|
--- |
|
{} |
|
|
|
--- |
|
# AutoTrain Dataset for project: sample-diabetes-predict |
|
|
|
## Dataset Descritpion |
|
|
|
This dataset has been automatically processed by AutoTrain for project sample-diabetes-predict. |
|
|
|
### Languages |
|
|
|
The BCP-47 code for the dataset's language is unk. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
A sample from this dataset looks as follows: |
|
|
|
```json |
|
[ |
|
{ |
|
"target": 0, |
|
"feat_HighBP": 0.0, |
|
"feat_HighChol": 0.0, |
|
"feat_CholCheck": 1.0, |
|
"feat_BMI": 34.0, |
|
"feat_Smoker": 1.0, |
|
"feat_Stroke": 0.0, |
|
"feat_HeartDiseaseorAttack": 0.0, |
|
"feat_PhysActivity": 1.0, |
|
"feat_Fruits": 1.0, |
|
"feat_Veggies": 1.0, |
|
"feat_HvyAlcoholConsump": 0.0, |
|
"feat_AnyHealthcare": 1.0, |
|
"feat_NoDocbcCost": 0.0, |
|
"feat_GenHlth": 3.0, |
|
"feat_MentHlth": 0.0, |
|
"feat_PhysHlth": 0.0, |
|
"feat_DiffWalk": 0.0, |
|
"feat_Sex": 0.0, |
|
"feat_Age": 6.0, |
|
"feat_Education": 6.0, |
|
"feat_Income": 7.0 |
|
}, |
|
{ |
|
"target": 1, |
|
"feat_HighBP": 0.0, |
|
"feat_HighChol": 0.0, |
|
"feat_CholCheck": 1.0, |
|
"feat_BMI": 46.0, |
|
"feat_Smoker": 1.0, |
|
"feat_Stroke": 0.0, |
|
"feat_HeartDiseaseorAttack": 0.0, |
|
"feat_PhysActivity": 1.0, |
|
"feat_Fruits": 1.0, |
|
"feat_Veggies": 1.0, |
|
"feat_HvyAlcoholConsump": 0.0, |
|
"feat_AnyHealthcare": 1.0, |
|
"feat_NoDocbcCost": 0.0, |
|
"feat_GenHlth": 2.0, |
|
"feat_MentHlth": 1.0, |
|
"feat_PhysHlth": 0.0, |
|
"feat_DiffWalk": 0.0, |
|
"feat_Sex": 1.0, |
|
"feat_Age": 10.0, |
|
"feat_Education": 6.0, |
|
"feat_Income": 5.0 |
|
} |
|
] |
|
``` |
|
|
|
### Dataset Fields |
|
|
|
The dataset has the following fields (also called "features"): |
|
|
|
```json |
|
{ |
|
"target": "ClassLabel(num_classes=2, names=['0.0', '1.0'], id=None)", |
|
"feat_HighBP": "Value(dtype='float64', id=None)", |
|
"feat_HighChol": "Value(dtype='float64', id=None)", |
|
"feat_CholCheck": "Value(dtype='float64', id=None)", |
|
"feat_BMI": "Value(dtype='float64', id=None)", |
|
"feat_Smoker": "Value(dtype='float64', id=None)", |
|
"feat_Stroke": "Value(dtype='float64', id=None)", |
|
"feat_HeartDiseaseorAttack": "Value(dtype='float64', id=None)", |
|
"feat_PhysActivity": "Value(dtype='float64', id=None)", |
|
"feat_Fruits": "Value(dtype='float64', id=None)", |
|
"feat_Veggies": "Value(dtype='float64', id=None)", |
|
"feat_HvyAlcoholConsump": "Value(dtype='float64', id=None)", |
|
"feat_AnyHealthcare": "Value(dtype='float64', id=None)", |
|
"feat_NoDocbcCost": "Value(dtype='float64', id=None)", |
|
"feat_GenHlth": "Value(dtype='float64', id=None)", |
|
"feat_MentHlth": "Value(dtype='float64', id=None)", |
|
"feat_PhysHlth": "Value(dtype='float64', id=None)", |
|
"feat_DiffWalk": "Value(dtype='float64', id=None)", |
|
"feat_Sex": "Value(dtype='float64', id=None)", |
|
"feat_Age": "Value(dtype='float64', id=None)", |
|
"feat_Education": "Value(dtype='float64', id=None)", |
|
"feat_Income": "Value(dtype='float64', id=None)" |
|
} |
|
``` |
|
|
|
### Dataset Splits |
|
|
|
This dataset is split into a train and validation split. The split sizes are as follow: |
|
|
|
| Split name | Num samples | |
|
| ------------ | ------------------- | |
|
| train | 56552 | |
|
| valid | 14140 | |
|
|