File size: 6,008 Bytes
2351499
c86db9a
 
2351499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff26c3
2351499
 
 
 
 
 
 
fff26c3
c86db9a
2351499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff26c3
2351499
 
fff26c3
2351499
 
 
 
 
 
fff26c3
 
2351499
 
 
fff26c3
 
2351499
 
fff26c3
 
 
2351499
fff26c3
2351499
fff26c3
2351499
2db37a2
2351499
2db37a2
 
 
fff26c3
 
2351499
fff26c3
2351499
fff26c3
 
2351499
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the classes and each frame.
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir --classes C1 .. Cn [--class_weights W1 .. Wn] -o results.csv
"""
import sys
import os
from loguru import logger
from pathlib import Path
from argparse import ArgumentParser, Namespace
from tempfile import TemporaryDirectory
from functools import partial
from torchmetrics.functional.classification import multiclass_stat_scores
from tqdm import trange
import torch as tr
import numpy as np
import pandas as pd

sys.path.append(Path(__file__).parents[1].__str__())
from dronescapes_reader import MultiTaskDataset, SemanticRepresentation

def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
    precision = tp / (tp + fp)
    recall = tp / (tp + fn)
    f1 = 2 * precision * recall / (precision + recall)
    iou = tp / (tp + fp + fn)
    return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T

def compute_metrics_by_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
    df = df.query("class_name == @class_name").drop(columns="class_name")
    df.loc["all"] = df.sum()
    df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
    df.insert(0, "class_name", class_name)
    df = df.fillna(0).round(3)
    return df

def compute_raw_stats_per_frame(reader: MultiTaskDataset, classes: list[str]) -> pd.DataFrame:
    res = tr.zeros((len(reader), len(classes), 4)).long() # (N, NC, 4)
    index = []
    for i in trange(len(reader)):
        x = reader[i]
        y, gt = x[0]["pred"], x[0]["gt"]
        res[i] = multiclass_stat_scores(y, gt, num_classes=len(classes), average=None)[:, 0:4]
        index.append(x[1])
    res = res.reshape(len(reader) * len(classes), 4)
    df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
    df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
    return df

def compute_final_per_scene(res: pd.DataFrame, scene: str, classes: list[str],
                            class_weights: list[float]) -> tuple[float, float]:
    df = res.iloc[[x.startswith(scene) for x in res.index]]
    # aggregate for this class all the individual predictions
    df_scene = df[["class_name", "tp", "fp", "tn", "fn"]].groupby("class_name") \
        .apply(lambda x: x.sum(), include_groups=False).loc[classes]
    df_metrics = compute_metrics(df_scene["tp"], df_scene["fp"], df_scene["tn"], df_scene["fn"])
    iou_weighted = (df_metrics["iou"] * class_weights).sum()
    f1_weighted = (df_metrics["f1"] * class_weights).sum()
    return scene, iou_weighted, f1_weighted

def get_args() -> Namespace:
    parser = ArgumentParser()
    parser.add_argument("y_dir", type=lambda p: Path(p).absolute())
    parser.add_argument("gt_dir", type=lambda p: Path(p).absolute())
    parser.add_argument("--output_path", "-o", type=Path, required=True)
    parser.add_argument("--classes", required=True, nargs="+")
    parser.add_argument("--class_weights", nargs="+", type=float)
    parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
    parser.add_argument("--overwrite", action="store_true")
    args = parser.parse_args()
    if args.class_weights is None:
        logger.info("No class weights provided, defaulting to equal weights.")
        args.class_weights = [1 / len(args.classes)] * len(args.classes)
    assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
    assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
    assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
    if len(args.scenes) > 0:
        logger.info(f"Scenes: {args.scenes}")
    if args.output_path.exists() and args.overwrite:
        os.remove(args.output_path)
    return args

def main(args: Namespace):
    # setup to put both directories in the same parent directory for the reader to work.
    (temp_dir := Path(TemporaryDirectory().name)).mkdir(exist_ok=False)
    os.symlink(args.y_dir, temp_dir / "pred")
    os.symlink(args.gt_dir, temp_dir / "gt")
    sema_repr = partial(SemanticRepresentation, classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
    reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
    assert (a := len(reader.all_files_per_repr["gt"])) == (b := len(reader.all_files_per_repr["pred"])), f"{a} vs {b}"

    # Compute TP, FP, TN, FN for each frame
    if not args.output_path.exists():
        raw_stats = compute_raw_stats_per_frame(reader, args.classes)
        logger.info(f"Stored raw metrics file to: '{args.output_path}'")
        raw_stats.to_csv(args.output_path)
    else:
        logger.info(f"Loading raw metrics from: '{args.output_path}'. Delete this file if you want to recompute.")
        raw_stats = pd.read_csv(args.output_path, index_col=0)

    # Compute Precision, Recall, F1, IoU for each class and put them together in the same df.
    metrics_per_class = pd.concat([compute_metrics_by_class(raw_stats, class_name) for class_name in args.classes])

    # Aggregate the class-level metrics to the final metrics based on the class weights (compute globally by stats)
    final_agg = []
    for scene in args.scenes: # if we have >1 scene in the test set, aggregate the results for each of them separately
        final_agg.append(compute_final_per_scene(metrics_per_class, scene, args.classes, args.class_weights))
    final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
    if len(args.scenes) > 1:
        final_agg.loc["mean"] = final_agg.mean()
    final_agg = (final_agg * 100).round(3)
    print(final_agg)

if __name__ == "__main__":
    main(get_args())