invoice_data / layoutlmv3.py
LouisDang's picture
Upload layoutlmv3.py
318f974
import json
import os
import ast
from pathlib import Path
import datasets
from PIL import Image
import pandas as pd
import glob
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{,
title={},
author={},
journal={},
year={},
volume={}
}
"""
_DESCRIPTION = """\
This is a sample dataset for training layoutlmv3 model on custom annotated data.
"""
def load_image(image_path):
image = Image.open(image_path).convert("RGB")
w, h = image.size
return image, (w,h)
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
_URLS = []
data_dir = r"D:\Study\LayoutLMV3\data_ne"
class DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for InvoiceExtraction Dataset"""
def __init__(self, **kwargs):
"""BuilderConfig for InvoiceExtraction Dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DatasetConfig, self).__init__(**kwargs)
class InvoiceExtraction(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
DatasetConfig(name="InvoiceExtraction", version=datasets.Version("1.0.0"), description="InvoiceExtraction dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names = [ 'address', 'company_name', 'customer_id', 'invoice_id', 'invoice_date', 'invoice_total', 'sub_total', 'total_tax', 'item', 'amount',
]
)
),
"image_path": datasets.Value("string"),
"image": datasets.features.Image()
}
),
supervised_keys=None,
citation=_CITATION,
homepage="",
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
"""Uses local files located with data_dir"""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/training_data/")}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/testing_data/")}
),
]
def get_line_bbox(self, bboxs):
x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]
x0, y0, x1, y1 = min(x), min(y), max(x), max(y)
assert x1 >= x0 and y1 >= y0
bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
return bbox
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
ann_dir = os.path.join(filepath, "annotations")
img_dir = os.path.join(filepath, "images")
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
tokens = []
bboxes = []
ner_tags = []
file_path = os.path.join(ann_dir, file)
with open(file_path, "r", encoding="utf8") as f:
data = json.load(f)
image_path = os.path.join(img_dir, file.replace('.json', '.png')) # Adjust the file extension
print("Image Path:", image_path) # Add this line
image, size = load_image(image_path)
for item in data["form"]:
cur_line_bboxes = []
words, label = item["words"], item["label"]
words = [w for w in words if w["text"].strip() != ""]
if len(words) == 0:
continue
if label == "other":
for w in words:
tokens.append(w["text"])
ner_tags.append("O")
cur_line_bboxes.append(normalize_bbox(w["box"], size))
else:
tokens.append(words[0]["text"])
ner_tags.append("B-" + label.upper())
cur_line_bboxes.append(normalize_bbox(words[0]["box"], size))
for w in words[1:]:
tokens.append(w["text"])
ner_tags.append("I-" + label.upper())
cur_line_bboxes.append(normalize_bbox(w["box"], size))
cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
bboxes.extend(cur_line_bboxes)
yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}