File size: 20,489 Bytes
92142d8
 
 
 
 
 
 
 
 
 
a3c6a05
 
 
 
 
 
92142d8
 
 
 
 
 
69c544e
92142d8
 
 
69c544e
92142d8
69c544e
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c6a05
 
 
 
 
 
 
 
 
 
92142d8
 
 
 
7bc669c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92142d8
 
 
a3c6a05
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c6a05
 
 
 
 
 
 
 
92142d8
 
69c544e
 
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c6a05
92142d8
 
69c544e
 
 
92142d8
69c544e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92142d8
2351499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92142d8
2351499
 
 
 
 
cbb2b8a
69c544e
92142d8
cbb2b8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Dronescapes dataset

![Logo](logo.png)

As introduced in our ICCV 2023 workshop paper: [link](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf)

# 1. Downloading the data

## Option 1. Download the pre-processed dataset from HuggingFace repository

```
git lfs install # Make sure you have git-lfs installed (https://git-lfs.com)
git clone https://huggingface.co/datasets/Meehai/dronescapes
```

Note: the dataset has about 300GB, so it may take a while to clone it.

<details>
<summary> <b> Option 2. Generating the dataset from raw videos and basic labels </b>.</summary>

Recommended if you intend on understanding how the dataset was created or add new videos or representations.

### 1.2.1 Raw videos

Follow the commands in each directory under `raw_data/videos/*/commands.txt` if you want to start from the 4K videos.

If you only want the 540p videos as used in the paper, they are already provided in the `raw_data/videos/*` directories.

### 1.2.2 Semantic segmentation labels (human annotated)

These were human annotated and then propagated using [segprop](https://github.com/vlicaret/segprop).

```bash
cd raw_data/
tar -xzvf segprop_npz_540.tar.gz
```

### 1.2.3 Generate the rest of the representations

We use the [video-representations-extractor](https://gitlab.com/meehai/video-representations-extractor) to generate
the rest of the labels using pre-traing networks or algoritms.

```
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/atanasie_DJI_0652_full/atanasie_DJI_0652_full_540p.mp4 -o raw_data/npz_540p/atanasie_DJI_0652_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/barsana_DJI_0500_0501_combined_sliced_2700_14700/barsana_DJI_0500_0501_combined_sliced_2700_14700_540p.mp4 -o raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=2 vre raw_data/videos/comana_DJI_0881_full/comana_DJI_0881_full_540p.mp4 -o raw_data/npz_540p/comana_DJI_0881_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=3 vre raw_data/videos/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110_540p.mp4 -o raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=4 vre raw_data/videos/herculane_DJI_0021_full/herculane_DJI_0021_full_540p.mp4 -o raw_data/npz_540p/herculane_DJI_0021_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=5 vre raw_data/videos/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715_540p.mp4 -o raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=6 vre raw_data/videos/norway_210821_DJI_0015_full/norway_210821_DJI_0015_full_540p.mp4 -o raw_data/npz_540p/norway_210821_DJI_0015_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre raw_data/videos/olanesti_DJI_0416_full/olanesti_DJI_0416_full_540p.mp4 -o raw_data/npz_540p/olanesti_DJI_0416_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/petrova_DJI_0525_0526_combined_sliced_2850_11850/petrova_DJI_0525_0526_combined_sliced_2850_11850_540p.mp4 -o raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/slanic_DJI_0956_0957_combined_sliced_780_9780/slanic_DJI_0956_0957_combined_sliced_780_9780_540p.mp4 -o raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
```

### 1.2.4 Convert Mask2Former from Mapillary classes to segprop8 classes

Since we are using pre-trained Mask2Former which has either mapillary or COCO panoptic classes, we need to convert them to dronescapes-compatible (8) classes.

To do this, we use the `scripts/convert_m2f_to_dronescapes.py` script:
```
python scripts/convert_m2f_to_dronescapes.py in_dir out_dir mapillary/coco [--overwrite]
```

```
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/atanasie_DJI_0652_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/atanasie_DJI_0652_full/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/semantic_mask2former_swin_mapillary raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/comana_DJI_0881_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/comana_DJI_0881_full/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/semantic_mask2former_swin_mapillary raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/herculane_DJI_0021_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/herculane_DJI_0021_full/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/semantic_mask2former_swin_mapillary raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/norway_210821_DJI_0015_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/norway_210821_DJI_0015_full/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/olanesti_DJI_0416_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/olanesti_DJI_0416_full/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/semantic_mask2former_swin_mapillary raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/semantic_mask2former_swin_mapillary_converted mapillary
python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/semantic_mask2former_swin_mapillary raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/semantic_mask2former_swin_mapillary_converted mapillary
```

### 1.2.5 Check counts for consistency

Run: `bash scripts/count_npz.sh raw_data/npz_540p`. At this point it should return:
| scene     |   rgb |   depth_dpt |   depth_sfm_manual20.. |   edges_dexined |   normals_sfm_manual.. |   opticalflow_rife |   semantic_mask2form.. |   semantic_segprop8 |
|:----------|------:|------------:|-----------------------:|----------------:|-----------------------:|-------------------:|-----------------------:|--------------------:|
| atanasie  |  9021 |        9021 |                   9020 |            9021 |                   9020 |               9021 |                   9021 |                9001 |
| barsana   | 12001 |       12001 |                  12001 |           12001 |                  12001 |              12000 |                  12001 |                1573 |
| comana    |  9022 |        9022 |                      0 |            9022 |                      0 |               9022 |                   9022 |                1210 |
| gradistei |  9601 |        9601 |                   9600 |            9601 |                   9600 |               9600 |                   9601 |                1210 |
| herculane |  9022 |        9022 |                   9021 |            9022 |                   9021 |               9022 |                   9022 |                1210 |
| jupiter   | 11066 |       11066 |                  11065 |           11066 |                  11065 |              11066 |                  11066 |                1452 |
| norway    |  2983 |        2983 |                      0 |            2983 |                      0 |               2983 |                   2983 |                2941 |
| olanesti  |  9022 |        9022 |                   9021 |            9022 |                   9021 |               9022 |                   9022 |                1210 |
| petrova   |  9001 |        9001 |                   9001 |            9001 |                   9001 |               9000 |                   9001 |                1210 |
| slanic    |  9001 |        9001 |                   9001 |            9001 |                   9001 |               9000 |                   9001 |                9001 |

### 1.2.6. Split intro train, validation, semisupervised and train

We include 8 splits: 4 using only GT annotated semantic data and 4 using all available data (i.e. segproped between
annotated data). The indexes are taken from `txt_files/*`, i.e. `txt_files/manually_adnotated_files/test_files_116.txt`
refers to the fact that the (unseen at train time) test set (norway + petrova + barsana) contains 116 manually
annotated semantic files. We include all representations from above, not just semantic for all possible splits.
Adding new representations is as simple as running VRE on the 540p mp4 file

```
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/train_files_11664.txt -o data/train_set --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/val_files_605.txt -o data/validation_set --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/semisup_files_11299.txt -o data/semisupervised_set --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/test_files_5603.txt -o data/test_set --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/train_files_218.txt -o data/train_set_annotated_only --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/val_files_15.txt -o data/validation_set_annotated_only --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/semisup_files_207.txt -o data/semisupervised_set_annotated_nly --overwrite
python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/test_files_116.txt -o data/test_set_annotated_nly --overwrite
```

Note: `add --copy_files` if you want to make copies instead of using symlinks.

Upon calling this, you should be able to see something like this:
```
user> ls data/*
data/semisupervised_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/semisupervised_set_annotated_nly:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/test_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/test_set_annotated_nly:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/train_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/train_set_annotated_only:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/validation_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/validation_set_annotated_only:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8
```

</details>

## 2. Using the data

As per the split from the paper:
![Split](split.png)

The data is in `data/*` (see the `ls` call above, it should match even if you download from huggingface).

## 2.1 Using the provided viewer
Basic usage:
```
python scripts/dronescapes_viewer.py data/test_set_annotated_only/ # or any of the 8 directories in data/
```

<details>
<summary> Expected output </summary>

```
[MultiTaskDataset]
 - Path: '/scratch/sdc/datasets/dronescapes/data/test_set_annotated_only'
 - Only full data: False
 - Representations (8): [NpzRepresentation(depth_dpt), NpzRepresentation(depth_sfm_manual202204), NpzRepresentation(edges_dexined), NpzRepresentation(normals_sfm_manual202204), NpzRepresentation(opticalflow_rife), NpzRepresentation(rgb), NpzRepresentation(semantic_mask2former_swin_mapillary_converted), NpzRepresentation(semantic_segprop8)]
 - Length: 116
== Shapes ==
{'depth_dpt': torch.Size([540, 960]),
 'depth_sfm_manual202204': torch.Size([540, 960]),
 'edges_dexined': torch.Size([540, 960]),
 'normals_sfm_manual202204': torch.Size([540, 960, 3]),
 'opticalflow_rife': torch.Size([540, 960, 2]),
 'rgb': torch.Size([540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([540, 960]),
 'semantic_segprop8': torch.Size([540, 960])}
== Random loaded item ==
/export/home/proiecte/aux/mihai_cristian.pirvu/.conda/envs/ngc/lib/python3.10/site-packages/numpy/core/_methods.py:215: RuntimeWarning: overflow encountered in reduce
  arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
{'depth_dpt': tensor[540, 960] x∈[0.031, 1.000] μ=0.060 σ=0.038,
 'depth_sfm_manual202204': tensor[540, 960] f16 x∈[0., 1.195e+03] μ=360.250 σ=inf,
 'edges_dexined': tensor[540, 960] x∈[0.131, 1.000] μ=0.848 σ=0.188,
 'normals_sfm_manual202204': tensor[540, 960, 3] f16 x∈[0.000, 1.000] μ=0.525 σ=inf,
 'opticalflow_rife': tensor[540, 960, 2] f16 x∈[-0.000, 0.007] μ=0.002 σ=0.002,
 'rgb': tensor[540, 960, 3] u8 x∈[0, 255] μ=68.154 σ=33.902,
 'semantic_mask2former_swin_mapillary_converted': tensor[540, 960] u8 x∈[0, 7] μ=3.591 σ=3.058,
 'semantic_segprop8': tensor[540, 960] u8 x∈[0, 6] μ=1.057 σ=0.916}
== Random loaded batch ==
{'depth_dpt': torch.Size([5, 540, 960]),
 'depth_sfm_manual202204': torch.Size([5, 540, 960]),
 'edges_dexined': torch.Size([5, 540, 960]),
 'normals_sfm_manual202204': torch.Size([5, 540, 960, 3]),
 'opticalflow_rife': torch.Size([5, 540, 960, 2]),
 'rgb': torch.Size([5, 540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([5, 540, 960]),
 'semantic_segprop8': torch.Size([5, 540, 960])}
== Random loaded batch using torch DataLoader ==
{'depth_dpt': torch.Size([5, 540, 960]),
 'depth_sfm_manual202204': torch.Size([5, 540, 960]),
 'edges_dexined': torch.Size([5, 540, 960]),
 'normals_sfm_manual202204': torch.Size([5, 540, 960, 3]),
 'opticalflow_rife': torch.Size([5, 540, 960, 2]),
 'rgb': torch.Size([5, 540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([5, 540, 960]),
 'semantic_segprop8': torch.Size([5, 540, 960])}
```
</details>

## 3. Evaluation for semantic segmentation

We evaluate in the paper on the 3 test scenes (unsees at train) as well as the semi-supervised scenes (seen, but
different split) against the human annotated frames. The general evaluation script is in
`scripts/evaluate_semantic_segmentation.py`.

General usage is:
```
python scripts/evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv --classes C1 C2 .. Cn
[--class_weights W1 W2 ... Wn] [--scenes s1 s2 ... sm]
```

<details>
<summary> Script explanation </summary>
The script is a bit convoluted, so let's break it into parts:

- `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset (y_dir/1.npz, gt_dir/55.npz etc.)
- `classes` A list of classes in the order that they appear in the predictions and gt files
- `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as
the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers
below.
- `scenes` if the `y_dir` and `gt_dir` contains multiple scenes that you want to evaluate separately, the script allows
you to pass the prefix of all the scenes. For example, in `data/test_set_annotated_only/semantic_segprop8/` there are
actually 3 scenes in the npz files and in the paper, we evaluate each scene independently. Even though the script
outputs one csv file with predictions for each npz file, the scenes are used for proper aggregation at scene level.
</details>

<details>
<summary> Reproducing paper results for Mask2Former </summary>

```
python scripts/evaluate_semantic_segmentation.py \
  data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \ # change this with your predictions dir
  data/test_set_annotated_only/semantic_segprop8/ \
  -o results.csv \
  --classes land forest residential road little-objects water sky hill \
  --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 \
  --scenes barsana_DJI_0500_0501_combined_sliced_2700_14700 comana_DJI_0881_full norway_210821_DJI_0015_full
```

Should output:
```
scene                                             iou     f1         
barsana_DJI_0500_0501_combined_sliced_2700_14700  63.367  75.327
comana_DJI_0881_full                              60.554  73.757
norway_210821_DJI_0015_full                       37.998  45.928
overall avg                                       53.973  65.004
```

Not providing `--scenes` will make an average across all 3 scenes (not average after each metric individually):

```
          iou      f1
scene                
all    60.456  73.261
```
</details>

## TODOs
- convert camera normals to world normals