input
stringlengths 3.41k
3.87k
| output
sequencelengths 1
1
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; silver ; 2 } ; nation } ; hungary } = true
Output:
| [
"select the row whose silver record of all rows is 2nd maximum . the nation record of this row is hungary ."
] | task110-e0639a0f37f94e4082946f6d6b2d6b81 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; score } ; 4.67 } = true
Output:
| [
"the average of the score record of all rows is 4.67 ."
] | task110-6ec2ac289b924581a949054b7883b81d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: only { filter_eq { all_rows ; home ; oslo } } = true
Output:
| [
"select the rows whose home record fuzzily matches to oslo . there is only one such row in the table ."
] | task110-d4084c3890384259a50effef4083c2c0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmin { filter_eq { all_rows ; game site ; rca dome } ; date ; 4 } ; attendance } ; 56860 } = true
Output:
| [
"select the rows whose game site record fuzzily matches to rca dome . select the row whose date record of these rows is 4th minimum . the attendance record of this row is 56860 ."
] | task110-39728df947d047ecb91761fac455d6eb |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; gold ; 1 } } ; eq { hop { filter_eq { all_rows ; gold ; 1 } ; nation } ; switzerland } } = true
Output:
| [
"select the rows whose gold record is equal to 1 . there is only one such row in the table . the nation record of this unqiue row is switzerland ."
] | task110-b9de38536e584192a6f6e60243eccef1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; date ; november } } ; 16 } = true
Output:
| [
"select the rows whose date record fuzzily matches to november . the number of such rows is 16 ."
] | task110-c3efff3fb1ed40f885562fb1e231c21d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { filter_eq { all_rows ; date ; october } ; result ; l } = true
Output:
| [
"select the rows whose date record fuzzily matches to october . for the result records of these rows , most of them fuzzily match to l ."
] | task110-247e1687372e481eb9e3cdc7cd768852 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; novelty ; gen et sp nov } } ; 4 } = true
Output:
| [
"select the rows whose novelty record fuzzily matches to gen et sp nov . the number of such rows is 4 ."
] | task110-e1c3b5b80bfb4eb2b46c2978b964bc3d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_all { all_rows ; circuit } } ; 5 } = true
Output:
| [
"select the rows whose circuit record is arbitrary . the number of such rows is 5 ."
] | task110-a083d2f0f66944aca434505f1d170e84 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { all_rows ; number in service } ; 310 } = true
Output:
| [
"the sum of the number in service record of all rows is 310 ."
] | task110-1c9ab3c9a27d4c6b905857b3f88b26fb |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; high rebounds ; kris humphries } = true
Output:
| [
"for the high rebounds records of all rows , most of them fuzzily match to kris humphries ."
] | task110-56f11d60d9494670a16808ec8e9ee524 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: only { filter_eq { all_rows ; player ; vic / sa } } = true
Output:
| [
"select the rows whose player record fuzzily matches to vic sa . there is only one such row in the table ."
] | task110-4fb4214f196841faad3c54c6559e24d0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; unwto region ; oceania } } ; eq { hop { filter_eq { all_rows ; unwto region ; oceania } ; country } ; australia } } = true
Output:
| [
"select the rows whose unwto region record fuzzily matches to oceania . there is only one such row in the table . the country record of this unqiue row is australia ."
] | task110-f8d1b82bd19845478ae93b65f702a446 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_greater { all_rows ; silver ; 0 } } ; 5 } = true
Output:
| [
"select the rows whose silver record is greater than 0 . the number of such rows is 5 ."
] | task110-333fc421d8ca4cbbaeda0516e532ffd7 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_eq { filter_eq { all_rows ; date ; october } ; result ; l } = true
Output:
| [
"select the rows whose date record fuzzily matches to october . for the result records of these rows , all of them fuzzily match to l ."
] | task110-88232aceeb384b298a130287010048f4 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { all_rows ; votes } ; 2176341 } = true
Output:
| [
"the sum of the votes record of all rows is 2176341 ."
] | task110-698582d50343492a9634761ef2c1f2df |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_less { all_rows ; height ; 190 } = true
Output:
| [
"for the height records of all rows , most of them are less than 190 ."
] | task110-17a5142b4c764817833f058a22127010 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; win % } ; coach } ; rick barnes } = true
Output:
| [
"select the row whose win record of all rows is maximum . the coach record of this row is rick barnes ."
] | task110-ea8e00f5ebb144bd853eb5014d107812 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; tier ; tier ii } = true
Output:
| [
"for the tier records of all rows , most of them fuzzily match to tier ii ."
] | task110-962580fe9a574df7990212cdbba3bc94 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; points } ; 47.55 } = true
Output:
| [
"the average of the points record of all rows is 47.55 ."
] | task110-78ed6fe5d80b43329a127700248a4b9f |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; year ; 1975 } ; stages } ; hop { filter_eq { all_rows ; year ; 1976 } ; stages } } = true
Output:
| [
"select the rows whose year record fuzzily matches to 1975 . take the stages record of this row . select the rows whose year record fuzzily matches to 1976 . take the stages record of this row . the first record is greater than the second record ."
] | task110-04f33d23657a4671986d1d4998f847b6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; caps } ; player } ; nick rimando } = true
Output:
| [
"select the row whose caps record of all rows is maximum . the player record of this row is nick rimando ."
] | task110-c8f841d0e3794904894c156da70e5a76 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { filter_less_eq { all_rows ; rank ; 3 } ; total } ; 85 } = true
Output:
| [
"select the rows whose rank record is less than or equal to 3 . the sum of the total record of these rows is 85 ."
] | task110-f55963ffaf444a1abb7defa0902ed484 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_eq { all_rows ; on dinosaur trail ; yes } = true
Output:
| [
"for the on dinosaur trail records of all rows , all of them fuzzily match to yes ."
] | task110-4ff926fd4d874ec3afec90a79b64de84 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { filter_less { all_rows ; elevation ( m ) ; 3000 } ; col ( m ) ; 0 } } ; eq { hop { filter_eq { filter_less { all_rows ; elevation ( m ) ; 3000 } ; col ( m ) ; 0 } ; peak } ; mount ruapehu } } = true
Output:
| [
"select the rows whose elevation m record is less than 3000 . among these rows , select the rows whose col m record is equal to 0 . there is only one such row in the table . the peak record of this unqiue row is mount ruapehu ."
] | task110-7863e854aab941448de37043c50be14f |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; competition ; 2014 world cup qualifier } ; goal } ; hop { filter_eq { all_rows ; competition ; 2011 copa américa } ; goal } } = true
Output:
| [
"select the rows whose competition record fuzzily matches to 2014 world cup qualifier . take the goal record of this row . select the rows whose competition record fuzzily matches to 2011 copa américa . take the goal record of this row . the first record is greater than the second record ."
] | task110-8bf666fc85cb48f7a6d8bb36561e70de |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; event ; 50 km } = true
Output:
| [
"for the event records of all rows , most of them fuzzily match to 50 km ."
] | task110-9e6a5d02e0a542b49c70593360cfc76d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; seasons ; 4 } } ; eq { hop { filter_eq { all_rows ; seasons ; 4 } ; country } ; south korea } } = true
Output:
| [
"select the rows whose seasons record is equal to 4 . there is only one such row in the table . the country record of this unqiue row is south korea ."
] | task110-0612e8ec138948578ef1d4e8f260b3a1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { filter_eq { all_rows ; team ; forsythe racing } ; points } ; 8 } = true
Output:
| [
"select the rows whose team record fuzzily matches to forsythe racing . the sum of the points record of these rows is 8 ."
] | task110-61d3a4832b384a7fade8f72141c5bca0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { filter_eq { all_rows ; date ; 2004 } ; surface ; hard } } ; 2 } = true
Output:
| [
"select the rows whose date record fuzzily matches to 2004 . among these rows , select the rows whose surface record fuzzily matches to hard . the number of such rows is 2 ."
] | task110-302078eb3d7e42e8a2de12bafee68db4 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; opposition ; surrey } ; score } ; hop { filter_eq { all_rows ; opposition ; somerset } ; score } } = true
Output:
| [
"select the rows whose opposition record fuzzily matches to surrey . take the score record of this row . select the rows whose opposition record fuzzily matches to somerset . take the score record of this row . the first record is greater than the second record ."
] | task110-3fc7db702e6941a38de166bea5de9fdc |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; frequency mhz } ; 400.3 } = true
Output:
| [
"the average of the frequency mhz record of all rows is 400.3 ."
] | task110-e6ebedb87032411a876ab58ecf40d986 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; outcome ; runner - up } } ; 6 } = true
Output:
| [
"select the rows whose outcome record fuzzily matches to runner up . the number of such rows is 6 ."
] | task110-ebb7b9aa19014c43be981fee2ba58cc2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; location ; nevada , united states } } ; 2 } = true
Output:
| [
"select the rows whose location record fuzzily matches to nevada , united states . the number of such rows is 2 ."
] | task110-871395ecdd514867b7ef8e7e84525e68 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; date ; 1989 } } ; 4 } = true
Output:
| [
"select the rows whose date record fuzzily matches to 1989 . the number of such rows is 4 ."
] | task110-3828a323b16c4060add5d03a67c86e44 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_less { filter_eq { all_rows ; written by ; dan schneider } ; us viewers ( millions ) ; 5 million } = true
Output:
| [
"select the rows whose written by record fuzzily matches to dan schneider . for the us viewers millions records of these rows , most of them are less than 5 million ."
] | task110-ac75a13a707a4a6abf394821c5608e27 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; country ; luxembourg } } ; eq { hop { filter_eq { all_rows ; country ; luxembourg } ; season } ; 1978 - 79 } } = true
Output:
| [
"select the rows whose country record fuzzily matches to luxembourg . there is only one such row in the table . the season record of this unqiue row is 1978 79 ."
] | task110-5de15c20f3db4386bd579bf6744f7522 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { all_rows ; screens } ; 461 } = true
Output:
| [
"the sum of the screens record of all rows is 461 ."
] | task110-1963ca830be3402485a0310c353ff0e1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; week of ; 2 october } } ; 4 } = true
Output:
| [
"select the rows whose week of record fuzzily matches to 2 october . the number of such rows is 4 ."
] | task110-da213d1be9e342169e185037126f2ff8 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; commissioned ; december 1945 } } ; 2 } = true
Output:
| [
"select the rows whose commissioned record fuzzily matches to december 1945 . the number of such rows is 2 ."
] | task110-30404ea41da2438199b0503c25b4458a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; to par } ; player } ; tiger woods } = true
Output:
| [
"select the row whose to par record of all rows is maximum . the player record of this row is tiger woods ."
] | task110-f243e1e2358c4be0a4583ab0354a382a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_less { filter_less { all_rows ; away team score ; 10 } ; crowd ; 40000 } } ; 3 } = true
Output:
| [
"select the rows whose away team score record is less than 10 . among these rows , select the rows whose crowd record is less than 40000 . the number of such rows is 3 ."
] | task110-da2084c572d64e27abf9a496de23e1c9 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { filter_eq { all_rows ; 1st ship delivery date ; 1942 } ; location ( city , state ) ; california } = true
Output:
| [
"select the rows whose 1st ship delivery date record fuzzily matches to 1942 . for the location city , state records of these rows , most of them fuzzily match to california ."
] | task110-ce84632ab3f24f049f7a174bf8ac5143 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; clean electric grid california ( san francisco ) } ; 131.4 g / mile } = true
Output:
| [
"the average of the clean electric grid california san francisco record of all rows is 131.4 g mile ."
] | task110-24231c057a7b45d2a7326a3b77a710e3 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmin { all_rows ; position } ; pilot } ; mario kiessling } = true
Output:
| [
"select the row whose position record of all rows is minimum . the pilot record of this row is mario kiessling ."
] | task110-a3d98647a8644c408d7614b1488bb410 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: less { hop { filter_eq { all_rows ; year ; 1959 } ; rank } ; hop { filter_eq { all_rows ; year ; 1958 } ; rank } } = true
Output:
| [
"select the rows whose year record fuzzily matches to 1959 . take the rank record of this row . select the rows whose year record fuzzily matches to 1958 . take the rank record of this row . the first record is less than the second record ."
] | task110-fd36024ffbe54fb39c760e9c90f172b5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { eq { nth_min { all_rows ; date ; 2 } ; jun 25 } ; eq { hop { nth_argmin { all_rows ; date ; 2 } ; score } ; 2 - 3 } } = true
Output:
| [
"the 2nd minimum date record of all rows is jun 25 . the score record of the row with 2nd minimum date record is 2 3 ."
] | task110-75a1c1a0f4634eb08f445e377d36eef6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_greater { all_rows ; crowd ; 6000 } = true
Output:
| [
"for the crowd records of all rows , most of them are greater than 6000 ."
] | task110-39c161d1a99a401395b234ff323b7680 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; enrollment } ; school } ; new prairie 1 } = true
Output:
| [
"select the row whose enrollment record of all rows is maximum . the school record of this row is new prairie 1 ."
] | task110-4639867a7d1143b696a834636c0691dd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_greater { filter_eq { all_rows ; date ; 3 june 1935 } ; crowd ; 25000 } } ; eq { hop { filter_greater { filter_eq { all_rows ; date ; 3 june 1935 } ; crowd ; 25000 } ; venue } ; windy hill } } = true
Output:
| [
"select the rows whose date record fuzzily matches to 3 june 1935 . among these rows , select the rows whose crowd record is greater than 25000 . there is only one such row in the table . the venue record of this unqiue row is windy hill ."
] | task110-88af88b00f64490fba3c755279ff26fe |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; original air date ; 2 } ; title } ; the western isles and shetland } = true
Output:
| [
"select the row whose original air date record of all rows is 2nd maximum . the title record of this row is the western isles and shetland ."
] | task110-2cca9ee78e1e49aba5d638b9e65b2388 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { all_rows ; score } ; 1419 } = true
Output:
| [
"the sum of the score record of all rows is 1419 ."
] | task110-69e7aef1c535450f9e3a3631f6f8e523 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; result ; re-elected } = true
Output:
| [
"for the result records of all rows , most of them fuzzily match to reelected ."
] | task110-5df73300cd9f43d49e3755eaae1c73aa |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; score ; ( ot ) } } ; 2 } = true
Output:
| [
"select the rows whose score record fuzzily matches to ot . the number of such rows is 2 ."
] | task110-d85bdad38bb64b509264abb45e821cf5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; team ; velocette } } ; eq { hop { filter_eq { all_rows ; team ; velocette } ; rider } ; brian finch } } = true
Output:
| [
"select the rows whose team record fuzzily matches to velocette . there is only one such row in the table . the rider record of this unqiue row is brian finch ."
] | task110-053c2cc818504d48af936cb8558edade |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; county ; kilkenny } } ; 2 } = true
Output:
| [
"select the rows whose county record fuzzily matches to kilkenny . the number of such rows is 2 ."
] | task110-e9414a3012b34ce099fb525b3c56b052 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; length } ; 3:43 } = true
Output:
| [
"the average of the length record of all rows is 3:43 ."
] | task110-73f4f0da59e4447ebfe78e5f603528bf |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; service ; freight } = true
Output:
| [
"for the service records of all rows , most of them fuzzily match to freight ."
] | task110-bb31e33b071b4b7a9c08a036956303b0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; goal difference ; 3 } ; club } ; real oviedo } = true
Output:
| [
"select the row whose goal difference record of all rows is 3rd maximum . the club record of this row is real oviedo ."
] | task110-c1950886674245008cc2e49f83c25e4a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmin { all_rows ; 1st run ; 2 } ; name } ; donny robinson ( usa ) } = true
Output:
| [
"select the row whose 1st run record of all rows is 2nd minimum . the name record of this row is donny robinson usa ."
] | task110-47c037d4821442389faeabfc8e6d1e04 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: less { hop { filter_eq { all_rows ; name ; newport } ; year withdrawn } ; hop { filter_eq { all_rows ; name ; cowes } ; year withdrawn } } = true
Output:
| [
"select the rows whose name record fuzzily matches to newport . take the year withdrawn record of this row . select the rows whose name record fuzzily matches to cowes . take the year withdrawn record of this row . the first record is less than the second record ."
] | task110-59088605f34f460e824e25fa1693d3e4 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; nationality ; jamaica } } ; 2 } = true
Output:
| [
"select the rows whose nationality record fuzzily matches to jamaica . the number of such rows is 2 ."
] | task110-a094b6d440b546158b970ccee1b62894 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: less { hop { filter_eq { all_rows ; overall pick ; 9 } ; overall pick } ; hop { filter_eq { all_rows ; overall pick ; 18 } ; overall pick } } = true
Output:
| [
"select the rows whose overall pick record fuzzily matches to 9 . take the overall pick record of this row . select the rows whose overall pick record fuzzily matches to 18 . take the overall pick record of this row . the first record is less than the second record ."
] | task110-c3eeba7815ed41b4b8b9a1a984552601 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_less_eq { all_rows ; result ; 20th } = true
Output:
| [
"for the result records of all rows , most of them are less than or equal to 20th ."
] | task110-2abcb0eedea44ef6b54860bc87932f88 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_eq { all_rows ; party ; democratic } = true
Output:
| [
"for the party records of all rows , all of them fuzzily match to democratic ."
] | task110-78323ef2186b462297687e92f50dfa08 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 1 } ; home } ; montreal } = true
Output:
| [
"select the row whose attendance record of all rows is 1st maximum . the home record of this row is montreal ."
] | task110-f8af2133cb17494e9769db708e35d14c |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; of stars ; 15 } } ; eq { hop { filter_eq { all_rows ; of stars ; 15 } ; season } ; 4 - autumn 2008 } } = true
Output:
| [
"select the rows whose of stars record is equal to 15 . there is only one such row in the table . the season record of this unqiue row is 4 autumn 2008 ."
] | task110-49202edf02894e12a8fc8997bce48bf0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { filter_less { all_rows ; original air date ; january 1 , 2010 } ; us viewers ( million ) } ; 9.74 } = true
Output:
| [
"select the rows whose original air date record is less than january 1 , 2010 . the average of the us viewers million record of these rows is 9.74 ."
] | task110-00625600daed4d57ac9e6e2a434e9ae7 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; school ( ihsaa id ) ; knox community } ; enrollment } ; hop { filter_eq { all_rows ; school ( ihsaa id ) ; culver community } ; enrollment } } = true
Output:
| [
"select the rows whose school ihsaa id record fuzzily matches to knox community . take the enrollment record of this row . select the rows whose school ihsaa id record fuzzily matches to culver community . take the enrollment record of this row . the first record is greater than the second record ."
] | task110-5a9fc8ebc7474f868e5674a2bf11f95b |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_greater_eq { all_rows ; crowd ; 8000 } = true
Output:
| [
"for the crowd records of all rows , all of them are greater than or equal to 8000 ."
] | task110-8c7274d536604c6db04dd71a5d81c89a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; spent per voter ( php ) } ; 4.46 } = true
Output:
| [
"the average of the spent per voter php record of all rows is 4.46 ."
] | task110-a91d8d95dc4547e8b6da83af8a163acd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; home team score } ; 12.09 } = true
Output:
| [
"the average of the home team score record of all rows is 12.09 ."
] | task110-78ca021de04e4626a6e99be797ce0e48 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; title ; mount rushmore } ; original air date } ; hop { filter_eq { all_rows ; title ; salem } ; original air date } } = true
Output:
| [
"select the rows whose title record fuzzily matches to mount rushmore . take the original air date record of this row . select the rows whose title record fuzzily matches to salem . take the original air date record of this row . the first record is greater than the second record ."
] | task110-959395d9f91c4255ab058cd79040d73c |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { diff { hop { filter_eq { all_rows ; nation ; new zealand } ; bronze } ; hop { filter_eq { all_rows ; nation ; jamaica } ; bronze } } ; 2 } = true
Output:
| [
"select the rows whose nation record fuzzily matches to new zealand . take the bronze record of this row . select the rows whose nation record fuzzily matches to jamaica . take the bronze record of this row . the first record is 2 larger than the second record ."
] | task110-9768d3f4450c49f78b6263bc77571ea5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; floors } ; name } ; commerzbank tower } = true
Output:
| [
"select the row whose floors record of all rows is maximum . the name record of this row is commerzbank tower ."
] | task110-5a36c248c82848cd920d2e60475672fe |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; original air date ; 1 } ; family / families } ; the haynes family and the potter family } = true
Output:
| [
"select the row whose original air date record of all rows is 1st maximum . the family families record of this row is the haynes family and the potter family ."
] | task110-3586adf6b1ec46268529db1519a6e30e |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; location attendance } ; date } ; january 11 } = true
Output:
| [
"select the row whose location attendance record of all rows is maximum . the date record of this row is january 11 ."
] | task110-ea5814c255cb4b98bb3766a9cbb41b95 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; country ; dominican republic } ; asians } ; hop { filter_eq { all_rows ; country ; costa rica } ; asians } } = true
Output:
| [
"select the rows whose country record fuzzily matches to dominican republic . take the asians record of this row . select the rows whose country record fuzzily matches to costa rica . take the asians record of this row . the first record is greater than the second record ."
] | task110-92ee8988ccde497cacd8081c77a6b5f8 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_less { all_rows ; year ; 2009 } = true
Output:
| [
"for the year records of all rows , most of them are less than 2009 ."
] | task110-5d617420eaba46b68461f793c5fcb1b3 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; competition ; friendly } } ; 4 } = true
Output:
| [
"select the rows whose competition record fuzzily matches to friendly . the number of such rows is 4 ."
] | task110-c308a74654d74acaa89cce9f1ef7328b |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; laps ; 2 } ; year } ; 2003 } = true
Output:
| [
"select the row whose laps record of all rows is 2nd maximum . the year record of this row is 2003 ."
] | task110-112a454cb52748469280fd75a4101677 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { nth_max { filter_eq { all_rows ; location ; woodlands stadium ndola } ; date ; 1 } ; 29 june 2008 } = true
Output:
| [
"select the rows whose location record fuzzily matches to woodlands stadium ndola . the 1st maximum date record of these rows is 29 june 2008 ."
] | task110-9a7214fbcaa54c8c9aaa8474bd5dccd2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { eq { nth_min { all_rows ; date ; 1 } ; 03 oct } ; eq { hop { nth_argmin { all_rows ; date ; 1 } ; time } ; 12:00 } } = true
Output:
| [
"the 1st minimum date record of all rows is 03 oct . the time record of the row with 1st minimum date record is 12:00 ."
] | task110-570ccb9190194ef79fd11e99f00021fc |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_eq { all_rows ; nationality ; united states } = true
Output:
| [
"for the nationality records of all rows , all of them fuzzily match to united states ."
] | task110-84b916e8549e487782a32b8343651535 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; directed by ; david grossman } } ; 5 } = true
Output:
| [
"select the rows whose directed by record fuzzily matches to david grossman . the number of such rows is 5 ."
] | task110-140cba900f0a449eab0c675d3995df0b |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; took office ; 195 } } ; 2 } = true
Output:
| [
"select the rows whose took office record fuzzily matches to 195 . the number of such rows is 2 ."
] | task110-09eb164cfce147bcb854b43c4487fc1d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmin { all_rows ; date ; 1 } ; winning driver } ; eugenio silvani } = true
Output:
| [
"select the row whose date record of all rows is 1st minimum . the winning driver record of this row is eugenio silvani ."
] | task110-c4fd9ecde67a4c26ba8d7cb7dc42b1cd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; date ; september 8 , 2002 } ; attendance } ; hop { filter_eq { all_rows ; date ; september 15 , 2002 } ; attendance } } = true
Output:
| [
"select the rows whose date record fuzzily matches to september 8 , 2002 . take the attendance record of this row . select the rows whose date record fuzzily matches to september 15 , 2002 . take the attendance record of this row . the first record is greater than the second record ."
] | task110-e04ad11c375b42ff833bb0713a12b46d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { min { all_rows ; date } ; 13 , 14 , 16 dec 1901 } = true
Output:
| [
"the minimum date record of all rows is 13 , 14 , 16 dec 1901 ."
] | task110-cd1c919021ac47d8a6740f5a48c5608a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { filter_eq { all_rows ; model number ; 800 } ; frequency } ; 800 } = true
Output:
| [
"select the rows whose model number record fuzzily matches to 800 . the average of the frequency record of these rows is 800 ."
] | task110-c6b2549575e44175b2ad37ba42ccd333 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; discipline ; stock car } = true
Output:
| [
"for the discipline records of all rows , most of them fuzzily match to stock car ."
] | task110-cc44c952831c48ef8db86e340779d3bf |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; laps } ; year } ; 2002 } = true
Output:
| [
"select the row whose laps record of all rows is maximum . the year record of this row is 2002 ."
] | task110-9d79e32710ca4df38cf7f794a0991afb |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; college / junior / club team ; regina pats } } ; 2 } = true
Output:
| [
"select the rows whose college junior club team record fuzzily matches to regina pats . the number of such rows is 2 ."
] | task110-98a25743eca4423aba4305c494ec141d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; location attendance ; quicken loans arena } } ; eq { hop { filter_eq { all_rows ; location attendance ; quicken loans arena } ; date } ; november 3 } } = true
Output:
| [
"select the rows whose location attendance record fuzzily matches to quicken loans arena . there is only one such row in the table . the date record of this unqiue row is november 3 ."
] | task110-e25eafae59ab424d8ae19956901230be |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { filter_eq { all_rows ; team ; rhein fire } ; capacity } ; 56308 } = true
Output:
| [
"select the rows whose team record fuzzily matches to rhein fire . the average of the capacity record of these rows is 56308 ."
] | task110-98f018d70de34e9396812dac70b648d7 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; attendance } ; 15503 } = true
Output:
| [
"the average of the attendance record of all rows is 15503 ."
] | task110-1ad9c7c7ba7146d9891def6bb67a372f |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; home team score } ; 15.18 } = true
Output:
| [
"the average of the home team score record of all rows is 15.18 ."
] | task110-3bcc78849e0542a092420af7a8745319 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_eq { all_rows ; original air date ; 2013 } = true
Output:
| [
"for the original air date records of all rows , all of them fuzzily match to 2013 ."
] | task110-df2f3e6678604d63bca6b7322f71c6e5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; age ; 2 } ; contestant } ; daniella filipovic } = true
Output:
| [
"select the row whose age record of all rows is 2nd maximum . the contestant record of this row is daniella filipovic ."
] | task110-8e6183fc8ba0457088e38127502402f4 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; total ; 2 } ; athlete } ; monica pinette } = true
Output:
| [
"select the row whose total record of all rows is 2nd maximum . the athlete record of this row is monica pinette ."
] | task110-1958971485e34d4e8b84641ca5d51011 |