|
import gradio as gr |
|
import pickle |
|
|
|
|
|
with open('best_tree.pkl', 'rb') as file: |
|
model = pickle.load(file) |
|
|
|
|
|
def predict(latitude, longitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income): |
|
|
|
features = [[longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income]] |
|
|
|
|
|
prediction = model.predict(features) |
|
|
|
|
|
return prediction[0] |
|
|
|
|
|
inputs = [ |
|
gr.inputs.Number(label="Longitude"), |
|
gr.inputs.Number(label="Latitude"), |
|
gr.inputs.Number(label="Housing Median Age"), |
|
gr.inputs.Number(label="Total Rooms"), |
|
gr.inputs.Number(label="Total Bedrooms"), |
|
gr.inputs.Number(label="Population"), |
|
gr.inputs.Number(label="Households"), |
|
gr.inputs.Number(label="Median Income") |
|
] |
|
|
|
|
|
output = gr.outputs.Label(num_top_classes=1) |
|
|
|
|
|
examples = [ |
|
[37.88, -122.23, 41, 880, 129, 322, 126, 8.3252], |
|
[37.84, -122.27, 48, 1922, 409, 1026, 335, 1.7969], |
|
[37.83, -122.26, 52, 1656, 420, 718, 382, 2.6768] |
|
] |
|
|
|
|
|
interface = gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Decision Tree Predictor", examples=examples).launch() |