license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Polyglot or Not? Fact-Completion Benchmark
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
dataset_info:
features:
- name: dataset_id
dtype: string
- name: stem
dtype: string
- name: 'true'
dtype: string
- name: 'false'
dtype: string
- name: relation
dtype: string
- name: subject
dtype: string
- name: object
dtype: string
splits:
- name: English
num_bytes: 3474255
num_examples: 26254
- name: Spanish
num_bytes: 3175733
num_examples: 18786
- name: French
num_bytes: 3395566
num_examples: 18395
- name: Russian
num_bytes: 659526
num_examples: 3289
- name: Portuguese
num_bytes: 4158146
num_examples: 22974
- name: German
num_bytes: 2611160
num_examples: 16287
- name: Italian
num_bytes: 3709786
num_examples: 20448
- name: Ukrainian
num_bytes: 1868358
num_examples: 7918
- name: Polish
num_bytes: 1683647
num_examples: 9484
- name: Romanian
num_bytes: 2846002
num_examples: 17568
- name: Czech
num_bytes: 1631582
num_examples: 9427
- name: Bulgarian
num_bytes: 4597410
num_examples: 20577
- name: Swedish
num_bytes: 3226502
num_examples: 21576
- name: Serbian
num_bytes: 1327674
num_examples: 5426
- name: Hungarian
num_bytes: 865409
num_examples: 4650
- name: Croatian
num_bytes: 1195097
num_examples: 7358
- name: Danish
num_bytes: 3580458
num_examples: 23365
- name: Slovenian
num_bytes: 1299653
num_examples: 7873
- name: Dutch
num_bytes: 3732795
num_examples: 22590
- name: Catalan
num_bytes: 3319466
num_examples: 18898
download_size: 27090222
dataset_size: 52358225
language:
- en
- fr
- es
- de
- uk
- bg
- ca
- da
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- cs
Dataset Card for Fact_Completion
Dataset Description
- Homepage: https://bit.ly/ischool-berkeley-capstone
- Repository: https://github.com/daniel-furman/Capstone
- Paper:
- Leaderboard:
- Point of Contact: daniel_furman@berkeley.edu
Dataset Summary
This is the dataset for Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models.
Test Description
Given a factual association such as The capital of France is Paris, we determine whether a model adequately "knows" this information with the following test:
Step 1: prompt the model to predict the likelihood of the token Paris following The Capital of France is
Step 2: prompt the model to predict the average likelihood of a set of false, counterfactual tokens following the same stem.
If the value from 1 is greater than the value from 2 we conclude that model adequately recalls that fact. Formally, this is an application of the Contrastive Knowledge Assessment proposed in [[1][bib]].
For every foundation model of interest (like LLaMA), we perform this assessment on a set of facts translated into 20 languages. All told, we score foundation models on 303k fact-completions (results).
We also score monolingual models (like GPT-2) on English-only fact-completion (results).
Languages
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@misc{polyglot_or_not,
author = {Daniel Furman and Tim Schott and Shreshta Bhat},
title = {Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models},
year = {2023}
publisher = {GitHub},
howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
@misc{dong2022calibrating,
doi = {10.48550/arXiv.2210.03329},
title={Calibrating Factual Knowledge in Pretrained Language Models},
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
year={2022},
eprint={2210.03329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{meng2022massediting,
doi = {10.48550/arXiv.2210.07229},
title={Mass-Editing Memory in a Transformer},
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
year={2022},
eprint={2210.07229},
archivePrefix={arXiv},
primaryClass={cs.CL}
}