markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
hash
stringlengths
32
32
Alias Names A dictionary of {zone: "alias"} pairs can be passed to replace the typical "ZONE_X" fieldnames of the ZoneBudget structured array with more descriptive names.
aliases = {1: 'SURF', 2:'CONF', 3: 'UFA'} zb = flopy.utils.ZoneBudget(cbc_f, zon, totim=[1097.], aliases=aliases) zb.get_budget()
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
49748467090e8ecdad07a764d5effde8
Return the Budgets as a Pandas DataFrame Set kstpkper and totim keyword args to None (or omit) to return all times. The get_dataframes() method will return a DataFrame multi-indexed on totim and name.
zon = np.ones((nlay, nrow, ncol), np.int) zon[1, :, :] = 2 zon[2, :, :] = 3 aliases = {1: 'SURF', 2:'CONF', 3: 'UFA'} zb = flopy.utils.ZoneBudget(cbc_f, zon, kstpkper=None, totim=None, aliases=aliases) df = zb.get_dataframes() print(df.head()) print(df.tail())
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
2df8475e0561680ec19170fee6b6e9b1
Slice the multi-index dataframe to retrieve a subset of the budget
dateidx1 = 1092. dateidx2 = 1097. names = ['RECHARGE_IN', 'WELLS_OUT'] zones = ['SURF', 'CONF'] df.loc[(slice(dateidx1, dateidx2), names), :][zones]
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
934ab8fef2068c42905b6b45e9d53cc5
Look at pumpage (WELLS_OUT) as a percentage of recharge (RECHARGE_IN)
dateidx1 = 1092. dateidx2 = 1097. zones = ['SURF'] # Pull out the individual records of interest rech = df.loc[(slice(dateidx1, dateidx2), ['RECHARGE_IN']), :][zones] pump = df.loc[(slice(dateidx1, dateidx2), ['WELLS_OUT']), :][zones] # Remove the "record" field from the index so we can # take the difference of the two DataFrames rech = rech.reset_index() rech = rech.set_index(['totim']) rech = rech[zones] pump = pump.reset_index() pump = pump.set_index(['totim']) pump = pump[zones] * -1 # Compute pumping as a percentage of recharge pump_as_pct = (pump / rech) * 100. pump_as_pct # Use "slice(None)" to return all records df.loc[(slice(dateidx1, dateidx2), slice(None)), :][zones] # Or all times df.loc[(slice(None), names), :][zones]
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
08b5c0bc5da18c8f87fd94cde095316f
Pass start_datetime and timeunit keyword arguments to return a dataframe with a datetime multi-index
df = zb.get_dataframes(start_datetime='1970-01-01', timeunit='D') dateidx1 = pd.Timestamp('1972-12-01') dateidx2 = pd.Timestamp('1972-12-06') names = ['RECHARGE_IN', 'WELLS_OUT'] zones = ['SURF', 'CONF'] df.loc[(slice(dateidx1, dateidx2), names), :][zones]
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
094a2bebbf5e4b1e65acba7ca7a20c4a
Pass index_key to indicate which fields to use in the multi-index (defualt is "totim"; valid keys are "totim" and "kstpkper")
df = zb.get_dataframes(index_key='kstpkper') df.head()
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
620b5c5cc8cbdd381336abb63415fae0
Write Budget Output to CSV We can write the resulting recarray to a csv file with the .to_csv() method of the ZoneBudget object.
zb = flopy.utils.ZoneBudget(cbc_f, zon, kstpkper=[(0, 0), (0, 1096)]) zb.to_csv(os.path.join(loadpth, 'zonbud.csv')) # Read the file in to see the contents fname = os.path.join(loadpth, 'zonbud.csv') try: import pandas as pd print(pd.read_csv(fname).to_string(index=False)) except: with open(fname, 'r') as f: for line in f.readlines(): print('\t'.join(line.split(',')))
examples/Notebooks/flopy3_ZoneBudget_example.ipynb
bdestombe/flopy-1
bsd-3-clause
59d0f210ede4b35022cdc11a21c2713b
๋ฒ ์ด์ง€์•ˆ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ ๋ฐ ํ•ด๋ฐ€ํ„ด MCMC <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://www.tensorflow.org/probability/examples/Bayesian_Gaussian_Mixture_Model"><img src="https://www.tensorflow.org/images/tf_logo_32px.png">TensorFlow.org์—์„œ ๋ณด๊ธฐ</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png">Google Colab์—์„œ ์‹คํ–‰ํ•˜๊ธฐ</a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png">GitHub์—์„œ ๋ณด๊ธฐ</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png">๋…ธํŠธ๋ถ ๋‹ค์šด๋กœ๋“œํ•˜๊ธฐ</a></td> </table> ์ด colab์—์„œ๋Š” TensorFlow Probability ๊ธฐ๋ณธ ํ˜•์‹๋งŒ ์‚ฌ์šฉํ•˜์—ฌ ๋ฒ ์ด์ง€์•ˆ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ(BGMM)์˜ ์‚ฌํ›„ ํ™•๋ฅ ์—์„œ ์ƒ˜ํ”Œ๋ง์„ ํƒ์ƒ‰ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ ๊ฐ ์ฐจ์› $D$์˜ $k\in{1,\ldots,K}$ ํ˜ผํ•ฉ ๊ตฌ์„ฑ ์š”์†Œ์— ๋Œ€ํ•ด ๋‹ค์Œ์˜ ๋ฒ ์ด์ง€์•ˆ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ๋กœ $i\in{1,\ldots,N}$ iid ์ƒ˜ํ”Œ์„ ๋ชจ๋ธ๋งํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. $$\begin{align} \theta &\sim \text{Dirichlet}(\text{concentration}=\alpha_0)\ \mu_k &\sim \text{Normal}(\text{loc}=\mu_{0k}, \text{scale}=I_D)\ T_k &\sim \text{Wishart}(\text{df}=5, \text{scale}=I_D)\ Z_i &\sim \text{Categorical}(\text{probs}=\theta)\ Y_i &\sim \text{Normal}(\text{loc}=\mu_{z_i}, \text{scale}=T_{z_i}^{-1/2})\ \end{align}$$ scale ์ธ์ˆ˜๋Š” ๋ชจ๋‘ cholesky ์˜๋ฏธ ์ฒด๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ทœ์น™์€ TF ๋ถ„ํฌ์˜ ๊ทœ์น™์ด๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค(๊ณ„์‚ฐ์ ์œผ๋กœ ์œ ๋ฆฌํ•˜๋ฏ€๋กœ TF ๋ถ„ํฌ์—์„œ ๋ถ€๋ถ„์ ์œผ๋กœ ์ด ๊ทœ์น™์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค). ๋ชฉํ‘œ๋Š” ๋‹ค์Œ์˜ ์‚ฌํ›„ ํ™•๋ฅ ์—์„œ ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. $$p\left(\theta, {\mu_k, T_k}{k=1}^K \Big| {y_i}{i=1}^N, \alpha_0, {\mu_{ok}}_{k=1}^K\right)$$ ${Z_i}_{i=1}^N$๋Š” ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์— ์œ ์˜ํ•˜์„ธ์š”. $N$๋กœ ์กฐ์ •๋˜์ง€ ์•Š๋Š” ํ™•๋ฅ  ๋ณ€์ˆ˜์—๋งŒ ๊ด€์‹ฌ์„ ๋‘ก๋‹ˆ๋‹ค(๋˜ํ•œ, ์šด ์ข‹๊ฒŒ๋„ $Z_i$๋ฅผ ๋ฌด์‹œํ•˜๋Š” TF ๋ถ„ํฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค). ๊ณ„์‚ฐ์ ์œผ๋กœ ๋‹ค๋ฃจ๊ธฐ ํž˜๋“  ์ •๊ทœํ™” ํ•ญ์œผ๋กœ ์ธํ•ด ์ด ๋ถ„ํฌ์—์„œ ์ง์ ‘ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ๊ฒƒ์€ ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๋ฉ”ํŠธ๋กœํด๋ฆฌ์Šค-ํ—ค์ด์ŠคํŒ…์Šค ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค๋ฃจ๊ธฐ ํž˜๋“  ์ •๊ทœํ™”๋œ ๋ถ„ํฌ์—์„œ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. TensorFlow Probability๋Š” ๋ฉ”ํŠธ๋กœํด๋ฆฌ์Šค-ํ—ค์ด์ŠคํŒ…์Šค ๊ธฐ๋ฐ˜์˜ ์—ฌ๋Ÿฌ ์˜ต์…˜์„ ํฌํ•จํ•˜์—ฌ ๋งŽ์€ MCMC ์˜ต์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ธํŠธ๋ถ์—์„œ๋Š” ํ•ด๋ฐ€ํ„ด ๋ชฌํ…Œ์นด๋ฅผ๋กœ(tfp.mcmc.HamiltonianMonteCarlo)๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ํ•ด๋ฐ€ํ„ด ๋ชฌํ…Œ์นด๋ฅผ๋กœ(HMC)๋Š” ์‹ ์†ํ•˜๊ฒŒ ์ˆ˜๋ ดํ•˜๊ณ  (์ขŒํ‘œ ๋ฐฉ์‹์ด ์•„๋‹Œ) ์ƒํƒœ ๊ณต๊ฐ„์„ ๊ณต๋™์œผ๋กœ ์ƒ˜ํ”Œ๋งํ•˜๋ฉฐ, TF์˜ ์žฅ์  ์ค‘ ํ•˜๋‚˜์ธ ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•˜๋ฏ€๋กœ ์ข…์ข… ์ข‹์€ ์„ ํƒ์ž…๋‹ˆ๋‹ค. ์ฆ‰, BGMM ์‚ฌํ›„ ํ™•๋ฅ ์—์„œ์˜ ์ƒ˜ํ”Œ๋ง์€ ์‹ค์ œ๋กœ Gibb์˜ ์ƒ˜ํ”Œ๋ง๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ๋” ์ž˜ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
%matplotlib inline import functools import matplotlib.pyplot as plt; plt.style.use('ggplot') import numpy as np import seaborn as sns; sns.set_context('notebook') import tensorflow.compat.v2 as tf tf.enable_v2_behavior() import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) &gt; 0: tf.config.experimental.set_memory_growth(physical_devices[0], True)
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
43d5b274066cfed554d2a9875468e212
์‹ค์ œ๋กœ ๋ชจ๋ธ์„ ๋นŒ๋“œํ•˜๊ธฐ ์ „์— ์ƒˆ๋กœ์šด ์œ ํ˜•์˜ ๋ถ„ํฌ๋ฅผ ์ •์˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์œ„์˜ ๋ชจ๋ธ ์‚ฌ์–‘์—์„œ ์—ญ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ, ์ฆ‰ ์ •๋ฐ€ ํ–‰๋ ฌ๋กœ MVN์„ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”ํ•˜๊ณ  ์žˆ์Œ์ด ๋ถ„๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ TF์—์„œ ๋‹ฌ์„ฑํ•˜๋ ค๋ฉด, Bijector๋ฅผ ๋กค ์•„์›ƒํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด Bijector๋Š” ์ˆœ๋ฐฉํ–ฅ ๋ณ€ํ™˜์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. Y = tf.linalg.triangular_solve((tf.linalg.matrix_transpose(chol_precision_tril), X, adjoint=True) + loc. ๊ทธ๋ฆฌ๊ณ  log_prob ๊ณ„์‚ฐ์€ ๊ทธ ๋ฐ˜๋Œ€์ž…๋‹ˆ๋‹ค. ์ฆ‰, ์ด ๊ณ„์‚ฐ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. X = tf.linalg.matmul(chol_precision_tril, X - loc, adjoint_a=True). HMC์— ํ•„์š”ํ•œ ๊ฒƒ์€ log_prob ๋ฟ์ด๋ฏ€๋กœ, (tfd.MultivariateNormalTriL์˜ ๊ฒฝ์šฐ์ฒ˜๋Ÿผ) tf.linalg.triangular_solve๋ฅผ ํ˜ธ์ถœํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์ด๋Š” tf.linalg.matmul์ด ์ผ๋ฐ˜์ ์œผ๋กœ ๋” ๋‚˜์€ ์บ์‹œ ์œ„์น˜๋กœ ์ธํ•ด ๋” ๋น ๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์œ ๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
class MVNCholPrecisionTriL(tfd.TransformedDistribution): """MVN from loc and (Cholesky) precision matrix.""" def __init__(self, loc, chol_precision_tril, name=None): super(MVNCholPrecisionTriL, self).__init__( distribution=tfd.Independent(tfd.Normal(tf.zeros_like(loc), scale=tf.ones_like(loc)), reinterpreted_batch_ndims=1), bijector=tfb.Chain([ tfb.Affine(shift=loc), tfb.Invert(tfb.Affine(scale_tril=chol_precision_tril, adjoint=True)), ]), name=name)
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
d910692e952bc8c6f109059905d1c261
tfd.Independent ๋ถ„ํฌ๋Š” ํ•œ ๋ถ„ํฌ์˜ ๋…๋ฆฝ์ ์ธ ๊ทธ๋ฆฌ๊ธฐ๋ฅผ ํ†ต๊ณ„์ ์œผ๋กœ ๋…๋ฆฝ๋œ ์ขŒํ‘œ๊ฐ€ ์žˆ๋Š” ๋‹ค๋ณ€๋Ÿ‰ ๋ถ„ํฌ๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค. log_prob ๊ณ„์‚ฐ ์ธก๋ฉด์—์„œ, ์ด '๋ฉ”ํƒ€ ๋ถ„ํฌ'๋Š” ์ด๋ฒคํŠธ ์ฐจ์›์— ๋Œ€ํ•œ ๋‹จ์ˆœ ํ•ฉ๊ณ„๋กœ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ scale ํ–‰๋ ฌ์˜ adjoint ('transpose')๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์ •๋ฐ€๋„๊ฐ€ ์—ญ๊ณต๋ถ„์‚ฐ์ด๋ฉด, ์ฆ‰ $P=C^{-1}$์ด๊ณ  $C=AA^\top$์ด๋ฉด, $P=BB^{\top}$์ด๊ณ  ์—ฌ๊ธฐ์„œ $B=A^{-\top}$์ž…๋‹ˆ๋‹ค. ์ด ๋ถ„ํฌ๋Š” ๋‹ค์†Œ ๊นŒ๋‹ค๋กœ์šฐ๋ฏ€๋กœ MVNCholPrecisionTriL์ด ์˜ˆ์ƒ๋˜๋Š” ๋Œ€๋กœ ๋™์ž‘ํ•˜๋Š”์ง€ ๋น ๋ฅด๊ฒŒ ํ™•์ธํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
def compute_sample_stats(d, seed=42, n=int(1e6)): x = d.sample(n, seed=seed) sample_mean = tf.reduce_mean(x, axis=0, keepdims=True) s = x - sample_mean sample_cov = tf.linalg.matmul(s, s, adjoint_a=True) / tf.cast(n, s.dtype) sample_scale = tf.linalg.cholesky(sample_cov) sample_mean = sample_mean[0] return [ sample_mean, sample_cov, sample_scale, ] dtype = np.float32 true_loc = np.array([1., -1.], dtype=dtype) true_chol_precision = np.array([[1., 0.], [2., 8.]], dtype=dtype) true_precision = np.matmul(true_chol_precision, true_chol_precision.T) true_cov = np.linalg.inv(true_precision) d = MVNCholPrecisionTriL( loc=true_loc, chol_precision_tril=true_chol_precision) [sample_mean, sample_cov, sample_scale] = [ t.numpy() for t in compute_sample_stats(d)] print('true mean:', true_loc) print('sample mean:', sample_mean) print('true cov:\n', true_cov) print('sample cov:\n', sample_cov)
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
f7dbe7096bcaf1816035c89babf584b9
์ƒ˜ํ”Œ ํ‰๊ท ๊ณผ ๊ณต๋ถ„์‚ฐ์ด ์‹ค์ œ ํ‰๊ท ๊ณผ ๊ณต๋ถ„์‚ฐ์— ๊ฐ€๊นŒ์šฐ๋ฏ€๋กœ ๋ถ„ํฌ๊ฐ€ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๊ตฌํ˜„๋œ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค. ์ด์ œ MVNCholPrecisionTriL tfp.distributions.JointDistributionNamed๋กœ BGMM ๋ชจ๋ธ์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ด€์ฐฐ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, tfd.MixtureSameFamily๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ${Z_i}_{i=1}^N$ ๊ทธ๋ฆฌ๊ธฐ๋ฅผ ์ž๋™์œผ๋กœ ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค.
dtype = np.float64 dims = 2 components = 3 num_samples = 1000 bgmm = tfd.JointDistributionNamed(dict( mix_probs=tfd.Dirichlet( concentration=np.ones(components, dtype) / 10.), loc=tfd.Independent( tfd.Normal( loc=np.stack([ -np.ones(dims, dtype), np.zeros(dims, dtype), np.ones(dims, dtype), ]), scale=tf.ones([components, dims], dtype)), reinterpreted_batch_ndims=2), precision=tfd.Independent( tfd.WishartTriL( df=5, scale_tril=np.stack([np.eye(dims, dtype=dtype)]*components), input_output_cholesky=True), reinterpreted_batch_ndims=1), s=lambda mix_probs, loc, precision: tfd.Sample(tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical(probs=mix_probs), components_distribution=MVNCholPrecisionTriL( loc=loc, chol_precision_tril=precision)), sample_shape=num_samples) )) def joint_log_prob(observations, mix_probs, loc, chol_precision): """BGMM with priors: loc=Normal, precision=Inverse-Wishart, mix=Dirichlet. Args: observations: `[n, d]`-shaped `Tensor` representing Bayesian Gaussian Mixture model draws. Each sample is a length-`d` vector. mix_probs: `[K]`-shaped `Tensor` representing random draw from `Dirichlet` prior. loc: `[K, d]`-shaped `Tensor` representing the location parameter of the `K` components. chol_precision: `[K, d, d]`-shaped `Tensor` representing `K` lower triangular `cholesky(Precision)` matrices, each being sampled from a Wishart distribution. Returns: log_prob: `Tensor` representing joint log-density over all inputs. """ return bgmm.log_prob( mix_probs=mix_probs, loc=loc, precision=chol_precision, s=observations)
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
23b099650f97a202951667343989a397
'ํ›ˆ๋ จ' ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ ๋ฐ๋ชจ์—์„œ๋Š” ๋ฌด์ž‘์œ„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ˜ํ”Œ๋งํ•ฉ๋‹ˆ๋‹ค.
true_loc = np.array([[-2., -2], [0, 0], [2, 2]], dtype) random = np.random.RandomState(seed=43) true_hidden_component = random.randint(0, components, num_samples) observations = (true_loc[true_hidden_component] + random.randn(num_samples, dims).astype(dtype))
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
945fa2f21909f9bfdb5a8ba3f2e01900
HMC๋ฅผ ์‚ฌ์šฉํ•œ ๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก  ์ด์ œ TFD๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ์ง€์ •ํ•˜๊ณ  ์ผ๋ถ€ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์—ˆ์œผ๋ฏ€๋กœ HMC๋ฅผ ์‹คํ–‰ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๋ชจ๋“  ๋ถ€๋ถ„์„ ํ™•๋ณดํ–ˆ์Šต๋‹ˆ๋‹ค. HMC๋ฅผ ์‹คํ–‰ํ•˜๋ ค๋ฉด ๋ถ€๋ถ„ ์ ์šฉ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ˜ํ”Œ๋งํ•˜๊ณ  ์‹ถ์ง€ ์•Š์€ ํ•ญ๋ชฉ์„ '๊ณ ์ •'ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š” observations๋งŒ ๊ณ ์ •ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค(ํ•˜์ดํผ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ์ด๋ฏธ ์‚ฌ์ „ ํ™•๋ฅ  ๋ถ„ํฌ์— ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ joint_log_prob ํ•จ์ˆ˜ ์„œ๋ช…์˜ ์ผ๋ถ€๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค).
unnormalized_posterior_log_prob = functools.partial(joint_log_prob, observations) initial_state = [ tf.fill([components], value=np.array(1. / components, dtype), name='mix_probs'), tf.constant(np.array([[-2., -2], [0, 0], [2, 2]], dtype), name='loc'), tf.linalg.eye(dims, batch_shape=[components], dtype=dtype, name='chol_precision'), ]
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
c061e268db85d1f3f974a7add73d275d
์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ํ‘œํ˜„ ํ•ด๋ฐ€ํ„ด ๋ชฌํ…Œ์นด๋ฅผ๋กœ(HMC)๋Š” ์ธ์ˆ˜์™€ ๊ด€๋ จํ•˜์—ฌ ๋Œ€์ƒ ๋กœ๊ทธ ํ™•๋ฅ  ํ•จ์ˆ˜๋ฅผ ๋ฏธ๋ถ„ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ HMC๋Š” ์ƒํƒœ ๊ณต๊ฐ„์— ์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ๊ฒฝ์šฐ ํ›จ์”ฌ ๋” ๋†’์€ ํ†ต๊ณ„ ํšจ์œจ์„ฑ์„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ฆ‰, BGMM ์‚ฌํ›„ ํ™•๋ฅ ์—์„œ ์ƒ˜ํ”Œ๋งํ•  ๋•Œ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. $\theta$๋Š” ์ด์‚ฐ ํ™•๋ฅ  ๋ฒกํ„ฐ๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ฆ‰, $\sum_{k=1}^K \theta_k = 1$ ๋ฐ $\theta_k>0$์™€ ๊ฐ™์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. $T_k$๋Š” ์—ญ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ฆ‰, $T_k \succ 0$๊ฐ€ ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์–‘์ •์น˜๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ์œ„์˜ ์š”๊ตฌ ์‚ฌํ•ญ์„ ํ•ด๊ฒฐํ•˜๋ ค๋ฉด ๋‹ค์Œ์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ฝ ์กฐ๊ฑด์ด ์žˆ๋Š” ๋ณ€์ˆ˜๋ฅผ ์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ๊ณต๊ฐ„์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ๊ณต๊ฐ„์—์„œ MCMC๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ๋ณ€์ˆ˜๋ฅผ ์ œ์•ฝ ์กฐ๊ฑด์ด ์žˆ๋Š” ๊ณต๊ฐ„์œผ๋กœ ๋‹ค์‹œ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. MVNCholPrecisionTriL๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ๊ณต๊ฐ„์œผ๋กœ ํ™•๋ฅ  ๋ณ€์ˆ˜๋ฅผ ๋ณ€ํ™˜ํ•˜๋ ค๋ฉด Bijector๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. Dirichlet์€ softmax ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ์ œ์•ฝ ์กฐ๊ฑด์ด ์—†๋Š” ๊ณต๊ฐ„์œผ๋กœ ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค. ์ •๋ฐ€๋„ ํ™•๋ฅ  ๋ณ€์ˆ˜๋Š” ์ค€ ์–‘์ •์น˜ ํ–‰๋ ฌ์— ๋Œ€ํ•œ ๋ถ„ํฌ์ž…๋‹ˆ๋‹ค. ์ด๋“ค์— ๋Œ€ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ์—†์• ๊ธฐ ์œ„ํ•ด์„œ๋Š” FillTriangular ๋ฐ TransformDiagonal bijector๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋“ค bijector๋Š” ๋ฒกํ„ฐ๋ฅผ ํ•˜๋ถ€ ์‚ผ๊ฐ ํ–‰๋ ฌ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ๋Œ€๊ฐ์„ ์ด ์–‘์ˆ˜์ธ์ง€ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค. ์ „์ž๋Š” $d^2$ ๋Œ€์‹  $d(d+1)/2$ float๋งŒ ์ƒ˜ํ”Œ๋งํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
unconstraining_bijectors = [ tfb.SoftmaxCentered(), tfb.Identity(), tfb.Chain([ tfb.TransformDiagonal(tfb.Softplus()), tfb.FillTriangular(), ])] @tf.function(autograph=False) def sample(): return tfp.mcmc.sample_chain( num_results=2000, num_burnin_steps=500, current_state=initial_state, kernel=tfp.mcmc.SimpleStepSizeAdaptation( tfp.mcmc.TransformedTransitionKernel( inner_kernel=tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=unnormalized_posterior_log_prob, step_size=0.065, num_leapfrog_steps=5), bijector=unconstraining_bijectors), num_adaptation_steps=400), trace_fn=lambda _, pkr: pkr.inner_results.inner_results.is_accepted) [mix_probs, loc, chol_precision], is_accepted = sample()
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
c65f4e01f84b09f50f1da949e1fa0f4d
์ด์ œ chain์„ ์‹คํ–‰ํ•˜๊ณ  ์‚ฌํ›„ ํ™•๋ฅ  ๋ถ„ํฌ์˜ ํ‰๊ท ์„ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค.
acceptance_rate = tf.reduce_mean(tf.cast(is_accepted, dtype=tf.float32)).numpy() mean_mix_probs = tf.reduce_mean(mix_probs, axis=0).numpy() mean_loc = tf.reduce_mean(loc, axis=0).numpy() mean_chol_precision = tf.reduce_mean(chol_precision, axis=0).numpy() precision = tf.linalg.matmul(chol_precision, chol_precision, transpose_b=True) print('acceptance_rate:', acceptance_rate) print('avg mix probs:', mean_mix_probs) print('avg loc:\n', mean_loc) print('avg chol(precision):\n', mean_chol_precision) loc_ = loc.numpy() ax = sns.kdeplot(loc_[:,0,0], loc_[:,0,1], shade=True, shade_lowest=False) ax = sns.kdeplot(loc_[:,1,0], loc_[:,1,1], shade=True, shade_lowest=False) ax = sns.kdeplot(loc_[:,2,0], loc_[:,2,1], shade=True, shade_lowest=False) plt.title('KDE of loc draws');
site/ko/probability/examples/Bayesian_Gaussian_Mixture_Model.ipynb
tensorflow/docs-l10n
apache-2.0
e9d2f515aaeb742095f4ea9a83bc6ae1
<h2>Linear Regression</h2>
c = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model year', 'origin'] limit = int(3*cars.shape[0]/4) X_train = cars.iloc[:limit,1:] y_train = cars.iloc[:limit,0] X_test = cars.iloc[limit:,1:] y_test = cars.iloc[limit:,0] lr = LinearRegression() #Remember the [[]], is the data in 1 column lr.fit(X_train, y_train) predictions = lr.predict(X_test) #mean_squared_error mse = mean_squared_error(y_test, predictions) # The coefficients print('Coefficients: ', lr.coef_) # The mean square error print("Residual sum of squares: %.2f" % mse) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % lr.score(X_test, y_test)) plt.scatter(X_test["weight"], y_test, c='b') plt.scatter(X_test["weight"], prediction, c='r') plt.show()
AutoMPG/AutoMPG.ipynb
JavierVLAB/DataAnalysisScience
gpl-3.0
53b0c19d8bb23406b251c28ae45c5e59
<p>The variance score is very low due to we use all the features.</p> <p>For a better solution we aplied a feature selection. </p> <p>From the pair graph, we can see that the features 'cylinders', 'model year' and 'origin' dont'show a clear correlation with the 'mpg' variable, so those are rejected.</p>
c = ['mpg','horsepower', "weight",'acceleration'] limit = int(3*cars.shape[0]/4) X_train = cars[c].iloc[:limit,1:] y_train = cars.iloc[:limit,0] X_test = cars[c].iloc[limit:,1:] y_test = cars.iloc[limit:,0] lr2 = LinearRegression() #Remember the [[]], is the data in 1 column lr2.fit(X_train, y_train) predictions = lr2.predict(X_test) #mean_squared_error mse = mean_squared_error(y_test, predictions) # The coefficients print('Coefficients: ', lr2.coef_) # The mean square error print("Residual sum of squares: %.2f" % mse) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % lr2.score(X_test, y_test)) feature = "weight" plt.scatter(X_test[feature], y_test, c='b') plt.scatter(X_test[feature], prediction, c='r') plt.ylim([10,45]) plt.xlim([1500,4000]) plt.ylabel('MPG') plt.xlabel(feature) plt.show()
AutoMPG/AutoMPG.ipynb
JavierVLAB/DataAnalysisScience
gpl-3.0
7682d916f902e5a65f415f84ba21ec7d
Date/Time data handling Date and time data are inherently problematic. There are an unequal number of days in every month, an unequal number of days in a year (due to leap years), and time zones that vary over space. Yet information about time is essential in many analyses, particularly in the case of time series analysis. The datetime built-in library handles temporal information down to the nanosecond.
from datetime import datetime now = datetime.now() now now.day now.weekday()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
cb8bffd3b50768ed6108819e111a5dc9
In addition to datetime there are simpler objects for date and time information only, respectively.
from datetime import date, time time(3, 24) date(1970, 9, 3)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
899da0483ae6749c071437d07ddc9322
Having a custom data type for dates and times is convenient because we can perform operations on them easily. For example, we may want to calculate the difference between two times:
my_age = now - datetime(1970, 1, 1) my_age print(type(my_age)) my_age.days/365
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
8694a1a1052863ab32e1b927234eeb39
In this section, we will manipulate data collected from ocean-going vessels on the eastern seaboard. Vessel operations are monitored using the Automatic Identification System (AIS), a safety at sea navigation technology which vessels are required to maintain and that uses transponders to transmit very high frequency (VHF) radio signals containing static information including ship name, call sign, and country of origin, as well as dynamic information unique to a particular voyage such as vessel location, heading, and speed. The International Maritime Organizationโ€™s (IMO) International Convention for the Safety of Life at Sea requires functioning AIS capabilities on all vessels 300 gross tons or greater and the US Coast Guard requires AIS on nearly all vessels sailing in U.S. waters. The Coast Guard has established a national network of AIS receivers that provides coverage of nearly all U.S. waters. AIS signals are transmitted several times each minute and the network is capable of handling thousands of reports per minute and updates as often as every two seconds. Therefore, a typical voyage in our study might include the transmission of hundreds or thousands of AIS encoded signals. This provides a rich source of spatial data that includes both spatial and temporal information. For our purposes, we will use summarized data that describes the transit of a given vessel through a particular administrative area. The data includes the start and end time of the transit segment, as well as information about the speed of the vessel, how far it travelled, etc.
segments = pd.read_csv("Data/AIS/transit_segments.csv") segments.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
49667933f0a07b91a1dbfae091bb96c6
For example, we might be interested in the distribution of transit lengths, so we can plot them as a histogram:
segments.seg_length.hist(bins=500)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
fa8c938fbc933d3bd09301ea4faf2d0f
Though most of the transits appear to be short, there are a few longer distances that make the plot difficult to read. This is where a transformation is useful:
segments.seg_length.apply(np.log).hist(bins=500)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
010a165ce25a88b7a73518d99e832f22
We can see that although there are date/time fields in the dataset, they are not in any specialized format, such as datetime.
segments.st_time.dtype
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
c0df7a73db0861702ba41c8cb0b55814
Our first order of business will be to convert these data to datetime. The strptime method parses a string representation of a date and/or time field, according to the expected format of this information.
datetime.strptime(segments.st_time.ix[0], '%m/%d/%y %H:%M')
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
93d5057b70ac5df596d0aa9d42a64762
The dateutil package includes a parser that attempts to detect the format of the date strings, and convert them automatically.
from dateutil.parser import parse parse(segments.st_time.ix[0])
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
f46dfba79fa956521f6d45d5cf722dbf
We can convert all the dates in a particular column by using the apply method.
segments.st_time.apply(lambda d: datetime.strptime(d, '%m/%d/%y %H:%M'))
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
db7b6d164eb186593344189936f15036
As a convenience, Pandas has a to_datetime method that will parse and convert an entire Series of formatted strings into datetime objects.
pd.to_datetime(segments.st_time[:10])
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
d4d1b2d32491514ef7b41e49fdb993cc
Pandas also has a custom NA value for missing datetime objects, NaT.
pd.to_datetime([None])
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
3ff6c4a3627e6b234ece23dc677e7a6b
Also, if to_datetime() has problems parsing any particular date/time format, you can pass the spec in using the format= argument. The read_* functions now have an optional parse_dates argument that try to convert any columns passed to it into datetime format upon import:
segments = pd.read_csv("Data/AIS/transit_segments.csv", parse_dates=['st_time', 'end_time']) segments.dtypes
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
7a917cdf7262c0d5ea7a27fc2de8f5a5
Columns of the datetime type have an accessor to easily extract properties of the data type. This will return a Series, with the same row index as the DataFrame. For example:
segments.st_time.dt.month.head() segments.st_time.dt.hour.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
9ccf3198626476fabcbf79735b7d0eac
This can be used to easily filter rows by particular temporal attributes:
segments[segments.st_time.dt.month==2].head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
247c3350964523e65a60b926c7dad480
In addition, time zone information can be applied:
segments.st_time.dt.tz_localize('UTC').head() segments.st_time.dt.tz_localize('UTC').dt.tz_convert('US/Eastern').head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
1b6c2bf682ed42e0e5e7f8b5706212fb
Merging and joining DataFrame objects Now that we have the vessel transit information as we need it, we may want a little more information regarding the vessels themselves. In the data/AIS folder there is a second table that contains information about each of the ships that traveled the segments in the segments table.
vessels = pd.read_csv("Data/AIS/vessel_information.csv", index_col='mmsi') vessels.head() [v for v in vessels.type.unique() if v.find('/')==-1] vessels.type.value_counts()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
0da1b4ae07b6f00b84dc289e88056b4d
The challenge, however, is that several ships have travelled multiple segments, so there is not a one-to-one relationship between the rows of the two tables. The table of vessel information has a one-to-many relationship with the segments. In Pandas, we can combine tables according to the value of one or more keys that are used to identify rows, much like an index. Using a trivial example:
df1 = pd.DataFrame(dict(id=range(4), age=np.random.randint(18, 31, size=4))) df2 = pd.DataFrame(dict(id=list(range(3))+list(range(3)), score=np.random.random(size=6))) df1 df2 pd.merge(df1, df2)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
1e420c2e6a187caa5d832c266b2db40e
Notice that without any information about which column to use as a key, Pandas did the right thing and used the id column in both tables. Unless specified otherwise, merge will used any common column names as keys for merging the tables. Notice also that id=3 from df1 was omitted from the merged table. This is because, by default, merge performs an inner join on the tables, meaning that the merged table represents an intersection of the two tables.
pd.merge(df1, df2, how='outer')
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
e583108f3ff50e34eafb3df101db73b3
The outer join above yields the union of the two tables, so all rows are represented, with missing values inserted as appropriate. One can also perform right and left joins to include all rows of the right or left table (i.e. first or second argument to merge), but not necessarily the other. Looking at the two datasets that we wish to merge:
segments.head(1) vessels.head(1)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
1191a1e0520f3aada6e6c76ab140d403
we see that there is a mmsi value (a vessel identifier) in each table, but it is used as an index for the vessels table. In this case, we have to specify to join on the index for this table, and on the mmsi column for the other.
segments_merged = pd.merge(vessels, segments, left_index=True, right_on='mmsi') segments_merged.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
db4a5decf299d899467ea7b20f1a8f8e
In this case, the default inner join is suitable; we are not interested in observations from either table that do not have corresponding entries in the other. Notice that mmsi field that was an index on the vessels table is no longer an index on the merged table. Here, we used the merge function to perform the merge; we could also have used the merge method for either of the tables:
vessels.merge(segments, left_index=True, right_on='mmsi').head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
094437cd64ba43f74caad74dced7a450
Occasionally, there will be fields with the same in both tables that we do not wish to use to join the tables; they may contain different information, despite having the same name. In this case, Pandas will by default append suffixes _x and _y to the columns to uniquely identify them.
segments['type'] = 'foo' pd.merge(vessels, segments, left_index=True, right_on='mmsi').head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
2e6df2fbfdea8a86fae410848ff7e646
This behavior can be overridden by specifying a suffixes argument, containing a list of the suffixes to be used for the columns of the left and right columns, respectively. Concatenation A common data manipulation is appending rows or columns to a dataset that already conform to the dimensions of the exsiting rows or colums, respectively. In NumPy, this is done either with concatenate or the convenience "functions" c_ and r_:
np.concatenate([np.random.random(5), np.random.random(5)]) np.r_[np.random.random(5), np.random.random(5)] np.c_[np.random.random(5), np.random.random(5)]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
2521df56aa9d2e7ee7760ab57197d59a
Notice that c_ and r_ are not really functions at all, since it is performing some sort of indexing operation, rather than being called. They are actually class instances, but they are here behaving mostly like functions. Don't think about this too hard; just know that they are there. This operation is also called binding or stacking. With Pandas' indexed data structures, there are additional considerations as the overlap in index values between two data structures affects how they are concatenate. Lets import two microbiome datasets, each consisting of counts of microorganiams from a particular patient. We will use the first column of each dataset as the index.
mb1 = pd.read_excel('Data/microbiome/MID1.xls', 'Sheet 1', index_col=0, header=None) mb2 = pd.read_excel('Data/microbiome/MID2.xls', 'Sheet 1', index_col=0, header=None) mb1.shape, mb2.shape mb1.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
e706ca7f76bba84305d5def74c3bea31
Let's give the index and columns meaningful labels:
mb1.columns = mb2.columns = ['Count'] mb1.index.name = mb2.index.name = 'Taxon' mb1.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
0a99318edf1b897e5744fae985d5d887
The index of these data is the unique biological classification of each organism, beginning with domain, phylum, class, and for some organisms, going all the way down to the genus level.
mb1.index[:3] mb1.index.is_unique
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
2c5a12745daabb708d8603719a80ea5e
If we concatenate along axis=0 (the default), we will obtain another data frame with the the rows concatenated:
pd.concat([mb1, mb2], axis=0).shape
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
815819a68e68760e48a29f3122326b26
However, the index is no longer unique, due to overlap between the two DataFrames.
pd.concat([mb1, mb2], axis=0).index.is_unique
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
1dc9e7c3b39d7a05128a60e4ef30fda4
Concatenating along axis=1 will concatenate column-wise, but respecting the indices of the two DataFrames.
pd.concat([mb1, mb2], axis=1).shape pd.concat([mb1, mb2], axis=1).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
5c37d5acb75710dda508a12c95abd7fb
If we are only interested in taxa that are included in both DataFrames, we can specify a join=inner argument.
pd.concat([mb1, mb2], axis=1, join='inner').head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
3de78675e0ccbc086ebb3b887e8c8a29
If we wanted to use the second table to fill values absent from the first table, we could use combine_first.
mb1.combine_first(mb2).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
688bdf138eb765935780e8af0da188d6
We can also create a hierarchical index based on keys identifying the original tables.
pd.concat([mb1, mb2], keys=['patient1', 'patient2']).head() pd.concat([mb1, mb2], keys=['patient1', 'patient2']).index.is_unique
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
20d937c158808275fbf73faddb05c0af
Alternatively, you can pass keys to the concatenation by supplying the DataFrames (or Series) as a dict, resulting in a "wide" format table.
pd.concat(dict(patient1=mb1, patient2=mb2), axis=1).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
1d6504aca0cfb739fe3f1ee1864e4817
If you want concat to work like numpy.concatanate, you may provide the ignore_index=True argument. Exercise 1 In the data/microbiome subdirectory, there are 9 spreadsheets of microbiome data that was acquired from high-throughput RNA sequencing procedures, along with a 10th file that describes the content of each. Write code that imports each of the data spreadsheets and combines them into a single DataFrame, adding the identifying information from the metadata spreadsheet as columns in the combined DataFrame.
# Write solution here
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
64727bc2a00baf42b460b4803fe4ad8b
Reshaping DataFrame objects In the context of a single DataFrame, we are often interested in re-arranging the layout of our data. This dataset is from Table 6.9 of Statistical Methods for the Analysis of Repeated Measurements by Charles S. Davis, pp. 161-163 (Springer, 2002). These data are from a multicenter, randomized controlled trial of botulinum toxin type B (BotB) in patients with cervical dystonia from nine U.S. sites. Randomized to placebo (N=36), 5000 units of BotB (N=36), 10,000 units of BotB (N=37) Response variable: total score on Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), measuring severity, pain, and disability of cervical dystonia (high scores mean more impairment) TWSTRS measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after treatment began
cdystonia = pd.read_csv("Data/cdystonia.csv", index_col=None) cdystonia.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
726de42414175ea86d96ef5a06660066
This dataset includes repeated measurements of the same individuals (longitudinal data). Its possible to present such information in (at least) two ways: showing each repeated measurement in their own row, or in multiple columns representing multiple measurements. The stack method rotates the data frame so that columns are represented in rows:
stacked = cdystonia.stack() stacked
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
835ef8b917a120a560f6b4bc650d93a6
To complement this, unstack pivots from rows back to columns.
stacked.unstack().head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
4c7b0945da28dd2cea3f46ec27273ef0
For this dataset, it makes sense to create a hierarchical index based on the patient and observation:
cdystonia2 = cdystonia.set_index(['patient','obs']) cdystonia2.head() cdystonia2.index.is_unique
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
f5522049abb61e6ac0e4073d8ab6ff54
If we want to transform this data so that repeated measurements are in columns, we can unstack the twstrs measurements according to obs.
twstrs_wide = cdystonia2['twstrs'].unstack('obs') twstrs_wide.head() cdystonia_wide = (cdystonia[['patient','site','id','treat','age','sex']] .drop_duplicates() .merge(twstrs_wide, right_index=True, left_on='patient', how='inner') .head()) cdystonia_wide
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
777535e81f68e2949cd1a91085445d5e
A slightly cleaner way of doing this is to set the patient-level information as an index before unstacking:
(cdystonia.set_index(['patient','site','id','treat','age','sex','week'])['twstrs'] .unstack('week').head())
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
237aa64c0acc34d4c7c9b230e8e68b9e
To convert our "wide" format back to long, we can use the melt function, appropriately parameterized. This function is useful for DataFrames where one or more columns are identifier variables (id_vars), with the remaining columns being measured variables (value_vars). The measured variables are "unpivoted" to the row axis, leaving just two non-identifier columns, a variable and its corresponding value, which can both be renamed using optional arguments.
pd.melt(cdystonia_wide, id_vars=['patient','site','id','treat','age','sex'], var_name='obs', value_name='twsters').head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
dd7c2d385c53af10f72d4c56fd59f475
This illustrates the two formats for longitudinal data: long and wide formats. Its typically better to store data in long format because additional data can be included as additional rows in the database, while wide format requires that the entire database schema be altered by adding columns to every row as data are collected. The preferable format for analysis depends entirely on what is planned for the data, so it is imporant to be able to move easily between them. Pivoting The pivot method allows a DataFrame to be transformed easily between long and wide formats in the same way as a pivot table is created in a spreadsheet. It takes three arguments: index, columns and values, corresponding to the DataFrame index (the row headers), columns and cell values, respectively. For example, we may want the twstrs variable (the response variable) in wide format according to patient, as we saw with the unstacking method above:
cdystonia.pivot(index='patient', columns='obs', values='twstrs').head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
267b3e7b67e095660f5da21274dd5d20
If we omit the values argument, we get a DataFrame with hierarchical columns, just as when we applied unstack to the hierarchically-indexed table:
cdystonia.pivot('patient', 'obs')
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
8c969376da0663f603d9b0d89141ad5b
A related method, pivot_table, creates a spreadsheet-like table with a hierarchical index, and allows the values of the table to be populated using an arbitrary aggregation function.
cdystonia.pivot_table(index=['site', 'treat'], columns='week', values='twstrs', aggfunc=max).head(20)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
79d0f4d0a86d4f5ab412922b564330a5
For a simple cross-tabulation of group frequencies, the crosstab function (not a method) aggregates counts of data according to factors in rows and columns. The factors may be hierarchical if desired.
pd.crosstab(cdystonia.sex, cdystonia.site)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
d5f94fb54220dd35e54866413655df32
Data transformation There are a slew of additional operations for DataFrames that we would collectively refer to as "transformations" which include tasks such as removing duplicate values, replacing values, and grouping values. Dealing with duplicates We can easily identify and remove duplicate values from DataFrame objects. For example, say we want to removed ships from our vessels dataset that have the same name:
vessels.duplicated(subset='names') vessels.drop_duplicates(['names'])
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
07f77cb844759d491b678d4f9aef7655
Value replacement Frequently, we get data columns that are encoded as strings that we wish to represent numerically for the purposes of including it in a quantitative analysis. For example, consider the treatment variable in the cervical dystonia dataset:
cdystonia.treat.value_counts()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
5f4fd26ff66c0cc7a446f57842eac864
A logical way to specify these numerically is to change them to integer values, perhaps using "Placebo" as a baseline value. If we create a dict with the original values as keys and the replacements as values, we can pass it to the map method to implement the changes.
treatment_map = {'Placebo': 0, '5000U': 1, '10000U': 2} cdystonia['treatment'] = cdystonia.treat.map(treatment_map) cdystonia.treatment
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
d566411481536c961c5754fac01ed6f0
Alternately, if we simply want to replace particular values in a Series or DataFrame, we can use the replace method. An example where replacement is useful is dealing with zeros in certain transformations. For example, if we try to take the log of a set of values:
vals = pd.Series([float(i)**10 for i in range(10)]) vals np.log(vals)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
058f8abcfa474cd0326b4215632977a1
In such situations, we can replace the zero with a value so small that it makes no difference to the ensuing analysis. We can do this with replace.
vals = vals.replace(0, 1e-6) np.log(vals)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
9815c4d95b9ca828b5efadf9be73f4b1
We can also perform the same replacement that we used map for with replace:
cdystonia2.treat.replace({'Placebo': 0, '5000U': 1, '10000U': 2})
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
cd6bd896b598450949c0adf00afe77ae
Inidcator variables For some statistical analyses (e.g. regression models or analyses of variance), categorical or group variables need to be converted into columns of indicators--zeros and ones--to create a so-called design matrix. The Pandas function get_dummies (indicator variables are also known as dummy variables) makes this transformation straightforward. Let's consider the DataFrame containing the ships corresponding to the transit segments on the eastern seaboard. The type variable denotes the class of vessel; we can create a matrix of indicators for this. For simplicity, lets filter out the 5 most common types of ships:
top5 = vessels.type.isin(vessels.type.value_counts().index[:5]) top5.head(10) vessels5 = vessels[top5] pd.get_dummies(vessels5.type).head(10)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
aeccca798f726583520fefc5ced5e71c
Categorical Data Pandas provides a convenient dtype for reprsenting categorical (factor) data, called category. For example, the treat column in the cervical dystonia dataset represents three treatment levels in a clinical trial, and is imported by default as an object type, since it is a mixture of string characters.
cdystonia.treat.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
32b902ebc3f6171539c1c0ac176a93a3
We can convert this to a category type either by the Categorical constructor, or casting the column using astype:
pd.Categorical(cdystonia.treat) cdystonia['treat'] = cdystonia.treat.astype('category') cdystonia.treat.describe()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
d85c7bbd1fdfb48b4158450f9c5e94e5
By default the Categorical type represents an unordered categorical.
cdystonia.treat.cat.categories
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
60eb0a8a62504b119204452ad84087d8
However, an ordering can be imposed. The order is lexical by default, but will assume the order of the listed categories to be the desired order.
cdystonia.treat.cat.categories = ['Placebo', '5000U', '10000U'] cdystonia.treat.cat.as_ordered().head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
e4a8fdef6791ec3657dc7d43ca8e592c
The important difference between the category type and the object type is that category is represented by an underlying array of integers, which is then mapped to character labels.
cdystonia.treat.cat.codes
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
bedd8214d1672b8bb731a7c4c0664112
Notice that these are 8-bit integers, which are essentially single bytes of data, making memory usage lower. There is also a performance benefit. Consider an operation such as calculating the total segment lengths for each ship in the segments table (this is also a preview of pandas' groupby operation!):
%time segments.groupby(segments.name).seg_length.sum().sort_values(ascending=False, inplace=False).head() segments['name'] = segments.name.astype('category') %time segments.groupby(segments.name).seg_length.sum().sort_values(ascending=False, inplace=False).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
545f2c491509976dba7390f031b5e271
Hence, we get a considerable speedup simply by using the appropriate dtype for our data. Discretization Pandas' cut function can be used to group continuous or countable data in to bins. Discretization is generally a very bad idea for statistical analysis, so use this function responsibly! Lets say we want to bin the ages of the cervical dystonia patients into a smaller number of groups:
cdystonia.age.describe()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
dca52b72649593cdb281db0a254b619d
Let's transform these data into decades, beginnnig with individuals in their 20's and ending with those in their 80's:
pd.cut(cdystonia.age, [20,30,40,50,60,70,80,90])[:30]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
0b86bde7d6d01ededbe319c5495f5b8f
The parentheses indicate an open interval, meaning that the interval includes values up to but not including the endpoint, whereas the square bracket is a closed interval, where the endpoint is included in the interval. We can switch the closure to the left side by setting the right flag to False:
pd.cut(cdystonia.age, [20,30,40,50,60,70,80,90], right=False)[:30]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
04ce32536d6de93851304a6670521cf7
Since the data are now ordinal, rather than numeric, we can give them labels:
pd.cut(cdystonia.age, [20,40,60,80,90], labels=['young','middle-aged','old','really old'])[:30]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
94f2f82e28f118cb67d3affbfdc20be4
A related function qcut uses empirical quantiles to divide the data. If, for example, we want the quartiles -- (0-25%], (25-50%], (50-70%], (75-100%] -- we can just specify 4 intervals, which will be equally-spaced by default:
pd.qcut(cdystonia.age, 4)[:30]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
06aef490fd60bc9943f699def3e90139
Alternatively, one can specify custom quantiles to act as cut points:
quantiles = pd.qcut(segments.seg_length, [0, 0.01, 0.05, 0.95, 0.99, 1]) quantiles[:30]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
d303c4066eeb6f0d13a98429465da4fb
Note that you can easily combine discretiztion with the generation of indicator variables shown above:
pd.get_dummies(quantiles).head(10)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
ab4453241a888e738d060d425fbafac8
Permutation and sampling For some data analysis tasks, such as simulation, we need to be able to randomly reorder our data, or draw random values from it. Calling NumPy's permutation function with the length of the sequence you want to permute generates an array with a permuted sequence of integers, which can be used to re-order the sequence.
new_order = np.random.permutation(len(segments)) new_order[:30]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
12244f32212ab9a9299c01c3d91c2f09
Using this sequence as an argument to the take method results in a reordered DataFrame:
segments.take(new_order).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
22721b0de1efec516999ee431dd8790c
Compare this ordering with the original:
segments.head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
f9e0d1b45bdd33f29c332c96862cab47
For random sampling, DataFrame and Series objects have a sample method that can be used to draw samples, with or without replacement:
vessels.sample(n=10) vessels.sample(n=10, replace=True)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
4b9db5e58388811cedad1f566365abbe
Data aggregation and GroupBy operations One of the most powerful features of Pandas is its GroupBy functionality. On occasion we may want to perform operations on groups of observations within a dataset. For exmaple: aggregation, such as computing the sum of mean of each group, which involves applying a function to each group and returning the aggregated results slicing the DataFrame into groups and then doing something with the resulting slices (e.g. plotting) group-wise transformation, such as standardization/normalization
cdystonia_grouped = cdystonia.groupby(cdystonia.patient)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
e3e2a5a665c1dd6cfa7d1f8bf31a5dbc
This grouped dataset is hard to visualize
cdystonia_grouped
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
17b10ef6b818d4d575f68622893959af
However, the grouping is only an intermediate step; for example, we may want to iterate over each of the patient groups:
for patient, group in cdystonia_grouped: print('patient', patient) print('group', group)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
3e6451f596304cf9007ab31bf573c0cf
A common data analysis procedure is the split-apply-combine operation, which groups subsets of data together, applies a function to each of the groups, then recombines them into a new data table. For example, we may want to aggregate our data with with some function. <div align="right">*(figure taken from "Python for Data Analysis", p.251)*</div> We can aggregate in Pandas using the aggregate (or agg, for short) method:
cdystonia_grouped.agg(np.mean).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
12e3d25cdd56eae0fbf7d6d7f899e057
Notice that the treat and sex variables are not included in the aggregation. Since it does not make sense to aggregate non-string variables, these columns are simply ignored by the method. Some aggregation functions are so common that Pandas has a convenience method for them, such as mean:
cdystonia_grouped.mean().head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
86d988b128528df08d8a353c6cc2883d
The add_prefix and add_suffix methods can be used to give the columns of the resulting table labels that reflect the transformation:
cdystonia_grouped.mean().add_suffix('_mean').head() # The median of the `twstrs` variable cdystonia_grouped['twstrs'].quantile(0.5)
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
b869a25062d160ef4916da330bfd59ca
If we wish, we can easily aggregate according to multiple keys:
cdystonia.groupby(['week','site']).mean().head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
2498168a47fa3aec2f8110e9e93ab33f
Alternately, we can transform the data, using a function of our choice with the transform method:
normalize = lambda x: (x - x.mean())/x.std() cdystonia_grouped.transform(normalize).head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
665109e69145d0aace6bffd3f45ef2ab
It is easy to do column selection within groupby operations, if we are only interested split-apply-combine operations on a subset of columns:
cdystonia_grouped['twstrs'].mean().head() # This gives the same result as a DataFrame cdystonia_grouped[['twstrs']].mean().head()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
f2c009e4f57f82ef605a5bb5a7ff43ea
If you simply want to divide your DataFrame into chunks for later use, its easy to convert them into a dict so that they can be easily indexed out as needed:
chunks = dict(list(cdystonia_grouped)) chunks[4]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
55a5b039a26595b1ba3dfed6e36bc507
By default, groupby groups by row, but we can specify the axis argument to change this. For example, we can group our columns by dtype this way:
grouped_by_type = cdystonia.groupby(cdystonia.dtypes, axis=1) {g:grouped_by_type.get_group(g) for g in grouped_by_type.groups}
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
4f0f01145c8703e1950284b00da7d8a2
Its also possible to group by one or more levels of a hierarchical index. Recall cdystonia2, which we created with a hierarchical index:
cdystonia2.head(10) cdystonia2.groupby(level='obs', axis=0)['twstrs'].mean()
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
00c4204fbbb2f86cc57f2aca7e863b5d
Apply We can generalize the split-apply-combine methodology by using apply function. This allows us to invoke any function we wish on a grouped dataset and recombine them into a DataFrame. The function below takes a DataFrame and a column name, sorts by the column, and takes the n largest values of that column. We can use this with apply to return the largest values from every group in a DataFrame in a single call.
def top(df, column, n=5): return df.sort_values(by=column, ascending=False)[:n]
Homework/01 - Pandas and Data Wrangling/temp/Data Wrangling with Pandas.ipynb
Merinorus/adaisawesome
gpl-3.0
ae1a8447223eaeafee7916d33c2235e3