Datasets:

Languages:
English
ArXiv:
License:
File size: 7,013 Bytes
2ce90a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720b05b
2ce90a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720b05b
2ce90a9
 
720b05b
2ce90a9
 
720b05b
2ce90a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720b05b
 
 
2ce90a9
 
7ea2120
2ce90a9
 
 
 
 
720b05b
 
2ce90a9
 
 
 
 
720b05b
2ce90a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720b05b
2ce90a9
720b05b
 
2ce90a9
 
720b05b
2ce90a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os

import datasets
from datasets.tasks import AutomaticSpeechRecognition
from tqdm.auto import tqdm


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/abs-2111-09344,
  author    = {Daniel Galvez and
               Greg Diamos and
               Juan Ciro and
               Juan Felipe Ceron and
               Keith Achorn and
               Anjali Gopi and
               David Kanter and
               Maximilian Lam and
               Mark Mazumder and
               Vijay Janapa Reddi},
  title     = {The People's Speech: A Large-Scale Diverse English Speech Recognition
               Dataset for Commercial Usage},
  journal   = {CoRR},
  volume    = {abs/2111.09344},
  year      = {2021},
  url       = {https://arxiv.org/abs/2111.09344},
  eprinttype = {arXiv},
  eprint    = {2111.09344},
  timestamp = {Mon, 22 Nov 2021 16:44:07 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

# You can copy an official description
_DESCRIPTION = """\
The People's Speech is a free-to-download 30,000-hour and growing supervised 
conversational English speech recognition dataset licensed for academic and 
commercial usage under CC-BY-SA (with a CC-BY subset).
"""

_HOMEPAGE = "https://mlcommons.org/en/peoples-speech/"

_LICENSE = [
    "cc-by-2.0", "cc-by-2.5", "cc-by-3.0", "cc-by-4.0", "cc-by-sa-2.5",
    "cc-by-sa-3.0", "cc-by-sa-4.0"
]

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "clean-cc-by": {
        "audio_tar": "",
        "manifest": "",
    },
    "dirty-cc-by": {
        "audio_tar": "",
        "manifest": "",
    },
    "clean-cc-by-sa": {
        "audio_tar": "",
        "manifest": "",
    },
    "dirty-cc-by-sa": {
        "audio_tar": "",
        "manifest": "",
    },
    "microset": {
        "audio_tar": "",
        "manifest": "",
    },
}

_BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"

# relative path to data inside dataset's repo
_DATA_URL = _BASE_URL + "{config}/{config}_00000{archive_id}.tar"

# relative path to metadata inside dataset's repo
_MANIFEST_URL = _BASE_URL + "{config}.json"


class PeoplesSpeech(datasets.GeneratorBasedBuilder):
    """The People's Speech dataset."""

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="clean", version=VERSION, description="Clean, CC-BY licensed subset."),
        datasets.BuilderConfig(name="dirty", version=VERSION, description="Dirty, CC-BY licensed subset."),
        datasets.BuilderConfig(name="clean_sa", version=VERSION, description="Clean, CC-BY-SA licensed subset."),
        datasets.BuilderConfig(name="dirty_sa", version=VERSION, description="Dirty, CC-BY-SA licensed subset."),
    ]
    DEFAULT_CONFIG_NAME = "clean"
    DEFAULT_WRITER_BATCH_SIZE = 1

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "duration_ms": datasets.Value("int32"),
                    "text": datasets.Value("string"),
                }
            ),
            task_templates=[AutomaticSpeechRecognition()],
            supervised_keys=("file", "text"),
            homepage=_HOMEPAGE,
            license="/".join(_LICENSE),  # license must be a string
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: for demo purposes I use just first 5 archives
        # TODO: this should be changed to the actual number of archives further
        urls = [_DATA_URL.format(config=self.config.name, archive_id=i) for i in range(5)]
        archive_paths = [dl_manager.download(url) for url in urls]
        local_extracted_archive_paths = [dl_manager.extract(path) for path in archive_paths] \
            if not dl_manager.is_streaming else [None] * len(archive_paths)

        manifest_url = _MANIFEST_URL.format(config=self.config.name)
        manifest_path = dl_manager.download_and_extract(manifest_url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "local_extracted_archive_paths": local_extracted_archive_paths,
                    "archives": [dl_manager.iter_archive(path) for path in archive_paths],
                    "manifest_path": manifest_path
                },
            ),
        ]

    def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path):
        meta = dict()
        with open(manifest_path, "r", encoding="utf-8") as f:
            for line in tqdm(f, desc="reading metadata file"):
                sample_meta = json.loads(line)
                _id = sample_meta["audio_document_id"]
                texts = sample_meta["training_data"]["label"]
                audio_filenames = sample_meta["training_data"]["name"]
                durations = sample_meta["training_data"]["duration_ms"]
                for audio_filename, text, duration in zip(audio_filenames, texts, durations):
                    meta[audio_filename] = {
                        "audio_document_id": _id,
                        "text": text,
                        "duration_ms": duration
                    }

        print("generating examples")
        for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
            for audio_filename, audio_file in archive:
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \
                    else audio_filename
                yield audio_filename, {
                    "id": audio_filename,
                    "audio": {"path": path, "bytes": audio_file.read()},
                    "text": meta[audio_filename]["text"],
                    "duration_ms": meta[audio_filename]["duration_ms"]
                }