markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
hash
stringlengths
32
32
对象检测 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://tensorflow.google.cn/hub/tutorials/object_detection"><img src="https://tensorflow.google.cn/images/tf_logo_32px.png">View 在 TensorFlow.org 上查看</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/hub/tutorials/object_detection.ipynb"><img src="https://tensorflow.google.cn/images/colab_logo_32px.png">在 Google Colab 中运行 </a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/hub/tutorials/object_detection.ipynb"> <img src="https://tensorflow.google.cn/images/GitHub-Mark-32px.png"> 在 GitHub 上查看源代码</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/zh-cn/hub/tutorials/object_detection.ipynb"><img src="https://tensorflow.google.cn/images/download_logo_32px.png">下载笔记本</a></td> <td><a href="https://tfhub.dev/s?q=google%2Ffaster_rcnn%2Fopenimages_v4%2Finception_resnet_v2%2F1%20OR%20google%2Ffaster_rcnn%2Fopenimages_v4%2Finception_resnet_v2%2F1"><img src="https://tensorflow.google.cn/images/hub_logo_32px.png">查看 TF Hub 模型</a></td> </table> 此 Colab 演示如何使用经过训练的 TF-Hub 模块执行对象检测。 设置
#@title Imports and function definitions # For running inference on the TF-Hub module. import tensorflow as tf import tensorflow_hub as hub # For downloading the image. import matplotlib.pyplot as plt import tempfile from six.moves.urllib.request import urlopen from six import BytesIO # For drawing onto the image. import numpy as np from PIL import Image from PIL import ImageColor from PIL import ImageDraw from PIL import ImageFont from PIL import ImageOps # For measuring the inference time. import time # Print Tensorflow version print(tf.__version__) # Check available GPU devices. print("The following GPU devices are available: %s" % tf.test.gpu_device_name())
site/zh-cn/hub/tutorials/object_detection.ipynb
tensorflow/docs-l10n
apache-2.0
6cd77466b188a7ef2cf827ca0797ee37
使用示例 用于下载图像和可视化的辅助函数。 为了实现最简单的必需功能,根据 TF 对象检测 API 改编了可视化代码。
def display_image(image): fig = plt.figure(figsize=(20, 15)) plt.grid(False) plt.imshow(image) def download_and_resize_image(url, new_width=256, new_height=256, display=False): _, filename = tempfile.mkstemp(suffix=".jpg") response = urlopen(url) image_data = response.read() image_data = BytesIO(image_data) pil_image = Image.open(image_data) pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS) pil_image_rgb = pil_image.convert("RGB") pil_image_rgb.save(filename, format="JPEG", quality=90) print("Image downloaded to %s." % filename) if display: display_image(pil_image) return filename def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color, font, thickness=4, display_str_list=()): """Adds a bounding box to an image.""" draw = ImageDraw.Draw(image) im_width, im_height = image.size (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = top + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle([(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font) text_bottom -= text_height - 2 * margin def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1): """Overlay labeled boxes on an image with formatted scores and label names.""" colors = list(ImageColor.colormap.values()) try: font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf", 25) except IOError: print("Font not found, using default font.") font = ImageFont.load_default() for i in range(min(boxes.shape[0], max_boxes)): if scores[i] >= min_score: ymin, xmin, ymax, xmax = tuple(boxes[i]) display_str = "{}: {}%".format(class_names[i].decode("ascii"), int(100 * scores[i])) color = colors[hash(class_names[i]) % len(colors)] image_pil = Image.fromarray(np.uint8(image)).convert("RGB") draw_bounding_box_on_image( image_pil, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str]) np.copyto(image, np.array(image_pil)) return image
site/zh-cn/hub/tutorials/object_detection.ipynb
tensorflow/docs-l10n
apache-2.0
ee5c49a2dced25038b55273c1326eddf
应用模块 从 Open Images v4 加载公共图像,并在本地保存和显示。
# By Heiko Gorski, Source: https://commons.wikimedia.org/wiki/File:Naxos_Taverna.jpg image_url = "https://upload.wikimedia.org/wikipedia/commons/6/60/Naxos_Taverna.jpg" #@param downloaded_image_path = download_and_resize_image(image_url, 1280, 856, True)
site/zh-cn/hub/tutorials/object_detection.ipynb
tensorflow/docs-l10n
apache-2.0
84c7e220d3d2c63a68f6e01e0787e06e
选择对象检测模块并应用于下载的图像。模块包括: FasterRCNN+InceptionResNet V2:高准确率。 ssd+mobilenet V2:小而快。
module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1" #@param ["https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1", "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"] detector = hub.load(module_handle).signatures['default'] def load_img(path): img = tf.io.read_file(path) img = tf.image.decode_jpeg(img, channels=3) return img def run_detector(detector, path): img = load_img(path) converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] start_time = time.time() result = detector(converted_img) end_time = time.time() result = {key:value.numpy() for key,value in result.items()} print("Found %d objects." % len(result["detection_scores"])) print("Inference time: ", end_time-start_time) image_with_boxes = draw_boxes( img.numpy(), result["detection_boxes"], result["detection_class_entities"], result["detection_scores"]) display_image(image_with_boxes) run_detector(detector, downloaded_image_path)
site/zh-cn/hub/tutorials/object_detection.ipynb
tensorflow/docs-l10n
apache-2.0
5b0c714e0700246f5c46f6b90262a29a
更多图像 使用时间跟踪对部分其他图像进行推理。
image_urls = [ # Source: https://commons.wikimedia.org/wiki/File:The_Coleoptera_of_the_British_islands_(Plate_125)_(8592917784).jpg "https://upload.wikimedia.org/wikipedia/commons/1/1b/The_Coleoptera_of_the_British_islands_%28Plate_125%29_%288592917784%29.jpg", # By Américo Toledano, Source: https://commons.wikimedia.org/wiki/File:Biblioteca_Maim%C3%B3nides,_Campus_Universitario_de_Rabanales_007.jpg "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Biblioteca_Maim%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg/1024px-Biblioteca_Maim%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg", # Source: https://commons.wikimedia.org/wiki/File:The_smaller_British_birds_(8053836633).jpg "https://upload.wikimedia.org/wikipedia/commons/0/09/The_smaller_British_birds_%288053836633%29.jpg", ] def detect_img(image_url): start_time = time.time() image_path = download_and_resize_image(image_url, 640, 480) run_detector(detector, image_path) end_time = time.time() print("Inference time:",end_time-start_time) detect_img(image_urls[0]) detect_img(image_urls[1]) detect_img(image_urls[2])
site/zh-cn/hub/tutorials/object_detection.ipynb
tensorflow/docs-l10n
apache-2.0
cf00dae2b76bb740fd8f68baa9a68409
2. Different ways of learning from data Now let's say we want to predict the type of flower for a new given data point. There are multiple ways to solve this problem. We will consider these two ways in some detail: We could find a function which can directly map an input value to it's class label. We can find the probability distributions over the variables and then use this distribution to answer queries about the new data point. There are a lot of algorithms for finding a mapping function. For example linear regression tries to find a linear equation which explains the data. Support vector machine tries to find a plane which separates the data points. Decision Tree tries to find a set of simple greater than and less than equations to classify the data. Let's try to apply Decision Tree on this data set. We can plot the data and it looks something like this:
%matplotlib inline import matplotlib.pyplot as plt import numpy as np # Adding a little bit of noise so that it's easier to visualize data_with_noise = data.iloc[:, :2] + np.random.normal(loc=0, scale=0.1, size=(150, 2)) plt.scatter(data_with_noise.length, data_with_noise.width, c=[ "bgr"[k] for k in data.iloc[:,2] ], s=200, alpha=0.3)
notebooks/1. Introduction to Probabilistic Graphical Models.ipynb
pgmpy/pgmpy_notebook
mit
5afdcf4073b75741f00c5bd415e4279e
In the plot we can easily see that the blue points are concentrated on the top-left corner, green ones in bottom left and red ones in top right. Now let's try to train a Decision Tree on this data.
from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data[['length', 'width']].values, data.type.values, test_size=0.2) classifier = DecisionTreeClassifier(max_depth=4) classifier.fit(X_train, y_train) classifier.predict(X_test) classifier.score(X_test, y_test)
notebooks/1. Introduction to Probabilistic Graphical Models.ipynb
pgmpy/pgmpy_notebook
mit
40d499fd270f0064d679e220867c72d4
So, in this case we got a classification accuracy of 60 %. Now moving on to our second approach using a probabilistic model. The most obvious way to do this classification task would be to compute a Joint Probability Distribution over all these variables and then marginalize and reduce over these according to our new data point to get the probabilities of classes.
X_train, X_test = data[:120], data[120:] X_train # Computing the joint probability distribution over the training data joint_prob = X_train.groupby(['length', 'width', 'type']).size() / 120 joint_prob # Predicting values # Selecting just the feature variables. X_test_features = X_test.iloc[:, :2].values X_test_actual_results = X_test.iloc[:, 2].values predicted_values = [] for i in X_test_features: predicted_values.append(joint_prob[i[0], i[1]].idxmax()) predicted_values = np.array(predicted_values) predicted_values # Comparing results with the actual data. predicted_values == X_test_actual_results score = (predicted_values == X_test_actual_results).sum() / 30 print(score)
notebooks/1. Introduction to Probabilistic Graphical Models.ipynb
pgmpy/pgmpy_notebook
mit
30204d9073b47a7164a38e7823b0c1b7
Basic Concepts I What is "learning from data"? In general Learning from Data is a scientific discipline that is concerned with the design and development of algorithms that allow computers to infer (from data) a model that allows compact representation (unsupervised learning) and/or good generalization (supervised learning). This is an important technology because it enables computational systems to adaptively improve their performance with experience accumulated from the observed data. Most of these algorithms are based on the iterative solution of a mathematical problem that involves data and model. If there was an analytical solution to the problem, this should be the adopted one, but this is not the case for most of the cases. So, the most common strategy for learning from data is based on solving a system of equations as a way to find a series of parameters of the model that minimizes a mathematical problem. This is called optimization. The most important technique for solving optimization problems is gradient descend. Preliminary: Nelder-Mead method for function minimization. See "An Interactive Tutorial on Numerical Optimization": http://www.benfrederickson.com/numerical-optimization/ The most simple thing we can try to minimize a function $f(x)$ would be to sample two points relatively near each other, and just repeatedly take a step down away from the largest value. The Nelder-Mead method dynamically adjusts the step size based off the loss of the new point. If the new point is better than any previously seen value, it expands the step size to accelerate towards the bottom. Likewise if the new point is worse it contracts the step size to converge around the minima. The usual settings are to half the step size when contracting and double the step size when expanding. This method can be easily extended into higher dimensional examples, all thats required is taking one more point than there are dimensions - and then reflecting the worst point around the rest of the points to take a step down. Gradient descend (for hackers) for function minimization: 1-D Let's suppose that we have a function $f: \Re \rightarrow \Re$. For example: $$f(x) = x^2$$ Our objective is to find the argument $x$ that minimizes this function (for maximization, consider $-f(x)$). To this end, the critical concept is the derivative. The derivative of $f$ of a variable $x$, $f'(x)$ or $\frac{\mathrm{d}f}{\mathrm{d}x}$, is a measure of the rate at which the value of the function changes with respect to the change of the variable. It is defined as the following limit: $$ f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} $$ The derivative specifies how to scale a small change in the input in order to obtain the corresponding change in the output: $$ f(x + h) \approx f(x) + h f'(x)$$
# numerical derivative at a point x def f(x): return x**2 def fin_dif(x, f, h = 0.00001): ''' This method returns the derivative of f at x by using the finite difference method ''' return (f(x+h) - f(x))/h x = 2.0 print "{:2.4f}".format(fin_dif(x,f))
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
7d8191b3015e360fddbf34cef3cd7a98
The limit as $h$ approaches zero, if it exists, should represent the slope of the tangent line to $(x, f(x))$. For values that are not zero it is only an approximation.
for h in np.linspace(0.0, 1.0 , 5): print "{:3.6f}".format(f(5+h)), "{:3.6f}".format(f(5)+h*fin_dif(5,f)) x = np.linspace(-1.5,-0.5, 100) f = [i**2 for i in x] plt.plot(x,f, 'r-') plt.plot([-1.5, -0.5], [2, 0.0], 'k-', lw=2) plt.plot([-1.4, -1.0], [1.96, 1.0], 'b-', lw=2) plt.plot([-1],[1],'o') plt.plot([-1.4],[1.96],'o') plt.text(-1.0, 1.2, r'$x,f(x)$') plt.text(-1.4, 2.2, r'$(x-h),f(x-h)$') plt.gcf().set_size_inches((12,6)) plt.grid() plt.show
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
83ff76038ce7b18b027c39dfd39a2204
It can be shown that the “centered difference formula" is better when computing numerical derivatives: $$ \lim_{h \rightarrow 0} \frac{f(x + h) - f(x - h)}{2h} $$ The error in the "finite difference" approximation can be derived from Taylor's theorem and, assuming that $f$ is differentiable, is $O(h)$. In the case of “centered difference" the error is $O(h^2)$. The derivative tells how to chage $x$ in order to make a small improvement in $f$. Then, we can follow these steps to decrease the value of the function: Start from a random $x$ value. Compute the derivative $f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x - h)}{2h}$. Walk a small step in the opposite direction of the derivative, because we know that $f(x - h \mbox{ sign}(f'(x))$ is less than $f(x)$ for small enough $h$. The search for the minima ends when the derivative is zero because we have no more information about which direction to move. $x$ is a critical o stationary point if $f'(x)=0$. A minimum (maximum) is a critical point where $f(x)$ is lower (higher) than at all neighboring points. There is a third class of critical points: saddle points. If $f$ is a convex function, this should be the minimum (maximum) of our functions. In other cases it could be a local minimum (maximum) or a saddle point.
W = 400 H = 250 bp.output_notebook() x = np.linspace(-15,15,100) y = x**2 TOOLS = [WheelZoomTool(), ResetTool(), PanTool()] s1 = bp.figure(width=W, plot_height=H, title='Local minimum of function', tools=TOOLS) s1.line(x, y, color="navy", alpha=0.5, line_width=3) s1.circle(0, 0, size =10, color="orange") s1.title_text_font_size = '12pt' s1.yaxis.axis_label_text_font_size = "14pt" s1.xaxis.axis_label_text_font_size = "14pt" bp.show(s1) x = np.linspace(-15,15,100) y = -x**2 TOOLS = [WheelZoomTool(), ResetTool(), PanTool()] s1 = bp.figure(width=W, plot_height=H, title='Local maximum of function', tools=TOOLS) s1.line(x, y, color="navy", alpha=0.5, line_width=3) s1.circle(0, 0, size =10, color="orange") s1.title_text_font_size = '12pt' s1.yaxis.axis_label_text_font_size = "14pt" s1.xaxis.axis_label_text_font_size = "14pt" bp.show(s1) x = np.linspace(-15,15,100) y = x**3 TOOLS = [WheelZoomTool(), ResetTool(), PanTool()] s1 = bp.figure(width=W, plot_height=H, title='Saddle point of function', tools=TOOLS) s1.line(x, y, color="navy", alpha=0.5, line_width=3) s1.circle(0, 0, size =10, color="orange") s1.title_text_font_size = '12pt' s1.yaxis.axis_label_text_font_size = "14pt" s1.xaxis.axis_label_text_font_size = "14pt" bp.show(s1)
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
76eeb1355ba1664b66b7ffc7e29bc160
There are two problems with numerical derivatives: + It is approximate. + It is very slow to evaluate (two function evaluations: $f(x + h) , f(x - h)$ ). Our knowledge from Calculus could help! We know that we can get an analytical expression of the derivative for some functions. For example, let's suppose we have a simple quadratic function, $f(x)=x^2−6x+5$, and we want to find the minimum of this function. First approach We can solve this analytically using Calculus, by finding the derivate $f'(x) = 2x-6$ and setting it to zero: \begin{equation} \begin{split} 2x-6 & = & 0 \ 2x & = & 6 \ x & = & 3 \ \end{split} \end{equation}
x = np.linspace(-10,20,100) y = x**2 - 6*x + 5 TOOLS = [WheelZoomTool(), ResetTool(), PanTool()] s1 = bp.figure(width=W, plot_height=H, tools=TOOLS) s1.line(x, y, color="navy", alpha=0.5, line_width=3) s1.circle(3, 3**2 - 6*3 + 5, size =10, color="orange") s1.title_text_font_size = '12pt' s1.yaxis.axis_label_text_font_size = "14pt" s1.xaxis.axis_label_text_font_size = "14pt" bp.show(s1)
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
29c891216eac891b85beab7dbe9f465d
Second approach To find the local minimum using gradient descend: you start at a random point, and move into the direction of steepest descent relative to the derivative: Start from a random $x$ value. Compute the derivative $f'(x)$ analitically. Walk a small step in the opposite direction of the derivative. In this example, let's suppose we start at $x=15$. The derivative at this point is $2×15−6=24$. Because we're using gradient descent, we need to subtract the gradient from our $x$-coordinate: $f(x - f'(x))$. However, notice that $15−24$ gives us $−9$, clearly overshooting over target of $3$.
x = np.linspace(-10,20,100) y = x**2 - 6*x + 5 start = 15 TOOLS = [WheelZoomTool(), ResetTool(), PanTool()] s1 = bp.figure(width=W, plot_height=H, tools=TOOLS) s1.line(x, y, color="navy", alpha=0.5, line_width=3) s1.circle(start, start**2 - 6*start + 5, size =10, color="orange") d = 2 * start - 6 end = start - d s1.circle(end, end**2 - 6*end + 5, size =10, color="red") s1.title_text_font_size = '12pt' s1.yaxis.axis_label_text_font_size = "14pt" s1.xaxis.axis_label_text_font_size = "14pt" bp.show(s1)
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
07d571b829263d92f6ec80496597fb00
To fix this, we multiply the gradient by a step size. This step size (often called alpha) has to be chosen carefully, as a value too small will result in a long computation time, while a value too large will not give you the right result (by overshooting) or even fail to converge. In this example, we'll set the step size to 0.01, which means we'll subtract $24×0.01$ from $15$, which is $14.76$. This is now our new temporary local minimum: We continue this method until we either don't see a change after we subtracted the derivative step size, or until we've completed a pre-set number of iterations.
old_min = 0 temp_min = 15 step_size = 0.01 precision = 0.0001 def f_derivative(x): import math return 2*x -6 mins = [] cost = [] while abs(temp_min - old_min) > precision: old_min = temp_min gradient = f_derivative(old_min) move = gradient * step_size temp_min = old_min - move cost.append((3-temp_min)**2) mins.append(temp_min) # rounding the result to 2 digits because of the step size print "Local minimum occurs at {:3.2f}.".format(round(temp_min,2))
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
878dc296fe47a63aada9894b5f913890
An important feature of gradient descent is that there should be a visible improvement over time: In this example, we simply plotted the squared distance from the local minima calculated by gradient descent and the true local minimum, cost, against the iteration during which it was calculated. As we can see, the distance gets smaller over time, but barely changes in later iterations.
TOOLS = [WheelZoomTool(), ResetTool(), PanTool()] x, y = (zip(*enumerate(cost))) s1 = bp.figure(width=W, height=H, title='Squared distance to true local minimum', # title_text_font_size='14pt', tools=TOOLS, x_axis_label = 'Iteration', y_axis_label = 'Distance' ) s1.line(x, y, color="navy", alpha=0.5, line_width=3) s1.title_text_font_size = '16pt' s1.yaxis.axis_label_text_font_size = "14pt" s1.xaxis.axis_label_text_font_size = "14pt" bp.show(s1)
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
a3b969ff619cc37551c22e8565fb64f3
From derivatives to gradient: $n$-dimensional function minimization. Let's consider a $n$-dimensional function $f: \Re^n \rightarrow \Re$. For example: $$f(\mathbf{x}) = \sum_{n} x_n^2$$ Our objective is to find the argument $\mathbf{x}$ that minimizes this function. The gradient of $f$ is the vector whose components are the $n$ partial derivatives of $f$. It is thus a vector-valued function. The gradient points in the direction of the greatest rate of increase of the function. $$\nabla {f} = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$$
def f(x): return sum(x_i**2 for x_i in x) def fin_dif_partial_centered(x, f, i, h=1e-6): w1 = [x_j + (h if j==i else 0) for j, x_j in enumerate(x)] w2 = [x_j - (h if j==i else 0) for j, x_j in enumerate(x)] return (f(w1) - f(w2))/(2*h) def fin_dif_partial_old(x, f, i, h=1e-6): w1 = [x_j + (h if j==i else 0) for j, x_j in enumerate(x)] return (f(w1) - f(x))/h def gradient_centered(x, f, h=1e-6): return[round(fin_dif_partial_centered(x,f,i,h), 10) for i,_ in enumerate(x)] def gradient_old(x, f, h=1e-6): return[round(fin_dif_partial_old(x,f,i,h), 10) for i,_ in enumerate(x)] x = [1.0,1.0,1.0] print f(x), gradient_centered(x,f) print f(x), gradient_old(x,f)
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
828a9a7e51b4d3458f3a6fd23d25bda0
Let's start by choosing a random vector and then walking a step in the opposite direction of the gradient vector. We will stop when the difference between the new solution and the old solution is less than a tolerance value.
# choosing a random vector import random import numpy as np x = [random.randint(-10,10) for i in range(3)] x def step(x,grad,alpha): return [x_i - alpha * grad_i for x_i, grad_i in zip(x,grad)] tol = 1e-15 alpha = 0.01 while True: grad = gradient_centered(x,f) next_x = step(x,grad,alpha) if euc_dist(next_x,x) < tol: break x = next_x print [round(i,10) for i in x]
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
b2ea070f7ac82fce55d5fdbdfd8d5c4e
Learning from data In general, we have: A dataset $(\mathbf{x},y)$. A target function $f_\mathbf{w}$, that we want to minimize, representing the discrepancy between our data and the model we want to fit. The model is represented by a set of parameters $\mathbf{w}$. The gradient of the target function, $g_f$. In the most common case $f$ represents the errors from a data representation model $M$. To fit the model is to find the optimal parameters $\mathbf{w}$ that minimize the following expression: $$ f_\mathbf{w} = \sum_{i} (y_i - M(\mathbf{x}_i,\mathbf{w}))^2 $$ For example, $(\mathbf{x},y)$ can represent: $\mathbf{x}$: the behavior of a "Candy Crush" player; $y$: monthly payments. $\mathbf{x}$: sensor data about your car engine; $y$: probability of engine error. $\mathbf{x}$: finantial data of a bank customer; $y$: customer rating. If $y$ is a real value, it is called a regression problem. If $y$ is binary/categorical, it is called a classification problem. Let's suppose that $M(\mathbf{x},\mathbf{w}) = \mathbf{w} \cdot \mathbf{x}$. Batch gradient descend We can implement gradient descend in the following way (batch gradient descend):
# f = 2x x = range(100) y = [2*i for i in x] # f_target = Sum (y - wx)**2 def target_f(x,y,w): import numpy as np return np.sum((np.array(y) - np.array(x) * w)**2.0) # gradient_f = Sum 2wx**2 - 2xy def gradient_f(x,y,w): import numpy as np return np.sum(2*w*(np.array(x)**2) - 2*np.array(x)*np.array(y)) def step(w,grad,alpha): return w - alpha * grad def min_batch(target_f, gradient_f, x, y, toler = 1e-6): import random alphas = [100, 10, 1, 0.1, 0.001, 0.00001] w = random.random() val = target_f(x,y,w) print "First w:", w, "First Val:", val, "\n" i = 0 while True: i += 1 gradient = gradient_f(x,y,w) next_ws = [step(w, gradient, alpha) for alpha in alphas] next_vals = [target_f(x,y,w) for w in next_ws] min_val = min(next_vals) next_w = next_ws[next_vals.index(min_val)] next_val = target_f(x,y,next_w) print i, "w: {:4.4f}".format(w), "Val:{:4.4f}".format(val), "Gradient:", gradient if (abs(val - next_val) < toler) or (i>200): return w else: w, val = next_w, next_val min_batch(target_f, gradient_f, x, y) # Exercise: # 1. Consider a set of 100 data points and explain the behavior of the algorithm. # 2. How could we fix this behavior?
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
794dde0793ebde4cdb2dc8e4b39bc3c3
Stochastic Gradient Descend The last function evals the whole dataset $(\mathbf{x}_i,y_i)$ at every step. If the dataset is large, this strategy is too costly. In this case we will use a strategy called SGD (Stochastic Gradient Descend). When learning from data, the cost function is additive: it is computed by adding sample reconstruction errors. Then, we can compute the estimate the gradient (and move towards the minimum) by using only one data sample (or a small data sample). Thus, we will find the minimum by iterating this gradient estimation over the dataset. A full iteration over the dataset is called epoch. During an epoch, data must be used in a random order. If we apply this method we have some theoretical guarantees to find the minimum.
import numpy as np x = range(10) y = [2*i for i in x] data = zip(x,y) def in_random_order(data): import random indexes = [i for i,_ in enumerate(data)] random.shuffle(indexes) for i in indexes: yield data[i] for (x_i,y_i) in in_random_order(data): print x_i,y_i def gradient_f_SGD(x,y,w): import numpy as np return 2*w*(np.array(x)**2) - 2*np.array(x)*np.array(y) def SGD(target_f, gradient_f, x, y, alpha_0=0.01): import numpy as np import random data = zip(x,y) w = random.random() alpha = alpha_0 min_w, min_val = float('inf'), float('inf') iteration_no_increase = 0 while iteration_no_increase < 100: val = sum(target_f(x_i, y_i, w) for x_i,y_i in data) if val < min_val: min_w, min_val = w, val iteration_no_increase = 0 alpha = alpha_0 else: iteration_no_increase += 1 alpha *= 0.9 for x_i, y_i in in_random_order(data): gradient_i = gradient_f(x_i, y_i, w) w = np.array(w) - (alpha * np.array(gradient_i)) return min_w print "w:", SGD(target_f, gradient_f_SGD, x, y, 0.01)
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
1645f4d425d8885f7ca30480bef5dc3f
Exercise: Gradient Descent and Linear Regression The linear regression model assumes a linear relationship between data: $$ y_i = w_1 x_i + w_0 $$ Let's generate a more realistic dataset (with noise), where $w_1 = 2$ and $w_0 = 0$:
import numpy as np x = np.random.uniform(0,1,20) def f(x): return x*2 noise_variance =0.2 noise = np.random.randn(x.shape[0])*noise_variance y = f(x) + noise plt.plot(x, y, 'o', label='y') plt.plot([0, 1], [f(0), f(1)], 'b-', label='f(x)') plt.xlabel('$x$', fontsize=15) plt.ylabel('$t$', fontsize=15) plt.ylim([0,2]) plt.title('inputs (x) vs targets (y)') plt.grid() plt.legend(loc=2) plt.gcf().set_size_inches((10,6)) plt.show() # Our model y = x * w def nn(x, w): return x * w # Our cost function def cost(y, t): return ((t - y)**2).sum() ws = np.linspace(0, 4, num=100) cost_ws = np.vectorize(lambda w: cost(nn(x, w) , y))(ws) # Ploting the cost function plt.plot(ws, cost_ws, 'r-') plt.xlabel('$w$', fontsize=15) plt.ylabel('Cost', fontsize=15) plt.title('Cost vs. $w$') plt.grid() plt.gcf().set_size_inches((10,6)) plt.show()
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
1be607b172804ea7908a3c2f3af87a5a
Complete the following code and look at the plot of the first gradient descent updates. Explore the behavior of the proposed learning rates.
def gradient(w, x, y): return 2 * x * (nn(x, w) - y) def step(w_k, x, y, learning_rate): return learning_rate * gradient(w_k, x, y).sum() w = 0.01 # define a learning_rate learning_rate = 0.1 nb_of_iterations = 20 w_cost = [(w, cost(nn(x, w), y))] for i in range(nb_of_iterations): # Here your code w_cost.append((w, cost(nn(x, w), y))) for i in range(0, len(w_cost)): print('w({}): {:.4f} \t cost: {:.4f}'.format(i, w_cost[i][0], w_cost[i][1])) # Plotting the first gradient descent updates plt.plot(ws, cost_ws, 'r-') # Plot the error curve # Plot the updates for i in range(1, len(w_cost)-2): w1, c1 = w_cost[i-1] w2, c2 = w_cost[i] plt.plot(w1, c1, 'bo') plt.plot([w1, w2],[c1, c2], 'b-') plt.text(w1, c1+0.5, '$w({})$'.format(i)) # Plot the last weight, axis, and show figure w1, c1 = w_cost[len(w_cost)-3] plt.plot(w1, c1, 'bo') plt.text(w1, c1+0.5, '$w({})$'.format(nb_of_iterations)) plt.xlabel('$w$', fontsize=15) plt.ylabel('$\\xi$', fontsize=15) plt.title('Gradient descent updates plotted on cost function') plt.grid() plt.gcf().set_size_inches((10,6)) plt.show() w = 0 nb_of_iterations = 10 for i in range(nb_of_iterations): dw = step(w, x, y, learning_rate) w = w - dw plt.plot(x, y, 'o', label='t') plt.plot([0, 1], [f(0), f(1)], 'b-', label='f(x)') plt.plot([0, 1], [0*w, 1*w], 'r-', label='fitted line') plt.xlabel('input x') plt.ylabel('target t') plt.ylim([0,2]) plt.title('input vs. target') plt.grid() plt.legend(loc=2) plt.gcf().set_size_inches((10,6)) plt.show()
1. Basic Concepts I.ipynb
jvitria/DeepLearningBBVA2016
mit
ae509d318556cdb18b4a25c8347f87ad
Macierz kolumnowa w NumPy. $$X = \begin{pmatrix} 3 \ 4 \ 5 \ 6 \end{pmatrix}$$
x = np.array([[3,4,5,6]]).T x
Cwiczenia/01/Uczenie Maszynowe - Ćwiczenia 1.3 - NumPy, algebra liniowa.ipynb
emjotde/UMZ
cc0-1.0
b97de2bb20a075438061e1b83d4acfd0
A macierz wierszowa w NumPy. $$ X = \begin{pmatrix} 3 & 4 & 5 & 6 \end{pmatrix}$$
x = np.array([[3,4,5,6]]) x
Cwiczenia/01/Uczenie Maszynowe - Ćwiczenia 1.3 - NumPy, algebra liniowa.ipynb
emjotde/UMZ
cc0-1.0
fc994a37fdf15391c01d1c8b50bbf140
Obiekty typu matrix Macierze ogólne omówiliśmy już w poprzednich dokumentach: $$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \ \vdots & \vdots & \ddots & \vdots \ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$ Oprócz obiektów typu array istnieje wyspecjalizowany obiekt matrix, dla którego operacje * (mnożenie) oraz **-1 (odwracanie) są określone w sposób właściwy dla macierzy (w przeciwieństwu do operacji elementowych dla obietków array).
x = np.array([1,2,3,4,5,6,7,8,9]).reshape(3,3) x X = np.matrix(x) X
Cwiczenia/01/Uczenie Maszynowe - Ćwiczenia 1.3 - NumPy, algebra liniowa.ipynb
emjotde/UMZ
cc0-1.0
4ab48653a57c644f5e7eb9681a8bcaeb
Operacje na macierzach Wyznacznik
a = np.array([[3,-9],[2,5]]) np.linalg.det(a)
Cwiczenia/01/Uczenie Maszynowe - Ćwiczenia 1.3 - NumPy, algebra liniowa.ipynb
emjotde/UMZ
cc0-1.0
f044a26858b891a6bbb669dd13cbf643
Macierz odwrotna
A = np.array([[-4,-2],[5,5]]) A invA = np.linalg.inv(A) invA np.round(np.dot(A,invA))
Cwiczenia/01/Uczenie Maszynowe - Ćwiczenia 1.3 - NumPy, algebra liniowa.ipynb
emjotde/UMZ
cc0-1.0
b1bbeb61a9ba04188d04e884ced92931
Ponieważ $AA^{-1} = A^{-1}A = I$. Wartości i wektory własne
a = np.diag((1, 2, 3)) a w,v = np.linalg.eig(a) w v
Cwiczenia/01/Uczenie Maszynowe - Ćwiczenia 1.3 - NumPy, algebra liniowa.ipynb
emjotde/UMZ
cc0-1.0
a5b863a8f4b58f4d5a4061400e8e867a
The resulting dictionary accepted_papers contains a list of the accepted papers for each conference.
for conference, papers in sorted(accepted_papers.items()): print('{conference} includes {papers} accepted papers.'.format( conference=conference, papers=len(papers)))
paper_selection.ipynb
aaai2018-paperid-62/aaai2018-paperid-62
mit
b8806438ec973a54484931587a6427d3
Selection A sample population of 100 papers is selected from each conference using Python's pseudo-random number module. As per the documentation on random.sample "The resulting list is in selection order so that all sub-slices will also be valid random samples." The seed is set to the unix timestamp for Jan 10 14:46:40 2017 UTC: 1484059600.
import random random.seed(1484059600) k = 100 samples = {} # The order is set explicitly due to originally not sorting # accepted_papers.items(). conferences = ['aaai-16', 'aaai-14', 'ijcai-13', 'ijcai-16'] for conference in conferences: samples[conference] = random.sample(accepted_papers[conference], k)
paper_selection.ipynb
aaai2018-paperid-62/aaai2018-paperid-62
mit
a1c36b3ca4bd7ff62409574cce0726a2
Note that when originally generating the samples, the dictionary was iterated by the use of Python 3's dict.items() view. The order is not guaranteed. Due to the original generation not being sorted, the iteration needs to be set explicitly so future runs generate the same original sample populations. The generated random samples are permanently stored to files in the ../data/ directory (Github: https://github.com/sidgek/msoppgave/tree/master/data/.
for conference, papers in samples.items(): outputfile = 'data/sampled_{conference}'.format(conference=conference) with open(outputfile, 'w') as f: for line in papers: f.write(line)
paper_selection.ipynb
aaai2018-paperid-62/aaai2018-paperid-62
mit
5859c88b7d510a1da334d103c9f3ff25
Versions Here's a generated output to keep track of software versions used to run this Jupyter notebook.
import IPython import platform print('Python version: {}'.format(platform.python_version())) print('IPython version: {}'.format(IPython.__version__))
paper_selection.ipynb
aaai2018-paperid-62/aaai2018-paperid-62
mit
5ca2b6547fb78eb07255c46ac6434d55
Set where to write Lya ensemble dflux.
outdir = '/global/homes/m/mjwilson/sandbox/lya-signal/desimodel/0.14.0/data/tsnr'
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
b960840e73c2653b0551ebd9be7ba12a
Load a set of Vi'd Lya QSOs.
dat = fits.open('/project/projectdirs/desi/spectro/redux/cascades/tiles/80609/deep/coadd-0-80609-deep.fits') dat.info() vi = pandas.read_csv('/project/projectdirs/desi/sv/vi/TruthTables/Blanc/QSO/desi-vi_QSO_tile80609_nightdeep_merged_all_210210_ADDING_object_info.csv') vi isin = (vi['best_spectype'] == 'QSO') & (vi['best_quality'] >= 2.5) & (vi['best_z'] >= 2.1) vi = vi[isin] vi tids = vi['TARGETID'] gauss_kernel = Gaussian1DKernel(15) isin = np.isin(dat['FIBERMAP'].data['TARGETID'], tids) fmap_ids = dat['FIBERMAP'].data['TARGETID'][isin] nin = np.count_nonzero(fmap_ids) gmags = 22.5 - 2.5*np.log10(dat['FIBERMAP'].data['FLUX_G'][isin] / mwdust_transmission(dat['FIBERMAP'].data['EBV'][isin], 'G', dat['FIBERMAP'].data['PHOTSYS'][isin])) gmags
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
caf0623aca01f29b67eadb8163da4be0
Our QSOs
fig, axes = plt.subplots(nin, 1, figsize=(5, 5 * nin)) for band in ['B','R','Z']: for i, x in enumerate(dat['{}_FLUX'.format(band)].data[isin]): axes[i].plot(dat['{}_WAVELENGTH'.format(band)].data, convolve(x, gauss_kernel), lw=0.5) axes[i].set_ylim(bottom=-0.5)
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
55d3a86db305864657138dbb35131f09
Take closest to g=22 to be our reference.
idx = np.where(np.abs(gmags - 22.) == np.abs(gmags - 22.).min())[0][0] # Force 7 idx = 7 # Closest to 22. master_fluxes = {'gmag': gmags[idx], 'tid': fmap_ids[idx]} for band in ['B', 'R', 'Z']: master_fluxes[band] = {'wave': dat['{}_WAVELENGTH'.format(band)].data, 'smoothflux': convolve(dat['{}_FLUX'.format(band)].data[isin][idx], gauss_kernel), 'ivar': dat['{}_IVAR'.format(band)].data[isin][idx]} master_fluxes['tid'] master_fluxes['gmag'] vi[vi['TARGETID'] == master_fluxes['tid']] master_fluxes['z'] = vi[vi['TARGETID'] == master_fluxes['tid']]['best_z'] master_fluxes['continuum'] = 0.43 pl.plot(master_fluxes['B']['wave'], master_fluxes['B']['smoothflux']) pl.axhline(master_fluxes['continuum'], c='k', lw=0.5) pl.xlabel('Wavelength [A]') pl.ylabel('1.e-17 ergs/s/cm2/A')
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
55eb22b833f560de7848777192291d14
Later we use this (by eye) 'continuum' as our asymptotic 'signal' normalization at the blue end. Get a QSO n(z)
# https://desi.lbl.gov/svn/code/desimodel/tags/0.14.0/data/targets/nz_qso.dat; # Number per sq. deg. per dz=0.1 # Note: Cascades zlo, zhi, Nz = np.loadtxt('/global/common/software/desi/cori/desiconda/20200801-1.4.0-spec/code/desimodel/0.14.0/data/targets/nz_qso.dat', unpack=True) zmid = 0.5 * (zlo + zhi) Nz /= Nz.max() pl.plot(zmid, Nz, c='k', lw=0.5) pl.xlabel('z') zs = np.random.uniform(0.0, 5.0, 500000) zs = np.sort(zs) # pl.hist(zs, bins=np.arange(0.0, 5.0, 0.1)) draws = np.random.uniform(0.0, 1.0, 500000) idx = np.digitize(zs, bins=np.arange(0.0, 5.1, 0.1)) probs = np.zeros_like(idx, dtype=np.float) for i, uid in enumerate(np.unique(idx)[:-1]): probs[idx == uid] = Nz[i] draws probs isin = draws <= probs qso_zs = zs[isin]
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
73cf1f1e69f2323d1c62b068bfe8d3b2
Here we've drawn an ensemble of zs from this distribution.
pl.plot(zmid, 5000. * Nz, c='k', lw=0.5) pl.hist(qso_zs, bins=np.arange(0.0, 5.0, 0.05), alpha=0.5) pl.xlabel('z') lya_zs = qso_zs[qso_zs > 2.1] lya_zs # lya_zs = lya_zs[:2] # 1216. * (1. + lya_zs) nlya = len(lya_zs)
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
0b286c66bd2a10984598e2316817387a
Our 'signal' will be unity bluer than Lya for a given redshift (zero otherwise). We then stack across the ensemble.
tracer = 'LYA' hdr = fits.Header() hdr['NMODEL'] = nlya hdr['TRACER'] = tracer hdr['FILTER'] = 'decam2014-g' hdr['ZLO'] = 2.1 hdu_list = [fits.PrimaryHDU(header=hdr)] for band in ['b', 'r', 'z']: wave = dat['{}_WAVELENGTH'.format(band)].data nwave = wave[:,None] * np.ones(nlya, dtype=float)[None,:] weight = np.zeros(shape=(len(wave), nlya), dtype=float) for i, z in zip(range(nlya), lya_zs): weight[nwave[:,i] < (1. + z) * 1216., i] = 1.0 mweight = np.mean(weight, axis=1) zpivot = 2.4 zfactor = (wave / (1. + zpivot) / 1216.)**0.95 zweight = zfactor * mweight mweight = np.expand_dims(master_fluxes['continuum'] * mweight, axis=0) zweight = np.expand_dims(master_fluxes['continuum'] * zweight, axis=0) if band =='b': pl.plot(wave, mweight[0], c='k', linestyle='--', label='No z weight') pl.plot(wave, zweight[0], c='k', label='z weight') else: pl.plot(wave, mweight[0], c='k', linestyle='--', label='') pl.plot(wave, zweight[0], c='k', label='') hdu_list.append(fits.ImageHDU(wave, name='WAVE_{}'.format(band.upper()))) hdu_list.append(fits.ImageHDU(zweight, name='DFLUX_{}'.format(band.upper()))) hdu_list = fits.HDUList(hdu_list) hdu_list.writeto('{}/tsnr-ensemble-{}.fits'.format(outdir, tracer.lower()), overwrite=True) pl.xlabel('Wavelength [A]') pl.ylabel('1.e-17 ergs/s/cm2/A') pl.legend(frameon=False, loc=1) print('Written to {}/tsnr-ensemble-{}.fits'.format(outdir, tracer.lower()))
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
0688b3a22cdcb1ee4a7f718cbbc51831
Finally, here we've used our reference continuum from above as the blue end normalization and write to disk at outdir. Check against QSO tsnr.
ens = fits.open('/global/common/software/desi/cori/desiconda/20200801-1.4.0-spec/code/desimodel/0.14.0/data/tsnr/tsnr-ensemble-qso.fits') ens.info() ens['DFLUX_B'].shape
doc/nb/Lya-tsnr-signal.ipynb
desihub/desispec
bsd-3-clause
a6769a3b37cc9a0b791ab37a4b9f855f
Non-rigid surface deformation <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/graphics/blob/master/tensorflow_graphics/notebooks/non_rigid_deformation.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/notebooks/non_rigid_deformation.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a> </td> </table> Non-rigid surface deformation is a technique that, among other things, can be used to interactively manipulate meshes or to deform a template mesh to fit to a point-cloud. When manipulating meshes, this can for instance allow users to move the hand of a character, and have the rest of the arm deform in a realistic manner. It is interesting to note that the deformation can also be performed over the scale of parts or the entire mesh. This notebook illustrates how to use Tensorflow Graphics to perform deformations similiar to the one contained in the above image. Setup & Imports If Tensorflow Graphics is not installed on your system, the following cell can install the Tensorflow Graphics package for you.
!pip install tensorflow_graphics
tensorflow_graphics/notebooks/non_rigid_deformation.ipynb
tensorflow/graphics
apache-2.0
ffadd439cfeacd44da40862f0a468919
Now that Tensorflow Graphics is installed, let's import everything needed to run the demo contained in this notebook.
import numpy as np import tensorflow as tf from tensorflow_graphics.geometry.deformation_energy import as_conformal_as_possible from tensorflow_graphics.geometry.representation.mesh import utils as mesh_utils from tensorflow_graphics.geometry.transformation import quaternion from tensorflow_graphics.math.optimizer import levenberg_marquardt from tensorflow_graphics.notebooks import threejs_visualization from tensorflow_graphics.notebooks.resources import triangulated_stripe
tensorflow_graphics/notebooks/non_rigid_deformation.ipynb
tensorflow/graphics
apache-2.0
7b266993e3c6a25bd8e72fcfcebbeb22
In this example, we build a mesh that corresponds to a flat and rectangular surface. Using the sliders, you can control the position of the deformation constraints applied to that surface, which respectively correspond to all the points along the left boundary, center, and right boundary of the mesh.
mesh_rest_pose = triangulated_stripe.mesh connectivity = mesh_utils.extract_unique_edges_from_triangular_mesh(triangulated_stripe.mesh['faces']) camera = threejs_visualization.build_perspective_camera( field_of_view=40.0, position=(0.0, -5.0, 5.0)) width = 500 height = 500 _ = threejs_visualization.triangular_mesh_renderer([mesh_rest_pose], width=width, height=height, camera=camera) ############### # UI controls # ############### #@title Constraints on the deformed pose { vertical-output: false, run: "auto" } constraint_1_z = 0 #@param { type: "slider", min: -1, max: 1 , step: 0.05 } constraint_2_z = -1 #@param { type: "slider", min: -1, max: 1 , step: 0.05 } constraint_3_z = 0 #@param { type: "slider", min: -1, max: 1 , step: 0.05 } vertices_rest_pose = tf.Variable(mesh_rest_pose['vertices']) vertices_deformed_pose = np.copy(mesh_rest_pose['vertices']) num_vertices = vertices_deformed_pose.shape[0] # Adds the user-defined constraints vertices_deformed_pose[0, 2] = constraint_1_z vertices_deformed_pose[num_vertices // 2, 2] = constraint_1_z vertices_deformed_pose[num_vertices // 4, 2] = constraint_2_z vertices_deformed_pose[num_vertices // 2 + num_vertices // 4, 2] = constraint_2_z vertices_deformed_pose[num_vertices // 2 - 1, 2] = constraint_3_z vertices_deformed_pose[-1, 2] = constraint_3_z mesh_deformed_pose = { 'vertices': vertices_deformed_pose, 'faces': mesh_rest_pose['faces'] } vertices_deformed_pose = tf.Variable(vertices_deformed_pose) # Builds a camera and render the mesh. camera = threejs_visualization.build_perspective_camera( field_of_view=40.0, position=(0.0, -5.0, 5.0)) _ = threejs_visualization.triangular_mesh_renderer([mesh_rest_pose], width=width, height=height, camera=camera) _ = threejs_visualization.triangular_mesh_renderer([mesh_deformed_pose], width=width, height=height, camera=camera) geometries = threejs_visualization.triangular_mesh_renderer( [mesh_deformed_pose], width=width, height=height, camera=camera) ################ # Optimization # ################ def update_viewer_callback(iteration, objective_value, variables): """Callback to be called at each step of the optimization.""" geometries[0].getAttribute('position').copyArray( variables[0].numpy().ravel().tolist()) geometries[0].getAttribute('position').needsUpdate = True geometries[0].computeVertexNormals() def deformation_energy(vertices_deformed_pose, rotation): """As conformal as possible deformation energy.""" return as_conformal_as_possible.energy( vertices_rest_pose, vertices_deformed_pose, rotation, connectivity, aggregate_loss=False) def soft_constraints(vertices_deformed_pose): """Soft constrains forcing results to obey the user-defined constraints.""" weight = 10.0 return ( weight * (vertices_deformed_pose[0, 2] - constraint_1_z), weight * (vertices_deformed_pose[num_vertices // 2, 2] - constraint_1_z), weight * (vertices_deformed_pose[num_vertices // 4, 2] - constraint_2_z), weight * (vertices_deformed_pose[num_vertices // 2 + num_vertices // 4, 2] - constraint_2_z), weight * (vertices_deformed_pose[num_vertices // 2 - 1, 2] - constraint_3_z), weight * (vertices_deformed_pose[-1, 2] - constraint_3_z), ) def fitting_energy(vertices_deformed_pose, rotation): deformation = deformation_energy(vertices_deformed_pose, rotation) constraints = soft_constraints(vertices_deformed_pose) return tf.concat((deformation, constraints), axis=0) rotations = tf.Variable(quaternion.from_euler(np.zeros((num_vertices, 3)))) max_iterations = 15 #@param { isTemplate: true, type: "integer" } _ = levenberg_marquardt.minimize( residuals=fitting_energy, variables=(vertices_deformed_pose, rotations), max_iterations=int(max_iterations), callback=update_viewer_callback)
tensorflow_graphics/notebooks/non_rigid_deformation.ipynb
tensorflow/graphics
apache-2.0
f81aef28661759db78e26c0a2f652c2b
Applying to Test Dataset
Org_blind_data = pd.read_csv('../data/nofacies_data.csv') blind_data = Org_blind_data[Org_blind_data["NM_M"]==1] X_blind = blind_data.drop(['Formation', 'Well Name', 'Depth'], axis=1).values well_blind = blind_data['Well Name'].values depth_blind = blind_data['Depth'].values X_blind, padded_rows = augment_features(X_blind, well_blind, depth_blind, N_neig=1) # Scaling scl = preprocessing.MinMaxScaler().fit(X1org) X_train = scl.transform(X1org) X_blind = scl.transform(X_blind) Y_train = np_utils.to_categorical(y1org, nb_classes) # Method initialization model = fDNN(in_dim, nb_classes) # Training model.fit(X_train, Y_train, nb_epoch=epoch, batch_size=bats, verbose=0) # Predict y_blind = model.predict_classes(X_blind, verbose=0) y_blind = medfilt(y_blind, kernel_size=5) Org_blind_data.ix[Org_blind_data["NM_M"]==1,"Facies"] = y_blind + 1 # return the original value (1-9) blind_data = Org_blind_data[Org_blind_data["NM_M"]==2] X_blind = blind_data.drop(['Formation', 'Well Name', 'Depth','Facies'], axis=1).values well_blind = blind_data['Well Name'].values depth_blind = blind_data['Depth'].values X_blind, padded_rows = augment_features(X_blind, well_blind, depth_blind, N_neig=1) # Scaling scl = preprocessing.MinMaxScaler().fit(X2org) X_train = scl.transform(X2org) X_blind = scl.transform(X_blind) Y_train = np_utils.to_categorical(y2org, nb_classes) # Method initialization model = fDNN(in_dim, nb_classes) # Training model.fit(X_train, Y_train, nb_epoch=epoch, batch_size=bats, verbose=0) # Predict y_blind = model.predict_classes(X_blind, verbose=0) y_blind = medfilt(y_blind, kernel_size=5) Org_blind_data.ix[Org_blind_data["NM_M"]==2,"Facies"] = y_blind + 1 # return the original value (1-9) Org_blind_data.to_csv("PA_Team_Submission_4-revised.csv") make_facies_log_plot( Org_blind_data[Org_blind_data['Well Name'] == 'STUART'], facies_colors) make_facies_log_plot( Org_blind_data[Org_blind_data['Well Name'] == 'CRAWFORD'], facies_colors)
PA_Team/PA_Team_Submission_4-revised.ipynb
seg/2016-ml-contest
apache-2.0
e359855201cc5e70876814b07a488a1d
Instead of writing s = s + i we could have written s += i (read this as "s is whatever it was before plus the value of i"). So we could rewrite that for loop as:
x = [2,4,6,8,10] s = 0 for i in x: s += i print("The sum of x is:", s)
Mathematical-Notation-Sums-and-Products.ipynb
Bio204-class/bio204-notebooks
cc0-1.0
39b6715c82a5f8a0c735d467239a01db
Now what if we wanted to calculate the sum of the reciprocals of each element of x? A simple change to our code give us:
x = [2,4,6,8,10] s = 0 for i in x: s += (1/i) print("The sum of the reciprocals of x is:", s)
Mathematical-Notation-Sums-and-Products.ipynb
Bio204-class/bio204-notebooks
cc0-1.0
6e02c1d2a7d6341671ecf74feeaa8431
To bring things full circle, the equivalent mathematical notation to represent the operation of summing the reciprocals of all the elements of $\mathbf{x}$ would be: $$ \sum_{i=1}^n \frac{1}{\mathbf{x}_i} $$ The code above is somewhat fragile in that it's not easily re-usable. What if we wanted to sum the reciprocals of a list called y or z instead of x? We'd have to go through our code example and change each instance of x. That's boring and error prone. Instead let's write a Python function to abstract away the steps:
def sum_of_reciprocals(x): s = 0 for i in x: s += (1.0/i) return s # test our function with different inputs x = [2,4,6,8,10] y = [1,3,5,7,9] z = [-1,1,-1,1] print("The sum of the reciprocals of x is:", sum_of_reciprocals(x)) print("The sum of the reciprocals of y is:", sum_of_reciprocals(y)) print("The sum of the reciprocals of z is:", sum_of_reciprocals(z))
Mathematical-Notation-Sums-and-Products.ipynb
Bio204-class/bio204-notebooks
cc0-1.0
ac639200133d78c9f5dd7236237ced3b
A even more compact way of writing our sum of reciprocals operation, that still used the built in sum function would be to use a list comprehension as shown below:
sum_recip_x = sum([(1.0/i) for i in x]) print("The sum of the reciprocals of x is: ", sum_recip_x)
Mathematical-Notation-Sums-and-Products.ipynb
Bio204-class/bio204-notebooks
cc0-1.0
8120236bd43faca91b03e8251b164df3
Note that our sum_of_reciprocals function (or our solution using list comprehensions) doesn't deal with all possible cases we might use as input. If one of the elements of x was zero what would happen (go ahead and try it)? What if we passed a list of strings to the function instead of numbers? Product notation Now that you (hopefully) understand sum notation, it should be easy to understand product notation. We use product notation to represent the products of the elements of a sequence (i.e. the value we get when we multiply the elements of the sequence). As we'll see later in the course, product notation arises frequently in discussions of probability. The mathematical shorthand for taking the product of a sequence of numbers is the capital Greek Pi ($\Pi$). In parallel to our first example above, the product of the first ten elements of a sequence $\mathbf{x}$ could be written this way: $$ \prod_{i=1}^{10} \mathbf{x}_i $$ Other than the use of $\Pi$ rather than $\Sigma$, this is identical to the sum notation above. As before the notation includes information about the upper and lower bounds of the element indices for which we want to apply the operation. In a similar manner to what we saw before, we can represent the operation of getting the product of an arbitrary sequence $\mathbf{x}$ of length $n$ as follows: $$ \prod_{i=1}^{n} \mathbf{x}_i $$ Products with for loops Unlike sum, there is no built-in product function in Python (we will see an efficient implementation of the product operation when we get to the numerical Python libraries). However, as we saw above we can use for loops to write our own product function.
def product(x): p = 1 for i in x: p *= i # same as p = p * i return p x = [2,4,6,8,10] product(x) product([(1.0/i) for i in x]) # use list comprehension to get reciprocals of x
Mathematical-Notation-Sums-and-Products.ipynb
Bio204-class/bio204-notebooks
cc0-1.0
a80a2824577b0624c7d71d779d8f008b
Label some/all states In our structure of the code, the states should be a dictionary, the key is the index in the sequence (e.g. 0, 5) and the value is a one-out-of-n code of array where the kth value is 1 if the hidden state is k. n is the number of states in total. In the following example, we assume that the "corr" column gives the correct hidden states.
states = {} corr = np.array(speed['corr']) for i in range(len(corr)): state = np.zeros((2,)) if corr[i] == 'cor': states[i] = np.array([0,1]) else: states[i] = np.array([1,0])
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
0a69d5802300a8a75267bc6de31180ce
Set up a simple model manully
# we choose 2 hidden states in this model SHMM = SupervisedIOHMM(num_states=2) # we set only one output 'rt' modeled by a linear regression model SHMM.set_models(model_emissions = [OLS()], model_transition=CrossEntropyMNL(solver='lbfgs'), model_initial=CrossEntropyMNL(solver='lbfgs')) # we set no covariates associated with initial/transitiojn/emission models SHMM.set_inputs(covariates_initial = [], covariates_transition = [], covariates_emissions = [[]]) # set the response of the emission model SHMM.set_outputs([['rt']]) # set the data and ground truth states SHMM.set_data([[speed, states]])
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
02b2337f027f7f396663f2cca44a5671
See the training results
# the coefficients of the output model for each states print(SHMM.model_emissions[0][0].coef) print(SHMM.model_emissions[1][0].coef) # the scale/dispersion of the output model of each states print(np.sqrt(SHMM.model_emissions[0][0].dispersion)) print(np.sqrt(SHMM.model_emissions[1][0].dispersion)) # the transition probability from each state print(np.exp(SHMM.model_transition[0].predict_log_proba(np.array([[]])))) print(np.exp(SHMM.model_transition[1].predict_log_proba(np.array([[]]))))
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
01663808ca745af648024330dfdd3802
Save the trained model
json_dict = SHMM.to_json('../models/SupervisedIOHMM/') json_dict with open('../models/SupervisedIOHMM/model.json', 'w') as outfile: json.dump(json_dict, outfile, indent=4, sort_keys=True)
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
3a9fe489cdaf2d818b3fc73dff5549ac
Load back the trained model
SHMM_from_json = SupervisedIOHMM.from_json(json_dict)
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
a8b1a2ae3e6d691ab4a117a5302ccd24
See if the coefficients are any different
# the coefficients of the output model for each states print(SHMM.model_emissions[0][0].coef) print(SHMM.model_emissions[1][0].coef)
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
0a33ac2219f414fe9c09e19a5e3b7c9d
Set up the model using a config file, instead of doing it manully
with open('../models/SupervisedIOHMM/config.json') as json_data: json_dict = json.load(json_data) SHMM_from_config = SupervisedIOHMM.from_config(json_dict)
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
1e70304f26227f3c739a335db47c1366
See if the training results are any different?
# the coefficients of the output model for each states print(SHMM_from_config.model_emissions[0][0].coef) print(SHMM_from_config.model_emissions[1][0].coef)
examples/notebooks/SupervisedIOHMM.ipynb
Mogeng/IO-HMM
mit
3ec17c9012c56b7c7b7b17eeb6c7e71e
iter() The iter() method returns an iterator for the given object. Syntax: python iter(object[, sentinel]) Where object is an object based on which the iterator needs to be constructed. The behavior of iterator is dependent on the value of sentinel, if sentinel is not provided then object should be an interator and the construct will behave as such, where as if sentinel is provided then object should be callable, and value returned will be treated as next call. Iteration ends when the value retuned equals to value in sentinel
class MyDummy(object): def __init__(self): self.lst = [1, 2, 3, 4, 5, 6] self.i = 0 def __call__(self): ret = self.lst[self.i] self.i += 1 return ret d = MyDummy() for a in iter(d, 3): print(a, end=" ") m = MyIter([1, 2, 3, 4, 5, 6]) for a in iter(m): print(a, end=" ")
Section 2 - Advance Python/Chapter S2.01 - Functional Programming/02_03_iter.ipynb
mayankjohri/LetsExplorePython
gpl-3.0
75f952172414eb3edcc73b97830a6ed1
lets try another example, this time lets take a string
st = "Welcome to the city of lakes" for a in iter(st): print(a, end=" ")
Section 2 - Advance Python/Chapter S2.01 - Functional Programming/02_03_iter.ipynb
mayankjohri/LetsExplorePython
gpl-3.0
d0ad93bb1cb0876e97613901e1794e15
A non-$2^n$ FFT (10 points) Now that we have implemented a fast radix-2 algorithm for vectors of length $2^n$, we can write a generic algorithm which can take any length input. This algorithm will check if the length of the input is divisible by 2, if so then it will use the FFT, otherwise it will default to the slower matrix-based DFT.
def generalFFT(x): """radix-2 DIT FFT x: list or array of N values to perform FFT on, can be real or imaginary """ ox = np.asarray(x, dtype='complex') # assure the input is an array of complex values # INSERT: assign a value to N, the size of the FFT N = #??? 1 point if N==1: return ox # base case elif # INSERT: check if the length is divisible by 2, 1 point # INSERT: do a FFT, use your ditrad2() code here, 3 points # Hint: your ditrad2() code can be copied here, and will work with only a minor modification else: # INSERT: if not divisable by 2, do a slow Fourier Transform return # ??? 1 point
2_Mathematical_Groundwork/fft_implementation_assignment.ipynb
griffinfoster/fundamentals_of_interferometry
gpl-2.0
f2fb201464ce05e6dc7447fdefdea6f3
Create the test table
with oracledb.connect(user=db_user, password=db_pass, dsn=db_connect_string) as ora_conn: cursor = ora_conn.cursor() # use this drop statement if you need to recreate the table # cursor.execute("drop table data") cursor.execute("begin dbms_random.seed(4242); end;") cursor.execute(""" create table data as select dbms_random.value * 100 random_value from dual connect by level <=100 """)
Oracle_Jupyter/Oracle_histograms.ipynb
LucaCanali/Miscellaneous
apache-2.0
e0fb69e0121234adc172c7f9b16bc8e6
Define the query to compute the histogram
table_name = "data" # table or temporary view containing the data value_col = "random_value" # column name on which to compute the histogram min = -20 # min: minimum value in the histogram max = 90 # maximum value in the histogram bins = 11 # number of histogram buckets to compute step = (max - min) / bins query = f""" with bucketized as ( select width_bucket({value_col}, {min}, {max}, {bins}) as bucket from {table_name} ), hist as ( select bucket, count(*) as cnt from bucketized group by bucket ), buckets as ( select rownum as bucket from dual connect by level <= {bins} ) select bucket, {min} + (bucket - 1/2) * {step} as value, nvl(cnt, 0) as count from hist right outer join buckets using(bucket) order by bucket """
Oracle_Jupyter/Oracle_histograms.ipynb
LucaCanali/Miscellaneous
apache-2.0
9a530e1e42f68de048909a591ebcc63f
Fetch the histogram data into a pandas dataframe
import pandas as pd # query Oracle using ora_conn and put the result into a pandas Dataframe with oracledb.connect(user=db_user, password=db_pass, dsn=db_connect_string) as ora_conn: hist_pandasDF = pd.read_sql(query, con=ora_conn) # Decription # # BUCKET: the bucket number, range from 1 to bins (included) # VALUE: midpoint value of the given bucket # COUNT: number of values in the bucket hist_pandasDF # Optionally normalize the event count into a frequency # dividing by the total number of events hist_pandasDF["FREQUENCY"] = hist_pandasDF["COUNT"] / sum(hist_pandasDF["COUNT"]) hist_pandasDF
Oracle_Jupyter/Oracle_histograms.ipynb
LucaCanali/Miscellaneous
apache-2.0
58a513b2e237c49792d72848c83b6cb3
Histogram plotting The first plot is a histogram with the event counts (number of events per bin). The second plot is a histogram of the events frequencies (number of events per bin normalized by the sum of the events).
import matplotlib.pyplot as plt plt.style.use('seaborn-darkgrid') plt.rcParams.update({'font.size': 20, 'figure.figsize': [14,10]}) f, ax = plt.subplots() # histogram data x = hist_pandasDF["VALUE"] y = hist_pandasDF["COUNT"] # bar plot ax.bar(x, y, width = 3.0, color='red') ax.set_xlabel("Bucket values") ax.set_ylabel("Event count") ax.set_title("Distribution of event counts") # Label for the resonances spectrum peaks txt_opts = {'horizontalalignment': 'center', 'verticalalignment': 'center', 'transform': ax.transAxes} plt.show() import matplotlib.pyplot as plt plt.style.use('seaborn-darkgrid') plt.rcParams.update({'font.size': 20, 'figure.figsize': [14,10]}) f, ax = plt.subplots() # histogram data x = hist_pandasDF["VALUE"] y = hist_pandasDF["FREQUENCY"] # bar plot ax.bar(x, y, width = 3.0, color='blue') ax.set_xlabel("Bucket values") ax.set_ylabel("Event frequency") ax.set_title("Distribution of event frequencies") # Label for the resonances spectrum peaks txt_opts = {'horizontalalignment': 'center', 'verticalalignment': 'center', 'transform': ax.transAxes} plt.show()
Oracle_Jupyter/Oracle_histograms.ipynb
LucaCanali/Miscellaneous
apache-2.0
1cb8d52cffd546f6fb43c578b9fe53be
이전 제출물
senten = input("What's going on? ") senten = ".".join(senten) senten = senten.split('.') print(senten) for dot, capi in morse.items(): if capi in senten: print(dot,end=" ") #dotted = sorted(morse.get(dot)) #print(sorted(morse.get(dot),reverse=True), end=" ") print(morse.get(dot),end=" ")
midterm/kookmin_midterm_조재환_2.ipynb
initialkommit/kookmin
mit
6a6aeb74a2af6a01c8675b9c25e089d9
이전에 제출한 것은 출력하면 알파벳과 모스부호가 정렬되지 않았습니다. 입력한 문장대로 모스부호를 나타내고 싶었었는데 조금 더 공부하다보니 코드를 만들 수 있어서 다시 한번 제출합니다. 수정
senten = input("What's going on? ") # 모스부호로 나타낼 문장을 입력 senten = ".".join(senten) # 모스부호의 형태가 '알파벳' : '모스부호'로 되어있어서 입력받은 문장을 # 알파벳 단위로 끊어주기 위해 "."join으로 각 단어 사이에 .을 넣습니다. senten = senten.split('.') # .을 기준으로 단어들을 모두 끊어 줍니다. print(senten) for word in senten: # str형태를 for문으로 출력하면 값하나가 그대로 나옵니다. for dot, capi in morse.items(): # 모스부호의 dictionary를 가져옵니다. if word in capi: # senten안의 word가 모스부호의 알파벳과 같으면 print(capi,"=",dot, end=", ") # 알파벳에 해당하는 모스부호를 출력합니다. senten = input("What's going on? ") # 모스부호로 나타낼 문장을 입력 print(senten) for word in senten: # str형태를 for문으로 출력하면 값하나가 그대로 나옵니다. for dot, capi in morse.items(): # 모스부호의 dictionary를 가져옵니다. if word in capi: # senten안의 word가 모스부호의 알파벳과 같으면 print(capi,"=",dot, end=", ") # 알파벳에 해당하는 모스부호를 출력합니다. sentens = 'IM LATE' sentens[0] morse.items()
midterm/kookmin_midterm_조재환_2.ipynb
initialkommit/kookmin
mit
88091a9ab9230d791497d992f6272c96
Examine a single patient
patientunitstayid = 141168 query = query_schema + """ select * from pasthistory where patientunitstayid = {} order by pasthistoryoffset """.format(patientunitstayid) df = pd.read_sql_query(query, con) df.head()
notebooks/pasthistory.ipynb
mit-eicu/eicu-code
mit
af6aad314b37d3f26f640be87964ce89
We can make a few observations: pasthistorypath is a slash delimited (/) hierarchical categorization of the past history recorded pasthistoryvalue and pasthistoryvaluetext are often identical pasthistoryoffset is the time of the condition, while pasthistoryenteredoffset is when it was documented, though from above it appears the pasthistoryoffset is not necessarily the start time of the condition Identifying COPD patients Let's look for patients who were admitted with a past history of COPD.
dx = 'COPD' query = query_schema + """ select pasthistoryvalue, count(*) as n from pasthistory where pasthistoryvalue ilike '%{}%' group by pasthistoryvalue """.format(dx) df_copd = pd.read_sql_query(query, con) df_copd dx = 'COPD' query = query_schema + """ select patientunitstayid, count(*) as n from pasthistory where pasthistoryvalue ilike '%{}%' group by patientunitstayid """.format(dx) df_copd = pd.read_sql_query(query, con) print('{} unit stays with {}.'.format(df_copd.shape[0], dx))
notebooks/pasthistory.ipynb
mit-eicu/eicu-code
mit
c9e90b6a45568a3a06f435dbc1b91f93
Hospitals with data available
query = query_schema + """ with t as ( select distinct patientunitstayid from pasthistory ) select pt.hospitalid , count(distinct pt.patientunitstayid) as number_of_patients , count(distinct t.patientunitstayid) as number_of_patients_with_tbl from patient pt left join t on pt.patientunitstayid = t.patientunitstayid group by pt.hospitalid """.format(patientunitstayid) df = pd.read_sql_query(query, con) df['data completion'] = df['number_of_patients_with_tbl'] / df['number_of_patients'] * 100.0 df.sort_values('number_of_patients_with_tbl', ascending=False, inplace=True) df.head(n=10) df[['data completion']].vgplot.hist(bins=10, var_name='Number of hospitals', value_name='Percent of patients with data')
notebooks/pasthistory.ipynb
mit-eicu/eicu-code
mit
fe8609fa03bff77a25c179801a4aff6a
The output then needs to be flattened so it can be used in fully-connected (aka. dense) layers.
net = tf.contrib.layers.flatten(net) # This should eventually be replaced by: # net = tf.layers.flatten(net)
13B_Visual_Analysis_MNIST.ipynb
newworldnewlife/TensorFlow-Tutorials
mit
5a25f664f182f73d91646c862def62ad
Loss-Function to be Optimized To make the model better at classifying the input images, we must somehow change the variables of the neural network. The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the model. TensorFlow has a function for calculating the cross-entropy, which uses the values of the logits-layer because it also calculates the softmax internally, so as to to improve numerical stability.
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits)
13B_Visual_Analysis_MNIST.ipynb
newworldnewlife/TensorFlow-Tutorials
mit
17631cfa11fbecf4a09f56ab9323267b
With these parameters, the model creates wide AP waveforms that are more reminiscent of muscle cells than neurons. We now set up a simple optimisation problem with the model.
# First add some noise sigma = 0.5 noisy = values + np.random.normal(0, sigma, values.shape) # Plot the results plt.figure() plt.xlabel('Time') plt.ylabel('Noisy values') plt.plot(times, noisy) plt.show()
examples/toy/model-fitzhugh-nagumo.ipynb
martinjrobins/hobo
bsd-3-clause
c9e311b89edcf8936faa7b6b7ec9d49c
Next, we set up a problem. Because this model has multiple outputs (2), we use a MultiOutputProblem.
problem = pints.MultiOutputProblem(model, times, noisy) score = pints.SumOfSquaresError(problem)
examples/toy/model-fitzhugh-nagumo.ipynb
martinjrobins/hobo
bsd-3-clause
70cb7ca50c1330459aea75e3d7246314
Finally, we choose a wide set of boundaries and run!
# Select boundaries boundaries = pints.RectangularBoundaries([0., 0., 0.], [10., 10., 10.]) # Select a starting point x0 = [1, 1, 1] # Perform an optimization found_parameters, found_value = pints.optimise(score, x0, boundaries=boundaries) print('Score at true solution:') print(score(parameters)) print('Found solution: True parameters:' ) for k, x in enumerate(found_parameters): print(pints.strfloat(x) + ' ' + pints.strfloat(parameters[k])) # Plot the results plt.figure() plt.xlabel('Time') plt.ylabel('Values') plt.plot(times, noisy, '-', alpha=0.25, label='noisy signal') plt.plot(times, values, alpha=0.4, lw=5, label='original signal') plt.plot(times, problem.evaluate(found_parameters), 'k--', label='recovered signal') plt.legend() plt.show()
examples/toy/model-fitzhugh-nagumo.ipynb
martinjrobins/hobo
bsd-3-clause
a2c879f5973d00888db5f1e8c35a28aa
This shows the parameters are not retrieved entirely correctly, but the traces still strongly overlap. Sampling with Monomial-gamma HMC The Fitzhugh-Nagumo model has sensitivities calculated by the forward sensitivities approach, so we can use samplers that use gradients (although they will be slower per iteration; although perhaps not by ESS per second!), like Monomial-gamma HMC.
problem = pints.MultiOutputProblem(model, times, noisy) # Create a log-likelihood function (adds an extra parameter!) log_likelihood = pints.GaussianLogLikelihood(problem) # Create a uniform prior over both the parameters and the new noise variable log_prior = pints.UniformLogPrior( [0, 0, 0, 0, 0], [10, 10, 10, 20, 20] ) # Create a posterior log-likelihood (log(likelihood * prior)) log_posterior = pints.LogPosterior(log_likelihood, log_prior) # Choose starting points for 3 mcmc chains real_parameters1 = np.array(parameters + [sigma, sigma]) xs = [ real_parameters1 * 1.1, real_parameters1 * 0.9, real_parameters1 * 1.15, real_parameters1 * 1.5, ] # Create mcmc routine mcmc = pints.MCMCController(log_posterior, 4, xs, method=pints.MonomialGammaHamiltonianMCMC) # Add stopping criterion mcmc.set_max_iterations(200) mcmc.set_log_interval(1) # Run in parallel mcmc.set_parallel(True) for sampler in mcmc.samplers(): sampler.set_leapfrog_step_size([0.05, 0.2, 0.2, 0.1, 0.1]) sampler.set_leapfrog_steps(10) # Run! print('Running...') chains = mcmc.run() print('Done!') import pints.plot pints.plot.trace(chains) plt.show()
examples/toy/model-fitzhugh-nagumo.ipynb
martinjrobins/hobo
bsd-3-clause
08332031b51468b5a75ef946d4a07ec7
Print results.
results = pints.MCMCSummary( chains=chains, time=mcmc.time(), parameter_names=['a', 'b', 'c', 'sigma_V', 'sigma_R'], ) print(results)
examples/toy/model-fitzhugh-nagumo.ipynb
martinjrobins/hobo
bsd-3-clause
b01626a33ce1d085c3210a0e0066f703
Plot the few posterior predictive simulations versus data.
import pints.plot pints.plot.series(np.vstack(chains), problem) plt.show()
examples/toy/model-fitzhugh-nagumo.ipynb
martinjrobins/hobo
bsd-3-clause
92203bdef2a4c5751db24a0de583ded3
Nous allons initialiser les differentes valeurs :
E=1.3 #en MPa h=7.5 #en mm b=20. #en mm Lx=55. #en mm Lyh=60. #en mm Lyb=45 #en mm I=b*(h**3)/12 #en mm^4 S=b*h #en mm^2 eps=10**(-3) g=9.81
Exercice 2.ipynb
qgoisnard/Exercice-update
mit
0e549af8f053d7d646cc8b7103c140c8
Nous allons maintenant créer les noeuds et les éléments de la structure :
nodes= np.array([[0.,0.],[0.,Lyb],[0.,Lyh+Lyb],[Lx/2,Lyh+Lyb],[Lx,Lyh+Lyb],[Lx,Lyb],[Lx,0.]]) elements=np.array([[0,1],[1,5],[1,2],[2,3],[3,4],[4,5],[5,6]]) frame=LinearFrame(nodes,elements) frame.plot_with_label() ne = frame.nelements ndof = frame.ndof EI = np.ones(ne)*E*I ES = np.ones(ne)*E*S f_x = 0*np.ones(7) f_y = 0*np.ones(7) frame.set_distributed_loads(f_x, f_y) frame.set_stiffness(EI, ES) blocked_dof = np.array([0, 1, 2, ndof-3, ndof-2, ndof-1]) bc_values = np.array([0, 0, 0, 0, 0, 0]) K = frame.assemble_K() u=np.array([0.,0.,0., 2.,0.,0., 5.,0.,0., 0.,-3.,0., -3.,0.,0., -2.,0.,0., 0.,0.,0.]) print (u) F= np.dot(K,np.transpose(u)) F m=F[10]/g m
Exercice 2.ipynb
qgoisnard/Exercice-update
mit
9a6bccf29bcbbbb485f520dcfe44e42d
La masse accrochée serait d'environ 320g Exercice 3 Dans cette exercice, on doit créer des fonctions à l'intérieur de notre classe frame afin de récupérer l'effort normal(N), l'effort tangentielle (T) et le moment sur z (M).
def find_N(self,element): """ Returns the normal force of an element. """ F = self.assemble_F() N = F[3*element] return N def find_T(self,element): """ Returns the tangential force of an element. """ F = self.assemble_F() T = F[3*element+1] return T def find_M(self,element): """ Returns the moment of an element. """ F = self.assemble_F() M = F[3*element+2] return M
Exercice 2.ipynb
qgoisnard/Exercice-update
mit
59cfd6fb02d36e62ed9ae0c2e49b5feb
Next, let's specify the measurements. Notice that we only measure the positions of the particle.
# Measurements measurements = [] mean = torch.zeros(2) # no correlations cov = 1e-5 * torch.eye(2) with torch.no_grad(): # sample independent measurement noise dzs = pyro.sample('dzs', dist.MultivariateNormal(mean, cov).expand((num_frames,))) # compute measurement means zs = xs_truth[:, :2] + dzs
tutorial/source/ekf.ipynb
uber/pyro
apache-2.0
47498d12cfff09c0fd57a1b5516fda11
We'll use a Delta autoguide to learn MAP estimates of the position and measurement covariances. The EKFDistribution computes the joint log density of all of the EKF states given a tensor of sequential measurements.
def model(data): # a HalfNormal can be used here as well R = pyro.sample('pv_cov', dist.HalfCauchy(2e-6)) * torch.eye(4) Q = pyro.sample('measurement_cov', dist.HalfCauchy(1e-6)) * torch.eye(2) # observe the measurements pyro.sample('track_{}'.format(i), EKFDistribution(xs_truth[0], R, ncv, Q, time_steps=num_frames), obs=data) guide = AutoDelta(model) # MAP estimation optim = pyro.optim.Adam({'lr': 2e-2}) svi = SVI(model, guide, optim, loss=Trace_ELBO(retain_graph=True)) pyro.set_rng_seed(0) pyro.clear_param_store() for i in range(250 if not smoke_test else 2): loss = svi.step(zs) if not i % 10: print('loss: ', loss) # retrieve states for visualization R = guide()['pv_cov'] * torch.eye(4) Q = guide()['measurement_cov'] * torch.eye(2) ekf_dist = EKFDistribution(xs_truth[0], R, ncv, Q, time_steps=num_frames) states= ekf_dist.filter_states(zs)
tutorial/source/ekf.ipynb
uber/pyro
apache-2.0
0b4d6e995cc9139dfd0a4913a12440c6
Initialize the tool (e.g., ddRAD) You can generate single or paired-end data, and you will likely want to restrict the size of selected fragments to be within an expected size selection window, as is typically done in empirical data sets. Here I select all fragments occuring between two restriction enzymes where the intervening fragment is 300-500bp in length. I then ask that the analysis returns the digested fragments as 150bp fastq reads, and to provide 10 copies of each one. I also restrict it to only the first (largest) 12 scaffolds using the 'nscaffolds' arg.
digest = ipa.digest_genome( fasta=genome, name="amaranthus-digest", workdir="digested_genomes", re1="CTGCAG", re2="AATTC", ncopies=10, readlen=150, min_size=300, max_size=500, nscaffolds=12, ) digest.run()
testdocs/analysis/cookbook-digest_genomes.ipynb
dereneaton/ipyrad
gpl-3.0
df8d146ac6377c312f0419dc04442fd1
Check results
! ls -l digested_genomes/
testdocs/analysis/cookbook-digest_genomes.ipynb
dereneaton/ipyrad
gpl-3.0
f86240af6e71dafb6969600ddc987246
Example 2 (original RAD data) The original RAD method uses sonication rather than a second restriction digestion to cut all of the fragments down to an appropriate size for sequencing. Thus you only need to provide a single cut site and a selection window.
digest = ipa.digest_genome( fasta=genome, name="amaranthus-digest-RAD", workdir="digested_genomes", re1="CTGCAG", re2=None, paired=False, ncopies=10, readlen=100, min_size=300, max_size=500, nscaffolds=12, ) digest.run()
testdocs/analysis/cookbook-digest_genomes.ipynb
dereneaton/ipyrad
gpl-3.0
6eee0f173c62a8f6a109eb42c0a8005f
Data Structures There are three fundamental data structures supported by Pandas:<br> * Series: a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). For those coming from an R background, Series is much like a Vector. * DataFrame: a 2-dimensional labeled data structure with columns of potentially different types. * Panel: also called longitudinal data or cross-sectional time series data, is data where multiple cases (people, firms, countries etc) were observed at two or more time periods. This is rarely used though, and I personally haven't come across this except for some Econometrics courses I had taken in my undergraduate years. Series The basic format to creat a series is:<br> series_a = pd.Series(data, index = index_name) The default value for the index is 1,2,3,4....and so on, and doesn't not need to be specified, except in the case of scalars.
import pandas as pd # From Scalar Values series_1 = pd.Series([1,2,3,4,5]) series_1
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
b560b3106d4049d20111b2bf38f0abbe
Notice the 0,1,2,3... on the left side? That's called the Index. It starts from 0, but you can rename it.
series_1 = pd.Series([1,2,3,4,5], index = ['Mon','Tue','Wed','Thu','Fri']) series_1 series_2 = pd.Series(1.0, index = ['a','b','c','d','e']) series_2 import pandas as pd import numpy as np # From an array # Just copy this for now, we'll cover the 'seed' in DataFrames np.random.seed(42) series_3 = pd.Series(np.random.randn(5)) series_3 np.random.seed(42) series_3 = pd.Series(np.random.randn(5), index = ['a','b','c','d','e']) series_3 np.random.seed(42) ind_1 = ['a','b','c','d','e'] series_3 = pd.Series(np.random.randn(5), index = ind_1) series_3 series_4 = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) series_4
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
63345f2d38e8c709938d4dc22f9c024d
We can subset and get values from the series.
series_4['a'] == series_4[0] series_4[series_4>3] series_4[series_4%2==0] series_5 = pd.Series([1,2,3,4,5], index = ['HP', 'GS', 'IBM', 'AA', 'FB']) series_5 series_5['IBM'] tech_pf1 = series_5[['HP', 'IBM', 'FB']] tech_pf1 # From a Dictionary dict_01 = {'Gavin' : 50, 'Russ' : 100, 'Erlich' : 150} series_6 = pd.Series(dict_01) series_6 # Reordering the previous series index = ['Gavin', 'Russ', 'Erlich', 'Peter'] series_7 = pd.Series(dict_01, index=index) series_7
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
eaa79761e9059dbbd718ca384676d993
Notice the NaN, which stands for Not a Number. We will be dealing with it extensively when working with DataFrames. It is an indicator for missing or corrupted data. Here's how we test for it.
pd.isnull(series_7)
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
ab28cf29f1e3093c0d7b6309afd981d8
And here's a nice discussion on the topic from our friends at StackOverflow.
# Pandas is very smart, and aligns the series for mathematical operations series_6 + series_7 # Renaming an Index series_7.index.name = "Names" series_7 # Naming a Series series_7.name = "SV" series_7
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
b8d4f448542d28bcc25323068fe209ad
Mini-Project
goals = pd.Series([20,19,21,24,1], index = ["Messi", "Neymar", "Zlatan", "Ronaldo", "N’Gog"]) goals # Who scored less than 20 goals? goals[goals<20] # What is the average number of goals scored? goals.mean() # What is the median number of goals scored? goals.median() # What is the range of goals scored? (Range = Max - Min) goals_range = goals.max() - goals.min() print(goals_range) %matplotlib inline import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (15,7) # Plot the goals in a bar chart goals.plot(kind = "bar") # Let's beautify that a little goals.plot(kind = "barh", title = "Goal Scorers")
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
76fdde99658d533c0ea01cdfb166eece
Read more about these here. DataFrames DataFrames is in many respects, the real Pandas. Usually, if you're using Pandas, it will be to use DataFrames.<br> We will begin with creating DataFrames, and the usual indexing and selection mechanisms. In reality, you will probably never have to 'create' a DataFrame, but practice these skills here to get comfortable with heirarchies, indices and selections. Then we will move on to reading data from multiple formats, including spreadsheets, JSON files and API endpoints. By the way, during these examples, we will always set seed first when generating random numbers. If you're coming from R, this is the same as set.seed(). In Python, we use the random.seed statement from numpy, which you can read about here. You can set it to any number you like, and I usually set it to 42 just out of habit, but there's not to say you can't set it to an arbitrary number like 27 or 2012. Use the same numbers as this notebook though to replicate the results. Also note that we need to mention it in every cell that we want the results replicated. You will see later about how this is good practice especially when sharing your work with other members of the team - they will be able to reproduce your work on their machines due to the pseudo-random number that is generated algorithmically.
import pandas as pd import numpy as np # Let's start with a standard array arr1 = np.array([[40,40,75,95],[80,85,120,130], [155,160,165,170],[200,245,250,260]]) print(arr1.shape) print(arr1.size) print(arr1) # It is quite common to assign a dataframe the name 'df', although you can # use a relevant name, such baseball_stats or book_sales # It's always good to use context driven names - you should code expecting # someone else to read it a few months down the line df = pd.DataFrame(arr1, index = "Peter,Clarke,Bruce,Tony".split(","), columns = "Jan,Feb,Mar,Apr".split(",")) df
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
de3709e07d2e3c2bcc2516d5f4eb54fd
Indexing and Selection Selecting Columns
df = pd.DataFrame(arr1, index = "Peter,Clarke,Bruce,Tony".split(","), columns = "Jan,Feb,Mar,Apr".split(",")) df # Selecting columns df[['Jan']] df[['Jan','Feb']] df[['Mar','Jan']]
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
13b52cd7ef6e3963096dee17e2d7d313
It's interesting to note that the offical Pandas documentation refers to DataFrames as: Can be thought of as a dict-like container for Series objects. You can access it as a Series as below:
df['Jan'] print('Series:', type(df['Jan'])) print('DataFrame:',type(df[['Jan']]))
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
f3562a8f16f573f2b741d2d68bb6e8a5
Using loc and iloc
df = pd.DataFrame(arr1, index = "Peter,Clarke,Bruce,Tony".split(","), columns = "Jan,Feb,Mar,Apr".split(",")) df # For selecting by Label df.loc[['Tony']] df.loc[['Peter','Bruce']] df.loc[['Peter','Bruce'],['Jan','Feb']] # All of Peter's data df.loc[["Peter"]][:] df.loc["Peter"][:] df # Integer-location based indexing for selection by position # Note how this returns a Dataframe df.iloc[[0]] # and this returns a Series df.iloc[0] # Narrowing down further df.iloc[[0],[1]] # Replicating the results from our use of the loc statement df.iloc[[0,2]] # Compare to df.loc[['Peter','Bruce'],['A','D']] df.iloc[[0,2],[0,3]]
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
4c9a24a0193e1abdfecff23c9dad16d5
There's another function named ix. I have rarely used it, and both loc and iloc take care of all my selection needs. You can read about it here. Also, check out the similarity of outputs below:
df.ix[0:3] df.iloc[0:3]
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
980e94d7a6a13f5bdb69ce3e041fde46
Conditional Selection While exploring data sets, one often has to use conditional selection. Or this could be true for creating subsets to work.
df df[df%2 == 0] df%2 == 0 df < 100 df[df<100] df df[df['Jan']>100][['Apr']] df[df['Jan']<100][['Feb','Apr']] # Using multiple conditions df[(df['Jan'] >= 80) & (df['Mar']>100)]
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
2965cd9499a4324d320aab4df99edbe9
Did you notice that we used &amp; instead of and? When using Pandas, we have to use the symbol, not the word. Here's a StackOverflow discussion on this. Creating New Columns
df = pd.DataFrame(arr1, index = "Peter,Clarke,Bruce,Tony".split(","), columns = "Jan,Feb,Mar,Apr".split(",")) df df["Dec"] = df["Jan"] + df["Mar"] df
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
b0c36a67b7d7da31dce4ee304a10bd56
Removing Columns While fundamentally adding and removing columns ought to be similar operations, there are a few differences. Let's see if you can figure it out.
df df.drop('Dec', axis = 1)
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
e72628d373e6794b719dd897bf30c5d1
First, we had to mention the axis. 0 is for rows, 1 is for columns.
df
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
5880f1055d86eb5064c9a9744748cf7f
Why is 'Dec' still there? Here lies the difference - while removing columns, we have to specify that the operation should be inplace. Read about it in the official documentation.
df.drop('Dec', axis = 1, inplace = True) df
12.Introduction_to_Pandas.ipynb
prasants/pyds
mit
deb5aa1e455a533355db3366f825eed7