Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
input
stringlengths
3.41k
3.87k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; attendance } ; 203,967 } = true Output:
[ "the sum of the attendance record of all rows is 203,967 ." ]
task110-0151ae8134284ed3984d171986035cc8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; losses } ; 3.43 } = true Output:
[ "the average of the losses record of all rows is 3.43 ." ]
task110-57393d710f3d40d0831458b0446426f2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; player ; b lee } ; wkts } ; hop { filter_eq { all_rows ; player ; z khan } ; wkts } } = true Output:
[ "select the rows whose player record fuzzily matches to b lee . take the wkts record of this row . select the rows whose player record fuzzily matches to z khan . take the wkts record of this row . the first record is greater than the second record ." ]
task110-48a529c3f32543db9d6359c1699390f2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_not_eq { all_rows ; qual 2 ; - } = true Output:
[ "for the qual 2 records of all rows , most of them are not equal to ." ]
task110-981f35afd2a44b339b0cad9b35755c41
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; gold ; 1 } } ; 2 } = true Output:
[ "select the rows whose gold record is equal to 1 . the number of such rows is 2 ." ]
task110-994bfd463056419489e915b118920fcc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; number of powiats } ; 2.5 } = true Output:
[ "the average of the number of powiats record of all rows is 2.5 ." ]
task110-4f1b71a09ab64f6493f6534db59d073e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; total } ; 15 } = true Output:
[ "the average of the total record of all rows is 15 ." ]
task110-f5b8873e5388409ebf1fed0a83251818
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less_eq { all_rows ; score ; 3 } = true Output:
[ "for the score records of all rows , most of them are less than or equal to 3 ." ]
task110-04f8a4cb07964422a57f76991d9ea6cb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; opponent ; boston bruins } } ; 2 } = true Output:
[ "select the rows whose opponent record fuzzily matches to boston bruins . the number of such rows is 2 ." ]
task110-287218258a5844fcb8cc0f4a240f30c1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; outgoing manager ; karol marko } ; date of vacancy } ; hop { filter_eq { all_rows ; outgoing manager ; ivan vrabec } ; date of vacancy } } = true Output:
[ "select the rows whose outgoing manager record fuzzily matches to karol marko . take the date of vacancy record of this row . select the rows whose outgoing manager record fuzzily matches to ivan vrabec . take the date of vacancy record of this row . the first record is less than the second record ." ]
task110-7369b010f3ee4ce786929ac468e39f76
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; overall } ; 125.1 } = true Output:
[ "the average of the overall record of all rows is 125.1 ." ]
task110-dc09115ad12f459280e35a49fb38e427
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { greater { hop { filter_eq { all_rows ; home team ; collingwood } ; crowd } ; hop { filter_eq { all_rows ; home team ; carlton } ; crowd } } ; and { eq { hop { filter_eq { all_rows ; home team ; collingwood } ; away team } ; south melbourne } ; eq { hop { filter_eq { all_rows ; home team ; carlton } ; away team } ; geelong } } } = true Output:
[ "select the rows whose home team record fuzzily matches to collingwood . take the crowd record of this row . select the rows whose home team record fuzzily matches to carlton . take the crowd record of this row . the first record is greater than the second record . the away team record of the first row is south melbourne . the away team record of the second row is geelong ." ]
task110-a78702373d6641fc8a8f634bb8b12e1f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; 1980 ; 2 } ; greek national account } ; public debt 8 ( billion ) } = true Output:
[ "select the row whose 1980 record of all rows is 2nd minimum . the greek national account record of this row is public debt 8 billion ." ]
task110-a3a9443fe619409abba465fa13c53f27
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; pole position ; ayrton senna } } ; 8 } = true Output:
[ "select the rows whose pole position record fuzzily matches to ayrton senna . the number of such rows is 8 ." ]
task110-18ab7bddcffd41ceadeab04adfc61620
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; release date ; 1 } ; developer ( s ) } ; valve corporation } = true Output:
[ "select the row whose release date record of all rows is 1st minimum . the developer s record of this row is valve corporation ." ]
task110-45f16bb9b3514b9ca4507b7bd0e7a869
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; gp ; 56 } } ; 2 } = true Output:
[ "select the rows whose gp record is equal to 56 . the number of such rows is 2 ." ]
task110-21ecd8da85d64c758bcd0f7e53f6c6c0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; animal name ; the rabbits } ; tv seasons } ; hop { filter_eq { all_rows ; animal name ; mole } ; tv seasons } } = true Output:
[ "select the rows whose animal name record fuzzily matches to the rabbits . take the tv seasons record of this row . select the rows whose animal name record fuzzily matches to mole . take the tv seasons record of this row . the first record is greater than the second record ." ]
task110-54bed963e48a4f63a2eb9897eb2b65a0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_not_eq { all_rows ; status ; re - elected } } ; eq { hop { filter_not_eq { all_rows ; status ; re - elected } ; incumbent } ; rick santorum } } = true Output:
[ "select the rows whose status record does not match to re elected . there is only one such row in the table . the incumbent record of this unqiue row is rick santorum ." ]
task110-92fda1dbb935490186257c90a3aac565
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; season outcome ; div i playoffs } } ; 2 } = true Output:
[ "select the rows whose season outcome record fuzzily matches to div i playoffs . the number of such rows is 2 ." ]
task110-2fc0d3b847d74031bfd7bde07477ebb4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; commissioned ; 1930 } } ; 7 } = true Output:
[ "select the rows whose commissioned record fuzzily matches to 1930 . the number of such rows is 7 ." ]
task110-26ed9151f85f470589037cd43e171f92
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_less { filter_greater { all_rows ; round ; 3 } ; overall ; 200 } } ; 3 } = true Output:
[ "select the rows whose round record is greater than 3 . among these rows , select the rows whose overall record is less than 200 . the number of such rows is 3 ." ]
task110-a418e11ed1ff4c2a88764c4bbc9c05c0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_less { all_rows ; attendance ; 10000 } } = true Output:
[ "select the rows whose attendance record is less than 10000 . there is only one such row in the table ." ]
task110-d5b231a617b944d0a6be6efa9429d1f9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; earnings } ; 424466 } = true Output:
[ "the average of the earnings record of all rows is 424466 ." ]
task110-823c0e8be6374dbdaec7a68f9395d695
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; nation } } ; 16 } = true Output:
[ "select the rows whose nation record is arbitrary . the number of such rows is 16 ." ]
task110-9b68d84ced5a40d0abe97a308e5b4358
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; attendance / g ; 2 } ; season } ; 2005 } = true Output:
[ "select the row whose attendance g record of all rows is 2nd maximum . the season record of this row is 2005 ." ]
task110-553b494b2afe4f3fa9e2242666919423
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { all_rows ; attendance ; 17000 } = true Output:
[ "for the attendance records of all rows , most of them are less than 17000 ." ]
task110-ee53d0bbc92c4e23830356831982df87
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_less { all_rows ; population ( in 2008 ) ; 1000 } } ; eq { hop { filter_less { all_rows ; population ( in 2008 ) ; 1000 } ; suburb } ; o'malley } } = true Output:
[ "select the rows whose population in 2008 record is less than 1000 . there is only one such row in the table . the suburb record of this unqiue row is omalley ." ]
task110-9b69baf75fbb450fb8b00f1b2ca60b2d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; against } ; 49 } = true Output:
[ "the sum of the against record of all rows is 49 ." ]
task110-547c326c337c4eeeb7f9f4e254a0f72a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { filter_eq { all_rows ; position ; fw } ; number ; 2 } ; player } ; fwayo tembo } = true Output:
[ "select the rows whose position record fuzzily matches to fw . select the row whose number record of these rows is 2nd maximum . the player record of this row is fwayo tembo ." ]
task110-3169f3363bb34128a8e720c24726858e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; partner ; stephanie vogt } } ; 2 } = true Output:
[ "select the rows whose partner record fuzzily matches to stephanie vogt . the number of such rows is 2 ." ]
task110-e19c814eefdf49ec9db84b9a244224b9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; opponent ; jason st louis } ; time } ; hop { filter_eq { all_rows ; opponent ; mike swick } ; time } } = true Output:
[ "select the rows whose opponent record fuzzily matches to jason st louis . take the time record of this row . select the rows whose opponent record fuzzily matches to mike swick . take the time record of this row . the first record is less than the second record ." ]
task110-742a0b2875054060b149fa7c720a7c8b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; language ; hindi } = true Output:
[ "for the language records of all rows , most of them fuzzily match to hindi ." ]
task110-dac0fdf3a280409fb838ec601c374935
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_less { all_rows ; decile ; 8 } ; roll } ; 770 } = true Output:
[ "select the rows whose decile record is less than 8 . the sum of the roll record of these rows is 770 ." ]
task110-382be2f0281442d4b01f6ef3240df4cc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_eq { all_rows ; location ; st pete times forum } ; attendance ; 16000 } } ; 5 } = true Output:
[ "select the rows whose location record fuzzily matches to st pete times forum . among these rows , select the rows whose attendance record is greater than 16000 . the number of such rows is 5 ." ]
task110-703922c0b5684ef187de53e3703c8d7a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; earpads ; comfort pads } } ; 4 } = true Output:
[ "select the rows whose earpads record fuzzily matches to comfort pads . the number of such rows is 4 ." ]
task110-ca532bb632af431abe29e3b26b7c331f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; status ; display only } } ; eq { hop { filter_eq { all_rows ; status ; display only } ; number } ; 1 } } = true Output:
[ "select the rows whose status record fuzzily matches to display only . there is only one such row in the table . the number record of this unqiue row is 1 ." ]
task110-e48d97ef2ccb45eaba0d822616370484
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; power kw ; 10 kw } = true Output:
[ "for the power kw records of all rows , most of them fuzzily match to 10 kw ." ]
task110-76fdac4ab97d47d388ae10b46eff12d5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; hosted 4 teams since } ; metropolitan area } ; detroit , michigan } = true Output:
[ "select the row whose hosted 4 teams since record of all rows is minimum . the metropolitan area record of this row is detroit , michigan ." ]
task110-0ba587051c7b451ba8aac0e60f8364c7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; total ; 3 } ; nation } ; mongolia } = true Output:
[ "select the row whose total record of all rows is 3rd maximum . the nation record of this row is mongolia ." ]
task110-8f438d5e30c14e2baba30c446e8a8b41
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; ties ; 3 } } ; eq { hop { filter_eq { all_rows ; ties ; 3 } ; season } ; 2008 } } = true Output:
[ "select the rows whose ties record is equal to 3 . there is only one such row in the table . the season record of this unqiue row is 2008 ." ]
task110-07896dd2097f49b89147803268250694
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; 2010 ; sf } } ; 2 } = true Output:
[ "select the rows whose 2010 record fuzzily matches to sf . the number of such rows is 2 ." ]
task110-aa33bd6b731c4e348a564fd1e5ebc58d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; municipality ; san miguel } ; no of barangays } ; hop { filter_eq { all_rows ; municipality ; gigmoto } ; no of barangays } } = true Output:
[ "select the rows whose municipality record fuzzily matches to san miguel . take the no of barangays record of this row . select the rows whose municipality record fuzzily matches to gigmoto . take the no of barangays record of this row . the first record is greater than the second record ." ]
task110-616fc3899d0f4aafac28cd11161456c8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { filter_less { all_rows ; points ; 20 } ; lost ; 10 } = true Output:
[ "select the rows whose points record is less than 20 . for the lost records of these rows , most of them are less than 10 ." ]
task110-5d97b1a7234243ca88e9e8b4f77bfe52
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; manner ; sacked } = true Output:
[ "for the manner records of all rows , most of them fuzzily match to sacked ." ]
task110-356d048d381e42a4bf0f151deddf4fc1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; season } } ; 6 } = true Output:
[ "select the rows whose season record is arbitrary . the number of such rows is 6 ." ]
task110-5fce43d73b75491fae107706c88752fc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; name ; víctor valdés } ; games } ; hop { filter_eq { all_rows ; name ; joan segarra } ; games } } = true Output:
[ "select the rows whose name record fuzzily matches to víctor valdés . take the games record of this row . select the rows whose name record fuzzily matches to joan segarra . take the games record of this row . the first record is greater than the second record ." ]
task110-3471f662659046abb87401aae94507ae
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; episode } } ; 13 } = true Output:
[ "select the rows whose episode record is arbitrary . the number of such rows is 13 ." ]
task110-456a2cdc7d1c448b905ef7dd66f29e11
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; crowd } ; 13916 } = true Output:
[ "the average of the crowd record of all rows is 13916 ." ]
task110-127d065d627845a0abc88e177a55ee4b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; result ; lost re - election republican gain } } ; eq { hop { filter_eq { all_rows ; result ; lost re - election republican gain } ; incumbent } ; dixie gilmer } } = true Output:
[ "select the rows whose result record fuzzily matches to lost re election republican gain . there is only one such row in the table . the incumbent record of this unqiue row is dixie gilmer ." ]
task110-7d564fda94cb46f0b705a336678fde7c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; played } ; manager } ; juan carlos chávez } = true Output:
[ "select the row whose played record of all rows is maximum . the manager record of this row is juan carlos chávez ." ]
task110-b81806c6853646fc8ef34af30f0e5625
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; innings ; 8 } } ; 3 } = true Output:
[ "select the rows whose innings record is equal to 8 . the number of such rows is 3 ." ]
task110-7b4d81810d4d457eaf0f16f283404f8f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; driver / passenger ; daniãl willemsen / sven verbrugge 1 } ; points } ; hop { filter_eq { all_rows ; driver / passenger ; janis daiders / lauris daiders } ; points } } = true Output:
[ "select the rows whose driver passenger record fuzzily matches to daniãl willemsen sven verbrugge 1 . take the points record of this row . select the rows whose driver passenger record fuzzily matches to janis daiders lauris daiders . take the points record of this row . the first record is greater than the second record ." ]
task110-4723c47757354c39ae02b5c49321d722
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; caps ; 3 } ; player } ; kyle beckerman } = true Output:
[ "select the row whose caps record of all rows is 3rd maximum . the player record of this row is kyle beckerman ." ]
task110-3c37b0d13eb04b58afa5e64a3500618d

Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task110_logic2text_sentence_generation

Additional Information

Citation Information

The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:

@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
    title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks}, 
    author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
    year={2022},
    eprint={2204.07705},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2204.07705}, 
}

More details can also be found in the following paper:

@misc{brüelgabrielsson2024compressserveservingthousands,
    title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, 
    author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
    year={2024},
    eprint={2407.00066},
    archivePrefix={arXiv},
    primaryClass={cs.DC},
    url={https://arxiv.org/abs/2407.00066}, 
}

Contact Information

For any comments or questions, please email Rickard Brüel Gabrielsson

Downloads last month
46