55213022e-01 5.06230772e-01 -4.18684930e-01
-1.19300556e+00 7.55189717e-01 -7.67211094e-02 -5.21752119e-01
3.97858024e-01 -4.26570803e-01 -4.32275832e-01 3.72513354e-01
-1.32537544e+00 -1.11088252e+00 -5.48259497e-01 4.23224956e-01
2.11755067e-01 5.18808104e-02 4.53477383e-01 3.43807399e-01
-6.37942553e-01 6.74010992e-01 -4.02805209e-01 3.91513892e-02
2.75400937e-01 -1.08092177e+00 5.05376995e-01 9.59235549e-01
2.09552079e-01 9.93443131e-01 6.16766632e-01 -1.21208394e+00
-1.52675617e+00 -1.11982918e+00 6.90696537e-01 3.14674787e-02
8.17153275e-01 -4.26044285e-01 -1.00148368e+00 7.85740137e-01
-2.57428646e-01 1.45750821e-01 6.22788787e-01 5.52577198e-01
-1.86555013e-01 -1.39587224e-01 -1.06876159e+00 1.03457880e+00
1.80984366e+00 -1.90578550e-01 -1.61622688e-01 5.21557510e-01
5.17067432e-01 -3.10885906e-01 -7.95478463e-01 3.17680031e-01
4.17146474e-01 -5.84555268e-01 1.02621770e+00 -6.97737634e-01
2.69967049e-01 5.34105338e-02 4.23523456e-01 -1.68668389e+00
-6.61037505e-01 -5.04539311e-01 7.24135935e-02 5.99580884e-01
6.18681371e-01 -1.05813777e+00 9.30022120e-01 7.04283655e-01
-4.02712345e-01 -7.81787694e-01 -8.56150746e-01 -7.29218304e-01
-2.98291117e-01 -3.69207025e-01 5.06648362e-01 1.19807839e+00
1.26258522e-01 5.49688876e-01 -2.71981955e-01 5.43475039e-02
5.10381758e-01 -2.03184903e-01 4.27581340e-01 -1.41177320e+00
-9.44000930e-02 -8.68860781e-01 -6.13930464e-01 -5.70465207e-01
2.99425483e-01 -1.33443308e+00 -2.43878514e-01 -1.89238453e+00
3.25171560e-01 -3.58378828e-01 -3.12062025e-01 8.84960711e-01
-6.00077033e-01 3.04676563e-01 -9.17434692e-02 -2.06628188e-01
-6.29424989e-01 4.13563520e-01 1.46605074e+00 -1.67380363e-01
-2.29270518e-01 -3.45310867e-01 -1.13264489e+00 6.56856418e-01
9.87203479e-01 -2.99147874e-01 -9.62135613e-01 -4.12014186e-01
4.58926290e-01 -1.51652187e-01 2.89182752e-01 -8.38324428e-01
1.20119222e-01 -9.28197503e-02 4.17479604e-01 1.50815353e-01
-5.14013618e-02 -5.74881732e-01 2.75855422e-01 7.70929992e-01
-2.14541301e-01 6.50765225e-02 3.23253274e-01 6.05401456e-01
2.08194703e-01 -2.27984283e-02 6.58928931e-01 -6.09157607e-02
-5.83339453e-01 6.79891407e-01 -3.55069727e-01 1.19205393e-01
7.27469385e-01 -4.23540473e-01 -3.80387217e-01 -5.41228831e-01
-7.78784752e-01 1.49437129e-01 9.49115157e-02 1.93358064e-01
8.19379985e-01 -1.03316879e+00 -6.68631136e-01 2.46372059e-01
-1.74165025e-01 -2.26869449e-01 4.64848250e-01 1.08591247e+00
-5.21471381e-01 1.46650746e-01 -3.63951325e-01 -3.12792182e-01
-1.40111828e+00 1.48148969e-01 1.26847371e-01 -4.07408237e-01
-8.27930033e-01 1.07182539e+00 4.72477764e-01 -2.54434079e-01
1.26565784e-01 -5.07271409e-01 -2.44915619e-01 -9.57759321e-02
1.45212024e-01 3.01379561e-01 2.87011683e-01 -3.45058262e-01
-2.49551594e-01 -2.04475626e-01 -2.64656991e-01 3.89995843e-01
1.71085751e+00 7.59256631e-02 -1.91645637e-01 -1.59239784e-01
7.70475626e-01 -1.06691241e-01 -9.76266325e-01 -5.22727892e-02
-2.34501716e-02 -2.37750977e-01 2.87292540e-01 -5.65109968e-01
-1.50211966e+00 3.88922811e-01 2.03355879e-01 4.08387542e-01
1.20238066e+00 -2.29030214e-02 6.80070400e-01 4.18434888e-01
2.22635463e-01 -1.03389871e+00 1.04590029e-01 3.85090828e-01
9.47043002e-01 -1.02451253e+00 3.26440483e-01 -7.15050757e-01
-5.45118928e-01 1.04117000e+00 7.36629903e-01 -6.75400794e-02
5.71769416e-01 2.17277274e-01 -5.74037969e-01 -8.68162394e-01
-3.37089956e-01 -1.51738435e-01 4.59413558e-01 6.10876262e-01
2.95842946e-01 2.61848867e-01 -6.08425736e-01 8.17427754e-01
-4.67818558e-01 -2.86688626e-01 3.47872198e-01 4.77084935e-01
-2.45705962e-01 -6.40675545e-01 3.64444815e-02 1.34818625e+00
-1.56896383e-01 -4.35743928e-01 -6.82043791e-01 7.92565763e-01
-2.35534117e-01 7.03651190e-01 -2.24071965e-01 -4.22437310e-01
7.32790828e-02 -3.21129560e-01 4.88279492e-01 -6.01684630e-01
-5.01418293e-01 -1.99520245e-01 4.12847847e-01 -4.64651108e-01
4.89408802e-03 -4.42467600e-01 -1.38501179e+00 -4.37448889e-01
-4.63034540e-01 -4.61294204e-02 3.68873000e-01 9.16474402e-01
6.86378956e-01 9.65715468e-01 6.67559309e-03 -6.68315709e-01
-2.81864643e-01 -8.39381456e-01 -7.72316575e-01 4.96502221e-01
-7.17495978e-02 -9.09980774e-01 -4.45844680e-01 -2.14642674e-01] | [7.083847999572754, 6.042013645172119] |
619aa8b5-108b-4c1b-afd1-9d3c858f8c9f | automated-whole-slide-imaging-for-label-free | 2304.13736 | null | https://arxiv.org/abs/2304.13736v2 | https://arxiv.org/pdf/2304.13736v2.pdf | Automated Whole Slide Imaging for Label-Free Histology using Photon Absorption Remote Sensing Microscopy | The field of histology relies heavily on antiquated tissue processing and staining techniques that limit the efficiency of pathologic diagnoses of cancer and other diseases. Current staining and advanced labeling methods are often destructive and mutually incompatible, requiring new tissue sections for each stain. This prolongs the diagnostic process and depletes valuable biopsy samples. In this study, we present an alternative label-free histology platform using the first transmission-mode Photon Absorption Remote Sensing microscope. Optimized for automated whole slide scanning of unstained tissue samples, the system provides slide images at magnifications up to 40x that are fully compatible with existing digital pathology tools. The scans capture high quality and high-resolution images with subcellular diagnostic detail. After imaging, samples remain suitable for histochemical, immunohistochemical, and other staining techniques. Scattering and absorption (radiative and non-radiative) contrasts are shown in whole slide images of malignant human breast and skin tissues samples. Clinically relevant features are highlighted, and close correspondence and analogous contrast is demonstrated with one-to-one gold standard H&E stained images. Our previously reported pix2pix virtual staining model is applied to an entire whole slide image, showcasing the potential of this approach in whole slide label-free H&E emulation. This work is a critical advance for integrating label-free optical methods into standard histopathology workflows, both enhancing diagnostic efficiency, and broadening the number of stains that can be applied while preserving valuable tissue samples. | ['Parsin Haji Reza', 'John R. Mackey', 'Deepak Dinakaran', 'Marian Boktor', 'Benjamin R. Ecclestone', 'James E. D. Tweel'] | 2023-04-26 | null | null | null | null | ['whole-slide-images'] | ['computer-vision'] | [ 5.16348958e-01 -1.24873705e-01 5.72099239e-02 1.11317346e-02
-9.68690038e-01 -8.26715171e-01 -5.89405261e-02 5.02086461e-01
-6.38322115e-01 7.14196205e-01 -5.83329380e-01 -3.90918523e-01
3.88207793e-01 -6.83277667e-01 1.46130070e-01 -1.41334510e+00
2.17334971e-01 7.38828421e-01 5.57552457e-01 4.29110751e-02
-1.49209067e-01 1.08509874e+00 -1.05381525e+00 1.14653118e-01
5.23598082e-02 5.53848088e-01 4.13595527e-01 8.99738908e-01
-3.35642695e-01 5.72576404e-01 -1.92892745e-01 -1.28962189e-01
1.50204003e-01 -2.81982064e-01 -6.88380003e-01 -2.21068814e-01
-5.99108487e-02 -2.69138455e-01 2.12131515e-01 8.28005314e-01
5.87651312e-01 -4.62808371e-01 5.15710473e-01 -6.60406232e-01
-2.57418245e-01 -7.83566572e-03 -8.73209298e-01 4.13658768e-01
2.70754099e-01 3.12106609e-01 4.39056367e-01 -6.60152316e-01
1.05727780e+00 6.56751692e-01 7.39532232e-01 8.74377131e-01
-1.66376686e+00 -5.20619929e-01 -8.13839197e-01 -9.34692994e-02
-1.40552199e+00 -2.08238631e-01 4.67240065e-01 -7.02929735e-01
8.76291037e-01 5.71114182e-01 9.17610765e-01 3.48481238e-01
6.55255616e-01 5.56334667e-02 1.72096705e+00 -5.87720215e-01
3.11335862e-01 4.97567147e-01 9.12828445e-02 9.11784351e-01
4.16478366e-01 -3.25779691e-02 -2.34600812e-01 -1.87492266e-01
7.15332747e-01 4.29952711e-01 -3.95270258e-01 6.47716522e-02
-1.37656522e+00 1.79337293e-01 1.73825949e-01 7.34250605e-01
-1.49279401e-01 1.77472308e-01 2.67129868e-01 -8.52801576e-02
3.65428954e-01 3.52905765e-02 4.46511060e-02 2.07780018e-01
-1.09861457e+00 -4.25433517e-01 2.23765761e-01 1.75110865e-02
8.62686038e-01 -5.48347831e-01 1.20344535e-01 3.45763654e-01
3.91811222e-01 9.15423453e-01 3.14542294e-01 -8.23288202e-01
-8.83986771e-01 7.22127497e-01 6.05036393e-02 -4.65681672e-01
-6.77501857e-01 -1.46453947e-01 -7.73045003e-01 8.66835415e-01
6.06104374e-01 2.97820926e-01 -7.56949782e-01 9.93652999e-01
8.01374614e-01 -1.07331596e-01 -1.98351711e-01 9.40656304e-01
4.63445276e-01 4.16370273e-01 2.77955472e-01 -6.35912955e-01
1.68382263e+00 -3.93214613e-01 -6.88781500e-01 2.64657795e-01
9.04256642e-01 -8.08114707e-01 1.22236252e+00 2.57059634e-01
-1.01949978e+00 1.25348672e-01 -9.84329700e-01 -1.90223932e-01
-3.42263132e-01 3.56767029e-02 5.76307893e-01 7.13548958e-01
-1.30878198e+00 3.06536227e-01 -1.33650923e+00 -6.55851364e-01
6.39298260e-01 3.61434370e-01 -5.90414047e-01 -3.55885804e-01
-1.75628901e-01 7.94900239e-01 -2.34868318e-01 2.10668221e-01
-3.60031366e-01 -1.09220517e+00 -7.58161843e-02 -2.34896749e-01
-4.43954617e-01 -5.61158836e-01 9.01399076e-01 -3.57297212e-01
-1.62982202e+00 1.67144561e+00 -2.19293848e-01 -2.54299566e-02
3.74212533e-01 7.79898643e-01 -1.93126515e-01 8.43623519e-01
-7.76468888e-02 6.49957120e-01 -3.18791345e-02 -1.15428066e+00
-2.85188735e-01 -4.22798038e-01 -5.77684104e-01 -2.34934926e-01
-3.52084413e-02 3.07972252e-01 -1.24014512e-01 9.48368311e-02
-4.08362634e-02 -8.00137758e-01 -2.04251885e-01 7.95700133e-01
-1.36017084e-01 5.11580765e-01 1.00891304e+00 -2.68719852e-01
6.73504055e-01 -2.41896653e+00 -5.89121342e-01 3.13801378e-01
2.75826603e-01 2.73198131e-02 2.83311531e-02 3.04628462e-01
-8.92322510e-03 1.05985306e-01 -6.30243793e-02 -2.03295827e-01
-1.24118157e-01 -7.50666782e-02 3.21817547e-01 1.12948239e+00
-3.65918547e-01 1.05190063e+00 -7.90351629e-01 -1.11311889e+00
3.72963816e-01 9.84267294e-01 6.57207444e-02 -1.73108399e-01
1.55980945e-01 7.08308160e-01 -1.58934295e-01 9.78960276e-01
7.16309011e-01 -5.20640552e-01 4.98481929e-01 -4.13442224e-01
-3.33531886e-01 -1.91580981e-01 -4.65236723e-01 1.42430389e+00
-2.53709942e-01 5.87335944e-01 6.11163080e-01 -2.85834670e-01
5.95873117e-01 3.25312316e-01 6.41575217e-01 -4.43085521e-01
2.98113704e-01 4.63279694e-01 -2.89102525e-01 -5.42292595e-01
-1.41381070e-01 -1.16005933e+00 6.28185213e-01 8.30967247e-01
-3.22093725e-01 -3.61998856e-01 1.89395279e-01 -4.68139425e-02
1.12326932e+00 -1.87524572e-01 2.73995578e-01 -5.26559830e-01
4.35931236e-01 3.99534225e-01 8.03056806e-02 1.46683320e-01
-3.25131625e-01 5.94578505e-01 4.05204743e-01 -4.64787364e-01
-9.93158698e-01 -1.11151636e+00 -4.86861169e-01 5.68858087e-01
1.24127373e-01 2.11504027e-01 -5.46819687e-01 -2.40863100e-01
-2.24794060e-01 5.40910922e-02 -7.87029564e-01 4.03723478e-01
-2.67911494e-01 -1.19358730e+00 5.19660950e-01 -1.86297804e-01
-5.55999242e-02 -7.36598969e-01 -1.15059483e+00 1.73283875e-01
-6.63930252e-02 -6.36189401e-01 3.88021827e-01 3.07581931e-01
-8.01783264e-01 -1.34276903e+00 -7.86452055e-01 -7.07159519e-01
1.17283261e+00 4.50767428e-01 9.04419065e-01 5.95029056e-01
-1.11577916e+00 4.52888668e-01 -2.34818488e-01 -4.22632724e-01
-5.32514930e-01 -2.39538386e-01 -3.14973652e-01 -2.72778481e-01
2.95183003e-01 -5.50719857e-01 -9.18202102e-01 9.29582343e-02
-9.72894907e-01 1.03567056e-01 8.12592268e-01 7.59616375e-01
1.35309470e+00 -2.13119343e-01 -1.65582243e-02 -1.19545889e+00
-1.53162017e-01 -7.12776706e-02 -5.91453075e-01 3.67658794e-01
-4.89743233e-01 -6.25250340e-01 3.91989589e-01 -1.85409859e-02
-1.14866281e+00 -5.64905442e-02 -6.44475268e-03 -6.26104400e-02
-2.36552179e-01 3.65055561e-01 5.81696212e-01 -4.85241801e-01
7.53464460e-01 -1.09887704e-01 5.43477237e-01 6.93954527e-02
-3.43382984e-01 2.64443189e-01 4.80359346e-01 8.30626190e-02
6.38502777e-01 1.44264853e+00 4.82819170e-01 -7.50417948e-01
-3.84251565e-01 -7.94007301e-01 -3.24021250e-01 -3.24836135e-01
7.98636734e-01 -4.39552128e-01 -9.00287747e-01 3.08345139e-01
-7.11180449e-01 -7.75355756e-01 -5.22559762e-01 7.50745296e-01
-2.10520253e-01 2.96070665e-01 -1.02158082e+00 -6.07999623e-01
-4.16760355e-01 -1.05518293e+00 1.06387138e+00 1.30990103e-01
-2.09323481e-01 -1.27535748e+00 5.75879693e-01 3.07819754e-01
5.26556611e-01 6.77635670e-01 9.93568301e-01 2.72141308e-01
-4.97163713e-01 -3.05965126e-01 -2.51587480e-01 -2.64036745e-01
1.16853654e-01 6.22939825e-01 -1.16591716e+00 -1.44401312e-01
6.01973757e-02 -1.61414266e-01 7.22000539e-01 5.89246571e-01
7.39739120e-01 1.26212418e-01 -9.12178874e-01 6.22397423e-01
1.97408605e+00 -1.96293265e-01 8.13544869e-01 4.11479294e-01
2.50781417e-01 8.49482656e-01 5.27671814e-01 5.39065115e-02
-1.25656098e-01 1.83547407e-01 5.73070943e-01 -1.02378345e+00
-3.05508465e-01 4.66183990e-01 6.41807467e-02 2.55600393e-01
2.32444927e-02 -1.63387701e-01 -9.98361766e-01 7.30201244e-01
-8.92604649e-01 -8.87976825e-01 -6.76017523e-01 1.74698317e+00
1.08401227e+00 -4.24790502e-01 -3.39538530e-02 8.82187784e-02
7.03407705e-01 -5.45807779e-01 -2.84931868e-01 1.38358269e-02
-1.37878001e-01 6.10411823e-01 5.09734392e-01 5.48087180e-01
-3.96504432e-01 4.41864312e-01 7.05293465e+00 6.46990120e-01
-1.77572560e+00 2.40192294e-01 7.86170483e-01 -5.26142716e-01
-5.73897719e-01 -1.91417128e-01 -4.53676641e-01 2.05608785e-01
7.39268661e-01 3.82231548e-02 7.00098947e-02 1.16885535e-01
5.06916702e-01 -7.81704009e-01 -1.02350783e+00 8.09156060e-01
-3.80922616e-01 -1.52797294e+00 -1.68669075e-01 5.34337223e-01
3.33264649e-01 2.62391984e-01 2.34349463e-02 -7.43747890e-01
7.74616674e-02 -1.04775333e+00 1.71286091e-01 4.92731541e-01
1.52934170e+00 -3.62064511e-01 1.20150113e+00 -1.41573489e-01
-6.59160674e-01 4.73972082e-01 -2.25688368e-01 1.87263384e-01
2.93949962e-01 1.18118179e+00 -1.18530273e+00 1.16695657e-01
7.64311075e-01 3.73315841e-01 -4.33057487e-01 6.48200393e-01
2.17251346e-01 4.40850586e-01 -4.51124042e-01 -5.46473898e-02
8.89890566e-02 -2.59745598e-01 6.51884973e-02 1.36949646e+00
4.04116660e-01 3.96002322e-01 -2.80173659e-01 7.51443326e-01
4.03942943e-01 1.67258531e-01 -3.37073922e-01 -7.26293446e-03
3.03999245e-01 2.15312529e+00 -1.70672226e+00 -8.63070786e-02
-4.24589723e-01 6.22914374e-01 -1.14082299e-01 2.92112172e-01
-5.65720499e-01 -3.21872942e-02 2.13342041e-01 6.52493715e-01
-1.76439345e-01 4.93067354e-02 -3.67471278e-01 -5.73868930e-01
-4.97353733e-01 -1.77422181e-01 2.78887451e-01 -7.93198764e-01
-1.15314555e+00 2.39694715e-01 -4.37781841e-01 -1.15100718e+00
5.05914807e-01 -6.27618015e-01 -5.59875131e-01 8.35784674e-01
-1.85262334e+00 -1.41853321e+00 -4.64192837e-01 4.32504773e-01
-4.35556918e-01 6.39108598e-01 1.21520996e+00 2.04591379e-01
-2.86586761e-01 3.98957729e-02 4.92511749e-01 -3.13608497e-01
9.38678026e-01 -1.15862465e+00 -7.72050142e-01 4.21701074e-01
-5.82121611e-01 5.94247341e-01 5.95584810e-01 -3.15997779e-01
-1.26230454e+00 -8.16683471e-01 5.89209139e-01 -2.17136621e-01
6.76154971e-01 7.85379931e-02 -5.57038605e-01 5.88379741e-01
2.61638761e-01 4.85274166e-01 1.65958858e+00 -5.87023735e-01
5.94277829e-02 -9.77698565e-02 -1.90555859e+00 4.83415812e-01
1.31765246e-01 -4.15455371e-01 2.30870679e-01 5.30799747e-01
-1.38701230e-01 -2.75859147e-01 -8.41271222e-01 -9.79388282e-02
1.06502557e+00 -1.21944594e+00 5.68838716e-01 3.45211983e-01
1.76045299e-01 -5.73902369e-01 1.61160931e-01 -6.19407237e-01
-2.16891140e-01 -2.13678479e-01 8.61517847e-01 9.26590562e-01
2.28651896e-01 -8.72735143e-01 9.85108078e-01 3.91995668e-01
-4.43421267e-02 -7.32122898e-01 -1.22255135e+00 -2.59237707e-01
-2.63991877e-02 5.96137531e-02 1.81194529e-01 8.61998796e-01
4.10533160e-01 -2.32071444e-01 8.03298056e-01 -9.67350975e-02
9.26948309e-01 1.39022581e-02 3.14121693e-01 -1.36669409e+00
-6.69616908e-02 -4.80340540e-01 -5.07370234e-01 8.92375484e-02
-1.12472787e-01 -9.59338307e-01 -1.88567519e-01 -1.58686268e+00
6.34990752e-01 -5.88091314e-01 -1.90320522e-01 5.44393778e-01
2.59382814e-01 1.24088418e+00 -3.67011011e-01 5.64833879e-01
-2.99779594e-01 -3.55499595e-01 1.43106723e+00 -3.30456942e-01
1.67350292e-01 -7.41925597e-01 -5.33687830e-01 5.76319933e-01
5.79833984e-01 -6.66579723e-01 -1.40191361e-01 1.03958917e-03
4.17515129e-01 -2.19417959e-01 7.87550330e-01 -1.06766045e+00
2.64152557e-01 -1.32594764e-01 4.27643836e-01 -5.52198410e-01
1.35235533e-01 -1.02725756e+00 7.50046015e-01 8.81451845e-01
-5.37269898e-02 -4.09387410e-01 4.42332923e-02 1.98218122e-01
1.58179730e-01 1.53371703e-03 1.33408058e+00 -5.54001510e-01
-1.05011053e-01 -1.23031311e-01 -6.48578882e-01 -7.69415259e-01
1.39358473e+00 -7.68005133e-01 -7.74728239e-01 2.48349220e-01
-7.88173318e-01 -1.30507544e-01 1.22424841e+00 -1.00343585e+00
3.29294950e-01 -8.52268338e-01 -5.61767161e-01 -1.76558480e-01
6.08051121e-02 1.72836989e-01 9.26927805e-01 1.68794870e+00
-1.49725258e+00 1.49377525e-01 -4.38074708e-01 -9.03210521e-01
-1.66442096e+00 2.64845341e-01 5.74019194e-01 -6.05028331e-01
-6.30566597e-01 9.64394748e-01 4.51137871e-01 -1.45658791e-01
-6.19690835e-01 -1.88790768e-01 1.15560301e-01 -2.30326667e-01
8.78351033e-01 4.98900682e-01 2.86901921e-01 -3.38027388e-01
-5.52819848e-01 6.30765200e-01 -7.12998435e-02 -2.08586171e-01
1.36479461e+00 -5.42866111e-01 -7.47765779e-01 8.67243469e-01
9.97331440e-01 1.81903407e-01 -1.02986825e+00 2.75595516e-01
-5.89345753e-01 -3.22118521e-01 3.60941112e-01 -1.17908037e+00
-1.06316102e+00 8.03515077e-01 8.06553841e-01 2.39583895e-01
1.16728437e+00 2.33024940e-01 5.72509527e-01 -2.43995592e-01
4.14796889e-01 -7.21126795e-01 -3.02103698e-01 -3.37151647e-01
2.98496068e-01 -9.11389828e-01 4.53195632e-01 -8.48007977e-01
1.20685682e-01 1.31297660e+00 4.37184684e-02 9.38590094e-02
3.34829986e-01 1.14156079e+00 6.39898300e-01 -7.14879632e-01
-7.66182005e-01 1.26121044e-01 -4.71726298e-01 8.47766399e-01
7.95220733e-01 -3.58144157e-02 -3.97220343e-01 -3.32164243e-02
2.06604391e-01 1.82101578e-01 8.01934540e-01 1.00669885e+00
-2.10158825e-01 -8.73193324e-01 -5.18715382e-01 1.42678469e-01
-8.22591364e-01 1.29410714e-01 -3.68583173e-01 9.30104196e-01
-1.94852337e-01 5.21468341e-01 1.17273062e-01 3.41358542e-01
-3.31140816e-01 -1.12089083e-01 8.86250317e-01 -6.71127558e-01
-6.23646915e-01 5.14945149e-01 -4.72440511e-01 -4.22246128e-01
-1.08626103e+00 -6.92029893e-01 -1.67038798e+00 -5.78954697e-01
-3.87473702e-01 6.55426681e-02 8.21992040e-01 6.92020357e-01
9.14386511e-02 6.02144420e-01 2.62393951e-01 -7.96316862e-01
4.54821408e-01 -4.92398709e-01 -1.22764289e+00 -2.32545152e-01
4.45536047e-01 -3.97713155e-01 -4.52587187e-01 5.77943861e-01] | [14.818037986755371, -3.0811522006988525] |
b263b3eb-3143-48c4-b599-b8957073ebd0 | anorand-a-semi-supervised-deep-learning | 2305.18389 | null | https://arxiv.org/abs/2305.18389v1 | https://arxiv.org/pdf/2305.18389v1.pdf | AnoRand: A Semi Supervised Deep Learning Anomaly Detection Method by Random Labeling | Anomaly detection or more generally outliers detection is one of the most popular and challenging subject in theoretical and applied machine learning. The main challenge is that in general we have access to very few labeled data or no labels at all. In this paper, we present a new semi-supervised anomaly detection method called \textbf{AnoRand} by combining a deep learning architecture with random synthetic label generation. The proposed architecture has two building blocks: (1) a noise detection (ND) block composed of feed forward ferceptron and (2) an autoencoder (AE) block. The main idea of this new architecture is to learn one class (e.g. the majority class in case of anomaly detection) as well as possible by taking advantage of the ability of auto encoders to represent data in a latent space and the ability of Feed Forward Perceptron (FFP) to learn one class when the data is highly imbalanced. First, we create synthetic anomalies by randomly disturbing (add noise) few samples (e.g. 2\%) from the training set. Second, we use the normal and the synthetic samples as input to our model. We compared the performance of the proposed method to 17 state-of-the-art unsupervised anomaly detection method on synthetic datasets and 57 real-world datasets. Our results show that this new method generally outperforms most of the state-of-the-art methods and has the best performance (AUC ROC and AUC PR) on the vast majority of reference datasets. We also tested our method in a supervised way by using the actual labels to train the model. The results show that it has very good performance compared to most of state-of-the-art supervised algorithms. | ['Michel Riveill', 'Mansour Zoubeirou A Mayaki'] | 2023-05-28 | null | null | null | null | ['supervised-anomaly-detection', 'semi-supervised-anomaly-detection'] | ['computer-vision', 'computer-vision'] | [ 1.30508333e-01 6.13227002e-02 4.89051312e-01 -4.19861287e-01
-3.27679545e-01 -6.44132197e-02 6.03460789e-01 4.55601245e-01
-4.49232727e-01 6.99404895e-01 -2.26646319e-01 -2.22659528e-01
-9.31032654e-03 -9.05656099e-01 -8.49636674e-01 -9.06570137e-01
-1.48245275e-01 7.76772022e-01 2.83008248e-01 -1.27031520e-01
1.49813697e-01 5.72667599e-01 -1.90750813e+00 1.85475484e-01
9.99047995e-01 1.16560006e+00 -4.15299565e-01 4.40207064e-01
-2.43753120e-01 9.31756556e-01 -7.23614693e-01 -5.82469031e-02
2.66706884e-01 -4.35426205e-01 -5.20297706e-01 1.24045804e-01
3.79216462e-01 -2.70623446e-01 5.24865165e-02 1.00651360e+00
5.08786678e-01 3.02180946e-01 8.18386376e-01 -1.37668240e+00
-2.05671027e-01 3.87486666e-01 -5.00707567e-01 4.01681095e-01
1.84928998e-01 4.99869287e-02 5.88911712e-01 -8.13812673e-01
3.25270027e-01 8.61770391e-01 6.38481796e-01 4.82456446e-01
-1.30810881e+00 -5.87804675e-01 -4.02974300e-02 4.17167693e-01
-1.04755330e+00 -3.17229480e-01 9.46470499e-01 -6.69365585e-01
7.93169022e-01 1.24185406e-01 3.51897091e-01 1.22820342e+00
1.19039670e-01 5.60566127e-01 1.04804325e+00 -6.12036765e-01
6.72711849e-01 2.16106817e-01 3.47605914e-01 4.58560377e-01
3.25303823e-01 1.51166171e-01 -5.06773889e-02 -4.03928816e-01
1.11120440e-01 3.00250679e-01 -4.85009737e-02 -2.25198194e-01
-7.51486361e-01 8.40782821e-01 2.75384337e-01 5.86607516e-01
-7.83371389e-01 -4.24675271e-02 6.71935141e-01 5.34012020e-01
4.41310763e-01 3.07629049e-01 -3.89773816e-01 7.33462423e-02
-9.83915567e-01 2.14014053e-01 7.58135080e-01 2.97417164e-01
6.43252969e-01 6.62640095e-01 -5.62194027e-02 8.14413071e-01
2.89427042e-01 2.45764658e-01 9.38963473e-01 -2.95278192e-01
3.02801281e-01 8.39647353e-01 1.20676056e-01 -8.52250755e-01
-4.85931754e-01 -6.66900992e-01 -9.05184448e-01 5.92760324e-01
5.40560424e-01 -3.23360801e-01 -9.94117975e-01 1.54673469e+00
2.05991626e-01 4.60362136e-01 1.69271305e-01 5.24447143e-01
4.37824339e-01 7.06813693e-01 2.36431267e-02 -1.81909680e-01
8.09546709e-01 -6.94842219e-01 -7.34987438e-01 -1.68666363e-01
7.41993546e-01 -6.18489683e-01 7.92875171e-01 6.63360536e-01
-6.40356541e-01 -5.63154697e-01 -1.09240770e+00 5.37501872e-01
-6.86879754e-01 3.47452432e-01 2.06145018e-01 6.40738845e-01
-8.18286598e-01 6.93582833e-01 -9.69164014e-01 -4.61854070e-01
2.70006210e-01 2.89454997e-01 -4.68334168e-01 -3.89935300e-02
-1.11651289e+00 7.30357945e-01 5.92022061e-01 3.69713940e-02
-9.31178927e-01 -2.10601583e-01 -7.94845343e-01 6.26295656e-02
2.07198501e-01 -2.45766938e-01 9.63884473e-01 -1.33585870e+00
-1.25408757e+00 7.72490680e-01 7.68232718e-02 -8.95660460e-01
6.85784042e-01 -3.89536858e-01 -7.29281425e-01 -8.74496624e-03
-1.42346695e-01 8.88785124e-02 9.35378134e-01 -1.19084871e+00
-5.73967516e-01 -4.02159601e-01 -4.86941278e-01 -1.74079686e-01
-4.12617624e-01 -2.47168355e-02 3.52703005e-01 -7.72844613e-01
2.14536875e-01 -6.51107907e-01 -2.44386606e-02 -3.32190424e-01
-6.14535868e-01 -2.07082272e-01 1.15100801e+00 -7.08770990e-01
1.24535239e+00 -2.28375864e+00 -2.61471868e-01 6.45712912e-01
1.18667884e-02 6.37773812e-01 2.65032321e-01 5.94351470e-01
-7.75635839e-01 -2.39641011e-01 -4.66741621e-01 -4.53081310e-01
-1.12843819e-01 3.37556124e-01 -3.45142931e-01 6.33682966e-01
7.49369487e-02 2.81345934e-01 -8.78851712e-01 -1.13370948e-01
4.74705428e-01 2.08258867e-01 -4.11201268e-01 5.03807902e-01
-2.21714824e-01 4.69177783e-01 -2.56388932e-01 4.36933190e-01
5.83066463e-01 1.87780470e-01 -3.17306548e-01 2.31450334e-01
7.50068426e-02 6.19296543e-02 -1.63986635e+00 1.05971622e+00
-1.56255379e-01 3.87937218e-01 -4.69430298e-01 -1.47848904e+00
1.25738657e+00 5.65351963e-01 3.88422012e-01 -4.06064630e-01
9.46719572e-02 5.66192985e-01 2.44681463e-01 -6.49231732e-01
-7.83922821e-02 -1.39326006e-01 3.09460223e-01 5.58874428e-01
3.26863021e-01 5.41250348e-01 1.96508288e-01 -1.66169047e-01
1.33639395e+00 -2.17601940e-01 3.84952039e-01 -5.93574606e-02
9.62288499e-01 -3.44699442e-01 6.08632445e-01 7.77960598e-01
-1.16138756e-01 4.60872620e-01 7.47711003e-01 -8.51527274e-01
-1.12950468e+00 -9.48724091e-01 -5.89256398e-02 7.37522066e-01
-5.89326262e-01 2.04165578e-02 -8.13100219e-01 -7.83071876e-01
-7.91698098e-02 1.15190184e+00 -8.10016274e-01 -3.24064970e-01
-4.76608306e-01 -9.97042000e-01 5.95686555e-01 4.14851278e-01
6.27144516e-01 -1.46569622e+00 -5.27387321e-01 2.16037303e-01
1.46889374e-01 -7.86183715e-01 3.12370151e-01 5.13907015e-01
-9.13812339e-01 -9.93448496e-01 -2.74438143e-01 -5.05650282e-01
7.88818598e-01 -5.23895979e-01 9.93645012e-01 -8.08461234e-02
-6.97250292e-02 -6.81218579e-02 -5.66020310e-01 -5.62834203e-01
-6.25535488e-01 -1.05489105e-01 2.14755133e-01 6.01398349e-01
6.87037587e-01 -7.71557987e-01 -4.08321291e-01 2.52903014e-01
-1.15950441e+00 -6.10675037e-01 5.32774746e-01 1.04296076e+00
4.54923362e-01 4.39676642e-01 7.11831808e-01 -1.26163220e+00
4.71908569e-01 -7.39397049e-01 -6.51308775e-01 -2.32943684e-01
-6.43351316e-01 1.95966333e-01 1.17568421e+00 -2.47053832e-01
-7.81045020e-01 -2.73889117e-02 -5.53899169e-01 -5.12557745e-01
-8.39944124e-01 2.60311246e-01 -2.20126659e-01 1.21514700e-01
1.07273316e+00 4.07968730e-01 -4.06818427e-02 -6.94418192e-01
-1.85233757e-01 7.95244873e-01 3.46463889e-01 -3.47163737e-01
7.21871018e-01 3.63079816e-01 1.64281856e-02 -7.92685449e-01
-5.58193326e-01 -3.91174018e-01 -5.53245544e-01 -1.02899894e-01
5.90294898e-01 -5.23316801e-01 -2.09785849e-01 1.00471985e+00
-8.06722999e-01 -1.83159620e-01 -6.46533430e-01 3.76169205e-01
-3.65267664e-01 2.24506676e-01 -5.00419915e-01 -1.01411641e+00
-3.67332160e-01 -9.39161003e-01 6.41564906e-01 3.58902253e-02
1.86015796e-02 -8.81824195e-01 3.69148493e-01 -1.56844333e-02
5.10996938e-01 7.93608308e-01 8.56353998e-01 -1.68873119e+00
3.95388864e-02 -7.79460311e-01 1.98863924e-01 1.02536964e+00
7.75597384e-03 -3.42208631e-02 -1.22503936e+00 -2.64291406e-01
2.41931438e-01 -2.38930061e-01 8.59843671e-01 1.42168730e-01
1.30979848e+00 -3.87214512e-01 -1.61790103e-01 3.30769658e-01
1.57169831e+00 3.45763534e-01 8.48534524e-01 4.93151337e-01
5.26765168e-01 3.81957740e-01 3.36916745e-01 4.11038518e-01
-1.42899111e-01 5.03197968e-01 5.75335622e-01 -2.12084912e-02
3.17283094e-01 9.62475594e-03 4.43312407e-01 6.06859565e-01
1.05763696e-01 -3.79360348e-01 -1.14445889e+00 5.67616999e-01
-1.91648328e+00 -1.08597827e+00 -2.19448343e-01 2.59771395e+00
4.62354392e-01 4.92158830e-01 1.68403953e-01 9.69992757e-01
6.96504772e-01 -9.26593691e-02 -3.46422702e-01 -7.12880790e-01
9.45238695e-02 3.80106002e-01 1.75811857e-01 2.39440367e-01
-1.39604020e+00 4.86867487e-01 4.96262646e+00 6.94687784e-01
-1.12942600e+00 -4.81430348e-03 5.94844580e-01 1.55624479e-01
3.16491932e-01 -2.96289355e-01 -4.85609204e-01 8.40993881e-01
1.24290133e+00 4.64100182e-01 1.44587174e-01 1.01415551e+00
1.07428677e-01 -9.73406285e-02 -1.11038458e+00 7.14198887e-01
2.04870358e-01 -5.35970151e-01 -3.01553477e-02 -1.05984479e-01
7.52016008e-01 7.05764517e-02 -1.27042711e-01 3.38527679e-01
8.65570530e-02 -9.89594817e-01 3.04835618e-01 8.42464387e-01
3.92887980e-01 -8.35520983e-01 1.48566091e+00 5.58501422e-01
-5.09094954e-01 -4.20683384e-01 -2.69748807e-01 -1.73143923e-01
-2.11512879e-01 1.09626532e+00 -7.33726680e-01 5.04647255e-01
7.01460540e-01 4.63751942e-01 -5.78060269e-01 1.32912862e+00
-2.51998305e-01 1.08048916e+00 -5.97708821e-01 2.08117709e-01
3.37146431e-01 -9.37604308e-02 6.71339035e-01 1.07592964e+00
3.59046251e-01 -2.91211098e-01 2.93587074e-02 5.90282559e-01
5.43467775e-02 3.13760966e-01 -8.52764487e-01 2.10668445e-01
2.54947096e-01 9.95039165e-01 -5.64698517e-01 -4.41176027e-01
-5.03477097e-01 8.21750939e-01 1.85808107e-01 2.96694010e-01
-3.40229452e-01 -6.21129692e-01 1.86031446e-01 3.00392449e-01
2.86208808e-01 2.68185109e-01 -1.47107989e-01 -1.12017298e+00
1.63941622e-01 -9.73354757e-01 6.02084875e-01 -5.30446947e-01
-1.51591671e+00 8.05158377e-01 -1.56792715e-01 -1.42928898e+00
-6.43568516e-01 -7.33881116e-01 -8.94192994e-01 8.23957443e-01
-1.16389072e+00 -7.77189672e-01 -5.10067046e-01 5.78259647e-01
3.21487874e-01 -5.58848739e-01 1.12069559e+00 4.37222511e-01
-6.53209269e-01 5.95809698e-01 5.84615946e-01 4.40077633e-01
7.19792783e-01 -1.59977198e+00 2.18068302e-01 1.11878586e+00
1.07252009e-01 1.88787818e-01 8.19526196e-01 -4.88796294e-01
-4.28943723e-01 -1.15835392e+00 8.34613979e-01 -2.80409098e-01
5.16422093e-01 -3.70676637e-01 -1.24061656e+00 8.13515663e-01
2.11983062e-02 3.70241404e-01 7.73339033e-01 -1.43120810e-01
-2.43986063e-02 -3.05097491e-01 -1.52601290e+00 2.00776801e-01
3.46044660e-01 2.91758180e-02 -8.53685260e-01 3.12267452e-01
1.30618021e-01 -3.18014979e-01 -4.61859852e-01 3.86288136e-01
1.96078941e-01 -1.38660467e+00 5.89381635e-01 -6.32712305e-01
3.26342642e-01 -5.43479085e-01 -1.52421042e-01 -1.59455287e+00
1.04286717e-02 -1.11019582e-01 -4.96716648e-01 1.19270647e+00
2.70232320e-01 -1.04402137e+00 6.09379351e-01 2.10019827e-01
-1.15972675e-01 -8.62496912e-01 -8.08200598e-01 -6.33298576e-01
-1.60477281e-01 -4.76349920e-01 4.66415435e-01 1.08843052e+00
-3.83606404e-01 6.76170643e-03 -3.47806752e-01 1.99166968e-01
5.94543874e-01 -2.59904742e-01 6.36984289e-01 -1.62298858e+00
-2.28188276e-01 -7.86811709e-02 -9.76658702e-01 -1.92798078e-01
-6.49880543e-02 -6.64658308e-01 -2.74035424e-01 -1.11940193e+00
-3.20719510e-01 -3.01180214e-01 -6.58869803e-01 6.00465417e-01
-1.41634336e-02 1.72308668e-01 -3.64054561e-01 1.14134150e-02
-2.83036619e-01 5.13614953e-01 4.33984756e-01 2.56856978e-01
-2.17570066e-01 3.06942880e-01 -2.64417589e-01 9.20224607e-01
9.50412810e-01 -6.43855572e-01 -2.25930765e-01 3.04337200e-02
1.58715293e-01 -3.53973866e-01 3.80383432e-01 -1.55660105e+00
3.73847075e-02 4.14619863e-01 6.74785078e-01 -4.71152484e-01
-1.53343439e-01 -1.12066686e+00 -9.73847806e-02 4.97177213e-01
-1.60479575e-01 2.92897433e-01 1.30067244e-01 5.44912934e-01
-4.26918328e-01 -5.86737752e-01 8.74283850e-01 -6.45651296e-02
-5.08502662e-01 -1.69190466e-02 -3.99220496e-01 -3.50246765e-02
1.17231262e+00 -2.86320839e-02 -1.66201130e-01 -2.86318928e-01
-9.20270264e-01 1.29564241e-01 3.99047315e-01 2.59923667e-01
4.69178259e-01 -1.21144307e+00 -7.14187562e-01 7.47239888e-01
2.20795766e-01 4.70073894e-02 1.92817315e-01 7.63889194e-01
-7.57423460e-01 1.24184407e-01 -4.71083671e-01 -5.95528126e-01
-7.51655042e-01 6.50926232e-01 5.18931627e-01 -3.38513404e-01
-6.41380608e-01 4.06403810e-01 -3.62659276e-01 -5.29288113e-01
3.58242393e-01 -5.67509346e-02 -5.09565890e-01 -6.44686222e-02
5.54044604e-01 5.54880202e-01 4.71133083e-01 -5.28806388e-01
-2.18030602e-01 2.36985669e-01 -2.41488576e-01 1.78094551e-01
1.33354282e+00 4.27293837e-01 -2.20640913e-01 8.32054317e-01
9.51690257e-01 -1.07807696e-01 -7.48647451e-01 -2.16933072e-01
1.27610296e-01 -3.00253659e-01 -7.09421337e-02 -8.80370736e-01
-1.03406918e+00 9.79344428e-01 1.15919137e+00 4.75362599e-01
1.33588958e+00 -5.23517668e-01 5.05410254e-01 5.28744876e-01
-3.50890532e-02 -1.17525840e+00 2.34000906e-02 3.34000915e-01
5.17253995e-01 -1.25024891e+00 -2.42863834e-01 1.50705546e-01
-4.87214446e-01 1.12670326e+00 7.31786549e-01 -5.84725559e-01
7.96840549e-01 1.00288324e-01 2.52438635e-01 -2.07015067e-01
-6.38710022e-01 -4.88657355e-02 2.12779135e-01 3.96511406e-01
3.66959751e-01 -1.08333640e-01 -3.54500115e-01 4.87954050e-01
-9.31733772e-02 -4.42736633e-02 4.82365876e-01 7.14393139e-01
-5.01780033e-01 -1.08668673e+00 -5.55174887e-01 9.33100998e-01
-7.96219349e-01 2.16595709e-01 -7.40856826e-02 7.34996557e-01
5.54631054e-01 8.07816565e-01 1.64447799e-01 -2.98731863e-01
3.46159667e-01 7.86542416e-01 -2.53948271e-01 -5.00827491e-01
-5.74911714e-01 -2.24007979e-01 -1.71930611e-01 -4.87672836e-01
-1.26969144e-01 -7.44733214e-01 -9.66452181e-01 -2.36855205e-02
-2.87194282e-01 2.40289852e-01 6.19971097e-01 1.12605786e+00
1.79831579e-01 7.30009139e-01 6.90185189e-01 -5.30484855e-01
-5.32664537e-01 -1.42357397e+00 -7.78527200e-01 8.14665973e-01
5.43795884e-01 -8.18389833e-01 -7.04247594e-01 -5.21542616e-02] | [7.664244651794434, 2.3190393447875977] |
ae7eb239-f4ba-4eb0-927a-2f364af15826 | a-joint-framework-for-coreference-resolution | null | null | https://aclanthology.org/K15-1002 | https://aclanthology.org/K15-1002.pdf | A Joint Framework for Coreference Resolution and Mention Head Detection | null | ['Kai-Wei Chang', 'Dan Roth', 'Haoruo Peng'] | 2015-07-01 | null | null | null | conll-2015-7 | ['head-detection'] | ['computer-vision'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.242028713226318, 3.7969932556152344] |
5c5e1c80-8504-445b-83aa-fc0257708329 | towards-harnessing-feature-embedding-for | 2206.13025 | null | https://arxiv.org/abs/2206.13025v1 | https://arxiv.org/pdf/2206.13025v1.pdf | Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels | The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent label noise learning methods. To exploit this effect, the model prediction-based methods have been widely adopted, which aim to exploit the outputs of DNNs in the early stage of learning to correct noisy labels. However, we observe that the model will make mistakes during label prediction, resulting in unsatisfactory performance. By contrast, the produced features in the early stage of learning show better robustness. Inspired by this observation, in this paper, we propose a novel feature embedding-based method for deep learning with label noise, termed LabEl NoiseDilution (LEND). To be specific, we first compute a similarity matrix based on current embedded features to capture the local structure of training data. Then, the noisy supervision signals carried by mislabeled data are overwhelmed by nearby correctly labeled ones (\textit{i.e.}, label noise dilution), of which the effectiveness is guaranteed by the inherent robustness of feature embedding. Finally, the training data with diluted labels are further used to train a robust classifier. Empirically, we conduct extensive experiments on both synthetic and real-world noisy datasets by comparing our LEND with several representative robust learning approaches. The results verify the effectiveness of our LEND. | ['Chen Gong', 'Jian Yang', 'Li Shen', 'Chuang Zhang'] | 2022-06-27 | null | null | null | null | ['learning-with-noisy-labels', 'learning-with-noisy-labels'] | ['computer-vision', 'natural-language-processing'] | [ 1.26452953e-01 -7.05911778e-03 2.09257126e-01 -3.50843668e-01
-4.59677994e-01 -2.57478833e-01 4.51394737e-01 1.85706109e-01
-4.23628688e-01 8.44515681e-01 1.24429807e-01 2.02085599e-01
-2.09398821e-01 -7.54595578e-01 -6.93015873e-01 -1.19833040e+00
4.01108503e-01 -1.42717600e-01 7.06986785e-02 -7.61415213e-02
1.13224640e-01 1.89725131e-01 -1.58066797e+00 5.50211407e-02
7.86001205e-01 1.17549038e+00 2.02932090e-01 -3.32409292e-02
-2.00984567e-01 1.08631086e+00 -7.47860312e-01 -1.17191799e-01
9.71345454e-02 -5.55730343e-01 -3.49115759e-01 4.33325619e-02
-6.53860271e-02 -1.59073025e-01 -5.67888856e-01 1.48079729e+00
7.30542898e-01 2.89514184e-01 4.12386239e-01 -9.58645225e-01
-5.17040968e-01 7.65003622e-01 -2.87226796e-01 1.72610730e-01
-1.57791376e-01 1.72820538e-01 7.46320069e-01 -1.17193985e+00
5.30851007e-01 1.13188696e+00 6.86217666e-01 7.97214985e-01
-1.30443239e+00 -8.10047865e-01 3.70548874e-01 1.18329950e-01
-1.25274301e+00 -4.19878721e-01 1.17617106e+00 -1.30306244e-01
2.79405475e-01 5.79015203e-02 4.88009363e-01 1.31348443e+00
6.59857094e-02 7.88746774e-01 1.37831032e+00 -3.14708292e-01
4.14403796e-01 3.34673882e-01 3.05992782e-01 7.14273393e-01
2.25423053e-01 4.77184922e-01 -5.82346976e-01 1.25972647e-02
3.63862574e-01 3.09429348e-01 -5.50889134e-01 -5.00371829e-02
-9.79805827e-01 7.50211775e-01 7.21122801e-01 3.81132126e-01
-3.11395824e-01 1.32124320e-01 5.89058638e-01 4.35698867e-01
6.69808865e-01 9.86293405e-02 -3.94203961e-01 3.20381597e-02
-6.34429038e-01 -1.88666567e-01 4.50005054e-01 5.81873417e-01
9.32298422e-01 1.75504491e-01 -1.00939468e-01 9.48314548e-01
4.13306594e-01 2.24952012e-01 8.23901653e-01 -6.52294278e-01
3.76818031e-01 8.12483072e-01 -2.19013304e-01 -1.25099027e+00
-5.29406309e-01 -9.16025043e-01 -1.35389400e+00 9.66669321e-02
1.58274934e-01 -1.74650028e-01 -9.07240331e-01 1.85283446e+00
3.34156215e-01 6.33052468e-01 3.11846137e-01 8.27012062e-01
7.79798508e-01 7.11452007e-01 1.66751087e-01 -5.31815886e-01
8.18776548e-01 -9.46878076e-01 -9.94475126e-01 1.22654829e-02
1.00671411e+00 -5.39166987e-01 8.90886664e-01 5.25436759e-01
-3.93102884e-01 -8.49174857e-01 -1.03356099e+00 3.42868716e-01
-3.51602167e-01 1.57599717e-01 1.62635684e-01 4.34134632e-01
-7.32628942e-01 8.61720443e-01 -5.27620792e-01 1.63297020e-02
6.05800986e-01 2.50491917e-01 -1.92773163e-01 -2.56436825e-01
-1.36444211e+00 6.07229531e-01 5.78597486e-01 4.78437483e-01
-9.97338355e-01 -3.08141053e-01 -5.39885402e-01 -5.57868108e-02
3.95706832e-01 -1.54980749e-01 1.02193236e+00 -9.40106630e-01
-1.30165243e+00 3.90238851e-01 6.65193200e-02 -1.76893547e-01
5.52563608e-01 -5.62129691e-02 -3.48265171e-01 -1.52958244e-01
-6.46094754e-02 4.06933248e-01 8.25169861e-01 -1.63246679e+00
-6.26820207e-01 -3.02547365e-01 -2.77810156e-01 1.19473100e-01
-7.14242220e-01 -2.60584295e-01 2.04384014e-01 -9.09849346e-01
5.68141222e-01 -7.06460595e-01 -2.18095735e-01 -1.31499916e-01
-4.64845806e-01 -4.52610135e-01 9.70679760e-01 -3.58486831e-01
1.38301873e+00 -2.34696579e+00 -5.28769754e-02 3.46610755e-01
4.27961946e-01 4.66273695e-01 -1.84808791e-01 1.15518861e-01
-1.52098328e-01 3.11359346e-01 -1.16410993e-01 -3.96343708e-01
-1.47306412e-01 5.49844801e-01 -3.76371354e-01 3.90424490e-01
1.81864023e-01 7.27877259e-01 -9.96574044e-01 -4.00156111e-01
1.10694868e-02 2.91880399e-01 -5.15445769e-02 2.52611011e-01
-6.55758306e-02 5.50158679e-01 -6.33586526e-01 6.27224803e-01
7.13654578e-01 -1.39264315e-01 9.08441991e-02 -2.24392354e-01
7.42231905e-02 1.01956815e-01 -1.34682393e+00 1.30975151e+00
-3.55061442e-01 2.02215001e-01 -1.06521547e-01 -1.21448541e+00
1.21822357e+00 3.92508060e-01 2.19013810e-01 -7.63054192e-01
3.58755648e-01 5.11269271e-01 -9.05211568e-02 -5.66807806e-01
-5.01555130e-02 -1.95485726e-01 1.59458637e-01 6.33753359e-01
1.04119152e-01 2.61714578e-01 -1.98858052e-01 2.47122049e-02
1.17143953e+00 -1.07365161e-01 7.58939236e-03 -1.17294669e-01
5.12062788e-01 -3.50253969e-01 8.61412883e-01 7.77374387e-01
-5.15653133e-01 4.69866335e-01 4.19340670e-01 -5.88093579e-01
-8.02638650e-01 -6.04469836e-01 -2.10169151e-01 9.06857133e-01
3.24288130e-01 -1.07720353e-01 -6.75578654e-01 -1.16722023e+00
-1.90146565e-01 3.25460047e-01 -6.25922859e-01 -7.16358662e-01
-5.53726971e-01 -9.08225954e-01 5.32912493e-01 6.18400455e-01
8.14633489e-01 -1.27864957e+00 -1.00570478e-01 5.34301460e-01
-1.12118647e-01 -6.14164591e-01 -1.17515385e-01 7.37316251e-01
-9.72913861e-01 -9.41795886e-01 -4.60203826e-01 -9.55349803e-01
8.62920403e-01 1.59574062e-01 7.24824429e-01 5.35974860e-01
1.74569681e-01 -2.19555408e-01 -5.80773354e-01 -1.64319694e-01
-4.52353776e-01 -4.96464372e-02 4.86554742e-01 4.63896953e-02
4.50421870e-01 -5.68474412e-01 -4.07474339e-01 3.56635034e-01
-1.16366935e+00 -2.11727992e-01 7.30556846e-01 1.47304296e+00
6.92226768e-01 6.65349305e-01 9.99577343e-01 -8.66001844e-01
6.77900672e-01 -5.67314744e-01 -3.76539409e-01 1.86222434e-01
-7.53004789e-01 2.43159562e-01 1.02158141e+00 -7.79424608e-01
-1.08494377e+00 1.22405559e-01 -2.91109353e-01 -3.55483979e-01
-2.50886917e-01 6.07297421e-01 -2.78381914e-01 -1.00825258e-01
6.50608003e-01 4.98700321e-01 -6.22370988e-02 -6.80902362e-01
2.82176845e-02 7.74874151e-01 2.97582656e-01 -4.57656622e-01
7.92868853e-01 2.69265562e-01 -3.07943448e-02 -1.90006062e-01
-1.17416906e+00 -1.47194147e-01 -3.28292280e-01 -3.77578914e-01
3.64484012e-01 -8.43985796e-01 -4.34936404e-01 7.58511007e-01
-1.09051895e+00 -1.78965151e-01 -3.67860854e-01 4.97789562e-01
-1.80368528e-01 2.79329002e-01 -8.55020285e-01 -9.06196952e-01
-1.20612606e-01 -1.20737100e+00 6.77211761e-01 4.53348905e-01
2.24302277e-01 -9.60394919e-01 -3.29208486e-02 5.93204722e-02
2.57479638e-01 1.14125796e-01 9.84323084e-01 -9.22647238e-01
-3.73233885e-01 -1.14587650e-01 -3.11309874e-01 8.85488212e-01
8.48186985e-02 -2.78561980e-01 -1.30889916e+00 -2.06399605e-01
4.68761861e-01 -6.63106561e-01 1.10925996e+00 -3.23463604e-02
1.06705427e+00 -3.01672727e-01 -3.39590400e-01 2.60004103e-01
1.49350989e+00 1.48204952e-01 3.82213652e-01 3.59056711e-01
6.90359056e-01 5.32413244e-01 7.07684100e-01 4.44136918e-01
-1.35081723e-01 2.83104092e-01 6.17731035e-01 3.20832431e-02
-9.57616717e-02 -4.27895784e-01 4.15936023e-01 1.32451797e+00
3.08058560e-01 -2.53729522e-01 -7.13165760e-01 3.60743821e-01
-1.98947763e+00 -5.13568044e-01 -1.88460097e-01 1.83113408e+00
1.03480327e+00 3.47573161e-01 -5.16363502e-01 6.86486006e-01
8.32174540e-01 1.10573933e-01 -6.74889565e-01 4.22297418e-02
-2.97047704e-01 2.58121639e-02 1.47094905e-01 8.80181193e-02
-1.12640119e+00 7.40565658e-01 5.08319378e+00 1.25270081e+00
-1.09172225e+00 2.11802468e-01 9.06504750e-01 1.13335885e-01
-2.62122363e-01 -1.55588150e-01 -7.37723529e-01 7.92054772e-01
6.59741342e-01 2.45307148e-01 2.74464756e-01 8.41579795e-01
3.06697905e-01 -1.14867978e-01 -7.94201612e-01 8.36466312e-01
-1.41719341e-01 -9.88742828e-01 -1.24654688e-01 -1.34416521e-01
9.97334123e-01 -1.99668646e-01 2.86907017e-01 5.02257526e-01
2.22073555e-01 -8.89255822e-01 6.32419586e-01 7.78708875e-01
5.02369046e-01 -9.33889985e-01 1.32652557e+00 7.94832945e-01
-8.73637915e-01 -5.39766908e-01 -7.16750979e-01 -8.76695365e-02
-1.43886745e-01 1.28847218e+00 -3.40342015e-01 4.19053197e-01
6.67772770e-01 7.63077497e-01 -6.70950532e-01 8.11880529e-01
-5.31243742e-01 9.69741225e-01 -2.67711163e-01 -8.28712732e-02
1.64924949e-01 -1.48551390e-01 2.62423575e-01 6.98997378e-01
3.37041259e-01 1.21653013e-01 7.99713582e-02 7.81891227e-01
-5.48366189e-01 7.10878968e-02 -6.37656689e-01 1.77806064e-01
5.73711455e-01 1.17952740e+00 -5.84916234e-01 -3.63179922e-01
-2.44643047e-01 7.97901809e-01 4.93998468e-01 3.83783877e-01
-6.08135462e-01 -3.20818663e-01 3.20071101e-01 -3.61073583e-01
9.45511907e-02 1.24846920e-01 -5.36152065e-01 -1.11460710e+00
2.01650769e-01 -8.46652031e-01 4.36893012e-03 -3.61020148e-01
-1.51598990e+00 6.18350327e-01 -6.22915745e-01 -1.27216625e+00
3.79378736e-01 -3.00739735e-01 -5.58786213e-01 6.59780741e-01
-1.50659394e+00 -6.88811004e-01 -3.89667898e-01 3.02540213e-01
3.86251092e-01 -1.94599211e-01 7.00227201e-01 5.04243016e-01
-9.36587691e-01 6.79116249e-01 6.08351171e-01 1.45263851e-01
6.18699908e-01 -1.02923417e+00 -1.18047640e-01 6.97824597e-01
1.77159399e-01 3.38202983e-01 4.81264174e-01 -7.42761314e-01
-7.69604921e-01 -1.44085312e+00 9.69148040e-01 -1.10780634e-01
5.39825439e-01 -3.74804139e-01 -1.16739798e+00 2.65358239e-01
-2.67162144e-01 3.56392622e-01 4.94661689e-01 -3.41556609e-01
-2.94319272e-01 -3.60603809e-01 -1.21280956e+00 4.04183388e-01
1.13731074e+00 -3.85012090e-01 -5.29819489e-01 3.18607807e-01
8.05947185e-01 -4.52853106e-02 -6.85786605e-01 6.24249101e-01
1.03226796e-01 -9.29678440e-01 4.67527717e-01 -2.92920470e-01
3.88139367e-01 -2.87955165e-01 -5.22312373e-02 -1.59705091e+00
-3.26289415e-01 -8.91013667e-02 -1.16280012e-01 1.50753701e+00
1.92395747e-01 -6.17327929e-01 7.69716978e-01 2.37408221e-01
-1.99570417e-01 -1.05403399e+00 -1.07214105e+00 -7.34964728e-01
-1.25600845e-01 -2.55514801e-01 4.76558179e-01 1.07766604e+00
-1.46191686e-01 4.23515923e-02 -4.41622972e-01 -1.11479908e-02
5.63041031e-01 -3.30805242e-01 1.77307785e-01 -1.39548421e+00
1.10164516e-01 -1.49476916e-01 -3.00058156e-01 -1.02774596e+00
3.23869944e-01 -8.20810676e-01 3.65502000e-01 -1.04403377e+00
1.79092407e-01 -8.35813046e-01 -8.71816754e-01 6.51613951e-01
-4.31434035e-01 4.60673809e-01 3.05421576e-02 4.69939709e-01
-7.66802788e-01 1.00418484e+00 1.22733712e+00 -1.43595040e-01
-5.01319282e-02 1.83186382e-02 -5.56757689e-01 7.11036086e-01
9.17913258e-01 -9.92120385e-01 -2.86117196e-01 -2.49921978e-01
2.48476833e-01 -3.26852798e-01 1.96478188e-01 -1.25398993e+00
1.15423396e-01 6.64443448e-02 4.19478804e-01 -1.89847380e-01
3.93602401e-02 -1.01731622e+00 -1.90436453e-01 6.49092317e-01
-5.79967380e-01 -3.00176561e-01 -2.18990266e-01 9.26988780e-01
-3.81748796e-01 -5.65913737e-01 8.45059752e-01 -2.60593500e-02
-6.04936481e-01 1.48042262e-01 -4.61935520e-01 -7.12038726e-02
8.75117004e-01 6.67181313e-02 -3.81622195e-01 -1.54223621e-01
-7.98337579e-01 2.03605592e-01 1.89392269e-01 2.55563974e-01
8.35317254e-01 -1.68709290e+00 -4.31152165e-01 2.98841029e-01
9.30237249e-02 1.61940858e-01 2.39880890e-01 8.43673706e-01
-9.94837061e-02 7.33687542e-03 2.14651167e-01 -4.49662089e-01
-9.45316434e-01 6.19134784e-01 2.95543790e-01 -4.16720152e-01
-4.45891857e-01 9.31093335e-01 -9.46860313e-02 -6.48489833e-01
5.43166637e-01 -1.84032530e-01 -2.97281921e-01 1.80363506e-01
3.98894608e-01 3.33209872e-01 1.69434428e-01 -5.12050390e-01
-2.98211593e-02 4.47947294e-01 -1.91023067e-01 3.21288764e-01
1.32377958e+00 -3.02415848e-01 -7.09734559e-02 5.38929105e-01
1.33436942e+00 -3.49729598e-01 -1.41850090e+00 -7.61037707e-01
1.91979557e-01 -1.84880763e-01 1.72384694e-01 -7.35273480e-01
-1.31871521e+00 9.43030119e-01 1.00215411e+00 2.29634255e-01
1.24101889e+00 -1.77412152e-01 9.36299920e-01 5.73312998e-01
3.03574920e-01 -1.47977173e+00 5.42271435e-01 5.45730591e-01
3.80923450e-01 -1.40649629e+00 -3.12352598e-01 -1.35685563e-01
-4.11630243e-01 1.04583895e+00 7.68214583e-01 -1.28194811e-02
7.88718402e-01 1.07204661e-01 3.59831929e-01 4.26620618e-02
-7.14251220e-01 -1.02089509e-01 -2.73172915e-01 4.14299935e-01
-7.84804076e-02 -2.28746712e-01 -3.72748673e-01 9.26284790e-01
2.42142707e-01 3.89655307e-03 3.53865623e-01 9.80690241e-01
-7.77010202e-01 -1.01493096e+00 -3.77964020e-01 5.18640161e-01
-2.50151813e-01 3.18898633e-02 -2.02536196e-01 3.36043417e-01
6.74711347e-01 1.10947168e+00 -3.44906449e-01 -8.36802542e-01
2.48872429e-01 2.77173400e-01 -1.36895522e-01 -5.73322058e-01
-6.28611147e-01 1.24382377e-02 -3.42388541e-01 -3.46491456e-01
-3.93734455e-01 -2.09203094e-01 -1.30422640e+00 -7.97966868e-02
-7.20879018e-01 2.46380970e-01 4.93879914e-01 9.93643284e-01
1.39933109e-01 5.92628717e-01 1.07671022e+00 -5.52963853e-01
-1.08734655e+00 -1.16390884e+00 -8.58028054e-01 5.85747480e-01
3.18535984e-01 -8.43881011e-01 -9.25434828e-01 -1.37103528e-01] | [9.32751178741455, 3.8608596324920654] |
8d57d49a-d4e7-48a8-bd13-85313d79b679 | integrating-uncertainty-awareness-into | 2306.08693 | null | https://arxiv.org/abs/2306.08693v1 | https://arxiv.org/pdf/2306.08693v1.pdf | Integrating Uncertainty Awareness into Conformalized Quantile Regression | Conformalized Quantile Regression (CQR) is a recently proposed method for constructing prediction intervals for a response $Y$ given covariates $X$, without making distributional assumptions. However, as we demonstrate empirically, existing constructions of CQR can be ineffective for problems where the quantile regressors perform better in certain parts of the feature space than others. The reason is that the prediction intervals of CQR do not distinguish between two forms of uncertainty: first, the variability of the conditional distribution of $Y$ given $X$ (i.e., aleatoric uncertainty), and second, our uncertainty in estimating this conditional distribution (i.e., epistemic uncertainty). This can lead to uneven coverage, with intervals that are overly wide (or overly narrow) in regions where epistemic uncertainty is low (or high). To address this, we propose a new variant of the CQR methodology, Uncertainty-Aware CQR (UACQR), that explicitly separates these two sources of uncertainty to adjust quantile regressors differentially across the feature space. Compared to CQR, our methods enjoy the same distribution-free theoretical guarantees for coverage properties, while demonstrating in our experiments stronger conditional coverage in simulated settings and tighter intervals on a range of real-world data sets. | ['Rebecca Willett', 'Rina Foygel Barber', 'Raphael Rossellini'] | 2023-06-14 | null | null | null | null | ['prediction-intervals'] | ['miscellaneous'] | [-7.15692565e-02 2.36059487e-01 -4.44279373e-01 -5.33663273e-01
-1.33725357e+00 -6.87089622e-01 4.08855468e-01 5.02143443e-01
-1.46639705e-01 1.14050019e+00 2.31815964e-01 -4.04834896e-01
-5.69084108e-01 -1.19590199e+00 -9.50316191e-01 -6.89236045e-01
-9.78665575e-02 2.90795535e-01 -7.86556583e-03 3.25506441e-02
3.75021219e-01 2.52981424e-01 -1.46082628e+00 -1.70285523e-01
1.13117123e+00 1.06558847e+00 -6.77134216e-01 1.20819345e-01
5.13756983e-02 4.21814203e-01 -8.36156547e-01 -5.94738603e-01
7.39669427e-02 -2.16905802e-01 -2.97728568e-01 -5.42148113e-01
-1.64223760e-01 -2.97648413e-03 2.13851035e-01 1.10571599e+00
2.42693380e-01 4.42019403e-02 1.01807153e+00 -1.39080715e+00
-6.91837609e-01 1.29753673e+00 -9.09060061e-01 -9.83756185e-02
3.76541555e-01 -1.58855885e-01 9.52399075e-01 -6.56291544e-01
7.31699914e-02 1.33358741e+00 7.59065449e-01 2.78062522e-01
-1.52831554e+00 -8.02834392e-01 1.45616978e-01 -4.81419623e-01
-1.66186309e+00 -3.27019066e-01 3.77814591e-01 -5.86670816e-01
3.75187665e-01 3.52561146e-01 1.29329845e-01 7.34224141e-01
6.73804343e-01 3.79250079e-01 1.15035737e+00 -3.03515464e-01
7.48056829e-01 1.46145001e-01 1.87365100e-01 -1.00085087e-01
6.75155282e-01 5.18305540e-01 -4.78011549e-01 -7.09713519e-01
5.17549992e-01 -3.26614231e-02 -3.58905494e-01 -2.42131203e-01
-7.05993772e-01 1.20582926e+00 1.32748619e-01 -2.54885197e-01
-2.56986678e-01 3.38524401e-01 2.25872949e-01 1.61658511e-01
7.11097181e-01 3.30624849e-01 -5.14998972e-01 -7.96721503e-03
-7.76400328e-01 3.78748894e-01 5.84743857e-01 1.00780690e+00
6.39084101e-01 -1.74723864e-01 -6.09944165e-01 5.81007779e-01
4.75071996e-01 6.79295123e-01 1.43893033e-01 -6.72175467e-01
6.17927849e-01 2.37888187e-01 7.58774519e-01 -7.15376139e-01
-3.35754365e-01 -3.22306663e-01 -5.41310251e-01 2.26276219e-01
8.72001112e-01 -3.35201949e-01 -8.33522499e-01 2.17350292e+00
3.14559698e-01 -2.94700954e-02 -3.92626487e-02 6.79181576e-01
2.17022240e-01 5.28841436e-01 4.17593360e-01 -3.31530333e-01
1.27727890e+00 1.73642840e-02 -5.85714042e-01 -1.38077140e-02
2.74667263e-01 -3.01173657e-01 1.03582382e+00 2.96940923e-01
-1.15413105e+00 -1.77363753e-02 -9.73710358e-01 4.83884931e-01
-1.84223622e-01 -4.92336780e-01 5.56767344e-01 1.11704719e+00
-5.54424226e-01 5.52557766e-01 -6.10847473e-01 3.00954968e-01
2.53618449e-01 5.71421012e-02 3.32829659e-03 -1.13470346e-01
-1.68162251e+00 7.01570988e-01 8.70117396e-02 -3.40682454e-02
-7.07844436e-01 -1.26352894e+00 -8.70033443e-01 3.85312825e-01
5.90311646e-01 -2.29627892e-01 9.65514004e-01 -6.06708705e-01
-1.24872231e+00 3.28368127e-01 1.33536816e-01 -5.60389698e-01
7.81485021e-01 -2.26525918e-01 -2.56109655e-01 -3.29098314e-01
1.89633086e-01 -1.15750404e-02 8.00465882e-01 -1.15800560e+00
-6.13996506e-01 -6.25514388e-01 6.86149439e-03 -1.60246029e-01
3.27273846e-01 -1.12725675e-01 7.48247281e-02 -5.19640803e-01
1.59990951e-01 -6.45008862e-01 -4.33987767e-01 -5.08919120e-01
-6.81237996e-01 -5.11010170e-01 -9.33350995e-02 -1.90490156e-01
1.50418496e+00 -2.04533339e+00 -2.30811015e-01 7.82012403e-01
4.24023084e-02 -4.13230479e-01 3.41714352e-01 5.56186676e-01
-1.49060339e-01 5.84043622e-01 -5.32072186e-01 3.79054211e-02
3.13240767e-01 -1.28696384e-02 -6.19492352e-01 8.75962138e-01
1.99485064e-01 3.46128076e-01 -7.30382860e-01 -1.56251505e-01
-9.89431962e-02 2.72375584e-01 -4.62809920e-01 -6.53430223e-02
-2.38381043e-01 4.07421499e-01 -4.63581055e-01 6.82252705e-01
9.06311631e-01 1.26823898e-05 -1.95060462e-01 2.30950356e-01
-2.56085426e-01 1.01705387e-01 -1.30642426e+00 1.01291335e+00
-2.82384813e-01 7.03416690e-02 -2.72172391e-01 -9.97102141e-01
9.51749146e-01 1.46844998e-01 4.93456513e-01 -3.41407865e-01
1.08732753e-01 1.75406545e-01 -3.31440121e-01 2.54043937e-02
4.42711771e-01 -4.74094480e-01 -7.35017300e-01 5.11003375e-01
-3.05878311e-01 -8.12702328e-02 -2.25144729e-01 -4.60703410e-02
9.66105640e-01 -1.01114931e-02 4.65961218e-01 -7.11013794e-01
4.07971665e-02 -2.80010849e-01 9.74341393e-01 1.01010370e+00
-3.21856350e-01 5.80639422e-01 1.05991197e+00 1.10385053e-01
-8.29769015e-01 -1.55904782e+00 -8.62102151e-01 9.68627095e-01
1.87625572e-01 -9.59001109e-02 -6.37906134e-01 -4.42812085e-01
6.20503485e-01 1.14347136e+00 -1.07052219e+00 -2.38009542e-01
4.44387738e-03 -9.40459490e-01 5.32890260e-01 5.62905490e-01
-6.52743056e-02 -5.43538988e-01 -7.13765681e-01 1.99320912e-01
2.32741074e-03 -5.21138966e-01 -3.92588824e-01 2.99167395e-01
-4.77566034e-01 -1.22969651e+00 -4.99708712e-01 3.33289266e-01
4.34599191e-01 -1.93904907e-01 1.30885208e+00 -4.05406415e-01
5.44991605e-02 5.04714191e-01 -2.51098871e-01 -7.98356414e-01
-1.71496198e-01 -5.01037002e-01 -2.71267071e-02 -1.16918139e-01
4.68623191e-01 -3.12856793e-01 -7.93514371e-01 4.37282711e-01
-1.07408321e+00 -6.50888264e-01 6.59251884e-02 8.02844644e-01
7.86305010e-01 2.97612041e-01 1.45560479e+00 -1.17007625e+00
8.01572263e-01 -1.02085984e+00 -1.06680751e+00 3.64717305e-01
-8.99618924e-01 1.34513542e-01 2.41969526e-01 -3.73961926e-01
-1.09286606e+00 -3.61868918e-01 5.11018112e-02 -3.78713980e-02
1.27655596e-01 9.77407455e-01 -1.93403319e-01 4.70363140e-01
9.05328393e-01 -3.16755205e-01 -2.61511087e-01 -1.35698855e-01
3.84057283e-01 6.55114532e-01 4.36931342e-01 -1.02787578e+00
5.41891992e-01 4.19643521e-01 4.80800420e-02 -2.16006517e-01
-9.00986075e-01 -9.08828676e-02 1.55255869e-02 -6.16444135e-03
6.42918408e-01 -8.47119451e-01 -7.92801023e-01 1.75015479e-02
-4.58854377e-01 -1.95480615e-01 -6.68858826e-01 5.38219988e-01
-7.42345989e-01 -3.12551819e-02 -1.75599977e-01 -1.42899942e+00
-6.77200109e-02 -1.03489888e+00 8.14746499e-01 3.82850945e-01
-1.36320993e-01 -7.85141349e-01 2.26166010e-01 -2.18777210e-01
2.83040971e-01 7.06807554e-01 1.06532586e+00 -6.47331119e-01
-1.49415493e-01 -4.60446358e-01 -1.75652042e-01 1.77509990e-02
-1.49103301e-02 2.77696162e-01 -8.67598951e-01 -3.23712915e-01
-5.25872037e-02 -1.97700262e-01 7.17387199e-01 9.61780548e-01
1.29006982e+00 -1.72053695e-01 -3.33117515e-01 1.66139022e-01
1.53202522e+00 2.92066753e-01 8.21200967e-01 6.15196899e-02
-2.75942534e-01 7.66903520e-01 9.71161008e-01 1.06714737e+00
3.45222950e-01 4.71012145e-01 5.03186703e-01 3.11994642e-01
5.89896619e-01 -3.60315442e-01 3.36649865e-01 -3.42608929e-01
1.54476196e-01 -3.21661890e-01 -8.51083815e-01 5.88720858e-01
-1.78042865e+00 -8.25147271e-01 7.77287036e-02 2.88034463e+00
1.05468881e+00 1.81870565e-01 2.90567786e-01 2.13909708e-03
9.70040619e-01 -2.55588531e-01 -9.08432364e-01 -4.74557996e-01
-2.82332897e-02 2.02953875e-01 7.20259547e-01 4.94583070e-01
-7.11039841e-01 2.82910794e-01 6.65128899e+00 7.54290700e-01
-6.36028588e-01 -8.25425461e-02 8.62103403e-01 -6.79325759e-02
-9.05771315e-01 2.03187820e-02 -8.34534645e-01 6.92893505e-01
1.17994606e+00 -5.18567383e-01 5.24711981e-02 7.70864964e-01
3.83630507e-02 -3.79116029e-01 -1.22019351e+00 4.83850956e-01
-5.01177192e-01 -9.78733361e-01 -4.41672593e-01 1.68538541e-02
6.08059466e-01 -2.39152744e-01 3.25481713e-01 4.47285414e-01
9.56204534e-01 -1.36862743e+00 9.32729125e-01 5.90383828e-01
1.07746291e+00 -1.29754090e+00 8.40239167e-01 2.98066080e-01
-7.46716619e-01 -1.96015671e-01 -6.48020685e-01 2.11636916e-01
-1.94539446e-02 1.25709260e+00 -1.93348438e-01 5.28743684e-01
8.34354997e-01 4.09740694e-02 -2.64367491e-01 9.41915810e-01
-1.27061024e-01 7.21433342e-01 -4.81214076e-01 1.92405850e-01
-1.30540296e-01 -1.34418398e-01 3.46120477e-01 9.42145169e-01
6.37147665e-01 2.27315024e-01 -2.65090257e-01 1.20994306e+00
7.51770958e-02 -5.24539053e-02 -5.30045986e-01 2.92035550e-01
1.09518492e+00 6.63386881e-01 -3.52953553e-01 3.59583087e-03
-3.31188232e-01 -1.06185704e-01 7.82913268e-02 5.67645967e-01
-1.16588533e+00 -5.29714763e-01 6.32168233e-01 -6.18991517e-02
3.01381592e-02 3.62219095e-01 -5.53723097e-01 -1.05220985e+00
-1.39498606e-01 -4.85978335e-01 8.47277880e-01 -4.61505145e-01
-1.66997874e+00 1.20176978e-01 4.66238737e-01 -1.11799645e+00
-3.97213370e-01 -3.19865495e-01 -4.59238827e-01 1.16171432e+00
-1.43653142e+00 -5.15656471e-01 2.18228608e-01 4.60062623e-01
-1.95367076e-02 3.40450048e-01 6.45203650e-01 -1.79948136e-01
-4.48556066e-01 9.67862964e-01 3.45300108e-01 -2.45961860e-01
8.38958740e-01 -1.41983747e+00 -4.41713631e-02 5.83620548e-01
-3.83236438e-01 6.34109795e-01 1.08830297e+00 -7.63817489e-01
-1.08773279e+00 -1.04551315e+00 3.06824356e-01 -5.52716017e-01
5.66623390e-01 -2.49902174e-01 -9.14613068e-01 6.96975350e-01
-2.73776203e-01 -1.18516516e-02 1.10314274e+00 5.35758793e-01
-7.03115702e-01 -1.32577837e-01 -1.82600582e+00 4.94745553e-01
5.36571622e-01 -1.74063340e-01 -3.84971559e-01 3.60776708e-02
9.39187586e-01 -2.85033762e-01 -1.42204666e+00 6.90683305e-01
7.39452183e-01 -1.18673801e+00 8.17651689e-01 -6.42614305e-01
4.06463802e-01 -2.32231528e-01 -5.48849404e-01 -1.45820558e+00
-2.07069311e-02 -4.91039604e-01 1.53746724e-01 1.52644336e+00
7.39390433e-01 -1.16122055e+00 4.53431308e-01 1.15972781e+00
-4.75899279e-02 -7.36609638e-01 -1.33708191e+00 -7.16266453e-01
8.09965491e-01 -7.81702876e-01 1.25594568e+00 7.24263608e-01
3.68309975e-01 -2.41741687e-01 -5.10578677e-02 4.51970786e-01
8.97078633e-01 3.47887516e-01 3.90506625e-01 -1.37052894e+00
-1.68731004e-01 -3.65083814e-01 -1.10663109e-01 -3.82440209e-01
3.28568630e-02 -2.93561250e-01 3.16729784e-01 -9.90679264e-01
1.72810614e-01 -9.55033481e-01 -5.70559859e-01 2.39568979e-01
-3.08473110e-01 -1.76744491e-01 -2.28686020e-01 4.18211855e-02
-1.72603309e-01 4.40169692e-01 7.92237043e-01 7.47400746e-02
-2.77206779e-01 3.50539833e-01 -1.24192178e+00 7.07739890e-01
7.22938120e-01 -6.05082214e-01 -5.34521699e-01 1.99508965e-01
6.37135446e-01 7.71182716e-01 1.92036539e-01 -5.01137912e-01
-1.21796519e-01 -6.55498028e-01 4.02883083e-01 -7.43045092e-01
-1.77250043e-01 -6.62848413e-01 3.33579421e-01 2.44222865e-01
-6.68229222e-01 -1.98224500e-01 1.38905749e-01 9.53755200e-01
-1.00184912e-02 -1.63216263e-01 7.75416434e-01 2.28764504e-01
1.70166016e-01 1.66976586e-01 -3.04654330e-01 2.02035472e-01
9.82171476e-01 9.85219479e-02 -7.17581451e-01 -5.69948196e-01
-6.18291438e-01 4.56934720e-01 4.01049763e-01 9.87759084e-02
3.82968128e-01 -1.33113730e+00 -9.15528774e-01 2.32961844e-03
3.03985834e-01 2.12937057e-01 3.15069437e-01 6.80797279e-01
1.81193069e-01 3.06144446e-01 2.21244425e-01 -5.81945419e-01
-3.40497643e-01 6.61934555e-01 3.97824794e-01 -2.73266941e-01
-3.40826809e-01 6.58940315e-01 4.56249505e-01 -1.92418173e-01
1.89382166e-01 -4.94533360e-01 -5.43577448e-02 1.26311872e-02
5.40394008e-01 4.45756674e-01 -9.05362293e-02 -1.58278093e-01
-4.01716441e-01 3.71749938e-01 2.84582704e-01 -2.13241398e-01
9.95683312e-01 -3.23461950e-01 1.94751453e-02 5.88591635e-01
6.31478608e-01 4.70151335e-01 -1.53365147e+00 -4.05055545e-02
2.58755594e-01 -5.52983046e-01 -2.56342024e-01 -9.68643904e-01
-7.80281007e-01 6.00695491e-01 3.31224531e-01 7.27489173e-01
1.18321884e+00 4.23623994e-02 8.81958827e-02 -2.38301262e-01
5.27653396e-01 -1.06008482e+00 -4.12025928e-01 -6.11114278e-02
9.16673779e-01 -1.09863448e+00 1.57255962e-01 -3.31746578e-01
-6.22332871e-01 7.20910966e-01 3.08936000e-01 -2.55878448e-01
9.14417922e-01 3.71765196e-01 -1.45466357e-01 5.35833184e-03
-6.37907028e-01 9.35359001e-02 1.85352117e-01 6.84039474e-01
4.66954947e-01 4.13079441e-01 -5.10377288e-01 1.43433142e+00
-2.72432953e-01 -2.43948981e-01 7.36692905e-01 6.25158966e-01
-4.30099905e-01 -6.39004350e-01 -6.66536570e-01 6.11908317e-01
-8.94803822e-01 7.57353157e-02 2.10213035e-01 9.72078919e-01
-2.05738544e-01 1.33570659e+00 1.79239884e-01 -1.03612214e-01
3.81865472e-01 1.61854345e-02 1.36461079e-01 -4.13514614e-01
-1.75556839e-01 1.82211682e-01 -1.48318848e-02 -6.22081876e-01
-1.19406708e-01 -7.72677839e-01 -1.21683097e+00 -3.72533470e-01
-6.36487842e-01 6.10509396e-01 4.86630052e-01 8.36978495e-01
1.36231184e-01 3.28894168e-01 8.45897198e-01 -2.10495889e-01
-1.20283103e+00 -8.15734923e-01 -1.12308991e+00 1.18560597e-01
3.17451507e-01 -1.05379951e+00 -6.76845133e-01 -4.22013313e-01] | [7.527225971221924, 4.177443504333496] |
2dee8092-10e9-47cd-b9d2-0bd313d710a3 | invertible-low-dimensional-modelling-of-x-ray | 2307.04484 | null | https://arxiv.org/abs/2307.04484v1 | https://arxiv.org/pdf/2307.04484v1.pdf | Invertible Low-Dimensional Modelling of X-ray Absorption Spectra for Potential Applications in Spectral X-ray Imaging | X-ray interaction with matter is an energy-dependent process that is contingent on the atomic structure of the constituent material elements. The most advanced models to capture this relationship currently rely on Monte Carlo (MC) simulations. Whilst these very accurate models, in many problems in spectral X-ray imaging, such as data compression, noise removal, spectral estimation, and the quantitative measurement of material compositions, these models are of limited use, as these applications typically require the efficient inversion of the model, that is, they require the estimation of the best model parameters for a given spectral measurement. Current models that can be easily inverted however typically only work when modelling spectra in regions away from their K-edges, so they have limited utility when modelling a wider range of materials. In this paper, we thus propose a novel, non-linear model that combines a deep neural network autoencoder with an optimal linear model based on the Singular Value Decomposition (SVD). We compare our new method to other alternative linear and non-linear approaches, a sparse model and an alternative deep learning model. We demonstrate the advantages of our method over traditional models, especially when modelling X-ray absorption spectra that contain K-edges in the energy range of interest. | ['Thomas Blumensath', 'Raziye Kubra Kumrular'] | 2023-07-10 | null | null | null | null | ['data-compression'] | ['time-series'] | [ 3.73758286e-01 -5.00482678e-01 1.26831517e-01 -2.85226941e-01
-6.20712936e-01 -1.48200681e-02 5.57568610e-01 2.70055681e-01
-6.95365489e-01 6.81275308e-01 4.84260917e-02 -1.05412222e-01
-5.15309989e-01 -1.04223275e+00 -7.56749690e-01 -1.12746060e+00
2.11341023e-01 8.73512089e-01 2.48996407e-01 -1.12037070e-01
1.80368900e-01 6.52118742e-01 -1.48975754e+00 3.41539830e-01
5.41539669e-01 1.11900270e+00 4.06481475e-01 5.22593200e-01
-4.16117981e-02 5.80703437e-01 -1.72732532e-01 -1.09637389e-02
1.17926605e-01 -4.99801457e-01 -5.90755224e-01 -1.23954535e-01
-5.97801059e-02 -3.52474123e-01 -4.53429997e-01 1.15832615e+00
6.63594604e-01 4.31262612e-01 1.03302360e+00 -4.53918695e-01
-4.63566601e-01 5.50684869e-01 -5.29839754e-01 9.43248793e-02
2.78235406e-01 7.20242783e-02 7.72777855e-01 -4.61003035e-01
4.79624957e-01 7.16970742e-01 9.47378099e-01 4.75878209e-01
-1.29043841e+00 -1.25827447e-01 -5.29966593e-01 7.76249826e-01
-1.02396929e+00 -2.41335616e-01 1.06693006e+00 -4.40571189e-01
1.23920012e+00 3.68183821e-01 6.97781205e-01 1.03016245e+00
3.07837278e-01 3.16635758e-01 1.37252426e+00 -8.54659379e-01
5.01995027e-01 -3.68702039e-02 3.40189599e-02 4.33058888e-01
-4.54645324e-03 5.34445345e-01 -4.00092930e-01 -2.54822880e-01
5.93665719e-01 6.80591837e-02 -5.33050299e-01 -3.47448498e-01
-8.58171463e-01 9.84269619e-01 5.73263288e-01 6.01921022e-01
-9.23200428e-01 1.76733091e-01 3.69869411e-01 1.07079133e-01
4.53939199e-01 5.91306508e-01 -4.62718397e-01 1.43878266e-01
-1.29272223e+00 4.60123539e-01 6.68051243e-01 1.77236333e-01
7.65321195e-01 3.15016210e-02 2.27131158e-01 8.65242898e-01
4.70052242e-01 1.87092796e-01 8.00343871e-01 -5.19959152e-01
-1.42490163e-01 3.48584950e-01 -1.43590048e-01 -3.65684658e-01
-5.74465096e-01 -2.49475315e-01 -8.55795801e-01 4.75027055e-01
4.46557224e-01 -5.14622107e-02 -8.59759510e-01 1.35047174e+00
4.85446692e-01 1.75944403e-01 1.62578389e-01 9.96640980e-01
9.65379894e-01 9.25254464e-01 -9.62163359e-02 -4.75112557e-01
1.35750520e+00 -5.61152875e-01 -5.82557738e-01 -1.82183757e-01
1.94533899e-01 -9.36790347e-01 7.11500585e-01 4.29152697e-01
-1.33487642e+00 -2.87580252e-01 -1.14528418e+00 -8.48769918e-02
-3.25058609e-01 -1.53534770e-01 6.65774345e-01 5.79055667e-01
-5.47703683e-01 1.07147241e+00 -8.76345217e-01 -6.67599514e-02
6.18804246e-02 3.86324942e-01 -5.08927330e-02 -4.03668470e-04
-1.18249750e+00 9.50760424e-01 4.75698382e-01 6.67298287e-02
-4.98474926e-01 -8.00469398e-01 -4.58698839e-01 1.88823104e-01
3.71966332e-01 -7.47617126e-01 1.41535258e+00 -7.89396465e-01
-1.68717468e+00 4.27393556e-01 6.51223436e-02 -5.20276189e-01
3.78918499e-01 7.21840784e-02 -3.02123040e-01 3.93261969e-01
-4.63486552e-01 1.07243724e-01 8.01069617e-01 -1.37842882e+00
1.03063621e-01 -2.25538597e-01 -6.37558326e-02 3.13566369e-03
-7.24970177e-02 -1.80554874e-02 -1.20905049e-01 -3.84379447e-01
3.24217439e-01 -7.74524510e-01 -3.74188989e-01 -2.66338706e-01
-2.77967185e-01 -6.07221499e-02 6.22265339e-01 -8.32837045e-01
7.41438627e-01 -1.90173674e+00 2.59457856e-01 3.83931190e-01
-2.96514798e-02 1.02435969e-01 3.89153421e-01 8.32652748e-01
-4.27764922e-01 -5.29839158e-01 -7.10405469e-01 5.86964935e-02
-1.02897838e-01 3.63858999e-03 9.95049551e-02 6.26645148e-01
-2.40047291e-01 7.23063946e-01 -4.09208119e-01 -1.93662032e-01
4.70218182e-01 7.85686791e-01 -5.40672064e-01 9.19250622e-02
-6.12146497e-01 2.34465078e-01 -2.51385361e-01 2.50225931e-01
6.98894799e-01 -2.28682235e-01 3.10177971e-02 -7.55478859e-01
-2.59210140e-01 -6.21637702e-02 -1.19117725e+00 1.38654327e+00
-5.69043994e-01 3.71050447e-01 2.37039670e-01 -1.29080522e+00
3.94118041e-01 4.17636156e-01 8.31070662e-01 -7.75864780e-01
3.06782395e-01 1.99490100e-01 2.17871949e-01 -7.42038608e-01
2.50715077e-01 -9.67120886e-01 5.22719681e-01 5.45760572e-01
-1.19673871e-02 -4.52887595e-01 3.93573754e-02 -9.49143320e-02
9.44381833e-01 1.37222230e-01 5.47861516e-01 -2.36457527e-01
4.98538524e-01 -1.83113530e-01 -8.88846070e-02 5.15068710e-01
2.00579464e-01 7.18338966e-01 1.14629328e-01 -3.95826817e-01
-1.34877861e+00 -6.15092039e-01 -7.10201204e-01 5.26682198e-01
-1.74197480e-01 -7.08131418e-02 -1.02797687e+00 -1.71514750e-01
-2.63226658e-01 7.79128253e-01 -2.98438102e-01 -2.39657536e-01
-5.70887148e-01 -1.51432884e+00 -6.00276142e-02 2.72774994e-01
3.46444130e-01 -1.33280146e+00 -6.43347383e-01 3.48023653e-01
7.18521252e-02 -9.84081209e-01 2.16645822e-01 5.67215145e-01
-7.56382644e-01 -1.15072179e+00 -5.20739853e-01 -2.53991157e-01
5.08169174e-01 -2.01038986e-01 9.91964042e-01 1.12481602e-02
-5.01185715e-01 5.71773171e-01 -2.97847062e-01 -3.45061004e-01
-8.19363415e-01 -2.85154939e-01 -4.78040846e-03 -1.81096606e-02
3.66612256e-01 -6.52327836e-01 -7.14889705e-01 -1.02937020e-01
-1.22901547e+00 -1.29842103e-01 7.22975791e-01 9.27660763e-01
7.09790289e-01 5.34475863e-01 2.41392344e-01 -1.00793862e+00
5.83624303e-01 -4.15671825e-01 -6.18425786e-01 4.73076813e-02
-5.60872555e-01 3.56896877e-01 8.42860281e-01 -2.12466285e-01
-1.32283866e+00 -8.76265671e-03 -1.00152552e+00 -1.33568361e-01
-3.71135205e-01 6.82794750e-01 -9.94396582e-02 -5.04510283e-01
1.00180435e+00 2.12616786e-01 -1.29586563e-01 -5.88123322e-01
1.89824179e-02 5.58494389e-01 5.27855217e-01 -5.32063365e-01
5.19810915e-01 4.63803500e-01 3.82903993e-01 -1.23524404e+00
-5.53834856e-01 -4.70622599e-01 -3.84163976e-01 -3.16145778e-01
8.70227337e-01 -5.64349949e-01 -8.88167381e-01 4.72799838e-01
-8.47351372e-01 -9.48728919e-02 -4.59294856e-01 9.54673231e-01
-7.78873086e-01 8.10731471e-01 -8.02329659e-01 -7.24646926e-01
-3.30508143e-01 -1.24501812e+00 8.86545718e-01 2.09502820e-02
2.21053138e-02 -1.04588759e+00 1.37091145e-01 3.65498900e-01
4.79901344e-01 2.53199965e-01 1.41292751e+00 -2.57812649e-01
-4.74842340e-01 -3.79362285e-01 -9.33808610e-02 4.74853188e-01
-2.51395136e-01 -9.35988128e-02 -9.48426545e-01 -4.02240664e-01
7.89610028e-01 -3.92085731e-01 1.16161370e+00 1.00377715e+00
1.44699466e+00 6.05179369e-02 -2.60567307e-01 6.33967459e-01
1.93580484e+00 2.52064615e-01 6.26225770e-01 2.47711837e-01
5.82420707e-01 4.66107219e-01 -4.27148007e-02 3.93742412e-01
-2.55495518e-01 7.05915391e-01 6.11256182e-01 6.61126599e-02
-9.88407955e-02 4.39499348e-01 9.40691959e-03 8.92394125e-01
-5.33452094e-01 -1.16939254e-01 -7.38011539e-01 1.14528954e-01
-1.50685072e+00 -1.16570818e+00 -5.12761533e-01 2.16290402e+00
8.34829986e-01 1.09097078e-01 -9.95171890e-02 5.26283801e-01
3.99137437e-01 6.93986267e-02 -6.25922441e-01 -2.60165185e-01
-1.41031062e-03 6.17676556e-01 5.90919137e-01 5.63163459e-01
-8.35459828e-01 1.83593780e-01 6.94651127e+00 8.52933586e-01
-1.13606834e+00 2.74891347e-01 1.65916845e-01 -1.71743289e-01
-3.37786108e-01 -6.79951310e-02 -3.62205625e-01 7.36525774e-01
1.12209511e+00 2.58571327e-01 6.50388777e-01 6.95328236e-01
1.16014078e-01 -4.20707136e-01 -9.84096527e-01 1.16661894e+00
-4.05170508e-02 -1.36478662e+00 -3.32945615e-01 3.22406217e-02
6.13617539e-01 1.34823948e-01 -1.50819421e-01 -5.18528037e-02
-9.71581340e-02 -7.76024759e-01 5.96641362e-01 7.71158576e-01
4.77714449e-01 -8.68226171e-01 6.46160305e-01 3.76610398e-01
-4.76254910e-01 -5.15715890e-02 -5.92538536e-01 8.70514661e-02
4.52838928e-01 1.24430668e+00 -5.49066007e-01 6.92110121e-01
5.71366608e-01 1.58110708e-01 -1.79001659e-01 1.11571217e+00
5.17690256e-02 7.36352086e-01 -4.87602770e-01 -8.27904642e-02
1.75497606e-01 -6.07793987e-01 4.93239284e-01 1.07083511e+00
4.94162560e-01 2.38467470e-01 -1.76605538e-01 7.12021828e-01
9.72602814e-02 4.92075197e-02 -2.84149915e-01 1.09894395e-01
-9.25860330e-02 9.77150023e-01 -7.22400486e-01 -1.73006251e-01
-7.85707057e-01 7.35692441e-01 3.19586396e-02 3.52077544e-01
-6.30720854e-01 8.27084929e-02 3.01679671e-01 3.35467935e-01
3.19464535e-01 -2.50355124e-01 -8.69834498e-02 -8.92947972e-01
6.97833523e-02 -8.12334299e-01 1.72850564e-01 -7.44411230e-01
-1.44387138e+00 4.48006332e-01 3.41192901e-01 -8.58826041e-01
-4.76447999e-01 -1.02146316e+00 -5.05648613e-01 7.17445254e-01
-1.52581561e+00 -9.47342813e-01 -4.41198945e-02 4.22822475e-01
1.85956344e-01 -9.25837234e-02 9.02675092e-01 3.90450358e-01
-2.00587824e-01 -1.46780744e-01 8.12285662e-01 -4.73260731e-01
3.85737449e-01 -1.43385255e+00 -5.64222448e-02 5.78278065e-01
2.57221967e-01 1.96669117e-01 1.23549366e+00 -4.20486659e-01
-1.51223075e+00 -5.90894461e-01 3.09992552e-01 -2.12081391e-02
5.38016617e-01 -1.85902983e-01 -1.06470048e+00 3.42125386e-01
1.92107782e-01 6.45397455e-02 8.88459206e-01 -7.05008730e-02
1.50499359e-01 9.61408392e-02 -1.16940391e+00 7.68024772e-02
6.75859690e-01 -6.22764766e-01 -4.58584249e-01 7.49257565e-01
1.02766506e-01 -4.02887732e-01 -9.25618231e-01 3.84001613e-01
4.16042030e-01 -1.42242765e+00 1.35965908e+00 -2.10138485e-01
4.50077385e-01 -1.51498616e-01 -1.61424890e-01 -1.46939301e+00
-3.85307580e-01 6.85028583e-02 -2.51190335e-01 5.80844700e-01
1.90242931e-01 -4.01807129e-01 9.13464725e-01 3.49762946e-01
-2.10485831e-01 -8.44109118e-01 -1.14490509e+00 -5.58946967e-01
-8.50046575e-02 -7.38811493e-01 5.62408566e-01 8.81795943e-01
-4.66095209e-01 1.89042553e-01 -3.40932429e-01 3.57715130e-01
6.83112860e-01 2.87826896e-01 5.29436544e-02 -1.42380261e+00
-8.62079680e-01 -3.12711656e-01 -3.38784337e-01 -7.14954436e-01
1.18714385e-01 -8.58434796e-01 -3.56641375e-02 -1.49599051e+00
2.74782300e-01 -2.85465062e-01 -6.43977299e-02 -5.35159484e-02
1.61408082e-01 2.05083966e-01 -3.30846965e-01 1.46848127e-01
1.91719159e-01 5.92701018e-01 1.02456975e+00 -1.54312223e-01
4.18401398e-02 8.57361481e-02 -2.61790276e-01 8.35032344e-01
4.94251788e-01 -4.23263311e-01 -2.28712291e-01 -1.38399854e-01
5.72142303e-01 1.84919462e-01 5.52602291e-01 -1.32247221e+00
2.53021777e-01 -7.73423836e-02 6.63844705e-01 -5.35629690e-01
5.62579334e-01 -1.05796564e+00 4.76100355e-01 4.22105908e-01
1.84665173e-02 -2.82149106e-01 5.11816293e-02 4.71334845e-01
-3.19835901e-01 -1.15448546e+00 1.04787183e+00 -6.06475890e-01
-5.23854613e-01 2.76093096e-01 -3.39444160e-01 -6.79053426e-01
8.86310041e-01 -1.17667273e-01 1.75558835e-01 -2.36843348e-01
-9.54780936e-01 -5.28137684e-01 4.78113145e-01 -2.72904992e-01
5.62873960e-01 -1.16066885e+00 -5.22529006e-01 2.18389109e-01
-2.54324257e-01 1.05443180e-01 6.80680096e-01 6.27017498e-01
-8.31936598e-01 1.31748796e-01 -9.16145444e-02 -4.25630242e-01
-1.09273815e+00 7.37188697e-01 6.27981842e-01 -2.79297829e-01
-7.01085865e-01 6.95748389e-01 6.03995137e-02 -2.00505123e-01
-3.72232795e-01 -2.20185101e-01 -2.02131420e-01 4.89305258e-02
4.03249145e-01 4.21680570e-01 6.97720945e-01 -7.50216484e-01
8.83795097e-02 6.75161719e-01 1.19714282e-01 2.61640046e-02
1.72523212e+00 2.11688370e-01 -4.49901968e-01 4.52436686e-01
1.11603177e+00 -4.34755646e-02 -1.08641243e+00 -2.68806934e-01
-3.48301739e-01 -2.63014078e-01 6.73720956e-01 -6.92800939e-01
-9.02399838e-01 7.95249522e-01 7.46820748e-01 5.88631988e-01
1.25271738e+00 1.31815299e-01 7.80518472e-01 5.06554961e-01
2.82368418e-02 -1.24651396e+00 -1.63440630e-01 1.58750653e-01
8.34051728e-01 -1.04761314e+00 5.26796162e-01 -3.26533169e-01
-4.64094616e-02 1.42222393e+00 1.54370010e-01 -1.43384049e-02
9.35483396e-01 3.26325119e-01 -1.97567418e-01 -5.23241103e-01
-4.14358944e-01 -1.44328535e-01 1.43176004e-01 3.86553138e-01
4.31789190e-01 5.58440872e-02 -3.38074416e-01 1.68665707e-01
-2.62389421e-01 -1.63193524e-01 4.81276155e-01 8.75330448e-01
-3.83872002e-01 -1.27571225e+00 -6.89528763e-01 6.56764746e-01
-5.19438207e-01 -8.08274075e-02 4.58881408e-02 4.97200072e-01
8.03229138e-02 4.83899087e-01 -6.35887980e-02 2.04842106e-01
2.71968335e-01 3.78184080e-01 9.52517986e-01 -3.35183859e-01
-2.82956481e-01 1.19631685e-01 -1.21664397e-01 -2.88604468e-01
-8.19950640e-01 -8.53865564e-01 -1.16227531e+00 -3.90236378e-01
-6.64738953e-01 -9.67751350e-03 1.20412409e+00 1.15251994e+00
-3.65944177e-01 7.34234750e-01 3.85359675e-01 -1.08710241e+00
-6.83997393e-01 -1.07346582e+00 -8.40721965e-01 4.88584578e-01
3.67374688e-01 -7.58060277e-01 -3.48599494e-01 -1.00273617e-01] | [12.353226661682129, -2.5441386699676514] |
60493e9e-6b07-463b-9e33-b5c0761417a8 | web-api-based-chatbot-generation-with | null | null | https://aclanthology.org/2022.rocling-1.31 | https://aclanthology.org/2022.rocling-1.31.pdf | Web-API-Based Chatbot Generation with Analysis and Expansion for Training Sentences | With Web API technology becoming increasingly mature, how to integrate Web API and Chatbot technology has become an issue of great interest. This study plans to build a semi-automatic method and tool, BOTEN. This method allows application developers to build Chatbot interfaces with specified Web APIs quickly. To ensure that the Chatbot has sufficient natural language understanding (NLU) capability, this research evaluates the training sentences written by the developer through TF-IDF, WordNet, and SpaCy techniques, and suggests the developer modify the training sentences with poor quality. This technique can also be used to automatically increase the number of training sentences to improve the capability of Intent recognition. | ['Shang-Pin Ma', 'Wan-Lin You', 'Sheng-Kai Wang'] | null | null | null | null | rocling-2022-11 | ['intent-recognition'] | ['natural-language-processing'] | [-2.09876776e-01 -3.33730280e-02 -1.06833100e-01 -4.39494908e-01
-2.21245438e-01 -7.20124543e-01 2.98211217e-01 -4.30394560e-01
-1.33881122e-01 6.21056259e-01 3.46321553e-01 -5.09305716e-01
3.26035954e-02 -7.51905382e-01 1.42329887e-01 -1.26756448e-02
5.65411270e-01 1.09695457e-01 5.19334137e-01 -5.16878486e-01
8.07019353e-01 -8.03166330e-02 -1.33728445e+00 8.08118880e-01
1.07966971e+00 3.32192421e-01 6.81433260e-01 5.30201674e-01
-1.17186379e+00 1.36754394e+00 -8.91473949e-01 -5.66249967e-01
1.48280933e-01 -5.74694455e-01 -1.39362049e+00 -2.14994997e-01
-1.49437502e-01 -3.80975693e-01 1.90071449e-01 1.08074355e+00
2.12677240e-01 -3.80334593e-02 1.68073788e-01 -1.24204969e+00
-5.88425338e-01 1.08552849e+00 1.45278767e-01 2.38109738e-01
8.83173585e-01 1.26516402e-01 8.50955307e-01 -5.03168166e-01
6.85643435e-01 1.09670496e+00 5.79935074e-01 6.79284692e-01
-5.93058884e-01 -6.34575248e-01 -2.20729962e-01 4.38339859e-01
-1.08120453e+00 4.54147980e-02 6.63442194e-01 -5.04683793e-01
1.34878075e+00 3.16756189e-01 4.08845425e-01 9.60323274e-01
2.42308199e-01 2.08296612e-01 1.01630008e+00 -8.87463689e-01
5.27241128e-03 6.52419567e-01 5.68289936e-01 6.92195058e-01
1.39766112e-02 -6.16742134e-01 -3.90051872e-01 -1.25340864e-01
5.59426248e-01 3.58568169e-02 2.02039734e-01 5.50918818e-01
-5.11603653e-01 7.88575292e-01 -6.91262409e-02 9.59049881e-01
-2.68483788e-01 -2.46066272e-01 4.90838677e-01 4.83609557e-01
3.86923432e-01 8.91731620e-01 -6.61454141e-01 -1.16306973e+00
-2.11617932e-01 -3.45435768e-01 1.48375869e+00 1.20039320e+00
7.60062814e-01 -2.37099007e-01 -5.55676688e-03 1.21246743e+00
4.93526846e-01 2.56363243e-01 6.62751436e-01 -1.05329978e+00
5.69223523e-01 1.33715618e+00 1.45387044e-02 -7.06784666e-01
1.68928936e-01 3.57908905e-01 1.14757687e-01 2.63012707e-01
2.67097384e-01 -3.71202350e-01 -3.43404740e-01 9.09314215e-01
1.77334055e-01 -3.21943045e-01 -1.98767394e-01 3.40474665e-01
7.27875590e-01 7.31614470e-01 5.86826988e-02 -2.17124879e-01
1.41998160e+00 -9.67471123e-01 -1.11828482e+00 -1.27405345e-01
7.87819922e-01 -1.31072462e+00 1.56367147e+00 3.45069140e-01
-4.49674994e-01 -5.00860155e-01 -6.62655592e-01 1.52187422e-01
-6.06418431e-01 3.90505083e-02 7.09501266e-01 9.65641737e-01
-5.69482863e-01 5.54502964e-01 -5.28458178e-01 -7.87056983e-01
-3.25408131e-02 2.37916961e-01 -2.23048508e-01 -1.14063099e-01
-1.09942174e+00 1.32999074e+00 2.65913457e-01 -2.62566298e-01
-2.61313140e-01 -4.84961897e-01 -6.63982689e-01 6.25187159e-02
1.30130738e-01 -1.44673958e-01 1.69434249e+00 -1.01750886e+00
-1.84576309e+00 2.09443673e-01 6.93760812e-03 9.00875032e-02
-2.20932495e-02 -2.78599083e-01 -3.32011670e-01 -2.08374441e-01
2.86886394e-01 -1.16573930e-01 4.24826622e-01 -8.30979049e-01
-9.41220880e-01 -3.38744768e-03 3.14534634e-01 5.61841205e-02
-6.71647489e-01 5.98135233e-01 -2.85633832e-01 -2.08932068e-02
-4.58861053e-01 -5.63994706e-01 -5.97951002e-03 -4.91970867e-01
-8.17564279e-02 -7.93182373e-01 9.63924110e-01 -8.96682978e-01
1.58222234e+00 -1.97294962e+00 -6.80843353e-01 6.53518662e-02
-1.44511402e-01 5.74351192e-01 -3.09676379e-01 1.09941280e+00
3.07285160e-01 6.80983722e-01 4.18838829e-01 2.69884378e-01
-7.99524784e-03 3.38037163e-01 3.37266445e-01 -3.85883003e-01
-8.64866674e-02 3.11943620e-01 -8.77022862e-01 -8.06106925e-01
2.79243350e-01 -2.67755538e-02 -3.37917984e-01 5.91266334e-01
-1.76457465e-01 -5.53601682e-02 -9.49233592e-01 5.26232123e-01
3.08953106e-01 -2.17491999e-01 2.22727790e-01 2.77061779e-02
-5.90622842e-01 9.50410306e-01 -7.90068328e-01 1.39349520e+00
-1.19440579e+00 6.83456302e-01 -1.57249227e-01 -5.36118150e-01
1.10921240e+00 5.57268083e-01 3.83796722e-01 -3.67080986e-01
9.84073505e-02 5.03357500e-03 2.36262292e-01 -1.61776245e+00
2.41852086e-02 3.22138846e-01 2.12339520e-01 6.13764167e-01
3.49987037e-02 -1.67088151e-01 5.53149641e-01 1.11891076e-01
1.42346203e+00 1.52662843e-01 4.09566730e-01 1.61818527e-02
4.66147929e-01 3.82137179e-01 2.49335781e-01 6.31017983e-01
1.25549525e-01 4.18585390e-02 3.59587044e-01 -3.40682268e-01
-8.61060321e-01 -5.83335280e-01 1.40320793e-01 1.26696074e+00
-1.57562599e-01 -7.43184865e-01 -9.64596212e-01 -1.24952877e+00
-5.44104159e-01 9.70311046e-01 -2.23759741e-01 2.83509009e-02
-3.46391946e-01 7.13761374e-02 4.65448648e-01 4.65413295e-02
6.40046775e-01 -1.40699899e+00 -2.61013716e-01 6.18645191e-01
-4.19703543e-01 -7.86530614e-01 -6.29384696e-01 9.12024006e-02
-6.91536963e-01 -1.16343212e+00 5.95894642e-02 -9.42407727e-01
4.66407746e-01 3.43876690e-01 8.98809254e-01 4.69629198e-01
-1.08770289e-01 2.21864790e-01 -1.31024432e+00 -2.86758065e-01
-7.90910542e-01 4.32842433e-01 -4.55137610e-01 -6.05209172e-01
8.89846027e-01 -7.21554518e-01 -1.15150474e-01 5.02945960e-01
-7.71926880e-01 1.13544753e-02 6.54019773e-01 6.40540004e-01
-3.88627172e-01 9.03454646e-02 5.96646547e-01 -1.13432455e+00
1.30790734e+00 -4.25498515e-01 -3.37091208e-01 5.55474222e-01
-8.19686830e-01 1.57797024e-01 7.28815794e-01 -6.32721364e-01
-1.40019381e+00 2.66224500e-02 -7.75592446e-01 3.37409735e-01
-5.17106354e-01 8.26960802e-01 -1.82696611e-01 -3.31622183e-01
8.58467817e-01 1.53353726e-02 1.86708257e-01 -6.95312083e-01
1.48088261e-01 1.58887172e+00 -2.98945993e-01 -3.83939207e-01
5.87786794e-01 -2.87173182e-01 -9.75735545e-01 -8.87302697e-01
-5.39488494e-01 -9.52481627e-01 -3.27153951e-01 -5.35394192e-01
8.02566648e-01 -9.57572162e-02 -7.40725458e-01 -4.13883701e-02
-1.70298564e+00 -3.06878865e-01 1.29214212e-01 5.68595052e-01
1.58455238e-01 5.68268180e-01 -5.97614706e-01 -7.43866742e-01
-5.10891497e-01 -9.56531703e-01 2.60130703e-01 4.11373556e-01
-8.38124514e-01 -8.59411359e-01 3.17119598e-01 7.68683732e-01
5.45400143e-01 -6.17996275e-01 9.55893695e-01 -1.07518160e+00
-2.83558846e-01 -3.83866549e-01 -1.10142894e-01 8.25593770e-01
8.13340485e-01 4.99337494e-01 -5.73703110e-01 7.27050781e-01
2.60501862e-01 -5.24784140e-02 -4.07359391e-01 -3.14377040e-01
7.37830222e-01 -9.02392030e-01 -1.97619960e-01 -1.48671299e-01
1.33627748e+00 1.08801568e+00 8.28890145e-01 5.27020037e-01
4.65993613e-01 6.99814975e-01 6.86312139e-01 4.75249439e-01
1.69754371e-01 5.77946782e-01 1.91989556e-01 5.22421837e-01
-9.40695181e-02 -2.97141731e-01 5.66722035e-01 1.25752985e+00
-6.81221038e-02 -7.88299665e-02 -9.73940730e-01 2.42252231e-01
-1.76086450e+00 -1.16410923e+00 -4.99598145e-01 1.49346614e+00
1.05504298e+00 1.12964451e-01 -1.11762129e-01 2.34022457e-02
6.00077689e-01 -3.17645222e-01 1.88691840e-01 -8.79941463e-01
7.11802781e-01 4.81980443e-01 9.88318920e-02 5.75291574e-01
-3.72936070e-01 9.27036345e-01 6.25962734e+00 8.53044510e-01
-1.19721758e+00 3.08771402e-01 -1.43859489e-02 6.91865504e-01
-3.19548666e-01 2.90725768e-01 -7.43095458e-01 7.24922121e-01
7.54324198e-01 -2.52227843e-01 8.47180843e-01 1.40571487e+00
6.36401415e-01 -1.43813968e-01 -8.19821596e-01 5.84270835e-01
-2.35979958e-03 -1.41904771e+00 -6.54999390e-02 -2.54952967e-01
2.86476642e-01 -1.60112321e-01 -5.58353722e-01 5.89518011e-01
3.46172392e-01 -6.14212692e-01 -7.24805810e-04 3.16604614e-01
3.33634555e-01 -2.05187961e-01 1.15864241e+00 6.13694310e-01
-9.81532097e-01 6.57071769e-02 -3.56166542e-01 -6.55604005e-01
1.45389652e-02 1.06103122e-01 -1.35600567e+00 2.87363619e-01
7.89568186e-01 3.34792286e-01 -7.51131713e-01 1.18449461e+00
-4.21920478e-01 1.00096405e+00 -4.05230045e-01 -1.14439094e+00
-1.41324298e-02 -3.92509341e-01 6.16726093e-02 1.17731643e+00
3.67180824e-01 1.15663849e-01 -7.77779752e-03 8.22352946e-01
1.98375627e-01 6.25971973e-01 -8.62798214e-01 -3.20751131e-01
8.31462204e-01 1.29941893e+00 -5.24036586e-01 -8.92796069e-02
-7.83426762e-01 8.58019590e-01 7.80891031e-02 1.97272912e-01
-4.63218510e-01 -9.61972117e-01 6.49979055e-01 1.83109760e-01
-4.73175105e-03 2.42844746e-02 -7.26893604e-01 -7.53252923e-01
1.73444599e-02 -1.12274575e+00 3.95254828e-02 -8.84761453e-01
-1.48734474e+00 6.89745605e-01 -4.55288328e-02 -1.14410985e+00
-3.06693226e-01 -5.89341462e-01 -1.26360416e+00 9.22351360e-01
-6.23110533e-01 -9.98054266e-01 -3.11598361e-01 3.58965188e-01
9.95069146e-01 -1.11877784e-01 8.97827268e-01 4.00135756e-01
-3.15192431e-01 1.77987114e-01 -2.08528295e-01 3.19122583e-01
4.77216244e-01 -1.01957202e+00 -4.38878536e-02 5.92034042e-01
1.67422578e-01 1.06351113e+00 6.94568455e-01 -7.42675543e-01
-1.09920716e+00 -7.03457534e-01 1.46395659e+00 -4.43621308e-01
8.19658101e-01 -2.26487055e-01 -7.14591503e-01 3.67147177e-01
8.14940810e-01 -9.03790355e-01 7.85172760e-01 4.13962692e-01
-1.49720728e-01 -3.82002860e-01 -1.13096356e+00 6.31718814e-01
5.55120707e-01 -7.41281986e-01 -1.07128406e+00 5.64704001e-01
6.02121353e-01 6.98783845e-02 -8.26246202e-01 -4.47824523e-02
4.81364906e-01 -7.40901113e-01 2.81594276e-01 -4.75454122e-01
3.62231076e-01 -1.60663977e-01 5.21857619e-01 -1.09228480e+00
1.68168787e-02 -8.29468548e-01 7.77809560e-01 1.78540635e+00
9.03486669e-01 -5.30703783e-01 7.25080907e-01 1.04553580e+00
-1.13116235e-01 -2.17137665e-01 -6.54453099e-01 -7.14171588e-01
-5.21936953e-01 -4.70722646e-01 5.22229493e-01 9.22128856e-01
1.08342803e+00 6.94774568e-01 -1.41938373e-01 -2.23950863e-01
-3.43748242e-01 -1.67145550e-01 8.01413357e-01 -9.73023832e-01
-1.49751186e-01 -3.43126506e-01 -2.73743868e-02 -1.05782902e+00
9.02084932e-02 -4.99061465e-01 3.99889410e-01 -1.90280807e+00
-3.90167795e-02 -2.47983024e-01 2.52345294e-01 8.31319690e-01
-8.88286009e-02 -3.68004024e-01 -7.65226111e-02 -8.47034380e-02
-4.29463357e-01 2.25562770e-02 1.07742929e+00 1.22950543e-02
-3.99004132e-01 5.78056693e-01 -4.75097984e-01 6.42104268e-01
1.06207371e+00 -9.24126029e-01 -6.15781546e-01 -2.90853649e-01
2.74260789e-01 -3.39956060e-02 -3.38135570e-01 -8.19303870e-01
2.48822853e-01 -5.75383723e-01 -4.79976594e-01 -2.41078734e-02
-2.17682824e-01 -1.25029707e+00 9.63470563e-02 3.69933069e-01
-4.48982894e-01 3.10853064e-01 -3.54025676e-03 -1.49647266e-01
-2.42289469e-01 -1.23629761e+00 2.62676358e-01 -2.55652606e-01
-6.18709385e-01 -1.84341595e-01 -1.26863444e+00 -1.58229604e-01
9.35353220e-01 -3.17318976e-01 -4.48325723e-01 -6.11308336e-01
-2.03804478e-01 -9.43328813e-02 1.94537863e-01 4.67489362e-01
5.16400039e-01 -8.87427509e-01 6.88676983e-02 -1.88566267e-01
8.37637186e-02 -6.43445492e-01 -1.00587048e-01 4.77162540e-01
-1.10758579e+00 9.05108824e-02 -3.30647260e-01 7.32832076e-03
-1.66486621e+00 2.14247182e-01 3.83951478e-02 -2.21410036e-01
-3.69438052e-01 7.05898046e-01 -5.68947494e-01 -4.55725938e-01
3.21396649e-01 -3.64401340e-01 -5.88499725e-01 -3.90075177e-01
5.11690915e-01 2.60221690e-01 1.06077120e-01 6.78947270e-02
-2.52299130e-01 7.68885436e-03 -1.83321927e-02 -2.35734046e-01
1.22263253e+00 1.77386738e-02 -4.66558039e-01 4.54856187e-01
1.03746212e+00 3.16805363e-01 -6.00137830e-01 4.23917621e-01
7.11737812e-01 -5.88847220e-01 -4.34948474e-01 -1.09753323e+00
-5.09854555e-01 6.64338410e-01 3.53837729e-01 8.46721828e-01
6.64004147e-01 -4.33608741e-02 6.60747707e-01 8.19443405e-01
2.92665005e-01 -1.23954451e+00 1.65507615e-01 8.49613011e-01
6.50506079e-01 -1.10841238e+00 -4.62045401e-01 -7.27054179e-01
-6.95800424e-01 1.44898522e+00 9.62085903e-01 7.88158998e-02
7.85263419e-01 7.07780421e-01 5.75051844e-01 -1.48179680e-01
-8.46706569e-01 -1.27313733e-01 6.03837892e-02 9.76376653e-01
9.34102774e-01 -3.31528276e-01 -1.01016068e+00 7.37555325e-01
-1.64689988e-01 1.91413090e-01 5.88972092e-01 9.03415859e-01
-6.28959358e-01 -1.79413474e+00 -1.17104262e-01 7.22800314e-01
-6.07595503e-01 -4.39543307e-01 -7.54703462e-01 8.26547861e-01
2.98161864e-01 1.52571154e+00 -4.44219679e-01 -8.40637088e-01
2.52530903e-01 3.87768745e-01 -6.26198947e-03 -1.25854433e+00
-1.19203186e+00 -2.86851943e-01 7.79624343e-01 -3.88765663e-01
-3.12685728e-01 -3.40376556e-01 -1.02047002e+00 -2.73555309e-01
-7.85552084e-01 8.69151115e-01 8.94646525e-01 1.33757341e+00
1.15604959e-01 2.02062517e-01 7.92991996e-01 5.13781644e-02
-5.02996087e-01 -1.66699743e+00 -7.07766712e-02 3.30470115e-01
-5.38746178e-01 -1.44935265e-01 -2.04208493e-01 4.00321662e-01] | [12.70343017578125, 7.733265399932861] |
29310ebe-68a5-4fbf-9339-4bfe8d4a951e | kepler-a-unified-model-for-knowledge | 1911.06136 | null | https://arxiv.org/abs/1911.06136v3 | https://arxiv.org/pdf/1911.06136v3.pdf | KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation | Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagE Representation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M, a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER. | ['Zhengyan Zhang', 'Zhaocheng Zhu', 'Jian Tang', 'Xiaozhi Wang', 'Tianyu Gao', 'Zhiyuan Liu', 'Juanzi Li'] | 2019-11-13 | null | null | null | null | ['inductive-knowledge-graph-completion'] | ['knowledge-base'] | [-7.89184451e-01 4.75434512e-01 -8.32643628e-01 -1.69716880e-01
-3.23196560e-01 -3.04482788e-01 6.34845614e-01 2.82752782e-01
-3.31926525e-01 6.32872283e-01 6.56589210e-01 -1.86602056e-01
-4.53509808e-01 -1.22598398e+00 -8.20731342e-01 -3.97307009e-01
-1.38927191e-01 6.81605160e-01 1.77691415e-01 -2.54849970e-01
-2.56986946e-01 4.25709188e-02 -1.09992909e+00 1.02136815e-02
1.05988550e+00 6.21130049e-01 1.50632605e-01 3.26431721e-01
-4.78896141e-01 1.12317586e+00 -1.24967650e-01 -1.00770390e+00
-2.99333215e-01 4.09533754e-02 -9.44899440e-01 -6.54974699e-01
1.57288224e-01 -8.88800621e-02 -1.24398661e+00 7.90130138e-01
3.50298226e-01 7.18345493e-02 7.88080871e-01 -1.43312478e+00
-1.69016922e+00 1.39981902e+00 -3.47849637e-01 5.39959036e-02
1.66479647e-01 -2.66363084e-01 1.45063186e+00 -1.18724585e+00
8.47970247e-01 1.14397681e+00 7.01569676e-01 2.83778757e-01
-8.68201017e-01 -5.49282253e-01 -1.27904704e-02 7.79136360e-01
-1.73431504e+00 -2.42909506e-01 8.98733079e-01 -2.83950299e-01
1.20596075e+00 -7.25630224e-02 7.12721348e-01 1.06537688e+00
-1.47815526e-01 1.07548058e+00 4.58022356e-01 -3.80594105e-01
-4.37793583e-01 4.70381558e-01 3.71301651e-01 1.17939317e+00
8.03624630e-01 -9.36315283e-02 -7.10974038e-01 -8.85675773e-02
6.10477388e-01 -2.02630997e-01 -6.05013847e-01 -5.08890450e-01
-1.58569157e+00 7.93270230e-01 6.93267703e-01 4.44284916e-01
-3.73433739e-01 5.04273057e-01 4.70794111e-01 1.59666717e-01
4.40417647e-01 5.66044450e-01 -7.75783777e-01 8.48191679e-02
-4.62201774e-01 1.37201741e-01 9.80167210e-01 1.17520833e+00
7.89992154e-01 1.07423849e-01 -8.80322829e-02 9.80181932e-01
5.00672042e-01 5.84818661e-01 5.52259147e-01 -5.08981466e-01
5.58532298e-01 7.50765085e-01 -2.35026568e-01 -1.18037486e+00
-1.68752223e-01 -5.12606800e-01 -7.01878250e-01 -8.14959288e-01
-7.11110532e-02 3.52961855e-04 -5.48574448e-01 1.55251384e+00
2.43705213e-01 3.88044238e-01 6.46578848e-01 6.58290267e-01
1.57740772e+00 9.26891327e-01 2.77318329e-01 7.88554922e-02
1.30113339e+00 -1.12195432e+00 -8.95358503e-01 -1.14005856e-01
1.01077628e+00 -3.32765460e-01 8.86435986e-01 -8.10216293e-02
-7.33493149e-01 -2.06684843e-01 -9.66046274e-01 -5.55328667e-01
-1.07394528e+00 5.48117280e-01 1.05234563e+00 8.96128938e-02
-8.81271482e-01 4.04992044e-01 -6.52907252e-01 -3.93786550e-01
4.88744527e-01 -8.96927193e-02 -6.52252197e-01 -3.07260305e-01
-1.96091616e+00 1.10810924e+00 1.20812356e+00 8.51398483e-02
-7.12361872e-01 -1.07967997e+00 -1.24122155e+00 2.29010984e-01
6.96897626e-01 -9.83286023e-01 6.49826527e-01 -3.23161967e-02
-1.19979751e+00 8.22653055e-01 6.30782843e-02 -2.50537694e-01
-6.36941642e-02 -4.30884659e-01 -9.09439683e-01 -3.37568745e-02
3.11349276e-02 4.59693640e-01 3.91667128e-01 -1.40030980e+00
-2.58744031e-01 -5.59471697e-02 6.11083731e-02 1.27216324e-01
-7.49215901e-01 -2.15906933e-01 -7.41289258e-01 -4.98761415e-01
-3.14876050e-01 -4.33233500e-01 1.56726480e-01 -2.33845860e-01
-6.35443270e-01 -6.95126474e-01 6.46299839e-01 -8.16594958e-01
1.66796219e+00 -1.95958471e+00 3.20395947e-01 4.81315739e-02
4.39570665e-01 5.89436293e-01 -1.39241919e-01 8.30754459e-01
5.25968783e-02 2.55707800e-01 1.64751410e-01 -7.64914155e-02
4.41778690e-01 5.98007381e-01 -5.60223401e-01 -1.19846901e-02
2.01207966e-01 1.72359312e+00 -1.27996194e+00 -7.55436122e-01
1.10041402e-01 6.01771235e-01 -1.55569136e-01 -1.50434943e-02
-4.50396717e-01 -3.37362796e-01 -7.34526634e-01 6.67205036e-01
2.16480762e-01 -6.50429308e-01 4.61511999e-01 -5.45814931e-01
2.15490580e-01 3.97134155e-01 -8.58506143e-01 1.65377164e+00
-3.95614922e-01 5.82936764e-01 -5.60212970e-01 -1.07466543e+00
9.38342452e-01 3.08510870e-01 2.44006529e-01 -3.48421961e-01
-9.34773684e-02 2.51612514e-01 -3.23216766e-01 -6.09581470e-01
9.53031719e-01 6.37259036e-02 -1.40733346e-01 2.08608434e-01
4.99103636e-01 2.68788934e-01 2.49677867e-01 8.00542474e-01
8.81893575e-01 4.14698869e-02 5.69146037e-01 -6.42521605e-02
3.74482155e-01 8.84803981e-02 5.27635872e-01 2.81677127e-01
1.69381157e-01 -3.58425409e-01 6.29320800e-01 -7.69642368e-02
-8.44582140e-01 -1.16305590e+00 -2.06318423e-01 1.01108313e+00
1.51486024e-01 -1.10320258e+00 9.15336385e-02 -9.76378500e-01
6.62700951e-01 9.38808143e-01 -6.28949702e-01 -4.16806489e-01
-2.52594352e-01 -6.94896579e-01 1.00377512e+00 8.65249455e-01
4.03110951e-01 -8.39109361e-01 3.95063698e-01 3.09896171e-01
-1.38953164e-01 -1.13463724e+00 -1.23378724e-01 -2.85930932e-02
-3.89274180e-01 -1.20908618e+00 -3.68610710e-01 -8.52763295e-01
6.16280377e-01 9.22449157e-02 1.31048119e+00 -1.45243943e-01
-1.94229215e-01 6.19941175e-01 -6.62512004e-01 -3.13354433e-01
-6.93426952e-02 1.28755510e-01 1.96135715e-01 -4.45258617e-01
6.88578963e-01 -4.60101187e-01 -2.04593584e-01 8.84160772e-02
-8.52937937e-01 1.47345617e-01 7.14940846e-01 8.83809507e-01
6.26065195e-01 4.31317538e-01 1.02086937e+00 -9.50984836e-01
6.10448956e-01 -9.41317499e-01 -1.52914479e-01 7.94422328e-01
-8.30846906e-01 3.72200370e-01 5.27906895e-01 -3.80187184e-01
-1.06861973e+00 -6.99614048e-01 4.12196144e-02 -6.36251986e-01
5.24166048e-01 1.46753812e+00 -2.52364278e-01 -7.93798547e-03
4.94755745e-01 2.94557124e-01 -5.08434594e-01 -6.26150906e-01
1.09966612e+00 6.83942676e-01 6.20199621e-01 -9.48280394e-01
9.36438799e-01 9.74492058e-02 -2.00796917e-01 -5.94779074e-01
-1.13912785e+00 -5.04742026e-01 -5.42542279e-01 1.83612168e-01
4.66978163e-01 -1.15785372e+00 -3.35891277e-01 -8.18011165e-02
-9.54381764e-01 -2.01442853e-01 -2.47331411e-01 5.83591223e-01
-1.99279413e-01 4.23599750e-01 -6.45934403e-01 -2.81241715e-01
-4.09536302e-01 -1.42064124e-01 5.51427543e-01 1.74530223e-01
1.66613862e-01 -1.55636656e+00 1.43038586e-01 4.42665458e-01
2.40069315e-01 7.86866695e-02 1.25951672e+00 -7.67381549e-01
-6.97452962e-01 -1.49135336e-01 -4.67365742e-01 3.26077491e-01
7.19193146e-02 1.29963592e-01 -6.99275374e-01 2.35582776e-02
-9.36512113e-01 -6.59606695e-01 1.29478872e+00 -8.31962377e-02
1.14225948e+00 -4.83622283e-01 -6.07080460e-01 6.38217390e-01
1.66332710e+00 -3.46951276e-01 6.49747312e-01 2.71677762e-01
1.27920675e+00 3.81327748e-01 5.73480904e-01 2.93432415e-01
1.16347647e+00 4.70818490e-01 -9.44773958e-04 3.29997420e-01
-2.61722207e-01 -1.08446670e+00 5.09339035e-01 1.54414642e+00
-1.72155336e-01 -3.46060127e-01 -1.07069743e+00 1.06493151e+00
-2.08408117e+00 -9.23223019e-01 -2.83248007e-01 1.70566940e+00
1.29460359e+00 -2.74468064e-01 -5.06825447e-01 -1.33171171e-01
3.51778656e-01 3.29353482e-01 -3.04375887e-01 -1.97400693e-02
-4.10098463e-01 -2.62977299e-03 6.13553226e-01 4.39158231e-01
-9.70755875e-01 1.40175772e+00 5.14387465e+00 1.15604234e+00
-6.85965180e-01 2.55769163e-01 -2.40698889e-01 8.39357153e-02
-7.12539077e-01 5.89510351e-02 -1.06796563e+00 3.63228023e-01
9.92776155e-01 -9.62222636e-01 3.08623403e-01 1.00757492e+00
-4.12852198e-01 4.23306108e-01 -1.11352134e+00 9.68182981e-01
1.93738952e-01 -1.70649898e+00 3.76900911e-01 5.59618045e-03
8.20764065e-01 2.08184302e-01 -1.97538018e-01 9.86882567e-01
7.41990089e-01 -1.18757331e+00 1.32409051e-01 7.99637556e-01
9.18517709e-01 -5.41936696e-01 8.55585814e-01 2.13892370e-01
-1.54800522e+00 2.30857417e-01 -8.14764023e-01 4.16414648e-01
1.81422755e-01 8.61037314e-01 -7.63281226e-01 1.43620586e+00
5.19191921e-01 1.34643424e+00 -5.09281337e-01 6.27706289e-01
-8.94496739e-01 5.55246592e-01 -1.49767652e-01 -1.36006534e-01
3.47632021e-02 1.39460161e-01 2.73756266e-01 1.41371930e+00
2.33042240e-01 1.11661948e-01 1.74344003e-01 1.04926372e+00
-6.66349590e-01 3.18669707e-01 -7.70511210e-01 -9.44383562e-01
7.80950725e-01 1.34568024e+00 1.01616532e-01 -5.73890209e-01
-6.47916734e-01 7.20309913e-01 9.53818142e-01 4.93429750e-01
-6.54983163e-01 -6.97798908e-01 7.41909802e-01 -1.75491095e-01
4.35839623e-01 -1.94659010e-01 2.60816097e-01 -1.67830598e+00
2.34201681e-02 -1.81079313e-01 7.31164098e-01 -1.00140512e+00
-1.79368865e+00 1.56792969e-01 1.51689231e-01 -6.72681034e-01
-8.74310508e-02 -7.42121339e-01 -3.27393532e-01 7.47257531e-01
-2.18390322e+00 -1.68975699e+00 -1.48163840e-01 5.34821510e-01
-2.47049019e-01 -1.93261608e-01 8.26396823e-01 4.76676524e-01
-7.22131073e-01 5.91127634e-01 3.49274695e-01 5.77512264e-01
8.11258852e-01 -1.37352157e+00 1.40473858e-01 3.65355313e-01
4.18889225e-01 1.03318918e+00 1.57219917e-01 -9.35347557e-01
-1.75399935e+00 -1.46506691e+00 1.35688829e+00 -7.88917303e-01
1.40619099e+00 -1.17527969e-01 -1.29449141e+00 1.27533138e+00
8.37883949e-02 2.87585735e-01 9.83948886e-01 6.91685677e-01
-7.03848243e-01 3.77930067e-02 -6.07692540e-01 4.12529051e-01
1.17660773e+00 -8.39740098e-01 -1.12173998e+00 3.26802969e-01
9.67441618e-01 -2.09225252e-01 -1.74183607e+00 4.66790140e-01
2.38084584e-01 -1.02928378e-01 1.17379820e+00 -8.80946875e-01
6.23835146e-01 -4.18335080e-01 -1.89932007e-02 -1.65669060e+00
-5.36464095e-01 -1.92510039e-01 -1.02848768e+00 1.61832833e+00
5.25710046e-01 -6.93421185e-01 5.92506707e-01 1.29898444e-01
-2.34895289e-01 -1.08832145e+00 -5.39187491e-01 -1.06449151e+00
1.37627944e-01 -4.72994864e-01 6.05895996e-01 1.64678752e+00
6.60626471e-01 3.86337429e-01 -3.99463207e-01 4.22583163e-01
5.07915735e-01 1.88891068e-01 6.19500399e-01 -1.24611163e+00
-1.65809542e-01 -2.97446102e-01 -5.36765158e-01 -9.18313146e-01
8.00350845e-01 -1.60267401e+00 -4.92934108e-01 -2.08278155e+00
4.19338554e-01 -6.30673647e-01 -4.97942269e-01 1.00497687e+00
-3.67558271e-01 -3.30419034e-01 -1.72130972e-01 2.08978698e-01
-6.99483454e-01 1.13087082e+00 1.13169003e+00 -1.53376266e-01
1.22428216e-01 -9.49601769e-01 -9.77332115e-01 4.51809496e-01
5.80861568e-01 -2.60962546e-01 -6.67719245e-01 -4.78831172e-01
8.26982379e-01 -2.57035971e-01 5.26028872e-01 -3.21604848e-01
4.79890287e-01 -2.22813651e-01 3.08695555e-01 -4.73493904e-01
2.31713831e-01 -5.76252401e-01 1.18739627e-01 -6.50343895e-02
-2.19412118e-01 -5.07181704e-01 2.30945334e-01 7.44212210e-01
-4.36216503e-01 -1.33645013e-01 2.50032693e-02 2.46986002e-02
-1.43255460e+00 6.67432189e-01 4.12786007e-01 2.98974484e-01
7.36838520e-01 3.12345326e-01 -1.17475688e+00 -2.09253058e-02
-5.57522595e-01 8.87735367e-01 3.06124210e-01 5.66994965e-01
7.34476149e-01 -1.76234853e+00 -7.57394910e-01 -1.50231153e-01
7.46249318e-01 2.51791403e-02 3.12323064e-01 7.41409719e-01
-2.32810453e-01 7.92482972e-01 1.32944912e-01 1.96644530e-01
-8.95085096e-01 6.63018525e-01 8.86845961e-02 -5.61170936e-01
-8.40223670e-01 8.60389471e-01 3.88409905e-02 -6.76735163e-01
-5.40869683e-02 -2.22173184e-01 -4.52543229e-01 4.17654738e-02
4.85393703e-01 1.87970296e-01 -3.61618996e-01 -3.84300441e-01
-3.08649838e-01 4.24774498e-01 -3.43954749e-02 4.88502771e-01
1.43783665e+00 3.75092663e-02 -4.42934543e-01 5.39516389e-01
1.07053781e+00 1.48154855e-01 -7.01119304e-01 -8.76517057e-01
2.21098945e-01 -4.58482534e-01 2.94387192e-01 -9.36055064e-01
-1.07177985e+00 6.78080678e-01 -5.45682251e-01 -1.24656193e-01
6.64870799e-01 6.32534921e-01 8.24003935e-01 8.25437963e-01
4.94051576e-01 -9.43543315e-01 1.76652856e-02 6.09772205e-01
9.58593428e-01 -9.88557398e-01 1.93272382e-01 -7.86887348e-01
-9.22363937e-01 1.02569962e+00 6.38023078e-01 1.88011035e-01
7.27187276e-01 2.56442036e-02 -2.72095472e-01 -5.90718746e-01
-1.13929284e+00 -4.86629844e-01 5.90303063e-01 7.20155060e-01
4.27072138e-01 3.57821822e-01 -2.62199461e-01 1.16024613e+00
-2.79823303e-01 1.80769458e-01 3.33312690e-01 5.69237232e-01
-4.08879042e-01 -1.08606815e+00 2.57870823e-01 5.94032288e-01
-8.55769366e-02 -3.46793026e-01 -4.52458203e-01 1.00279355e+00
-2.08882373e-02 4.16108131e-01 -4.71691251e-01 -6.82725966e-01
1.96359932e-01 4.63414907e-01 3.63306820e-01 -6.83994234e-01
1.81298633e-03 -7.70030737e-01 6.46735668e-01 -2.37612352e-01
-2.03385219e-01 -2.38853857e-01 -1.44782186e+00 -7.41354346e-01
-2.57159591e-01 3.33093166e-01 4.24412251e-01 7.54678547e-01
4.57528234e-01 6.04530096e-01 7.06076622e-02 -2.87068430e-02
-2.05858052e-01 -9.85168934e-01 -9.60395217e-01 2.81768352e-01
-2.11664498e-01 -9.16195571e-01 -2.77988583e-01 -6.12018965e-02] | [8.914962768554688, 7.985876560211182] |
bf160070-24e3-4d9b-a911-c829dc08bede | adapterem-pre-trained-language-model | 2305.18725 | null | https://arxiv.org/abs/2305.18725v1 | https://arxiv.org/pdf/2305.18725v1.pdf | AdapterEM: Pre-trained Language Model Adaptation for Generalized Entity Matching using Adapter-tuning | Entity Matching (EM) involves identifying different data representations referring to the same entity from multiple data sources and is typically formulated as a binary classification problem. It is a challenging problem in data integration due to the heterogeneity of data representations. State-of-the-art solutions have adopted NLP techniques based on pre-trained language models (PrLMs) via the fine-tuning paradigm, however, sequential fine-tuning of overparameterized PrLMs can lead to catastrophic forgetting, especially in low-resource scenarios. In this study, we propose a parameter-efficient paradigm for fine-tuning PrLMs based on adapters, small neural networks encapsulated between layers of a PrLM, by optimizing only the adapter and classifier weights while the PrLMs parameters are frozen. Adapter-based methods have been successfully applied to multilingual speech problems achieving promising results, however, the effectiveness of these methods when applied to EM is not yet well understood, particularly for generalized EM with heterogeneous data. Furthermore, we explore using (i) pre-trained adapters and (ii) invertible adapters to capture token-level language representations and demonstrate their benefits for transfer learning on the generalized EM benchmark. Our results show that our solution achieves comparable or superior performance to full-scale PrLM fine-tuning and prompt-tuning baselines while utilizing a significantly smaller computational footprint $\approx 13\%$ of the PrLM parameters. | ['Akiyoshi Matono', 'Toshiyuki Amagasa', 'Steven Lynden', 'John Bosco Mugeni'] | 2023-05-30 | null | null | null | null | ['data-integration'] | ['knowledge-base'] | [ 1.52657837e-01 1.47650376e-01 -1.94360569e-01 -3.22165608e-01
-1.13403690e+00 -3.77246022e-01 5.60328841e-01 2.36055523e-01
-7.55104303e-01 6.39434397e-01 1.61815763e-01 -3.91658157e-01
-4.84865382e-02 -6.41371369e-01 -1.02919877e+00 -3.09343815e-01
1.82486162e-01 8.53430092e-01 4.41043340e-02 -3.40747058e-01
-1.36889279e-01 2.62695372e-01 -1.56018126e+00 4.98878330e-01
1.14631474e+00 7.49331236e-01 4.52342272e-01 2.47268781e-01
-5.72052121e-01 4.60125685e-01 -5.58008552e-01 -6.04490459e-01
1.11168653e-01 7.21196607e-02 -9.70859706e-01 -4.03950989e-01
4.91871029e-01 6.92997426e-02 -1.15885168e-01 9.18263614e-01
6.03602827e-01 3.26881737e-01 6.28349781e-01 -1.18903744e+00
-7.34741747e-01 9.82969224e-01 -2.53329366e-01 -1.89827625e-02
1.33843377e-01 -8.05539936e-02 9.64452028e-01 -1.04494989e+00
6.01045966e-01 1.35040236e+00 9.38191712e-01 6.05214357e-01
-1.56041086e+00 -9.95097876e-01 3.45152229e-01 4.50881451e-01
-1.66550016e+00 -7.32350111e-01 3.53507221e-01 -2.22840533e-01
1.69101465e+00 6.59952983e-02 4.18120585e-02 1.09946883e+00
-1.32091865e-02 7.69616842e-01 6.81342065e-01 -5.65258622e-01
6.29357472e-02 6.49043381e-01 2.33154967e-02 4.62000579e-01
3.10892165e-02 -1.83637440e-01 -4.37174916e-01 -3.30673635e-01
2.28959545e-01 -1.37020737e-01 -7.86575079e-02 -2.00744763e-01
-1.00636435e+00 8.43089879e-01 4.14586365e-01 5.25787234e-01
-3.82880926e-01 -1.40687469e-02 3.26680422e-01 6.42022073e-01
4.81512874e-01 5.58238089e-01 -7.94589996e-01 -6.30110279e-02
-1.08333945e+00 1.39800146e-01 8.11518669e-01 1.14069045e+00
1.02506685e+00 -1.69339195e-01 -1.19568713e-01 1.29530787e+00
2.66612202e-01 4.09598410e-01 7.94038892e-01 -5.86372256e-01
8.78022432e-01 8.81385863e-01 -9.65504870e-02 -6.08796239e-01
-6.42306745e-01 -3.47082973e-01 -9.57401931e-01 -2.21041456e-01
1.38169363e-01 -1.15495743e-02 -7.99038589e-01 2.25405550e+00
3.15901309e-01 3.63080114e-01 2.27388427e-01 3.58765543e-01
8.07231426e-01 6.45568073e-01 4.26322699e-01 1.28033692e-02
1.32874024e+00 -1.05049467e+00 -4.62576449e-01 -4.37660635e-01
9.16104674e-01 -7.14175999e-01 1.20416653e+00 1.70809459e-02
-1.12637162e+00 -5.68714619e-01 -9.98264313e-01 -1.87554404e-01
-7.98067510e-01 1.99985787e-01 3.71534139e-01 4.74034041e-01
-1.06472719e+00 6.50919497e-01 -6.92610204e-01 -5.72686255e-01
1.63460568e-01 7.36113131e-01 -4.49514300e-01 -3.20213474e-02
-1.47282195e+00 1.23080468e+00 5.88333607e-01 -7.72667527e-02
-4.39792633e-01 -1.11812305e+00 -9.22368407e-01 2.94304073e-01
2.52002805e-01 -1.06073761e+00 1.26454365e+00 -7.38426685e-01
-1.54673910e+00 8.78490567e-01 -2.83354640e-01 -5.71617544e-01
3.02924871e-01 -1.98215604e-01 -7.26492524e-01 -3.18574339e-01
-4.70114686e-02 9.03635561e-01 8.45060349e-01 -9.41879213e-01
-6.64338470e-01 -2.50093788e-02 -7.02780709e-02 2.35403311e-02
-5.27305961e-01 1.39560252e-01 -3.91738236e-01 -7.49051273e-01
-1.74324140e-01 -9.78296876e-01 -2.20558390e-01 -3.78583223e-01
-3.09838145e-03 -2.53477007e-01 4.27954435e-01 -6.93768620e-01
1.58781958e+00 -1.99556696e+00 2.80879676e-01 -6.32720813e-02
-9.08852890e-02 6.07197702e-01 -5.72605431e-01 4.17655528e-01
-6.81644678e-02 -7.32249115e-03 -3.71358782e-01 -7.14036226e-01
3.01183760e-01 1.44996732e-01 -3.59212250e-01 9.50815976e-02
3.50240022e-01 1.01887774e+00 -6.44047678e-01 -3.36665928e-01
2.15855345e-01 6.14552319e-01 -7.58408904e-01 3.89098167e-01
-2.94927359e-01 2.28701875e-01 5.59027046e-02 3.95266056e-01
7.52732873e-01 -3.74507427e-01 3.99315357e-01 -3.07412446e-01
1.32474393e-01 7.11707532e-01 -1.51595438e+00 1.89991033e+00
-1.05415571e+00 3.26446354e-01 1.87662691e-01 -9.72559392e-01
7.69832075e-01 4.51422572e-01 1.58981591e-01 -8.15416217e-01
-1.35627672e-01 5.45068622e-01 -3.25325519e-01 -2.58841842e-01
7.46499240e-01 -1.21745914e-01 -3.86655211e-01 4.94586557e-01
4.31388944e-01 1.74609274e-01 1.56062916e-01 -8.13604682e-04
1.09592748e+00 5.06608002e-02 5.01700401e-01 -1.26063541e-01
6.44869983e-01 -1.15288652e-01 5.59936345e-01 9.14014399e-01
2.82659143e-01 3.38592976e-01 -2.52840430e-01 -1.05775595e-01
-8.92455280e-01 -9.68318820e-01 -2.57340819e-01 1.48954070e+00
-4.25706282e-02 -5.63277364e-01 -7.53187537e-01 -4.90360022e-01
2.56022871e-01 8.78818035e-01 -3.15593570e-01 -3.77799809e-01
-8.83039713e-01 -9.17372286e-01 7.33070791e-01 5.11501968e-01
2.78665334e-01 -1.15866637e+00 -2.16142267e-01 6.10591233e-01
-3.71817708e-01 -1.15471613e+00 -4.87349600e-01 4.19460028e-01
-7.59209454e-01 -6.30013525e-01 -5.54585874e-01 -7.22708464e-01
6.10099375e-01 2.06273064e-01 1.47200346e+00 -2.40543764e-02
-4.33917753e-02 1.77795991e-01 -4.51284200e-02 -4.52967547e-02
-7.78404176e-01 8.80138218e-01 3.15254360e-01 -7.44384378e-02
6.86818659e-01 -7.26071954e-01 -2.92432398e-01 3.94612223e-01
-9.59910572e-01 2.90124975e-02 8.10275912e-01 9.85180199e-01
4.05974686e-01 -3.22261602e-01 8.50034595e-01 -1.11120474e+00
6.21291280e-01 -6.97054267e-01 -5.57709038e-01 6.38149381e-01
-8.35433364e-01 5.80623329e-01 6.08242810e-01 -8.62012744e-01
-1.20924902e+00 -2.70760536e-01 -2.78693974e-01 -3.22683871e-01
-1.82299063e-01 3.90901417e-01 -3.95845681e-01 6.70578554e-02
5.08805215e-01 -7.41167068e-02 -3.47514749e-01 -8.77446294e-01
7.22867787e-01 8.98257792e-01 6.24960184e-01 -9.07826602e-01
5.98227203e-01 1.11912757e-01 -5.16608536e-01 -4.24860835e-01
-5.82750499e-01 -5.89799345e-01 -5.69345057e-01 4.16620791e-01
4.19772327e-01 -1.17656672e+00 -5.47540963e-01 2.36220986e-01
-1.21399462e+00 -2.45037615e-01 -1.97171807e-01 4.16551203e-01
-4.65634286e-01 1.34195387e-01 -7.44827628e-01 -5.11943579e-01
-6.81937456e-01 -1.17360878e+00 1.07983577e+00 5.94164617e-03
-6.36492968e-01 -1.00325441e+00 1.44831583e-01 3.47952068e-01
9.34051394e-01 -4.80663270e-01 1.36502028e+00 -7.62171030e-01
-4.90007728e-01 6.49274290e-02 -1.84400678e-01 1.26617000e-01
-1.15908543e-02 -4.52885717e-01 -1.11022377e+00 -5.22558391e-01
-3.09605509e-01 -1.82749525e-01 9.39301610e-01 -9.48945992e-03
8.43129456e-01 -4.72801507e-01 -6.26854718e-01 7.88441598e-01
1.24671006e+00 -7.63064176e-02 4.25050884e-01 6.11774266e-01
4.37588096e-01 5.37073851e-01 4.04774874e-01 3.28270972e-01
6.98996961e-01 1.00450480e+00 6.29540416e-04 3.49321552e-02
-2.46933848e-01 -4.82682079e-01 5.17302930e-01 1.21144557e+00
4.28221762e-01 -1.54618382e-01 -7.63992131e-01 6.29124284e-01
-2.05381751e+00 -6.79188192e-01 3.51984471e-01 2.33312082e+00
1.24719560e+00 -8.23894665e-02 -1.88874975e-01 -2.92890072e-01
6.67671382e-01 -1.72498256e-01 -6.93586767e-01 -3.33727568e-01
-3.17376018e-01 5.15975177e-01 3.93396050e-01 4.61700708e-01
-1.04838753e+00 1.09314311e+00 5.84793186e+00 1.02808297e+00
-1.06074345e+00 5.64065933e-01 6.18933290e-02 -2.38106772e-01
-4.81814831e-01 1.22087583e-01 -1.36549246e+00 4.18634564e-01
1.38353300e+00 -8.33986029e-02 6.16524696e-01 6.51811481e-01
-3.23342711e-01 2.84678668e-01 -1.31293344e+00 1.05181563e+00
-7.93704614e-02 -1.36299491e+00 1.61443144e-01 -2.70814240e-01
6.12735271e-01 4.64946985e-01 -6.75592758e-03 9.43653464e-01
5.91265500e-01 -9.30829346e-01 6.97776437e-01 3.93687606e-01
7.60519207e-01 -5.32571971e-01 5.73492408e-01 5.17750561e-01
-1.22056794e+00 -1.23329192e-01 -4.39816594e-01 3.69197339e-01
3.13870847e-01 3.67575258e-01 -1.01223350e+00 5.81690609e-01
7.93953121e-01 3.69873971e-01 -6.04340732e-01 8.03097248e-01
-7.38613382e-02 2.33376414e-01 -5.64717710e-01 2.71845102e-01
-9.10551846e-02 1.54475300e-02 3.64001483e-01 1.66754067e+00
5.14489651e-01 -4.45318460e-01 -1.57341689e-01 1.06817245e+00
-5.29282451e-01 2.47682720e-01 -3.37155372e-01 6.53270185e-02
7.89783061e-01 1.22878587e+00 3.01617105e-03 -3.66989791e-01
-5.09409726e-01 8.33439052e-01 9.38782275e-01 3.15565437e-01
-7.16938198e-01 -1.36685878e-01 9.36374664e-01 2.21556909e-02
4.12185490e-01 -3.03900428e-02 -1.19387411e-01 -1.42618906e+00
8.65125954e-02 -1.04811466e+00 7.80949712e-01 -4.60261106e-01
-1.51479399e+00 7.75147140e-01 4.60824370e-02 -1.04846692e+00
-5.12999296e-01 -3.74994308e-01 -2.77844697e-01 9.91046488e-01
-1.70227730e+00 -1.18205285e+00 -1.07757911e-01 5.80751479e-01
4.04099584e-01 -2.76663482e-01 1.16855872e+00 8.73533845e-01
-6.89224303e-01 1.18275213e+00 3.67613882e-01 -2.11984739e-01
1.11909747e+00 -9.70066369e-01 5.57961464e-01 5.41883290e-01
1.96455196e-01 9.04293835e-01 4.01300788e-01 -4.36063915e-01
-1.27012515e+00 -1.35102272e+00 1.33020902e+00 -4.46125925e-01
5.99801481e-01 -6.40336871e-01 -1.36134446e+00 7.42068768e-01
2.46511757e-01 -1.74396291e-01 7.03568101e-01 4.62885529e-01
-6.29343748e-01 -1.75385803e-01 -1.13134837e+00 6.07944012e-01
1.01852477e+00 -7.05178559e-01 -8.42993796e-01 1.80813223e-02
8.32606494e-01 -3.45821828e-01 -1.13176167e+00 5.39034724e-01
4.32445645e-01 -3.54909301e-01 1.08441925e+00 -8.15711379e-01
-1.43735439e-01 -3.39815795e-01 -3.61314774e-01 -1.45753288e+00
-2.54919678e-01 -5.69838107e-01 -3.09860617e-01 1.73108935e+00
7.15607345e-01 -8.08017254e-01 3.33011836e-01 7.12436855e-01
-2.45974157e-02 -4.47632819e-01 -1.16413796e+00 -8.25946867e-01
3.28327477e-01 -4.82184589e-01 1.04823816e+00 1.05765998e+00
-3.19084749e-02 5.03138185e-01 -3.08997959e-01 2.53798604e-01
2.83551902e-01 1.32338330e-01 8.10630620e-01 -1.09968507e+00
-4.88384843e-01 -6.96567535e-01 -2.62079723e-02 -1.11198950e+00
6.59705579e-01 -1.30513585e+00 -7.50722140e-02 -1.17957902e+00
2.81708151e-01 -8.62790406e-01 -5.38781345e-01 6.15586102e-01
-3.22125405e-01 -1.89143747e-01 2.17270389e-01 2.56656855e-01
-5.58778107e-01 6.14506185e-01 2.20285386e-01 -5.19324064e-01
-2.70067602e-01 -1.00462459e-01 -6.46598577e-01 4.49341148e-01
4.93193656e-01 -7.43203104e-01 -1.47583842e-01 -7.27001786e-01
2.95647562e-01 -2.03153580e-01 1.75542291e-02 -8.33236992e-01
5.14121413e-01 8.63523558e-02 -5.02495877e-02 -4.58468080e-01
3.94801825e-01 -8.23891282e-01 6.57512903e-01 7.54240453e-02
-3.78035426e-01 2.12315872e-01 5.15965879e-01 3.69457841e-01
-3.26962292e-01 -3.71264160e-01 7.74513304e-01 -4.29631770e-02
-8.11961412e-01 1.23644374e-01 -1.40821591e-01 1.68933123e-01
6.32015646e-01 2.05945432e-01 -3.09917539e-01 1.04123419e-02
-5.89255691e-01 3.03277791e-01 3.68725717e-01 8.55090618e-01
1.98544487e-01 -1.50657010e+00 -7.02504337e-01 3.44193906e-01
3.14671516e-01 -1.48634046e-01 3.03399622e-01 8.55404913e-01
8.27678964e-02 5.57018220e-01 4.41521294e-02 -5.44641018e-01
-1.11394167e+00 7.37847149e-01 4.30259228e-01 -6.98259532e-01
-4.22638863e-01 6.91332996e-01 2.76214719e-01 -1.14622808e+00
3.80737364e-01 -4.35935795e-01 5.43347150e-02 1.67134181e-01
4.67897803e-01 3.38602424e-01 5.40352643e-01 -5.47990501e-01
-5.39398432e-01 4.18795884e-01 -2.73676455e-01 8.64639655e-02
1.43889380e+00 -3.56837153e-01 -9.55743119e-02 2.97036976e-01
1.27189064e+00 -2.20624626e-01 -8.20261657e-01 -9.01916206e-01
4.39659208e-01 -1.58094633e-02 -1.90910771e-01 -7.09119558e-01
-8.56908679e-01 8.59994352e-01 5.94143391e-01 -4.20492947e-01
1.09577703e+00 9.11855996e-02 1.01251662e+00 5.44286668e-01
5.95061123e-01 -1.27196848e+00 -4.04793054e-01 5.60573518e-01
7.01781452e-01 -1.26940489e+00 -3.92489314e-01 -3.19139063e-02
-4.43152159e-01 9.05369341e-01 6.02038205e-01 3.52238029e-01
5.76520205e-01 3.65985781e-01 -4.46532806e-03 3.11905056e-01
-1.13951790e+00 -1.04654312e-01 4.18660283e-01 3.58244032e-01
4.15445179e-01 1.23721667e-01 -1.15280389e-03 9.63467181e-01
-7.78353512e-02 -4.14471328e-02 -4.49241437e-02 6.72756433e-01
-1.34625331e-01 -1.45311499e+00 -2.21549287e-01 2.98744500e-01
-3.60273361e-01 -4.33758497e-01 1.06917165e-01 6.41180158e-01
2.04034969e-01 8.58397007e-01 7.79641345e-02 -3.07935983e-01
6.60893679e-01 4.81984854e-01 4.09728885e-01 -5.51978409e-01
-1.07528126e+00 -4.16581988e-01 1.60005704e-01 -4.77724224e-01
-3.10032040e-01 -6.80271327e-01 -1.15316498e+00 -3.64808977e-01
-3.72413725e-01 1.81274638e-01 6.70761704e-01 9.49071825e-01
9.93085027e-01 3.84522051e-01 2.43040010e-01 -6.72525823e-01
-8.50807607e-01 -1.22057641e+00 -1.72528490e-01 6.08253658e-01
2.05377415e-01 -8.58698726e-01 -1.85695603e-01 -1.58928052e-01] | [9.837754249572754, 8.62270450592041] |
446f67f1-0a4c-40ce-a918-6f94a615111d | spatiotemporal-feature-learning-for-event | 1903.06923 | null | http://arxiv.org/abs/1903.06923v1 | http://arxiv.org/pdf/1903.06923v1.pdf | Spatiotemporal Feature Learning for Event-Based Vision | Unlike conventional frame-based sensors, event-based visual sensors output
information through spikes at a high temporal resolution. By only encoding
changes in pixel intensity, they showcase a low-power consuming, low-latency
approach to visual information sensing. To use this information for higher
sensory tasks like object recognition and tracking, an essential simplification
step is the extraction and learning of features. An ideal feature descriptor
must be robust to changes involving (i) local transformations and (ii)
re-appearances of a local event pattern. To that end, we propose a novel
spatiotemporal feature representation learning algorithm based on slow feature
analysis (SFA). Using SFA, smoothly changing linear projections are learnt
which are robust to local visual transformations. In order to determine if the
features can learn to be invariant to various visual transformations, feature
point tracking tasks are used for evaluation. Extensive experiments across two
datasets demonstrate the adaptability of the spatiotemporal feature learner to
translation, scaling and rotational transformations of the feature points. More
importantly, we find that the obtained feature representations are able to
exploit the high temporal resolution of such event-based cameras in generating
better feature tracks. | ['Anupam Gupta', 'Alcimar Soares', 'Rohan Ghosh', 'Siyi Tang', 'Nitish Thakor'] | 2019-03-16 | null | null | null | null | ['event-based-vision'] | ['computer-vision'] | [ 5.13196588e-01 -8.42105985e-01 -4.42766361e-02 -4.61081862e-01
-5.05388677e-01 -7.50920057e-01 9.27647889e-01 3.00878435e-01
-5.36598861e-01 7.08331287e-01 -1.60167292e-01 3.54214549e-01
-2.53002673e-01 -5.91772676e-01 -1.08850396e+00 -8.23540330e-01
-2.72264808e-01 -2.77804047e-01 8.07346225e-01 1.09445408e-01
4.18080777e-01 1.12218058e+00 -2.19446421e+00 4.53372955e-01
1.62984207e-01 1.29424489e+00 2.20086068e-01 6.46699071e-01
1.72662616e-01 4.94726390e-01 -3.48865032e-01 5.02626657e-01
2.85192817e-01 -2.83290863e-01 -1.79940075e-01 3.76080684e-02
3.97412419e-01 2.71974485e-02 -2.53720045e-01 7.98423171e-01
2.24712566e-01 2.19062030e-01 6.37774527e-01 -1.27152216e+00
-2.57469267e-01 -7.29235783e-02 -2.32604250e-01 4.63357955e-01
8.44422877e-01 4.03397202e-01 6.02064550e-01 -1.09283805e+00
9.29623723e-01 9.37064469e-01 5.97157836e-01 3.16281796e-01
-1.29995215e+00 -3.53937447e-01 7.13868588e-02 6.19430959e-01
-1.34529650e+00 -6.25515699e-01 9.28070664e-01 -3.51326793e-01
1.08982813e+00 3.76981795e-01 8.04395020e-01 1.25954103e+00
6.07550859e-01 2.89013624e-01 1.37802076e+00 -3.43258619e-01
5.32182574e-01 -5.79394065e-02 -9.03091282e-02 4.73637104e-01
1.31668285e-01 3.71325850e-01 -1.16052699e+00 8.64121318e-02
7.43915915e-01 4.02207345e-01 -2.24608526e-01 -6.12960279e-01
-1.50323355e+00 3.75441968e-01 5.85847557e-01 3.91746402e-01
-5.45108736e-01 3.91550660e-01 1.58718646e-01 4.82467115e-01
-2.16191247e-01 1.72673896e-01 -3.45843464e-01 -3.60685080e-01
-7.59433985e-01 -6.42755628e-02 4.15670276e-01 7.61880815e-01
9.12838757e-01 3.78276743e-02 -3.16091985e-01 2.70450693e-02
2.27490604e-01 8.02981436e-01 7.89293110e-01 -6.71767592e-01
-4.90328223e-02 7.05224633e-01 2.54334211e-01 -9.40760016e-01
-6.96574092e-01 3.62974852e-02 -6.39799356e-01 5.85258305e-01
4.39691037e-01 1.99987218e-01 -8.15595686e-01 1.55986643e+00
3.26572597e-01 3.22298944e-01 3.40139568e-02 7.90760577e-01
3.76928955e-01 5.75057209e-01 -1.38864353e-01 -5.14986515e-01
1.34220898e+00 -3.65882032e-02 -6.20031416e-01 2.02497132e-02
1.16701677e-01 -6.38204217e-01 8.12188089e-01 2.52713799e-01
-8.88227642e-01 -7.75165379e-01 -1.20118690e+00 1.00020327e-01
-7.09102094e-01 -1.51341587e-01 5.29147267e-01 2.95468986e-01
-9.32179213e-01 6.38933837e-01 -1.20429373e+00 -6.89016521e-01
2.59842694e-01 6.06685102e-01 -5.94201446e-01 2.45736301e-01
-8.15887451e-01 7.40080655e-01 2.70654559e-01 8.80352035e-03
-6.79734409e-01 -5.82885087e-01 -7.39724636e-01 -1.01856649e-01
-2.44953930e-02 -4.17490542e-01 7.69639373e-01 -8.43247652e-01
-1.63355267e+00 5.85823655e-01 -6.08190715e-01 -5.86428702e-01
3.59201193e-01 4.69315089e-02 -3.78274798e-01 2.65283734e-01
-1.70146570e-01 4.10054803e-01 1.23611498e+00 -9.41307068e-01
-6.17790163e-01 -5.02532423e-01 -3.93444657e-01 6.15123622e-02
-3.01730573e-01 -2.23799739e-02 1.07013717e-01 -2.17035115e-01
2.53749937e-01 -7.36976206e-01 8.34758803e-02 4.57326710e-01
1.81385390e-02 -5.50186932e-02 1.16993868e+00 6.06901422e-02
7.17321992e-01 -2.33495188e+00 -1.10558711e-01 3.54581207e-01
-2.46495783e-01 8.11940059e-02 1.61580052e-02 4.91062969e-01
1.63644746e-01 -4.59430635e-01 1.08989030e-01 6.50726780e-02
-2.56777942e-01 1.40150040e-01 -5.08539140e-01 7.57736206e-01
4.69732940e-01 1.01952624e+00 -7.37883568e-01 -2.84297019e-01
6.92359447e-01 7.55384266e-01 -8.28359425e-02 1.84215754e-02
-3.85624878e-02 7.54180193e-01 -5.57472706e-01 7.19733238e-01
2.51207471e-01 1.81062091e-02 -3.15931290e-01 -5.00186741e-01
-6.09134614e-01 -4.51345928e-02 -1.23418999e+00 1.79427958e+00
-2.68639535e-01 7.37541914e-01 -4.71862316e-01 -8.38657856e-01
1.17775846e+00 2.12388426e-01 7.07587957e-01 -1.17591906e+00
1.65552437e-01 1.92093670e-01 -2.40149349e-01 -3.98965269e-01
1.95842579e-01 1.90651000e-01 1.19478873e-03 2.77321160e-01
1.75574437e-01 7.51802325e-02 5.23603000e-02 -3.16332579e-01
1.26041102e+00 3.25383067e-01 5.28217256e-01 -3.81955393e-02
5.43760896e-01 -1.97453946e-01 3.60958993e-01 7.57927179e-01
-2.42966294e-01 5.31995118e-01 -7.21445084e-02 -6.72202349e-01
-8.52328837e-01 -1.25504780e+00 -3.83482963e-01 7.79045343e-01
3.19782585e-01 -1.02414832e-01 -2.07165033e-01 -1.57302350e-01
-1.34570571e-02 1.85497597e-01 -5.44508696e-01 -3.74523818e-01
-4.82705086e-01 -4.72605914e-01 2.54383832e-01 6.01936340e-01
2.67468572e-01 -1.11917436e+00 -1.72935402e+00 3.47325981e-01
3.35180730e-01 -1.18526769e+00 -1.52420670e-01 6.33167803e-01
-9.92342412e-01 -9.58498240e-01 -3.89608681e-01 -4.94843602e-01
4.67158794e-01 1.99240655e-01 4.86077011e-01 -4.79731202e-01
-6.01718187e-01 7.94094026e-01 -4.13544089e-01 -3.82876873e-01
1.65622473e-01 -3.44227672e-01 3.49285752e-01 4.84230399e-01
4.25428271e-01 -9.31063116e-01 -5.63336849e-01 2.68438905e-01
-9.57455397e-01 -2.41502196e-01 6.30704522e-01 5.99455714e-01
1.02902508e+00 -2.22046748e-01 2.53869265e-01 -2.00650796e-01
1.96749330e-01 -1.19355232e-01 -7.77138412e-01 3.09743911e-01
-2.97744811e-01 2.95353204e-01 7.20542669e-01 -7.35352337e-01
-8.10824096e-01 7.32833862e-01 2.43292943e-01 -4.04189795e-01
-4.22924519e-01 2.17899755e-01 1.02149270e-01 -5.18743277e-01
9.44462299e-01 6.68273389e-01 -1.39293313e-01 -8.94996226e-02
3.15571398e-01 2.76292503e-01 6.57159090e-01 -3.08482558e-01
9.86468077e-01 1.00304461e+00 5.14894247e-01 -9.58025455e-01
-1.29680604e-01 -5.61422765e-01 -1.06767607e+00 -5.18454492e-01
6.44106567e-01 -7.89734125e-01 -9.12770867e-01 5.09339511e-01
-1.08020544e+00 -8.13436657e-02 -7.00856566e-01 6.22921467e-01
-8.93230617e-01 7.54821151e-02 -1.01565816e-01 -8.03890169e-01
-6.36628792e-02 -8.68362844e-01 1.04069042e+00 5.95232487e-01
-1.22090362e-01 -7.08297610e-01 2.97684252e-01 -6.02698088e-01
5.24750650e-01 6.53481483e-01 4.95643318e-01 -3.42460424e-01
-8.58672142e-01 -3.67926151e-01 -3.20730694e-02 -1.76286191e-01
4.06668156e-01 1.76505134e-01 -1.11747599e+00 -3.29328030e-01
8.98439288e-02 -2.39494428e-01 7.07678556e-01 4.04988229e-01
7.58679569e-01 7.11377189e-02 -4.61980939e-01 8.15008938e-01
1.55084383e+00 3.19932699e-01 5.19374251e-01 3.39538306e-01
4.29641902e-01 1.64786488e-01 5.89064777e-01 7.32707262e-01
-1.78096928e-02 8.60412180e-01 4.16145533e-01 1.40946940e-01
-1.74567401e-01 -1.52063414e-01 6.78439081e-01 5.75596809e-01
-2.75118917e-01 3.04215014e-01 -6.26976550e-01 4.73744094e-01
-1.74784839e+00 -1.08411813e+00 2.07758785e-04 2.53658772e+00
6.46572113e-01 5.22407927e-02 5.81131391e-02 3.42412859e-01
4.83228505e-01 1.51193559e-01 -8.52543354e-01 -2.69487053e-01
-4.20251489e-01 3.22958618e-01 4.68370378e-01 6.03217296e-02
-9.51490045e-01 5.85694611e-01 6.17854500e+00 1.78298056e-01
-1.51753891e+00 -1.67744353e-01 -4.50734720e-02 -1.68987542e-01
-1.11779412e-02 -7.04008117e-02 -6.60607696e-01 4.80119079e-01
1.07379591e+00 -2.36415923e-01 3.59232545e-01 5.03371298e-01
2.91349590e-01 -2.49638379e-01 -1.32146358e+00 1.14048648e+00
4.07819450e-02 -1.21796286e+00 5.96378483e-02 -2.37257332e-01
5.05149782e-01 6.11869879e-02 9.41429138e-02 -1.62489578e-01
-2.09898263e-01 -8.26949000e-01 6.99741900e-01 1.02881730e+00
6.81277037e-01 -4.99491245e-01 3.71803403e-01 1.02273040e-01
-1.46237826e+00 -1.66217014e-01 -4.10431236e-01 -2.81006992e-01
1.20657131e-01 4.99572277e-01 -5.12505233e-01 2.89577544e-01
8.29350233e-01 9.62655187e-01 -6.93561912e-01 1.12697518e+00
6.18665069e-02 1.27876416e-01 -6.91249430e-01 -1.47486910e-01
-1.07739959e-02 1.09104536e-01 5.49741566e-01 1.13104486e+00
6.20057344e-01 -1.36557534e-01 -5.03522791e-02 7.60644436e-01
2.32328996e-01 -1.23077057e-01 -1.00902271e+00 2.75402032e-02
4.81836826e-01 1.18785572e+00 -9.24884975e-01 3.84335667e-02
-5.89163184e-01 1.17064333e+00 6.12456240e-02 4.83989209e-01
-6.00360453e-01 -3.86298776e-01 6.33127570e-01 6.82974309e-02
5.20160019e-01 -5.38346589e-01 -9.92515534e-02 -1.08156323e+00
3.00145268e-01 -4.06553298e-01 5.62315136e-02 -7.45423615e-01
-9.31299329e-01 3.25344622e-01 -5.65714203e-02 -1.54436386e+00
-4.13518012e-01 -6.48144782e-01 -5.79358697e-01 5.53705275e-01
-1.67353284e+00 -1.19850004e+00 -5.52892625e-01 1.34140635e+00
3.16281229e-01 4.20709960e-02 7.36952960e-01 -1.22996345e-01
4.46807034e-02 2.72705048e-01 9.78280753e-02 -1.30967855e-01
6.68493390e-01 -9.38492894e-01 1.04261711e-01 9.74030852e-01
6.29958689e-01 3.09250265e-01 6.48956418e-01 -4.16605026e-01
-2.01565218e+00 -8.75857413e-01 7.81692564e-01 -5.54790556e-01
6.74587190e-01 -5.02214611e-01 -8.33462179e-01 6.16170287e-01
-1.88750759e-01 6.11063659e-01 3.59909058e-01 -4.01514649e-01
-4.18786764e-01 -5.08074045e-01 -1.07114697e+00 2.50884712e-01
9.79576230e-01 -8.61487865e-01 -4.58283782e-01 3.43990773e-02
1.69482991e-01 -2.89696336e-01 -8.58121097e-01 3.82405251e-01
8.20292473e-01 -1.06479895e+00 9.92784321e-01 -3.63781095e-01
-1.73145711e-01 -6.89732194e-01 -2.41039410e-01 -9.20489669e-01
-3.73664767e-01 -5.94642282e-01 -2.10388288e-01 1.02199149e+00
-9.49209649e-03 -6.80461407e-01 4.55888242e-01 3.13874841e-01
2.43783444e-01 -2.96174228e-01 -1.39021301e+00 -9.38667059e-01
-4.29702818e-01 -3.08313608e-01 3.70766610e-01 5.33151507e-01
6.82614744e-02 -1.62750259e-01 -2.09439635e-01 2.70204902e-01
5.05496621e-01 2.92710066e-01 4.82822627e-01 -1.39507627e+00
6.71080966e-03 -1.05193421e-01 -1.21207464e+00 -6.41915858e-01
-2.60068268e-01 -6.07417703e-01 1.08417593e-01 -1.00937414e+00
3.41161340e-02 -4.24937196e-02 -7.83124149e-01 4.15762454e-01
1.91424996e-01 4.98271823e-01 1.85388118e-01 3.27540070e-01
-6.92118824e-01 5.02458751e-01 8.00207019e-01 1.46463558e-01
-3.02112937e-01 -7.03873560e-02 8.92312452e-02 4.89089221e-01
6.17222011e-01 -4.72703844e-01 -1.73441604e-01 -1.48539767e-01
2.51655787e-01 -1.42033085e-01 6.92344666e-01 -1.46436489e+00
7.32166052e-01 -2.57244080e-01 8.05940032e-01 -4.72545415e-01
5.27723730e-01 -1.19243503e+00 3.70369166e-01 5.57312131e-01
-1.56487316e-01 3.16637754e-01 2.68175900e-01 6.92462206e-01
-3.58676881e-01 1.44227698e-01 6.67586088e-01 -6.51191249e-02
-1.14329612e+00 1.73527166e-01 -5.58081627e-01 -3.62146080e-01
1.35902584e+00 -7.04176247e-01 -1.48290768e-01 -4.55758609e-02
-5.19007742e-01 -3.51096243e-01 5.71002066e-01 3.74331802e-01
8.00864756e-01 -1.47835398e+00 -2.50471115e-01 6.71689570e-01
3.57127637e-01 -3.68499637e-01 1.40343651e-01 9.69161868e-01
-2.15687230e-01 5.45008957e-01 -8.62111628e-01 -1.03902173e+00
-1.20460010e+00 5.43554425e-01 2.07831010e-01 2.33904123e-01
-7.23885238e-01 4.24225330e-01 -2.85477281e-01 2.08367541e-01
1.40752390e-01 -6.51086509e-01 -1.50842711e-01 2.22204939e-01
6.10094309e-01 2.08702132e-01 1.73101887e-01 -6.68299615e-01
-5.38590252e-01 1.11417449e+00 2.17260092e-01 -1.16310706e-02
1.25964141e+00 -2.67383933e-01 3.17611158e-01 9.92992997e-01
1.20947492e+00 -2.51041651e-01 -1.63410830e+00 -3.88908058e-01
2.36248612e-01 -4.59722221e-01 -9.46854576e-02 -4.63453233e-01
-7.70943940e-01 8.28157783e-01 1.17141080e+00 7.87541121e-02
1.35033214e+00 -7.02317804e-02 3.13584298e-01 5.82244873e-01
7.23942816e-01 -8.47278953e-01 1.16544247e-01 3.11911613e-01
7.48130023e-01 -1.06167972e+00 -4.64223400e-02 2.86705196e-02
-2.02624410e-01 1.43927562e+00 1.50770560e-01 -2.83004105e-01
5.47981858e-01 4.68862623e-01 1.92851033e-02 -1.33166328e-01
-8.07814896e-01 -4.00107145e-01 2.93135583e-01 8.62423301e-01
8.25659651e-03 -2.39465117e-01 -3.26518230e-02 -1.40071874e-02
1.28533661e-01 2.22267136e-01 3.68409365e-01 1.07680619e+00
-4.91888344e-01 -8.06048632e-01 -3.47517043e-01 1.58380643e-01
-2.53314748e-02 4.03338850e-01 -2.56551236e-01 7.40435123e-01
-3.27712670e-02 6.40762150e-01 1.70006767e-01 -3.42622936e-01
5.65965056e-01 3.05614203e-01 7.16816843e-01 -2.61962026e-01
-4.14775133e-01 -1.41471699e-01 -5.79648495e-01 -1.18707538e+00
-8.89744282e-01 -1.00827861e+00 -1.31673110e+00 2.16350853e-01
-1.56714581e-02 -4.96112615e-01 9.53986943e-01 1.00017250e+00
4.94797081e-01 4.81350690e-01 6.28455400e-01 -1.05696964e+00
-3.19268376e-01 -4.97775912e-01 -5.35138547e-01 8.03693652e-01
5.60191751e-01 -8.24532211e-01 -2.88881689e-01 4.43206400e-01] | [8.419828414916992, -1.2683629989624023] |
2c95d5bc-5c13-41f2-9e2c-463a4aa929f3 | e-panns-sound-recognition-using-efficient-pre | 2305.18665 | null | https://arxiv.org/abs/2305.18665v1 | https://arxiv.org/pdf/2305.18665v1.pdf | E-PANNs: Sound Recognition Using Efficient Pre-trained Audio Neural Networks | Sounds carry an abundance of information about activities and events in our everyday environment, such as traffic noise, road works, music, or people talking. Recent machine learning methods, such as convolutional neural networks (CNNs), have been shown to be able to automatically recognize sound activities, a task known as audio tagging. One such method, pre-trained audio neural networks (PANNs), provides a neural network which has been pre-trained on over 500 sound classes from the publicly available AudioSet dataset, and can be used as a baseline or starting point for other tasks. However, the existing PANNs model has a high computational complexity and large storage requirement. This could limit the potential for deploying PANNs on resource-constrained devices, such as on-the-edge sound sensors, and could lead to high energy consumption if many such devices were deployed. In this paper, we reduce the computational complexity and memory requirement of the PANNs model by taking a pruning approach to eliminate redundant parameters from the PANNs model. The resulting Efficient PANNs (E-PANNs) model, which requires 36\% less computations and 70\% less memory, also slightly improves the sound recognition (audio tagging) performance. The code for the E-PANNs model has been released under an open source license. | ['Mark D. Plumbley', 'Haohe Liu', 'Arshdeep Singh'] | 2023-05-30 | null | null | null | null | ['audio-tagging'] | ['audio'] | [ 6.39576972e-01 -1.61990523e-02 -1.64723024e-02 -7.80946761e-02
-5.72658956e-01 -2.55856782e-01 1.33789271e-01 5.19357920e-02
-5.19456089e-01 3.93667370e-01 2.40459934e-01 -1.40425876e-01
-8.45388845e-02 -1.00830400e+00 -5.86818576e-01 -4.92613703e-01
-1.40340775e-01 -1.34939268e-01 5.88007450e-01 2.90323436e-01
-8.39862078e-02 4.00950789e-01 -1.97844720e+00 2.67651707e-01
1.40108839e-01 1.51725459e+00 2.24740177e-01 8.39487672e-01
-3.22687551e-02 6.61996186e-01 -8.97510707e-01 -1.83644399e-01
6.20112345e-02 -2.36358792e-01 -7.08309770e-01 -4.80998367e-01
3.80249709e-01 -1.62247747e-01 -4.47636247e-01 1.03669369e+00
7.76934624e-01 4.03491646e-01 -1.79223821e-01 -1.31903708e+00
9.53396317e-03 1.01678252e+00 -8.36558547e-03 2.83518076e-01
7.55089000e-02 -2.27018341e-01 9.72528160e-01 -5.78392088e-01
1.24437183e-01 9.84735429e-01 1.03051686e+00 5.39187253e-01
-6.79597020e-01 -9.47009504e-01 -2.53286332e-01 2.22409844e-01
-1.55037951e+00 -7.84031689e-01 8.41975927e-01 -8.92546624e-02
1.17457426e+00 5.16013622e-01 8.01528871e-01 1.06321537e+00
-2.75256395e-01 5.60365736e-01 4.89353299e-01 -5.47361910e-01
4.62060392e-01 -2.60818064e-01 -1.04806967e-01 5.54361880e-01
2.81945765e-01 -1.53422281e-01 -9.21118796e-01 -4.11983073e-01
6.07994437e-01 1.68441504e-01 -4.85407449e-02 2.81177521e-01
-9.41095173e-01 3.87366176e-01 3.41616660e-01 5.36939144e-01
-3.82909507e-01 5.05298376e-01 7.40325332e-01 3.59660313e-02
3.64282697e-01 3.29505086e-01 -5.48696220e-01 -7.39875793e-01
-9.69961166e-01 -2.45046578e-02 8.68998706e-01 6.59322023e-01
6.53783321e-01 2.60963291e-01 1.74241915e-01 1.19447732e+00
-9.64120328e-02 3.53306592e-01 5.61173677e-01 -1.00757945e+00
5.08053482e-01 6.01094663e-01 -3.21792305e-01 -1.05965114e+00
-6.13866925e-01 -4.12130952e-01 -1.01590443e+00 -2.82053322e-01
1.49387717e-01 -3.52129906e-01 -6.82026207e-01 1.77971601e+00
2.78372437e-01 6.34567738e-01 -2.36367896e-01 5.98672390e-01
9.14195538e-01 7.57040441e-01 7.04101846e-02 -1.49156973e-02
1.38768017e+00 -9.71464992e-01 -6.32891178e-01 -3.91293883e-01
4.62361634e-01 -5.91515303e-01 1.02739608e+00 5.06512880e-01
-9.59534407e-01 -7.33245969e-01 -1.08525097e+00 1.45226419e-01
-5.50531685e-01 2.20085740e-01 7.69082427e-01 8.91051233e-01
-9.98974562e-01 7.28014231e-01 -1.13605046e+00 -3.96400213e-01
6.63417578e-01 6.77772105e-01 -8.71260837e-02 1.34980977e-01
-1.15574276e+00 2.04860821e-01 4.83466178e-01 1.22326344e-01
-7.38103867e-01 -5.88790178e-01 -7.43920326e-01 4.47644353e-01
5.84940672e-01 -1.95162937e-01 1.46709514e+00 -8.23504686e-01
-1.66660202e+00 2.68059969e-01 1.19705267e-01 -5.89412212e-01
-1.44806519e-01 -4.60279733e-01 -8.69857550e-01 1.52294233e-01
-2.64964700e-01 7.89042532e-01 6.96063459e-01 -5.37091136e-01
-7.89876759e-01 -4.48345803e-02 8.01257566e-02 -2.22422451e-01
-8.42432141e-01 3.81847471e-01 -6.06214702e-01 -7.43726254e-01
-9.23396945e-02 -1.06343460e+00 -2.27507666e-01 -1.65722091e-02
-3.08486342e-01 -3.30309182e-01 8.57810616e-01 -5.05140245e-01
1.64051425e+00 -2.33999181e+00 -4.50938642e-01 2.05125928e-01
-8.85705352e-02 6.00615323e-01 -9.12415236e-02 2.09641278e-01
4.16686051e-02 -9.98118054e-03 -2.10902784e-02 -1.75050735e-01
-4.32328042e-03 3.13299924e-01 -6.68130443e-02 3.79139034e-04
-1.21510640e-01 4.63739842e-01 -7.73820102e-01 -3.36065054e-01
1.39460638e-01 5.94852328e-01 -5.64756393e-01 4.56810631e-02
3.48737463e-02 -7.14450851e-02 -1.38670862e-01 6.87741458e-01
3.10134947e-01 -5.38437329e-02 4.40631360e-02 -1.55360356e-01
-1.49629945e-02 7.53027976e-01 -1.43355846e+00 1.72672319e+00
-7.80467629e-01 8.20517302e-01 9.70393345e-02 -1.00683892e+00
8.15700412e-01 7.55581021e-01 6.93113089e-01 -5.89005530e-01
3.07204127e-01 2.20231161e-01 5.75713348e-04 -4.86841172e-01
4.71564382e-01 2.99764931e-01 -2.51838148e-01 5.74715018e-01
2.45039210e-01 3.37111473e-01 1.74358234e-01 -2.56387889e-01
1.51241124e+00 -2.38360226e-01 2.26493806e-01 4.92793545e-02
3.05417418e-01 -4.46838826e-01 7.05490291e-01 7.77050972e-01
-6.51405826e-02 3.16527516e-01 -5.54792248e-02 -6.46404684e-01
-8.48518372e-01 -5.62006235e-01 3.73923890e-02 1.52103782e+00
-3.41582090e-01 -8.70546520e-01 -8.73743653e-01 -4.23188210e-01
-4.23847556e-01 1.93688631e-01 -9.45226327e-02 -2.95691311e-01
-8.02075505e-01 -6.53361022e-01 1.18789172e+00 9.31371510e-01
6.68600917e-01 -1.35111368e+00 -1.05039895e+00 5.23986399e-01
-2.86870092e-01 -1.17142379e+00 -2.54599154e-01 6.55628741e-01
-6.81829274e-01 -7.68082082e-01 -3.99161100e-01 -7.33639836e-01
2.29297459e-01 4.20170277e-02 1.05570233e+00 1.37878224e-01
-2.73584455e-01 2.22395167e-01 -5.00212669e-01 -9.47116494e-01
-1.54069856e-01 3.08063000e-01 3.20734531e-01 3.53949927e-02
5.09529471e-01 -1.03077936e+00 -6.21843636e-01 1.97668687e-01
-8.86122644e-01 -1.71534956e-01 4.72719401e-01 4.61078495e-01
5.45219362e-01 4.82507288e-01 6.77824318e-01 -5.58526993e-01
4.10992801e-01 -2.85691440e-01 -3.62560958e-01 2.22705938e-02
-2.73679227e-01 -3.06174248e-01 6.75651431e-01 -7.84521759e-01
-6.27876997e-01 4.23724473e-01 -6.68586671e-01 -3.76340270e-01
-4.08313185e-01 3.53474617e-01 -3.63951206e-01 -3.59834433e-02
4.70917881e-01 -4.13645580e-02 -5.93438327e-01 -9.30544376e-01
-3.67448181e-02 1.11706185e+00 7.61250019e-01 -3.69020283e-01
4.73314106e-01 2.75450021e-01 2.64701843e-02 -9.82780874e-01
-9.64909792e-01 -4.73669410e-01 -3.55748594e-01 -1.86080620e-01
6.58525109e-01 -8.56832206e-01 -6.79846525e-01 4.74308878e-01
-1.01237142e+00 -3.77891630e-01 -4.69084829e-01 5.33029079e-01
-1.85356662e-01 2.97093261e-02 -4.29585516e-01 -1.03145671e+00
-7.03021288e-01 -6.50704980e-01 9.95253861e-01 3.73570830e-01
-5.63616276e-01 -5.60285091e-01 -1.04195904e-02 1.80336237e-01
4.32311952e-01 4.13053669e-03 7.65856981e-01 -7.66231775e-01
-2.80730128e-01 -2.46662468e-01 3.97397764e-02 5.91379464e-01
1.17178828e-01 -2.22360700e-01 -1.40228164e+00 -2.62202919e-02
-3.25507522e-01 -2.79160321e-01 8.40375483e-01 3.26317549e-01
1.71932554e+00 -4.49180007e-01 -3.44932348e-01 4.84952360e-01
1.11910188e+00 5.44742048e-01 4.62827444e-01 1.25058472e-01
6.57858670e-01 2.19340906e-01 2.35681489e-01 4.73563612e-01
-2.72717755e-02 8.43233705e-01 3.45547527e-01 -2.78619006e-02
-3.31679881e-01 -2.60087699e-01 4.61643636e-01 1.24252689e+00
-2.30832860e-01 -4.69141185e-01 -8.56327534e-01 6.54245973e-01
-1.62814128e+00 -8.25161278e-01 1.74134731e-01 2.04802775e+00
7.44563162e-01 1.49735808e-01 2.31490493e-01 9.52918172e-01
6.73720300e-01 6.47778586e-02 -3.28861952e-01 -3.50606531e-01
2.90466785e-01 8.94080222e-01 2.97854066e-01 -1.38629466e-01
-1.26591861e+00 5.43398440e-01 6.50185156e+00 9.44158077e-01
-1.11450863e+00 3.30272108e-01 1.39015511e-01 -3.44461143e-01
4.58413005e-01 -2.53323853e-01 -7.86637127e-01 6.20813727e-01
1.53985345e+00 2.61225313e-01 5.98220468e-01 9.83174145e-01
7.03860745e-02 -1.63378995e-02 -1.05011129e+00 1.35384476e+00
2.99255271e-02 -1.21858168e+00 -1.33960187e-01 -4.19674031e-02
2.60812372e-01 1.35489181e-01 -2.32955530e-01 3.55122894e-01
1.95255294e-01 -6.24317944e-01 7.45234489e-01 1.90757394e-01
9.60592628e-01 -9.64890182e-01 8.39234233e-01 2.41250366e-01
-1.65507126e+00 -3.23814929e-01 -3.36929321e-01 -2.90283054e-01
2.10012451e-01 7.87811160e-01 -6.62446916e-01 3.16392124e-01
1.34504104e+00 3.12452495e-01 -5.03321886e-01 1.19111919e+00
1.37231305e-01 1.10606551e+00 -7.25369871e-01 -2.17756167e-01
8.49341232e-05 3.79946232e-01 4.18879807e-01 1.27585101e+00
7.68181443e-01 -9.55511183e-02 1.58369601e-01 3.25922847e-01
-4.76494193e-01 -8.46549347e-02 -3.99243891e-01 -2.20059156e-01
7.49305308e-01 1.19984651e+00 -9.23923254e-01 -3.95939887e-01
-3.49565446e-01 5.23146629e-01 -4.53185737e-02 -1.09151721e-01
-7.37063646e-01 -8.89043868e-01 6.53989315e-01 1.42563090e-01
2.48153195e-01 4.69875559e-02 -9.60757881e-02 -6.58276379e-01
5.27775474e-02 -7.15775430e-01 4.33813989e-01 -8.16872954e-01
-7.50382543e-01 7.37501502e-01 -2.66507536e-01 -1.23888934e+00
-9.07745957e-02 -4.30353492e-01 -6.02341771e-01 1.52011603e-01
-9.97846127e-01 -7.44322658e-01 -3.90699387e-01 5.67166626e-01
5.60984731e-01 -1.62258461e-01 1.02330577e+00 9.32428658e-01
-6.71759188e-01 7.09840477e-01 -2.69996494e-01 4.38848138e-01
3.52437526e-01 -8.02488148e-01 3.28239113e-01 7.74533153e-01
7.05099881e-01 4.03858274e-01 3.81578177e-01 -2.20175311e-01
-1.08103395e+00 -1.47133386e+00 1.00128889e+00 -1.65399760e-01
4.93374258e-01 -5.71280479e-01 -7.41999090e-01 4.21775967e-01
-8.59915838e-02 2.22893402e-01 1.11007059e+00 3.18360388e-01
-1.24232054e-01 -5.15811682e-01 -8.34093630e-01 3.92147481e-01
1.37597740e+00 -7.78964639e-01 -3.23595077e-01 1.58701032e-01
7.56736159e-01 -2.94580191e-01 -8.32055092e-01 3.45535070e-01
6.94243252e-01 -5.71772516e-01 1.00210953e+00 -2.16991439e-01
6.67505264e-02 -1.83739841e-01 -2.13575408e-01 -9.75547194e-01
-1.54028475e-01 -8.31781745e-01 -5.22987008e-01 1.49447179e+00
2.52127498e-01 -3.19019288e-01 7.22933471e-01 2.25516602e-01
-2.83451974e-01 -6.27878726e-01 -1.25073898e+00 -9.47781265e-01
-6.66080117e-01 -1.06876183e+00 1.00387955e+00 6.16673827e-01
-5.77982478e-02 3.17484111e-01 -4.96917188e-01 1.84073240e-01
9.27785710e-02 -2.71295220e-01 5.98195136e-01 -1.66676354e+00
-2.72558182e-01 -2.14051262e-01 -5.49459696e-01 -9.98321414e-01
-8.31555016e-03 -7.36028433e-01 2.34312892e-01 -1.27307272e+00
-5.12533374e-02 -6.90600514e-01 -7.67591238e-01 1.00434482e+00
2.89164037e-01 7.06388414e-01 4.66535650e-02 -8.90865549e-02
-7.78889954e-01 1.67397469e-01 6.57173991e-01 -1.85644418e-01
-4.52527195e-01 2.52723753e-01 -5.12771666e-01 1.08078170e+00
9.59689081e-01 -8.66394520e-01 -2.57150084e-01 -4.50171828e-01
4.77909356e-01 -1.41419008e-01 4.82107133e-01 -1.77565682e+00
4.15662646e-01 2.40387887e-01 2.38261491e-01 -4.51778620e-01
5.46734452e-01 -1.03672373e+00 3.64670753e-01 3.00023377e-01
-3.11165750e-01 -1.41923323e-01 2.80142784e-01 4.63847250e-01
-3.72679293e-01 -3.14269394e-01 4.10294682e-01 8.96919370e-02
-5.24422646e-01 1.75298989e-01 -5.23558080e-01 -2.84423351e-01
5.32853544e-01 -3.04096878e-01 -7.05799088e-02 -2.49018505e-01
-6.32677674e-01 -4.08731073e-01 -2.33364701e-01 5.74810326e-01
2.91432679e-01 -1.54232776e+00 -3.05745527e-02 2.65008062e-01
-1.20997593e-01 4.11155261e-02 4.04260546e-01 5.49222291e-01
-3.15504074e-01 4.61547971e-01 -1.03811398e-01 -4.10956621e-01
-1.59559524e+00 3.46249312e-01 1.13897331e-01 -1.24717683e-01
-7.13811994e-01 1.00236833e+00 -3.69621515e-01 -2.33048826e-01
6.28893018e-01 -6.42723143e-01 -2.01106995e-01 -3.89536507e-02
7.28383005e-01 7.32933700e-01 4.26572502e-01 -4.54873025e-01
-4.99800116e-01 3.65476221e-01 4.65375543e-01 3.62619646e-02
1.56846571e+00 1.83299363e-01 6.11614324e-02 4.18448448e-01
1.01975238e+00 3.07671353e-02 -9.69187498e-01 -3.28798860e-01
3.90701648e-03 -1.43347338e-01 4.10640925e-01 -5.49328387e-01
-1.39257050e+00 1.10468519e+00 8.08621466e-01 4.08359647e-01
1.50023973e+00 6.43926486e-02 1.36464036e+00 8.10912132e-01
4.79385167e-01 -1.34352601e+00 -2.72834916e-02 3.97708952e-01
3.91782731e-01 -6.66587591e-01 -2.53044277e-01 -3.86204004e-01
-1.27093986e-01 1.11354256e+00 4.91447777e-01 1.40624478e-01
9.43030775e-01 7.26820111e-01 -2.31563091e-01 -8.80400911e-02
-7.66142130e-01 -2.45702654e-01 1.82133645e-01 6.55206561e-01
1.42067567e-01 1.22983083e-01 1.91445351e-01 1.13443375e+00
-5.34775734e-01 2.53906876e-01 8.85256752e-02 1.20093930e+00
-4.36327964e-01 -1.00989592e+00 -1.67205095e-01 5.62982976e-01
-7.90124536e-01 -9.03264880e-02 -3.68543655e-01 1.89333081e-01
7.99832940e-01 1.08006573e+00 3.36730212e-01 -8.21312547e-01
4.45726424e-01 2.77258813e-01 1.78977326e-01 -6.50202513e-01
-8.35495889e-01 8.97900835e-02 2.67046779e-01 -5.67121506e-01
-6.33735776e-01 -3.41183871e-01 -1.05380905e+00 -1.81567222e-01
-4.36762989e-01 1.25567064e-01 5.89079797e-01 8.32000613e-01
5.01708031e-01 8.94507229e-01 3.25352937e-01 -9.36047137e-01
-4.53411937e-02 -1.13468599e+00 -4.82651949e-01 -3.59616280e-02
5.55603616e-02 -6.15300119e-01 -9.41806361e-02 2.14641765e-01] | [15.096927642822266, 5.222106456756592] |
5ad0035b-e2a3-4ea5-b5da-caee9d86e7f2 | communities-in-c-elegans-connectome-through | 2207.00767 | null | https://arxiv.org/abs/2207.00767v3 | https://arxiv.org/pdf/2207.00767v3.pdf | Perspectives and constraints on neural network models of neurobiological processes | Artificial and natural neural network models are a new toolkit which could be potentially have been used for clarifying of complex brain functions. To attend this goal, such models need to be neurobiologically realistic. However, although neural networks have advanced keenly in recent decades their strict similarity in aspects of brain anatomy and physiology is imperfect. In this work we discuss different types of neural models, including localist, attractor and deep network models, and also identify aspects under which their biological credibility can be improved. These conditions range from the choice of neuron models and of mechanisms of synaptic plasticity and learning to implementation of inhibition and control, along with network architectures (modularity, connectivity). We highlight recent advances in biologically inspired neural network models and their constraints. | ['Arsenii Onuchin'] | 2022-07-02 | null | null | null | null | ['stochastic-block-model'] | ['graphs'] | [ 9.41850170e-02 1.00498810e-01 2.30899140e-01 3.41499001e-02
1.01277709e+00 -5.73374987e-01 8.29306901e-01 -1.69958428e-01
-4.15003806e-01 9.31832552e-01 3.44289728e-02 -2.78776228e-01
-6.89798474e-01 -6.89936578e-01 -4.77942050e-01 -7.60207534e-01
-4.94235367e-01 2.02259526e-01 3.06784004e-01 -5.51981449e-01
5.15519440e-01 8.96522582e-01 -1.55623865e+00 4.81101945e-02
7.49622464e-01 4.80509520e-01 3.71118873e-01 6.80425465e-01
1.02127194e-02 6.53446078e-01 -4.52693850e-01 -3.17376517e-02
1.62431188e-02 -5.73105812e-01 -8.31382871e-01 -3.91254723e-01
-3.36154670e-01 2.64207989e-01 -3.22058827e-01 8.93338323e-01
5.83838522e-01 1.09931052e-01 8.75881553e-01 -1.05820012e+00
-7.75826693e-01 6.69453025e-01 1.86964065e-01 5.34109712e-01
-1.40145034e-01 4.63431865e-01 4.04438555e-01 -7.83329546e-01
6.65782511e-01 1.12973559e+00 5.28853834e-01 9.90005374e-01
-1.43130124e+00 -6.26477003e-01 -6.33320808e-02 1.62006155e-01
-1.18058550e+00 -4.83672321e-01 5.69886506e-01 -4.34845686e-01
1.03300011e+00 -1.17018577e-02 1.43192589e+00 9.93594289e-01
7.00399280e-01 1.17106594e-01 9.89514232e-01 -3.12745333e-01
5.32101512e-01 1.85815185e-01 8.71757790e-02 3.67319047e-01
6.15106344e-01 3.26763988e-01 -5.81828058e-01 1.20424302e-02
1.38241279e+00 -2.04228118e-01 -2.68569380e-01 -1.68558016e-01
-1.21292317e+00 5.60635328e-01 4.27768856e-01 7.99007356e-01
-4.75549072e-01 4.87535208e-01 2.93800145e-01 1.13400750e-01
-2.62197465e-01 8.45796287e-01 -6.08726740e-01 2.75900573e-01
-7.77932465e-01 8.89009684e-02 6.50925577e-01 3.44802856e-01
5.73778391e-01 4.85152274e-01 3.30948859e-01 8.80800307e-01
4.19219583e-01 7.83486366e-02 8.22749913e-01 -1.24685133e+00
-3.61355752e-01 6.79711998e-01 -3.69362891e-01 -9.78173196e-01
-7.49507189e-01 -3.55194002e-01 -1.22019792e+00 5.19930422e-01
3.99213582e-01 -1.86312124e-01 -7.80451477e-01 1.66570485e+00
5.96937649e-02 1.03929691e-01 -3.33691016e-02 6.55554235e-01
6.60187781e-01 5.00229418e-01 1.39047906e-01 -2.43237074e-02
1.15801156e+00 -5.05197287e-01 -4.74445790e-01 -2.51279384e-01
3.44981343e-01 -2.37478837e-01 4.56052333e-01 3.36754769e-01
-1.36170411e+00 -4.27075982e-01 -9.09054160e-01 3.66512269e-01
-8.14087927e-01 -3.31116408e-01 9.30005789e-01 8.61523926e-01
-1.67360425e+00 9.70409632e-01 -1.00527549e+00 -8.08954477e-01
5.32007933e-01 9.53024864e-01 -4.30152118e-01 5.32941103e-01
-1.26572824e+00 1.35076070e+00 7.47572541e-01 3.80623370e-01
-8.97852957e-01 -4.56214547e-01 -3.07298660e-01 2.26955906e-01
-4.40363020e-01 -1.28070664e+00 7.14205861e-01 -1.03651011e+00
-1.52863169e+00 7.89987445e-01 7.02164918e-02 -7.22362339e-01
-1.82867453e-01 5.04028201e-01 -9.39963832e-02 2.63415277e-01
-5.84308386e-01 1.16388822e+00 3.28961313e-01 -1.15922654e+00
4.54862267e-02 -2.69287735e-01 -3.72388288e-02 1.59267969e-02
-3.05142999e-01 1.20574258e-01 2.68843174e-01 -5.28980613e-01
9.56771523e-02 -7.04135478e-01 -5.24435937e-01 4.61921751e-01
5.20869084e-02 1.70768693e-01 4.06233728e-01 -2.18277544e-01
7.96033919e-01 -1.87094462e+00 3.53985578e-01 1.39057830e-01
3.27082843e-01 4.64102715e-01 -2.64200658e-01 6.22467935e-01
-3.84742677e-01 5.60683668e-01 -2.19358176e-01 3.23402882e-01
-4.11426067e-01 4.36675936e-01 1.63123727e-01 4.46509898e-01
4.21529442e-01 1.01418340e+00 -5.51198006e-01 -4.00392890e-01
2.57725000e-01 8.24260831e-01 -5.98304451e-01 -1.24741443e-01
1.45650536e-01 8.07226539e-01 -2.79021233e-01 5.06487846e-01
3.68286490e-01 5.03597967e-03 1.46330476e-01 1.64190799e-01
-3.00489962e-01 2.52704769e-01 -8.77855361e-01 1.30407321e+00
-2.84649640e-01 9.96899068e-01 2.19577014e-01 -1.26387715e+00
7.20233262e-01 5.76916277e-01 3.98496181e-01 -5.43425262e-01
4.27473515e-01 2.79778186e-02 9.20450211e-01 -3.10246378e-01
-1.67251900e-01 -1.64228171e-01 7.17472076e-01 4.51476693e-01
4.78069633e-01 -2.70768762e-01 1.88739315e-01 -7.39362882e-03
9.19665635e-01 6.64381757e-02 3.35454971e-01 -8.29791665e-01
5.44111311e-01 1.02632903e-02 5.41471481e-01 5.43901980e-01
-4.49208111e-01 3.91502827e-01 5.12339413e-01 -3.02653760e-01
-1.18700171e+00 -9.15736675e-01 -3.52509946e-01 6.06265664e-01
-2.56778076e-02 1.78510875e-01 -1.09915709e+00 2.98849374e-01
-4.72382396e-01 4.26255196e-01 -8.95170152e-01 -6.02605939e-01
-6.08764827e-01 -1.05449176e+00 8.28957498e-01 1.74317881e-01
3.81447971e-01 -1.59391940e+00 -7.86537528e-01 3.62253517e-01
3.65770489e-01 -5.77479959e-01 3.66907120e-01 5.34949481e-01
-1.37939715e+00 -1.16880941e+00 -5.67160070e-01 -9.54411566e-01
8.50490093e-01 4.52666841e-02 1.01327693e+00 5.06556392e-01
-5.28260589e-01 2.42211923e-01 -4.16221730e-02 -3.66087347e-01
-3.64038855e-01 -4.67564315e-02 2.18262434e-01 -4.56135958e-01
-1.32494450e-01 -1.20144665e+00 -9.66828823e-01 3.07960123e-01
-1.24993241e+00 1.49378091e-01 6.31743133e-01 1.02161121e+00
3.22826207e-01 1.53486477e-02 8.37966383e-01 -5.53033173e-01
8.54932427e-01 -6.48550749e-01 -8.70182663e-02 1.02444567e-01
-5.77089012e-01 -6.01877868e-02 6.36723340e-01 -5.27343810e-01
-9.02397394e-01 -3.61358449e-02 -2.71197259e-01 2.66752124e-01
-5.17898321e-01 3.41223449e-01 -3.79190198e-03 -5.41951299e-01
7.56415486e-01 5.38060248e-01 1.22290000e-01 -1.15883119e-01
1.28301606e-01 1.41006634e-01 1.84300557e-01 -5.85481167e-01
4.52416331e-01 4.14409965e-01 1.32364661e-01 -1.00685132e+00
2.00977325e-01 1.66387796e-01 -1.01724207e+00 -4.44917619e-01
6.30514443e-01 -3.13438326e-01 -7.70739436e-01 5.67423880e-01
-1.22433507e+00 -4.48746175e-01 -2.85668820e-01 3.15326810e-01
-6.09977484e-01 -3.33392024e-02 -7.43750453e-01 -9.29708600e-01
-2.92828232e-01 -9.57773924e-01 1.25330567e-01 5.86180806e-01
-4.03383434e-01 -1.51077521e+00 3.03896189e-01 -4.00786549e-01
7.52291143e-01 3.70688319e-01 1.14051902e+00 -4.69857633e-01
-4.52011973e-01 1.52426168e-01 -4.59711999e-03 1.80346310e-01
6.54731765e-02 5.31835139e-01 -8.61429930e-01 5.70884421e-02
2.21530706e-01 -1.73923209e-01 6.67311072e-01 7.12502539e-01
9.30788875e-01 -3.72589260e-01 -6.18627787e-01 4.33063596e-01
1.39356530e+00 4.76498753e-01 7.99092948e-01 4.04340655e-01
5.34723252e-02 1.14360058e+00 -3.05316448e-01 -9.26195458e-02
-6.38777763e-03 1.29921287e-01 6.84579968e-01 -5.38954977e-03
-2.47416764e-01 2.20908791e-01 1.77268371e-01 1.08076823e+00
-5.04442275e-01 -1.36203878e-02 -1.02880418e+00 6.77654386e-01
-1.64438701e+00 -1.18837678e+00 -1.37475273e-03 1.87973046e+00
7.93665051e-01 2.74198353e-01 1.29900977e-01 2.28429213e-01
9.43001449e-01 -3.16828161e-01 -7.64497101e-01 -6.74498260e-01
-6.19055331e-01 1.96858481e-01 1.22517578e-01 1.28550082e-01
-2.81687647e-01 8.69213104e-01 8.64872646e+00 5.17809331e-01
-1.10684526e+00 1.14638181e-02 7.56174803e-01 -5.58403693e-02
-1.08376354e-01 8.79963636e-02 -6.52318656e-01 5.39286494e-01
1.39491594e+00 -2.55701151e-02 7.78496146e-01 3.01068753e-01
5.06651700e-01 -2.52356350e-01 -9.20168877e-01 5.78349590e-01
-4.02350932e-01 -1.63982248e+00 1.03088930e-01 1.30193457e-01
5.80190182e-01 2.53278702e-01 -1.18107498e-01 3.82213457e-03
2.14093536e-01 -1.32473159e+00 4.72561628e-01 8.88634264e-01
2.05813915e-01 -6.46402001e-01 3.04379761e-01 4.57847893e-01
-9.27086234e-01 -1.08845860e-01 -6.27478659e-01 -4.25782651e-01
-2.07949460e-01 2.84243375e-01 -3.11435103e-01 -1.98615953e-01
6.90603137e-01 5.34354508e-01 -6.46177530e-01 1.56994617e+00
-5.29799350e-02 5.96761584e-01 -3.61822397e-01 -5.48642516e-01
-5.26378630e-03 -2.21189201e-01 3.27847064e-01 1.16805792e+00
1.24280825e-01 1.47179872e-01 -6.53120339e-01 1.31863654e+00
3.46445441e-01 -7.46611655e-02 -8.28478217e-01 -1.82979524e-01
7.39239991e-01 1.43470693e+00 -1.23032665e+00 1.36973588e-02
-9.02560279e-02 5.54114401e-01 3.86211336e-01 3.37769836e-01
-7.01066315e-01 -2.37598389e-01 9.56861436e-01 1.59422264e-01
-2.08024718e-02 -4.52850431e-01 -5.23659647e-01 -9.58148599e-01
-5.52591145e-01 -5.21534324e-01 -2.49444440e-01 -8.23032260e-01
-9.30229843e-01 5.82028151e-01 -1.69634193e-01 -6.76620603e-01
5.14626168e-02 -9.99878526e-01 -1.05987346e+00 6.02902353e-01
-1.12622774e+00 -8.17334652e-01 3.29869330e-01 5.92102230e-01
2.72629768e-01 -7.95841068e-02 8.46658885e-01 5.31563722e-02
-7.88952529e-01 4.25632522e-02 4.23211783e-01 -8.15899074e-02
8.89183432e-02 -8.60646904e-01 3.90480846e-01 4.59571064e-01
-2.56574545e-02 1.11403167e+00 7.34004915e-01 -3.37075889e-01
-1.09263825e+00 -7.94679880e-01 5.24715960e-01 -1.76201224e-01
5.97926378e-01 -4.30152327e-01 -7.53266752e-01 3.46160799e-01
5.11088252e-01 -2.36379117e-01 7.75015414e-01 -3.04849863e-01
2.17065677e-01 7.24541247e-02 -1.28381193e+00 1.01996052e+00
1.07916200e+00 -1.09738037e-01 -5.58639944e-01 2.33749539e-01
2.82008022e-01 3.76044542e-01 -9.48948264e-01 2.16253147e-01
7.74039090e-01 -1.17642474e+00 1.21733546e+00 -6.26011670e-01
5.72759882e-02 -2.77981341e-01 4.15414542e-01 -1.43466926e+00
-7.29177535e-01 -5.88398576e-01 -9.42597259e-03 1.06328368e+00
4.13538188e-01 -1.03197074e+00 6.13025546e-01 7.57922471e-01
-4.91948798e-03 -9.14865792e-01 -9.24652219e-01 -8.26502562e-01
6.29747987e-01 -5.09549901e-02 3.03831875e-01 7.60613024e-01
5.76344967e-01 1.79516062e-01 1.39597818e-01 -2.94618815e-01
2.72797555e-01 -5.52377224e-01 1.76035434e-01 -1.62116647e+00
1.06410027e-01 -1.27581155e+00 -6.34282351e-01 -4.04744416e-01
5.37613668e-02 -7.78056800e-01 -3.67390692e-01 -1.66531193e+00
2.53776126e-02 -2.29197174e-01 -4.28727776e-01 3.43916148e-01
3.38121116e-01 1.96305543e-01 -5.32564856e-02 3.90127361e-01
-4.58157323e-02 4.02461559e-01 1.27589965e+00 2.36725539e-01
-5.75776845e-02 -4.37367588e-01 -8.14732313e-01 9.97355223e-01
1.53237259e+00 -6.50284410e-01 -3.50800842e-01 -2.86190122e-01
2.91385740e-01 -2.01174483e-01 4.34871554e-01 -1.22648275e+00
5.77308714e-01 -2.71219075e-01 7.48155832e-01 -1.65442843e-02
4.94063616e-01 -7.56451070e-01 2.87501484e-01 1.05133748e+00
-2.92066395e-01 1.51506931e-01 4.04700786e-01 3.48142743e-01
-4.67584394e-02 -4.73553389e-01 1.08618200e+00 -5.89769304e-01
-3.61479968e-01 7.01132789e-02 -1.38687742e+00 -2.11121559e-01
1.03169215e+00 -8.54456544e-01 -4.31230575e-01 5.15029915e-02
-9.73459423e-01 -3.46184112e-02 4.81703848e-01 1.25255421e-01
7.04996824e-01 -1.09092987e+00 -2.98665971e-01 -2.72592604e-02
-4.67056692e-01 -5.21983981e-01 1.08739138e-01 7.67641962e-01
-8.77874911e-01 7.27133274e-01 -1.17911863e+00 -1.68339729e-01
-6.62029386e-01 4.93417531e-01 8.31215322e-01 8.81864429e-02
-8.55526477e-02 7.07048833e-01 2.81701624e-01 -6.26990318e-01
1.80833042e-02 -1.00478373e-01 -7.32043445e-01 -2.52254099e-01
3.18785965e-01 4.85901386e-01 -3.11873108e-01 -5.59099138e-01
-4.23969418e-01 5.82200170e-01 3.27633500e-01 -5.47593832e-02
1.41823864e+00 -2.49935180e-01 -6.84265018e-01 4.41059917e-01
4.49466079e-01 -5.79120994e-01 -9.03124928e-01 4.31175530e-01
1.33383274e-01 2.35822201e-01 -1.31692871e-01 -8.41886878e-01
-1.17822409e+00 1.15345120e+00 4.51887399e-01 4.47077811e-01
1.13452697e+00 -4.46234375e-01 3.78622383e-01 5.57976544e-01
2.50693738e-01 -1.00574386e+00 -1.46545067e-01 5.34964263e-01
8.57810736e-01 -7.62741506e-01 -2.21466810e-01 -1.75592512e-01
5.61385453e-02 1.41309786e+00 7.87066579e-01 -7.34585345e-01
1.13918352e+00 3.38758230e-01 -3.38279814e-01 -2.89436966e-01
-1.04887259e+00 -1.82727784e-01 2.21849605e-03 1.07915938e+00
8.06408167e-01 -4.06788468e-01 -6.96923077e-01 4.17645752e-01
-1.75961822e-01 -2.30405070e-02 5.92477798e-01 7.28458405e-01
-7.37872601e-01 -1.08191216e+00 -4.26901698e-01 1.80799857e-01
-4.58222359e-01 -1.65521160e-01 -6.66571915e-01 8.21077049e-01
4.17937428e-01 7.88262606e-01 -1.45253092e-01 -1.95480779e-01
-4.77975756e-02 6.20163903e-02 6.67904556e-01 -5.59823453e-01
-1.03799844e+00 -1.28955528e-01 -2.09081173e-01 -1.17974915e-01
-5.60391724e-01 -6.30609035e-01 -1.34612107e+00 -4.30664986e-01
-4.96699601e-01 8.12682211e-02 8.62171471e-01 8.75966728e-01
5.15055299e-01 7.03713000e-01 2.18252763e-02 -1.22116685e+00
2.55420446e-01 -8.91072333e-01 -5.66321671e-01 -3.89475405e-01
-1.52304262e-01 -6.15991771e-01 -3.11586082e-01 3.35510612e-01] | [8.042532920837402, 2.993739366531372] |
8be87062-55e5-4e81-913c-eb4b0505d591 | coarse3d-class-prototypes-for-contrastive | 2210.01784 | null | https://arxiv.org/abs/2210.01784v2 | https://arxiv.org/pdf/2210.01784v2.pdf | COARSE3D: Class-Prototypes for Contrastive Learning in Weakly-Supervised 3D Point Cloud Segmentation | Annotation of large-scale 3D data is notoriously cumbersome and costly. As an alternative, weakly-supervised learning alleviates such a need by reducing the annotation by several order of magnitudes. We propose COARSE3D, a novel architecture-agnostic contrastive learning strategy for 3D segmentation. Since contrastive learning requires rich and diverse examples as keys and anchors, we leverage a prototype memory bank capturing class-wise global dataset information efficiently into a small number of prototypes acting as keys. An entropy-driven sampling technique then allows us to select good pixels from predictions as anchors. Experiments on three projection-based backbones show we outperform baselines on three challenging real-world outdoor datasets, working with as low as 0.001% annotations. | ['Raoul de Charette', 'Anh-Quan Cao', 'Rong Li'] | 2022-10-04 | null | null | null | null | ['lidar-semantic-segmentation', 'point-cloud-segmentation', 'weakly-supervised-3d-point-cloud-segmentation'] | ['computer-vision', 'computer-vision', 'computer-vision'] | [ 1.66401505e-01 2.95114785e-01 -5.65541804e-01 -4.73898470e-01
-1.23482668e+00 -9.75850224e-01 4.08351988e-01 2.48208076e-01
-5.43104708e-01 6.32276118e-01 7.12756291e-02 -2.79230297e-01
2.81837195e-01 -4.76133674e-01 -8.43331575e-01 -4.78611380e-01
-4.19651344e-02 8.94487441e-01 6.75500572e-01 2.13624567e-01
2.46522218e-01 5.52324176e-01 -1.39835525e+00 2.21287757e-01
8.64619136e-01 1.35378563e+00 3.44355315e-01 4.71446395e-01
-1.43324733e-01 1.43955588e-01 -4.81662542e-01 -2.15147510e-01
7.62898445e-01 4.14192677e-04 -9.18060601e-01 2.10902706e-01
1.10216224e+00 -3.43116015e-01 9.99032632e-02 7.35845029e-01
6.40841782e-01 9.37802196e-02 5.18197000e-01 -8.90974879e-01
-2.63668150e-01 3.29452455e-01 -5.39691687e-01 7.20921308e-02
1.32570431e-01 3.49998921e-01 1.25361001e+00 -1.10712409e+00
7.22585201e-01 8.62776518e-01 1.11798477e+00 5.48487782e-01
-1.45424199e+00 -5.61823308e-01 5.29318810e-01 -7.72092715e-02
-1.48676932e+00 -4.97200996e-01 7.20359802e-01 -3.81124169e-01
1.27170980e+00 4.27978724e-01 9.27562118e-01 9.77471948e-01
-2.05448911e-01 1.00380039e+00 1.12268496e+00 -1.00239836e-01
3.93539101e-01 2.15401381e-01 1.98733822e-01 7.77836204e-01
2.17084438e-01 -1.34267569e-01 -6.77301943e-01 -2.74943173e-01
7.03747332e-01 -2.35605240e-01 -9.99103189e-02 -7.52085745e-01
-1.06303155e+00 7.06660807e-01 7.03980446e-01 -4.53280240e-01
-3.36004943e-01 8.77823457e-02 3.56279135e-01 5.96108846e-02
6.75299644e-01 5.96878052e-01 -1.03211534e+00 -5.17126843e-02
-1.16215765e+00 2.49763981e-01 6.46077156e-01 1.08845603e+00
8.84899259e-01 -3.42102796e-01 -3.83939445e-02 8.02960515e-01
1.46467790e-01 4.93827909e-01 1.18641905e-01 -1.29091239e+00
4.93669510e-01 6.78651154e-01 2.77495414e-01 -5.48021257e-01
-4.82183903e-01 -4.98581171e-01 -6.45432115e-01 3.12558323e-01
4.96077567e-01 2.34910287e-02 -1.37533486e+00 1.55106378e+00
6.70902669e-01 1.71249166e-01 -3.74637306e-01 9.73013639e-01
5.72355330e-01 4.27058101e-01 1.21260304e-02 6.17307462e-02
9.82614160e-01 -1.09939599e+00 1.81179181e-01 -4.74309683e-01
4.76317972e-01 -6.12760484e-01 1.56651568e+00 4.37873602e-01
-1.10141993e+00 -4.58622813e-01 -8.29511881e-01 -2.57440716e-01
-1.59506559e-01 1.15908332e-01 7.75381744e-01 6.65920377e-01
-9.47129548e-01 6.29049122e-01 -1.07074237e+00 -1.73632860e-01
1.00867891e+00 3.65148067e-01 -3.49613130e-01 6.59815222e-02
-4.79287773e-01 5.93071282e-01 3.90004605e-01 -2.18737796e-01
-8.63469541e-01 -1.11530447e+00 -6.34286642e-01 -2.25210831e-01
4.15488452e-01 -6.41982079e-01 1.26666808e+00 -6.88717544e-01
-1.40290868e+00 1.04858577e+00 -7.53135830e-02 -6.80591166e-01
7.93521225e-01 -5.79908431e-01 2.87077248e-01 2.28735358e-01
1.57276899e-01 1.24294615e+00 7.94412553e-01 -1.16092014e+00
-6.37066305e-01 -2.48888671e-01 -7.23519027e-02 3.41831774e-01
-3.61568600e-01 -5.18610954e-01 -8.93087924e-01 -5.21701396e-01
5.76912165e-01 -1.23287833e+00 -6.33990645e-01 5.49632132e-01
-4.95693982e-01 -4.38559391e-02 6.71172678e-01 -4.15210336e-01
8.75315666e-01 -1.90057492e+00 2.29136143e-02 3.25682908e-01
2.72555918e-01 6.83303475e-02 -5.60886376e-02 -1.51136890e-01
3.89384151e-01 1.84681714e-01 -3.93685520e-01 -4.69221950e-01
-3.11754420e-02 2.98954099e-01 -2.76323915e-01 1.95496738e-01
3.90224218e-01 7.69350588e-01 -8.96583736e-01 -6.26296639e-01
1.64918870e-01 1.71651408e-01 -8.15591812e-01 9.50547606e-02
-5.81278861e-01 3.60231280e-01 -3.57109070e-01 9.89859283e-01
6.09289587e-01 -4.79295343e-01 -3.31202894e-02 -2.21966967e-01
1.28606990e-01 4.30102557e-01 -1.20188010e+00 2.13615227e+00
-3.76830608e-01 5.02212822e-01 -2.22621128e-01 -6.58605218e-01
9.50806618e-01 -1.66035101e-01 4.52977687e-01 -3.84882480e-01
-3.47182810e-01 3.39707881e-01 -5.50894260e-01 -7.61941150e-02
7.02709854e-01 2.09464863e-01 -3.59961927e-01 3.72708529e-01
4.05457709e-03 -4.18658197e-01 -6.82976395e-02 2.22210914e-01
1.25103676e+00 3.87578130e-01 2.20078155e-01 -2.29741663e-01
2.35735252e-02 2.41885900e-01 8.81911337e-01 8.82450402e-01
-3.27697963e-01 9.20479715e-01 1.47561461e-01 -6.74069881e-01
-1.16183639e+00 -1.27327323e+00 -1.68718576e-01 8.40618134e-01
2.06849128e-01 -5.36746860e-01 -5.31086087e-01 -1.13537574e+00
2.48656392e-01 4.25366729e-01 -3.95950198e-01 3.19628604e-02
-5.99901140e-01 -6.74415112e-01 3.92969757e-01 9.34732199e-01
5.17037034e-01 -6.94519699e-01 -7.35240817e-01 9.77606606e-03
-1.57520559e-03 -1.11217451e+00 -4.19737697e-01 7.42079139e-01
-1.18797421e+00 -8.41842830e-01 -7.99260259e-01 -6.75087392e-01
8.82754624e-01 2.57563710e-01 1.57374144e+00 -2.02802509e-01
-2.47292593e-01 2.11361811e-01 -1.92525938e-01 -2.63216019e-01
-2.82940920e-02 4.54747826e-01 -1.21391274e-01 -6.30768180e-01
4.47330862e-01 -6.34412229e-01 -7.70494282e-01 2.66600907e-01
-2.05417708e-01 8.52469504e-02 8.34187627e-01 8.37181091e-01
1.30297494e+00 -5.21799028e-01 2.67600566e-01 -1.07449663e+00
7.80357122e-02 -2.65739560e-01 -8.45058739e-01 -6.22628666e-02
-7.24207163e-01 1.55158907e-01 4.65000391e-01 -5.60844600e-01
-9.70765650e-01 7.30754733e-01 -8.13269317e-02 -5.98370016e-01
-4.01081443e-01 4.55117635e-02 -1.08875237e-01 -1.24572903e-01
9.66509879e-01 1.17694817e-01 -3.76801431e-01 -7.53937542e-01
6.41906917e-01 4.44126219e-01 5.22330284e-01 -6.96642578e-01
9.52804863e-01 3.98394942e-01 -4.66185063e-02 -6.14970207e-01
-1.05517912e+00 -4.52018201e-01 -9.33390975e-01 7.62128010e-02
5.34840941e-01 -1.14423132e+00 -2.71777362e-01 2.13507622e-01
-8.45646203e-01 -7.49942958e-01 -6.47999942e-01 1.61971420e-01
-5.91973543e-01 1.54961973e-01 -5.67260265e-01 -5.12844384e-01
-5.66675067e-01 -7.87626088e-01 1.33340645e+00 6.89821094e-02
-4.20383662e-01 -5.35843730e-01 1.57368202e-02 4.14778590e-01
-1.99951790e-02 2.68472344e-01 6.74671590e-01 -6.81064606e-01
-1.03795993e+00 -3.62083375e-01 -2.48618096e-01 4.61198807e-01
-3.11639369e-01 -2.83875138e-01 -1.01588714e+00 -1.90610394e-01
-6.14192188e-01 -7.60261416e-01 1.13203347e+00 3.03223133e-01
1.52650833e+00 -7.79251829e-02 -4.41803962e-01 8.75066102e-01
1.24006104e+00 -3.44180435e-01 1.83452412e-01 1.85051218e-01
8.26389790e-01 1.33291483e-01 9.63254273e-01 5.55364966e-01
4.38084334e-01 4.95990515e-01 3.23093742e-01 -1.28168732e-01
-2.95431763e-01 -5.33496737e-01 -1.04546167e-01 5.53172886e-01
4.30137031e-02 -1.01966731e-01 -1.10586846e+00 5.46036541e-01
-1.62379968e+00 -6.77103877e-01 1.19781666e-01 2.18957043e+00
1.23483849e+00 7.00024128e-01 1.92158252e-01 2.80172389e-04
2.50435203e-01 2.02041328e-01 -8.86300325e-01 5.19704223e-02
-8.97379443e-02 2.11261705e-01 8.43726993e-01 3.47792923e-01
-1.43189049e+00 1.20792258e+00 6.56393051e+00 7.71884322e-01
-1.00095463e+00 -3.35623436e-02 9.28846598e-01 -4.53696519e-01
-3.09726328e-01 3.86159420e-02 -1.04732645e+00 4.80143815e-01
6.93228543e-01 4.41573352e-01 4.91519906e-02 1.32102907e+00
-2.23624203e-02 -2.93238848e-01 -1.17235160e+00 1.12059510e+00
-2.02324361e-01 -1.58062184e+00 -4.23081182e-02 3.09850611e-02
9.55518305e-01 5.29137552e-01 1.40753910e-01 -4.57856758e-03
4.59061354e-01 -7.38597393e-01 9.50106323e-01 3.08414161e-01
8.09978068e-01 -6.08984649e-01 4.32282656e-01 3.48914087e-01
-1.25912046e+00 -1.52689204e-01 -5.16942799e-01 -1.34955749e-01
1.99507281e-01 8.25977921e-01 -1.05934262e+00 -8.15658197e-02
1.05778635e+00 6.45951271e-01 -6.52438462e-01 1.24138498e+00
-2.50278413e-01 8.10742617e-01 -8.54912221e-01 1.35928258e-01
2.61687040e-01 7.90929943e-02 4.65388954e-01 1.25247157e+00
1.40800327e-01 2.01182484e-04 3.78796160e-01 5.72918296e-01
-3.83498818e-01 -9.69700962e-02 -3.89241636e-01 3.24378192e-01
9.63554204e-01 1.25658882e+00 -1.02862740e+00 -4.25963074e-01
-1.84939355e-01 1.23094487e+00 4.65345830e-01 1.08921416e-01
-5.86394310e-01 -8.98612067e-02 6.87549174e-01 8.11519772e-02
5.59862554e-01 -4.43467647e-01 -7.59404480e-01 -9.17236030e-01
2.22416535e-01 -5.58841228e-01 4.13696915e-01 -5.26311994e-01
-1.27724051e+00 3.54945928e-01 -1.55955732e-01 -1.33547091e+00
-3.27078514e-02 -3.82334054e-01 -3.06440741e-01 6.10764802e-01
-1.61382055e+00 -1.24460018e+00 -6.67679310e-01 3.43675405e-01
6.51632786e-01 5.22410311e-02 8.26358497e-01 2.07721666e-01
-4.38099235e-01 6.71911955e-01 -1.06950060e-01 -2.15258989e-02
7.11195409e-01 -1.59513879e+00 8.94961119e-01 6.30088389e-01
4.84986663e-01 8.44439045e-02 3.74028623e-01 -5.41509688e-01
-1.04938257e+00 -1.24482644e+00 7.44894147e-01 -7.32182741e-01
2.90378124e-01 -5.18665195e-01 -7.58473098e-01 5.67269444e-01
-3.43385369e-01 5.16810358e-01 7.03353763e-01 1.95971757e-01
-5.64396381e-01 -2.39109010e-01 -1.12276101e+00 4.88311291e-01
1.60981488e+00 -5.18278778e-01 -3.43858093e-01 5.56304693e-01
9.32760596e-01 -6.97382390e-01 -8.74624789e-01 2.99372792e-01
4.56020266e-01 -8.63581836e-01 1.26942825e+00 -3.66331577e-01
1.15166374e-01 -2.34066740e-01 -2.12500006e-01 -9.53536212e-01
-2.25363895e-01 -7.06423044e-01 -3.85926843e-01 1.05113864e+00
6.32356286e-01 -2.30716065e-01 1.55930245e+00 7.25240588e-01
-3.20603549e-01 -9.44141686e-01 -8.86933446e-01 -8.64869118e-01
-3.61984200e-03 -5.23070395e-01 5.14190972e-01 7.44800687e-01
-4.43815708e-01 2.36727521e-01 -1.99736834e-01 1.61445886e-01
7.11430490e-01 3.01181018e-01 1.03474498e+00 -1.46118402e+00
-3.05694789e-01 -3.13475549e-01 -4.08626676e-01 -1.68359494e+00
-2.55157873e-02 -8.77509475e-01 1.91439942e-01 -1.17550290e+00
9.61850211e-03 -1.12934411e+00 -2.88072258e-01 7.15528131e-01
-1.42551050e-01 6.51126087e-01 1.27611279e-01 3.07837695e-01
-8.82297516e-01 2.73993909e-01 9.19640183e-01 -1.63202852e-01
-5.44000864e-01 2.04529867e-01 -4.60074842e-01 9.73673880e-01
8.13674986e-01 -4.33792055e-01 -5.39542437e-01 -5.71836889e-01
2.70867109e-01 -4.00814593e-01 4.79189992e-01 -1.09904230e+00
7.13032484e-02 -6.14198707e-02 7.85288215e-01 -9.88961637e-01
5.96188307e-01 -8.13798845e-01 -1.53894275e-01 2.01172590e-01
-4.21407372e-01 -2.69299895e-01 2.72265524e-01 6.93200767e-01
1.81154549e-01 -1.45473145e-02 7.67677605e-01 -2.86188424e-01
-1.07192254e+00 5.06131172e-01 1.80245757e-01 3.34526449e-01
9.22733128e-01 -4.70206231e-01 -2.11935658e-02 1.66388035e-01
-6.61101103e-01 2.28316233e-01 7.46211886e-01 3.81721072e-02
5.53043842e-01 -1.02591574e+00 -2.26114884e-01 1.38434991e-01
1.38686895e-01 6.40367627e-01 7.59981666e-03 5.47661602e-01
-5.63431382e-01 1.89469889e-01 -6.96673915e-02 -9.03481483e-01
-1.25496733e+00 2.04736635e-01 1.79547042e-01 -1.03079356e-01
-7.23626912e-01 1.47208869e+00 -3.59039754e-01 -5.73177755e-01
4.95407492e-01 -4.72682953e-01 3.32794011e-01 1.20021120e-01
1.18012749e-01 2.45493382e-01 -5.54080354e-03 -3.04890811e-01
-5.21453798e-01 7.50722766e-01 -1.57496989e-01 2.27010660e-02
1.44114292e+00 -2.13486940e-01 4.51469421e-01 3.51665288e-01
1.14495158e+00 -1.96641058e-01 -2.11882281e+00 -3.45664978e-01
2.28316069e-01 -6.54493451e-01 1.45086467e-01 -9.23637092e-01
-8.56916547e-01 8.52345288e-01 7.13462412e-01 -1.44580469e-01
1.09845734e+00 2.66687721e-01 1.07094336e+00 8.08267176e-01
4.55974877e-01 -1.40329874e+00 2.28123158e-01 3.01629871e-01
4.62835938e-01 -1.58316827e+00 2.14052990e-01 -4.43412691e-01
-4.48861480e-01 8.87892783e-01 7.95106232e-01 -1.54857099e-01
6.23857498e-01 2.60061741e-01 1.43401265e-01 1.50213884e-02
-7.27738619e-01 -1.63627684e-01 3.83663565e-01 8.17158818e-01
4.35515121e-02 5.88586032e-02 1.45518914e-01 5.52917659e-01
-2.48631164e-01 -2.78012335e-01 7.66506046e-02 1.06971562e+00
-6.55777276e-01 -1.01242685e+00 -1.17951207e-01 6.17759645e-01
-2.72891894e-02 -7.92776644e-02 -3.96324366e-01 5.72783232e-01
1.62042513e-01 3.85070115e-01 3.60459536e-01 -4.69394207e-01
1.59310073e-01 8.60133022e-02 3.47804189e-01 -6.43358290e-01
-3.82986814e-01 1.57078039e-02 1.74752265e-01 -8.78028274e-01
-3.05766135e-01 -7.19876587e-01 -1.35561454e+00 6.96880072e-02
-3.71188194e-01 -3.45681578e-01 5.76809049e-01 6.79432213e-01
7.27871895e-01 1.80920418e-02 4.40246671e-01 -1.13389766e+00
-6.47536457e-01 -5.69597721e-01 -1.94290906e-01 2.64665544e-01
1.71131462e-01 -4.57790136e-01 -9.93925557e-02 9.32138860e-02] | [8.176880836486816, -2.9404025077819824] |
4fbb3a0e-0fc7-4f18-a622-45e72c54693f | multi-task-self-supervised-pre-training-for | 2102.03229 | null | https://arxiv.org/abs/2102.03229v1 | https://arxiv.org/pdf/2102.03229v1.pdf | Multi-Task Self-Supervised Pre-Training for Music Classification | Deep learning is very data hungry, and supervised learning especially requires massive labeled data to work well. Machine listening research often suffers from limited labeled data problem, as human annotations are costly to acquire, and annotations for audio are time consuming and less intuitive. Besides, models learned from labeled dataset often embed biases specific to that particular dataset. Therefore, unsupervised learning techniques become popular approaches in solving machine listening problems. Particularly, a self-supervised learning technique utilizing reconstructions of multiple hand-crafted audio features has shown promising results when it is applied to speech domain such as emotion recognition and automatic speech recognition (ASR). In this paper, we apply self-supervised and multi-task learning methods for pre-training music encoders, and explore various design choices including encoder architectures, weighting mechanisms to combine losses from multiple tasks, and worker selections of pretext tasks. We investigate how these design choices interact with various downstream music classification tasks. We find that using various music specific workers altogether with weighting mechanisms to balance the losses during pre-training helps improve and generalize to the downstream tasks. | ['Chao Wang', 'Juan Pablo Bello', 'Brian McFee', 'Ming Sun', 'Qingming Tang', 'Chieh-Chi Kao', 'Ho-Hsiang Wu'] | 2021-02-05 | null | null | null | null | ['music-classification'] | ['music'] | [ 4.38706756e-01 -2.38821898e-02 -2.54965425e-01 -7.00024843e-01
-1.01450622e+00 -4.66623664e-01 7.35413581e-02 5.66930287e-02
-6.97115064e-01 4.90345538e-01 3.53111267e-01 9.10736620e-02
-2.83204317e-01 -4.10880655e-01 -5.00452936e-01 -6.38376534e-01
2.10151553e-01 5.17203629e-01 -8.64103436e-02 -1.51827380e-01
4.05048132e-02 -4.92910817e-02 -1.62691963e+00 6.09386683e-01
4.56944972e-01 1.26556540e+00 2.68711895e-01 7.12098598e-01
-1.63317427e-01 1.10022175e+00 -7.93951809e-01 -5.79844236e-01
1.31862313e-01 -3.60061437e-01 -8.19660544e-01 1.78902112e-02
1.49089843e-01 1.91343874e-01 4.20191810e-02 9.00934577e-01
1.15770459e+00 2.73316443e-01 5.82382560e-01 -1.24158430e+00
-4.73043412e-01 1.20220423e+00 -5.25477648e-01 1.51118726e-01
-6.07986636e-02 8.36560503e-02 1.32701957e+00 -6.84380710e-01
1.95549130e-01 1.02348495e+00 9.11411762e-01 7.75719702e-01
-1.28244948e+00 -8.89014304e-01 -5.08366451e-02 6.72962368e-02
-1.22818565e+00 -8.56166422e-01 1.00886607e+00 -3.89066339e-01
7.37491310e-01 1.90954000e-01 2.95495659e-01 1.40989149e+00
-2.19854668e-01 8.37014616e-01 9.24443483e-01 -5.03436446e-01
2.20757782e-01 4.06175256e-01 -9.63550657e-02 3.79207373e-01
-3.94780666e-01 -3.77167501e-02 -1.14379823e+00 -1.15139268e-01
3.80530506e-01 -1.75390318e-01 -1.94132686e-01 -1.12655781e-01
-1.15136468e+00 7.52282977e-01 2.29192108e-01 3.25825244e-01
-1.66961178e-01 4.48463768e-01 8.54711950e-01 6.46271169e-01
5.65365136e-01 9.56813276e-01 -7.17583418e-01 -4.03063238e-01
-1.02774119e+00 -1.44580424e-01 4.86679435e-01 8.03505957e-01
7.37391829e-01 2.79462319e-02 -3.23151827e-01 1.40996158e+00
9.55908448e-02 9.51421261e-02 8.79625618e-01 -1.14871693e+00
4.13174897e-01 2.17166111e-01 -3.31144750e-01 -6.34404957e-01
-5.18686593e-01 -9.29698110e-01 -8.76094699e-01 -9.90926847e-02
3.82153422e-01 -4.78303701e-01 -5.36245644e-01 2.01725316e+00
-8.68541077e-02 -3.35140526e-02 7.00574592e-02 8.78751278e-01
6.03331268e-01 4.76676583e-01 1.30008668e-01 -2.18094364e-01
1.19168258e+00 -1.21072125e+00 -7.49088109e-01 -5.23213744e-01
6.51212931e-01 -8.04820418e-01 1.53471100e+00 7.88612247e-01
-1.07007313e+00 -8.01830113e-01 -8.96253467e-01 -2.54653603e-01
-3.04903518e-02 5.17757595e-01 6.12450123e-01 6.74919069e-01
-7.01478601e-01 6.06603682e-01 -5.82340539e-01 -3.49575430e-02
5.23742080e-01 5.86604834e-01 3.27852108e-02 3.82504463e-01
-9.85917389e-01 5.26708305e-01 2.53586084e-01 -4.71453741e-02
-9.91937935e-01 -6.08003139e-01 -4.73554492e-01 3.53007436e-01
5.20231724e-01 -6.27857208e-01 1.71666121e+00 -1.68410790e+00
-1.65466201e+00 7.65608966e-01 1.23610765e-01 -4.05897230e-01
2.03441873e-01 -3.21241736e-01 -3.60589504e-01 -6.53071627e-02
-1.82450324e-01 7.31732845e-01 1.28218210e+00 -1.06200373e+00
-4.02861357e-01 -2.97705084e-01 -9.43605006e-02 1.39740601e-01
-8.98533404e-01 1.41438216e-01 5.34389168e-02 -9.80836511e-01
-1.41222358e-01 -8.10036302e-01 -1.85106829e-01 -2.87614495e-01
-3.31221998e-01 -3.36119562e-01 4.15835768e-01 -1.54810667e-01
1.37333941e+00 -2.67555642e+00 9.31249261e-02 1.49359778e-01
1.43221556e-03 -7.55181909e-02 -1.57940075e-01 9.19260383e-02
-8.18611011e-02 -8.14134628e-03 4.75062877e-02 -5.47254205e-01
9.75475609e-02 3.94749194e-02 -3.56955081e-01 -1.16796240e-01
1.22899197e-01 4.98762548e-01 -8.03142786e-01 -5.30182421e-01
-3.04927588e-01 2.34111845e-01 -7.93288827e-01 3.43913585e-01
-4.12864238e-01 4.87427264e-01 -2.73248076e-01 4.22399908e-01
-1.33033603e-01 -3.07136506e-01 8.56401548e-02 -8.84535313e-02
1.94676697e-01 6.22485161e-01 -1.06614745e+00 2.16783285e+00
-9.45774496e-01 6.16024435e-01 2.05934018e-01 -1.03236806e+00
1.05723739e+00 6.39148653e-01 3.52381647e-01 -4.48413908e-01
3.28932673e-01 1.70703113e-01 2.13088676e-01 -6.49415195e-01
4.35075611e-01 -5.95441282e-01 -1.00157760e-01 6.81024849e-01
4.35766131e-01 -1.03345826e-01 -1.33238986e-01 -2.58982293e-02
1.12827921e+00 -1.84733480e-01 -6.40943795e-02 -3.82757485e-02
2.25666866e-01 -5.79014570e-02 7.48364449e-01 6.67719126e-01
-1.07173987e-01 6.86420679e-01 3.03862303e-01 -2.23978952e-01
-8.19143355e-01 -5.29570460e-01 1.93820950e-02 2.04380035e+00
-2.12254122e-01 -6.33368373e-01 -5.22051811e-01 -6.12027645e-01
-1.36957288e-01 4.65563208e-01 -3.81132811e-01 -5.14035046e-01
-3.11536282e-01 -5.40848136e-01 8.26473653e-01 7.51353860e-01
2.18851998e-01 -1.31900263e+00 -5.62495708e-01 3.52049530e-01
-1.75982818e-01 -7.08555281e-01 -5.66386819e-01 9.46871340e-01
-8.16046238e-01 -6.28165722e-01 -6.71791673e-01 -9.40613508e-01
3.69678438e-01 1.15925997e-01 1.23318398e+00 -7.37645179e-02
-2.81844467e-01 2.49016821e-01 -4.37313616e-01 -7.28339791e-01
-3.17538857e-01 5.56877673e-01 3.36962759e-01 2.35549822e-01
3.10494989e-01 -8.05211246e-01 -3.75299960e-01 4.87105906e-01
-7.68593013e-01 -4.50649224e-02 7.54752576e-01 9.96038437e-01
3.87018085e-01 3.42243522e-01 9.96932089e-01 -9.70392883e-01
8.52068484e-01 -2.36423805e-01 -2.46289447e-02 3.18225801e-01
-4.38066214e-01 2.85011321e-01 6.91623092e-01 -8.58941138e-01
-1.19005001e+00 1.91564918e-01 -2.46203229e-01 -5.94691694e-01
-1.74679101e-01 3.91724259e-01 -2.04642370e-01 3.39025587e-01
1.02081680e+00 -3.46619427e-01 -2.26581730e-02 -6.26942277e-01
2.49841541e-01 1.05085921e+00 3.89062852e-01 -8.84248257e-01
3.73069316e-01 1.55371368e-01 -4.74514246e-01 -4.86688226e-01
-1.26635325e+00 -5.39432287e-01 -3.92237008e-01 -2.18011633e-01
8.09752166e-01 -9.73077476e-01 -7.38550544e-01 2.62161165e-01
-8.68894219e-01 -7.04684913e-01 -5.78022420e-01 6.96306586e-01
-7.22484827e-01 -1.18363298e-01 -6.27367139e-01 -9.78497863e-01
-3.03996503e-01 -1.13873148e+00 1.09109366e+00 5.02158999e-02
-7.34319210e-01 -6.20465398e-01 1.14077769e-01 6.23403549e-01
4.29596305e-01 -6.26948714e-01 1.06305301e+00 -8.18414152e-01
-5.93339689e-02 1.57565176e-01 5.95359616e-02 5.89184880e-01
1.00701833e-02 -3.31837028e-01 -1.55027473e+00 -2.08183497e-01
-1.66389358e-03 -1.18697429e+00 1.01207078e+00 2.83108145e-01
1.75286078e+00 -2.51156420e-01 2.75564585e-02 4.96098965e-01
8.45149279e-01 1.41695272e-02 8.24826136e-02 2.42099151e-01
4.63238269e-01 8.26708972e-01 4.47839975e-01 5.04348636e-01
-1.25025492e-02 6.11819386e-01 4.14912552e-02 7.07644597e-02
-4.55426611e-02 -3.90123844e-01 4.24711794e-01 1.02684081e+00
-4.24230024e-02 -8.02742839e-02 -6.73444927e-01 2.74185628e-01
-1.75343299e+00 -9.56952751e-01 4.43754524e-01 2.05951619e+00
1.35833716e+00 2.54768312e-01 4.11481947e-01 6.60695434e-01
5.63481808e-01 1.08526908e-01 -6.14730477e-01 -1.86547607e-01
2.00941823e-02 5.07792652e-01 3.16083699e-01 6.58121556e-02
-1.20121896e+00 6.99283838e-01 5.88867092e+00 9.92276371e-01
-1.25288737e+00 3.88930857e-01 6.20879471e-01 -5.09078085e-01
-8.56723860e-02 -2.42489293e-01 -4.87805218e-01 2.21907765e-01
8.72034311e-01 1.10730253e-01 5.55254757e-01 1.02680659e+00
7.00372234e-02 2.78633565e-01 -1.32805526e+00 1.24735904e+00
-1.63069874e-01 -9.33263123e-01 -2.44786590e-01 -1.25523165e-01
6.16508842e-01 -4.25677598e-02 3.91483426e-01 5.60981393e-01
2.11876094e-01 -9.59666431e-01 9.64318633e-01 2.35828400e-01
6.65173352e-01 -7.82373250e-01 6.15926266e-01 4.38858807e-01
-7.66421854e-01 -5.68557501e-01 -2.50640333e-01 -2.41183907e-01
-2.07682909e-03 5.99513769e-01 -7.35504568e-01 -1.08717196e-01
8.71599495e-01 5.11865616e-01 -4.54255491e-01 8.69033813e-01
-1.36509314e-01 8.99540365e-01 -5.06953746e-02 -3.95915247e-02
1.98834911e-02 2.35630125e-01 1.77109763e-01 1.12620497e+00
3.28686774e-01 -2.45771319e-01 1.36062622e-01 5.70141137e-01
-3.51909906e-01 2.03689098e-01 -3.47348303e-01 -3.34881753e-01
4.45925117e-01 1.20949507e+00 -6.26956284e-01 -1.48573473e-01
-2.40443215e-01 7.67326236e-01 3.57466847e-01 3.09487939e-01
-6.39260292e-01 -4.92452383e-01 5.36034286e-01 1.60872176e-01
3.06431651e-02 -8.89811888e-02 -4.66660589e-01 -1.10123014e+00
-2.29713455e-01 -1.07609701e+00 4.66955096e-01 -7.95825601e-01
-1.42573094e+00 6.04459703e-01 -3.49553019e-01 -1.09550381e+00
-2.16693938e-01 -4.06517535e-01 -6.42847240e-01 3.15873891e-01
-1.15458524e+00 -7.55688667e-01 -6.68091932e-03 6.13432407e-01
7.89656103e-01 -5.32804012e-01 7.75814772e-01 6.44348264e-01
-6.30282640e-01 8.97832930e-01 -1.50997967e-01 2.76676983e-01
1.20858705e+00 -1.22175503e+00 -1.48988992e-01 2.47475952e-01
8.59576464e-01 4.99519497e-01 4.95926827e-01 -5.65913916e-02
-1.13304734e+00 -8.69803071e-01 7.37673163e-01 -1.28396332e-01
5.80244303e-01 -5.83918750e-01 -7.41813004e-01 5.14191687e-01
1.06148891e-01 -2.91538894e-01 1.26057303e+00 7.69162953e-01
-4.79364812e-01 -4.66858834e-01 -6.11469090e-01 2.79389858e-01
1.11601126e+00 -9.08427238e-01 -3.98861259e-01 2.32336327e-01
7.15958655e-01 -5.46778999e-02 -6.90653980e-01 2.98520386e-01
4.53037024e-01 -8.02365899e-01 8.05451155e-01 -7.83649683e-01
4.98283893e-01 -3.38619910e-02 -2.20415533e-01 -1.50586581e+00
-2.14205548e-01 -7.38534451e-01 2.49851108e-01 1.56734908e+00
9.39506590e-01 -1.80920452e-01 7.44190633e-01 3.57850999e-01
-2.84791082e-01 -6.01202309e-01 -6.05673015e-01 -5.59330761e-01
-2.89232761e-01 -7.27063656e-01 4.61279303e-01 1.10730541e+00
1.54818878e-01 9.12037432e-01 -5.64096332e-01 -1.91219896e-01
2.70313829e-01 -1.67682059e-02 7.85090268e-01 -1.30044031e+00
-8.88262510e-01 -5.55258632e-01 -6.55811876e-02 -8.88169527e-01
2.47278526e-01 -1.00657248e+00 2.22763762e-01 -8.91936541e-01
1.84069797e-02 -8.80976319e-01 -5.44348776e-01 7.67887592e-01
4.28849831e-02 3.51357460e-01 1.47631973e-01 2.46895313e-01
-7.24151254e-01 5.49747467e-01 9.47184801e-01 -3.02299947e-01
-3.83981109e-01 3.86567712e-01 -8.25215161e-01 8.15341175e-01
1.01626050e+00 -6.92843735e-01 -6.33327484e-01 -8.07711959e-01
7.30656505e-01 -4.09091897e-02 1.69968590e-01 -1.02542853e+00
4.84612375e-01 1.38618782e-01 2.39995643e-01 -2.46988349e-02
6.22415662e-01 -7.39747107e-01 -6.81692213e-02 -1.57830447e-01
-1.04640865e+00 -1.47540003e-01 -6.93889335e-02 5.74875653e-01
-5.03202796e-01 -4.41561103e-01 7.23066032e-01 -2.13765472e-01
-3.70077729e-01 3.36938761e-02 -2.85709232e-01 3.19690615e-01
4.78432447e-01 1.22445680e-01 1.41055107e-01 -5.15153229e-01
-1.06544828e+00 1.30606502e-01 6.97295442e-02 4.24209327e-01
2.32626230e-01 -1.25502145e+00 -3.94838452e-01 2.37834811e-01
1.82263523e-01 1.52249694e-01 1.63915798e-01 7.54034519e-01
2.52386648e-02 1.66445728e-02 -5.16176261e-02 -4.98346299e-01
-1.27882457e+00 4.58585680e-01 9.67158973e-02 -1.38767019e-01
-2.71214962e-01 1.34539843e+00 2.70924028e-02 -5.85775018e-01
9.86825287e-01 -3.44779730e-01 1.64413378e-01 3.53154421e-01
3.32946718e-01 2.63874978e-01 1.87604308e-01 -2.02801034e-01
-6.75292313e-02 2.92766720e-01 5.51782846e-02 -3.34849477e-01
1.41842520e+00 6.52507842e-02 2.14290813e-01 8.15117180e-01
1.14004385e+00 1.53167211e-02 -1.13494730e+00 -4.92624015e-01
2.80606836e-01 -1.44560918e-01 1.86477065e-01 -8.15075755e-01
-1.22152114e+00 1.27923203e+00 2.90482402e-01 1.30176321e-01
1.36622190e+00 1.41749859e-01 7.54532993e-01 6.45731688e-01
3.26137573e-01 -1.47705853e+00 5.66507161e-01 2.70643830e-01
6.10571206e-01 -1.13866079e+00 -3.56303751e-01 -1.60345249e-02
-1.00594056e+00 9.64098454e-01 6.69494748e-01 1.35450289e-01
6.54629588e-01 4.22741413e-01 3.98759097e-01 -5.83958440e-02
-1.02147782e+00 -2.42153451e-01 1.59969807e-01 3.24534416e-01
7.25209415e-01 -1.83778796e-02 6.51844218e-02 1.16638005e+00
-5.35748124e-01 1.38906315e-02 -1.62287094e-02 7.77005374e-01
-3.30665618e-01 -1.36994052e+00 -2.26155758e-01 6.09847724e-01
-8.04763079e-01 1.68278199e-02 -5.28736830e-01 1.77292138e-01
4.35351044e-01 1.02297926e+00 8.46360028e-02 -5.14506340e-01
1.71238080e-01 4.22795773e-01 4.31971222e-01 -9.58674967e-01
-1.06405067e+00 2.68879354e-01 2.42525801e-01 -9.52744931e-02
-7.19996870e-01 -4.20324445e-01 -1.10115957e+00 2.62777895e-01
-6.91981554e-01 4.69063461e-01 6.01517856e-01 7.70080268e-01
3.62548113e-01 7.07124233e-01 7.67834246e-01 -7.68686771e-01
-8.40112150e-01 -1.09069300e+00 -7.34344900e-01 2.88728058e-01
2.68223047e-01 -6.80523455e-01 -4.12703335e-01 1.92231491e-01] | [15.73707389831543, 5.234855651855469] |
83ae2554-8e26-4927-b759-d25b4f6f1395 | symmetric-exploration-in-combinatorial | 2306.01276 | null | https://arxiv.org/abs/2306.01276v1 | https://arxiv.org/pdf/2306.01276v1.pdf | Symmetric Exploration in Combinatorial Optimization is Free! | Recently, deep reinforcement learning (DRL) has shown promise in solving combinatorial optimization (CO) problems. However, they often require a large number of evaluations on the objective function, which can be time-consuming in real-world scenarios. To address this issue, we propose a "free" technique to enhance the performance of any deep reinforcement learning (DRL) solver by exploiting symmetry without requiring additional objective function evaluations. Our key idea is to augment the training of DRL-based combinatorial optimization solvers by reward-preserving transformations. The proposed algorithm is likely to be impactful since it is simple, easy to integrate with existing solvers, and applicable to a wide range of combinatorial optimization tasks. Extensive empirical evaluations on NP-hard routing optimization, scheduling optimization, and de novo molecular optimization confirm that our method effortlessly improves the sample efficiency of state-of-the-art DRL algorithms. Our source code is available at https://github.com/kaist-silab/sym-rd. | ['Jinkyoo Park', 'Sungsoo Ahn', 'Minsu Kim', 'Hyeonah Kim'] | 2023-06-02 | null | null | null | null | ['combinatorial-optimization'] | ['methodology'] | [-1.21234670e-01 -1.06148906e-01 -4.54534203e-01 -2.70723812e-02
-8.70096684e-01 -7.70689249e-01 1.62341505e-01 2.63935894e-01
-3.87034923e-01 1.25003004e+00 -1.39678344e-01 -5.65341949e-01
-1.77237540e-01 -9.78447616e-01 -9.61345434e-01 -7.10812688e-01
1.42798265e-02 6.88507378e-01 -2.54963934e-01 -3.86987299e-01
2.19957143e-01 6.04200482e-01 -1.04116893e+00 -4.05197144e-02
9.42251384e-01 8.29051971e-01 1.84756994e-01 3.70954275e-01
-4.46309857e-02 5.82317352e-01 -4.01221305e-01 -2.03646749e-01
3.90765190e-01 -3.59542876e-01 -9.91022468e-01 -1.33072317e-01
-2.95931567e-02 -5.88854700e-02 -2.33294666e-01 9.29541528e-01
6.29890084e-01 1.89340889e-01 1.23654552e-01 -1.28714871e+00
-3.66062343e-01 5.79129219e-01 -5.67927241e-01 1.34622557e-02
1.64585352e-01 4.33588505e-01 1.33374286e+00 -5.15100837e-01
6.18100762e-01 1.07007599e+00 4.09657180e-01 4.32087779e-01
-1.38337326e+00 -8.78484488e-01 1.32521823e-01 3.24518502e-01
-1.19051135e+00 -2.63778865e-01 7.49920666e-01 -3.98454629e-02
1.14966655e+00 1.05830990e-01 8.09702396e-01 8.92741621e-01
2.32659891e-01 8.82183850e-01 1.05900776e+00 -2.81111330e-01
4.55480099e-01 -3.48511100e-01 -2.37591431e-01 9.97240901e-01
2.66980678e-01 2.21996725e-01 -4.75039095e-01 -2.25026041e-01
6.22769833e-01 -1.75183803e-01 -3.15370820e-02 -6.32729888e-01
-9.89036202e-01 1.20247865e+00 4.31247801e-01 3.76778818e-03
-3.02852899e-01 4.80898142e-01 4.73049372e-01 3.63280565e-01
3.70903641e-01 1.13400781e+00 -6.32251263e-01 -3.94675434e-01
-7.19262779e-01 5.69834828e-01 8.45785677e-01 7.30990589e-01
7.38511801e-01 9.04998630e-02 3.97421941e-02 6.29981160e-01
-7.27431774e-02 1.60144031e-01 7.18330592e-02 -1.17140603e+00
4.85224247e-01 4.88558352e-01 1.93926930e-01 -7.15375543e-01
-6.50292099e-01 -7.21427798e-01 -7.53211498e-01 1.03596099e-01
3.93787712e-01 -4.39585030e-01 -5.19933999e-01 1.71841407e+00
4.98632580e-01 -8.22456479e-02 -4.19653356e-02 9.38793361e-01
4.46656644e-01 8.88918400e-01 -1.11061282e-01 -2.39017352e-01
8.94162774e-01 -1.23993039e+00 -4.43848848e-01 -2.08906502e-01
9.14514780e-01 -7.74071813e-01 9.96073604e-01 4.40373778e-01
-1.30056262e+00 -1.06292948e-01 -9.56981063e-01 4.11962271e-02
-2.86053926e-01 1.05839983e-01 1.42206562e+00 5.73481441e-01
-7.25206614e-01 6.82320356e-01 -8.73508930e-01 6.01566136e-02
5.74121833e-01 7.39164770e-01 -1.13733768e-01 -2.67246783e-01
-1.06173146e+00 7.81049132e-01 5.07042408e-01 9.33787599e-02
-9.95085478e-01 -8.85893524e-01 -8.02142322e-01 3.96319360e-01
1.01604927e+00 -6.42843962e-01 1.30069137e+00 -7.40731716e-01
-1.76895165e+00 3.73056233e-01 -1.41332164e-01 -3.66910219e-01
4.12921548e-01 -4.34135385e-02 9.08238515e-02 -1.34307250e-01
-7.57580251e-02 6.49973571e-01 4.94785666e-01 -8.68364692e-01
-3.19112659e-01 -7.94862136e-02 4.52637076e-01 1.82356805e-01
-3.41404378e-02 -1.05962671e-01 -2.06281707e-01 -5.06356120e-01
-3.92851263e-01 -1.06350338e+00 -6.82280362e-01 -2.76601911e-01
-2.01211318e-01 -2.97412127e-01 2.15507805e-01 -4.31510806e-01
1.07157683e+00 -1.90637779e+00 5.06292641e-01 2.04019293e-01
1.62438437e-01 2.62902766e-01 -6.60487533e-01 7.17444181e-01
-5.01784086e-02 1.56713068e-01 -2.46468365e-01 2.21080139e-01
1.19837113e-01 2.06620142e-01 -6.96465746e-02 4.71676439e-01
4.57184762e-01 1.11972356e+00 -1.06728196e+00 -2.66081780e-01
1.42668754e-01 -2.22301073e-02 -1.12320328e+00 7.96229318e-02
-9.14777696e-01 5.29615223e-01 -5.44717491e-01 7.70929754e-01
5.64083636e-01 -5.25442064e-01 5.64153194e-01 1.11120656e-01
-1.26795888e-01 5.12382090e-01 -1.18842137e+00 1.80500686e+00
-5.86335838e-01 3.71583253e-01 8.04077601e-04 -1.34784615e+00
6.01044714e-01 -5.27509972e-02 6.87748075e-01 -8.68970335e-01
1.18545882e-01 1.35997951e-01 2.38218114e-01 -4.96259294e-02
1.90930501e-01 1.23434722e-01 -1.43190175e-01 5.32540500e-01
7.17082024e-02 -2.89927542e-01 8.04280877e-01 -1.93815663e-01
1.31765378e+00 1.97054073e-01 3.77445102e-01 -2.50551075e-01
4.94704068e-01 2.71492064e-01 9.76797998e-01 6.35918021e-01
1.32632330e-01 -7.78763816e-02 8.77754033e-01 -5.90621352e-01
-1.12130153e+00 -7.70930767e-01 9.61739197e-02 1.11898661e+00
-4.67897393e-02 -6.11093283e-01 -5.41459322e-01 -5.43075442e-01
4.63316869e-03 6.38352990e-01 -3.04200292e-01 -1.79421932e-01
-7.96052337e-01 -1.03653204e+00 3.42240810e-01 3.87599587e-01
3.07748467e-01 -9.50946331e-01 -3.45637590e-01 5.26533723e-01
-1.54045047e-02 -9.90873337e-01 -3.67184669e-01 4.36725557e-01
-8.07996392e-01 -1.06839514e+00 -6.03270769e-01 -5.73600829e-01
6.58571243e-01 7.65512884e-03 1.15608430e+00 6.79928064e-02
-5.87277710e-01 -2.08937041e-02 -2.52038002e-01 -1.64980903e-01
-2.99642026e-01 4.29580748e-01 -8.44343379e-02 -4.42514598e-01
1.87033210e-02 -3.83883864e-01 -4.68869925e-01 3.19350451e-01
-7.29868889e-01 -1.81670841e-02 5.21495998e-01 1.21709907e+00
7.63755918e-01 2.48104692e-01 6.57798409e-01 -7.39784479e-01
6.59462869e-01 -3.36725295e-01 -1.33434558e+00 2.17400998e-01
-6.55154526e-01 5.13914227e-01 1.02983522e+00 -2.77264804e-01
-5.62440991e-01 2.04266220e-01 -1.20118275e-01 -2.87667364e-01
2.24558011e-01 7.41312683e-01 2.30312087e-02 -3.23667586e-01
3.40048045e-01 1.34266570e-01 -4.23721746e-02 -2.37454578e-01
3.17406982e-01 -7.08490610e-02 -9.01114661e-03 -9.40480709e-01
8.76438081e-01 7.91402087e-02 4.98719156e-01 -4.96004492e-01
-1.00981164e+00 -2.33223408e-01 -1.46670230e-02 5.77238426e-02
4.67615247e-01 -6.81374490e-01 -1.22387922e+00 1.61942929e-01
-9.35358584e-01 -6.71023905e-01 -1.59191936e-01 3.20701420e-01
-7.10029781e-01 3.45582396e-01 -4.84084725e-01 -3.90293211e-01
-3.07801664e-01 -1.50792313e+00 7.99489796e-01 2.10024744e-01
-1.36086151e-01 -8.17020118e-01 1.72703192e-01 5.94442844e-01
4.06602561e-01 1.60441667e-01 1.20220411e+00 -3.64582747e-01
-8.78556430e-01 1.73927210e-02 -2.24947318e-01 1.22213222e-01
-2.47515086e-02 -8.13916922e-02 -3.84445548e-01 -5.03844798e-01
-4.23250496e-01 -7.65708447e-01 7.15620756e-01 4.10850257e-01
1.76580191e+00 -3.71488243e-01 6.98012784e-02 7.66532779e-01
1.40732265e+00 5.47169447e-02 3.62226665e-01 4.22528267e-01
4.12642837e-01 5.06073311e-02 8.11916828e-01 7.88669884e-01
2.36808240e-01 7.12419808e-01 6.55445635e-01 -2.31297150e-01
2.30621189e-01 -1.52221575e-01 3.28231484e-01 6.28260493e-01
-8.36546794e-02 -3.28248590e-01 -9.11118925e-01 2.10843995e-01
-1.97192812e+00 -7.27139652e-01 3.78990293e-01 2.00696588e+00
1.05361235e+00 9.48008671e-02 1.47504821e-01 -1.02089591e-01
3.62637907e-01 1.47297636e-01 -8.96508396e-01 -7.88159370e-01
1.98248252e-01 8.13114524e-01 7.35430598e-01 4.75031167e-01
-9.31290925e-01 1.38626051e+00 5.97100878e+00 1.03178310e+00
-1.10281694e+00 2.06364673e-02 6.48634911e-01 -3.91168773e-01
-2.09690928e-01 -1.22618191e-02 -7.37249374e-01 2.90246785e-01
8.59243214e-01 -3.57582271e-01 1.15295029e+00 9.15663123e-01
3.41153353e-01 -7.68698901e-02 -1.09633458e+00 7.88126051e-01
-4.18584675e-01 -1.90214968e+00 -2.84348547e-01 1.83252901e-01
8.33021402e-01 1.15948550e-01 3.80893908e-02 5.67342699e-01
6.14052832e-01 -1.29997659e+00 1.12435929e-01 4.48364206e-02
5.50148010e-01 -1.22032523e+00 7.02398121e-01 1.97456568e-01
-9.44906056e-01 -1.07020855e-01 -5.20831704e-01 -2.23716408e-01
-1.05387233e-01 5.52656114e-01 -7.54631817e-01 4.91725802e-01
4.07392532e-01 5.56795299e-01 -2.92243540e-01 1.08565712e+00
-2.82048315e-01 5.72905540e-01 -3.88456374e-01 -3.95334572e-01
7.29663670e-01 -3.36921573e-01 3.35052043e-01 8.52772534e-01
4.62662317e-02 -5.85297532e-02 4.89639342e-01 1.04623103e+00
-4.21597123e-01 1.67830095e-01 -4.65841979e-01 -5.64062893e-01
2.75148779e-01 1.26416063e+00 -5.73342264e-01 9.59345475e-02
-2.66643941e-01 6.07649803e-01 6.38518870e-01 2.94206709e-01
-1.20515549e+00 -1.82126880e-01 7.58585513e-01 -2.72910923e-01
3.31845343e-01 -5.41011572e-01 -2.39951134e-01 -1.07413971e+00
1.03857778e-01 -1.22795498e+00 3.11075538e-01 -3.46599847e-01
-1.03954720e+00 6.77027553e-02 -3.53404492e-01 -8.09641659e-01
-9.37215462e-02 -7.44717062e-01 -3.70549887e-01 5.22761345e-01
-1.78123403e+00 -6.00812435e-01 -1.94538012e-02 3.30087483e-01
5.92472613e-01 -2.11327001e-01 7.80217588e-01 3.65600079e-01
-8.59502256e-01 6.84973955e-01 2.66642034e-01 -2.63394296e-01
4.09141958e-01 -1.11378706e+00 1.96510240e-01 5.12136459e-01
-9.64450389e-02 2.69374013e-01 5.68096876e-01 -3.20098877e-01
-2.11798215e+00 -9.11703646e-01 5.31062901e-01 1.08242773e-01
9.85564172e-01 -3.51645738e-01 -4.04274195e-01 3.34250778e-01
8.11759830e-02 -1.58080414e-01 7.00203180e-01 3.52135956e-01
-1.10875614e-01 -1.85158253e-01 -9.45168316e-01 7.23708570e-01
8.46163809e-01 -6.41237721e-02 -1.96176469e-02 8.80513489e-01
6.75635934e-01 -6.34546340e-01 -9.11903858e-01 4.06910688e-01
2.41558358e-01 -5.15819311e-01 1.09017253e+00 -8.12192380e-01
8.71090829e-01 -1.24097519e-01 -4.84044589e-02 -1.34503710e+00
-4.02739048e-01 -9.27747667e-01 -2.67421305e-01 6.05235040e-01
6.03265166e-01 -7.59723544e-01 8.90248775e-01 3.95934850e-01
-6.70406520e-02 -1.22295499e+00 -9.67508495e-01 -1.04703712e+00
2.38326326e-01 -8.41180757e-02 6.34595811e-01 9.58844543e-01
1.51555985e-02 2.04708785e-01 -4.44949239e-01 1.55969560e-01
4.35762376e-01 4.50818181e-01 7.70125031e-01 -8.28721941e-01
-8.53300512e-01 -6.89708114e-01 3.09225563e-02 -7.78250635e-01
4.19216067e-01 -1.11769819e+00 -3.22909594e-01 -1.33155298e+00
1.64813310e-01 -6.42198622e-01 -3.26049298e-01 8.06782842e-01
5.38351275e-02 -1.47199556e-01 2.80764371e-01 -3.29312563e-01
-7.87938535e-01 9.36174631e-01 1.53845489e+00 -2.45393932e-01
-2.68996388e-01 3.25397067e-02 -6.24353230e-01 4.63525891e-01
1.33141649e+00 -6.17594540e-01 -1.58764556e-01 -2.72313356e-01
7.22927451e-01 2.58762181e-01 5.72628565e-02 -8.32272351e-01
-3.82978208e-02 -6.25396013e-01 1.41886756e-01 -3.76742929e-01
2.90534288e-01 -6.42901003e-01 -1.30124092e-01 7.31191576e-01
-3.21967959e-01 3.14957857e-01 4.49708909e-01 1.15887478e-01
-7.15830624e-02 -4.10437316e-01 8.84243429e-01 -2.78259605e-01
-3.37997645e-01 4.81701910e-01 -4.18674201e-01 2.80584484e-01
1.01214099e+00 3.87640864e-01 -3.66954863e-01 -2.48299807e-01
-4.06689763e-01 5.84339142e-01 3.99478018e-01 7.56095722e-02
3.89383137e-01 -1.00617659e+00 -5.15677571e-01 -3.85508463e-02
-1.82224944e-01 4.74376343e-02 -3.96383703e-02 7.28796124e-01
-8.14025879e-01 7.40161538e-01 -3.22234929e-01 -1.68241277e-01
-9.37666059e-01 7.09060609e-01 3.39093417e-01 -8.87461126e-01
-4.47636336e-01 7.05626249e-01 -6.65144697e-02 -6.63536608e-01
3.51557702e-01 -2.53366441e-01 4.50231314e-01 -2.40748346e-01
3.22751738e-02 4.20521021e-01 -3.32071707e-02 2.76031822e-01
-3.33428502e-01 2.86037087e-01 -2.79093146e-01 2.42035091e-01
1.69219804e+00 4.89689618e-01 -2.19188586e-01 -1.78543195e-01
9.83774900e-01 -2.44822457e-01 -1.01691353e+00 -4.82334010e-02
-4.36169691e-02 -1.12309188e-01 3.09545249e-01 -9.28729951e-01
-1.22917926e+00 7.29893029e-01 2.13052496e-01 -1.45767033e-01
1.16344416e+00 -2.46241212e-01 9.01839793e-01 1.04099083e+00
4.16042268e-01 -1.27011108e+00 1.11917384e-01 6.75824463e-01
8.09124649e-01 -1.20774209e+00 3.10874671e-01 -3.71900767e-01
-3.71456087e-01 1.12834620e+00 6.59372091e-01 -2.41315335e-01
1.99144468e-01 2.63896763e-01 -5.15740693e-01 -1.05529405e-01
-1.05174661e+00 -2.25245267e-01 -1.27871215e-01 6.31986111e-02
4.03221101e-01 1.81702211e-01 -5.00578046e-01 1.31411210e-01
-2.22342744e-01 1.67848226e-02 5.95276415e-01 9.65090930e-01
-2.21385852e-01 -1.76657271e+00 -1.20667018e-01 3.15036684e-01
-4.12662894e-01 -2.68878579e-01 -2.25932896e-01 7.38191545e-01
-3.70339721e-01 6.88727319e-01 -3.44260037e-01 9.95000675e-02
-1.05291061e-01 -6.83685318e-02 8.20883870e-01 -4.97678787e-01
-5.50231218e-01 8.80673081e-02 2.95214564e-01 -9.07960176e-01
-1.15408964e-01 -4.33132827e-01 -1.30092132e+00 -4.98129129e-01
-9.77567211e-02 1.13670424e-01 6.29031837e-01 8.87375414e-01
5.34901857e-01 6.61455810e-01 7.52142549e-01 -7.29471922e-01
-7.10474968e-01 -2.90214598e-01 -1.79697484e-01 -1.94823354e-01
9.49807987e-02 -8.57096195e-01 4.33572866e-02 -6.21886551e-01] | [5.15932035446167, 2.993849515914917] |
3f271431-61c7-4176-af44-c3c7cca2d2dd | vudenc-vulnerability-detection-with-deep | 2201.08441 | null | https://arxiv.org/abs/2201.08441v1 | https://arxiv.org/pdf/2201.08441v1.pdf | VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase for Python | Context: Identifying potential vulnerable code is important to improve the security of our software systems. However, the manual detection of software vulnerabilities requires expert knowledge and is time-consuming, and must be supported by automated techniques. Objective: Such automated vulnerability detection techniques should achieve a high accuracy, point developers directly to the vulnerable code fragments, scale to real-world software, generalize across the boundaries of a specific software project, and require no or only moderate setup or configuration effort. Method: In this article, we present VUDENC (Vulnerability Detection with Deep Learning on a Natural Codebase), a deep learning-based vulnerability detection tool that automatically learns features of vulnerable code from a large and real-world Python codebase. VUDENC applies a word2vec model to identify semantically similar code tokens and to provide a vector representation. A network of long-short-term memory cells (LSTM) is then used to classify vulnerable code token sequences at a fine-grained level, highlight the specific areas in the source code that are likely to contain vulnerabilities, and provide confidence levels for its predictions. Results: To evaluate VUDENC, we used 1,009 vulnerability-fixing commits from different GitHub repositories that contain seven different types of vulnerabilities (SQL injection, XSS, Command injection, XSRF, Remote code execution, Path disclosure, Open redirect) for training. In the experimental evaluation, VUDENC achieves a recall of 78%-87%, a precision of 82%-96%, and an F1 score of 80%-90%. VUDENC's code, the datasets for the vulnerabilities, and the Python corpus for the word2vec model are available for reproduction. Conclusions: Our experimental results suggest... | ['Lars Grunske', 'Timo Kehrer', 'Thomas Vogel', 'Yannic Noller', 'Laura Wartschinski'] | 2022-01-20 | null | null | null | null | ['vulnerability-detection'] | ['miscellaneous'] | [-3.29747468e-01 -3.28294665e-01 -6.57493696e-02 -2.26096869e-01
-8.62807393e-01 -9.89292383e-01 2.20803879e-02 6.80377305e-01
1.50274783e-02 4.96546645e-03 2.38329276e-01 -9.13098633e-01
1.99169487e-01 -9.53008235e-01 -6.32236421e-01 -2.55196020e-02
-4.28929418e-01 -4.73999381e-01 3.32505941e-01 -1.81493759e-01
7.25308776e-01 1.05797932e-01 -1.40046322e+00 6.63725495e-01
5.27883768e-01 5.70418000e-01 7.07268938e-02 7.61746526e-01
-6.36509597e-01 7.97143877e-01 -9.21594918e-01 -5.90867579e-01
1.43240720e-01 2.20325202e-01 -1.05581188e+00 -1.06074917e+00
3.61128330e-01 -1.59652218e-01 4.19521742e-02 1.42152572e+00
3.92403543e-01 -3.68481845e-01 3.13333213e-01 -1.04220009e+00
-9.27178502e-01 1.00751925e+00 -6.30023777e-01 3.82610559e-01
6.23675942e-01 2.15652525e-01 9.96448457e-01 -7.33026564e-01
6.93554401e-01 9.74523783e-01 1.05799961e+00 7.15199232e-01
-7.97132194e-01 -5.91571450e-01 -9.07403082e-02 6.39270395e-02
-1.37844741e+00 1.73791513e-01 4.68999565e-01 -1.08446765e+00
1.79824698e+00 1.45753577e-01 3.79230976e-02 1.44837475e+00
6.74753428e-01 7.13805184e-02 3.64767939e-01 -5.13980925e-01
2.56717980e-01 1.26381695e-01 8.25098693e-01 7.72436976e-01
3.03216070e-01 -6.14590384e-02 1.10016964e-01 -9.28219557e-01
9.62862819e-02 2.46475816e-01 -1.25528097e-01 3.09856564e-01
-7.53289342e-01 1.00330257e+00 3.37693930e-01 6.16029620e-01
-1.41226560e-01 3.62269223e-01 1.17250097e+00 4.83640134e-01
1.69745684e-01 6.92379534e-01 -7.27388978e-01 -5.42404592e-01
-6.26232028e-01 1.44988820e-01 8.88880312e-01 1.00050581e+00
8.38353455e-01 2.60127246e-01 -1.45343557e-01 7.09752500e-01
5.38769603e-01 2.90223032e-01 7.18933403e-01 -4.59981531e-01
8.32353175e-01 1.10556138e+00 -3.26972663e-01 -1.17402124e+00
-2.23344654e-01 -5.82295060e-02 -1.71861887e-01 4.86786455e-01
-2.45503217e-01 -2.92105824e-01 -6.20405018e-01 1.58669865e+00
-1.13727627e-02 7.47343376e-02 1.15165800e-01 3.04586351e-01
7.77583420e-01 5.59083343e-01 3.10264230e-01 3.43810737e-01
1.31852269e+00 -2.61900008e-01 -2.24448681e-01 -1.17306978e-01
9.84208584e-01 -8.75388622e-01 1.29423368e+00 1.87208876e-01
-3.62088531e-01 -4.48304564e-01 -1.09263361e+00 1.60874322e-01
-8.09814274e-01 -3.24672997e-01 4.62913275e-01 1.18325126e+00
-1.09115732e+00 4.94051725e-01 -8.25656414e-01 -3.87839913e-01
2.12919936e-01 -5.05055860e-02 -3.46922785e-01 7.96105042e-02
-1.21363080e+00 7.66484499e-01 6.39851332e-01 -4.13017333e-01
-1.09582949e+00 -9.72398162e-01 -1.05574465e+00 4.40707654e-01
1.02289982e-01 5.96955530e-02 1.06004524e+00 -6.93155766e-01
-4.50583875e-01 5.61649501e-01 2.00681061e-01 -8.10822248e-02
-3.57907504e-01 -4.45548385e-01 -6.38976872e-01 -3.30399603e-01
1.74023435e-01 -1.50394455e-01 3.18818390e-01 -9.74859595e-01
-3.16025257e-01 -8.31350386e-02 3.07032079e-01 -7.84965336e-01
-8.64888966e-01 7.46981084e-01 -2.16316327e-01 -6.90243006e-01
-6.59670532e-01 -6.00344419e-01 -1.81005687e-01 -6.16120219e-01
-5.09500325e-01 -2.68278569e-01 6.76635385e-01 -1.09208560e+00
1.89173794e+00 -2.33249712e+00 -3.46496403e-01 4.37440068e-01
2.89434522e-01 4.88426626e-01 -4.97165948e-01 7.58810699e-01
-5.75683236e-01 7.29049444e-01 -4.89783198e-01 2.91569591e-01
8.37733597e-02 -3.06362957e-01 -7.24158227e-01 1.27793983e-01
1.68272376e-01 7.73085415e-01 -8.55450869e-01 -2.13193387e-01
-1.70521647e-01 4.39495027e-01 -6.28525913e-01 2.65377432e-01
-2.78914094e-01 -6.71584964e-01 -4.98711526e-01 1.00277340e+00
4.39728290e-01 6.11075163e-02 -2.95435041e-02 3.16152155e-01
-2.14079678e-01 1.85865566e-01 -8.86033714e-01 1.40630066e+00
-7.70939708e-01 7.81410754e-01 -4.54530627e-01 -3.86964649e-01
1.16441989e+00 4.58014697e-01 -2.60619391e-02 -4.59377319e-01
-7.00080842e-02 2.28199095e-01 -2.05181375e-01 -1.03845155e+00
3.41965228e-01 4.68857676e-01 -6.44084692e-01 7.96972632e-01
9.29646268e-02 4.48293537e-01 -1.27149165e-01 3.72929782e-01
1.70348918e+00 -1.11003771e-01 3.36909562e-01 -2.81442106e-01
5.07414460e-01 -1.92636535e-01 6.19007468e-01 5.84034979e-01
-1.73632503e-02 4.47280914e-01 9.71930027e-01 -7.31177628e-01
-8.08823705e-01 -8.66653979e-01 9.24065188e-02 9.56718445e-01
-4.44472164e-01 -8.46529305e-01 -1.12734687e+00 -1.17939079e+00
6.97045252e-02 9.63863909e-01 -8.49379838e-01 -4.51624393e-01
-6.39172137e-01 -4.71112370e-01 1.15785956e+00 8.28890145e-01
-7.22645074e-02 -1.35508573e+00 -6.63992584e-01 2.85482049e-01
-2.99788080e-02 -5.93549252e-01 -5.82805336e-01 -5.90793090e-03
-3.59800369e-01 -1.53942430e+00 -1.27525851e-01 -6.53994858e-01
2.99466997e-01 -1.48137569e-01 1.30901587e+00 5.61672151e-01
-8.64218950e-01 3.81623298e-01 -6.24271512e-01 -2.44094253e-01
-5.98772705e-01 -2.00471774e-01 -7.93893859e-02 -6.22304678e-01
8.21105957e-01 -4.17267621e-01 -1.66662514e-01 -9.63018909e-02
-9.86048937e-01 -1.05533898e+00 2.37269014e-01 5.09319603e-01
1.32546544e-01 -4.51073721e-02 5.29813528e-01 -8.47644746e-01
8.93101633e-01 -1.12431717e+00 -8.48243713e-01 5.12279034e-01
-7.04707980e-01 -1.35155305e-01 7.63061285e-01 -2.87419826e-01
-9.13788080e-01 -1.68735042e-01 -5.01059234e-01 -3.01758856e-01
-1.16397426e-01 9.42070484e-01 -1.28443405e-01 -2.77652502e-01
1.24760628e+00 8.42306763e-02 -4.59974438e-01 -5.45461535e-01
3.43995810e-01 8.17443132e-01 3.57390314e-01 -8.50904167e-01
8.08677971e-01 -2.19805136e-01 -6.77677393e-01 -4.49494302e-01
-1.44505888e-01 -2.27611810e-01 -3.60522747e-01 -4.40329313e-02
8.30760539e-01 -5.29483318e-01 -5.78330278e-01 2.96974778e-01
-1.38183355e+00 -1.88150331e-01 2.02790916e-01 1.06392957e-01
9.62029025e-02 7.77165949e-01 -6.67839706e-01 -5.52598536e-01
-8.68308127e-01 -1.33590424e+00 6.24597371e-01 7.13766068e-02
-5.18960297e-01 -1.03819358e+00 4.95816588e-01 -2.34545514e-01
6.89850628e-01 5.97168744e-01 1.66318667e+00 -7.96344101e-01
-3.32539529e-01 -4.31288213e-01 -2.19800681e-01 5.04602373e-01
1.18659519e-01 7.20806658e-01 -9.80531394e-01 -2.84935743e-01
-2.43581295e-01 -2.06874296e-01 6.20847404e-01 -6.15838990e-02
1.39371443e+00 -2.68778145e-01 -3.29499841e-01 6.10578179e-01
1.97807312e+00 3.74834508e-01 7.36191630e-01 6.89737439e-01
7.95275033e-01 6.02544665e-01 3.33537787e-01 5.49574614e-01
1.75377101e-01 3.42621952e-01 9.49336350e-01 5.71760654e-01
2.10553154e-01 -1.94707680e-02 7.72691846e-01 6.45887256e-01
2.45410174e-01 -6.48479536e-02 -1.65565133e+00 8.62181127e-01
-1.32660174e+00 -9.42820787e-01 -4.30048555e-01 2.26166916e+00
8.55867207e-01 2.96557099e-02 -1.42520845e-01 -2.07991898e-02
7.09281921e-01 -9.91517380e-02 -2.55298138e-01 -1.07222104e+00
3.60156178e-01 4.06849742e-01 2.39684373e-01 3.13559860e-01
-1.13351858e+00 8.87236178e-01 5.92604256e+00 6.11668289e-01
-1.21167409e+00 2.25699797e-01 1.00830533e-01 3.23973671e-02
-6.47997558e-01 3.56803276e-02 -7.38903463e-01 6.42231286e-01
1.42804754e+00 -2.69688457e-01 1.57028496e-01 1.37926745e+00
-3.62833291e-01 4.08312559e-01 -1.04350913e+00 5.98215342e-01
3.37500237e-02 -1.32772005e+00 -2.06528261e-01 -2.17484459e-01
5.28395057e-01 3.08258444e-01 1.44068778e-01 7.90072918e-01
4.39138740e-01 -1.09806776e+00 5.91482937e-01 4.02898103e-01
8.43388438e-01 -9.69124138e-01 1.02241671e+00 -4.54072244e-02
-1.26730323e+00 -5.72197556e-01 -6.00633323e-01 3.40741813e-01
-3.62547934e-01 6.34942889e-01 -8.99499536e-01 3.85191143e-01
1.14183414e+00 3.75336468e-01 -1.08298612e+00 9.00496900e-01
-1.63855508e-01 7.97597766e-01 2.77831644e-01 -1.94326937e-01
1.98800623e-01 6.25710607e-01 2.46576622e-01 1.85980380e+00
5.04941165e-01 -3.32453042e-01 -7.16430843e-02 1.22738266e+00
2.47913208e-02 1.56767279e-01 -7.47316837e-01 -2.30069056e-01
7.57934988e-01 1.18279922e+00 -4.14999694e-01 -1.40689537e-01
-7.36214161e-01 4.44035053e-01 2.95589179e-01 3.79352927e-01
-8.17962229e-01 -1.29791987e+00 1.05973208e+00 -2.67638355e-01
1.91655159e-01 3.20432000e-02 -3.41891408e-01 -1.10416770e+00
3.85115027e-01 -1.08420825e+00 4.67339218e-01 -3.69446665e-01
-1.25883520e+00 1.02011585e+00 -2.20135063e-01 -1.13033760e+00
-2.64412045e-01 -5.65217078e-01 -1.22316825e+00 1.24798310e+00
-1.12871778e+00 -9.40160990e-01 -1.64423376e-01 4.38016742e-01
2.78524727e-01 -7.38034010e-01 1.14506471e+00 4.23990607e-01
-6.47525132e-01 1.05190277e+00 9.18405876e-02 6.67239249e-01
5.70599020e-01 -1.36930740e+00 1.29404140e+00 1.20324552e+00
-1.99573100e-01 1.56187224e+00 2.76868105e-01 -1.05000269e+00
-1.31587374e+00 -1.58717644e+00 9.34080839e-01 -8.55656862e-01
9.13240850e-01 -4.19492215e-01 -1.51578128e+00 8.16234291e-01
1.85618460e-01 1.40088229e-02 1.16409349e+00 2.20186427e-01
-1.28629363e+00 2.48042062e-01 -1.29328501e+00 4.01510954e-01
4.74859953e-01 -1.05548108e+00 -6.32532299e-01 7.19573349e-02
9.58881378e-01 -7.84380734e-02 -1.11827791e+00 -8.42700228e-02
4.65736657e-01 -8.87868702e-01 1.05620682e+00 -7.77565718e-01
8.16329896e-01 -1.74166843e-01 -5.00199437e-01 -9.01352465e-01
-2.81855375e-01 -2.03565612e-01 -1.48221105e-01 1.54438472e+00
6.03906095e-01 -5.73883474e-01 1.58315524e-01 6.20477200e-01
-2.46688053e-01 -6.62609398e-01 -7.15094268e-01 -9.13215399e-01
4.60156292e-01 -8.40858817e-01 9.89377499e-01 1.36179435e+00
3.51561457e-01 -4.14282471e-01 1.29880413e-01 5.08000076e-01
5.72154284e-01 -1.22943752e-01 2.98161209e-01 -1.16752052e+00
-3.93433094e-01 -5.61111987e-01 -6.48955584e-01 1.01233967e-01
5.32120824e-01 -1.07274020e+00 -1.27808914e-01 -1.15009212e+00
3.48827302e-01 -1.68164864e-01 -5.03310680e-01 1.09183562e+00
-4.31472600e-01 -2.58231163e-01 -8.31771120e-02 -1.04236744e-01
-1.59874901e-01 -6.97801113e-02 -7.75738135e-02 -4.19916302e-01
2.80228406e-02 -1.37591451e-01 -9.72729325e-01 6.37159348e-01
7.27727592e-01 -7.41786242e-01 -2.03526542e-01 -6.08766139e-01
6.87150061e-01 4.32905592e-02 3.00197899e-01 -8.53208899e-01
-5.77717051e-02 -6.58459738e-02 3.66277690e-03 -1.29810587e-01
-4.68267351e-01 -4.08162206e-01 -1.11519761e-01 6.40642345e-01
-4.22900617e-01 4.03306127e-01 6.57152534e-01 2.96852291e-01
-3.44403982e-02 -9.29867744e-01 5.11575818e-01 -1.54812023e-01
-1.08497798e+00 1.38328999e-01 -5.95440209e-01 6.15754239e-02
9.82499659e-01 6.80984855e-02 -5.60850441e-01 2.67682880e-01
-1.22295640e-01 -7.54144713e-02 5.33635795e-01 1.17144299e+00
9.52531993e-01 -1.24845147e+00 -5.87618053e-01 1.62435919e-01
6.34101510e-01 -6.55301273e-01 3.53115469e-01 -7.85387680e-02
-6.46020174e-01 2.46916398e-01 -2.20428854e-01 -7.36158341e-02
-1.49026418e+00 9.23757195e-01 1.41397759e-01 9.85898301e-02
-6.42956555e-01 1.05982459e+00 -1.87650353e-01 -8.17280352e-01
1.38959855e-01 -3.50495875e-01 -5.27745366e-01 -1.85717776e-01
1.00006986e+00 3.61561358e-01 3.23540807e-01 -3.48988056e-01
-7.58298039e-01 6.33845568e-01 -2.18689203e-01 3.90488327e-01
1.29109120e+00 5.87241352e-01 -6.69480801e-01 1.95807114e-01
1.63736570e+00 5.77638187e-02 -5.27580440e-01 -1.23101519e-02
5.16353965e-01 -5.22771358e-01 -2.12717578e-01 -9.64896798e-01
-1.22774661e+00 1.13878691e+00 7.26977944e-01 3.30891997e-01
8.40038896e-01 -1.26337618e-01 7.00478315e-01 4.45941597e-01
5.49790323e-01 -5.52389205e-01 -1.12729356e-01 8.60451996e-01
8.29510212e-01 -1.02895081e+00 -3.88455927e-01 1.47561476e-01
-3.54483634e-01 1.57042611e+00 9.70415235e-01 9.28520113e-02
7.72280157e-01 6.26811981e-01 3.45873296e-01 -3.28625083e-01
-7.74090827e-01 4.22238708e-01 5.55307884e-03 7.90346980e-01
8.44990492e-01 2.37669740e-02 -3.56592797e-02 9.68718350e-01
-9.43603925e-03 -5.60310960e-01 9.55598533e-01 1.14750087e+00
-5.67856908e-01 -1.23882282e+00 -5.16605854e-01 3.92440587e-01
-8.96628022e-01 -5.70157826e-01 -4.39353913e-01 4.29433316e-01
7.93658197e-02 9.70421910e-01 -3.51683229e-01 -8.70374501e-01
3.86405230e-01 1.65639609e-01 -2.95574814e-01 -1.04102874e+00
-1.37523687e+00 -4.91540730e-01 -2.53441602e-01 -8.30376744e-01
6.50398791e-01 -6.33173585e-01 -1.28549802e+00 -2.85420865e-01
-7.93816596e-02 1.72723785e-01 7.70350695e-01 5.43698967e-01
6.51084900e-01 7.57207036e-01 6.01793468e-01 -2.73082763e-01
-6.51456714e-01 -8.60880136e-01 -1.15654819e-01 3.09154034e-01
3.41634989e-01 -2.91243225e-01 -3.32461774e-01 5.18037342e-02] | [7.072289943695068, 7.776976108551025] |
a3123bff-e1d6-4254-8bef-522fb2563cc8 | evaluation-of-gpt-3-5-and-gpt-4-for | 2304.13714 | null | https://arxiv.org/abs/2304.13714v3 | https://arxiv.org/pdf/2304.13714v3.pdf | Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery | Despite growing interest in using large language models (LLMs) in healthcare, current explorations do not assess the real-world utility and safety of LLMs in clinical settings. Our objective was to determine whether two LLMs can serve information needs submitted by physicians as questions to an informatics consultation service in a safe and concordant manner. Sixty six questions from an informatics consult service were submitted to GPT-3.5 and GPT-4 via simple prompts. 12 physicians assessed the LLM responses' possibility of patient harm and concordance with existing reports from an informatics consultation service. Physician assessments were summarized based on majority vote. For no questions did a majority of physicians deem either LLM response as harmful. For GPT-3.5, responses to 8 questions were concordant with the informatics consult report, 20 discordant, and 9 were unable to be assessed. There were 29 responses with no majority on "Agree", "Disagree", and "Unable to assess". For GPT-4, responses to 13 questions were concordant, 15 discordant, and 3 were unable to be assessed. There were 35 responses with no majority. Responses from both LLMs were largely devoid of overt harm, but less than 20% of the responses agreed with an answer from an informatics consultation service, responses contained hallucinated references, and physicians were divided on what constitutes harm. These results suggest that while general purpose LLMs are able to provide safe and credible responses, they often do not meet the specific information need of a given question. A definitive evaluation of the usefulness of LLMs in healthcare settings will likely require additional research on prompt engineering, calibration, and custom-tailoring of general purpose models. | ['Nigam H. Shah', 'Eric Horvitz', 'Matthew P Lungren', 'Honor Magon', 'Garret Kenn Morris', 'Angel Arnaout', 'Ethan Goh', 'Rachel Pedreira', 'Lance Downing', 'Saurabh Gombar', 'Jonathan H. Chen', 'Nikesh Kotecha', 'Mehr Kashyap', 'Morgan Cheatham', 'Akshay Swaminathan', 'Juan M. Banda', 'Rahul Thapa', 'Debadutta Dash'] | 2023-04-26 | null | null | null | null | ['prompt-engineering'] | ['natural-language-processing'] | [ 5.75967208e-02 5.02275050e-01 -1.03652023e-01 -6.46079421e-01
-1.25547457e+00 -9.18955624e-01 1.56798363e-01 8.70616138e-01
-5.80138326e-01 6.05898142e-01 7.87799895e-01 -1.16532528e+00
-5.49452126e-01 -2.88441956e-01 -3.16462994e-01 -2.81385873e-02
6.99520469e-01 7.12235272e-01 -2.28192225e-01 4.86876294e-02
3.81787151e-01 2.73343891e-01 -3.02257419e-01 6.66670322e-01
6.39058232e-01 5.48498094e-01 -3.09660494e-01 5.19814432e-01
-1.33349001e-01 1.23780942e+00 -7.78817832e-01 -3.47305089e-01
1.14795327e-01 -5.32077730e-01 -8.13709497e-01 -1.02185905e-01
2.92361289e-01 -7.75748670e-01 1.66056871e-01 6.14495218e-01
7.73600042e-01 -3.15258324e-01 2.70648211e-01 -7.92279422e-01
-5.81024766e-01 4.27135468e-01 2.34352797e-01 2.85660774e-02
1.11018002e+00 6.80581212e-01 3.33212078e-01 -2.47595787e-01
7.51814306e-01 1.10116315e+00 9.03748631e-01 5.04116714e-01
-1.35741448e+00 -8.75291169e-01 -2.08503045e-02 -6.46774232e-01
-1.09900475e+00 -4.76409614e-01 -4.03022282e-02 -8.71058285e-01
8.77897203e-01 6.60200059e-01 6.07879102e-01 6.68190241e-01
7.06093073e-01 -4.51931655e-01 1.37532926e+00 4.88674603e-02
4.23122227e-01 7.70266891e-01 4.67429757e-01 2.85466403e-01
5.30960977e-01 5.51853143e-03 -4.18216825e-01 -1.05169606e+00
7.56377995e-01 -8.38370323e-02 -4.68011022e-01 4.98713255e-01
-1.07787800e+00 6.25125766e-01 1.44295499e-03 2.44571596e-01
-6.46757364e-01 -3.76268357e-01 1.85725614e-01 4.09553319e-01
-5.38594052e-02 7.57310212e-01 -3.60415041e-01 -4.97117698e-01
-6.52566612e-01 2.09049359e-01 1.40628517e+00 9.24340189e-01
3.02682310e-01 -3.20525467e-01 -4.56240773e-01 4.69328672e-01
3.55228424e-01 4.84567255e-01 1.01201087e-01 -1.36231351e+00
1.00857779e-01 6.81436241e-01 8.94297063e-01 -9.58285689e-01
-8.58060956e-01 -5.31724453e-01 -3.88479710e-01 -1.78061705e-02
4.34957057e-01 -5.63821912e-01 -2.46635720e-01 1.39742279e+00
-1.05108373e-01 -6.41517282e-01 1.52554616e-01 8.62554073e-01
1.05967724e+00 2.37340212e-01 6.59206331e-01 -4.51573402e-01
1.48450136e+00 -2.68350393e-02 -9.65232611e-01 -2.03673273e-01
8.78477752e-01 -1.35059571e+00 1.09559178e+00 4.01537687e-01
-1.48228431e+00 -3.48499596e-01 -4.83839244e-01 1.81926712e-01
4.25161839e-01 -2.43389815e-01 2.01117359e-02 8.33407998e-01
-1.11198306e+00 2.54726440e-01 -4.02783245e-01 -7.12319314e-01
-1.41025530e-02 1.66161940e-01 -2.31963888e-01 -5.38905933e-02
-1.03725481e+00 1.17577803e+00 -1.13372751e-01 -1.65317163e-01
-5.78145564e-01 -9.09011126e-01 -4.95014369e-01 -5.68258092e-02
1.34649143e-01 -1.17371941e+00 1.65509653e+00 -4.63482261e-01
-9.46910799e-01 8.07109296e-01 -2.58088261e-01 -3.18292826e-01
6.18718088e-01 5.66650927e-02 -6.95684373e-01 2.89943904e-01
3.52998614e-01 4.50028360e-01 -1.61837384e-01 -1.10809517e+00
-3.98793548e-01 -2.16495737e-01 2.67228466e-02 1.29904643e-01
4.11794148e-02 5.24214208e-01 2.37052515e-01 -3.11051995e-01
6.57753274e-02 -6.48956060e-01 -4.22553360e-01 1.74096916e-02
-1.49858654e-01 3.18364836e-02 2.17615664e-01 -7.20864713e-01
1.51489115e+00 -1.92023504e+00 -1.21340072e+00 1.25926957e-01
3.26385975e-01 2.52251595e-01 1.52048294e-03 1.05212557e+00
-1.09427936e-01 6.28816068e-01 -1.98938102e-02 5.26782334e-01
-7.82428905e-02 1.30672947e-01 -1.01226233e-01 3.73165935e-01
1.37533873e-01 8.34334612e-01 -9.38346922e-01 -5.06904006e-01
2.68924683e-01 3.46344113e-01 -6.10189676e-01 3.90585870e-01
1.52884662e-01 7.00950205e-01 -3.58864754e-01 4.58513826e-01
4.57592279e-01 -6.64780855e-01 3.91712189e-01 -3.64058614e-02
-4.01561469e-01 7.69162357e-01 -8.18467319e-01 8.84440422e-01
-1.95135623e-01 -1.51267387e-02 2.23865151e-01 -3.95603627e-01
1.08701980e+00 8.24448884e-01 3.96651417e-01 -4.24794406e-01
-6.10343963e-02 2.42818162e-01 4.04221237e-01 -9.42920327e-01
1.65646058e-02 -6.33137345e-01 -3.85661311e-02 8.38676214e-01
-7.54379511e-01 -5.11162162e-01 -3.40556651e-01 2.32307494e-01
1.46195102e+00 -4.33912158e-01 4.20573801e-01 -3.68116289e-01
2.08576828e-01 2.73794293e-01 6.54111505e-01 1.19909060e+00
-3.36678445e-01 6.85601175e-01 5.16685724e-01 -3.58637214e-01
-5.31875730e-01 -8.27718854e-01 -2.85297781e-01 4.48926926e-01
-2.61786669e-01 -6.21519327e-01 -7.55424857e-01 -3.73594463e-01
-1.38776466e-01 1.27378237e+00 1.95338532e-01 4.45911549e-02
-2.13358235e-02 -2.03900844e-01 6.21564269e-01 3.64683419e-01
1.45128563e-01 -8.93309295e-01 -1.29035544e+00 6.74772680e-01
-5.43133199e-01 -1.05252790e+00 -6.49442077e-01 -1.39982447e-01
-8.46997201e-01 -1.37984133e+00 -5.99043965e-01 -4.21806872e-01
6.36381805e-01 -4.68582548e-02 9.58505034e-01 5.47367930e-02
-2.25345958e-02 9.89345491e-01 6.20853063e-03 -5.39843738e-01
-9.79258895e-01 -6.36138678e-01 -1.84944332e-01 -6.42485976e-01
8.93388093e-01 -1.28532037e-01 -7.90795088e-01 4.59902793e-01
-9.59304214e-01 -2.47876450e-01 5.94045401e-01 4.21011090e-01
2.92608202e-01 -7.10712910e-01 8.39289486e-01 -1.19482780e+00
1.24003649e+00 -5.57478428e-01 -1.74867257e-01 9.10964310e-02
-1.01541495e+00 -3.70370626e-01 5.99322319e-01 -2.43882671e-01
-7.66415954e-01 -4.26944852e-01 -3.72300208e-01 2.09172189e-01
-6.42772734e-01 7.72150993e-01 2.29372874e-01 -9.27549303e-02
1.05472541e+00 -3.30221087e-01 1.12485684e-01 -3.36016536e-01
-3.95218432e-01 9.19312418e-01 3.33202243e-01 -5.34112394e-01
2.57413149e-01 8.96547586e-02 -6.12182379e-01 -5.18367827e-01
-4.76354986e-01 -5.47923625e-01 2.89532453e-01 8.62139370e-03
7.71571219e-01 -9.16409075e-01 -1.19474757e+00 -1.90919384e-01
-1.20350015e+00 -2.00331002e-01 -3.45559180e-01 9.61263776e-01
-3.30827177e-01 6.58108175e-01 -6.54005647e-01 -9.74826097e-01
-4.32414383e-01 -1.08226824e+00 5.02609551e-01 4.25215475e-02
-1.62318385e+00 -8.56739223e-01 -1.32723913e-01 7.25330234e-01
6.83552206e-01 6.05507456e-02 1.32145965e+00 -1.20232892e+00
-8.46715495e-02 -6.00347579e-01 -1.53911874e-01 5.76118529e-02
7.02556610e-01 -3.05489153e-01 -5.08260787e-01 -1.14148431e-01
6.46434307e-01 -2.75328934e-01 -3.56136620e-01 4.91001844e-01
7.73642778e-01 -9.68419075e-01 -2.01493949e-01 7.81538896e-03
1.15901089e+00 8.17118704e-01 3.29148620e-01 2.85325386e-02
-9.72946063e-02 9.95279908e-01 4.55711097e-01 6.04825735e-01
4.62072164e-01 1.42025381e-01 -9.75821093e-02 -2.45451424e-02
2.72078663e-01 -3.44187975e-01 2.82759100e-01 6.97866142e-01
4.77975190e-01 -1.39839590e-01 -1.31283557e+00 4.18948770e-01
-1.57550550e+00 -6.20589137e-01 -4.73640919e-01 2.34713817e+00
9.27234709e-01 3.44175965e-01 -2.11482376e-01 -5.59013784e-01
4.99555945e-01 -3.48831087e-01 -7.02891052e-01 -7.13683724e-01
1.98545516e-01 1.04480103e-01 3.63781780e-01 6.23455703e-01
-2.01666966e-01 1.20881923e-01 7.43748379e+00 -2.11713240e-01
-6.35522723e-01 9.68344733e-02 9.69493270e-01 -3.04516777e-02
-1.01897800e+00 3.12566489e-01 -5.13795197e-01 4.98548418e-01
1.43252647e+00 -3.75521272e-01 -1.75431237e-01 4.70707029e-01
9.73177016e-01 -3.00884277e-01 -1.39741707e+00 9.81641531e-01
-2.78584182e-01 -1.35941064e+00 -1.12531431e-01 3.64880525e-02
4.04929668e-01 -3.77634436e-01 -1.56222329e-01 -3.81032564e-02
4.39000875e-01 -1.17568660e+00 4.73425299e-01 8.03350925e-01
9.16912496e-01 -3.09466809e-01 9.04246509e-01 6.10634446e-01
-5.12882173e-01 2.35710233e-01 -1.96029902e-01 -4.83280718e-01
3.93686771e-01 4.35809642e-01 -1.32522321e+00 4.01085198e-01
5.01217902e-01 9.57195152e-05 6.50437847e-02 8.44769597e-01
-5.85871972e-02 9.39870775e-01 -2.90472746e-01 -1.27821732e-02
2.53164172e-01 -6.38649315e-02 4.53447729e-01 1.40262175e+00
1.98714629e-01 6.18115366e-01 1.99930817e-01 8.57525229e-01
2.55411655e-01 2.06963003e-01 -6.52040958e-01 -4.26852912e-01
6.52905405e-01 8.58306944e-01 -2.83820122e-01 -5.01309931e-01
-6.31367147e-01 3.63844596e-02 -4.14606392e-01 6.39392078e-01
-3.15180749e-01 -8.57959539e-02 2.60837734e-01 8.61460865e-01
-7.59645700e-01 2.93294489e-01 -7.45739937e-01 -4.50081140e-01
-3.03987451e-02 -1.38004005e+00 5.24207711e-01 -9.15317953e-01
-1.34278393e+00 5.06699741e-01 3.50434408e-02 -1.20165098e+00
-5.19665897e-01 -2.12445274e-01 -2.18273610e-01 1.41836083e+00
-8.38352144e-01 -4.30105656e-01 -3.39389861e-01 3.60689491e-01
7.68243074e-02 2.74536073e-01 1.12960553e+00 1.15339503e-01
2.43985236e-01 3.49101573e-01 -4.81533051e-01 -3.83635536e-02
1.30784953e+00 -6.47683322e-01 -8.33045468e-02 1.68193951e-01
-7.97116399e-01 1.29841077e+00 8.25288892e-01 -1.10320020e+00
-1.07417190e+00 -8.64009321e-01 1.42542338e+00 -5.93437672e-01
1.82718247e-01 4.42879617e-01 -1.13103235e+00 8.07211161e-01
3.57187420e-01 -7.08170533e-01 1.35592532e+00 -1.37287676e-01
1.30557522e-01 1.32505804e-01 -1.40408313e+00 5.90154231e-01
6.32364154e-01 -7.56055772e-01 -9.36085105e-01 6.07786775e-01
4.69241828e-01 -3.45277697e-01 -1.30670631e+00 2.88816988e-01
5.05103648e-01 -7.53325164e-01 5.82483947e-01 -7.86181450e-01
3.26255351e-01 -1.86441913e-01 -4.64419313e-02 -8.61895740e-01
-3.81330192e-01 -9.13348377e-01 7.30610132e-01 8.81409764e-01
5.00416756e-01 -1.18591774e+00 2.87314117e-01 1.77399075e+00
-3.44679713e-01 -6.46774888e-01 -4.35742676e-01 -2.46617213e-01
6.05124384e-02 -5.20955324e-01 2.99488872e-01 1.05737233e+00
5.74381351e-01 2.07937598e-01 1.75345559e-02 1.47301957e-01
7.81210735e-02 -2.06200048e-01 4.64853585e-01 -9.61063445e-01
-2.30633318e-01 -2.42093235e-01 2.51257628e-01 -7.71103323e-01
-6.49109602e-01 -6.94942832e-01 -2.52186418e-01 -2.18396950e+00
3.51744175e-01 -3.77856821e-01 -6.60747988e-04 6.00118697e-01
-2.05917582e-02 -3.95667136e-01 9.89432409e-02 4.49383616e-01
1.87139809e-02 -2.39003718e-01 7.14047790e-01 -6.49137609e-03
-3.03127557e-01 4.11814116e-02 -1.62314212e+00 6.82769060e-01
8.28657269e-01 -5.79282343e-01 -3.81251037e-01 -2.75376797e-01
4.75200474e-01 7.39609540e-01 5.27198434e-01 -6.34678125e-01
6.12075806e-01 -4.00895625e-01 5.25192559e-01 -4.19024050e-01
9.09681842e-02 -8.58749390e-01 8.27848911e-01 8.98037732e-01
-5.92383981e-01 1.57169029e-01 5.57591379e-01 -1.27719238e-01
-1.54215410e-01 -4.84983265e-01 4.37683910e-01 -5.99500716e-01
2.14673594e-01 -2.08442196e-01 -1.00028908e+00 2.99220920e-01
6.77520692e-01 -2.91527271e-01 -4.22619671e-01 -1.01907229e+00
-7.80875027e-01 3.47345144e-01 5.92991769e-01 -6.63766265e-03
7.89739728e-01 -7.29530096e-01 -8.53737414e-01 -1.60370722e-01
5.17482087e-02 -1.53152108e-01 3.83265287e-01 1.19784462e+00
-5.16854107e-01 8.08508396e-01 2.15046883e-01 -4.11123902e-01
-1.01305246e+00 5.08745372e-01 3.23158979e-01 -1.00758068e-01
-3.53861928e-01 4.44712251e-01 5.60699046e-01 -4.58259195e-01
2.78136641e-01 -4.55541521e-01 2.74193823e-01 -1.82963312e-01
7.36955047e-01 1.76151752e-01 9.43588465e-02 -2.46975750e-01
-5.97560465e-01 4.42893595e-01 -7.43971094e-02 -4.52484250e-01
8.99515629e-01 -2.35322729e-01 -5.01383953e-02 5.26318908e-01
7.05017686e-01 1.81411892e-01 -6.02222383e-01 9.87361968e-02
-6.83106482e-02 -4.28212017e-01 -5.00806034e-01 -1.48083031e+00
-1.01242520e-01 7.19433367e-01 3.68241698e-01 1.31852135e-01
1.02311313e+00 -7.14254156e-02 4.69216198e-01 3.01010221e-01
3.43029231e-01 -9.76706326e-01 -5.28869517e-02 -2.00084001e-02
1.03668690e+00 -8.71348798e-01 -2.78336316e-01 -6.46988600e-02
-1.04040062e+00 9.81860161e-01 3.86498839e-01 5.26347697e-01
4.69294220e-01 3.28711003e-01 6.15085721e-01 -4.11800951e-01
-8.45340371e-01 6.29521012e-01 -9.39095542e-02 6.05437934e-01
9.83068943e-01 1.03056587e-01 -1.05326891e+00 9.46435094e-01
-1.76500037e-01 5.49353302e-01 8.50455523e-01 9.26602721e-01
-3.97766560e-01 -9.71492589e-01 -7.52404153e-01 6.80711448e-01
-6.24063075e-01 -1.30908772e-01 -5.76598704e-01 5.11190653e-01
-1.27706766e-01 1.69555199e+00 -2.70267516e-01 -1.02138728e-01
5.68349361e-01 2.79684037e-01 -9.12344307e-02 -9.25719678e-01
-1.32392180e+00 4.06231910e-01 5.88917375e-01 -3.52984905e-01
-1.19911663e-01 -5.90060890e-01 -1.22256529e+00 -2.91731060e-01
1.82709068e-01 5.49039066e-01 2.34200582e-01 8.07817698e-01
5.83163321e-01 4.11918640e-01 4.19962732e-03 6.47384584e-01
-1.00404751e+00 -7.77581334e-01 -1.19920634e-01 2.85257071e-01
3.71304214e-01 2.33528689e-01 -6.21835254e-02 -1.09396979e-01] | [8.734206199645996, 8.368429183959961] |
aa5e1108-80d7-4583-9b64-15764851db4a | narrative-xl-a-large-scale-dataset-for-long | 2305.13877 | null | https://arxiv.org/abs/2305.13877v1 | https://arxiv.org/pdf/2305.13877v1.pdf | Narrative XL: A Large-scale Dataset For Long-Term Memory Models | Despite their tremendous successes, most large language models do not have any long-term memory mechanisms, which restricts their applications. Overcoming this limitation would not only require changes to the typical transformer architectures or training procedures, but also a dataset on which these new models could be trained and evaluated. We argue that existing resources lack a few key properties, and that at present, there are no naturalistic datasets of sufficient scale to train (and not only evaluate) long-term memory language models. We then present our solution that capitalizes on the advances in short-term memory language models to create such a dataset. Using GPT 3.5, we summarized each scene in 1500 hand-curated books from Project Gutenberg, which resulted in approximately 150 scene-level summaries per book. We then created a number of reading comprehension questions based on these summaries, including three types of multiple-choice scene recognition questions, as well as free-form narrative reconstruction questions. Each book is thus associated with more than 500 reading comprehension questions. Crucially, most questions have a known ``retention demand'', indicating how long-term of a memory is needed to answer it, which should aid long-term memory performance evaluation. We validate our data in three small-scale experiments: one with human labelers, and two with existing language models. We show that our questions 1) adequately represent the source material 2) can be used to diagnose the model's memory capacity 3) are not trivial for modern language models even when the memory demand does not exceed those models' context lengths. Lastly, we provide our code which can be used to further expand the dataset in an automated manner. | ['Ky-Vinh Mai', 'Arseny Moskvichev'] | 2023-05-23 | null | null | null | null | ['scene-recognition', 'reading-comprehension'] | ['computer-vision', 'natural-language-processing'] | [ 1.66568533e-01 1.01609722e-01 -1.77702844e-01 -2.26078525e-01
-1.15435588e+00 -9.90663052e-01 8.54890287e-01 3.13453823e-01
-4.52141911e-01 5.63349545e-01 5.90403497e-01 -7.60068238e-01
-2.49927372e-01 -9.79365587e-01 -7.88595200e-01 -1.21117011e-02
2.64584482e-01 7.06893682e-01 4.38189983e-01 -3.43871444e-01
7.24843800e-01 2.53879279e-01 -1.52878904e+00 6.68867886e-01
7.60156810e-01 6.11495554e-01 8.70488763e-01 8.68509352e-01
-4.79302168e-01 1.39047456e+00 -6.78371608e-01 -1.95792675e-01
-3.52817744e-01 -3.26126814e-01 -1.54949069e+00 -1.33307204e-01
5.64635754e-01 -4.74759251e-01 -4.40986395e-01 3.55479389e-01
3.77958328e-01 4.54034954e-01 5.10684431e-01 -7.06939816e-01
-9.27612662e-01 6.57326460e-01 5.05623966e-02 4.55837637e-01
7.56356418e-01 1.81571051e-01 1.09089744e+00 -1.16633511e+00
7.03579426e-01 1.06803739e+00 6.28008246e-01 5.16345322e-01
-1.03519619e+00 -2.60633767e-01 1.77273050e-01 3.96492571e-01
-1.08309579e+00 -7.56365240e-01 4.84183609e-01 -4.09893721e-01
1.59026086e+00 2.66571641e-01 7.48830736e-01 1.16890597e+00
1.35101601e-01 8.31668913e-01 1.14063060e+00 -6.45171463e-01
-6.61496595e-02 8.13592747e-02 5.43784857e-01 8.12465489e-01
-1.85300425e-01 -1.13083623e-01 -8.11020136e-01 1.73854187e-01
7.00730681e-01 -4.95077670e-01 -3.10174435e-01 1.37897460e-02
-1.24504924e+00 7.12764382e-01 2.15345338e-01 5.61024666e-01
2.10583851e-01 -1.64539518e-03 2.60871947e-01 3.02627653e-01
1.30307287e-01 8.31327438e-01 -4.64400291e-01 -4.07600731e-01
-1.04187596e+00 2.91031569e-01 9.31704402e-01 9.98183906e-01
6.44486308e-01 -2.62103200e-01 -1.07196353e-01 9.78590965e-01
2.78688461e-01 3.47327113e-01 7.51927972e-01 -1.02208209e+00
5.68583667e-01 4.64635879e-01 2.13624281e-03 -1.19174349e+00
-6.53360069e-01 -5.21716118e-01 -2.14483693e-01 -4.40819710e-01
6.03521049e-01 4.77537602e-01 -5.89553237e-01 1.87060571e+00
-4.10312474e-01 -2.24177107e-01 3.69329378e-02 4.86797214e-01
1.16109931e+00 8.49025846e-01 9.81830657e-02 -8.46457854e-02
1.35819304e+00 -1.10237169e+00 -5.54304421e-01 -8.17558944e-01
1.07830846e+00 -8.04976940e-01 1.85566902e+00 3.13658714e-01
-1.50480902e+00 -6.31237686e-01 -1.11327434e+00 -6.19994640e-01
-6.48992181e-01 -1.73518330e-01 6.26296878e-01 5.41776597e-01
-1.25639653e+00 3.31458926e-01 -5.32803118e-01 -5.68807840e-01
7.77461231e-02 -9.49481502e-02 -1.46565577e-02 -1.40122429e-01
-1.22834289e+00 1.54967666e+00 3.27467918e-01 4.84730452e-02
-1.03232014e+00 -5.19976258e-01 -1.02289140e+00 8.31638500e-02
4.62182373e-01 -7.26283371e-01 1.51067269e+00 -5.62447727e-01
-1.09257495e+00 1.30187285e+00 -5.11788070e-01 -3.72923315e-02
1.11349896e-01 -1.79271013e-01 -3.12908590e-01 1.73997164e-01
3.39053243e-01 7.03883111e-01 1.74651250e-01 -1.14954770e+00
-3.10178369e-01 -1.12798631e-01 4.49726582e-01 4.19196188e-01
-4.50925291e-01 1.15498312e-01 -4.27884072e-01 -5.83590746e-01
1.35059118e-01 -5.48152864e-01 1.37034521e-01 -1.76424026e-01
-2.39010274e-01 -1.15567692e-01 3.03904533e-01 -7.72656381e-01
1.39611471e+00 -1.82342565e+00 -1.32931927e-02 -1.88255236e-01
9.04745981e-02 -1.99851602e-01 -4.66631711e-01 4.47721094e-01
9.89088863e-02 4.88454044e-01 -1.69939145e-01 -2.99446464e-01
1.93219259e-01 1.81302011e-01 -6.29026055e-01 1.10423282e-01
6.07456255e-04 1.22044122e+00 -9.44786549e-01 -6.10215902e-01
8.34941342e-02 -1.03096180e-02 -4.36301261e-01 2.02319905e-01
-5.90515435e-01 -3.61755788e-02 -8.74669477e-02 4.13044691e-01
1.69481754e-01 -4.79857117e-01 -5.60026094e-02 1.83833450e-01
-1.02616079e-01 9.37931418e-01 -7.94128060e-01 2.03052020e+00
-7.62970448e-01 9.23138440e-01 -2.43647382e-01 -7.32611299e-01
8.47480416e-01 2.12049838e-02 -2.17473105e-01 -1.05068612e+00
-1.28874496e-01 1.56831875e-01 -2.73510069e-01 -6.59176707e-01
9.96685445e-01 -3.30423385e-01 -3.42222959e-01 8.61275434e-01
1.35009289e-01 -3.71333748e-01 5.05908251e-01 4.38352764e-01
1.18816471e+00 9.09310505e-02 -7.17981160e-02 -3.42084348e-01
4.18706328e-01 3.49771649e-01 -4.54091728e-02 1.09156990e+00
-1.40512083e-02 6.65607572e-01 2.83195704e-01 -1.74474716e-01
-1.02845120e+00 -1.09586823e+00 -1.54434651e-01 1.49948740e+00
-1.41325137e-02 -6.61221027e-01 -6.11236870e-01 -1.25599056e-01
-5.93019128e-01 1.12945008e+00 -2.41560310e-01 -1.33348942e-01
-5.93463361e-01 -5.69084823e-01 8.98211181e-01 8.01917017e-01
5.22560418e-01 -1.27981973e+00 -7.35518157e-01 1.62253693e-01
-6.84754491e-01 -8.91698122e-01 -1.71115950e-01 3.21962655e-01
-8.46544385e-01 -1.07503378e+00 -4.24256235e-01 -1.13641298e+00
3.10181886e-01 2.86419392e-01 1.70724082e+00 3.87157679e-01
2.16666967e-01 6.40139341e-01 -2.67549902e-01 -1.07555367e-01
-4.09251690e-01 4.29912180e-01 -3.15451235e-01 -9.51530993e-01
4.62967873e-01 -3.35540533e-01 -1.05574280e-01 2.08684176e-01
-8.59925151e-01 3.03983003e-01 4.36205804e-01 7.98725188e-01
3.43995512e-01 -1.24461995e-03 7.01279819e-01 -8.24750304e-01
9.20767486e-01 -4.52650666e-01 -2.75532305e-01 6.28916323e-01
-5.05214393e-01 1.22030210e-02 4.88045156e-01 -2.71238834e-01
-1.10199845e+00 -4.29277092e-01 -3.23638409e-01 2.45813996e-01
-1.09148584e-01 1.08996308e+00 -1.61690906e-01 3.38634521e-01
8.19129169e-01 3.81945997e-01 -3.94717515e-01 -3.78274053e-01
5.93179286e-01 4.22159493e-01 7.73958862e-01 -1.07856047e+00
4.69495177e-01 -1.16701191e-02 -5.03628790e-01 -7.82816470e-01
-1.10808599e+00 -1.44452319e-01 -7.79642463e-01 -1.46309495e-01
7.54889429e-01 -8.50269616e-01 -4.85586017e-01 4.60210562e-01
-1.25533700e+00 -8.71202230e-01 -3.06093514e-01 9.47057679e-02
-8.49622607e-01 4.75264862e-02 -1.03664839e+00 -5.63087463e-01
7.00650066e-02 -9.01223540e-01 7.39871562e-01 1.71863772e-02
-7.33589888e-01 -1.37487602e+00 7.81031400e-02 6.84316754e-01
5.93853176e-01 -2.24626258e-01 1.61908448e+00 -4.80979770e-01
-7.30669796e-01 1.36550292e-01 -1.62963659e-01 -3.14900875e-02
-4.65848297e-01 -2.19674215e-01 -1.05687690e+00 -1.15846694e-01
3.29058975e-01 -8.88377547e-01 8.60521793e-01 1.28477305e-01
1.13967419e+00 -1.34144410e-01 -8.00021589e-02 4.39724445e-01
1.27990758e+00 1.41641404e-02 8.89845133e-01 7.19237447e-01
5.97091377e-01 7.86920846e-01 4.26230133e-01 -1.16939154e-02
8.63232195e-01 3.16487730e-01 -6.17318489e-02 2.86555201e-01
-1.85914174e-01 -7.50608861e-01 5.76071978e-01 1.32010221e+00
4.03125376e-01 -4.38942283e-01 -1.35219598e+00 8.20057869e-01
-1.51032960e+00 -9.77151930e-01 -1.99684709e-01 1.89900458e+00
1.05969930e+00 3.83716673e-01 -3.16356927e-01 3.39148380e-02
2.38352835e-01 5.35903275e-01 -4.72734958e-01 -5.83933771e-01
-4.92854446e-01 4.11025584e-01 -2.52128392e-02 8.19350243e-01
-6.77570105e-01 1.15271378e+00 7.62194300e+00 7.67876625e-01
-7.55858064e-01 1.42346889e-01 6.60062134e-01 -3.08348946e-02
-6.72864974e-01 2.59775192e-01 -6.61145389e-01 9.87189859e-02
1.45382774e+00 -3.22284341e-01 4.26645488e-01 5.77809215e-01
7.87751004e-03 -5.57912648e-01 -1.34491134e+00 8.84102404e-01
4.31000650e-01 -1.55377471e+00 1.61930278e-01 -2.92012870e-01
2.58881837e-01 -3.23004484e-01 5.59142493e-02 7.34190345e-01
1.21835999e-01 -1.58348989e+00 9.61897671e-01 7.01182485e-01
8.19820940e-01 -5.91244459e-01 2.63409704e-01 8.83373857e-01
-1.05495608e+00 -2.90598739e-02 -5.88691711e-01 -5.42898834e-01
2.45391399e-01 1.91669926e-01 -4.41680819e-01 5.42120077e-03
4.81408358e-01 6.20614409e-01 -1.15439725e+00 6.19878709e-01
-4.74926859e-01 6.38216257e-01 -1.25678197e-01 -1.23648174e-01
6.62391186e-02 3.08856815e-01 2.11361706e-01 1.18138874e+00
2.79665381e-01 2.68647015e-01 3.53614986e-02 1.08775926e+00
-1.18024133e-01 3.56179997e-02 -6.25241697e-01 -2.56370306e-01
6.42288089e-01 9.01733577e-01 -7.60892510e-01 -3.36940765e-01
-5.90271831e-01 8.78113806e-01 5.33712626e-01 2.51159877e-01
-5.92226565e-01 -1.33275390e-01 -1.04546182e-01 3.75700325e-01
-2.43353963e-01 -4.25982058e-01 -6.47494555e-01 -1.33415484e+00
7.54813924e-02 -1.04351783e+00 3.67070645e-01 -1.35204649e+00
-1.21427691e+00 4.67716515e-01 1.25915572e-01 -4.92436707e-01
-3.02737683e-01 -7.21985996e-01 -4.55027044e-01 9.55403686e-01
-1.17543459e+00 -1.25749493e+00 -3.21508527e-01 5.60141921e-01
6.54750586e-01 -1.47702843e-02 1.22221315e+00 1.84522867e-01
-4.05128896e-01 4.37417954e-01 -2.98611522e-01 5.34834266e-02
6.88746512e-01 -1.28543317e+00 3.17647427e-01 8.29438627e-01
2.26257026e-01 9.38254416e-01 6.04593277e-01 -5.86822987e-01
-1.27773106e+00 -6.29205346e-01 1.40105009e+00 -1.13339746e+00
8.65559816e-01 -5.69762468e-01 -1.13418305e+00 1.12662518e+00
3.53360325e-01 -5.48100710e-01 8.42327833e-01 4.01420921e-01
-3.53437126e-01 3.71269524e-01 -7.51833320e-01 6.17059827e-01
1.19612420e+00 -1.14639795e+00 -1.18478060e+00 4.73464966e-01
7.20852435e-01 -5.35294235e-01 -7.65374005e-01 1.40647456e-01
4.20538068e-01 -9.25218284e-01 8.48104954e-01 -5.33690929e-01
8.31474245e-01 3.01656555e-02 -3.64781708e-01 -9.94114161e-01
-3.67436856e-01 -1.56287715e-01 -1.29541323e-01 1.24665344e+00
7.59543419e-01 -3.07667941e-01 6.91783965e-01 9.84425366e-01
-3.74370635e-01 -8.02593946e-01 -5.74050486e-01 -6.00229263e-01
7.86611497e-01 -7.46225119e-01 4.47329730e-01 9.15247619e-01
2.73530036e-01 9.13387477e-01 2.46619154e-02 -2.58804947e-01
7.26667121e-02 1.11275807e-01 5.24604023e-01 -9.20653820e-01
-4.61539745e-01 -5.66112280e-01 2.19467938e-01 -1.68535995e+00
3.42226714e-01 -1.15100944e+00 1.04116738e-01 -1.84856701e+00
6.19668186e-01 -5.29787600e-01 7.33542591e-02 4.91656393e-01
-3.04119121e-02 -1.10581361e-01 1.44081563e-01 3.02343816e-01
-7.33615696e-01 3.60729218e-01 1.04815555e+00 -1.01369657e-01
-8.86982307e-03 -4.95535731e-01 -1.07091212e+00 7.67591894e-01
7.38619804e-01 -8.42443407e-02 -7.10002244e-01 -9.41893280e-01
6.63763463e-01 1.77495822e-01 3.86346638e-01 -9.79551971e-01
4.69440728e-01 -1.11902855e-01 5.40812254e-01 -7.80445397e-01
3.98924649e-01 -3.06363583e-01 -7.37517774e-02 5.55145033e-02
-7.98051894e-01 4.81564522e-01 4.39583123e-01 6.43313602e-02
-2.26078480e-01 -6.90253079e-01 5.24531782e-01 -5.62153816e-01
-1.06167829e+00 -3.08254063e-01 -8.38469267e-01 3.91100138e-01
6.65488482e-01 -2.52230495e-01 -9.21388090e-01 -6.31269693e-01
-7.20308483e-01 3.42711985e-01 7.77653098e-01 4.15905774e-01
7.55989254e-01 -1.15980327e+00 -4.60821867e-01 -7.97552317e-02
2.60012925e-01 8.43080580e-02 2.74905086e-01 3.64693433e-01
-5.99748135e-01 7.32669532e-01 -3.93610410e-02 -3.66746932e-01
-7.94733882e-01 6.40474200e-01 3.37801188e-01 -4.57418621e-01
-4.04841214e-01 8.75943780e-01 3.85285504e-02 -6.60150707e-01
1.60064861e-01 -2.70211637e-01 -3.29716116e-01 1.98688269e-01
7.24268615e-01 1.41563281e-01 1.20845601e-01 -6.90583646e-01
-2.78057992e-01 5.38538873e-01 -3.02847028e-02 -5.69590688e-01
1.16840374e+00 -3.57036591e-01 -2.24483326e-01 1.00224340e+00
1.01163089e+00 1.44486269e-02 -7.30033934e-01 -1.38055161e-01
3.44077349e-01 -2.61668921e-01 -7.95649290e-02 -1.09939313e+00
-4.19225961e-01 1.16217911e+00 1.32229924e-01 6.99270666e-02
1.04199088e+00 1.74245626e-01 1.00467741e+00 7.94749260e-01
4.36975956e-01 -1.07526517e+00 4.79814380e-01 1.09089148e+00
9.75040078e-01 -9.43722665e-01 -1.26590893e-01 4.31857519e-02
-3.59332621e-01 1.06060016e+00 7.72987604e-01 1.98739350e-01
3.12965959e-01 2.78925598e-01 6.18938431e-02 -4.82444257e-01
-1.06696844e+00 -2.44641211e-02 7.53351003e-02 4.63118643e-01
7.06199050e-01 -2.32499003e-01 -5.99897951e-02 8.45637918e-01
-8.06825876e-01 -1.03297643e-01 7.89911747e-01 1.11573946e+00
-8.17338526e-01 -1.06300366e+00 -3.05807561e-01 4.89415199e-01
-8.79445225e-02 -4.55636948e-01 -5.37483096e-01 7.54361928e-01
-1.64744616e-01 1.22775519e+00 4.23476063e-02 -2.82677621e-01
3.55702579e-01 2.74621785e-01 6.93832815e-01 -1.05701828e+00
-4.35236901e-01 -3.76201779e-01 3.45501453e-01 -4.48886216e-01
-2.29195520e-01 -4.06386912e-01 -1.30923855e+00 -7.01885343e-01
-3.00369203e-01 -4.84492406e-02 3.28469932e-01 1.11356556e+00
2.94956472e-02 3.66834372e-01 -1.47486582e-01 -6.23002589e-01
-2.22717687e-01 -9.60556328e-01 -2.47610435e-01 1.66147217e-01
-5.12023941e-02 -4.88516241e-01 -3.25906634e-01 1.43678948e-01] | [11.069449424743652, 7.968624591827393] |
363f7b35-06e8-4138-b8eb-88b0786755cb | discriminative-cross-domain-feature-learning | 2008.1136 | null | https://arxiv.org/abs/2008.11360v1 | https://arxiv.org/pdf/2008.11360v1.pdf | Discriminative Cross-Domain Feature Learning for Partial Domain Adaptation | Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes, which has attracted appealing attention. Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain to better fight off the cross-domain distribution divergences. However, it is essential to align target data with only a small set of source data. In this paper, we develop a novel Discriminative Cross-Domain Feature Learning (DCDF) framework to iteratively optimize target labels with a cross-domain graph in a weighted scheme. Specifically, a weighted cross-domain center loss and weighted cross-domain graph propagation are proposed to couple unlabeled target data to related source samples for discriminative cross-domain feature learning, where irrelevant source centers will be ignored, to alleviate the marginal and conditional disparities simultaneously. Experimental evaluations on several popular benchmarks demonstrate the effectiveness of our proposed approach on facilitating the recognition for the unlabeled target domain, through comparing it to the state-of-the-art partial domain adaptation approaches. | ['Ming Shao', 'Zhengming Ding', 'Taotao Jing'] | 2020-08-26 | null | null | null | null | ['partial-domain-adaptation'] | ['methodology'] | [ 2.90326506e-01 -2.33127698e-01 -5.16775727e-01 -7.37059236e-01
-9.82618213e-01 -7.03021049e-01 4.94168758e-01 2.45902874e-03
-2.15105116e-01 9.17423666e-01 7.34969750e-02 3.27604711e-01
-2.22772300e-01 -5.67086875e-01 -5.36580205e-01 -8.72825384e-01
3.35234880e-01 5.04619658e-01 4.63484257e-01 1.54805062e-02
7.80023411e-02 3.27181667e-01 -1.09020281e+00 -4.26383242e-02
1.19668031e+00 9.45684671e-01 2.74280250e-01 -6.19100928e-02
-3.66667092e-01 3.41032892e-01 -5.30750036e-01 -2.42626324e-01
3.25800478e-01 -5.52560508e-01 -3.90136272e-01 2.74949968e-01
5.52551270e-01 -2.49972064e-02 -1.04015790e-01 1.20458198e+00
4.93578017e-01 2.83580750e-01 1.10176742e+00 -1.20852649e+00
-9.91125643e-01 2.38086343e-01 -9.55809176e-01 2.10580602e-01
2.92546097e-02 -1.68912169e-02 8.22895169e-01 -1.05098772e+00
5.74229598e-01 1.26074266e+00 4.40204322e-01 6.68492794e-01
-1.27802777e+00 -1.11947107e+00 5.87489367e-01 1.04606666e-01
-1.46858871e+00 -1.59329012e-01 1.19986403e+00 -3.54026675e-01
4.29484844e-01 -2.66737938e-01 1.83216274e-01 1.15830481e+00
-2.13434741e-01 8.10191929e-01 9.76622224e-01 -4.21981305e-01
1.81034535e-01 5.70650756e-01 1.54015362e-01 4.34647709e-01
2.41849080e-01 3.50339785e-02 -4.41811919e-01 -2.77854532e-01
6.46905959e-01 1.55590609e-01 -2.45535612e-01 -1.29315841e+00
-1.02884865e+00 9.10843968e-01 3.84204388e-01 2.78773606e-01
-7.41844624e-02 -6.14627957e-01 4.66616690e-01 3.43958378e-01
6.09148383e-01 4.45020897e-03 -7.96974778e-01 3.23786587e-01
-5.96791029e-01 4.61156927e-02 6.12780750e-01 1.31768799e+00
1.11069632e+00 3.71481217e-02 -2.28800490e-01 1.27638376e+00
4.16607589e-01 6.83450460e-01 6.46697581e-01 -4.34324861e-01
8.26900363e-01 8.61202002e-01 5.81126884e-02 -7.20813215e-01
-1.46519942e-02 -5.61771989e-01 -7.67909408e-01 1.21334821e-01
5.71537018e-01 -1.64662540e-01 -9.10108447e-01 2.01917744e+00
7.44849086e-01 2.98156768e-01 1.80054709e-01 9.30501521e-01
4.64850783e-01 6.69976592e-01 3.76957774e-01 -1.56976700e-01
1.00184011e+00 -1.00967264e+00 -3.18022519e-01 -3.66305143e-01
5.61242223e-01 -7.91689992e-01 1.14311600e+00 1.08801588e-01
-5.71461439e-01 -8.76889765e-01 -1.13503623e+00 7.21942708e-02
-3.61788362e-01 2.65869260e-01 9.24941227e-02 6.99897408e-01
-3.81802827e-01 2.69313544e-01 -4.07604665e-01 -4.82696563e-01
6.86029315e-01 3.55418146e-01 -4.70178187e-01 -4.49287862e-01
-1.21042836e+00 7.09810555e-01 6.69885814e-01 -5.48116505e-01
-8.48469555e-01 -9.45891142e-01 -8.78700256e-01 -3.32621969e-02
3.37811649e-01 -4.93037224e-01 8.88207555e-01 -1.30775332e+00
-1.50312078e+00 9.00469601e-01 -9.74143147e-02 -4.07237336e-02
2.44446233e-01 -2.05942914e-01 -8.26974034e-01 -1.50350079e-01
2.57099181e-01 4.53764349e-01 1.07066524e+00 -1.33176661e+00
-9.95662510e-01 -7.33615994e-01 -3.10801774e-01 5.63019335e-01
-7.37423122e-01 -3.79425764e-01 -5.98179638e-01 -7.79317319e-01
-3.83185782e-02 -8.57855976e-01 6.18964881e-02 -8.51337984e-02
-3.41728590e-02 -3.75527114e-01 1.11950541e+00 -5.17128944e-01
1.14610171e+00 -2.28694487e+00 2.24007159e-01 3.20508808e-01
3.64750475e-02 3.83677900e-01 -3.43311936e-01 -1.94415927e-03
-2.02415064e-01 -3.60951364e-01 -5.06356478e-01 -9.51425880e-02
-5.60266413e-02 1.11552246e-01 -1.95532620e-01 5.59651136e-01
4.89855051e-01 4.34194148e-01 -8.72830987e-01 -6.93508625e-01
1.97262034e-01 3.50791872e-01 -4.95330840e-01 3.13181281e-01
-1.87058393e-02 6.82764351e-01 -9.31159616e-01 8.21864665e-01
1.11298776e+00 -1.77250817e-01 1.07948668e-01 -1.42312109e-01
2.87058949e-01 -1.34850025e-01 -1.26465333e+00 1.95269859e+00
-3.05764109e-01 -5.64695448e-02 4.32047062e-02 -1.32451308e+00
1.35587835e+00 -5.21019176e-02 5.27914464e-01 -7.62236178e-01
-9.31701511e-02 3.21626604e-01 -1.87338367e-01 -1.72547400e-01
7.09495991e-02 -2.79531598e-01 -3.30148607e-01 1.18679486e-01
3.49237978e-01 7.44007155e-02 -1.01683393e-01 -1.34035990e-01
5.95639229e-01 4.64730024e-01 5.97299397e-01 -3.10596019e-01
9.64272618e-01 1.39911920e-01 8.59304905e-01 3.36708724e-01
-5.16837001e-01 5.62088668e-01 1.04787759e-01 -1.06194779e-01
-8.70476484e-01 -1.38271952e+00 -5.30754216e-02 1.34225798e+00
4.74723309e-01 2.96499848e-01 -6.78784490e-01 -1.43183017e+00
1.87836379e-01 5.54844141e-01 -5.51628709e-01 -5.80139875e-01
-6.26785278e-01 -5.58786213e-01 2.95312613e-01 5.00067651e-01
4.22696531e-01 -7.36071169e-01 8.18644539e-02 2.55218804e-01
-5.58578260e-02 -8.54167104e-01 -1.03665042e+00 3.62611830e-01
-1.04343593e+00 -9.34584379e-01 -1.21987057e+00 -1.29815888e+00
7.95837045e-01 3.78972709e-01 9.81117785e-01 -7.26907432e-01
5.03189750e-02 2.71842271e-01 -4.79956865e-01 -9.75376144e-02
-1.69585198e-01 3.44127864e-01 6.19865432e-02 3.21082234e-01
9.95047748e-01 -5.53883791e-01 -4.55224216e-01 6.99981272e-01
-9.35189545e-01 -4.22799438e-01 7.89545536e-01 1.16427040e+00
8.62051666e-01 -7.82517567e-02 8.53856683e-01 -1.03078234e+00
4.36677486e-01 -8.86684000e-01 -6.08024001e-01 4.32190478e-01
-6.96933448e-01 1.87129408e-01 8.70975435e-01 -7.85623372e-01
-1.52261150e+00 3.01921517e-01 4.35572922e-01 -5.33661664e-01
-2.63462096e-01 2.02888057e-01 -8.52399170e-01 -6.45169094e-02
7.44825244e-01 4.33119267e-01 -1.19461752e-01 -5.79398215e-01
4.08285022e-01 6.06807590e-01 4.19180214e-01 -8.09615791e-01
1.02230453e+00 3.30349445e-01 -2.90934384e-01 -4.20136392e-01
-9.11172569e-01 -9.06777680e-01 -8.97025824e-01 2.22165838e-01
5.48904717e-01 -1.12685978e+00 1.11327782e-01 3.67229819e-01
-7.08957374e-01 -5.57799749e-02 -4.36086059e-01 5.77963412e-01
-3.99126917e-01 4.54049319e-01 1.53974622e-01 -4.25231427e-01
-8.55840463e-03 -8.77474308e-01 1.08599007e+00 5.84936976e-01
2.23261993e-02 -1.20065284e+00 2.92500019e-01 1.64731309e-01
1.47265330e-01 -1.49455073e-03 8.25108409e-01 -1.19436336e+00
-3.31050098e-01 3.53996530e-02 -5.42182624e-01 6.43253028e-01
6.96663260e-01 -5.46450794e-01 -8.17324877e-01 -4.85703826e-01
-7.84297381e-03 -4.23892289e-01 7.09883451e-01 1.87549487e-01
9.18698728e-01 3.22892219e-02 -6.63796127e-01 6.74348533e-01
1.52548432e+00 2.88632035e-01 2.42064029e-01 1.34850547e-01
8.18976820e-01 5.65626562e-01 1.16779149e+00 6.15744770e-01
2.68827856e-01 6.82533205e-01 4.13547307e-02 -2.98007205e-03
-2.13133276e-01 -4.53283042e-01 3.78938466e-01 6.65935040e-01
5.22441447e-01 -9.54292938e-02 -6.72951102e-01 8.18528652e-01
-1.61264861e+00 -5.72235525e-01 2.56214619e-01 2.38689971e+00
9.94147718e-01 2.90467944e-02 2.25014091e-01 -3.63484323e-01
1.13997722e+00 -1.99324246e-02 -1.10335445e+00 1.16414443e-01
-2.12688431e-01 2.44253606e-01 4.88761604e-01 3.48151952e-01
-1.34133208e+00 9.52695310e-01 4.99088383e+00 1.34202397e+00
-1.06774831e+00 1.36879519e-01 3.91165376e-01 2.05171898e-01
-1.69927940e-01 -8.74967650e-02 -1.14952362e+00 5.79995573e-01
5.21150291e-01 -3.85890275e-01 1.52463645e-01 1.22127807e+00
-2.38143265e-01 1.86809137e-01 -9.95713711e-01 9.53754723e-01
1.91650480e-01 -5.73762774e-01 1.10678561e-01 -4.26604226e-02
9.17582750e-01 -2.25454554e-01 1.58313140e-01 7.25445330e-01
4.45833474e-01 -4.50679839e-01 2.84994096e-01 2.43614420e-01
8.88671577e-01 -9.11147058e-01 4.31475461e-01 1.92226216e-01
-1.38719201e+00 -1.24241700e-02 -5.92069805e-01 4.82027769e-01
-1.61817744e-01 5.94748914e-01 -8.37789416e-01 6.95407093e-01
6.24478161e-01 9.83398438e-01 -5.31141222e-01 8.56576204e-01
1.47002116e-01 4.30533320e-01 -1.59884825e-01 1.38034880e-01
6.82992712e-02 -3.50058705e-01 5.21516085e-01 1.17866755e+00
5.29772699e-01 -1.13267228e-01 4.48606461e-01 7.13375688e-01
-9.18920413e-02 3.32288384e-01 -6.59790456e-01 1.39681965e-01
6.06054664e-01 1.14260936e+00 -2.76967436e-01 -3.49922180e-01
-6.82324886e-01 1.23663187e+00 5.03293931e-01 5.22847712e-01
-9.74299967e-01 -4.00363952e-01 8.53026032e-01 -6.05048537e-02
6.27224743e-01 8.25534090e-02 -2.52029330e-01 -1.26972604e+00
7.49438703e-02 -7.69450188e-01 8.96498024e-01 -2.63940096e-01
-2.01803493e+00 2.81683505e-01 2.28501130e-02 -1.77753854e+00
-4.71204855e-02 -4.75210041e-01 -2.38780871e-01 1.20037818e+00
-1.94897580e+00 -1.26369321e+00 -3.11925530e-01 1.21883380e+00
5.86373031e-01 -5.56297421e-01 6.98022306e-01 5.53491235e-01
-4.01092142e-01 9.71433818e-01 6.37668908e-01 2.97376085e-02
1.38292587e+00 -1.17364872e+00 2.51427833e-02 6.13106310e-01
-1.81742117e-01 5.19194603e-01 3.78500044e-01 -5.66981792e-01
-8.97351801e-01 -1.35449302e+00 6.14877701e-01 -3.21320206e-01
4.38564420e-01 -1.18729852e-01 -1.22305846e+00 6.05017900e-01
-9.81699824e-02 2.71832705e-01 8.56935024e-01 -2.08001584e-02
-7.49416649e-01 -5.87878466e-01 -1.42637479e+00 2.93746412e-01
1.02908599e+00 -3.18602800e-01 -7.83792257e-01 9.26636457e-02
5.41936934e-01 -1.20034210e-01 -8.38547826e-01 4.58754659e-01
3.95471036e-01 -7.17708886e-01 1.07299876e+00 -5.31797945e-01
5.09961024e-02 -5.45826316e-01 -1.88748702e-01 -1.66156912e+00
-6.06314003e-01 -7.04971924e-02 -3.08146253e-02 1.67562985e+00
2.43249074e-01 -6.78223848e-01 9.58435357e-01 2.14428633e-01
-1.49540052e-01 -2.14997172e-01 -8.86036694e-01 -1.04403758e+00
3.36629331e-01 1.60129651e-01 5.23632646e-01 1.20014870e+00
-1.90334350e-01 5.57940304e-01 -2.84814030e-01 3.22730005e-01
8.01120996e-01 3.13531190e-01 8.16792369e-01 -1.43266511e+00
-1.45247072e-01 -2.95884073e-01 -2.39507660e-01 -1.28828239e+00
3.83837432e-01 -9.30930555e-01 -3.47113051e-02 -1.02999854e+00
3.01544964e-01 -6.58153713e-01 -9.11536813e-01 1.87437713e-01
-4.07845646e-01 -3.26158740e-02 -1.06090181e-01 2.52048075e-01
-7.25343823e-01 8.56623113e-01 1.40769565e+00 -3.42482358e-01
-3.11551630e-01 -1.39734074e-02 -1.07020891e+00 4.56853509e-01
6.61504686e-01 -7.49121845e-01 -8.09952378e-01 -3.47616792e-01
-6.68041348e-01 -2.70347953e-01 -4.53488864e-02 -1.10816264e+00
1.48316488e-01 -3.98969799e-01 6.47690117e-01 -3.85346234e-01
1.82674557e-01 -1.24966753e+00 -1.28995761e-01 9.50769857e-02
-2.54393876e-01 -5.13452649e-01 1.73537359e-01 9.72330868e-01
-5.02418756e-01 -8.62764269e-02 1.34865463e+00 1.64460972e-01
-1.06825495e+00 4.74086136e-01 3.69896740e-01 5.29535830e-01
1.33942270e+00 -3.13822657e-01 -3.30845490e-02 -1.37325935e-02
-6.23066664e-01 2.86163598e-01 5.23958027e-01 6.49820507e-01
4.67916697e-01 -1.64314508e+00 -7.35692501e-01 3.53416651e-01
7.22906232e-01 5.12512773e-03 4.59977418e-01 3.68334830e-01
2.94517241e-02 3.28140855e-01 -4.25746053e-01 -7.26830602e-01
-1.05139351e+00 8.31310987e-01 2.54895300e-01 -6.19597733e-01
-2.74963766e-01 9.86836970e-01 8.41390967e-01 -9.14054334e-01
1.39788553e-01 5.53709362e-03 -3.05661529e-01 1.47730798e-01
3.78371090e-01 2.28850737e-01 -7.14809746e-02 -6.25774562e-01
-4.70480502e-01 9.31323409e-01 -4.27938759e-01 1.59012929e-01
9.99342144e-01 -5.13621509e-01 4.56475854e-01 3.01088870e-01
1.36633503e+00 -1.87894329e-03 -1.74661112e+00 -8.75059783e-01
1.73663989e-01 -5.40852845e-01 -3.56872201e-01 -9.72281337e-01
-1.04716086e+00 7.56483674e-01 9.59009051e-01 -2.18591034e-01
1.42461455e+00 7.10093305e-02 7.51531065e-01 2.00031493e-02
2.82189935e-01 -1.29328167e+00 2.82133818e-01 4.77694035e-01
6.32629275e-01 -1.52247608e+00 -1.22326054e-01 -4.54108864e-01
-9.48469341e-01 9.07265067e-01 1.05275512e+00 -2.37829804e-01
7.42482662e-01 -1.29650354e-01 7.47046843e-02 2.36306146e-01
-2.59549379e-01 -1.50910780e-01 4.06880528e-01 1.10466743e+00
2.55204827e-01 4.40267548e-02 -1.69211730e-01 8.43702972e-01
4.30287272e-01 3.13278032e-03 -1.57272562e-01 6.89973712e-01
-4.66570139e-01 -1.53805280e+00 -4.44979489e-01 2.00723648e-01
-2.07297966e-01 5.70099689e-02 -3.63941044e-01 9.13349867e-01
2.89323777e-01 6.55250609e-01 -1.11121513e-01 -1.37376755e-01
5.66817582e-01 3.44605476e-01 3.98222834e-01 -7.48504758e-01
-1.71015620e-01 1.43332139e-01 -3.69904190e-01 -2.11812004e-01
-4.39535856e-01 -7.55610883e-01 -1.12026501e+00 2.70339310e-01
-2.72407264e-01 4.59450781e-02 3.21177781e-01 7.49723732e-01
5.11011839e-01 4.02844250e-01 8.55271995e-01 -4.70189452e-01
-8.69990706e-01 -1.01976275e+00 -9.51086164e-01 7.26555645e-01
3.39287311e-01 -9.36590433e-01 -3.50359082e-01 2.67126441e-01] | [10.378421783447266, 3.0718345642089844] |
3b0c2db7-9403-4b04-aadd-4163dae01c0e | automated-radiology-report-generation-using | null | null | https://doi.org/10.1016/j.imu.2021.100557 | https://doi.org/10.1016/j.imu.2021.100557 | Automated radiology report generation using conditioned transformers | Radiology report writing in hospitals is a time-consuming task that also requires experience from the involved radiologists. This paper proposes a deep learning model to automatically generate radiology reports given a chest x-ray image from the public IU-Xray dataset. Our work consists of three stages: (1) Fine-tune a pre-trained Chexnet to predict specific tags from the image. (2) Calculate weighted semantic features from the predicted tag's pre-trained embeddings. (3) Condition a pre-trained GPT2 model on the visual and semantic features to generate the full medical reports. We analyze the generated reports using word-overlap metrics while also adding new meaningful semantic-based similarity metrics. The proposed model, which we call CDGPT2, surpassed most non-hierarchical recurrent models and transformer-based models in quantitative metrics while being considerably faster to train. Moreover, the model does not require a specific vocabulary and can be trained on different datasets without changing the architecture. Furthermore, we include a qualitative analysis from a radiologist from Egypt's national institute of cancer which showed that 61.6% of the generated reports on the test set were expertly written, and only 10% contained false information. We represent the first work to condition a pre-trained transformer on visual and semantic features to generate medical reports and to include semantic similarity metrics in the quantitative analysis of the generated reports. | ['Aly Fahmy', 'Maha Helal', 'Abeer Elkorany', 'Rana Khaled', 'Omar Alfarghaly'] | 2021-03-26 | null | null | null | null | ['medical-report-generation'] | ['medical'] | [ 4.75172281e-01 5.54400682e-01 2.64205784e-01 -6.01503074e-01
-1.34273434e+00 -3.01148862e-01 4.85787183e-01 4.83004063e-01
-2.89437830e-01 7.27794826e-01 5.63436687e-01 -5.28436899e-01
-3.30293119e-01 -8.28354657e-01 -5.19185007e-01 -5.93488872e-01
8.20489824e-02 7.02896833e-01 2.17059255e-01 1.07180215e-01
3.59177709e-01 2.93384820e-01 -1.14869547e+00 7.84488261e-01
3.78577918e-01 8.66651654e-01 5.06414711e-01 9.59754169e-01
-4.06200066e-02 1.15019917e+00 -7.19291091e-01 -4.09880489e-01
-9.08418298e-02 -8.74076545e-01 -9.10976112e-01 2.34421656e-01
5.75888017e-03 -4.81713451e-02 -1.99613988e-01 7.04752743e-01
7.30514467e-01 -3.42281982e-02 9.23178434e-01 -5.28274715e-01
-8.59099686e-01 7.46473432e-01 -3.17153245e-01 4.32822615e-01
3.22829455e-01 -1.19066909e-01 7.68047154e-01 -1.01829290e+00
9.95107293e-01 7.95075536e-01 5.83790004e-01 5.55220902e-01
-7.95983732e-01 -6.03597939e-01 -3.24374884e-01 4.86418642e-02
-1.35882187e+00 3.98929343e-02 5.71324646e-01 -5.07754087e-01
9.55430806e-01 4.38681275e-01 6.53871000e-01 1.14217961e+00
6.84797287e-01 3.52269262e-01 1.16690946e+00 -5.32078147e-01
2.58208841e-01 2.96053529e-01 3.03180926e-02 1.18613684e+00
1.41430482e-01 -7.66060650e-02 -1.72102526e-01 -2.28902623e-01
8.30445886e-01 1.38044953e-01 -1.44137859e-01 -1.01830803e-01
-1.47914720e+00 1.24442101e+00 6.58437550e-01 8.78188312e-01
-5.13713479e-01 4.21700999e-02 4.42107290e-01 2.43934989e-02
4.24644291e-01 6.26588941e-01 -2.80309990e-02 2.16412306e-01
-1.04089046e+00 -1.05035245e-01 5.32551289e-01 9.30824399e-01
2.55059361e-01 -2.70984262e-01 -5.93099535e-01 7.54747093e-01
1.71083122e-01 3.19002867e-01 9.88488436e-01 -4.27794546e-01
4.23524648e-01 6.09907329e-01 -1.67809069e-01 -1.16518438e+00
-5.62178910e-01 -6.23375833e-01 -7.73031771e-01 -1.94158748e-01
-1.82993531e-01 -1.37576507e-03 -1.50408685e+00 1.23207474e+00
-8.95174295e-02 -1.52500868e-01 1.78614825e-01 8.79170299e-01
1.40636373e+00 6.30135477e-01 2.09661350e-01 -2.02283293e-01
1.76577032e+00 -9.16172326e-01 -8.13061237e-01 1.09405003e-01
1.08339572e+00 -9.85191882e-01 1.00258040e+00 2.34795913e-01
-1.05388868e+00 -5.25923610e-01 -1.12728393e+00 3.61259840e-02
-3.46181393e-01 5.95626414e-01 4.13443834e-01 5.09003997e-01
-1.31403542e+00 1.58998832e-01 -7.04772711e-01 -6.66535556e-01
2.68572479e-01 4.49316800e-01 -3.81177217e-01 3.84035856e-02
-1.04062831e+00 1.09492540e+00 4.33651298e-01 -1.61061004e-01
-8.75594974e-01 -5.44082165e-01 -8.33648920e-01 -1.08320571e-01
2.17141330e-01 -1.00442672e+00 1.28287303e+00 -6.63679481e-01
-1.19362843e+00 1.20559430e+00 2.28438843e-02 -3.59428525e-01
3.53699535e-01 2.82163531e-01 -5.69807351e-01 4.42459971e-01
3.53420407e-01 6.48274302e-01 5.65403819e-01 -1.28184819e+00
-5.79565227e-01 -7.64807612e-02 -2.49144644e-01 9.24626365e-02
-1.49665087e-01 -8.79393891e-02 -3.74937207e-01 -1.05349731e+00
5.65593354e-02 -1.00059104e+00 -4.17577386e-01 -3.75164092e-01
-5.23455739e-01 -2.25250989e-01 3.95060837e-01 -5.48638046e-01
1.20923877e+00 -2.12457752e+00 -2.27540195e-01 4.59303081e-01
4.00173604e-01 4.97893766e-02 -8.96568149e-02 3.47389668e-01
-3.88778448e-01 3.00105829e-02 -3.65185797e-01 -1.48003370e-01
-3.17338347e-01 1.36655599e-01 -2.83435225e-01 1.77586541e-01
3.59691232e-01 9.16103721e-01 -1.00291622e+00 -9.08762097e-01
1.49828255e-01 3.99330735e-01 -4.59571511e-01 3.73496860e-01
1.77706525e-01 2.50763476e-01 -5.25554717e-01 2.89140284e-01
1.13207832e-01 -6.39094830e-01 1.84313416e-01 -3.82182240e-01
5.13905957e-02 4.42759514e-01 -5.34493685e-01 1.67387068e+00
-6.95313275e-01 3.82321090e-01 -7.45387316e-01 -8.98649096e-01
1.13622880e+00 6.49481475e-01 5.66850662e-01 -7.50996530e-01
4.27044690e-01 3.14660341e-01 -1.70259953e-01 -7.65483916e-01
5.84789813e-01 -5.38888395e-01 -3.94492239e-01 8.18629205e-01
1.12334788e-01 -2.97112793e-01 -4.58649024e-02 3.12346607e-01
1.54011810e+00 -2.80067593e-01 4.27154243e-01 -1.93285774e-02
4.31449383e-01 2.73835361e-01 2.38584876e-02 8.59191597e-01
2.33355671e-01 1.17052019e+00 2.30532363e-01 -5.82680702e-01
-1.07786131e+00 -1.08491850e+00 -1.35542735e-01 7.55925298e-01
-2.70116627e-01 -2.45770931e-01 -6.28638923e-01 -1.10267985e+00
-4.92123783e-01 8.82739365e-01 -1.02065790e+00 -1.51786909e-01
-4.88817990e-01 -8.19958270e-01 4.79741365e-01 6.00080490e-01
5.43385372e-02 -1.22451401e+00 -8.42169762e-01 2.59244829e-01
-2.73399562e-01 -9.40752923e-01 -5.44332325e-01 4.59176183e-01
-7.26185560e-01 -9.92251992e-01 -8.20879996e-01 -9.55285966e-01
1.06272554e+00 -9.23105180e-02 1.06120825e+00 4.47610654e-02
-5.68975329e-01 3.45411211e-01 -6.30633235e-01 -4.76091743e-01
-6.75400019e-01 1.52011275e-01 -4.02502835e-01 -2.51560628e-01
3.45690727e-01 1.27880173e-02 -5.46402097e-01 -1.08597949e-02
-1.07645404e+00 2.71638036e-01 1.05046713e+00 1.00312030e+00
7.85588920e-01 3.06696091e-02 5.73923767e-01 -1.20963216e+00
7.53136992e-01 -5.25459826e-01 6.03089742e-02 3.44879121e-01
-4.61775780e-01 2.97213227e-01 4.34167027e-01 -1.81946501e-01
-9.50868011e-01 9.51531082e-02 -1.90540254e-01 -1.89965904e-01
6.60704225e-02 5.95384777e-01 6.39611363e-01 2.59776473e-01
8.03420067e-01 2.42650792e-01 -1.72778696e-01 -3.50764357e-02
1.12165414e-01 7.35133469e-01 5.89377284e-01 -3.80361243e-03
6.46680593e-01 3.61161232e-01 -1.39978841e-01 -2.66913235e-01
-1.20238459e+00 -3.95294368e-01 -4.64861602e-01 -1.56066686e-01
1.23574769e+00 -6.78201497e-01 -2.17630357e-01 -4.89126176e-01
-1.19552159e+00 1.43840671e-01 -3.95070851e-01 8.95995080e-01
-6.57243609e-01 8.49972069e-02 -6.68234587e-01 -4.63812232e-01
-6.69592738e-01 -1.20113683e+00 1.19177055e+00 -1.54091358e-01
-5.78955650e-01 -9.12046432e-01 2.23855898e-01 3.70401949e-01
2.05137447e-01 3.21299464e-01 1.17476070e+00 -8.53840828e-01
-2.41585448e-01 -1.97813481e-01 -4.93448079e-01 1.01514697e-01
4.20716137e-01 -2.02076659e-01 -9.21509862e-01 -1.21269792e-01
3.31107885e-01 -1.95987195e-01 8.33060980e-01 3.26877385e-01
1.19942904e+00 -3.73427123e-01 -4.17271435e-01 3.34461570e-01
1.25764775e+00 4.52278018e-01 3.59680742e-01 2.26582915e-01
5.82083881e-01 4.75553602e-01 6.97543621e-01 3.48101228e-01
4.88142520e-01 3.27483326e-01 2.21660852e-01 -3.91236186e-01
-2.29414552e-01 -3.97693008e-01 9.96891707e-02 1.34077322e+00
-5.73506504e-02 -8.98684412e-02 -1.00563633e+00 6.24729455e-01
-1.56087470e+00 -7.24632502e-01 -1.11360975e-01 1.66667211e+00
9.94412482e-01 7.93119594e-02 -1.16632074e-01 1.42318726e-01
5.55811763e-01 -1.63434550e-01 4.13894579e-02 -5.89302301e-01
3.14885646e-01 7.62753546e-01 3.89945060e-01 2.87435651e-01
-1.07586968e+00 5.57429492e-01 6.24301863e+00 5.47109067e-01
-1.23510396e+00 3.77630740e-01 6.72886372e-01 -3.29042375e-02
-5.18741310e-01 -4.44017321e-01 -4.55417484e-01 2.47785807e-01
1.22992802e+00 -1.42234191e-01 -5.02707899e-01 8.82049143e-01
7.63727501e-02 -6.90219477e-02 -1.15656912e+00 8.50408316e-01
6.24723077e-01 -1.53310323e+00 4.84648794e-01 1.05223745e-01
5.99022746e-01 -2.09759772e-01 1.55505687e-01 2.42218822e-01
3.95836592e-01 -1.24452877e+00 5.26261866e-01 8.16918850e-01
8.92206550e-01 -7.45788991e-01 1.31922436e+00 -1.32592455e-01
-8.23581219e-01 1.05233856e-01 -3.43341023e-01 4.34728205e-01
-7.56772161e-02 4.68822092e-01 -1.77661288e+00 7.61470854e-01
4.65721250e-01 4.56054032e-01 -6.74219489e-01 9.13413882e-01
-5.41217439e-02 4.98519033e-01 2.71180272e-02 -2.09255278e-01
6.14900053e-01 3.85280609e-01 6.43849969e-02 1.62421334e+00
8.98795307e-01 1.30384415e-01 8.61973781e-03 7.20090926e-01
-6.93600327e-02 3.51387858e-01 -7.71782875e-01 6.56161681e-02
-1.36385038e-02 1.29685807e+00 -1.20366979e+00 -5.68751693e-01
-2.71112800e-01 8.42027307e-01 -4.79638390e-02 -3.10312789e-02
-1.00693166e+00 -4.33197379e-01 -2.79838115e-01 2.37079725e-01
4.11068916e-01 2.49951109e-01 -3.48739594e-01 -7.83519447e-01
-1.10003449e-01 -5.69379032e-01 5.89277625e-01 -1.18781257e+00
-1.11123919e+00 1.36955428e+00 -7.06525594e-02 -1.53990495e+00
-5.54559767e-01 -4.27860677e-01 -1.77371636e-01 6.16168976e-01
-1.31317997e+00 -1.24741459e+00 -3.98562163e-01 5.82323492e-01
5.02958238e-01 -3.83804530e-01 1.31523287e+00 2.85021812e-01
-7.83244446e-02 4.45387751e-01 -4.51168925e-01 2.62898475e-01
6.13804996e-01 -1.22144473e+00 1.70958154e-02 4.99110490e-01
1.40316620e-01 5.75100720e-01 6.19432449e-01 -6.17020488e-01
-8.10736001e-01 -1.43723178e+00 1.30218184e+00 -5.57742774e-01
5.62186420e-01 -1.05809532e-01 -6.88316643e-01 6.07763588e-01
2.64542460e-01 -2.80512925e-02 1.12974513e+00 -5.69996119e-01
-9.31105986e-02 1.50210872e-01 -1.16202474e+00 3.46972674e-01
7.16542542e-01 -4.78098333e-01 -1.03580272e+00 6.11034095e-01
7.00269401e-01 -4.36082065e-01 -1.01435709e+00 3.20061266e-01
2.76104122e-01 -6.89513385e-01 7.30437934e-01 -3.74551356e-01
7.90680587e-01 -2.98456043e-01 4.14966466e-03 -1.22260773e+00
-4.49306160e-01 -9.36435815e-03 5.34157991e-01 6.85968399e-01
7.32198000e-01 -2.64598608e-01 4.63924795e-01 2.25760102e-01
-3.47678185e-01 -9.00160432e-01 -6.89280212e-01 -3.59250009e-01
-3.17031771e-01 -4.75147188e-01 3.91485572e-01 9.33751702e-01
-7.96344280e-02 3.32028627e-01 -1.58289894e-02 -1.57824915e-03
1.80035561e-01 9.92667526e-02 3.07625294e-01 -8.52595747e-01
-1.89483345e-01 -1.46614775e-01 -4.99211371e-01 -2.55520195e-01
-2.99078494e-01 -1.34914088e+00 1.06823422e-01 -1.96790278e+00
5.95174193e-01 -4.46036696e-01 -5.90848804e-01 7.55748391e-01
1.95029918e-02 6.09651625e-01 2.88090110e-02 2.47794464e-01
-5.20410359e-01 2.43763447e-01 1.32859480e+00 -1.64024785e-01
-9.35592279e-02 1.34822717e-02 -8.10150206e-01 5.16308188e-01
4.85779017e-01 -1.04001236e+00 -6.28270924e-01 -2.51405299e-01
4.03392792e-01 3.24602157e-01 2.46145755e-01 -1.00316393e+00
1.03049248e-01 1.60651386e-01 5.79184115e-01 -7.02166677e-01
6.82854876e-02 -8.47357690e-01 2.14062884e-01 7.03879833e-01
-5.88167727e-01 4.08346891e-01 1.10698797e-01 3.50059032e-01
-3.67294580e-01 -3.85903269e-01 5.84513128e-01 -4.45365220e-01
-2.91569710e-01 -6.21103086e-02 -5.97235203e-01 -2.43827790e-01
1.22443068e+00 -3.15382719e-01 -1.54873133e-01 -2.12222844e-01
-9.45572197e-01 -2.58477062e-01 -1.86051801e-02 4.20483053e-01
1.05554402e+00 -1.29780543e+00 -8.58660519e-01 1.21972769e-01
3.56509745e-01 -1.44193828e-01 1.96507648e-01 8.42139304e-01
-7.90445149e-01 7.04907179e-01 -3.79975885e-02 -6.16160452e-01
-1.27973998e+00 5.11394858e-01 2.02314276e-02 -8.53807867e-01
-9.54700947e-01 8.06104720e-01 3.49092066e-01 -3.67106050e-01
-2.95215324e-02 -7.86329687e-01 -3.76680344e-01 1.95929542e-01
4.38054502e-01 -3.92471522e-01 3.63148659e-01 -5.36125720e-01
-4.54441726e-01 6.01513624e-01 -3.42613369e-01 -4.27072674e-01
1.59558833e+00 3.11895400e-01 5.39353117e-02 4.21287864e-01
1.31517327e+00 -1.24373667e-01 -2.63028324e-01 -6.56210929e-02
1.40097409e-01 -2.32610703e-02 8.93519595e-02 -9.89776492e-01
-1.09958768e+00 6.98428094e-01 6.28091216e-01 1.50601730e-01
1.15239263e+00 3.10925990e-01 7.60104418e-01 3.28356296e-01
2.72904754e-01 -8.66691172e-01 5.40506840e-01 1.84610084e-01
1.04094756e+00 -9.88960803e-01 6.36175349e-02 -1.05574884e-01
-1.00578821e+00 1.19158959e+00 2.10682660e-01 -1.26151830e-01
5.78232110e-01 3.79881412e-01 3.39849055e-01 -6.60840690e-01
-8.01760495e-01 5.62165417e-02 4.10030574e-01 4.14516598e-01
8.57339382e-01 1.85127228e-01 -4.76515859e-01 5.80287457e-01
-7.18216538e-01 3.46245944e-01 7.95147359e-01 9.87834096e-01
-2.87848830e-01 -7.87123799e-01 -2.98653066e-01 7.87970662e-01
-7.25713968e-01 -1.38302714e-01 -2.13696688e-01 6.92982197e-01
6.79202378e-02 6.89656138e-01 1.79566536e-02 -6.25777781e-01
4.09336805e-01 -3.19137722e-02 3.83799732e-01 -1.14526391e+00
-9.12411630e-01 -9.46256146e-03 1.59644440e-01 -2.84701020e-01
-5.59978843e-01 -4.34119344e-01 -1.52198625e+00 2.34997630e-01
-1.78690761e-01 3.32576483e-01 7.13973820e-01 8.53931963e-01
1.62651762e-01 1.15060592e+00 4.90348697e-01 -2.97039688e-01
-3.31053078e-01 -1.11034882e+00 -2.37751916e-01 3.70157927e-01
2.68333495e-01 -4.97154355e-01 -2.15972826e-01 2.45008841e-01] | [15.041651725769043, -1.3747563362121582] |