input
stringlengths
3.41k
3.87k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; silver ; 2 } ; nation } ; hungary } = true Output:
[ "select the row whose silver record of all rows is 2nd maximum . the nation record of this row is hungary ." ]
task110-e0639a0f37f94e4082946f6d6b2d6b81
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; score } ; 4.67 } = true Output:
[ "the average of the score record of all rows is 4.67 ." ]
task110-6ec2ac289b924581a949054b7883b81d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_eq { all_rows ; home ; oslo } } = true Output:
[ "select the rows whose home record fuzzily matches to oslo . there is only one such row in the table ." ]
task110-d4084c3890384259a50effef4083c2c0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { filter_eq { all_rows ; game site ; rca dome } ; date ; 4 } ; attendance } ; 56860 } = true Output:
[ "select the rows whose game site record fuzzily matches to rca dome . select the row whose date record of these rows is 4th minimum . the attendance record of this row is 56860 ." ]
task110-39728df947d047ecb91761fac455d6eb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; gold ; 1 } } ; eq { hop { filter_eq { all_rows ; gold ; 1 } ; nation } ; switzerland } } = true Output:
[ "select the rows whose gold record is equal to 1 . there is only one such row in the table . the nation record of this unqiue row is switzerland ." ]
task110-b9de38536e584192a6f6e60243eccef1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; date ; november } } ; 16 } = true Output:
[ "select the rows whose date record fuzzily matches to november . the number of such rows is 16 ." ]
task110-c3efff3fb1ed40f885562fb1e231c21d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { filter_eq { all_rows ; date ; october } ; result ; l } = true Output:
[ "select the rows whose date record fuzzily matches to october . for the result records of these rows , most of them fuzzily match to l ." ]
task110-247e1687372e481eb9e3cdc7cd768852
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; novelty ; gen et sp nov } } ; 4 } = true Output:
[ "select the rows whose novelty record fuzzily matches to gen et sp nov . the number of such rows is 4 ." ]
task110-e1c3b5b80bfb4eb2b46c2978b964bc3d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; circuit } } ; 5 } = true Output:
[ "select the rows whose circuit record is arbitrary . the number of such rows is 5 ." ]
task110-a083d2f0f66944aca434505f1d170e84
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; number in service } ; 310 } = true Output:
[ "the sum of the number in service record of all rows is 310 ." ]
task110-1c9ab3c9a27d4c6b905857b3f88b26fb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; high rebounds ; kris humphries } = true Output:
[ "for the high rebounds records of all rows , most of them fuzzily match to kris humphries ." ]
task110-56f11d60d9494670a16808ec8e9ee524
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_eq { all_rows ; player ; vic / sa } } = true Output:
[ "select the rows whose player record fuzzily matches to vic sa . there is only one such row in the table ." ]
task110-4fb4214f196841faad3c54c6559e24d0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; unwto region ; oceania } } ; eq { hop { filter_eq { all_rows ; unwto region ; oceania } ; country } ; australia } } = true Output:
[ "select the rows whose unwto region record fuzzily matches to oceania . there is only one such row in the table . the country record of this unqiue row is australia ." ]
task110-f8d1b82bd19845478ae93b65f702a446
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { all_rows ; silver ; 0 } } ; 5 } = true Output:
[ "select the rows whose silver record is greater than 0 . the number of such rows is 5 ." ]
task110-333fc421d8ca4cbbaeda0516e532ffd7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { filter_eq { all_rows ; date ; october } ; result ; l } = true Output:
[ "select the rows whose date record fuzzily matches to october . for the result records of these rows , all of them fuzzily match to l ." ]
task110-88232aceeb384b298a130287010048f4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; votes } ; 2176341 } = true Output:
[ "the sum of the votes record of all rows is 2176341 ." ]
task110-698582d50343492a9634761ef2c1f2df
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { all_rows ; height ; 190 } = true Output:
[ "for the height records of all rows , most of them are less than 190 ." ]
task110-17a5142b4c764817833f058a22127010
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; win % } ; coach } ; rick barnes } = true Output:
[ "select the row whose win record of all rows is maximum . the coach record of this row is rick barnes ." ]
task110-ea8e00f5ebb144bd853eb5014d107812
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; tier ; tier ii } = true Output:
[ "for the tier records of all rows , most of them fuzzily match to tier ii ." ]
task110-962580fe9a574df7990212cdbba3bc94
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; points } ; 47.55 } = true Output:
[ "the average of the points record of all rows is 47.55 ." ]
task110-78ed6fe5d80b43329a127700248a4b9f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; year ; 1975 } ; stages } ; hop { filter_eq { all_rows ; year ; 1976 } ; stages } } = true Output:
[ "select the rows whose year record fuzzily matches to 1975 . take the stages record of this row . select the rows whose year record fuzzily matches to 1976 . take the stages record of this row . the first record is greater than the second record ." ]
task110-04f33d23657a4671986d1d4998f847b6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; caps } ; player } ; nick rimando } = true Output:
[ "select the row whose caps record of all rows is maximum . the player record of this row is nick rimando ." ]
task110-c8f841d0e3794904894c156da70e5a76
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_less_eq { all_rows ; rank ; 3 } ; total } ; 85 } = true Output:
[ "select the rows whose rank record is less than or equal to 3 . the sum of the total record of these rows is 85 ." ]
task110-f55963ffaf444a1abb7defa0902ed484
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; on dinosaur trail ; yes } = true Output:
[ "for the on dinosaur trail records of all rows , all of them fuzzily match to yes ." ]
task110-4ff926fd4d874ec3afec90a79b64de84
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { filter_less { all_rows ; elevation ( m ) ; 3000 } ; col ( m ) ; 0 } } ; eq { hop { filter_eq { filter_less { all_rows ; elevation ( m ) ; 3000 } ; col ( m ) ; 0 } ; peak } ; mount ruapehu } } = true Output:
[ "select the rows whose elevation m record is less than 3000 . among these rows , select the rows whose col m record is equal to 0 . there is only one such row in the table . the peak record of this unqiue row is mount ruapehu ." ]
task110-7863e854aab941448de37043c50be14f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; competition ; 2014 world cup qualifier } ; goal } ; hop { filter_eq { all_rows ; competition ; 2011 copa américa } ; goal } } = true Output:
[ "select the rows whose competition record fuzzily matches to 2014 world cup qualifier . take the goal record of this row . select the rows whose competition record fuzzily matches to 2011 copa américa . take the goal record of this row . the first record is greater than the second record ." ]
task110-8bf666fc85cb48f7a6d8bb36561e70de
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; event ; 50 km } = true Output:
[ "for the event records of all rows , most of them fuzzily match to 50 km ." ]
task110-9e6a5d02e0a542b49c70593360cfc76d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; seasons ; 4 } } ; eq { hop { filter_eq { all_rows ; seasons ; 4 } ; country } ; south korea } } = true Output:
[ "select the rows whose seasons record is equal to 4 . there is only one such row in the table . the country record of this unqiue row is south korea ." ]
task110-0612e8ec138948578ef1d4e8f260b3a1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; team ; forsythe racing } ; points } ; 8 } = true Output:
[ "select the rows whose team record fuzzily matches to forsythe racing . the sum of the points record of these rows is 8 ." ]
task110-61d3a4832b384a7fade8f72141c5bca0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_eq { all_rows ; date ; 2004 } ; surface ; hard } } ; 2 } = true Output:
[ "select the rows whose date record fuzzily matches to 2004 . among these rows , select the rows whose surface record fuzzily matches to hard . the number of such rows is 2 ." ]
task110-302078eb3d7e42e8a2de12bafee68db4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; opposition ; surrey } ; score } ; hop { filter_eq { all_rows ; opposition ; somerset } ; score } } = true Output:
[ "select the rows whose opposition record fuzzily matches to surrey . take the score record of this row . select the rows whose opposition record fuzzily matches to somerset . take the score record of this row . the first record is greater than the second record ." ]
task110-3fc7db702e6941a38de166bea5de9fdc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; frequency mhz } ; 400.3 } = true Output:
[ "the average of the frequency mhz record of all rows is 400.3 ." ]
task110-e6ebedb87032411a876ab58ecf40d986
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; outcome ; runner - up } } ; 6 } = true Output:
[ "select the rows whose outcome record fuzzily matches to runner up . the number of such rows is 6 ." ]
task110-ebb7b9aa19014c43be981fee2ba58cc2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; location ; nevada , united states } } ; 2 } = true Output:
[ "select the rows whose location record fuzzily matches to nevada , united states . the number of such rows is 2 ." ]
task110-871395ecdd514867b7ef8e7e84525e68
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; date ; 1989 } } ; 4 } = true Output:
[ "select the rows whose date record fuzzily matches to 1989 . the number of such rows is 4 ." ]
task110-3828a323b16c4060add5d03a67c86e44
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { filter_eq { all_rows ; written by ; dan schneider } ; us viewers ( millions ) ; 5 million } = true Output:
[ "select the rows whose written by record fuzzily matches to dan schneider . for the us viewers millions records of these rows , most of them are less than 5 million ." ]
task110-ac75a13a707a4a6abf394821c5608e27
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; country ; luxembourg } } ; eq { hop { filter_eq { all_rows ; country ; luxembourg } ; season } ; 1978 - 79 } } = true Output:
[ "select the rows whose country record fuzzily matches to luxembourg . there is only one such row in the table . the season record of this unqiue row is 1978 79 ." ]
task110-5de15c20f3db4386bd579bf6744f7522
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; screens } ; 461 } = true Output:
[ "the sum of the screens record of all rows is 461 ." ]
task110-1963ca830be3402485a0310c353ff0e1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; week of ; 2 october } } ; 4 } = true Output:
[ "select the rows whose week of record fuzzily matches to 2 october . the number of such rows is 4 ." ]
task110-da213d1be9e342169e185037126f2ff8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; commissioned ; december 1945 } } ; 2 } = true Output:
[ "select the rows whose commissioned record fuzzily matches to december 1945 . the number of such rows is 2 ." ]
task110-30404ea41da2438199b0503c25b4458a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; to par } ; player } ; tiger woods } = true Output:
[ "select the row whose to par record of all rows is maximum . the player record of this row is tiger woods ." ]
task110-f243e1e2358c4be0a4583ab0354a382a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_less { filter_less { all_rows ; away team score ; 10 } ; crowd ; 40000 } } ; 3 } = true Output:
[ "select the rows whose away team score record is less than 10 . among these rows , select the rows whose crowd record is less than 40000 . the number of such rows is 3 ." ]
task110-da2084c572d64e27abf9a496de23e1c9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { filter_eq { all_rows ; 1st ship delivery date ; 1942 } ; location ( city , state ) ; california } = true Output:
[ "select the rows whose 1st ship delivery date record fuzzily matches to 1942 . for the location city , state records of these rows , most of them fuzzily match to california ." ]
task110-ce84632ab3f24f049f7a174bf8ac5143
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; clean electric grid california ( san francisco ) } ; 131.4 g / mile } = true Output:
[ "the average of the clean electric grid california san francisco record of all rows is 131.4 g mile ." ]
task110-24231c057a7b45d2a7326a3b77a710e3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; position } ; pilot } ; mario kiessling } = true Output:
[ "select the row whose position record of all rows is minimum . the pilot record of this row is mario kiessling ." ]
task110-a3d98647a8644c408d7614b1488bb410
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; year ; 1959 } ; rank } ; hop { filter_eq { all_rows ; year ; 1958 } ; rank } } = true Output:
[ "select the rows whose year record fuzzily matches to 1959 . take the rank record of this row . select the rows whose year record fuzzily matches to 1958 . take the rank record of this row . the first record is less than the second record ." ]
task110-fd36024ffbe54fb39c760e9c90f172b5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { nth_min { all_rows ; date ; 2 } ; jun 25 } ; eq { hop { nth_argmin { all_rows ; date ; 2 } ; score } ; 2 - 3 } } = true Output:
[ "the 2nd minimum date record of all rows is jun 25 . the score record of the row with 2nd minimum date record is 2 3 ." ]
task110-75a1c1a0f4634eb08f445e377d36eef6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { all_rows ; crowd ; 6000 } = true Output:
[ "for the crowd records of all rows , most of them are greater than 6000 ." ]
task110-39c161d1a99a401395b234ff323b7680
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; enrollment } ; school } ; new prairie 1 } = true Output:
[ "select the row whose enrollment record of all rows is maximum . the school record of this row is new prairie 1 ." ]
task110-4639867a7d1143b696a834636c0691dd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_greater { filter_eq { all_rows ; date ; 3 june 1935 } ; crowd ; 25000 } } ; eq { hop { filter_greater { filter_eq { all_rows ; date ; 3 june 1935 } ; crowd ; 25000 } ; venue } ; windy hill } } = true Output:
[ "select the rows whose date record fuzzily matches to 3 june 1935 . among these rows , select the rows whose crowd record is greater than 25000 . there is only one such row in the table . the venue record of this unqiue row is windy hill ." ]
task110-88af88b00f64490fba3c755279ff26fe
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; original air date ; 2 } ; title } ; the western isles and shetland } = true Output:
[ "select the row whose original air date record of all rows is 2nd maximum . the title record of this row is the western isles and shetland ." ]
task110-2cca9ee78e1e49aba5d638b9e65b2388
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; score } ; 1419 } = true Output:
[ "the sum of the score record of all rows is 1419 ." ]
task110-69e7aef1c535450f9e3a3631f6f8e523
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; result ; re-elected } = true Output:
[ "for the result records of all rows , most of them fuzzily match to reelected ." ]
task110-5df73300cd9f43d49e3755eaae1c73aa
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; score ; ( ot ) } } ; 2 } = true Output:
[ "select the rows whose score record fuzzily matches to ot . the number of such rows is 2 ." ]
task110-d85bdad38bb64b509264abb45e821cf5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; team ; velocette } } ; eq { hop { filter_eq { all_rows ; team ; velocette } ; rider } ; brian finch } } = true Output:
[ "select the rows whose team record fuzzily matches to velocette . there is only one such row in the table . the rider record of this unqiue row is brian finch ." ]
task110-053c2cc818504d48af936cb8558edade
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; county ; kilkenny } } ; 2 } = true Output:
[ "select the rows whose county record fuzzily matches to kilkenny . the number of such rows is 2 ." ]
task110-e9414a3012b34ce099fb525b3c56b052
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; length } ; 3:43 } = true Output:
[ "the average of the length record of all rows is 3:43 ." ]
task110-73f4f0da59e4447ebfe78e5f603528bf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; service ; freight } = true Output:
[ "for the service records of all rows , most of them fuzzily match to freight ." ]
task110-bb31e33b071b4b7a9c08a036956303b0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; goal difference ; 3 } ; club } ; real oviedo } = true Output:
[ "select the row whose goal difference record of all rows is 3rd maximum . the club record of this row is real oviedo ." ]
task110-c1950886674245008cc2e49f83c25e4a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; 1st run ; 2 } ; name } ; donny robinson ( usa ) } = true Output:
[ "select the row whose 1st run record of all rows is 2nd minimum . the name record of this row is donny robinson usa ." ]
task110-47c037d4821442389faeabfc8e6d1e04
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; name ; newport } ; year withdrawn } ; hop { filter_eq { all_rows ; name ; cowes } ; year withdrawn } } = true Output:
[ "select the rows whose name record fuzzily matches to newport . take the year withdrawn record of this row . select the rows whose name record fuzzily matches to cowes . take the year withdrawn record of this row . the first record is less than the second record ." ]
task110-59088605f34f460e824e25fa1693d3e4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; nationality ; jamaica } } ; 2 } = true Output:
[ "select the rows whose nationality record fuzzily matches to jamaica . the number of such rows is 2 ." ]
task110-a094b6d440b546158b970ccee1b62894
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; overall pick ; 9 } ; overall pick } ; hop { filter_eq { all_rows ; overall pick ; 18 } ; overall pick } } = true Output:
[ "select the rows whose overall pick record fuzzily matches to 9 . take the overall pick record of this row . select the rows whose overall pick record fuzzily matches to 18 . take the overall pick record of this row . the first record is less than the second record ." ]
task110-c3eeba7815ed41b4b8b9a1a984552601
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less_eq { all_rows ; result ; 20th } = true Output:
[ "for the result records of all rows , most of them are less than or equal to 20th ." ]
task110-2abcb0eedea44ef6b54860bc87932f88
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; party ; democratic } = true Output:
[ "for the party records of all rows , all of them fuzzily match to democratic ." ]
task110-78323ef2186b462297687e92f50dfa08
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; attendance ; 1 } ; home } ; montreal } = true Output:
[ "select the row whose attendance record of all rows is 1st maximum . the home record of this row is montreal ." ]
task110-f8af2133cb17494e9769db708e35d14c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; of stars ; 15 } } ; eq { hop { filter_eq { all_rows ; of stars ; 15 } ; season } ; 4 - autumn 2008 } } = true Output:
[ "select the rows whose of stars record is equal to 15 . there is only one such row in the table . the season record of this unqiue row is 4 autumn 2008 ." ]
task110-49202edf02894e12a8fc8997bce48bf0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { filter_less { all_rows ; original air date ; january 1 , 2010 } ; us viewers ( million ) } ; 9.74 } = true Output:
[ "select the rows whose original air date record is less than january 1 , 2010 . the average of the us viewers million record of these rows is 9.74 ." ]
task110-00625600daed4d57ac9e6e2a434e9ae7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; school ( ihsaa id ) ; knox community } ; enrollment } ; hop { filter_eq { all_rows ; school ( ihsaa id ) ; culver community } ; enrollment } } = true Output:
[ "select the rows whose school ihsaa id record fuzzily matches to knox community . take the enrollment record of this row . select the rows whose school ihsaa id record fuzzily matches to culver community . take the enrollment record of this row . the first record is greater than the second record ." ]
task110-5a9fc8ebc7474f868e5674a2bf11f95b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_greater_eq { all_rows ; crowd ; 8000 } = true Output:
[ "for the crowd records of all rows , all of them are greater than or equal to 8000 ." ]
task110-8c7274d536604c6db04dd71a5d81c89a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; spent per voter ( php ) } ; 4.46 } = true Output:
[ "the average of the spent per voter php record of all rows is 4.46 ." ]
task110-a91d8d95dc4547e8b6da83af8a163acd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; home team score } ; 12.09 } = true Output:
[ "the average of the home team score record of all rows is 12.09 ." ]
task110-78ca021de04e4626a6e99be797ce0e48
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; title ; mount rushmore } ; original air date } ; hop { filter_eq { all_rows ; title ; salem } ; original air date } } = true Output:
[ "select the rows whose title record fuzzily matches to mount rushmore . take the original air date record of this row . select the rows whose title record fuzzily matches to salem . take the original air date record of this row . the first record is greater than the second record ." ]
task110-959395d9f91c4255ab058cd79040d73c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { diff { hop { filter_eq { all_rows ; nation ; new zealand } ; bronze } ; hop { filter_eq { all_rows ; nation ; jamaica } ; bronze } } ; 2 } = true Output:
[ "select the rows whose nation record fuzzily matches to new zealand . take the bronze record of this row . select the rows whose nation record fuzzily matches to jamaica . take the bronze record of this row . the first record is 2 larger than the second record ." ]
task110-9768d3f4450c49f78b6263bc77571ea5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; floors } ; name } ; commerzbank tower } = true Output:
[ "select the row whose floors record of all rows is maximum . the name record of this row is commerzbank tower ." ]
task110-5a36c248c82848cd920d2e60475672fe
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; original air date ; 1 } ; family / families } ; the haynes family and the potter family } = true Output:
[ "select the row whose original air date record of all rows is 1st maximum . the family families record of this row is the haynes family and the potter family ." ]
task110-3586adf6b1ec46268529db1519a6e30e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; location attendance } ; date } ; january 11 } = true Output:
[ "select the row whose location attendance record of all rows is maximum . the date record of this row is january 11 ." ]
task110-ea5814c255cb4b98bb3766a9cbb41b95
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; country ; dominican republic } ; asians } ; hop { filter_eq { all_rows ; country ; costa rica } ; asians } } = true Output:
[ "select the rows whose country record fuzzily matches to dominican republic . take the asians record of this row . select the rows whose country record fuzzily matches to costa rica . take the asians record of this row . the first record is greater than the second record ." ]
task110-92ee8988ccde497cacd8081c77a6b5f8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { all_rows ; year ; 2009 } = true Output:
[ "for the year records of all rows , most of them are less than 2009 ." ]
task110-5d617420eaba46b68461f793c5fcb1b3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; competition ; friendly } } ; 4 } = true Output:
[ "select the rows whose competition record fuzzily matches to friendly . the number of such rows is 4 ." ]
task110-c308a74654d74acaa89cce9f1ef7328b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; laps ; 2 } ; year } ; 2003 } = true Output:
[ "select the row whose laps record of all rows is 2nd maximum . the year record of this row is 2003 ." ]
task110-112a454cb52748469280fd75a4101677
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { nth_max { filter_eq { all_rows ; location ; woodlands stadium ndola } ; date ; 1 } ; 29 june 2008 } = true Output:
[ "select the rows whose location record fuzzily matches to woodlands stadium ndola . the 1st maximum date record of these rows is 29 june 2008 ." ]
task110-9a7214fbcaa54c8c9aaa8474bd5dccd2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { nth_min { all_rows ; date ; 1 } ; 03 oct } ; eq { hop { nth_argmin { all_rows ; date ; 1 } ; time } ; 12:00 } } = true Output:
[ "the 1st minimum date record of all rows is 03 oct . the time record of the row with 1st minimum date record is 12:00 ." ]
task110-570ccb9190194ef79fd11e99f00021fc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; nationality ; united states } = true Output:
[ "for the nationality records of all rows , all of them fuzzily match to united states ." ]
task110-84b916e8549e487782a32b8343651535
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; directed by ; david grossman } } ; 5 } = true Output:
[ "select the rows whose directed by record fuzzily matches to david grossman . the number of such rows is 5 ." ]
task110-140cba900f0a449eab0c675d3995df0b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; took office ; 195 } } ; 2 } = true Output:
[ "select the rows whose took office record fuzzily matches to 195 . the number of such rows is 2 ." ]
task110-09eb164cfce147bcb854b43c4487fc1d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; date ; 1 } ; winning driver } ; eugenio silvani } = true Output:
[ "select the row whose date record of all rows is 1st minimum . the winning driver record of this row is eugenio silvani ." ]
task110-c4fd9ecde67a4c26ba8d7cb7dc42b1cd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; date ; september 8 , 2002 } ; attendance } ; hop { filter_eq { all_rows ; date ; september 15 , 2002 } ; attendance } } = true Output:
[ "select the rows whose date record fuzzily matches to september 8 , 2002 . take the attendance record of this row . select the rows whose date record fuzzily matches to september 15 , 2002 . take the attendance record of this row . the first record is greater than the second record ." ]
task110-e04ad11c375b42ff833bb0713a12b46d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { min { all_rows ; date } ; 13 , 14 , 16 dec 1901 } = true Output:
[ "the minimum date record of all rows is 13 , 14 , 16 dec 1901 ." ]
task110-cd1c919021ac47d8a6740f5a48c5608a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { filter_eq { all_rows ; model number ; 800 } ; frequency } ; 800 } = true Output:
[ "select the rows whose model number record fuzzily matches to 800 . the average of the frequency record of these rows is 800 ." ]
task110-c6b2549575e44175b2ad37ba42ccd333
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; discipline ; stock car } = true Output:
[ "for the discipline records of all rows , most of them fuzzily match to stock car ." ]
task110-cc44c952831c48ef8db86e340779d3bf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; laps } ; year } ; 2002 } = true Output:
[ "select the row whose laps record of all rows is maximum . the year record of this row is 2002 ." ]
task110-9d79e32710ca4df38cf7f794a0991afb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; college / junior / club team ; regina pats } } ; 2 } = true Output:
[ "select the rows whose college junior club team record fuzzily matches to regina pats . the number of such rows is 2 ." ]
task110-98a25743eca4423aba4305c494ec141d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; location attendance ; quicken loans arena } } ; eq { hop { filter_eq { all_rows ; location attendance ; quicken loans arena } ; date } ; november 3 } } = true Output:
[ "select the rows whose location attendance record fuzzily matches to quicken loans arena . there is only one such row in the table . the date record of this unqiue row is november 3 ." ]
task110-e25eafae59ab424d8ae19956901230be
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { filter_eq { all_rows ; team ; rhein fire } ; capacity } ; 56308 } = true Output:
[ "select the rows whose team record fuzzily matches to rhein fire . the average of the capacity record of these rows is 56308 ." ]
task110-98f018d70de34e9396812dac70b648d7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; attendance } ; 15503 } = true Output:
[ "the average of the attendance record of all rows is 15503 ." ]
task110-1ad9c7c7ba7146d9891def6bb67a372f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; home team score } ; 15.18 } = true Output:
[ "the average of the home team score record of all rows is 15.18 ." ]
task110-3bcc78849e0542a092420af7a8745319
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; original air date ; 2013 } = true Output:
[ "for the original air date records of all rows , all of them fuzzily match to 2013 ." ]
task110-df2f3e6678604d63bca6b7322f71c6e5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; age ; 2 } ; contestant } ; daniella filipovic } = true Output:
[ "select the row whose age record of all rows is 2nd maximum . the contestant record of this row is daniella filipovic ." ]
task110-8e6183fc8ba0457088e38127502402f4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; total ; 2 } ; athlete } ; monica pinette } = true Output:
[ "select the row whose total record of all rows is 2nd maximum . the athlete record of this row is monica pinette ." ]
task110-1958971485e34d4e8b84641ca5d51011