|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- time-series-forecasting |
|
pretty_name: cloud |
|
size_categories: |
|
- 100M<n<1B |
|
--- |
|
|
|
# Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain |
|
[Paper](https://arxiv.org/abs/2310.05063) | [Code](https://github.com/SalesforceAIResearch/pretrain-time-series-cloudops) |
|
|
|
Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain". |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017') |
|
``` |
|
|
|
### azure_vm_traces_2017 |
|
```python |
|
DatasetDict({ |
|
train_test: Dataset({ |
|
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'], |
|
num_rows: 17568 |
|
}) |
|
pretrain: Dataset({ |
|
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'], |
|
num_rows: 159472 |
|
}) |
|
}) |
|
``` |
|
|
|
### borg_cluster_data_2011 |
|
```python |
|
DatasetDict({ |
|
train_test: Dataset({ |
|
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'], |
|
num_rows: 11117 |
|
}) |
|
pretrain: Dataset({ |
|
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'], |
|
num_rows: 143386 |
|
}) |
|
}) |
|
``` |
|
|
|
### alibaba_cluster_trace_2018 |
|
```python |
|
DatasetDict({ |
|
train_test: Dataset({ |
|
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'], |
|
num_rows: 6048 |
|
}) |
|
pretrain: Dataset({ |
|
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'], |
|
num_rows: 58409 |
|
}) |
|
}) |
|
``` |
|
|
|
## Acknowledgements |
|
The datasets were processed from the following original sources. Please cite the original sources if you use the datasets. |
|
* Azure VM Traces 2017 |
|
* Bianchini. Resource central: Understanding and predicting workloads for improved resource |
|
management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems |
|
Principles, pp. 153–167, 2017. |
|
* https://github.com/Azure/AzurePublicDataset |
|
|
|
* Borg Cluster Data 2011 |
|
* John Wilkes. More Google cluster data. Google research blog, November 2011. Posted at http: |
|
//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html. |
|
* https://github.com/google/cluster-data |
|
|
|
* Alibaba Cluster Trace 2018 |
|
* Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. Who |
|
limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In |
|
Proceedings of the International Symposium on Quality of Service, pp. 1–10, 2019. |
|
* https://github.com/alibaba/clusterdata |
|
|
|
## Citation |
|
``` |
|
@article{woo2023pushing, |
|
title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain}, |
|
author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen}, |
|
journal={arXiv preprint arXiv:2310.05063}, |
|
year={2023} |
|
} |
|
``` |
|
|