File size: 8,234 Bytes
a62c8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc20259
 
8baeea4
a62c8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217ab18
 
 
 
a62c8cb
 
 
9f5c6e3
a62c8cb
 
9f5c6e3
a62c8cb
 
 
 
 
 
 
 
 
 
 
 
217ab18
 
 
 
a62c8cb
217ab18
a62c8cb
 
02b5ff2
 
 
 
20bb443
e786d5d
02b5ff2
 
 
d3c5791
02b5ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c5791
a62c8cb
f3dacf5
afb6bc0
f3dacf5
 
afb6bc0
5c31efa
4f297f5
f3dacf5
4f297f5
 
 
ee683e8
4f297f5
 
 
 
 
 
 
 
 
ee683e8
8906b34
22b8b85
fc20259
ae01135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64c5c11
4f297f5
ae01135
 
 
 
 
 
 
 
 
 
4f297f5
 
ae01135
4f297f5
 
 
 
 
 
 
ae01135
e786d5d
4570646
e786d5d
ae01135
 
 
 
 
 
 
 
 
 
 
78737b1
4f297f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
from PIL import Image
import numpy as np
import pandas as pd
import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
#     "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
#     "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class Populus_Stomatal_Images_Datasets(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.1")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
    #     datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
    # ]

    # DEFAULT_CONFIG_NAME = "first_domain"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        features = datasets.Features({
            "image_id": datasets.Value("string"),
            "species": datasets.Value("string"),
            "scientific_name": datasets.Value("string"),
            "pics_array": datasets.Image(),
            # datasets.Array3D(dtype="uint8", shape=(3,768, 1024)), # Assuming images are RGB with shape 768x1024
            "image_resolution": {
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
            },
            "annotations": datasets.Sequence({
                "category_id": datasets.Value("int32"),
                "bounding_box": {
                    "x_min": datasets.Value("float32"),
                    "y_min": datasets.Value("float32"),
                    "x_max": datasets.Value("float32"),
                    "y_max": datasets.Value("float32"),
                },
            }),
        })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  # Here we define them because they are different between the two configurations
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        
        data_files = dl_manager.download_and_extract({
            "csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images_config.csv",
            "zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images_config.zip"
        })
        
        species_info = pd.read_csv(data_files["csv"])
        extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images_config")

        # Get all image filenames
        all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
        
        # No longer need to randomize and split the dataset
        return [datasets.SplitGenerator(
            name=datasets.Split.TRAIN,
            gen_kwargs={
                "filepaths": all_image_filenames,
                "species_info": species_info,
                "data_dir": extracted_images_path
            },
        )]
    



    def _parse_yolo_labels(self, label_path, width, height):
        annotations = []
        with open(label_path, 'r') as file:
            yolo_data = file.readlines()
    
        for line in yolo_data:
            class_id, x_center_rel, y_center_rel, width_rel, height_rel = map(float, line.split())
            x_min = (x_center_rel - width_rel / 2) * width
            y_min = (y_center_rel - height_rel / 2) * height
            x_max = (x_center_rel + width_rel / 2) * width
            y_max = (y_center_rel + height_rel / 2) * height
            annotations.append({
                "category_id": int(class_id),
                "bounding_box": {
                    "x_min": x_min,
                    "y_min": y_min,
                    "x_max": x_max,
                    "y_max": y_max
                }
            })
        return annotations
    
    def _generate_examples(self, filepaths, species_info, data_dir):
        """Yields examples as (key, example) tuples."""
        for file_name in filepaths:
            image_id = os.path.splitext(file_name)[0]  # Extract the base name without the file extension
            image_path = os.path.join(data_dir, f"{image_id}.jpg")
            label_path = os.path.join(data_dir, f"{image_id}.txt")
            
            # Find the corresponding row in the CSV for the current image
            species_row = species_info.loc[species_info['FileName'] == image_id]
            if not species_row.empty:
                species = species_row['Species'].values[0]
                scientific_name = species_row['ScientificName'].values[0]
                width = species_row['Witdh'].values[0]
                height = species_row['Heigth'].values[0]
            else:
                # Default values if not found
                species = None
                scientific_name = None
                width = 1024  # Default value
                height = 768   # Default value
    
            pics_array = None
            with Image.open(image_path) as img:
                pics_array = np.array(img)# Convert the PIL image to a numpy array and then to a list
                # print(pics_array.shape)
            
            annotations = self._parse_yolo_labels(label_path, width, height)
            
            # Yield the dataset example
            yield image_id, {
                "image_id": image_id,
                "species": species,
                "scientific_name": scientific_name,
                "pics_array": pics_array,  # Should be a list for JSON serializability
                "image_resolution": {"width": width, "height": height},
                "annotations": annotations
            }