|
from preprocessor.SerialPreprocessor import SerialConfig, SerialPreprocessor |
|
from const import ( |
|
DIALOGUE_SUMMARY, |
|
EMOTION_RECOGNITION, |
|
DIALOGUE_CONTEXT_TO_TEXT_GENERATION, |
|
ABSA_TERM_OPINION_SENTIMENT, |
|
ABSA_TERM_SENTIMENT, |
|
ABSA_CATEGORY_SENTIMENT, |
|
ABSA_TERM_CATEGORY_SENTIMENT, |
|
CHARACTER_IDENTIFICATION, |
|
DIALOGUE_STATE_TRACKING, |
|
DOCUMENT_GROUNDED_CONVERSATION, |
|
TEXT2SQL, |
|
SLOT_FILLING, |
|
) |
|
from preprocessor.prompt_funcs import const_prompt_func_wrapper |
|
from preprocessor.knowledge_funcs import ( |
|
None_knowledge, |
|
concat_list_knowledge_wrapper, |
|
extract_turn_knowledge_wrapper, |
|
origin_knowledge, |
|
extract_schema_knowledge_wrapper, |
|
) |
|
from preprocessor.label_funs import ( |
|
extract_summary, |
|
extract_turn_emotion_wrapper, |
|
extract_turn_utterance, |
|
extract_aspects_wrapper, |
|
rebuild_utterance_with_characters, |
|
extract_belief_state_wrapper, |
|
extract_sql, |
|
extract_slots_without_intents_wrapper, |
|
) |
|
import os |
|
|
|
if __name__ == "__main__": |
|
|
|
TASK = DIALOGUE_SUMMARY |
|
input_path = r"E:\research\processed\DialogueSummary" |
|
output_path = r"E:\research\seq\DialogueSummary" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"Give a summary of this dialogue." |
|
), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_summary, |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = EMOTION_RECOGNITION |
|
input_path = r"E:\research\processed\EmotionRecognition" |
|
output_path = r"E:\research\seq\EmotionRecognition" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"With given possible emotions, select the correct answer." |
|
), |
|
knowledge_func=concat_list_knowledge_wrapper( |
|
"possible choices: ", " | " |
|
), |
|
label_func=extract_turn_emotion_wrapper(", "), |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = DIALOGUE_CONTEXT_TO_TEXT_GENERATION |
|
input_path = r"E:\research\processed\Dialogue-Context-to-Text Generation" |
|
output_path = r"E:\research\seq\Dialogue-Context-to-Text Generation" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"With given dialogue context, give the response." |
|
), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_turn_utterance, |
|
roles_to_build_example=[["Listener"], ["third-person"]], |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
|
|
TASK = ABSA_TERM_OPINION_SENTIMENT |
|
input_path = r"E:\research\processed\ABSA-term opinion sentiment\ASTE" |
|
output_path = r"E:\research\seq\Aspect-based Sentiment Analysis\ASTE" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper("Give all the aspects."), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_aspects_wrapper(" | ", ", "), |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = ABSA_TERM_SENTIMENT |
|
input_path = r"E:\research\processed\ABSA-term sentiment" |
|
output_path = r"E:\research\seq\Aspect-based Sentiment Analysis" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper("Give all the aspects."), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_aspects_wrapper(" | ", ", "), |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = ABSA_CATEGORY_SENTIMENT |
|
input_path = r"E:\research\processed\ABSA-category sentiment" |
|
output_path = r"E:\research\seq\Aspect-based Sentiment Analysis" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper("Give all the aspects."), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_aspects_wrapper(" | ", ", "), |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = ABSA_TERM_CATEGORY_SENTIMENT |
|
input_path = r"E:\research\processed\ABSA-term category sentiment" |
|
output_path = r"E:\research\seq\Aspect-based Sentiment Analysis" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper("Give all the aspects."), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_aspects_wrapper(" | ", ", "), |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = CHARACTER_IDENTIFICATION |
|
input_path = r"E:\research\processed\CharacterIdentification" |
|
output_path = r"E:\research\seq\CharacterIdentification" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper("Generate with all characters."), |
|
knowledge_func=concat_list_knowledge_wrapper("all speakers: ", " | "), |
|
label_func=rebuild_utterance_with_characters, |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
|
|
TASK = DIALOGUE_STATE_TRACKING |
|
input_path = r"E:\research\processed\DialogueStateTracking" |
|
output_path = r"E:\research\seq\DialogueStateTracking" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"With given dialogue context, give the dialogue state." |
|
), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_belief_state_wrapper(", ", " | ", "; ", ": "), |
|
roles_to_build_example=[["USER"]], |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
|
|
TASK = DOCUMENT_GROUNDED_CONVERSATION |
|
input_path = r"E:\research\processed\DocumentGroundedConversations" |
|
output_path = r"E:\research\seq\DocumentGroundedConversation" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"With given dialogue context, give the response." |
|
), |
|
knowledge_func=origin_knowledge, |
|
turn_knowledge_func=extract_turn_knowledge_wrapper(": ", " | ", "; "), |
|
label_func=extract_turn_utterance, |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
TASK = TEXT2SQL |
|
input_path = r"E:\research\processed\Text2SQL" |
|
output_path = r"E:\research\seq\Text2SQL" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"With given dialogue context, give the sql." |
|
), |
|
knowledge_func=origin_knowledge, |
|
turn_knowledge_func=extract_schema_knowledge_wrapper(), |
|
label_func=extract_sql, |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|
|
TASK = SLOT_FILLING |
|
input_path = r"E:\research\processed\SlotFilling\MultiDoGo" |
|
output_path = r"E:\research\seq\SlotFilling\MultiDoGo" |
|
|
|
for dataset in os.listdir(input_path): |
|
input_data_path = os.path.join(input_path, dataset) |
|
output_data_path = os.path.join(output_path, dataset) |
|
|
|
serial_proc = SerialPreprocessor( |
|
SerialConfig( |
|
input_data_path, |
|
output_data_path, |
|
TASK, |
|
logger_name=TASK, |
|
task_bos_token=f"[{TASK}]", |
|
prompt_func=const_prompt_func_wrapper( |
|
"With given utterance, fill the slots." |
|
), |
|
knowledge_func=None_knowledge, |
|
label_func=extract_slots_without_intents_wrapper(", ", " | "), |
|
) |
|
) |
|
|
|
serial_proc.launch() |
|
|