text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
class TREError extends Error { constructor() { super(); Object.setPrototypeOf(this, new.target.prototype); } } export class APIError extends TREError { status?: number; exception?: any; userMessage?: string; endpoint?: string; }
AzureTRE/ui/app/src/models/exceptions.ts/0
{ "file_path": "AzureTRE/ui/app/src/models/exceptions.ts", "repo_id": "AzureTRE", "token_count": 79 }
142
import { configureStore } from "@reduxjs/toolkit"; import operationsReducer from "../components/shared/notifications/operationsSlice"; export const store = configureStore({ reducer: { operations: operationsReducer } }); export type AppDispatch = typeof store.dispatch; export type RootState = ReturnType<typeof store.getState>;
AzureTRE/ui/app/src/store/store.ts/0
{ "file_path": "AzureTRE/ui/app/src/store/store.ts", "repo_id": "AzureTRE", "token_count": 96 }
143
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import argparse from fairseq.models.transformer_lm import TransformerLanguageModel parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default="../../data/PubMed/data-bin") parser.add_argument("--model_dir", type=str, default="../../checkpoints/Pre-trained-BioGPT") parser.add_argument("--model_file", type=str, default="checkpoint.pt") parser.add_argument("--bpecodes", type=str, default="../../data/bpecodes") parser.add_argument("--beam", type=int, default=5) parser.add_argument("--lenpen", type=float, default=1.0) parser.add_argument("--min_len", type=int, default=100) parser.add_argument("--lower", default=False, action="store_true") args, _ = parser.parse_known_args() def main(args): m = TransformerLanguageModel.from_pretrained( args.model_dir, args.model_file, args.data_dir, tokenizer='moses', bpe='fastbpe', bpe_codes=args.bpecodes, min_len=args.min_len, max_len_b=1024, beam=args.beam, lenpen=args.lenpen, max_tokens=12000) print(m.cfg) if m.cfg.common.fp16: print('Converting to float 16') m.half() m.cuda() while True: print("Please input and press enter:") _src = input().strip() src_tokens = m.encode(_src) generate = m.generate([src_tokens], beam=args.beam)[0] output = m.decode(generate[0]["tokens"]) print(output) if __name__ == "__main__": main(args)
BioGPT/examples/text-generation/interactive.py/0
{ "file_path": "BioGPT/examples/text-generation/interactive.py", "repo_id": "BioGPT", "token_count": 656 }
144
# Transparency FAQ for BitBLAS ## What is BitBLAS? BitBLAS is a lightweight framework designed for generating high-performance CUDA/HIP code for BLAS (Basic Linear Algebra Subprograms) operators, emphasizing swizzling and layout propagation. It leverages a Domain-Specific Language (DSL), specifically TIR Script, to offer flexibility and efficiency in mathematical computations. BitBLAS aims to provide performance comparable to cuBLAS while introducing more flexibility and efficiency through its unique features. ## What can BitBLAS do? BitBLAS enhances the performance and flexibility of linear algebra computations with features like: - Auto Tensorization: Automatically optimizes code for various data types and operators, supporting FP16, INT8, and mixed precision operations. - Dynamic Symbolic Support: Facilitates kernel generation with dynamic shapes, enabling efficient computation for variable data sizes. - High-Performance Computing: Offers optimized performance for different data operations, including FP16xFP16, FP16xINT4/2/1, INT8xINT8, and INT8xINT4/2/1, among others. ## What are BitBLAS's intended uses? BitBLAS is intended for developers and researchers who require high-performance linear algebra computations in their CUDA/HIP-based applications. It is particularly beneficial for: - Machine Learning and Deep Learning: Accelerating training and inference computations. - Scientific Computing: Handling large-scale linear algebra operations efficiently. - High-Performance Computing (HPC): Enhancing performance in computationally intensive applications. ## Data Handling and Privacy This project is committed to protecting privacy and ensuring a secure environment for all users. It is designed with the following principles in mind: - No User Data Collection: The project does not collect, process, or store any personal or privacy-sensitive data from users. Users can utilize the project's features without the concern of their data being recorded or misused. - Transparency: We believe in complete transparency with our community. As such, we clearly state that no user data is collected or processed at any stage of the project's usage. - User Control and Privacy: Since the project does not involve user data, individuals retain full control over their information. Users can interact with the project knowing their privacy is safeguarded. ## Security Considerations The security of the project and its users is paramount. Despite not handling user data, we adhere to best practices in software development to ensure the project's integrity and safety: - Regular Security Audits: The project undergoes regular security reviews and audits to identify and remediate any potential vulnerabilities, ensuring the highest level of security. - Open Source Security: As an open-source project, our code is available for review, allowing the community to examine and contribute to the project's security. - Security Incident Response: In the unlikely event of a security issue, we have established procedures for prompt and effective response to investigate and address the concern. - Community Involvement: We encourage the community to report any security concerns or suggestions for improvement. Our project's success and security are enhanced by active community participation and feedback. ## Compliance and Licensing As a project initiated and released by Microsoft, we adhere strictly to legal and regulatory standards to ensure our contributions meet the highest compliance criteria. Here are key points regarding our compliance and licensing practices: - Microsoft's Commitment: This project is part of Microsoft's commitment to supporting and contributing to the open-source community. We ensure that all contributions are compliant with current legal standards and practices. - MIT License: The project is licensed under the MIT License, one of the most permissive and open licenses available. This license allows for almost unrestricted freedom to use, modify, and distribute the project, providing that the license and copyright notice are included with any substantial portion of the software. - License Clarity: We have clearly indicated the licensing terms within the project repository to ensure that all users and contributors are informed of their rights and obligations when using or contributing to the project.
BitBLAS/TRANSPARENCY.md/0
{ "file_path": "BitBLAS/TRANSPARENCY.md", "repo_id": "BitBLAS", "token_count": 870 }
145
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LLaMA model.""" import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache, StaticCache from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from configuration_bitnet import BitnetConfig from utils_quant import BitLinear if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BitnetConfig" def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) class BitnetRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ BitnetRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) ALL_LAYERNORM_LAYERS.append(BitnetRMSNorm) class BitnetRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): super().__init__() self.scaling_factor = scaling_factor self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq) # For BC we register cos and sin cached self.max_seq_len_cached = max_position_embeddings t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False) self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False) @property def sin_cached(self): logger.warning_once( "The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use " "the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class" ) return self._sin_cached @property def cos_cached(self): logger.warning_once( "The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use " "the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class" ) return self._cos_cached @torch.no_grad() def forward(self, x, position_ids): # x: [bs, num_attention_heads, seq_len, head_size] inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class BitnetMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = BitLinear( self.hidden_size, self.intermediate_size, bias=False, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self.up_proj = BitLinear( self.hidden_size, self.intermediate_size, bias=False, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self.down_proj = BitLinear( self.intermediate_size, self.hidden_size, bias=False, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self.act_fn = ACT2FN[config.hidden_act] self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps) def forward(self, x): x = self.act_fn(self.gate_proj(x)) * self.up_proj(x) x = self.ffn_layernorm(x) x = self.down_proj(x) return x def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class BitnetAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: BitnetConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = BitLinear( self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self.k_proj = BitLinear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self.v_proj = BitLinear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self.o_proj = BitLinear( self.hidden_size, self.hidden_size, bias=config.attention_bias, weight_bits=config.weight_bits, input_bits=config.input_bits, ) self._init_rope() self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps) def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = BitnetRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: raise NotImplementedError def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) past_key_value = getattr(self, "past_key_value", past_key_value) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.inner_attn_ln(attn_output) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class BitnetFlashAttention2(BitnetAttention): """ Bitnet flash attention module. This module inherits from `BitnetAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (BitnetRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.inner_attn_ln(attn_output) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BitnetFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) LLAMA_ATTENTION_CLASSES = { "eager": BitnetAttention, "flash_attention_2": BitnetFlashAttention2, } class BitnetDecoderLayer(nn.Module): def __init__(self, config: BitnetConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = BitnetMLP(config) self.input_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BitnetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class BitnetPreTrainedModel(PreTrainedModel): config_class = BitnetConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["BitnetDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = False _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None): if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache: raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) for layer in self.model.layers: device = layer.input_layernorm.weight.device if hasattr(self.config, "_pre_quantization_dtype"): dtype = self.config._pre_quantization_dtype else: dtype = layer.self_attn.o_proj.weight.dtype layer.self_attn.past_key_value = cache_cls( self.config, max_batch_size, max_cache_len, device=device, dtype=dtype ) def _reset_cache(self): for layer in self.model.layers: layer.self_attn.past_key_value = None LLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class BitnetModel(BitnetPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BitnetDecoderLayer`] Args: config: BitnetConfig """ def __init__(self, config: BitnetConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [BitnetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) past_seen_tokens = 0 if use_cache: # kept for BC (cache positions) if not isinstance(past_key_values, StaticCache): past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_seen_tokens = past_key_values.get_seq_length() if cache_position is None: if isinstance(past_key_values, StaticCache): raise ValueError("cache_position is a required argument when using StaticCache.") cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = ( next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache ) if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache target_length = self.config.max_position_embeddings else: # dynamic cache target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1 ) causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) elif attention_mask.dim() == 4: # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with # cache. In that case, the 4D attention mask attends to the newest tokens only. if attention_mask.shape[-2] < cache_position[0] + sequence_length: offset = cache_position[0] else: offset = 0 mask_shape = attention_mask.shape mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype causal_mask[ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3] ] = mask_slice return causal_mask class BitnetForCausalLM(BitnetPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = BitnetModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import LlamaTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Bitnet-2-7b-hf") >>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Bitnet-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs ): # With static cache, the `past_key_values` is None # TODO joao: standardize interface for the different Cache classes and remove of this if has_static_cache = False if past_key_values is None: past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None) has_static_cache = past_key_values is not None past_length = 0 if past_key_values is not None: if isinstance(past_key_values, Cache): past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() max_cache_length = ( torch.tensor(past_key_values.get_max_length(), device=input_ids.device) if past_key_values.get_max_length() is not None else None ) cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 # TODO: use `next_tokens` directly instead. model_inputs = {"input_ids": input_ids.contiguous()} input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] if cache_position is None: cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) else: cache_position = cache_position[-input_length:] if has_static_cache: past_key_values = None model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past def _post_process_weights(self): for name, module in self.model.named_modules(): if hasattr(module, "post_process_weights"): print("Post processing weights for module", name) module.post_process_weights() @add_start_docstrings( """ The LLaMa Model transformer with a sequence classification head on top (linear layer). [`BitnetForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, LLAMA_START_DOCSTRING, ) class BitnetForSequenceClassification(BitnetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = BitnetModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Bitnet Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LLAMA_START_DOCSTRING, ) class BitnetForQuestionAnswering(BitnetPreTrainedModel): base_model_prefix = "transformer" # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Bitnet def __init__(self, config): super().__init__(config) self.transformer = BitnetModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.transformer.embed_tokens def set_input_embeddings(self, value): self.transformer.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
BitBLAS/integration/BitNet/modeling_bitnet.py/0
{ "file_path": "BitBLAS/integration/BitNet/modeling_bitnet.py", "repo_id": "BitBLAS", "token_count": 27678 }
146
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """Base infra""" from .analysis import ( BlockInfo, IterInfo, collect_block_iter_vars_used_in_access_region, collect_vars_used_in_prim_expr, detect_dominant_read, is_broadcast_epilogue, normalize_prim_func, ) from .common_schedules import get_block, get_output_blocks, try_inline, try_inline_contiguous_spatial from .schedule_rule import ScheduleRule from .transform import ApplyDefaultSchedule, ApplyFastTuning from .utils import fast_tune, fast_tune_with_dynamic_range from .roller import *
BitBLAS/python/bitblas/base/__init__.py/0
{ "file_path": "BitBLAS/python/bitblas/base/__init__.py", "repo_id": "BitBLAS", "token_count": 202 }
147
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from .tir import get_analyzer_by_tir # pylint: disable=unused-import
BitBLAS/python/bitblas/base/roller/shape_inference/__init__.py/0
{ "file_path": "BitBLAS/python/bitblas/base/roller/shape_inference/__init__.py", "repo_id": "BitBLAS", "token_count": 44 }
148
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from .lop3 import get_lop3_intrin_group # noqa: F401
BitBLAS/python/bitblas/gpu/intrin/__init__.py/0
{ "file_path": "BitBLAS/python/bitblas/gpu/intrin/__init__.py", "repo_id": "BitBLAS", "token_count": 41 }
149
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from bitblas.gpu.matmul_analysis import get_propagate_map from typing import Literal from tvm import te, IRModule, DataType from tvm.tir import IndexMap def select_implementation( M: int, N: int, datatype: Literal["float16", "int8", "e4m3_float8", "e5m2_float8"] = "float16", dequantize_bits: int = -1, storage_dtype: Literal["float16", "int8", "uint8", "int32", "uint32"] = "float16", propagate_kind: Literal["A", "B"] = "B", transpose_matrix: bool = False, transform_kind: int = 0, target_instruction: Literal["nvidia-mma"] = "nvidia-mma", ): if target_instruction != "nvidia-mma": raise ValueError("Currently only support nvidia-mma instruction") # This is trick to get the basic tile size for the current datatype # as for nvidia tensorcore instruction, the basic tile size is 16x16/16x32 for float16/int8 l = r = 16 # noqa: E741 if datatype in ["int8", "e4m3_float8", "e5m2_float8"]: l, r = 16, 32 # noqa: E741 intra_index_map, _ = get_propagate_map( transpose_matrix, dtype=datatype, matrix_name=propagate_kind) target_dtype = DataType(datatype) scaling_factor = 1 if dequantize_bits > 0 and dequantize_bits < target_dtype.bits: scaling_factor = ((target_dtype.bits // dequantize_bits) * DataType(storage_dtype).bits // target_dtype.bits) r = r // scaling_factor initial_indices = intra_index_map.initial_indices scaling_final_indices = intra_index_map.map_indices(initial_indices[:-1] + [initial_indices[-1] * scaling_factor]) scaling_final_indices = scaling_final_indices[:-1] + [ scaling_final_indices[-1] // scaling_factor ] intra_index_map = IndexMap( initial_indices, scaling_final_indices, None, ) inp = te.placeholder((M, N // scaling_factor), name="inp", dtype=storage_dtype) args = [inp] if transform_kind >= 1: arg = args[-1] inter_warp = te.compute( (M // l, (N // scaling_factor) // r, l, r), lambda i, j, ii, jj: arg[i * l + ii, j * r + jj], name="inter_warp_permutate", ) args.append(inter_warp) if transform_kind >= 2: arg = args[-1] def fcompute(*args): warp_i, warp_j = args[-2:] spatial_args = args[:-2] permutate_i, permutate_j = intra_index_map.map_indices([warp_i, warp_j]) new_index = (*spatial_args, permutate_i, permutate_j) return arg[new_index] intra_warp = te.compute( (M // l, (N // scaling_factor) // r, l, r), fcompute, name="intra_warp_permutate", ) args.append(intra_warp) args = [args[0], args[-1]] func = te.create_prim_func(args) return IRModule.from_expr(func)
BitBLAS/python/bitblas/ops/impl/ladder_permutate_impl.py/0
{ "file_path": "BitBLAS/python/bitblas/ops/impl/ladder_permutate_impl.py", "repo_id": "BitBLAS", "token_count": 1419 }
150
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from typing import Dict, Tuple from tvm.ir import IRModule from tvm.ir.transform import PassContext, module_pass from tvm import tir from tvm.tir.schedule import BlockRV from mlc_llm.quantization import quantization_schemes, GroupQuantizationSpec from bitblas.gpu.gemv import is_gemv from bitblas.gpu.matmul_analysis import ( get_reduction_blocks, get_index_map, get_root_block, get_dequantize_block, ) from bitblas.base import ( normalize_prim_func, try_inline_contiguous_spatial, ) # Define a module pass to annotate dequantization information @module_pass(opt_level=0, name="AnnotateDecodeInformation") class AnnotateDecodeInformation: def __init__(self, spec: str = "q4f16_0"): # Validate and store the specified quantization scheme if spec not in quantization_schemes: raise ValueError(f"Quantization scheme {spec} not found") self.quantize_scheme = quantization_schemes[spec] def detect_matmul(self, func: tir.PrimFunc) -> bool: """Detect if the given function represents a matrix multiplication.""" sch = tir.Schedule(func) root_block = get_root_block(sch) blocks = sch.get_child_blocks(root_block) # Identify reduction blocks to infer matmul operations reduction_blocks = get_reduction_blocks(sch, blocks) if not reduction_blocks: return False # Check for index map patterns typical of matmul operations main_block = reduction_blocks[0] main_block_stmt = sch.get(main_block) index_maps = get_index_map(main_block_stmt) _is_matmul = index_maps is not None block_infos = normalize_prim_func(sch) block_infos = try_inline_contiguous_spatial(sch, block_infos) block_info = block_infos[0] _is_gemv = True if len(block_info.iters) not in [2, 3]: # either [B, S, R] = [B, S, R] * [B, R] # or [S, R] = [S, R] * [R] _is_gemv = False if _is_gemv: _is_gemv = is_gemv(sch, block_info) return _is_matmul or _is_gemv def transform_module(self, mod: IRModule, _: PassContext) -> IRModule: """Annotate dequantize information for all applicable functions in the module.""" for g_var, func in mod.functions.items(): if not isinstance(func, tir.PrimFunc) or g_var.name_hint == "main": continue if not self.detect_matmul(func): continue # Process only if matmul is detected sch = tir.Schedule(func) root_block = get_root_block(sch) blocks = sch.get_child_blocks(root_block) dequantize_block = get_dequantize_block(sch, blocks) if dequantize_block is None: continue # Skip if no dequantize block is found # Prepare dequantize info annotation dequantize_info = self.prepare_dequantize_info(sch, dequantize_block) # Annotate function with dequantize information mod[g_var] = func.with_attr("dequantize_info", dequantize_info) return mod def prepare_dequantize_info(self, sch: tir.Schedule, dequantize_block: BlockRV) -> Dict: """Generate dequantize information for a given block.""" block_stmt = sch.get(dequantize_block) block_name = block_stmt.name_hint dequantize_info = {block_name: {"decode_block": block_name, "fast_decoding": False}} quantize_spec = self.quantize_scheme.linear_weight if isinstance(quantize_spec, GroupQuantizationSpec): dequantize_info[block_name].update({ "with_scaling": True, "group_size": quantize_spec.group_size, }) # Determine source format based on quantization mode quantize_mod = quantize_spec.mode bits, source_format = self.parse_quantize_mode(quantize_mod) dequantize_info[block_name]["source_format"] = { "bits": bits, "format": source_format, } # Set storage and target data types storage_dtype = self.get_storage_dtype(block_stmt, source_format) dequantize_info[block_name]["storage_dtype"] = storage_dtype dequantize_info[block_name]["target_format"] = quantize_spec.dtype return dequantize_info def parse_quantize_mode(self, quantize_mod: str) -> Tuple[int, str]: """Extract bits and format from quantization mode.""" if quantize_mod.startswith("int"): return int(quantize_mod[3:]), "int" elif quantize_mod.startswith("uint"): return int(quantize_mod[4:]), "uint" raise ValueError(f"Unsupported mode {quantize_mod}") def get_storage_dtype(self, block_stmt: BlockRV, source_format: str) -> str: """Determine storage data type based on source format.""" return (block_stmt.reads[0].buffer.dtype if "nf" not in source_format else block_stmt.reads[1].buffer.dtype)
BitBLAS/python/bitblas/relax/transform/annotate_decode_block.py/0
{ "file_path": "BitBLAS/python/bitblas/relax/transform/annotate_decode_block.py", "repo_id": "BitBLAS", "token_count": 2169 }
151
// Copyright (c) Microsoft Corporation. // Licensed under the MIT License. #include <cuda_runtime.h> #include <cuda_fp16.h> // Pack two half values. static inline __device__ __host__ unsigned __pack_half2(const half x, const half y) { unsigned v0 = *((unsigned short *)&x); unsigned v1 = *((unsigned short *)&y); return (v1 << 16) | v0; } void general_compress(const int8_t *lowbit, int8_t *compressed, const int nbit, const int N, bool isSigned = false) { int zero_point = isSigned ? ((1 << (nbit - 1)) - 1) : 0; const int nbit_per_byte = 8 / nbit; for (int i = 0; i < N / nbit_per_byte; i++) { compressed[i] = 0; for (int j = 0; j < nbit_per_byte; j++) { compressed[i] |= ((lowbit[nbit_per_byte * i + j] + zero_point) << (nbit * j)); } } } void general_interleave_fp16(int8_t *origin_arr, int8_t *interleaved, const int nbit, size_t size_in_bytes, bool verbose = false) { // For fp16 example // i4s {e7,e6,e5,e4,e3,e2,e1,e0} // |-8b-||-8b-||-8b-||-8b-| // interleave {e7,e5,e3,e1,e6,e4,e2,e0} /* BOTTOM_MASK 0 0 0 f 0 0 0 f i4s e7 e5 e3 e1 e6 e4 e2 e0 selectedVal 0000 0000 0000 e1 0000 0000 0000 e0 // selectedVal = i4s & BOTTOM_MASK h[0] 0110 0100 0 e1 0110 0100 0 e0 // selectVal | 0x6400 */ // i2s {e15,e14,e13,e12,e11,e10,e9,e8,e7,e6,e5,e4,e3,e2,e1,e0} // interleave {e15,e13,e11,e9,e7,e5,e3,e1,e14,e12,e10,e8,e6,e4,e2,e0} // i1s {e31,e30,e29,e28,e27,e26,e25,e24,e23,e22,e21,e20,e19,e18,e17,e16,e15,e14,e13,e12,e11,e10,e9,e8,e7,e6,e5,e4,e3,e2,e1,e0} // interleave {e31,e29,e27,e25,e23,e21,e19,e17,e15,e13,e11,e9,e7,e5,e3,e1,e30,e28,e26,e24,e22,e20,e18,e16,e14,e12,e10,e8,e6,e4,e2,e0} // Assuming size is the number of int32 elements in origin_arr size_t size = size_in_bytes / sizeof(int32_t); int32_t *int32_origin = (int32_t *)origin_arr; int32_t *int32_interleaved = (int32_t *)interleaved; int mask = (1 << nbit) - 1; int num_groups = (32 / nbit) / 2; for (int idx = 0; idx < size; ++idx) { int32_t current_value = int32_origin[idx]; int32_t new_value = 0; for (int i = 0; i < num_groups; ++i) { int left_shift = nbit * i; int right_shift = nbit * (num_groups - i - 1); new_value |= (current_value & (mask << nbit * (2 * i))) >> left_shift; new_value |= (current_value & (mask << nbit * (2 * i + 1))) << right_shift; if (verbose) { printf("put %d to %d\n", (2 * i), (nbit * (2 * i) - left_shift) / nbit); printf("put %d to %d\n", (2 * i + 1), (nbit * (2 * i + 1) + right_shift) / nbit); } } if (nbit == 2) { int32_t _new_value_n16 = (new_value & 0xff0000ff); _new_value_n16 |= ((new_value & 0x0000ff00) >> 8) << 16; _new_value_n16 |= ((new_value & 0x00ff0000) >> 16) << 8; int32_interleaved[idx] = _new_value_n16; } else if (nbit == 1) { int32_t _new_value_n16 = (new_value & 0xf000000f); _new_value_n16 |= ((new_value & 0x000000f0) >> 4) << 8; _new_value_n16 |= ((new_value & 0x00000f00) >> 8) << 16; _new_value_n16 |= ((new_value & 0x0000f000) >> 12) << 24; _new_value_n16 |= ((new_value & 0x000f0000) >> 16) << 4; _new_value_n16 |= ((new_value & 0x00f00000) >> 20) << 12; _new_value_n16 |= ((new_value & 0x0f000000) >> 24) << 20; int32_interleaved[idx] = _new_value_n16; } else int32_interleaved[idx] = new_value; } // Convert back to int8_t if needed memcpy(interleaved, int32_interleaved, size * sizeof(int32_t)); } /* Kind 0: original Kind 1: rescale Kind 2: quantized # documents for zeros_mode: # original: target = (dequantize_weight - zero_point) * scale # rescale: target = dequantize_weight * scale - zero_point # quantized: target = (dequantize_weight - dequantize_zeros) * scale # Notice: only support "original" and "rescale" now zeros_mode: Literal["original", "rescale", "quantized"] = "original" */ template <typename T1, typename T2, bool isSigned = false, bool withScaling = false, bool withZeros = false, int ZerosKind = 1, typename T3=T2, typename T4=T3> __device__ void decode_i4b_to_f16(T1 *_i4s, T2 *B_local_decode, const int N = 8, const T3 *scale = nullptr, const T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x000f000f; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; // Minus 7 to scale the value to signed static constexpr uint MEDIAN_NUM = isSigned ? 0x64076407 : 0x64006400; uint const i4s = *reinterpret_cast<uint *>(_i4s); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i4s >> (4 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); } } template <typename T1, typename T2> __device__ void decode_i4s_to_f16(T1 *_i4s, T2 *B_local_decode, const int N = 8) { decode_i4b_to_f16<T1, T2, true>(_i4s, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i4u_to_f16(T1 *_i4u, T2 *B_local_decode, const int N = 8) { decode_i4b_to_f16<T1, T2, false>(_i4u, B_local_decode, N); } template <typename T1, typename T2, typename T3, bool isSigned = false> __device__ void decode_i4b_to_f16_scale(T1 *_i4s, T2 *B_local_decode, const int N = 8, const T3 *scale = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x000f000f; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; // Minus 7 to scale the value to signed static constexpr uint MEDIAN_NUM = isSigned ? 0x64076407 : 0x64006400; uint const i4s = *reinterpret_cast<uint *>(_i4s); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i4s >> (4 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(0)); } } template <typename T1, typename T2, typename T3> __device__ void decode_i4s_to_f16_scale(T1 *_i4s, T2 *B_local_decode, T3 *scale = nullptr, const int N = 8) { decode_i4b_to_f16_scale<T1, T2, T3, true>(_i4s, B_local_decode, N, scale); } template <typename T1, typename T2, typename T3> __device__ void decode_i4u_to_f16_scale(T1 *_i4u, T2 *B_local_decode, T3 *scale = nullptr, const int N = 8) { decode_i4b_to_f16_scale<T1, T2, T3, false>(_i4u, B_local_decode, N, scale); } template <typename T1, typename T2, typename T3, typename T4, bool isSigned = false> __device__ void decode_i4b_to_f16_zeros_original(T1 *_i4s, T2 *B_local_decode, const int N = 8, const T3 *scale = nullptr, const T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x000f000f; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; // Minus 7 to scale the value to signed static constexpr uint MEDIAN_NUM = isSigned ? 0x64076407 : 0x64006400; uint const i4s = *reinterpret_cast<uint *>(_i4s); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); // input zeros maybe int32(qzeros) or half format T4 const zero_r = *zeros; uint const packed_zeros = __pack_half2(zero_r, zero_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i4s >> (4 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_zeros)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(0)); } } template <typename T1, typename T2, typename T3, typename T4> __device__ void decode_i4u_to_f16_scale_zeros_original(T1 *_i4u, T2 *B_local_decode, T3 *scale = nullptr, T4 *zeros = nullptr, const int N = 8) { decode_i4b_to_f16_zeros_original<T1, T2, T3, T4, false>(_i4u, B_local_decode, N, scale, zeros); } template <typename T1, typename T2, typename T3, typename T4, bool isSigned = false> __device__ void decode_i4b_to_f16_scale_zeros_rescale(T1 *_i4s, T2 *B_local_decode, const int N = 8, const T3 *scale = nullptr, const T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x000f000f; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; // Minus 7 to scale the value to signed static constexpr uint MEDIAN_NUM = isSigned ? 0x64076407 : 0x64006400; uint const i4s = *reinterpret_cast<uint *>(_i4s); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); T4 const zero_r = *zeros; uint const packed_zeros = 0x80008000 | __pack_half2(zero_r, zero_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i4s >> (4 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(packed_zeros)); } } template <typename T1, typename T2, typename T3, typename T4> __device__ void decode_i4u_to_f16_scale_zeros_rescale(T1 *_i4u, T2 *B_local_decode, T3 *scale = nullptr, T4 *zeros = nullptr, const int N = 8) { decode_i4b_to_f16_scale_zeros_rescale<T1, T2, T3, T4, false>(_i4u, B_local_decode, N, scale, zeros); } template <typename T1, typename T2, typename T3, typename T4, bool isSigned = false> __device__ void decode_i4b_to_f16_scale_zeros_quantized(T1 *_i4s, T2 *B_local_decode, const int N = 8, const T3 *scale = nullptr, const T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x000f000f; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; // Minus 7 to scale the value to signed uint const i4s = *reinterpret_cast<uint *>(_i4s); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); // input zeros maybe int32(qzeros) or half format T4 const zero_r = *zeros; uint median_num = ((0xe400 | zero_r) << 16) | (0xe400 | zero_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i4s >> (4 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(median_num)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(0)); } } template <typename storage_dtype, typename target_dtype, typename scale_dtype, typename zero_dtype> __device__ void decode_i4u_to_f16_scale_zeros_quantized(storage_dtype *_i4u, target_dtype *B_local_decode, scale_dtype *scale = nullptr, zero_dtype *zeros = nullptr, const int N = 8) { decode_i4b_to_f16_scale_zeros_quantized<storage_dtype, target_dtype, scale_dtype, zero_dtype, false>(_i4u, B_local_decode, N, scale, zeros); } /* Kind 0: original Kind 1: rescale Kind 2: quantized # documents for zeros_mode: # original: target = (dequantize_weight - zero_point) * scale # rescale: target = dequantize_weight * scale - zero_point # quantized: target = (dequantize_weight - dequantize_zeros) * scale # Notice: only support "original" and "rescale" now zeros_mode: Literal["original", "rescale", "quantized"] = "original" */ template <typename T1, typename T2, bool isSigned = false, bool withScaling = false, bool withZeros = false, int ZerosKind = 1> __device__ void decode_i2b_to_f16(T1 *_i2s, T2 *B_local_decode, const int N = 8, half *scale = nullptr, half *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x00030003; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; static constexpr uint MEDIAN_NUM = isSigned ? 0x64016401 : 0x64006400; int16_t const i2s_i16 = *reinterpret_cast<int16_t *>(_i2s); // decode 2 elems at one time. // interleave {e15,e13,e11,e9,e7,e5,e3,e1,e14,e12,e10,e8,e6,e4,e2,e0} // only decode for {x,x,x,x,e7,e5,e3,e1,x,x,x,x,e6,e4,e2,e0} // otherwise the pointer of _i2s should be moved to int i2s = (i2s_i16 & 0x00ff); i2s |= ((i2s_i16 & 0xff00) << 8); #pragma unroll for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i2s >> (2 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); if constexpr (withZeros && ZerosKind == 0) { asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(__pack_half2(*zeros, *zeros))); } if constexpr (withScaling) { asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(__pack_half2(*scale, *scale)), "r"(0)); } if constexpr (withZeros && ZerosKind == 1) { asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(__pack_half2(*zeros, *zeros))); } } } template <typename T1, typename T2> __device__ void decode_i2s_to_f16(T1 *_i2s, T2 *B_local_decode, const int N = 8) { decode_i2b_to_f16<T1, T2, true>(_i2s, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i2u_to_f16(T1 *_i2u, T2 *B_local_decode, const int N = 8) { decode_i2b_to_f16<T1, T2, false>(_i2u, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i2s_to_f16_scale(T1 *_i2s, T2 *B_local_decode, half *scale = nullptr, const int N = 8) { decode_i2b_to_f16<T1, T2, true, true>(_i2s, B_local_decode, N, scale); } template <typename T1, typename T2> __device__ void decode_i2u_to_f16_scale(T1 *_i2u, T2 *B_local_decode, half *scale = nullptr, const int N = 8) { decode_i2b_to_f16<T1, T2, false, true>(_i2u, B_local_decode, N, scale); } template <typename T1, typename T2> __device__ void decode_i2u_to_f16_scale_zeros_original(T1 *_i2u, T2 *B_local_decode, half *scale = nullptr, half *zeros = nullptr, const int N = 8) { decode_i2b_to_f16<T1, T2, false, true, true, 0>(_i2u, B_local_decode, N, scale, zeros); } template <typename T1, typename T2> __device__ void decode_i2u_to_f16_scale_zeros_rescale(T1 *_i2u, T2 *B_local_decode, half *scale = nullptr, half *zeros = nullptr, const int N = 8) { decode_i2b_to_f16<T1, T2, false, true, true, 1>(_i2u, B_local_decode, N, scale, zeros); } template <typename T1, typename T2, typename T3, typename T4, bool isSigned = false> __device__ void decode_i2b_to_f16_scale_zeros_quantized(T1 *_i2s, T2 *B_local_decode, const int N = 8, T3 *scale = nullptr, T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x00030003; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; static constexpr uint MEDIAN_NUM = isSigned ? 0x64016401 : 0x64006400; int16_t const i2s_i16 = *reinterpret_cast<int16_t *>(_i2s); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); T4 const zero_r = *zeros; uint median_num = ((0xe400 | zero_r) << 16) | (0xe400 | zero_r); // decode 2 elems at one time. // interleave {e15,e13,e11,e9,e7,e5,e3,e1,e14,e12,e10,e8,e6,e4,e2,e0} // only decode for {x,x,x,x,e7,e5,e3,e1,x,x,x,x,e6,e4,e2,e0} // otherwise the pointer of _i2s should be moved to int i2s = (i2s_i16 & 0x00ff); i2s |= ((i2s_i16 & 0xff00) << 8); #pragma unroll for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i2s >> (2 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(median_num)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(0)); } } template <typename T1, typename T2, typename T3, typename T4> __device__ void decode_i2u_to_f16_scale_zeros_quantized(T1 *_i2u, T2 *B_local_decode, T3 *scale = nullptr, T4 *zeros = nullptr, const int N = 8) { decode_i2b_to_f16_scale_zeros_quantized<T1, T2, T3, T4, false>(_i2u, B_local_decode, N, scale, zeros); } /* Kind 0: original Kind 1: rescale Kind 2: quantized # documents for zeros_mode: # original: target = (dequantize_weight - zero_point) * scale # rescale: target = dequantize_weight * scale - zero_point # quantized: target = (dequantize_weight - dequantize_zeros) * scale # Notice: only support "original" and "rescale" now zeros_mode: Literal["original", "rescale", "quantized"] = "original" */ template <typename T1, typename T2, bool isSigned = false, bool withScaling = false, bool withZeros = false, int ZerosKind = 1> __device__ void decode_i1b_to_f16(T1 *_i1s, T2 *B_local_decode, const int N = 8, half *scale = nullptr, half *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x00010001; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; static constexpr uint MEDIAN_NUM = isSigned ? 0x64006400 : 0x64006400; static constexpr uint TRANSFORM_SUBTRACT = 0xbc00bc00; // for signed int 2x - 1 // interleave {e31,e29,e27,e25,e23,e21,e19,e17,e15,e13,e11,e9,e7,e5,e3,e1,e30,e28,e26,e24,e22,e20,e18,e16,e14,e12,e10,e8,e6,e4,e2,e0} // only decode e7,e5,e3,e1,e8,e6,e4,e2,e0 int8_t const i1s_i16 = *reinterpret_cast<int8_t *>(_i1s); int i1s = (i1s_i16 & 0x0f); i1s |= ((i1s_i16 & 0xf0) << 12); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i1s >> (1 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); if constexpr (isSigned) { asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(h[i])); asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(TRANSFORM_SUBTRACT)); } if constexpr (withZeros && ZerosKind == 0) { asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(__pack_half2(*zeros, *zeros))); } if constexpr (withScaling) { asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(__pack_half2(*scale, *scale)), "r"(0)); } if constexpr (withZeros && ZerosKind == 1) { asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(__pack_half2(*zeros, *zeros))); } } } template <typename T1, typename T2> __device__ void decode_i1s_to_f16(T1 *_i1s, T2 *B_local_decode, const int N = 8) { decode_i1b_to_f16<T1, T2, true>(_i1s, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i1u_to_f16(T1 *_i1u, T2 *B_local_decode, const int N = 8) { decode_i1b_to_f16<T1, T2, false>(_i1u, B_local_decode, N); } template <typename T1, typename T2, typename T3, bool isSigned = false> __device__ void decode_i1b_to_f16_scale(T1 *_i1s, T2 *B_local_decode, const int N = 8, T3 *scale = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x00010001; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; static constexpr uint MEDIAN_NUM = isSigned ? 0x64006400 : 0x64006400; // interleave {e31,e29,e27,e25,e23,e21,e19,e17,e15,e13,e11,e9,e7,e5,e3,e1,e30,e28,e26,e24,e22,e20,e18,e16,e14,e12,e10,e8,e6,e4,e2,e0} // only decode e7,e5,e3,e1,e8,e6,e4,e2,e0 int8_t const i1s_i16 = *reinterpret_cast<int8_t *>(_i1s); int i1s = (i1s_i16 & 0x0f); i1s |= ((i1s_i16 & 0xf0) << 12); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i1s >> (1 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(0)); } } template <typename T1, typename T2, typename T3> __device__ void decode_i1s_to_f16_scale(T1 *_i1s, T2 *B_local_decode, T3 *scale = nullptr, const int N = 8) { decode_i1b_to_f16_scale<T1, T2, T3, true>(_i1s, B_local_decode, N, scale); } template <typename T1, typename T2, typename T3> __device__ void decode_i1u_to_f16_scale(T1 *_i1u, T2 *B_local_decode, T3 *scale = nullptr, const int N = 8) { decode_i1b_to_f16_scale<T1, T2, T3, false>(_i1u, B_local_decode, N, scale); } template <typename T1, typename T2, typename T3, typename T4, bool isSigned = false> __device__ void decode_i1b_to_f16_zeros_original(T1 *_i1s, T2 *B_local_decode, const int N = 8, T3 *scale = nullptr, T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x00010001; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; static constexpr uint MEDIAN_NUM = isSigned ? 0x64006400 : 0x64006400; // interleave {e31,e29,e27,e25,e23,e21,e19,e17,e15,e13,e11,e9,e7,e5,e3,e1,e30,e28,e26,e24,e22,e20,e18,e16,e14,e12,e10,e8,e6,e4,e2,e0} // only decode e7,e5,e3,e1,e8,e6,e4,e2,e0 int8_t const i1s_i16 = *reinterpret_cast<int8_t *>(_i1s); int i1s = (i1s_i16 & 0x0f); i1s |= ((i1s_i16 & 0xf0) << 12); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); // input zeros maybe int32(qzeros) or half format T4 const zero_r = *zeros; uint const packed_zeros = __pack_half2(zero_r, zero_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i1s >> (1 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_zeros)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(0)); } } template <typename T1, typename T2, typename T3, typename T4> __device__ void decode_i1u_to_f16_scale_zeros_original(T1 *_i1u, T2 *B_local_decode, T3 *scale = nullptr, T4 *zeros = nullptr, const int N = 8) { decode_i1b_to_f16_zeros_original<T1, T2, T3, T4, false>(_i1u, B_local_decode, N, scale, zeros); } template <typename T1, typename T2, typename T3, typename T4, bool isSigned = false> __device__ void decode_i1b_to_f16_scale_zeros_rescale(T1 *_i1s, T2 *B_local_decode, const int N = 8, T3 *scale = nullptr, T4 *zeros = nullptr) { uint *h = reinterpret_cast<uint *>(B_local_decode); static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x00010001; static constexpr uint FP16_TOP_MAGIC_NUM = 0x64006400; static constexpr uint MEDIAN_NUM = isSigned ? 0x64006400 : 0x64006400; // interleave {e31,e29,e27,e25,e23,e21,e19,e17,e15,e13,e11,e9,e7,e5,e3,e1,e30,e28,e26,e24,e22,e20,e18,e16,e14,e12,e10,e8,e6,e4,e2,e0} // only decode e7,e5,e3,e1,e8,e6,e4,e2,e0 int8_t const i1s_i16 = *reinterpret_cast<int8_t *>(_i1s); int i1s = (i1s_i16 & 0x0f); i1s |= ((i1s_i16 & 0xf0) << 12); T3 const scale_r = *scale; uint const packed_scales = __pack_half2(scale_r, scale_r); T4 const zero_r = *zeros; uint const packed_zeros = 0x80008000 | __pack_half2(zero_r, zero_r); #pragma unroll // decode 2 elems at one time. for (int i = 0; i < (N / 2); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(h[i]) : "r"(i1s >> (1 * i)), "n"(BOTTOM_MASK), "n"(FP16_TOP_MAGIC_NUM), "n"(immLut)); asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[i]) : "r"(h[i]), "r"(MEDIAN_NUM)); asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[i]) : "r"(h[i]), "r"(packed_scales), "r"(packed_zeros)); } } template <typename T1, typename T2, typename T3, typename T4> __device__ void decode_i1u_to_f16_scale_zeros_rescale(T1 *_i4u, T2 *B_local_decode, T3 *scale = nullptr, T4 *zeros = nullptr, const int N = 8) { decode_i1b_to_f16_scale_zeros_rescale<T1, T2, T3, T4, false>(_i4u, B_local_decode, N, scale, zeros); } void general_interleave_int8(int8_t *origin_arr, int8_t *interleaved, const int nbit, size_t size_in_bytes, bool verbose = false) { // For fp16 example // i4s {e7,e6,e5,e4,e3,e2,e1,e0} // |-8b-||-8b-||-8b-||-8b-| // interleave {e7,e3,e6,e2,e5,e1,e4,e0} /* BOTTOM_MASK 0 0 0 f 0 0 0 f i4s e7 e3 e6 e2 e5 e1 e4 e0 selectedVal 0000 e3 0000 e2 0000 e1 0000 e0 // selectedVal = i4s & BOTTOM_MASK s[0] 0 e3 0 e2 0 e1 0 e0 */ // |-----8b-------||-------8b----||----8b---||-----8b----| // i2s {e15,e14,e13,e12,e11,e10,e9,e8,e7,e6,e5,e4,e3,e2,e1,e0} // interleave {e15,e11,e7,e3,e14,e10,e6,e2,e13,e9,e5,e1,e12,e8,e4,e0} // |-------------8b----------------||--------------8b--------------||------------8b--------------||--------8b-----------| // i1s {e31,e30,e29,e28,e27,e26,e25,e24,e23,e22,e21,e20,e19,e18,e17,e16,e15,e14,e13,e12,e11,e10,e9,e8,e7,e6,e5,e4,e3,e2,e1,e0} // interleave {e31,e27,e23,e19,e15,e11,e7,e3,e30,e26,e22,e18,e14,e10,e6,e2,e29,e25,e21,e17,e13,e9,e5,e1,e28,e24,e20,e16,e12,e8,e4,e0} // Assuming size is the number of int32 elements in origin_arr size_t size = size_in_bytes / sizeof(int32_t); int32_t *int32_origin = (int32_t *)origin_arr; int32_t *int32_interleaved = (int32_t *)interleaved; constexpr int bits_stride = 8; int elems_per_group = bits_stride / nbit; int mask = (1 << nbit) - 1; int num_groups = 32 / bits_stride; for (int idx = 0; idx < size; ++idx) { int32_t current_value = int32_origin[idx]; int32_t new_value = 0; for (int i = 0; i < num_groups; ++i) { for (int j = 0; j < elems_per_group; ++j) { int offset = i * elems_per_group + j; int shift = (offset % num_groups) * bits_stride + (offset / num_groups) * nbit; int group_value = (current_value >> (nbit * (i * elems_per_group + j))) & mask; new_value |= group_value << shift; if (verbose) printf("put %d to %d\n", offset, shift); } } if (nbit == 1) { int32_t _new_value_n16 = (new_value & 0xf0f00f0f); _new_value_n16 |= ((new_value & 0x000000f0) >> 4) << 16; _new_value_n16 |= ((new_value & 0x0000f000) >> 12) << 24; _new_value_n16 |= ((new_value & 0x000f0000) >> 16) << 4; _new_value_n16 |= ((new_value & 0x0f000000) >> 24) << 12; int32_interleaved[idx] = _new_value_n16; } else int32_interleaved[idx] = new_value; } // Convert back to int8_t if needed memcpy(interleaved, int32_interleaved, size * sizeof(int32_t)); } template <typename T1, typename T2, bool isSigned> __device__ void decode_i4b_to_i8s(T1 *_i4b, T2 *_i8s, const int N = 16) { uint *i8s = reinterpret_cast<uint *>(_i8s); uint *i4b = reinterpret_cast<uint *>(_i4b); // First, we extract the i4s and construct an intermediate i8 number. static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; static constexpr uint BOTTOM_MASK = 0x0f0f0f0f; // 0xf -> 0b1111 select 0,4,8,12 static constexpr uint I4b_TO_I8s_MAGIC_NUM = 0x00000000; // 0 static constexpr uint MEDIAN_NUM = isSigned ? 0x07070707 : 0x00000000; #pragma unroll for (int i = 0; i < (N / 8); i++) { // Extract elt_01 - (i4s & 0x000f000f) | 0x64006400 asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(i8s[i]) : "r"(i4b[0] >> (4 * i)), "n"(BOTTOM_MASK), "n"(I4b_TO_I8s_MAGIC_NUM), "n"(immLut)); asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(i8s[i + 2]) : "r"(i4b[1] >> (4 * i)), "n"(BOTTOM_MASK), "n"(I4b_TO_I8s_MAGIC_NUM), "n"(immLut)); if constexpr (isSigned) { i8s[i] = __vsubss4(i8s[i], MEDIAN_NUM); i8s[i + 2] = __vsubss4(i8s[i + 2], MEDIAN_NUM); } } } template <typename T1, typename T2> __device__ void decode_i4s_to_i8s(T1 *_i4s, T2 *B_local_decode, const int N = 16) { decode_i4b_to_i8s<T1, T2, true>(_i4s, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i4u_to_i8s(T1 *_i4u, T2 *B_local_decode, const int N = 16) { decode_i4b_to_i8s<T1, T2, false>(_i4u, B_local_decode, N); } template <typename T1, typename T2, bool isSigned> __device__ void decode_i2b_to_i8s(T1 *_i2b, T2 *_i8s, const int N = 16) { // convert 8 int2b_t to 8 int8b_t -> 2 int32 uint *i8s = reinterpret_cast<uint *>(_i8s); // i2b = {e7,e6,e5,e4,e3,e2,e1,e0} // also require interleave {e7,e3,e6,e2,e5,e1,e4,e0} uint const i2b = *reinterpret_cast<uint *>(_i2b); // First, we extract the i4s and construct an intermediate fp16 number. static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; // 0b11101010 static constexpr uint BOTTOM_MASK = 0x03030303; // 0xf -> 0b11 select 0,3 static constexpr uint I8s_MAGIC_NUM = 0x00000000; // 1024 static constexpr uint MEDIAN_NUM = isSigned ? 0x01010101 : 0x00000000; #pragma unroll for (int i = 0; i < (N / 4); i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(i8s[i]) : "r"(i2b >> (2 * i)), "n"(BOTTOM_MASK), "n"(I8s_MAGIC_NUM), "n"(immLut)); if constexpr (isSigned) { i8s[i] = __vsubss4(i8s[i], MEDIAN_NUM); } } } template <typename T1, typename T2> __device__ void decode_i2s_to_i8s(T1 *_i2s, T2 *B_local_decode, const int N = 16) { decode_i2b_to_i8s<T1, T2, true>(_i2s, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i2u_to_i8s(T1 *_i2u, T2 *B_local_decode, const int N = 16) { decode_i2b_to_i8s<T1, T2, false>(_i2u, B_local_decode, N); } template <typename T1, typename T2, bool isSigned> __device__ void decode_i1b_to_i8s(T1 *_i1b, T2 *_i8s, const int N = 16) { int i8s[4]; // vector load *reinterpret_cast<int4 *>(i8s) = *reinterpret_cast<int4 *>(_i8s); int16_t i1b_i16 = *reinterpret_cast<int16_t *>(_i1b); // permutate: {e0,e4,e8,e12,e2,e6,e10,e14,e1,e5,e9,e13,e3,e7,e11,e15} // into: {e0,e4,e8,e12,x,x,x,x,e1,e5,e9,x,x,x,x,e13,e2,e6,e10,e14,e1,e5,e9,e13,e3,e7,e11,e15,x,x,x,x} int i1b = (i1b_i16 & 0x0f0f); i1b |= ((i1b_i16 & 0xf0f0) << 12); // i1b {0..,e15,e14,e13,e12,e11,e10,e9,e8,e7,e6,e5,e4,e3,e2,e1,e0} // interleave {0..,e15,e13,e11,e9,e7,e5,e3,e1,e14,e12,e10,e8,e6,e4,e2,e0} // First, we extract the i1b and construct an intermediate fp16 number. static constexpr uint immLut = (0xf0 & 0xcc) | 0xaa; // 0b11101010 static constexpr uint BOTTOM_MASK = 0x01010101; // 0x1 -> 0b01 select 0,1 static constexpr uint I8s_MAGIC_NUM = 0x00000000; static constexpr uint TRANSFORM_SUBTRACT = 0xffffffff; // for signed int 2x - 1 for (int i = 0; i < N / 4; i++) { asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(i8s[i]) : "r"(i1b >> i), "n"(BOTTOM_MASK), "n"(I8s_MAGIC_NUM), "n"(immLut)); if constexpr (isSigned) { int _i8s = i8s[i]; int tmp = __vcmpleu4(_i8s, 0); _i8s |= tmp; i8s[i] = _i8s; // // i8s[i] = __vadd4(__vadd4(i8s[i], i8s[i]), TRANSFORM_SUBTRACT); } } // vector store *reinterpret_cast<int4 *>(_i8s) = *reinterpret_cast<int4 *>(i8s); } template <typename T1, typename T2> __device__ void decode_i1s_to_i8s(T1 *_i1s, T2 *B_local_decode, const int N = 16) { decode_i1b_to_i8s<T1, T2, true>(_i1s, B_local_decode, N); } template <typename T1, typename T2> __device__ void decode_i1u_to_i8s(T1 *_i1u, T2 *B_local_decode, const int N = 16) { decode_i1b_to_i8s<T1, T2, false>(_i1u, B_local_decode, N); }
BitBLAS/testing/cpp/lop3_type_conversion/fast_decoding.hpp/0
{ "file_path": "BitBLAS/testing/cpp/lop3_type_conversion/fast_decoding.hpp", "repo_id": "BitBLAS", "token_count": 18164 }
152
from .vg_caption_datamodule import VisualGenomeCaptionDataModule from .f30k_caption_karpathy_datamodule import F30KCaptionKarpathyDataModule from .coco_caption_karpathy_datamodule import CocoCaptionKarpathyDataModule from .conceptual_caption_datamodule import ConceptualCaptionDataModule from .sbu_datamodule import SBUCaptionDataModule from .vqav2_datamodule import VQAv2DataModule from .nlvr2_datamodule import NLVR2DataModule from .snli_datamodule import SNLIDataModule _datamodules = { "vg": VisualGenomeCaptionDataModule, "f30k": F30KCaptionKarpathyDataModule, "coco": CocoCaptionKarpathyDataModule, "gcc": ConceptualCaptionDataModule, "sbu": SBUCaptionDataModule, "vqa": VQAv2DataModule, "nlvr2": NLVR2DataModule, "snli": SNLIDataModule, }
BridgeTower/src/datamodules/__init__.py/0
{ "file_path": "BridgeTower/src/datamodules/__init__.py", "repo_id": "BridgeTower", "token_count": 303 }
153
from .base_dataset import BaseDataset import sys import random class NLVR2Dataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["nlvr2_train"] elif split == "val": names = ["nlvr2_dev", "nlvr2_test1"] # ViLT, METER elif split == "test": names = ["nlvr2_dev", "nlvr2_test1"] # ViLT, METER super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) def __getitem__(self, index): result = None while result is None: try: image_tensor_0 = self.get_image(index, image_key="image_0")["image"] image_tensor_1 = self.get_image(index, image_key="image_1")["image"] text = self.get_text(index)["text"] result = True except: print( f"error while read file idx {index} in {self.names[0]}", file=sys.stderr, ) index = random.randint(0, len(self.index_mapper) - 1) index, question_index = self.index_mapper[index] answers = self.table["answers"][index][question_index].as_py() answers = answers == "True" return { "image_0": image_tensor_0, "image_1": image_tensor_1, "text": text, "answers": answers, "table_name": self.table_names[index], }
BridgeTower/src/datasets/nlvr2_dataset.py/0
{ "file_path": "BridgeTower/src/datasets/nlvr2_dataset.py", "repo_id": "BridgeTower", "token_count": 872 }
154
""" Model creation / weight loading / state_dict helpers Hacked together by / Copyright 2020 Ross Wightman """ import logging import os import math from collections import OrderedDict from copy import deepcopy from typing import Any, Callable, Optional, Tuple import torch import torch.nn as nn from timm.models.features import FeatureListNet, FeatureDictNet, FeatureHookNet from timm.models.hub import has_hf_hub, download_cached_file, load_state_dict_from_hf #, load_state_dict_from_url from torch.utils.model_zoo import load_url as load_state_dict_from_url from timm.models.layers import Conv2dSame, Linear def swin_adapt_position_encoding(model, before=384, patch_size=32, after=384, suffix='relative_position_bias_table'): if after == before: return model grid_before = int(before/32) grid_after = int(after/32) #after // patch_size before = (2*grid_before-1) import math after = (2*grid_after-1) keys = [k for k in model if k.endswith(suffix)] assert len(keys) > 0 for key in keys: pos_embed = model[key] pos_embed = pos_embed.transpose(0, 1).view(-1, before, before) pos_embed = torch.nn.functional.interpolate(pos_embed.unsqueeze(0), size=(after, after), mode='bicubic') pos_embed = pos_embed.squeeze(0).permute((1, 2, 0)) pos_embed = pos_embed.contiguous().view(-1, pos_embed.size(-1)) model[key] = pos_embed keys = [k for k in model if k.endswith('attn_mask')] for key in keys: model.pop(key) keys = [k for k in model if k.endswith('relative_position_index')] for key in keys: model.pop(key) return model _logger = logging.getLogger(__name__) def load_state_dict(checkpoint_path, use_ema=False): if checkpoint_path and os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_key = 'state_dict' if isinstance(checkpoint, dict): if use_ema and 'state_dict_ema' in checkpoint: state_dict_key = 'state_dict_ema' if state_dict_key and state_dict_key in checkpoint: new_state_dict = OrderedDict() for k, v in checkpoint[state_dict_key].items(): # strip `module.` prefix name = k[7:] if k.startswith('module') else k new_state_dict[name] = v state_dict = new_state_dict else: state_dict = checkpoint _logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) return state_dict else: _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) raise FileNotFoundError() def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True): if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'): # numpy checkpoint, try to load via model specific load_pretrained fn if hasattr(model, 'load_pretrained'): model.load_pretrained(checkpoint_path) else: raise NotImplementedError('Model cannot load numpy checkpoint') return state_dict = load_state_dict(checkpoint_path, use_ema) model.load_state_dict(state_dict, strict=strict) def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True): resume_epoch = None if os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location='cpu') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: if log_info: _logger.info('Restoring model state from checkpoint...') new_state_dict = OrderedDict() for k, v in checkpoint['state_dict'].items(): name = k[7:] if k.startswith('module') else k new_state_dict[name] = v model.load_state_dict(new_state_dict) if optimizer is not None and 'optimizer' in checkpoint: if log_info: _logger.info('Restoring optimizer state from checkpoint...') optimizer.load_state_dict(checkpoint['optimizer']) if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: if log_info: _logger.info('Restoring AMP loss scaler state from checkpoint...') loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) if 'epoch' in checkpoint: resume_epoch = checkpoint['epoch'] if 'version' in checkpoint and checkpoint['version'] > 1: resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save if log_info: _logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) else: model.load_state_dict(checkpoint) if log_info: _logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) return resume_epoch else: _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) raise FileNotFoundError() def load_custom_pretrained(model, default_cfg=None, load_fn=None, progress=False, check_hash=False): r"""Loads a custom (read non .pth) weight file Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls a passed in custom load fun, or the `load_pretrained` model member fn. If the object is already present in `model_dir`, it's deserialized and returned. The default value of `model_dir` is ``<hub_dir>/checkpoints`` where `hub_dir` is the directory returned by :func:`~torch.hub.get_dir`. Args: model: The instantiated model to load weights into default_cfg (dict): Default pretrained model cfg load_fn: An external stand alone fn that loads weights into provided model, otherwise a fn named 'laod_pretrained' on the model will be called if it exists progress (bool, optional): whether or not to display a progress bar to stderr. Default: False check_hash(bool, optional): If True, the filename part of the URL should follow the naming convention ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more digits of the SHA256 hash of the contents of the file. The hash is used to ensure unique names and to verify the contents of the file. Default: False """ default_cfg = default_cfg or getattr(model, 'default_cfg', None) or {} pretrained_url = default_cfg.get('url', None) if not pretrained_url: _logger.warning("No pretrained weights exist for this model. Using random initialization.") return cached_file = download_cached_file(default_cfg['url'], check_hash=check_hash, progress=progress) if load_fn is not None: load_fn(model, cached_file) elif hasattr(model, 'load_pretrained'): model.load_pretrained(cached_file) else: _logger.warning("Valid function to load pretrained weights is not available, using random initialization.") def adapt_input_conv(in_chans, conv_weight): conv_type = conv_weight.dtype conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU O, I, J, K = conv_weight.shape if in_chans == 1: if I > 3: assert conv_weight.shape[1] % 3 == 0 # For models with space2depth stems conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) conv_weight = conv_weight.sum(dim=2, keepdim=False) else: conv_weight = conv_weight.sum(dim=1, keepdim=True) elif in_chans != 3: if I != 3: raise NotImplementedError('Weight format not supported by conversion.') else: # NOTE this strategy should be better than random init, but there could be other combinations of # the original RGB input layer weights that'd work better for specific cases. repeat = int(math.ceil(in_chans / 3)) conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] conv_weight *= (3 / float(in_chans)) conv_weight = conv_weight.to(conv_type) return conv_weight def load_pretrained(model, img_size, default_cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True, progress=False, resolution_before=384): """ Load pretrained checkpoint Args: model (nn.Module) : PyTorch model module default_cfg (Optional[Dict]): default configuration for pretrained weights / target dataset num_classes (int): num_classes for model in_chans (int): in_chans for model filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args) strict (bool): strict load of checkpoint progress (bool): enable progress bar for weight download """ default_cfg = default_cfg or getattr(model, 'default_cfg', None) or {} pretrained_url = default_cfg.get('url', None) hf_hub_id = default_cfg.get('hf_hub', None) if not pretrained_url and not hf_hub_id: _logger.warning("No pretrained weights exist for this model. Using random initialization.") return if hf_hub_id and has_hf_hub(necessary=not pretrained_url): _logger.info(f'Loading pretrained weights from Hugging Face hub ({hf_hub_id})') state_dict = load_state_dict_from_hf(hf_hub_id) else: _logger.info(f'Loading pretrained weights from url ({pretrained_url})') state_dict = load_state_dict_from_url(pretrained_url, progress=progress, map_location='cpu') swin_adapt_position_encoding(state_dict['model'], before=resolution_before, after=img_size) if filter_fn is not None: # for backwards compat with filter fn that take one arg, try one first, the two try: state_dict = filter_fn(state_dict) except TypeError: state_dict = filter_fn(state_dict, model) input_convs = default_cfg.get('first_conv', None) if input_convs is not None and in_chans != 3: if isinstance(input_convs, str): input_convs = (input_convs,) for input_conv_name in input_convs: weight_name = input_conv_name + '.weight' try: state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name]) _logger.info( f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)') except NotImplementedError as e: del state_dict[weight_name] strict = False _logger.warning( f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.') classifiers = default_cfg.get('classifier', None) label_offset = default_cfg.get('label_offset', 0) if classifiers is not None: if isinstance(classifiers, str): classifiers = (classifiers,) if num_classes != default_cfg['num_classes']: for classifier_name in classifiers: # completely discard fully connected if model num_classes doesn't match pretrained weights del state_dict[classifier_name + '.weight'] del state_dict[classifier_name + '.bias'] strict = False elif label_offset > 0: for classifier_name in classifiers: # special case for pretrained weights with an extra background class in pretrained weights classifier_weight = state_dict[classifier_name + '.weight'] state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] classifier_bias = state_dict[classifier_name + '.bias'] state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] model.load_state_dict(state_dict, strict=strict) def extract_layer(model, layer): layer = layer.split('.') module = model if hasattr(model, 'module') and layer[0] != 'module': module = model.module if not hasattr(model, 'module') and layer[0] == 'module': layer = layer[1:] for l in layer: if hasattr(module, l): if not l.isdigit(): module = getattr(module, l) else: module = module[int(l)] else: return module return module def set_layer(model, layer, val): layer = layer.split('.') module = model if hasattr(model, 'module') and layer[0] != 'module': module = model.module lst_index = 0 module2 = module for l in layer: if hasattr(module2, l): if not l.isdigit(): module2 = getattr(module2, l) else: module2 = module2[int(l)] lst_index += 1 lst_index -= 1 for l in layer[:lst_index]: if not l.isdigit(): module = getattr(module, l) else: module = module[int(l)] l = layer[lst_index] setattr(module, l, val) def adapt_model_from_string(parent_module, model_string): separator = '***' state_dict = {} lst_shape = model_string.split(separator) for k in lst_shape: k = k.split(':') key = k[0] shape = k[1][1:-1].split(',') if shape[0] != '': state_dict[key] = [int(i) for i in shape] new_module = deepcopy(parent_module) for n, m in parent_module.named_modules(): old_module = extract_layer(parent_module, n) if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): if isinstance(old_module, Conv2dSame): conv = Conv2dSame else: conv = nn.Conv2d s = state_dict[n + '.weight'] in_channels = s[1] out_channels = s[0] g = 1 if old_module.groups > 1: in_channels = out_channels g = in_channels new_conv = conv( in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, groups=g, stride=old_module.stride) set_layer(new_module, n, new_conv) if isinstance(old_module, nn.BatchNorm2d): new_bn = nn.BatchNorm2d( num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, affine=old_module.affine, track_running_stats=True) set_layer(new_module, n, new_bn) if isinstance(old_module, nn.Linear): # FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer? num_features = state_dict[n + '.weight'][1] new_fc = Linear( in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) set_layer(new_module, n, new_fc) if hasattr(new_module, 'num_features'): new_module.num_features = num_features new_module.eval() parent_module.eval() return new_module def adapt_model_from_file(parent_module, model_variant): adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt') with open(adapt_file, 'r') as f: return adapt_model_from_string(parent_module, f.read().strip()) def default_cfg_for_features(default_cfg): default_cfg = deepcopy(default_cfg) # remove default pretrained cfg fields that don't have much relevance for feature backbone to_remove = ('num_classes', 'crop_pct', 'classifier', 'global_pool') # add default final pool size? for tr in to_remove: default_cfg.pop(tr, None) return default_cfg def overlay_external_default_cfg(default_cfg, kwargs): """ Overlay 'external_default_cfg' in kwargs on top of default_cfg arg. """ external_default_cfg = kwargs.pop('external_default_cfg', None) if external_default_cfg: default_cfg.pop('url', None) # url should come from external cfg default_cfg.pop('hf_hub', None) # hf hub id should come from external cfg default_cfg.update(external_default_cfg) def set_default_kwargs(kwargs, names, default_cfg): for n in names: # for legacy reasons, model __init__args uses img_size + in_chans as separate args while # default_cfg has one input_size=(C, H ,W) entry if n == 'img_size': input_size = default_cfg.get('input_size', None) if input_size is not None: assert len(input_size) == 3 kwargs.setdefault(n, input_size[-2:]) elif n == 'in_chans': input_size = default_cfg.get('input_size', None) if input_size is not None: assert len(input_size) == 3 kwargs.setdefault(n, input_size[0]) else: default_val = default_cfg.get(n, None) if default_val is not None: kwargs.setdefault(n, default_cfg[n]) def filter_kwargs(kwargs, names): if not kwargs or not names: return for n in names: kwargs.pop(n, None) def update_default_cfg_and_kwargs(default_cfg, kwargs, kwargs_filter): """ Update the default_cfg and kwargs before passing to model FIXME this sequence of overlay default_cfg, set default kwargs, filter kwargs could/should be replaced by an improved configuration mechanism Args: default_cfg: input default_cfg (updated in-place) kwargs: keyword args passed to model build fn (updated in-place) kwargs_filter: keyword arg keys that must be removed before model __init__ """ # Overlay default cfg values from `external_default_cfg` if it exists in kwargs overlay_external_default_cfg(default_cfg, kwargs) # Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs) default_kwarg_names = ('num_classes', 'global_pool', 'in_chans') if default_cfg.get('fixed_input_size', False): # if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size default_kwarg_names += ('img_size',) set_default_kwargs(kwargs, names=default_kwarg_names, default_cfg=default_cfg) # Filter keyword args for task specific model variants (some 'features only' models, etc.) filter_kwargs(kwargs, names=kwargs_filter) def swin_build_model_with_cfg( model_cls: Callable, variant: str, pretrained: bool, default_cfg: dict, model_cfg: Optional[Any] = None, feature_cfg: Optional[dict] = None, pretrained_strict: bool = True, pretrained_filter_fn: Optional[Callable] = None, pretrained_custom_load: bool = False, kwargs_filter: Optional[Tuple[str]] = None, **kwargs): """ Build model with specified default_cfg and optional model_cfg This helper fn aids in the construction of a model including: * handling default_cfg and associated pretained weight loading * passing through optional model_cfg for models with config based arch spec * features_only model adaptation * pruning config / model adaptation Args: model_cls (nn.Module): model class variant (str): model variant name pretrained (bool): load pretrained weights default_cfg (dict): model's default pretrained/task config model_cfg (Optional[Dict]): model's architecture config feature_cfg (Optional[Dict]: feature extraction adapter config pretrained_strict (bool): load pretrained weights strictly pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights pretrained_custom_load (bool): use custom load fn, to load numpy or other non PyTorch weights kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model **kwargs: model args passed through to model __init__ """ pruned = kwargs.pop('pruned', False) features = False feature_cfg = feature_cfg or {} default_cfg = deepcopy(default_cfg) if default_cfg else {} update_default_cfg_and_kwargs(default_cfg, kwargs, kwargs_filter) default_cfg.setdefault('architecture', variant) # Setup for feature extraction wrapper done at end of this fn if kwargs.pop('features_only', False): features = True feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) if 'out_indices' in kwargs: feature_cfg['out_indices'] = kwargs.pop('out_indices') # Build the model model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs) model.default_cfg = default_cfg if pruned: model = adapt_model_from_file(model, variant) # For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) if pretrained: if pretrained_custom_load: load_custom_pretrained(model) else: load_pretrained( model, num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3), filter_fn=pretrained_filter_fn, img_size=kwargs['img_size'], strict=pretrained_strict, resolution_before=kwargs['config']['resolution_before']) # Wrap the model in a feature extraction module if enabled if features: feature_cls = FeatureListNet if 'feature_cls' in feature_cfg: feature_cls = feature_cfg.pop('feature_cls') if isinstance(feature_cls, str): feature_cls = feature_cls.lower() if 'hook' in feature_cls: feature_cls = FeatureHookNet else: assert False, f'Unknown feature class {feature_cls}' model = feature_cls(model, **feature_cfg) model.default_cfg = default_cfg_for_features(default_cfg) # add back default_cfg return model def model_parameters(model, exclude_head=False): if exclude_head: # FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering return [p for p in model.parameters()][:-2] else: return model.parameters() def named_apply(fn: Callable, module: nn.Module, name='', depth_first=True, include_root=False) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: fn(module=module, name=name) return module def named_modules(module: nn.Module, name='', depth_first=True, include_root=False): if not depth_first and include_root: yield name, module for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name yield from named_modules( module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: yield name, module
BridgeTower/src/modules/swin_helpers.py/0
{ "file_path": "BridgeTower/src/modules/swin_helpers.py", "repo_id": "BridgeTower", "token_count": 9842 }
155
import json import pandas as pd import pyarrow as pa import os from tqdm import tqdm from collections import defaultdict label2id = {'contradiction': 0, 'neutral': 1, 'entailment': 2} def process(root, imgid, ann): with open(f"{root}/flickr30k-images/{imgid}.jpg", "rb") as fp: img = fp.read() sentences = ann['sentences'] labels = ann['labels'] return [img, sentences, labels] def make_arrow(root, dataset_root): train_data = list( map(json.loads, open(f"{root}/snli_ve/snli_ve_train.jsonl").readlines()) ) test_data = list( map(json.loads, open(f"{root}/snli_ve/snli_ve_test.jsonl").readlines()) ) dev_data = list( map(json.loads, open(f"{root}/snli_ve/snli_ve_dev.jsonl").readlines()) ) splits = [ "train", "dev", "test", ] annotations = dict() annotations['train'] = train_data annotations['dev'] = dev_data annotations['test'] = test_data annots = dict() for split in splits: annots[split] = {} for line in annotations[split]: imgid = line['Flickr30K_ID'] if not imgid in annots[split]: annots[split][imgid] = {} annots[split][imgid]['sentences'] = [] annots[split][imgid]['labels'] = [] annots[split][imgid]['sentences'].append( [line['sentence1'], line['sentence2']] ) annots[split][imgid]['labels'].append( label2id[line['gold_label']] ) for split in splits: bs = [process(root, imgid, annots[split][imgid]) for imgid in tqdm(annots[split])] dataframe = pd.DataFrame( bs, columns=["image", "sentences", "labels"] ) table = pa.Table.from_pandas(dataframe) os.makedirs(dataset_root, exist_ok=True) with pa.OSFile(f"{dataset_root}/snli_{split}.arrow", "wb") as sink: with pa.RecordBatchFileWriter(sink, table.schema) as writer: writer.write_table(table) make_arrow('~/BT/dataset/mscoco_flickr30k_vqav2_snli_ve', '~/BT/dataset/fine-tune')
BridgeTower/src/utils/write_snli.py/0
{ "file_path": "BridgeTower/src/utils/write_snli.py", "repo_id": "BridgeTower", "token_count": 999 }
156
FROM nvidia/cuda:11.1-base-ubuntu20.04 RUN apt update && DEBIAN_FRONTEND=noninteractive apt install git bzip2 wget unzip python3-pip python3-dev cmake libgl1-mesa-dev python-is-python3 libgtk2.0-dev -yq ADD . /app WORKDIR /app RUN cd Face_Enhancement/models/networks/ &&\ git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch &&\ cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm . &&\ cd ../../../ RUN cd Global/detection_models &&\ git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch &&\ cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm . &&\ cd ../../ RUN cd Face_Detection/ &&\ wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 &&\ bzip2 -d shape_predictor_68_face_landmarks.dat.bz2 &&\ cd ../ RUN cd Face_Enhancement/ &&\ wget https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Face_Enhancement/checkpoints.zip &&\ unzip checkpoints.zip &&\ cd ../ &&\ cd Global/ &&\ wget https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Global/checkpoints.zip &&\ unzip checkpoints.zip &&\ rm -f checkpoints.zip &&\ cd ../ RUN pip3 install numpy RUN pip3 install dlib RUN pip3 install -r requirements.txt RUN git clone https://github.com/NVlabs/SPADE.git RUN cd SPADE/ && pip3 install -r requirements.txt RUN cd .. CMD ["python3", "run.py"]
Bringing-Old-Photos-Back-to-Life/Dockerfile/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Dockerfile", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 540 }
157
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch.nn.functional as F from models.networks.base_network import BaseNetwork from models.networks.normalization import get_nonspade_norm_layer from models.networks.architecture import ResnetBlock as ResnetBlock from models.networks.architecture import SPADEResnetBlock as SPADEResnetBlock from models.networks.architecture import SPADEResnetBlock_non_spade as SPADEResnetBlock_non_spade class SPADEGenerator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.set_defaults(norm_G="spectralspadesyncbatch3x3") parser.add_argument( "--num_upsampling_layers", choices=("normal", "more", "most"), default="normal", help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator", ) return parser def __init__(self, opt): super().__init__() self.opt = opt nf = opt.ngf self.sw, self.sh = self.compute_latent_vector_size(opt) print("The size of the latent vector size is [%d,%d]" % (self.sw, self.sh)) if opt.use_vae: # In case of VAE, we will sample from random z vector self.fc = nn.Linear(opt.z_dim, 16 * nf * self.sw * self.sh) else: # Otherwise, we make the network deterministic by starting with # downsampled segmentation map instead of random z if self.opt.no_parsing_map: self.fc = nn.Conv2d(3, 16 * nf, 3, padding=1) else: self.fc = nn.Conv2d(self.opt.semantic_nc, 16 * nf, 3, padding=1) if self.opt.injection_layer == "all" or self.opt.injection_layer == "1": self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt) else: self.head_0 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt) if self.opt.injection_layer == "all" or self.opt.injection_layer == "2": self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt) self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf, opt) else: self.G_middle_0 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt) self.G_middle_1 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt) if self.opt.injection_layer == "all" or self.opt.injection_layer == "3": self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf, opt) else: self.up_0 = SPADEResnetBlock_non_spade(16 * nf, 8 * nf, opt) if self.opt.injection_layer == "all" or self.opt.injection_layer == "4": self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt) else: self.up_1 = SPADEResnetBlock_non_spade(8 * nf, 4 * nf, opt) if self.opt.injection_layer == "all" or self.opt.injection_layer == "5": self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt) else: self.up_2 = SPADEResnetBlock_non_spade(4 * nf, 2 * nf, opt) if self.opt.injection_layer == "all" or self.opt.injection_layer == "6": self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt) else: self.up_3 = SPADEResnetBlock_non_spade(2 * nf, 1 * nf, opt) final_nc = nf if opt.num_upsampling_layers == "most": self.up_4 = SPADEResnetBlock(1 * nf, nf // 2, opt) final_nc = nf // 2 self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1) self.up = nn.Upsample(scale_factor=2) def compute_latent_vector_size(self, opt): if opt.num_upsampling_layers == "normal": num_up_layers = 5 elif opt.num_upsampling_layers == "more": num_up_layers = 6 elif opt.num_upsampling_layers == "most": num_up_layers = 7 else: raise ValueError("opt.num_upsampling_layers [%s] not recognized" % opt.num_upsampling_layers) sw = opt.load_size // (2 ** num_up_layers) sh = round(sw / opt.aspect_ratio) return sw, sh def forward(self, input, degraded_image, z=None): seg = input if self.opt.use_vae: # we sample z from unit normal and reshape the tensor if z is None: z = torch.randn(input.size(0), self.opt.z_dim, dtype=torch.float32, device=input.get_device()) x = self.fc(z) x = x.view(-1, 16 * self.opt.ngf, self.sh, self.sw) else: # we downsample segmap and run convolution if self.opt.no_parsing_map: x = F.interpolate(degraded_image, size=(self.sh, self.sw), mode="bilinear") else: x = F.interpolate(seg, size=(self.sh, self.sw), mode="nearest") x = self.fc(x) x = self.head_0(x, seg, degraded_image) x = self.up(x) x = self.G_middle_0(x, seg, degraded_image) if self.opt.num_upsampling_layers == "more" or self.opt.num_upsampling_layers == "most": x = self.up(x) x = self.G_middle_1(x, seg, degraded_image) x = self.up(x) x = self.up_0(x, seg, degraded_image) x = self.up(x) x = self.up_1(x, seg, degraded_image) x = self.up(x) x = self.up_2(x, seg, degraded_image) x = self.up(x) x = self.up_3(x, seg, degraded_image) if self.opt.num_upsampling_layers == "most": x = self.up(x) x = self.up_4(x, seg, degraded_image) x = self.conv_img(F.leaky_relu(x, 2e-1)) x = F.tanh(x) return x class Pix2PixHDGenerator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument( "--resnet_n_downsample", type=int, default=4, help="number of downsampling layers in netG" ) parser.add_argument( "--resnet_n_blocks", type=int, default=9, help="number of residual blocks in the global generator network", ) parser.add_argument( "--resnet_kernel_size", type=int, default=3, help="kernel size of the resnet block" ) parser.add_argument( "--resnet_initial_kernel_size", type=int, default=7, help="kernel size of the first convolution" ) # parser.set_defaults(norm_G='instance') return parser def __init__(self, opt): super().__init__() input_nc = 3 # print("xxxxx") # print(opt.norm_G) norm_layer = get_nonspade_norm_layer(opt, opt.norm_G) activation = nn.ReLU(False) model = [] # initial conv model += [ nn.ReflectionPad2d(opt.resnet_initial_kernel_size // 2), norm_layer(nn.Conv2d(input_nc, opt.ngf, kernel_size=opt.resnet_initial_kernel_size, padding=0)), activation, ] # downsample mult = 1 for i in range(opt.resnet_n_downsample): model += [ norm_layer(nn.Conv2d(opt.ngf * mult, opt.ngf * mult * 2, kernel_size=3, stride=2, padding=1)), activation, ] mult *= 2 # resnet blocks for i in range(opt.resnet_n_blocks): model += [ ResnetBlock( opt.ngf * mult, norm_layer=norm_layer, activation=activation, kernel_size=opt.resnet_kernel_size, ) ] # upsample for i in range(opt.resnet_n_downsample): nc_in = int(opt.ngf * mult) nc_out = int((opt.ngf * mult) / 2) model += [ norm_layer( nn.ConvTranspose2d(nc_in, nc_out, kernel_size=3, stride=2, padding=1, output_padding=1) ), activation, ] mult = mult // 2 # final output conv model += [ nn.ReflectionPad2d(3), nn.Conv2d(nc_out, opt.output_nc, kernel_size=7, padding=0), nn.Tanh(), ] self.model = nn.Sequential(*model) def forward(self, input, degraded_image, z=None): return self.model(degraded_image)
Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/networks/generator.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/networks/generator.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 4241 }
158
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. class BaseDataLoader(): def __init__(self): pass def initialize(self, opt): self.opt = opt pass def load_data(): return None
Bringing-Old-Photos-Back-to-Life/Global/data/base_data_loader.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Global/data/base_data_loader.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 119 }
159
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import functools from torch.autograd import Variable import numpy as np from torch.nn.utils import spectral_norm # from util.util import SwitchNorm2d import torch.nn.functional as F ############################################################################### # Functions ############################################################################### def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find("BatchNorm2d") != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def get_norm_layer(norm_type="instance"): if norm_type == "batch": norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == "instance": norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) elif norm_type == "spectral": norm_layer = spectral_norm() elif norm_type == "SwitchNorm": norm_layer = SwitchNorm2d else: raise NotImplementedError("normalization layer [%s] is not found" % norm_type) return norm_layer def print_network(net): if isinstance(net, list): net = net[0] num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print("Total number of parameters: %d" % num_params) def define_G(input_nc, output_nc, ngf, netG, k_size=3, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm='instance', gpu_ids=[], opt=None): norm_layer = get_norm_layer(norm_type=norm) if netG == 'global': # if opt.self_gen: if opt.use_v2: netG = GlobalGenerator_DCDCv2(input_nc, output_nc, ngf, k_size, n_downsample_global, norm_layer, opt=opt) else: netG = GlobalGenerator_v2(input_nc, output_nc, ngf, k_size, n_downsample_global, n_blocks_global, norm_layer, opt=opt) else: raise('generator not implemented!') print(netG) if len(gpu_ids) > 0: assert(torch.cuda.is_available()) netG.cuda(gpu_ids[0]) netG.apply(weights_init) return netG def define_D(input_nc, ndf, n_layers_D, opt, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]): norm_layer = get_norm_layer(norm_type=norm) netD = MultiscaleDiscriminator(input_nc, opt, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat) print(netD) if len(gpu_ids) > 0: assert(torch.cuda.is_available()) netD.cuda(gpu_ids[0]) netD.apply(weights_init) return netD class GlobalGenerator_DCDCv2(nn.Module): def __init__( self, input_nc, output_nc, ngf=64, k_size=3, n_downsampling=8, norm_layer=nn.BatchNorm2d, padding_type="reflect", opt=None, ): super(GlobalGenerator_DCDCv2, self).__init__() activation = nn.ReLU(True) model = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, min(ngf, opt.mc), kernel_size=7, padding=0), norm_layer(ngf), activation, ] ### downsample for i in range(opt.start_r): mult = 2 ** i model += [ nn.Conv2d( min(ngf * mult, opt.mc), min(ngf * mult * 2, opt.mc), kernel_size=k_size, stride=2, padding=1, ), norm_layer(min(ngf * mult * 2, opt.mc)), activation, ] for i in range(opt.start_r, n_downsampling - 1): mult = 2 ** i model += [ nn.Conv2d( min(ngf * mult, opt.mc), min(ngf * mult * 2, opt.mc), kernel_size=k_size, stride=2, padding=1, ), norm_layer(min(ngf * mult * 2, opt.mc)), activation, ] model += [ ResnetBlock( min(ngf * mult * 2, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] model += [ ResnetBlock( min(ngf * mult * 2, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] mult = 2 ** (n_downsampling - 1) if opt.spatio_size == 32: model += [ nn.Conv2d( min(ngf * mult, opt.mc), min(ngf * mult * 2, opt.mc), kernel_size=k_size, stride=2, padding=1, ), norm_layer(min(ngf * mult * 2, opt.mc)), activation, ] if opt.spatio_size == 64: model += [ ResnetBlock( min(ngf * mult * 2, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] model += [ ResnetBlock( min(ngf * mult * 2, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] # model += [nn.Conv2d(min(ngf * mult * 2, opt.mc), min(ngf, opt.mc), 1, 1)] if opt.feat_dim > 0: model += [nn.Conv2d(min(ngf * mult * 2, opt.mc), opt.feat_dim, 1, 1)] self.encoder = nn.Sequential(*model) # decode model = [] if opt.feat_dim > 0: model += [nn.Conv2d(opt.feat_dim, min(ngf * mult * 2, opt.mc), 1, 1)] # model += [nn.Conv2d(min(ngf, opt.mc), min(ngf * mult * 2, opt.mc), 1, 1)] o_pad = 0 if k_size == 4 else 1 mult = 2 ** n_downsampling model += [ ResnetBlock( min(ngf * mult, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] if opt.spatio_size == 32: model += [ nn.ConvTranspose2d( min(ngf * mult, opt.mc), min(int(ngf * mult / 2), opt.mc), kernel_size=k_size, stride=2, padding=1, output_padding=o_pad, ), norm_layer(min(int(ngf * mult / 2), opt.mc)), activation, ] if opt.spatio_size == 64: model += [ ResnetBlock( min(ngf * mult, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] for i in range(1, n_downsampling - opt.start_r): mult = 2 ** (n_downsampling - i) model += [ ResnetBlock( min(ngf * mult, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] model += [ ResnetBlock( min(ngf * mult, opt.mc), padding_type=padding_type, activation=activation, norm_layer=norm_layer, opt=opt, ) ] model += [ nn.ConvTranspose2d( min(ngf * mult, opt.mc), min(int(ngf * mult / 2), opt.mc), kernel_size=k_size, stride=2, padding=1, output_padding=o_pad, ), norm_layer(min(int(ngf * mult / 2), opt.mc)), activation, ] for i in range(n_downsampling - opt.start_r, n_downsampling): mult = 2 ** (n_downsampling - i) model += [ nn.ConvTranspose2d( min(ngf * mult, opt.mc), min(int(ngf * mult / 2), opt.mc), kernel_size=k_size, stride=2, padding=1, output_padding=o_pad, ), norm_layer(min(int(ngf * mult / 2), opt.mc)), activation, ] if opt.use_segmentation_model: model += [nn.ReflectionPad2d(3), nn.Conv2d(min(ngf, opt.mc), output_nc, kernel_size=7, padding=0)] else: model += [ nn.ReflectionPad2d(3), nn.Conv2d(min(ngf, opt.mc), output_nc, kernel_size=7, padding=0), nn.Tanh(), ] self.decoder = nn.Sequential(*model) def forward(self, input, flow="enc_dec"): if flow == "enc": return self.encoder(input) elif flow == "dec": return self.decoder(input) elif flow == "enc_dec": x = self.encoder(input) x = self.decoder(x) return x # Define a resnet block class ResnetBlock(nn.Module): def __init__( self, dim, padding_type, norm_layer, opt, activation=nn.ReLU(True), use_dropout=False, dilation=1 ): super(ResnetBlock, self).__init__() self.opt = opt self.dilation = dilation self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): conv_block = [] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(self.dilation)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(self.dilation)] elif padding_type == "zero": p = self.dilation else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [ nn.Conv2d(dim, dim, kernel_size=3, padding=p, dilation=self.dilation), norm_layer(dim), activation, ] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, dilation=1), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class Encoder(nn.Module): def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d): super(Encoder, self).__init__() self.output_nc = output_nc model = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), nn.ReLU(True), ] ### downsample for i in range(n_downsampling): mult = 2 ** i model += [ nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), nn.ReLU(True), ] ### upsample for i in range(n_downsampling): mult = 2 ** (n_downsampling - i) model += [ nn.ConvTranspose2d( ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1 ), norm_layer(int(ngf * mult / 2)), nn.ReLU(True), ] model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input, inst): outputs = self.model(input) # instance-wise average pooling outputs_mean = outputs.clone() inst_list = np.unique(inst.cpu().numpy().astype(int)) for i in inst_list: for b in range(input.size()[0]): indices = (inst[b : b + 1] == int(i)).nonzero() # n x 4 for j in range(self.output_nc): output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2], indices[:, 3]] mean_feat = torch.mean(output_ins).expand_as(output_ins) outputs_mean[ indices[:, 0] + b, indices[:, 1] + j, indices[:, 2], indices[:, 3] ] = mean_feat return outputs_mean def SN(module, mode=True): if mode: return torch.nn.utils.spectral_norm(module) return module class NonLocalBlock2D_with_mask_Res(nn.Module): def __init__( self, in_channels, inter_channels, mode="add", re_norm=False, temperature=1.0, use_self=False, cosin=False, ): super(NonLocalBlock2D_with_mask_Res, self).__init__() self.cosin = cosin self.renorm = re_norm self.in_channels = in_channels self.inter_channels = inter_channels self.g = nn.Conv2d( in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0 ) self.W = nn.Conv2d( in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0 ) # for pytorch 0.3.1 # nn.init.constant(self.W.weight, 0) # nn.init.constant(self.W.bias, 0) # for pytorch 0.4.0 nn.init.constant_(self.W.weight, 0) nn.init.constant_(self.W.bias, 0) self.theta = nn.Conv2d( in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0 ) self.phi = nn.Conv2d( in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0 ) self.mode = mode self.temperature = temperature self.use_self = use_self norm_layer = get_norm_layer(norm_type="instance") activation = nn.ReLU(True) model = [] for i in range(3): model += [ ResnetBlock( inter_channels, padding_type="reflect", activation=activation, norm_layer=norm_layer, opt=None, ) ] self.res_block = nn.Sequential(*model) def forward(self, x, mask): ## The shape of mask is Batch*1*H*W batch_size = x.size(0) g_x = self.g(x).view(batch_size, self.inter_channels, -1) g_x = g_x.permute(0, 2, 1) theta_x = self.theta(x).view(batch_size, self.inter_channels, -1) theta_x = theta_x.permute(0, 2, 1) phi_x = self.phi(x).view(batch_size, self.inter_channels, -1) if self.cosin: theta_x = F.normalize(theta_x, dim=2) phi_x = F.normalize(phi_x, dim=1) f = torch.matmul(theta_x, phi_x) f /= self.temperature f_div_C = F.softmax(f, dim=2) tmp = 1 - mask mask = F.interpolate(mask, (x.size(2), x.size(3)), mode="bilinear") mask[mask > 0] = 1.0 mask = 1 - mask tmp = F.interpolate(tmp, (x.size(2), x.size(3))) mask *= tmp mask_expand = mask.view(batch_size, 1, -1) mask_expand = mask_expand.repeat(1, x.size(2) * x.size(3), 1) # mask = 1 - mask # mask=F.interpolate(mask,(x.size(2),x.size(3))) # mask_expand=mask.view(batch_size,1,-1) # mask_expand=mask_expand.repeat(1,x.size(2)*x.size(3),1) if self.use_self: mask_expand[:, range(x.size(2) * x.size(3)), range(x.size(2) * x.size(3))] = 1.0 # print(mask_expand.shape) # print(f_div_C.shape) f_div_C = mask_expand * f_div_C if self.renorm: f_div_C = F.normalize(f_div_C, p=1, dim=2) ########################### y = torch.matmul(f_div_C, g_x) y = y.permute(0, 2, 1).contiguous() y = y.view(batch_size, self.inter_channels, *x.size()[2:]) W_y = self.W(y) W_y = self.res_block(W_y) if self.mode == "combine": full_mask = mask.repeat(1, self.inter_channels, 1, 1) z = full_mask * x + (1 - full_mask) * W_y return z class MultiscaleDiscriminator(nn.Module): def __init__(self, input_nc, opt, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, num_D=3, getIntermFeat=False): super(MultiscaleDiscriminator, self).__init__() self.num_D = num_D self.n_layers = n_layers self.getIntermFeat = getIntermFeat for i in range(num_D): netD = NLayerDiscriminator(input_nc, opt, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat) if getIntermFeat: for j in range(n_layers+2): setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j))) else: setattr(self, 'layer'+str(i), netD.model) self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) def singleD_forward(self, model, input): if self.getIntermFeat: result = [input] for i in range(len(model)): result.append(model[i](result[-1])) return result[1:] else: return [model(input)] def forward(self, input): num_D = self.num_D result = [] input_downsampled = input for i in range(num_D): if self.getIntermFeat: model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)] else: model = getattr(self, 'layer'+str(num_D-1-i)) result.append(self.singleD_forward(model, input_downsampled)) if i != (num_D-1): input_downsampled = self.downsample(input_downsampled) return result # Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def __init__(self, input_nc, opt, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False): super(NLayerDiscriminator, self).__init__() self.getIntermFeat = getIntermFeat self.n_layers = n_layers kw = 4 padw = int(np.ceil((kw-1.0)/2)) sequence = [[SN(nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),opt.use_SN), nn.LeakyReLU(0.2, True)]] nf = ndf for n in range(1, n_layers): nf_prev = nf nf = min(nf * 2, 512) sequence += [[ SN(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),opt.use_SN), norm_layer(nf), nn.LeakyReLU(0.2, True) ]] nf_prev = nf nf = min(nf * 2, 512) sequence += [[ SN(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),opt.use_SN), norm_layer(nf), nn.LeakyReLU(0.2, True) ]] sequence += [[SN(nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw),opt.use_SN)]] if use_sigmoid: sequence += [[nn.Sigmoid()]] if getIntermFeat: for n in range(len(sequence)): setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) else: sequence_stream = [] for n in range(len(sequence)): sequence_stream += sequence[n] self.model = nn.Sequential(*sequence_stream) def forward(self, input): if self.getIntermFeat: res = [input] for n in range(self.n_layers+2): model = getattr(self, 'model'+str(n)) res.append(model(res[-1])) return res[1:] else: return self.model(input) class Patch_Attention_4(nn.Module): ## While combine the feature map, use conv and mask def __init__(self, in_channels, inter_channels, patch_size): super(Patch_Attention_4, self).__init__() self.patch_size=patch_size # self.g = nn.Conv2d( # in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0 # ) # self.W = nn.Conv2d( # in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0 # ) # # for pytorch 0.3.1 # # nn.init.constant(self.W.weight, 0) # # nn.init.constant(self.W.bias, 0) # # for pytorch 0.4.0 # nn.init.constant_(self.W.weight, 0) # nn.init.constant_(self.W.bias, 0) # self.theta = nn.Conv2d( # in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0 # ) # self.phi = nn.Conv2d( # in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0 # ) self.F_Combine=nn.Conv2d(in_channels=1025,out_channels=512,kernel_size=3,stride=1,padding=1,bias=True) norm_layer = get_norm_layer(norm_type="instance") activation = nn.ReLU(True) model = [] for i in range(1): model += [ ResnetBlock( inter_channels, padding_type="reflect", activation=activation, norm_layer=norm_layer, opt=None, ) ] self.res_block = nn.Sequential(*model) def Hard_Compose(self, input, dim, index): # batch index select # input: [B,C,HW] # dim: scalar > 0 # index: [B, HW] views = [input.size(0)] + [1 if i!=dim else -1 for i in range(1, len(input.size()))] expanse = list(input.size()) expanse[0] = -1 expanse[dim] = -1 index = index.view(views).expand(expanse) return torch.gather(input, dim, index) def forward(self, z, mask): ## The shape of mask is Batch*1*H*W x=self.res_block(z) b,c,h,w=x.shape ## mask resize + dilation # tmp = 1 - mask mask = F.interpolate(mask, (x.size(2), x.size(3)), mode="bilinear") mask[mask > 0] = 1.0 # mask = 1 - mask # tmp = F.interpolate(tmp, (x.size(2), x.size(3))) # mask *= tmp # mask=1-mask ## 1: mask position 0: non-mask mask_unfold=F.unfold(mask, kernel_size=(self.patch_size,self.patch_size), padding=0, stride=self.patch_size) non_mask_region=(torch.mean(mask_unfold,dim=1,keepdim=True)>0.6).float() all_patch_num=h*w/self.patch_size/self.patch_size non_mask_region=non_mask_region.repeat(1,int(all_patch_num),1) x_unfold=F.unfold(x, kernel_size=(self.patch_size,self.patch_size), padding=0, stride=self.patch_size) y_unfold=x_unfold.permute(0,2,1) x_unfold_normalized=F.normalize(x_unfold,dim=1) y_unfold_normalized=F.normalize(y_unfold,dim=2) correlation_matrix=torch.bmm(y_unfold_normalized,x_unfold_normalized) correlation_matrix=correlation_matrix.masked_fill(non_mask_region==1.,-1e9) correlation_matrix=F.softmax(correlation_matrix,dim=2) # print(correlation_matrix) R, max_arg=torch.max(correlation_matrix,dim=2) composed_unfold=self.Hard_Compose(x_unfold, 2, max_arg) composed_fold=F.fold(composed_unfold,output_size=(h,w),kernel_size=(self.patch_size,self.patch_size),padding=0,stride=self.patch_size) concat_1=torch.cat((z,composed_fold,mask),dim=1) concat_1=self.F_Combine(concat_1) return concat_1 def inference_forward(self,z,mask): ## Reduce the extra memory cost x=self.res_block(z) b,c,h,w=x.shape ## mask resize + dilation # tmp = 1 - mask mask = F.interpolate(mask, (x.size(2), x.size(3)), mode="bilinear") mask[mask > 0] = 1.0 # mask = 1 - mask # tmp = F.interpolate(tmp, (x.size(2), x.size(3))) # mask *= tmp # mask=1-mask ## 1: mask position 0: non-mask mask_unfold=F.unfold(mask, kernel_size=(self.patch_size,self.patch_size), padding=0, stride=self.patch_size) non_mask_region=(torch.mean(mask_unfold,dim=1,keepdim=True)>0.6).float()[0,0,:] # 1*1*all_patch_num all_patch_num=h*w/self.patch_size/self.patch_size mask_index=torch.nonzero(non_mask_region,as_tuple=True)[0] if len(mask_index)==0: ## No mask patch is selected, no attention is needed composed_fold=x else: unmask_index=torch.nonzero(non_mask_region!=1,as_tuple=True)[0] x_unfold=F.unfold(x, kernel_size=(self.patch_size,self.patch_size), padding=0, stride=self.patch_size) Query_Patch=torch.index_select(x_unfold,2,mask_index) Key_Patch=torch.index_select(x_unfold,2,unmask_index) Query_Patch=Query_Patch.permute(0,2,1) Query_Patch_normalized=F.normalize(Query_Patch,dim=2) Key_Patch_normalized=F.normalize(Key_Patch,dim=1) correlation_matrix=torch.bmm(Query_Patch_normalized,Key_Patch_normalized) correlation_matrix=F.softmax(correlation_matrix,dim=2) R, max_arg=torch.max(correlation_matrix,dim=2) composed_unfold=self.Hard_Compose(Key_Patch, 2, max_arg) x_unfold[:,:,mask_index]=composed_unfold composed_fold=F.fold(x_unfold,output_size=(h,w),kernel_size=(self.patch_size,self.patch_size),padding=0,stride=self.patch_size) concat_1=torch.cat((z,composed_fold,mask),dim=1) concat_1=self.F_Combine(concat_1) return concat_1 ############################################################################## # Losses ############################################################################## class GANLoss(nn.Module): def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_var = None self.fake_label_var = None self.Tensor = tensor if use_lsgan: self.loss = nn.MSELoss() else: self.loss = nn.BCELoss() def get_target_tensor(self, input, target_is_real): target_tensor = None if target_is_real: create_label = ((self.real_label_var is None) or (self.real_label_var.numel() != input.numel())) if create_label: real_tensor = self.Tensor(input.size()).fill_(self.real_label) self.real_label_var = Variable(real_tensor, requires_grad=False) target_tensor = self.real_label_var else: create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())) if create_label: fake_tensor = self.Tensor(input.size()).fill_(self.fake_label) self.fake_label_var = Variable(fake_tensor, requires_grad=False) target_tensor = self.fake_label_var return target_tensor def __call__(self, input, target_is_real): if isinstance(input[0], list): loss = 0 for input_i in input: pred = input_i[-1] target_tensor = self.get_target_tensor(pred, target_is_real) loss += self.loss(pred, target_tensor) return loss else: target_tensor = self.get_target_tensor(input[-1], target_is_real) return self.loss(input[-1], target_tensor) ####################################### VGG Loss from torchvision import models class VGG19_torch(torch.nn.Module): def __init__(self, requires_grad=False): super(VGG19_torch, self).__init__() vgg_pretrained_features = models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out class VGGLoss_torch(nn.Module): def __init__(self, gpu_ids): super(VGGLoss_torch, self).__init__() self.vgg = VGG19_torch().cuda() self.criterion = nn.L1Loss() self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss
Bringing-Old-Photos-Back-to-Life/Global/models/networks.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Global/models/networks.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 16443 }
160
# Old Photo Restoration (Official PyTorch Implementation) <img src='imgs/0001.jpg'/> ### [Project Page](http://raywzy.com/Old_Photo/) | [Paper (CVPR version)](https://arxiv.org/abs/2004.09484) | [Paper (Journal version)](https://arxiv.org/pdf/2009.07047v1.pdf) | [Pretrained Model](https://hkustconnect-my.sharepoint.com/:f:/g/personal/bzhangai_connect_ust_hk/Em0KnYOeSSxFtp4g_dhWdf0BdeT3tY12jIYJ6qvSf300cA?e=nXkJH2) | [Colab Demo](https://colab.research.google.com/drive/1NEm6AsybIiC5TwTU_4DqDkQO0nFRB-uA?usp=sharing) | [Replicate Demo & Docker Image](https://replicate.ai/zhangmozhe/bringing-old-photos-back-to-life) :fire: **Bringing Old Photos Back to Life, CVPR2020 (Oral)** **Old Photo Restoration via Deep Latent Space Translation, TPAMI 2022** [Ziyu Wan](http://raywzy.com/)<sup>1</sup>, [Bo Zhang](https://www.microsoft.com/en-us/research/people/zhanbo/)<sup>2</sup>, [Dongdong Chen](http://www.dongdongchen.bid/)<sup>3</sup>, [Pan Zhang](https://panzhang0212.github.io/)<sup>4</sup>, [Dong Chen](https://www.microsoft.com/en-us/research/people/doch/)<sup>2</sup>, [Jing Liao](https://liaojing.github.io/html/)<sup>1</sup>, [Fang Wen](https://www.microsoft.com/en-us/research/people/fangwen/)<sup>2</sup> <br> <sup>1</sup>City University of Hong Kong, <sup>2</sup>Microsoft Research Asia, <sup>3</sup>Microsoft Cloud AI, <sup>4</sup>USTC <!-- ## Notes of this project The code originates from our research project and the aim is to demonstrate the research idea, so we have not optimized it from a product perspective. And we will spend time to address some common issues, such as out of memory issue, limited resolution, but will not involve too much in engineering problems, such as speedup of the inference, fastapi deployment and so on. **We welcome volunteers to contribute to this project to make it more usable for practical application.** --> ## :sparkles: News **2022.3.31**: Our new work regarding old film restoration will be published in CVPR 2022. For more details, please refer to the [project website](http://raywzy.com/Old_Film/) and [github repo](https://github.com/raywzy/Bringing-Old-Films-Back-to-Life). The framework now supports the restoration of high-resolution input. <img src='imgs/HR_result.png'> Training code is available and welcome to have a try and learn the training details. You can now play with our [Colab](https://colab.research.google.com/drive/1NEm6AsybIiC5TwTU_4DqDkQO0nFRB-uA?usp=sharing) and try it on your photos. ## Requirement The code is tested on Ubuntu with Nvidia GPUs and CUDA installed. Python>=3.6 is required to run the code. ## Installation Clone the Synchronized-BatchNorm-PyTorch repository for ``` cd Face_Enhancement/models/networks/ git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm . cd ../../../ ``` ``` cd Global/detection_models git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm . cd ../../ ``` Download the landmark detection pretrained model ``` cd Face_Detection/ wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 bzip2 -d shape_predictor_68_face_landmarks.dat.bz2 cd ../ ``` Download the pretrained model, put the file `Face_Enhancement/checkpoints.zip` under `./Face_Enhancement`, and put the file `Global/checkpoints.zip` under `./Global`. Then unzip them respectively. ``` cd Face_Enhancement/ wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/face_checkpoints.zip unzip face_checkpoints.zip cd ../ cd Global/ wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/global_checkpoints.zip unzip global_checkpoints.zip cd ../ ``` Install dependencies: ```bash pip install -r requirements.txt ``` ## :rocket: How to use? **Note**: GPU can be set 0 or 0,1,2 or 0,2; use -1 for CPU ### 1) Full Pipeline You could easily restore the old photos with one simple command after installation and downloading the pretrained model. For images without scratches: ``` python run.py --input_folder [test_image_folder_path] \ --output_folder [output_path] \ --GPU 0 ``` For scratched images: ``` python run.py --input_folder [test_image_folder_path] \ --output_folder [output_path] \ --GPU 0 \ --with_scratch ``` **For high-resolution images with scratches**: ``` python run.py --input_folder [test_image_folder_path] \ --output_folder [output_path] \ --GPU 0 \ --with_scratch \ --HR ``` Note: Please try to use the absolute path. The final results will be saved in `./output_path/final_output/`. You could also check the produced results of different steps in `output_path`. ### 2) Scratch Detection Currently we don't plan to release the scratched old photos dataset with labels directly. If you want to get the paired data, you could use our pretrained model to test the collected images to obtain the labels. ``` cd Global/ python detection.py --test_path [test_image_folder_path] \ --output_dir [output_path] \ --input_size [resize_256|full_size|scale_256] ``` <img src='imgs/scratch_detection.png'> ### 3) Global Restoration A triplet domain translation network is proposed to solve both structured degradation and unstructured degradation of old photos. <p align="center"> <img src='imgs/pipeline.PNG' width="50%" height="50%"/> </p> ``` cd Global/ python test.py --Scratch_and_Quality_restore \ --test_input [test_image_folder_path] \ --test_mask [corresponding mask] \ --outputs_dir [output_path] python test.py --Quality_restore \ --test_input [test_image_folder_path] \ --outputs_dir [output_path] ``` <img src='imgs/global.png'> ### 4) Face Enhancement We use a progressive generator to refine the face regions of old photos. More details could be found in our journal submission and `./Face_Enhancement` folder. <p align="center"> <img src='imgs/face_pipeline.jpg' width="60%" height="60%"/> </p> <img src='imgs/face.png'> > *NOTE*: > This repo is mainly for research purpose and we have not yet optimized the running performance. > > Since the model is pretrained with 256*256 images, the model may not work ideally for arbitrary resolution. ### 5) GUI A user-friendly GUI which takes input of image by user and shows result in respective window. #### How it works: 1. Run GUI.py file. 2. Click browse and select your image from test_images/old_w_scratch folder to remove scratches. 3. Click Modify Photo button. 4. Wait for a while and see results on GUI window. 5. Exit window by clicking Exit Window and get your result image in output folder. <img src='imgs/gui.PNG'> ## How to train? ### 1) Create Training File Put the folders of VOC dataset, collected old photos (e.g., Real_L_old and Real_RGB_old) into one shared folder. Then ``` cd Global/data/ python Create_Bigfile.py ``` Note: Remember to modify the code based on your own environment. ### 2) Train the VAEs of domain A and domain B respectively ``` cd .. python train_domain_A.py --use_v2_degradation --continue_train --training_dataset domain_A --name domainA_SR_old_photos --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 100 --no_html --gpu_ids 0,1,2,3 --self_gen --nThreads 4 --n_downsample_global 3 --k_size 4 --use_v2 --mc 64 --start_r 1 --kl 1 --no_cgan --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] python train_domain_B.py --continue_train --training_dataset domain_B --name domainB_old_photos --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 120 --no_html --gpu_ids 0,1,2,3 --self_gen --nThreads 4 --n_downsample_global 3 --k_size 4 --use_v2 --mc 64 --start_r 1 --kl 1 --no_cgan --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] ``` Note: For the --name option, please ensure your experiment name contains "domainA" or "domainB", which will be used to select different dataset. ### 3) Train the mapping network between domains Train the mapping without scratches: ``` python train_mapping.py --use_v2_degradation --training_dataset mapping --use_vae_which_epoch 200 --continue_train --name mapping_quality --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 80 --no_html --gpu_ids 0,1,2,3 --nThreads 8 --load_pretrainA [ckpt_of_domainA_SR_old_photos] --load_pretrainB [ckpt_of_domainB_old_photos] --l2_feat 60 --n_downsample_global 3 --mc 64 --k_size 4 --start_r 1 --mapping_n_block 6 --map_mc 512 --use_l1_feat --niter 150 --niter_decay 100 --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] ``` Traing the mapping with scraches: ``` python train_mapping.py --no_TTUR --NL_res --random_hole --use_SN --correlation_renormalize --training_dataset mapping --NL_use_mask --NL_fusion_method combine --non_local Setting_42 --use_v2_degradation --use_vae_which_epoch 200 --continue_train --name mapping_scratch --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 36 --no_html --gpu_ids 0,1,2,3 --nThreads 8 --load_pretrainA [ckpt_of_domainA_SR_old_photos] --load_pretrainB [ckpt_of_domainB_old_photos] --l2_feat 60 --n_downsample_global 3 --mc 64 --k_size 4 --start_r 1 --mapping_n_block 6 --map_mc 512 --use_l1_feat --niter 150 --niter_decay 100 --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] --irregular_mask [absolute_path_of_mask_file] ``` Traing the mapping with scraches (Multi-Scale Patch Attention for HR input): ``` python train_mapping.py --no_TTUR --NL_res --random_hole --use_SN --correlation_renormalize --training_dataset mapping --NL_use_mask --NL_fusion_method combine --non_local Setting_42 --use_v2_degradation --use_vae_which_epoch 200 --continue_train --name mapping_Patch_Attention --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 36 --no_html --gpu_ids 0,1,2,3 --nThreads 8 --load_pretrainA [ckpt_of_domainA_SR_old_photos] --load_pretrainB [ckpt_of_domainB_old_photos] --l2_feat 60 --n_downsample_global 3 --mc 64 --k_size 4 --start_r 1 --mapping_n_block 6 --map_mc 512 --use_l1_feat --niter 150 --niter_decay 100 --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] --irregular_mask [absolute_path_of_mask_file] --mapping_exp 1 ``` ## Citation If you find our work useful for your research, please consider citing the following papers :) ```bibtex @inproceedings{wan2020bringing, title={Bringing Old Photos Back to Life}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={2747--2757}, year={2020} } ``` ```bibtex @article{wan2020old, title={Old Photo Restoration via Deep Latent Space Translation}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, journal={arXiv preprint arXiv:2009.07047}, year={2020} } ``` If you are also interested in the legacy photo/video colorization, please refer to [this work](https://github.com/zhangmozhe/video-colorization). ## Maintenance This project is currently maintained by Ziyu Wan and is for academic research use only. If you have any questions, feel free to contact raywzy@gmail.com. ## License The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file. We use our labeled dataset to train the scratch detection model. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
Bringing-Old-Photos-Back-to-Life/README.md/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/README.md", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 4200 }
161
apiVersion: v1 kind: Pod metadata: name: photo-back2life spec: containers: - name: photos-back2life image: <YOUR IMAGE> volumeMounts: - mountPath: /in name: in-folder - mountPath: /out name: out-folder command: - python - /app/run.py args: - --input_folder - /in - --output_folder - /out - --GPU - '0' - --with_scratch resources: limits: memory: 4Gi cpu: 0 nvidia.com/gpu: 1 volumes: - name: in-folder hostPath: path: /srv/in type: Directory - name: out-folder hostPath: path: /srv/out type: Directory
Bringing-Old-Photos-Back-to-Life/kubernetes-pod.yml/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/kubernetes-pod.yml", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 393 }
162
import torch import torch.nn as nn from torch.nn import functional as nnf from enum import Enum from transformers import GPT2LMHeadModel from typing import Tuple, Optional def get_clapcap(name: str): if name == "ClapCaption": return ClapCaptionModel else: raise Exception('The ClapCap model {} is incorrect or not supported'.format(name)) class MappingType(Enum): MLP = 'mlp' Transformer = 'transformer' class MLP(nn.Module): def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): super(MLP, self).__init__() layers = [] for i in range(len(sizes) - 1): layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) if i < len(sizes) - 2: layers.append(act()) self.model = nn.Sequential(*layers) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.model(x) class MlpTransformer(nn.Module): def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): super().__init__() out_d = out_d if out_d is not None else in_dim self.fc1 = nn.Linear(in_dim, h_dim) self.act = act self.fc2 = nn.Linear(h_dim, out_d) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class MultiHeadAttention(nn.Module): def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): super().__init__() self.num_heads = num_heads head_dim = dim_self // num_heads self.scale = head_dim ** -0.5 self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) self.project = nn.Linear(dim_self, dim_self) self.dropout = nn.Dropout(dropout) def forward(self, x, y=None, mask=None): y = y if y is not None else x b, n, c = x.shape _, m, d = y.shape # b n h dh queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads) # b m 2 h dh keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) keys, values = keys_values[:, :, 0], keys_values[:, :, 1] attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale if mask is not None: if mask.dim() == 2: mask = mask.unsqueeze(1) attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) attention = attention.softmax(dim=2) out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) out = self.project(out) return out, attention class TransformerLayer(nn.Module): def forward_with_attention(self, x, y=None, mask=None): x_, attention = self.attn(self.norm1(x), y, mask) x = x + x_ x = x + self.mlp(self.norm2(x)) return x, attention def forward(self, x, y=None, mask=None): x = x + self.attn(self.norm1(x), y, mask)[0] x = x + self.mlp(self.norm2(x)) return x def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim_self) self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) self.norm2 = norm_layer(dim_self) self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) class Transformer(nn.Module): def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False): super(Transformer, self).__init__() dim_ref = dim_ref if dim_ref is not None else dim_self self.enc_dec = enc_dec if enc_dec: num_layers = num_layers * 2 layers = [] for i in range(num_layers): if i % 2 == 0 and enc_dec: # cross layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) elif enc_dec: # self layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) else: # self or cross layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) self.layers = nn.ModuleList(layers) def forward_with_attention(self, x, y=None, mask=None): attentions = [] for layer in self.layers: x, att = layer.forward_with_attention(x, y, mask) attentions.append(att) return x, attentions def forward(self, x, y=None, mask=None): for i, layer in enumerate(self.layers): if i % 2 == 0 and self.enc_dec: # cross x = layer(x, y) elif self.enc_dec: # self x = layer(x, x, mask) else: # self or cross x = layer(x, y, mask) return x class TransformerMapper(nn.Module): def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8): super(TransformerMapper, self).__init__() self.clip_length = clip_length self.transformer = Transformer(dim_embedding, 8, num_layers) self.linear = nn.Linear(dim_clip, clip_length * dim_embedding) self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True) def forward(self, x): x = self.linear(x).view(x.shape[0], self.clip_length, -1) prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) prefix = torch.cat((x, prefix), dim=1) out = self.transformer(prefix)[:, self.clip_length:] return out class ClapCaptionModel(nn.Module): def __init__(self, clap, text_decoder: str, prefix_length: int, clip_length: Optional[int] = None, prefix_size: int = 512, num_layers: int = 8, normalize_prefix: bool = True, mapping_type: str = None,\ freeze_audio_encoder_weights: bool = True, freeze_gpt_weights: bool = True): super(ClapCaptionModel, self).__init__() self.clap = clap.audio_encoder self.prefix_length = prefix_length self.normalize_prefix = normalize_prefix self.gpt = GPT2LMHeadModel.from_pretrained(text_decoder) self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] if mapping_type == 'mlp': self.clap_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) else: self.clap_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length, clip_length, num_layers) # Freeze all CLAP parameters if freeze_audio_encoder_weights: for p in self.clap.parameters(): p.requires_grad = False if freeze_gpt_weights: for p in self.gpt.parameters(): p.requires_grad = False def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) def forward(self, audios: torch.Tensor, tokens: torch.Tensor, mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None): # get audio embeddings prefix, _ = self.clap(audios) # normalize prefix (audio embedding) if self.normalize_prefix: prefix = prefix / prefix.norm(2, -1).reshape(-1,1) embedding_text = self.gpt.transformer.wte(tokens['input_ids']) prefix_projections = self.clap_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) if labels is not None: dummy_token = self.get_dummy_token(tokens['input_ids'].shape[0], tokens['input_ids'].device) labels = torch.cat((dummy_token, tokens), dim=1) out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) return out
CLAP/msclap/models/mapper.py/0
{ "file_path": "CLAP/msclap/models/mapper.py", "repo_id": "CLAP", "token_count": 4039 }
163
## Hydra [Hydra](https://github.com/facebookresearch/hydra) is an open-source Python framework that simplifies the development of research and other complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line. The name Hydra comes from its ability to run multiple similar jobs - much like a Hydra with multiple heads. ## Motivation Until recently, all components in fairseq were configured through a shared `args` namespace that was created at application startup. Components declared their own `add_args` method to update the argparse parser, hoping that the names would not clash with arguments from other components. While this model works for smaller applications, as fairseq grew and became integrated into other applications, this became problematic. In order to determine how to configure each component, one needed to a) examine what args were added by this component, and b) read the code to figure out what shared arguments it is using that were added in other places. Reproducing models involved sharing commands that often contained dozens of command line switches. The model described above is still supported by fairseq for backward compatibility, but will be deprecated some time in the future. New components in fairseq should now create a dataclass that encapsulates all parameters required to configure this component. The dataclass is registered along with the component, and fairseq takes care of constructing and providing this configuration object to the component's constructor. Note that sharing parameters can optionally still work, but one has to explicitly point to the "source of truth" (see inheritance example below). These changes make components in fairseq more independent and re-usable by other applications: all that is needed to create a component is to initialize its dataclass and overwrite some of the defaults. While configuring fairseq through command line (using either the legacy argparse based or the new Hydra based entry points) is still fully supported, you can now take advantage of configuring fairseq completely or piece-by-piece through hierarchical YAML configuration files. These files can also be shipped as examples that others can use to run an identically configured job. Additionally, Hydra has a rich and growing [library of plugins](https://github.com/facebookresearch/hydra/tree/master/plugins) that provide functionality such as hyperparameter sweeping (including using bayesian optimization through the [Ax](https://github.com/facebook/Ax) library), job launching across various platforms, and more. ## Creating or migrating components In general, each new (or updated) component should provide a companion [dataclass](https://www.python.org/dev/peps/pep-0557/). These dataclass are typically located in the same file as the component and are passed as arguments to the `register_*()` functions. Top-level configs that should be present in every fairseq application are placed in the [global](fairseq/dataclass/configs.py) config file and added to the `FairseqConfig` object. Each dataclass is a plain-old-data object, similar to a `NamedTuple`. These classes are decorated with a `@dataclass` decorator, and typically inherit from `FairseqDataclass` (which adds some functionality for backward compatibility). Each field must have a type, and generally has metadata (such as a help string) and a default value. Only primitive types or other config objects are allowed as data types for each field. #### Example: ```python from dataclasses import dataclass, field from fairseq.dataclass import FairseqDataclass @dataclass class InteractiveConfig(FairseqDataclass): buffer_size: int = field( default=0, metadata={ "help": "read this many sentences into a buffer before processing them" }, ) input: str = field( default="-", metadata={"help": "file to read from; use - for stdin"}, ) ``` ### Inherting values Some components require sharing a value. For example, a learning rate scheduler and an optimizer may both need to know the initial learning rate value. One can declare a field that, by default, will inherit its value from another config node in the same hierarchy: ```python @dataclass FairseqAdamConfig(FairseqDataclass): ... lr: List[float] = II("optimization.lr") ... ``` `II("optimization.lr")` is syntactic sugar for `"${optimization.lr}"`, which is the value one can use in a YAML config file or through command line to achieve the same effect. Note that this assumes that there is an "optimization" config object in the root config and it has a field called "lr". ### Tasks and Models Creating Tasks and Models works same as before, except that legacy implementations now inherit from `LegacyFairseq*` base classes, while new components inherit from `FairseqTask` and `FairseqModel` and provide a dataclass to the `register_*()` functions. #### Task example: ```python @dataclass class LanguageModelingConfig(FairseqDataclass): data: Optional[str] = field( default=None, metadata={"help": "path to data directory"} ) ... @register_task("language_modeling", dataclass=LanguageModelingConfig) class LanguageModelingTask(FairseqTask): ... @classmethod def setup_task(cls, cfg: LanguageModelingConfig): ... ``` #### Model example: ```python @dataclass class TransformerLanguageModelConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) ... @register_model("transformer_lm", dataclass=TransformerLanguageModelConfig) class TransformerLanguageModel(FairseqLanguageModel): ... @classmethod def build_model(cls, cfg: TransformerLanguageModelConfig, task: FairseqTask): ... ``` ### Other components Other components work as before, but they now take their configuration dataclass as the only constructor argument: ```python @dataclass class MosesTokenizerConfig(FairseqDataclass): source_lang: str = field(default="en", metadata={"help": "source language"}) ... @register_tokenizer("moses", dataclass=MosesTokenizerConfig) class MosesTokenizer(object): def __init__(self, cfg: MosesTokenizerConfig): ... ``` Note that if you are adding a new registry for a new set of components, you need to add it to the `FairseqConfig` object in `fairseq/dataclass/configs.py`: ```python @dataclass class FairseqConfig(object): ... my_new_registry: Any = None ``` ## Training with `fairseq-hydra-train` To fully take advantage of configuration flexibility offered by Hydra, you may want to train new models using the `fairseq-hydra-train` entry point. Legacy CLI tools such as `fairseq-train` will remain supported for the foreseeable future but will be deprecated eventually. On startup, Hydra will create a configuration object that contains a hierarchy of all the necessary dataclasses populated with their default values in the code. The default values are overwritten by values found in YAML files in `fairseq/config` directory (which currently sets minimal defaults) and then further overwritten by values provided through command line arguments. Some of the most common use cases are shown below: ### 1. Override default values through command line: ```shell script $ fairseq-hydra-train \ distributed_training.distributed_world_size=1 \ dataset.batch_size=2 \ task.data=data-bin \ model=transformer_lm/transformer_lm_gpt \ task=language_modeling \ optimization.max_update=5000 ``` Note that along with explicitly providing values for parameters such as `dataset.batch_size`, this also tells Hydra to overlay configuration found in `fairseq/config/model/transformer_lm/transformer_lm_gpt.yaml` over the default values in the dataclass. If you want to train a model without specifying a particular architecture you can simply specify `model=transformer_lm`. This only works for migrated tasks and models. ### 2. Replace bundled configs with an external config: ```shell script $ fairseq-hydra-train \ --config-dir /path/to/external/configs \ --config-name wiki103 ``` where `/path/to/external/configs/wiki103.yaml` contains: ```yaml # @package _group_ model: _name: transformer_lm distributed_training: distributed_world_size: 1 dataset: batch_size: 2 task: _name: language_modeling data: /path/to/data add_bos_token: false max_target_positions: 1024 optimization: max_update: 50000 lr: [ 0.25 ] criterion: cross_entropy optimizer: adam lr_scheduler: _name: cosine ``` Note that here bundled configs from `fairseq/config` directory are not used, however the defaults from each dataclass will still be used (unless overwritten by your external config). Additionally you can choose to break up your configs by creating a directory structure in the same location as your main config file, with the names of the top-level fields (such as "model", "dataset", etc), and placing config files with meaningful names that would populate that specific section of your top-level config file (for example, you might have `model/small_transformer_lm.yaml`, `model/big_transformer_lm.yaml`, etc). You can then specify the correct configuration via command line, defaults in the main config, or even launch all of them as a sweep (see Hydra documentation on how to do this). ### 3. Add an external config directory to Hydra search path: This allows combining default configuration (including using any bundled config files), while specifying your own config files for some parts of the configuration. ```shell script $ fairseq-hydra-train \ distributed_training.distributed_world_size=1 \ dataset.batch_size=2 \ task.data=/path/to/data/ \ model=transformer_lm/2_layers \ task=language_modeling \ optimization.max_update=5000 \ --config-dir /path/to/external/configs ``` where `/path/to/external/configs` has the following structure: ``` . +-- model | +-- transformer_lm | | +-- 2_layers.yaml ``` and `2_layers.yaml` contains a copy of `transformer_lm_gpt.yaml` but with `decoder_layers` set to 2. You can add other configs to configure other components as well.
COCO-LM/fairseq/docs/hydra_integration.md/0
{ "file_path": "COCO-LM/fairseq/docs/hydra_integration.md", "repo_id": "COCO-LM", "token_count": 2942 }
164
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch.optim import Adagrad from fairseq.optim import LegacyFairseqOptimizer, register_optimizer @register_optimizer("adagrad_with_grad_clip") class FairseqAdagradWithGradClip(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = AdagradWithGradClip(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--adagrad-clip', default=0.0, type=float, metavar='D', help='internal grad clip') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "weight_decay": self.args.weight_decay, "grad_clip": self.args.adagrad_clip, } @property def supports_flat_params(self): return False def _clip_grad(clr, grad, group_grad_clip): if group_grad_clip > 0: norm = grad.norm(2).item() if norm > group_grad_clip: clr *= group_grad_clip / (norm + 1e-10) return clr class AdagradWithGradClip(Adagrad): """Adagrad algorithm with custom gradient clipping""" def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, grad_clip=0, ): Adagrad.__init__( self, params, lr=lr, lr_decay=lr_decay, weight_decay=weight_decay, initial_accumulator_value=initial_accumulator_value, ) self.defaults["grad_clip"] = grad_clip self.param_groups[0].setdefault("grad_clip", grad_clip) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data state = self.state[p] state["step"] += 1 if group["weight_decay"] != 0: if p.grad.data.is_sparse: raise RuntimeError( "weight_decay option is " "not compatible with sparse " "gradients" ) grad = grad.add(group["weight_decay"], p.data) clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"]) # clip clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group["grad_clip"]) if grad.is_sparse: # the update is non-linear so indices must be unique grad = grad.coalesce() grad_indices = grad._indices() grad_values = grad._values() size = grad.size() def make_sparse(values): constructor = grad.new if grad_indices.dim() == 0 or values.dim() == 0: return constructor().resize_as_(grad) return constructor(grad_indices, values, size) state["sum"].add_(make_sparse(grad_values.pow(2))) std = state["sum"]._sparse_mask(grad) std_values = std._values().sqrt_().add_(1e-10) p.data.add_(-clr, make_sparse(grad_values / std_values)) else: state["sum"].addcmul_(1, grad, grad) std = state["sum"].sqrt().add_(1e-10) p.data.addcdiv_(-clr, grad, std) return loss
COCO-LM/fairseq/examples/adaptive_span/adagrad_with_grad_clip.py/0
{ "file_path": "COCO-LM/fairseq/examples/adaptive_span/adagrad_with_grad_clip.py", "repo_id": "COCO-LM", "token_count": 2256 }
165
# Neural Machine Translation with Byte-Level Subwords https://arxiv.org/abs/1909.03341 We provide an implementation of byte-level byte-pair encoding (BBPE), taking IWSLT 2017 Fr-En translation as example. ## Data Get data and generate fairseq binary dataset: ```bash bash ./get_data.sh ``` ## Model Training Train Transformer model with Bi-GRU embedding contextualization (implemented in `gru_transformer.py`): ```bash # VOCAB=bytes # VOCAB=chars VOCAB=bbpe2048 # VOCAB=bpe2048 # VOCAB=bbpe4096 # VOCAB=bpe4096 # VOCAB=bpe16384 ``` ```bash fairseq-train "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \ --arch gru_transformer --encoder-layers 2 --decoder-layers 2 --dropout 0.3 --share-all-embeddings \ --optimizer adam --adam-betas '(0.9, 0.98)' \ --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --log-format 'simple' --log-interval 100 --save-dir "checkpoints/${VOCAB}" \ --batch-size 100 --max-update 100000 --update-freq 2 ``` ## Generation `fairseq-generate` requires bytes (BBPE) decoder to convert byte-level representation back to characters: ```bash # BPE=--bpe bytes # BPE=--bpe characters BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe2048.model # BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe2048.model # BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe4096.model # BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe4096.model # BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe16384.model ``` ```bash fairseq-generate "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \ --source-lang fr --gen-subset test --sacrebleu --path "checkpoints/${VOCAB}/checkpoint_last.pt" \ --tokenizer moses --moses-target-lang en ${BPE} ``` When using `fairseq-interactive`, bytes (BBPE) encoder/decoder is required to tokenize input data and detokenize model predictions: ```bash fairseq-interactive "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \ --path "checkpoints/${VOCAB}/checkpoint_last.pt" --input data/test.fr --tokenizer moses --moses-source-lang fr \ --moses-target-lang en ${BPE} --buffer-size 1000 --max-tokens 10000 ``` ## Results | Vocabulary | Model | BLEU | |:-------------:|:-------------:|:-------------:| | Joint BPE 16k ([Kudo, 2018](https://arxiv.org/abs/1804.10959)) | 512d LSTM 2+2 | 33.81 | | Joint BPE 16k | Transformer base 2+2 (w/ GRU) | 36.64 (36.72) | | Joint BPE 4k | Transformer base 2+2 (w/ GRU) | 35.49 (36.10) | | Joint BBPE 4k | Transformer base 2+2 (w/ GRU) | 35.61 (35.82) | | Joint BPE 2k | Transformer base 2+2 (w/ GRU) | 34.87 (36.13) | | Joint BBPE 2k | Transformer base 2+2 (w/ GRU) | 34.98 (35.43) | | Characters | Transformer base 2+2 (w/ GRU) | 31.78 (33.30) | | Bytes | Transformer base 2+2 (w/ GRU) | 31.57 (33.62) | ## Citation ``` @misc{wang2019neural, title={Neural Machine Translation with Byte-Level Subwords}, author={Changhan Wang and Kyunghyun Cho and Jiatao Gu}, year={2019}, eprint={1909.03341}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact Changhan Wang ([changhan@fb.com](mailto:changhan@fb.com)), Kyunghyun Cho ([kyunghyuncho@fb.com](mailto:kyunghyuncho@fb.com)), Jiatao Gu ([jgu@fb.com](mailto:jgu@fb.com))
COCO-LM/fairseq/examples/byte_level_bpe/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/byte_level_bpe/README.md", "repo_id": "COCO-LM", "token_count": 1325 }
166
#!/bin/bash # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # source_lang=kk_KZ target_lang=en_XX MODEL=criss_checkpoints/criss.3rd.pt SPM=criss_checkpoints/sentence.bpe.model SPLIT=test LANG_DICT=criss_checkpoints/lang_dict.txt ENCODER_ANALYSIS=sentence_retrieval/encoder_analysis.py SAVE_ENCODER=save_encoder.py ENCODER_SAVE_ROOT=sentence_embeddings/$MODEL DATA_DIR=data_tmp INPUT_DIR=$DATA_DIR/${source_lang}-${target_lang}-tatoeba ENCODER_SAVE_DIR=${ENCODER_SAVE_ROOT}/${source_lang}-${target_lang} mkdir -p $ENCODER_SAVE_DIR/${target_lang} mkdir -p $ENCODER_SAVE_DIR/${source_lang} # Save encoder outputs for source sentences python $SAVE_ENCODER \ ${INPUT_DIR} \ --path ${MODEL} \ --task translation_multi_simple_epoch \ --lang-dict ${LANG_DICT} \ --gen-subset ${SPLIT} \ --bpe 'sentencepiece' \ --lang-pairs ${source_lang}-${target_lang} \ -s ${source_lang} -t ${target_lang} \ --sentencepiece-model ${SPM} \ --remove-bpe 'sentencepiece' \ --beam 1 \ --lang-tok-style mbart \ --encoder-save-dir ${ENCODER_SAVE_DIR}/${source_lang} # Save encoder outputs for target sentences python $SAVE_ENCODER \ ${INPUT_DIR} \ --path ${MODEL} \ --lang-dict ${LANG_DICT} \ --task translation_multi_simple_epoch \ --gen-subset ${SPLIT} \ --bpe 'sentencepiece' \ --lang-pairs ${target_lang}-${source_lang} \ -t ${source_lang} -s ${target_lang} \ --sentencepiece-model ${SPM} \ --remove-bpe 'sentencepiece' \ --beam 1 \ --lang-tok-style mbart \ --encoder-save-dir ${ENCODER_SAVE_DIR}/${target_lang} # Analyze sentence retrieval accuracy python $ENCODER_ANALYSIS --langs "${source_lang},${target_lang}" ${ENCODER_SAVE_DIR}
COCO-LM/fairseq/examples/criss/sentence_retrieval/sentence_retrieval_tatoeba.sh/0
{ "file_path": "COCO-LM/fairseq/examples/criss/sentence_retrieval/sentence_retrieval_tatoeba.sh", "repo_id": "COCO-LM", "token_count": 729 }
167
# LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. You can find more information about LASER and how to use it on the official [LASER repository](https://github.com/facebookresearch/LASER). This folder contains source code for training LASER embeddings. ## Prepare data and configuration file Binarize your data with fairseq, as described [here](https://fairseq.readthedocs.io/en/latest/getting_started.html#data-pre-processing). Create a json config file with this format: ``` { "src_vocab": "/path/to/spm.src.cvocab", "tgt_vocab": "/path/to/spm.tgt.cvocab", "train": [ { "type": "translation", "id": 0, "src": "/path/to/srclang1-tgtlang0/train.srclang1", "tgt": "/path/to/srclang1-tgtlang0/train.tgtlang0" }, { "type": "translation", "id": 1, "src": "/path/to/srclang1-tgtlang1/train.srclang1", "tgt": "/path/to/srclang1-tgtlang1/train.tgtlang1" }, { "type": "translation", "id": 0, "src": "/path/to/srclang2-tgtlang0/train.srclang2", "tgt": "/path/to/srclang2-tgtlang0/train.tgtlang0" }, { "type": "translation", "id": 1, "src": "/path/to/srclang2-tgtlang1/train.srclang2", "tgt": "/path/to/srclang2-tgtlang1/train.tgtlang1" }, ... ], "valid": [ { "type": "translation", "id": 0, "src": "/unused", "tgt": "/unused" } ] } ``` where paths are paths to binarized indexed fairseq dataset files. `id` represents the target language id. ## Training Command Line Example ``` fairseq-train \ /path/to/configfile_described_above.json \ --user-dir examples/laser/laser_src \ --log-interval 100 --log-format simple \ --task laser --arch laser_lstm \ --save-dir . \ --optimizer adam \ --lr 0.001 \ --lr-scheduler inverse_sqrt \ --clip-norm 5 \ --warmup-updates 90000 \ --update-freq 2 \ --dropout 0.0 \ --encoder-dropout-out 0.1 \ --max-tokens 2000 \ --max-epoch 50 \ --encoder-bidirectional \ --encoder-layers 5 \ --encoder-hidden-size 512 \ --decoder-layers 1 \ --decoder-hidden-size 2048 \ --encoder-embed-dim 320 \ --decoder-embed-dim 320 \ --decoder-lang-embed-dim 32 \ --warmup-init-lr 0.001 \ --disable-validation ``` ## Applications We showcase several applications of multilingual sentence embeddings with code to reproduce our results (in the directory "tasks"). * [**Cross-lingual document classification**](https://github.com/facebookresearch/LASER/tree/master/tasks/mldoc) using the [*MLDoc*](https://github.com/facebookresearch/MLDoc) corpus [2,6] * [**WikiMatrix**](https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia [7] * [**Bitext mining**](https://github.com/facebookresearch/LASER/tree/master/tasks/bucc) using the [*BUCC*](https://comparable.limsi.fr/bucc2018/bucc2018-task.html) corpus [3,5] * [**Cross-lingual NLI**](https://github.com/facebookresearch/LASER/tree/master/tasks/xnli) using the [*XNLI*](https://www.nyu.edu/projects/bowman/xnli/) corpus [4,5,6] * [**Multilingual similarity search**](https://github.com/facebookresearch/LASER/tree/master/tasks/similarity) [1,6] * [**Sentence embedding of text files**](https://github.com/facebookresearch/LASER/tree/master/tasks/embed) example how to calculate sentence embeddings for arbitrary text files in any of the supported language. **For all tasks, we use exactly the same multilingual encoder, without any task specific optimization or fine-tuning.** ## References [1] Holger Schwenk and Matthijs Douze, [*Learning Joint Multilingual Sentence Representations with Neural Machine Translation*](https://aclanthology.info/papers/W17-2619/w17-2619), ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, [*A Corpus for Multilingual Document Classification in Eight Languages*](http://www.lrec-conf.org/proceedings/lrec2018/pdf/658.pdf), LREC, pages 3548-3551, 2018. [3] Holger Schwenk, [*Filtering and Mining Parallel Data in a Joint Multilingual Space*](http://aclweb.org/anthology/P18-2037) ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, [*XNLI: Cross-lingual Sentence Understanding through Inference*](https://aclweb.org/anthology/D18-1269), EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, [*Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings*](https://arxiv.org/abs/1811.01136) arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, [*Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond*](https://arxiv.org/abs/1812.10464) arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, [*WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia*](https://arxiv.org/abs/1907.05791) arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin [*CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB*](https://arxiv.org/abs/1911.04944)
COCO-LM/fairseq/examples/laser/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/laser/README.md", "repo_id": "COCO-LM", "token_count": 1998 }
168
# Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019) This page contains information for how to train models with LayerDrop, based on this [paper](https://arxiv.org/abs/1909.11556). ## Citation: If you found this technique useful, please cite our paper: ```bibtex @article{fan2019reducing, title={Reducing Transformer Depth on Demand with Structured Dropout}, author={Fan, Angela and Grave, Edouard and Joulin, Armand}, journal={arXiv preprint arXiv:1909.11556}, year={2019} } ``` ## Pre-trained models Model | Description | Download ---|---|--- `layerdrop_wmt_en_de_12_6` | Transformer + LayerDrop 0.2 trained on WMT16 en-de with 12 encoder and 6 decoder layers | [layerdrop_wmt_en_de_12_6.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/layerdrop_wmt_en_de_12_6.tar.gz) `roberta_layerdrop.base` | RoBERTa Base + LayerDrop 0.2 | [roberta_layerdrop.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.base.qnli.tar.gz) `roberta_layerdrop.large` | RoBERTa Large + LayerDrop 0.2 | [roberta_layerdrop.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.tar.gz) `roberta_layerdrop.large.mnli` | `roberta_layerdrop.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | [roberta_layerdrop.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.mnli.tar.gz) `roberta_layerdrop.large.qnli` | `roberta_layerdrop.large` finetuned on [QNLI](https://arxiv.org/abs/1804.07461) | [roberta_layerdrop.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.qnli.tar.gz) Evaluate performance of these pre-trained models: ```bash # Example for Machine Translation fairseq-generate /path/to/bped/wmt/data --path nmt_checkpoint.pt \ --beam 8 --lenpen 0.4 \ --batch-size 64 \ --remove-bpe \ --gen-subset test > wmt16_gen.txt bash scripts/compound_split_bleu.sh wmt16_gen.txt # prints BLEU4 = 30.17 ``` ```python # Example for RoBERTa + LayerDrop finetuned on MNLI: from fairseq.models.roberta import RobertaModel roberta_layerdrop = RobertaModel.from_pretrained( '/path/to/MNLI/model', checkpoint_file='mnli_checkpoint.pt', data_name_or_path='/path/to/MNLI/data/MNLI-bin' ) label_map = {0: 'contradiction', 2: 'neutral', 1: 'entailment'} ncorrect, nsamples = 0, 0 roberta_layerdrop.cuda() roberta_layerdrop.eval() with open('/path/to/MNLI/data/dev_matched.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[8], tokens[9], tokens[-1] tokens = roberta_layerdrop.encode(sent1, sent2) prediction = roberta_layerdrop.predict('sentence_classification_head', tokens).argmax().item() prediction_label = label_map[prediction] ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) # prints | Accuracy: 0.9026999490575649 # Example for RoBERTa + LayerDrop finetuned on QNLI: roberta = RobertaModel.from_pretrained( '/path/to/QNLI/model', checkpoint_file='qnli_checkpoint.pt', data_name_or_path='/path/to/QNLI/data/QNLI-bin' ) label_fn = lambda label: roberta.task.label_dictionary.string( [label + roberta.task.target_dictionary.nspecial] ) ncorrect, nsamples = 0, 0 roberta.cuda() roberta.eval() with open('/path/to/QNLI/data/dev.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[1], tokens[2], tokens[3] tokens = roberta.encode(sent1, sent2) prediction = roberta.predict('sentence_classification_head', tokens).argmax().item() prediction_label = label_fn(prediction) ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) # prints | Accuracy: 0.9480139117700896 ``` ## Example usage To train a model with LayerDrop, add the following flags. We recommend 0.2, a value that worked well in our experiments. For Language Models that are decoder-only, you need only the decoder flag. For RoBERTa, an encoder, you need only the encoder flag. The encoder and decoder LayerDrop values can be set differently. ``` --encoder-layerdrop 0.2 --decoder-layerdrop 0.2 ``` To prune a model that has been trained with LayerDrop, add the following flags followed by a comma separated list of which layers you would like to keep. ``` --encoder-layers-to-keep 0,2,4,6,8,10,12,14 --decoder-layers-to-keep 0,2,4,6,8,10,12,14 ``` Setting these flags should print a message such as: ``` | Pruning model to specified layer configuration ``` You should also see a smaller number of parameters in the model, for example the 16-Layer Transformer Language Model prints: ``` num. model params: 246933504 ``` while a model pruned to 8 Layers prints: ``` num. model params: 146163712 ``` If you would like to pick up training with a model that has been pruned, simply adding these flags is sufficient. If you would like to use a script that only does evaluation (no training), you may need to pass an override command. A specific example would be for language modeling: ```bash fairseq-eval-lm /path/to/wikitext-103 \ --path /path/to/model/checkpoint.pt \ --model-overrides "{'decoder_layers_to_keep':'0,2,4,6,8,10,12,14'}" ``` This model override command overrides the training parameters and updates the model arguments so that the pruned model is run instead of the full model. ## Reproduce Paper Results Looking to reproduce the results in the paper? 1. For Translation on WMT16 en-de, we followed this setting [here](https://github.com/pytorch/fairseq/blob/master/examples/scaling_nmt/README.md) 2. To train RoBERTa, we followed this setting [here](https://github.com/pytorch/fairseq/tree/master/examples/roberta) 3. To train Language Models on Wikitext-103, we followed this setting [here](https://github.com/pytorch/fairseq/tree/master/examples/language_model) ## Tips 1. If you would like to train large models with better performance, LayerDrop should be set to a smaller value such as 0.1 or 0.2. Too much LayerDrop will mean the model has too much regularization, so may not reach the best performance. Since LayerDrop adds regularization, you may achieve the best performance by slightly reducing the amount of standard dropout (for example, reduce by 0.1). 2. If you would like to train large models to be pruned and made smaller, LayerDrop should be set to a larger value such as 0.5 if you want to prune very aggressively (such as removing half the network or more). If you would like to prune fewer layers away, LayerDrop can be set to a smaller value such as 0.2. Our experiments were conducted with low values of LayerDrop (such as 0.1 and 0.2), for reference. 3. When pruning layers at inference time, it is best to spread out the layers remaining so they are evenly spaced throughout the network. For example, if you want to remove 50% of the network, keeping every other layer is good. ## FAQ 1. How did the sharing layers experiment work? In an appendix (https://openreview.net/pdf?id=SylO2yStDr) we added an experiment on Wikitext-103 language modeling that combined LayerDrop with Weight Sharing. We shared chunks of 2 layers such that every other layer had shared weights. For example, if our network has layers 1 through 6, then layer 1 and 2 are shared, layer 3 and 4 are shared, and layer 5 and 6 are shared. 2. LayerDrop hasn't been helping in my setting? During training time, LayerDrop can help regularize your network. This is most important if your network is already overfitting - if your network is underfitting, it is possible LayerDrop is adding too much regularization. We recommend using smaller values (such as 0.1 or 0.2) and also decreasing the quantity of standard dropout (for example, reduce by 0.1). 3. Can you train a model without LayerDrop and finetune with LayerDrop (e.g. for BERT)? In our experiments, we did not see great performance. Models such as RoBERTa have trained for a long time in the pre-training setting, so only finetuning with LayerDrop for a few epochs on a downstream task such as MNLI does not achieve the robustness required for successful pruning. ## Having an issue or have a question? Please open an issue in this repository with the details of your question. Thanks!
COCO-LM/fairseq/examples/layerdrop/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/layerdrop/README.md", "repo_id": "COCO-LM", "token_count": 2747 }
169
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import argparse import pandas as pd import sys WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) def load_langs(path): with open(path) as fr: langs = [l.strip() for l in fr] return langs def load_sentences(raw_data, split, direction): src, tgt = direction.split('-') src_path = f"{raw_data}/{split}.{direction}.{src}" tgt_path = f"{raw_data}/{split}.{direction}.{tgt}" if os.path.exists(src_path) and os.path.exists(tgt_path): return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())] else: return [] def swap_direction(d): src, tgt = d.split('-') return f'{tgt}-{src}' def get_all_test_data(raw_data, directions, split='test'): test_data = [ x for dd in directions for d in [dd, swap_direction(dd)] for x in load_sentences(raw_data, split, d) ] # all_test_data = {s for _, d in test_data for s in d} all_test_data = {} for lang, d in test_data: for s in d: s = s.strip() lgs = all_test_data.get(s, set()) lgs.add(lang) all_test_data[s] = lgs return all_test_data, test_data def check_train_sentences(src_path, tgt_path, direction, all_test_data, mess_up_train={}): # src, tgt = direction.split('-') print(f'check training data for {direction} in {src_path} and {tgt_path}') size = 0 overlapped_size_counted_dup = 0 if not os.path.exists(tgt_path) or not os.path.exists(src_path): return mess_up_train, size, overlapped_size_counted_dup with open(src_path) as f, open(tgt_path) as g: for src_line, tgt_line in zip(f, g): s = src_line.strip() t = tgt_line.strip() size += 1 if s in all_test_data: langs = mess_up_train.get(s, set()) langs.add(direction) mess_up_train[s] = langs overlapped_size_counted_dup += 1 if t in all_test_data: langs = mess_up_train.get(t, set()) langs.add(direction) mess_up_train[t] = langs overlapped_size_counted_dup += 1 print(f'{direction}: size={size}, overlapped={overlapped_size_counted_dup}') return mess_up_train, size, overlapped_size_counted_dup def check_train_all(raw_data, directions, all_test_data): mess_up_train = {} data_sizes = {} # raw_data = '~chau/data-bin/MineBART/multilingual_mined_100M/en_XX/et_EE-en_XX/all.{en_XX, et_EE}' print(f'checking training data againsts # {len(all_test_data)} sentences') print(f'example test data: ', [s for i, s in enumerate(all_test_data.keys()) if i < 10]) for direction in directions: src, tgt = direction.split('-') path = f'{raw_data}/en_XX/{direction}/all' src_path = f'{path}.{src}' tgt_path = f'{path}.{tgt}' print(f'checking {src_path} {tgt_path}') _, size, overlapped_size_counted_dup = check_train_sentences(src_path, tgt_path, direction, all_test_data, mess_up_train) data_sizes[direction] = (size, overlapped_size_counted_dup) return mess_up_train, data_sizes def main(): parser = argparse.ArgumentParser() parser.add_argument("--folder", type=str, required=True, help="the data folder ") parser.add_argument("--test-data", type=str, required=True, help="the test data folder ") parser.add_argument('--directions', type=str, default=None, required=False) args = parser.parse_args() directions = args.directions.split(',') directions = sorted(set(directions)) results = [] # print(f'checking where {args.split} split data are in training') # print(f'direction\tcommon_count\tsrc common\ttgt common\tfrom_size\tto_size') raw_data = args.folder all_test_data, test_data = get_all_test_data(args.test_data, directions, split='test') mess_up_train, data_sizes = check_train_all(raw_data, directions, all_test_data) print(data_sizes) if __name__ == "__main__": main()
COCO-LM/fairseq/examples/multilingual/data_scripts/check_valid_test_overlaps.py/0
{ "file_path": "COCO-LM/fairseq/examples/multilingual/data_scripts/check_valid_test_overlaps.py", "repo_id": "COCO-LM", "token_count": 2019 }
170
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/bin/python import fasttext from multiprocessing import Pool import contextlib import sys import argparse from functools import partial import io model = None def init(model_path): global model model = fasttext.load_model(model_path) def pred(lines): return lines, [model.predict(line.strip())[0][0][9:] for line in lines] def main(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, required=True, help="model to load") parser.add_argument("--inputs", nargs="+", default=['-'], help="input files to filter") parser.add_argument("--langs", nargs="+", required=True, help="lang ids of each input file") parser.add_argument("--outputs", nargs="+", default=['-'], help="path to save lid filtered outputs") parser.add_argument("--num-workers", type=int, metavar="N", default=10, help="number of processes in parallel") args = parser.parse_args() assert len(args.inputs) == len(args.langs) and len(args.inputs) == len(args.outputs) with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8", newline="\n", errors="replace")) if input != "-" else io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8', errors="replace") for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8", newline="\n")) if output != "-" else sys.stdout for output in args.outputs ] with Pool(args.num_workers, initializer=partial(init, args.model)) as p: skip_cnt = 0 for lines, preds in p.imap(pred, list(zip(*inputs)), chunksize=500): if not all(a == b for a, b in zip(preds, args.langs)): skip_cnt += 1 continue for line, output_h in zip(lines, outputs): print(line.strip(), file=output_h) print(f"Skipped {skip_cnt} lines.") if __name__ == "__main__": main()
COCO-LM/fairseq/examples/multilingual/data_scripts/utils/fasttext_multi_filter.py/0
{ "file_path": "COCO-LM/fairseq/examples/multilingual/data_scripts/utils/fasttext_multi_filter.py", "repo_id": "COCO-LM", "token_count": 1020 }
171
# Paraphrasing with round-trip translation and mixture of experts Machine translation models can be used to paraphrase text by translating it to an intermediate language and back (round-trip translation). This example shows how to paraphrase text by first passing it to an English-French translation model, followed by a French-English [mixture of experts translation model](/examples/translation_moe). ##### 0. Setup Clone fairseq from source and install necessary dependencies: ```bash git clone https://github.com/pytorch/fairseq.git cd fairseq pip install --editable . pip install sacremoses sentencepiece ``` ##### 1. Download models ```bash wget https://dl.fbaipublicfiles.com/fairseq/models/paraphraser.en-fr.tar.gz wget https://dl.fbaipublicfiles.com/fairseq/models/paraphraser.fr-en.hMoEup.tar.gz tar -xzvf paraphraser.en-fr.tar.gz tar -xzvf paraphraser.fr-en.hMoEup.tar.gz ``` ##### 2. Paraphrase ```bash python examples/paraphraser/paraphrase.py \ --en2fr paraphraser.en-fr \ --fr2en paraphraser.fr-en.hMoEup # Example input: # The new date for the Games, postponed for a year in response to the coronavirus pandemic, gives athletes time to recalibrate their training schedules. # Example outputs: # Delayed one year in response to the coronavirus pandemic, the new date of the Games gives athletes time to rebalance their training schedule. # The new date of the Games, which was rescheduled one year in response to the coronavirus (CV) pandemic, gives athletes time to rebalance their training schedule. # The new date of the Games, postponed one year in response to the coronavirus pandemic, provides athletes with time to rebalance their training schedule. # The Games' new date, postponed one year in response to the coronavirus pandemic, gives athletes time to rebalance their training schedule. # The new Games date, postponed one year in response to the coronavirus pandemic, gives the athletes time to rebalance their training schedule. # The new date of the Games, which was postponed one year in response to the coronavirus pandemic, gives the athletes time to rebalance their training schedule. # The new date of the Games, postponed one year in response to the coronavirus pandemic, gives athletes time to rebalance their training schedule. # The new date of the Games, postponed one year in response to the coronavirus pandemic, gives athletes time to re-balance their training schedule. # The new date of the Games, postponed one year in response to the coronavirus pandemic, gives the athletes time to rebalance their schedule of training. # The new date of the Games, postponed one year in response to the pandemic of coronavirus, gives the athletes time to rebalance their training schedule. ```
COCO-LM/fairseq/examples/paraphraser/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/paraphraser/README.md", "repo_id": "COCO-LM", "token_count": 757 }
172
# Finetuning RoBERTa on Commonsense QA We follow a similar approach to [finetuning RACE](../README.race.md). Specifically for each question we construct five inputs, one for each of the five candidate answer choices. Each input is constructed by concatenating the question and candidate answer. We then encode each input and pass the resulting "[CLS]" representations through a fully-connected layer to predict the correct answer. We train with a standard cross-entropy loss. We also found it helpful to prepend a prefix of `Q:` to the question and `A:` to the answer. The complete input format is: ``` <s> Q: Where would I not want a fox? </s> A: hen house </s> ``` Our final submission is based on a hyperparameter search over the learning rate (1e-5, 2e-5, 3e-5), batch size (8, 16), number of training steps (2000, 3000, 4000) and random seed. We selected the model with the best performance on the development set after 100 trials. ### 1) Download data from the Commonsense QA website (https://www.tau-nlp.org/commonsenseqa) ```bash bash examples/roberta/commonsense_qa/download_cqa_data.sh ``` ### 2) Finetune ```bash MAX_UPDATES=3000 # Number of training steps. WARMUP_UPDATES=150 # Linearly increase LR over this many steps. LR=1e-05 # Peak LR for polynomial LR scheduler. MAX_SENTENCES=16 # Batch size. SEED=1 # Random seed. ROBERTA_PATH=/path/to/roberta/model.pt DATA_DIR=data/CommonsenseQA # we use the --user-dir option to load the task from # the examples/roberta/commonsense_qa directory: FAIRSEQ_PATH=/path/to/fairseq FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/commonsense_qa CUDA_VISIBLE_DEVICES=0 fairseq-train --fp16 --ddp-backend=legacy_ddp \ $DATA_DIR \ --user-dir $FAIRSEQ_USER_DIR \ --restore-file $ROBERTA_PATH \ --reset-optimizer --reset-dataloader --reset-meters \ --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ --task commonsense_qa --init-token 0 --bpe gpt2 \ --arch roberta_large --max-positions 512 \ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ --criterion sentence_ranking --num-classes 5 \ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $LR \ --warmup-updates $WARMUP_UPDATES --total-num-update $MAX_UPDATES \ --batch-size $MAX_SENTENCES \ --max-update $MAX_UPDATES \ --log-format simple --log-interval 25 \ --seed $SEED ``` The above command assumes training on 1 GPU with 32GB of RAM. For GPUs with less memory, decrease `--batch-size` and increase `--update-freq` accordingly to compensate. ### 3) Evaluate ```python import json import torch from fairseq.models.roberta import RobertaModel from examples.roberta import commonsense_qa # load the Commonsense QA task roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'data/CommonsenseQA') roberta.eval() # disable dropout roberta.cuda() # use the GPU (optional) nsamples, ncorrect = 0, 0 with open('data/CommonsenseQA/valid.jsonl') as h: for line in h: example = json.loads(line) scores = [] for choice in example['question']['choices']: input = roberta.encode( 'Q: ' + example['question']['stem'], 'A: ' + choice['text'], no_separator=True ) score = roberta.predict('sentence_classification_head', input, return_logits=True) scores.append(score) pred = torch.cat(scores).argmax() answer = ord(example['answerKey']) - ord('A') nsamples += 1 if pred == answer: ncorrect += 1 print('Accuracy: ' + str(ncorrect / float(nsamples))) # Accuracy: 0.7846027846027847 ``` The above snippet is not batched, which makes it quite slow. See [instructions for batched prediction with RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta#batched-prediction).
COCO-LM/fairseq/examples/roberta/commonsense_qa/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/roberta/commonsense_qa/README.md", "repo_id": "COCO-LM", "token_count": 1525 }
173
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss @register_criterion("label_smoothed_cross_entropy_r3f") class LabelSmoothedCrossEntropyR3FCriterion(FairseqCriterion): def __init__( self, task, sentence_avg, label_smoothing, eps, r3f_lambda, noise_type ): super().__init__(task) self.sentence_avg = sentence_avg self.label_smoothing = label_smoothing self.eps = eps self.r3f_lambda = r3f_lambda self.noise_type = noise_type if self.noise_type in {"normal"}: self.noise_sampler = torch.distributions.normal.Normal( loc=0.0, scale=self.eps ) elif self.noise_type == "uniform": self.noise_sampler = torch.distributions.uniform.Uniform( low=-self.eps, high=self.eps ) else: raise Exception(f"unrecognized noise type {self.noise_type}") @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument('--label-smoothing', default=0., type=float, metavar='D', help='epsilon for label smoothing, 0 means no label smoothing') parser.add_argument('--eps', type=float, default=1e-5, help='noise eps') parser.add_argument('--r3f-lambda', type=float, default=1.0, help='lambda for combining logistic loss and noisy KL loss') parser.add_argument('--noise-type', type=str, default='normal', choices=['normal', 'uniform'], help='type of noises') # fmt: on def _get_symm_kl(self, noised_logits, input_logits): return ( F.kl_div( F.log_softmax(noised_logits, dim=-1, dtype=torch.float32), F.softmax(input_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) + F.kl_div( F.log_softmax(input_logits, dim=-1, dtype=torch.float32), F.softmax(noised_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) ) / noised_logits.size(0) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ token_embeddings = model.encoder.embed_tokens(sample["net_input"]["src_tokens"]) input_logits, extra = model(**sample["net_input"]) loss, nll_loss = self.compute_loss( model, (input_logits, extra), sample, reduce=reduce ) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) if model.training: noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to( token_embeddings ) noised_embeddings = token_embeddings.clone() + noise noised_logits, _ = model( **sample["net_input"], token_embeddings=noised_embeddings ) symm_kl = self._get_symm_kl(noised_logits, input_logits) if model.training: symm_kl = symm_kl * sample_size loss = loss + self.r3f_lambda * symm_kl logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if model.training: logging_output.update( symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data ) return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output).view(-1, 1) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.label_smoothing, ignore_index=self.padding_idx, reduce=reduce, ) return loss, nll_loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs) metrics.log_scalar("symm_kl", symm_kl_sum / sample_size, sample_size, round=3) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
COCO-LM/fairseq/examples/rxf/rxf_src/label_smoothed_cross_entropy_r3f.py/0
{ "file_path": "COCO-LM/fairseq/examples/rxf/rxf_src/label_smoothed_cross_entropy_r3f.py", "repo_id": "COCO-LM", "token_count": 2934 }
174
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import register_scorer from .scorer import SimulScorer @register_scorer("text") class SimulTextScorer(SimulScorer): def __init__(self, args): super().__init__(args) self.data = { "src": self._load_text_file(args.src_file, split=True), "tgt": self._load_text_file(args.tgt_file, split=False), } def send_src(self, sent_id, *args): if self.steps[sent_id] >= len(self.data["src"][sent_id]): dict_to_return = { "sent_id": sent_id, "segment_id": self.steps[sent_id], "segment": self.eos, } # Consider EOS self.steps[sent_id] = len(self.data["src"][sent_id]) + 1 else: dict_to_return = { "sent_id": sent_id, "segment_id": self.steps[sent_id], "segment": self.data["src"][sent_id][self.steps[sent_id]], } self.steps[sent_id] += 1 return dict_to_return def src_lengths(self): # +1 for eos return [len(sent) + 1 for sent in self.data["src"]]
COCO-LM/fairseq/examples/simultaneous_translation/eval/scorers/text_scorer.py/0
{ "file_path": "COCO-LM/fairseq/examples/simultaneous_translation/eval/scorers/text_scorer.py", "repo_id": "COCO-LM", "token_count": 644 }
175
import importlib import os # ASG loss requires flashlight bindings files_to_skip = set() try: import flashlight.lib.sequence.criterion except ImportError: files_to_skip.add("ASG_loss.py") for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_") and file not in files_to_skip: criterion_name = file[: file.find(".py")] importlib.import_module( "examples.speech_recognition.criterions." + criterion_name )
COCO-LM/fairseq/examples/speech_recognition/criterions/__init__.py/0
{ "file_path": "COCO-LM/fairseq/examples/speech_recognition/criterions/__init__.py", "repo_id": "COCO-LM", "token_count": 197 }
176
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import math from collections.abc import Iterable import torch import torch.nn as nn from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqEncoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( LinearizedConvolution, TransformerDecoderLayer, TransformerEncoderLayer, VGGBlock, ) @register_model("asr_vggtransformer") class VGGTransformerModel(FairseqEncoderDecoderModel): """ Transformers with convolutional context for ASR https://arxiv.org/abs/1904.11660 """ def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="encoder input dimension per input channel", ) parser.add_argument( "--vggblock-enc-config", type=str, metavar="EXPR", help=""" an array of tuples each containing the configuration of one vggblock: [(out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, use_layer_norm), ...]) """, ) parser.add_argument( "--transformer-enc-config", type=str, metavar="EXPR", help="""" a tuple containing the configuration of the encoder transformer layers configurations: [(input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout), ...]') """, ) parser.add_argument( "--enc-output-dim", type=int, metavar="N", help=""" encoder output dimension, can be None. If specified, projecting the transformer output to the specified dimension""", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="number of encoder input channels", ) parser.add_argument( "--tgt-embed-dim", type=int, metavar="N", help="embedding dimension of the decoder target tokens", ) parser.add_argument( "--transformer-dec-config", type=str, metavar="EXPR", help=""" a tuple containing the configuration of the decoder transformer layers configurations: [(input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout), ...] """, ) parser.add_argument( "--conv-dec-config", type=str, metavar="EXPR", help=""" an array of tuples for the decoder 1-D convolution config [(out_channels, conv_kernel_size, use_layer_norm), ...]""", ) @classmethod def build_encoder(cls, args, task): return VGGTransformerEncoder( input_feat_per_channel=args.input_feat_per_channel, vggblock_config=eval(args.vggblock_enc_config), transformer_config=eval(args.transformer_enc_config), encoder_output_dim=args.enc_output_dim, in_channels=args.in_channels, ) @classmethod def build_decoder(cls, args, task): return TransformerDecoder( dictionary=task.target_dictionary, embed_dim=args.tgt_embed_dim, transformer_config=eval(args.transformer_dec_config), conv_config=eval(args.conv_dec_config), encoder_output_dim=args.enc_output_dim, ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure that all args are properly defaulted # (in case there are any new ones) base_architecture(args) encoder = cls.build_encoder(args, task) decoder = cls.build_decoder(args, task) return cls(encoder, decoder) def get_normalized_probs(self, net_output, log_probs, sample=None): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = super().get_normalized_probs(net_output, log_probs, sample) lprobs.batch_first = True return lprobs DEFAULT_ENC_VGGBLOCK_CONFIG = ((32, 3, 2, 2, False),) * 2 DEFAULT_ENC_TRANSFORMER_CONFIG = ((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2 # 256: embedding dimension # 4: number of heads # 1024: FFN # True: apply layerNorm before (dropout + resiaul) instead of after # 0.2 (dropout): dropout after MultiheadAttention and second FC # 0.2 (attention_dropout): dropout in MultiheadAttention # 0.2 (relu_dropout): dropout after ReLu DEFAULT_DEC_TRANSFORMER_CONFIG = ((256, 2, 1024, True, 0.2, 0.2, 0.2),) * 2 DEFAULT_DEC_CONV_CONFIG = ((256, 3, True),) * 2 # TODO: repace transformer encoder config from one liner # to explicit args to get rid of this transformation def prepare_transformer_encoder_params( input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout, ): args = argparse.Namespace() args.encoder_embed_dim = input_dim args.encoder_attention_heads = num_heads args.attention_dropout = attention_dropout args.dropout = dropout args.activation_dropout = relu_dropout args.encoder_normalize_before = normalize_before args.encoder_ffn_embed_dim = ffn_dim return args def prepare_transformer_decoder_params( input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout, ): args = argparse.Namespace() args.decoder_embed_dim = input_dim args.decoder_attention_heads = num_heads args.attention_dropout = attention_dropout args.dropout = dropout args.activation_dropout = relu_dropout args.decoder_normalize_before = normalize_before args.decoder_ffn_embed_dim = ffn_dim return args class VGGTransformerEncoder(FairseqEncoder): """VGG + Transformer encoder""" def __init__( self, input_feat_per_channel, vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG, transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG, encoder_output_dim=512, in_channels=1, transformer_context=None, transformer_sampling=None, ): """constructor for VGGTransformerEncoder Args: - input_feat_per_channel: feature dim (not including stacked, just base feature) - in_channel: # input channels (e.g., if stack 8 feature vector together, this is 8) - vggblock_config: configuration of vggblock, see comments on DEFAULT_ENC_VGGBLOCK_CONFIG - transformer_config: configuration of transformer layer, see comments on DEFAULT_ENC_TRANSFORMER_CONFIG - encoder_output_dim: final transformer output embedding dimension - transformer_context: (left, right) if set, self-attention will be focused on (t-left, t+right) - transformer_sampling: an iterable of int, must match with len(transformer_config), transformer_sampling[i] indicates sampling factor for i-th transformer layer, after multihead att and feedfoward part """ super().__init__(None) self.num_vggblocks = 0 if vggblock_config is not None: if not isinstance(vggblock_config, Iterable): raise ValueError("vggblock_config is not iterable") self.num_vggblocks = len(vggblock_config) self.conv_layers = nn.ModuleList() self.in_channels = in_channels self.input_dim = input_feat_per_channel self.pooling_kernel_sizes = [] if vggblock_config is not None: for _, config in enumerate(vggblock_config): ( out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, layer_norm, ) = config self.conv_layers.append( VGGBlock( in_channels, out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, input_dim=input_feat_per_channel, layer_norm=layer_norm, ) ) self.pooling_kernel_sizes.append(pooling_kernel_size) in_channels = out_channels input_feat_per_channel = self.conv_layers[-1].output_dim transformer_input_dim = self.infer_conv_output_dim( self.in_channels, self.input_dim ) # transformer_input_dim is the output dimension of VGG part self.validate_transformer_config(transformer_config) self.transformer_context = self.parse_transformer_context(transformer_context) self.transformer_sampling = self.parse_transformer_sampling( transformer_sampling, len(transformer_config) ) self.transformer_layers = nn.ModuleList() if transformer_input_dim != transformer_config[0][0]: self.transformer_layers.append( Linear(transformer_input_dim, transformer_config[0][0]) ) self.transformer_layers.append( TransformerEncoderLayer( prepare_transformer_encoder_params(*transformer_config[0]) ) ) for i in range(1, len(transformer_config)): if transformer_config[i - 1][0] != transformer_config[i][0]: self.transformer_layers.append( Linear(transformer_config[i - 1][0], transformer_config[i][0]) ) self.transformer_layers.append( TransformerEncoderLayer( prepare_transformer_encoder_params(*transformer_config[i]) ) ) self.encoder_output_dim = encoder_output_dim self.transformer_layers.extend( [ Linear(transformer_config[-1][0], encoder_output_dim), LayerNorm(encoder_output_dim), ] ) def forward(self, src_tokens, src_lengths, **kwargs): """ src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ bsz, max_seq_len, _ = src_tokens.size() x = src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim) x = x.transpose(1, 2).contiguous() # (B, C, T, feat) for layer_idx in range(len(self.conv_layers)): x = self.conv_layers[layer_idx](x) bsz, _, output_seq_len, _ = x.size() # (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) -> (T, B, C * feat) x = x.transpose(1, 2).transpose(0, 1) x = x.contiguous().view(output_seq_len, bsz, -1) input_lengths = src_lengths.clone() for s in self.pooling_kernel_sizes: input_lengths = (input_lengths.float() / s).ceil().long() encoder_padding_mask, _ = lengths_to_encoder_padding_mask( input_lengths, batch_first=True ) if not encoder_padding_mask.any(): encoder_padding_mask = None subsampling_factor = int(max_seq_len * 1.0 / output_seq_len + 0.5) attn_mask = self.lengths_to_attn_mask(input_lengths, subsampling_factor) transformer_layer_idx = 0 for layer_idx in range(len(self.transformer_layers)): if isinstance(self.transformer_layers[layer_idx], TransformerEncoderLayer): x = self.transformer_layers[layer_idx]( x, encoder_padding_mask, attn_mask ) if self.transformer_sampling[transformer_layer_idx] != 1: sampling_factor = self.transformer_sampling[transformer_layer_idx] x, encoder_padding_mask, attn_mask = self.slice( x, encoder_padding_mask, attn_mask, sampling_factor ) transformer_layer_idx += 1 else: x = self.transformer_layers[layer_idx](x) # encoder_padding_maks is a (T x B) tensor, its [t, b] elements indicate # whether encoder_output[t, b] is valid or not (valid=0, invalid=1) return { "encoder_out": x, # (T, B, C) "encoder_padding_mask": encoder_padding_mask.t() if encoder_padding_mask is not None else None, # (B, T) --> (T, B) } def infer_conv_output_dim(self, in_channels, input_dim): sample_seq_len = 200 sample_bsz = 10 x = torch.randn(sample_bsz, in_channels, sample_seq_len, input_dim) for i, _ in enumerate(self.conv_layers): x = self.conv_layers[i](x) x = x.transpose(1, 2) mb, seq = x.size()[:2] return x.contiguous().view(mb, seq, -1).size(-1) def validate_transformer_config(self, transformer_config): for config in transformer_config: input_dim, num_heads = config[:2] if input_dim % num_heads != 0: msg = ( "ERROR in transformer config {}: ".format(config) + "input dimension {} ".format(input_dim) + "not dividable by number of heads {}".format(num_heads) ) raise ValueError(msg) def parse_transformer_context(self, transformer_context): """ transformer_context can be the following: - None; indicates no context is used, i.e., transformer can access full context - a tuple/list of two int; indicates left and right context, any number <0 indicates infinite context * e.g., (5, 6) indicates that for query at x_t, transformer can access [t-5, t+6] (inclusive) * e.g., (-1, 6) indicates that for query at x_t, transformer can access [0, t+6] (inclusive) """ if transformer_context is None: return None if not isinstance(transformer_context, Iterable): raise ValueError("transformer context must be Iterable if it is not None") if len(transformer_context) != 2: raise ValueError("transformer context must have length 2") left_context = transformer_context[0] if left_context < 0: left_context = None right_context = transformer_context[1] if right_context < 0: right_context = None if left_context is None and right_context is None: return None return (left_context, right_context) def parse_transformer_sampling(self, transformer_sampling, num_layers): """ parsing transformer sampling configuration Args: - transformer_sampling, accepted input: * None, indicating no sampling * an Iterable with int (>0) as element - num_layers, expected number of transformer layers, must match with the length of transformer_sampling if it is not None Returns: - A tuple with length num_layers """ if transformer_sampling is None: return (1,) * num_layers if not isinstance(transformer_sampling, Iterable): raise ValueError( "transformer_sampling must be an iterable if it is not None" ) if len(transformer_sampling) != num_layers: raise ValueError( "transformer_sampling {} does not match with the number " "of layers {}".format(transformer_sampling, num_layers) ) for layer, value in enumerate(transformer_sampling): if not isinstance(value, int): raise ValueError("Invalid value in transformer_sampling: ") if value < 1: raise ValueError( "{} layer's subsampling is {}.".format(layer, value) + " This is not allowed! " ) return transformer_sampling def slice(self, embedding, padding_mask, attn_mask, sampling_factor): """ embedding is a (T, B, D) tensor padding_mask is a (B, T) tensor or None attn_mask is a (T, T) tensor or None """ embedding = embedding[::sampling_factor, :, :] if padding_mask is not None: padding_mask = padding_mask[:, ::sampling_factor] if attn_mask is not None: attn_mask = attn_mask[::sampling_factor, ::sampling_factor] return embedding, padding_mask, attn_mask def lengths_to_attn_mask(self, input_lengths, subsampling_factor=1): """ create attention mask according to sequence lengths and transformer context Args: - input_lengths: (B, )-shape Int/Long tensor; input_lengths[b] is the length of b-th sequence - subsampling_factor: int * Note that the left_context and right_context is specified in the input frame-level while input to transformer may already go through subsampling (e.g., the use of striding in vggblock) we use subsampling_factor to scale the left/right context Return: - a (T, T) binary tensor or None, where T is max(input_lengths) * if self.transformer_context is None, None * if left_context is None, * attn_mask[t, t + right_context + 1:] = 1 * others = 0 * if right_context is None, * attn_mask[t, 0:t - left_context] = 1 * others = 0 * elsif * attn_mask[t, t - left_context: t + right_context + 1] = 0 * others = 1 """ if self.transformer_context is None: return None maxT = torch.max(input_lengths).item() attn_mask = torch.zeros(maxT, maxT) left_context = self.transformer_context[0] right_context = self.transformer_context[1] if left_context is not None: left_context = math.ceil(self.transformer_context[0] / subsampling_factor) if right_context is not None: right_context = math.ceil(self.transformer_context[1] / subsampling_factor) for t in range(maxT): if left_context is not None: st = 0 en = max(st, t - left_context) attn_mask[t, st:en] = 1 if right_context is not None: st = t + right_context + 1 st = min(st, maxT - 1) attn_mask[t, st:] = 1 return attn_mask.to(input_lengths.device) def reorder_encoder_out(self, encoder_out, new_order): encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(1, new_order) return encoder_out class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs. Default: ``False`` left_pad (bool, optional): whether the input is left-padded. Default: ``False`` """ def __init__( self, dictionary, embed_dim=512, transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG, conv_config=DEFAULT_DEC_CONV_CONFIG, encoder_output_dim=512, ): super().__init__(dictionary) vocab_size = len(dictionary) self.padding_idx = dictionary.pad() self.embed_tokens = Embedding(vocab_size, embed_dim, self.padding_idx) self.conv_layers = nn.ModuleList() for i in range(len(conv_config)): out_channels, kernel_size, layer_norm = conv_config[i] if i == 0: conv_layer = LinearizedConv1d( embed_dim, out_channels, kernel_size, padding=kernel_size - 1 ) else: conv_layer = LinearizedConv1d( conv_config[i - 1][0], out_channels, kernel_size, padding=kernel_size - 1, ) self.conv_layers.append(conv_layer) if layer_norm: self.conv_layers.append(nn.LayerNorm(out_channels)) self.conv_layers.append(nn.ReLU()) self.layers = nn.ModuleList() if conv_config[-1][0] != transformer_config[0][0]: self.layers.append(Linear(conv_config[-1][0], transformer_config[0][0])) self.layers.append( TransformerDecoderLayer( prepare_transformer_decoder_params(*transformer_config[0]) ) ) for i in range(1, len(transformer_config)): if transformer_config[i - 1][0] != transformer_config[i][0]: self.layers.append( Linear(transformer_config[i - 1][0], transformer_config[i][0]) ) self.layers.append( TransformerDecoderLayer( prepare_transformer_decoder_params(*transformer_config[i]) ) ) self.fc_out = Linear(transformer_config[-1][0], vocab_size) def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the last decoder layer's output of shape `(batch, tgt_len, vocab)` - the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)` """ target_padding_mask = ( (prev_output_tokens == self.padding_idx).to(prev_output_tokens.device) if incremental_state is None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] # embed tokens x = self.embed_tokens(prev_output_tokens) # B x T x C -> T x B x C x = self._transpose_if_training(x, incremental_state) for layer in self.conv_layers: if isinstance(layer, LinearizedConvolution): x = layer(x, incremental_state) else: x = layer(x) # B x T x C -> T x B x C x = self._transpose_if_inference(x, incremental_state) # decoder layers for layer in self.layers: if isinstance(layer, TransformerDecoderLayer): x, *_ = layer( x, (encoder_out["encoder_out"] if encoder_out is not None else None), ( encoder_out["encoder_padding_mask"].t() if encoder_out["encoder_padding_mask"] is not None else None ), incremental_state, self_attn_mask=( self.buffered_future_mask(x) if incremental_state is None else None ), self_attn_padding_mask=( target_padding_mask if incremental_state is None else None ), ) else: x = layer(x) # T x B x C -> B x T x C x = x.transpose(0, 1) x = self.fc_out(x) return x, None def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def _transpose_if_training(self, x, incremental_state): if incremental_state is None: x = x.transpose(0, 1) return x def _transpose_if_inference(self, x, incremental_state): if incremental_state: x = x.transpose(0, 1) return x @register_model("asr_vggtransformer_encoder") class VGGTransformerEncoderModel(FairseqEncoderModel): def __init__(self, encoder): super().__init__(encoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="encoder input dimension per input channel", ) parser.add_argument( "--vggblock-enc-config", type=str, metavar="EXPR", help=""" an array of tuples each containing the configuration of one vggblock [(out_channels, conv_kernel_size, pooling_kernel_size,num_conv_layers), ...] """, ) parser.add_argument( "--transformer-enc-config", type=str, metavar="EXPR", help=""" a tuple containing the configuration of the Transformer layers configurations: [(input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout), ]""", ) parser.add_argument( "--enc-output-dim", type=int, metavar="N", help="encoder output dimension, projecting the LSTM output", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="number of encoder input channels", ) parser.add_argument( "--transformer-context", type=str, metavar="EXPR", help=""" either None or a tuple of two ints, indicating left/right context a transformer can have access to""", ) parser.add_argument( "--transformer-sampling", type=str, metavar="EXPR", help=""" either None or a tuple of ints, indicating sampling factor in each layer""", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" base_architecture_enconly(args) encoder = VGGTransformerEncoderOnly( vocab_size=len(task.target_dictionary), input_feat_per_channel=args.input_feat_per_channel, vggblock_config=eval(args.vggblock_enc_config), transformer_config=eval(args.transformer_enc_config), encoder_output_dim=args.enc_output_dim, in_channels=args.in_channels, transformer_context=eval(args.transformer_context), transformer_sampling=eval(args.transformer_sampling), ) return cls(encoder) def get_normalized_probs(self, net_output, log_probs, sample=None): # net_output['encoder_out'] is a (T, B, D) tensor lprobs = super().get_normalized_probs(net_output, log_probs, sample) # lprobs is a (T, B, D) tensor # we need to transoose to get (B, T, D) tensor lprobs = lprobs.transpose(0, 1).contiguous() lprobs.batch_first = True return lprobs class VGGTransformerEncoderOnly(VGGTransformerEncoder): def __init__( self, vocab_size, input_feat_per_channel, vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG, transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG, encoder_output_dim=512, in_channels=1, transformer_context=None, transformer_sampling=None, ): super().__init__( input_feat_per_channel=input_feat_per_channel, vggblock_config=vggblock_config, transformer_config=transformer_config, encoder_output_dim=encoder_output_dim, in_channels=in_channels, transformer_context=transformer_context, transformer_sampling=transformer_sampling, ) self.fc_out = Linear(self.encoder_output_dim, vocab_size) def forward(self, src_tokens, src_lengths, **kwargs): """ src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ enc_out = super().forward(src_tokens, src_lengths) x = self.fc_out(enc_out["encoder_out"]) # x = F.log_softmax(x, dim=-1) # Note: no need this line, because model.get_normalized_prob will call # log_softmax return { "encoder_out": x, # (T, B, C) "encoder_padding_mask": enc_out["encoder_padding_mask"], # (T, B) } def max_positions(self): """Maximum input length supported by the encoder.""" return (1e6, 1e6) # an arbitrary large number def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) # nn.init.uniform_(m.weight, -0.1, 0.1) # nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True, dropout=0): """Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features, bias=bias) # m.weight.data.uniform_(-0.1, 0.1) # if bias: # m.bias.data.uniform_(-0.1, 0.1) return m def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0, **kwargs): """Weight-normalized Conv1d layer optimized for decoding""" m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) nn.init.normal_(m.weight, mean=0, std=std) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m, dim=2) def LayerNorm(embedding_dim): m = nn.LayerNorm(embedding_dim) return m # seq2seq models def base_architecture(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", DEFAULT_ENC_VGGBLOCK_CONFIG ) args.transformer_enc_config = getattr( args, "transformer_enc_config", DEFAULT_ENC_TRANSFORMER_CONFIG ) args.enc_output_dim = getattr(args, "enc_output_dim", 512) args.in_channels = getattr(args, "in_channels", 1) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128) args.transformer_dec_config = getattr( args, "transformer_dec_config", DEFAULT_ENC_TRANSFORMER_CONFIG ) args.conv_dec_config = getattr(args, "conv_dec_config", DEFAULT_DEC_CONV_CONFIG) args.transformer_context = getattr(args, "transformer_context", "None") @register_model_architecture("asr_vggtransformer", "vggtransformer_1") def vggtransformer_1(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 14", ) args.enc_output_dim = getattr(args, "enc_output_dim", 1024) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128) args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4") args.transformer_dec_config = getattr( args, "transformer_dec_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 4", ) @register_model_architecture("asr_vggtransformer", "vggtransformer_2") def vggtransformer_2(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16", ) args.enc_output_dim = getattr(args, "enc_output_dim", 1024) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512) args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4") args.transformer_dec_config = getattr( args, "transformer_dec_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 6", ) @register_model_architecture("asr_vggtransformer", "vggtransformer_base") def vggtransformer_base(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 12" ) args.enc_output_dim = getattr(args, "enc_output_dim", 512) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512) args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4") args.transformer_dec_config = getattr( args, "transformer_dec_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 6" ) # Size estimations: # Encoder: # - vggblock param: 64*1*3*3 + 64*64*3*3 + 128*64*3*3 + 128*128*3 = 258K # Transformer: # - input dimension adapter: 2560 x 512 -> 1.31M # - transformer_layers (x12) --> 37.74M # * MultiheadAttention: 512*512*3 (in_proj) + 512*512 (out_proj) = 1.048M # * FFN weight: 512*2048*2 = 2.097M # - output dimension adapter: 512 x 512 -> 0.26 M # Decoder: # - LinearizedConv1d: 512 * 256 * 3 + 256 * 256 * 3 * 3 # - transformer_layer: (x6) --> 25.16M # * MultiheadAttention (self-attention): 512*512*3 + 512*512 = 1.048M # * MultiheadAttention (encoder-attention): 512*512*3 + 512*512 = 1.048M # * FFN: 512*2048*2 = 2.097M # Final FC: # - FC: 512*5000 = 256K (assuming vocab size 5K) # In total: # ~65 M # CTC models def base_architecture_enconly(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(32, 3, 2, 2, True)] * 2" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2" ) args.enc_output_dim = getattr(args, "enc_output_dim", 512) args.in_channels = getattr(args, "in_channels", 1) args.transformer_context = getattr(args, "transformer_context", "None") args.transformer_sampling = getattr(args, "transformer_sampling", "None") @register_model_architecture("asr_vggtransformer_encoder", "vggtransformer_enc_1") def vggtransformer_enc_1(args): # vggtransformer_1 is the same as vggtransformer_enc_big, except the number # of layers is increased to 16 # keep it here for backward compatiablity purpose args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16", ) args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
COCO-LM/fairseq/examples/speech_recognition/models/vggtransformer.py/0
{ "file_path": "COCO-LM/fairseq/examples/speech_recognition/models/vggtransformer.py", "repo_id": "COCO-LM", "token_count": 17782 }
177
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path import shutil from itertools import groupby from tempfile import NamedTemporaryFile from typing import Tuple import numpy as np import pandas as pd import soundfile as sf from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, cal_gcmvn_stats, ) import torch from torch.utils.data import Dataset from tqdm import tqdm from fairseq.data.audio.audio_utils import get_waveform log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] class MUSTC(Dataset): """ Create a Dataset for MuST-C. Each item is a tuple of the form: waveform, sample_rate, source utterance, target utterance, speaker_id, utterance_id """ SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"] LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru"] def __init__(self, root: str, lang: str, split: str) -> None: assert split in self.SPLITS and lang in self.LANGUAGES _root = Path(root) / f"en-{lang}" / "data" / split wav_root, txt_root = _root / "wav", _root / "txt" assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir() # Load audio segments try: import yaml except ImportError: print("Please install PyYAML to load the MuST-C YAML files") with open(txt_root / f"{split}.yaml") as f: segments = yaml.load(f, Loader=yaml.BaseLoader) # Load source and target utterances for _lang in ["en", lang]: with open(txt_root / f"{split}.{_lang}") as f: utterances = [r.strip() for r in f] assert len(segments) == len(utterances) for i, u in enumerate(utterances): segments[i][_lang] = u # Gather info self.data = [] for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]): wav_path = wav_root / wav_filename sample_rate = sf.info(wav_path.as_posix()).samplerate seg_group = sorted(_seg_group, key=lambda x: x["offset"]) for i, segment in enumerate(seg_group): offset = int(float(segment["offset"]) * sample_rate) n_frames = int(float(segment["duration"]) * sample_rate) _id = f"{wav_path.stem}_{i}" self.data.append( ( wav_path.as_posix(), offset, n_frames, sample_rate, segment["en"], segment[lang], segment["speaker_id"], _id, ) ) def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str, str, str, str]: wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, utt_id = self.data[n] waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset) waveform = torch.from_numpy(waveform) return waveform, sr, src_utt, tgt_utt, spk_id, utt_id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() for lang in MUSTC.LANGUAGES: cur_root = root / f"en-{lang}" if not cur_root.is_dir(): print(f"{cur_root.as_posix()} does not exist. Skipped.") continue # Extract features feature_root = cur_root / "fbank80" feature_root.mkdir(exist_ok=True) for split in MUSTC.SPLITS: print(f"Fetching split {split}...") dataset = MUSTC(root.as_posix(), lang, split) print("Extracting log mel filter bank features...") if split == 'train' and args.cmvn_type == "global": print("And estimating cepstral mean and variance stats...") gcmvn_feature_list = [] for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): features = extract_fbank_features(waveform, sample_rate) np.save( (feature_root / f"{utt_id}.npy").as_posix(), features ) if split == 'train' and args.cmvn_type == "global": if len(gcmvn_feature_list) < args.gcmvn_max_num: gcmvn_feature_list.append(features) if split == 'train' and args.cmvn_type == "global": # Estimate and save cmv stats = cal_gcmvn_stats(gcmvn_feature_list) with open(cur_root / "gcmvn.npz", "wb") as f: np.savez(f, mean=stats["mean"], std=stats["std"]) # Pack features into ZIP zip_path = cur_root / "fbank80.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") zip_manifest = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in MUSTC.SPLITS: is_train_split = split.startswith("train") manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = MUSTC(args.data_root, lang, split) for wav, sr, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(zip_manifest[utt_id]) duration_ms = int(wav.size(1) / sr * 1000) manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10)) manifest["tgt_text"].append(src_utt if args.task == "asr" else tgt_utt) manifest["speaker"].append(speaker_id) if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv") # Generate vocab v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML gen_config_yaml( cur_root, spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="lb", cmvn_type=args.cmvn_type, gcmvn_path=( cur_root / "gcmvn.npz" if args.cmvn_type == "global" else None ), ) # Clean up shutil.rmtree(feature_root) def process_joint(args): cur_root = Path(args.data_root) assert all((cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES), \ "do not have downloaded data available for all 8 languages" # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for lang in MUSTC.LANGUAGES: tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv" df = load_df_from_tsv(tsv_path) for t in df["tgt_text"]: f.write(t + "\n") special_symbols = None if args.task == 'st': special_symbols = [f'<lang:{lang}>' for lang in MUSTC.LANGUAGES] gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, special_symbols=special_symbols ) # Generate config YAML gen_config_yaml( cur_root, spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="ld", prepend_tgt_lang_tag=(args.task == "st"), ) # Make symbolic links to manifests for lang in MUSTC.LANGUAGES: for split in MUSTC.SPLITS: src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv" desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv" if not desc_path.is_symlink(): os.symlink(src_path, desc_path) def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=8000, type=int) parser.add_argument("--task", type=str, choices=["asr", "st"]) parser.add_argument("--joint", action="store_true", help="") parser.add_argument("--cmvn-type", default="utterance", choices=["global", "utterance"], help="The type of cepstral mean and variance normalization") parser.add_argument("--gcmvn-max-num", default=150000, type=int, help=( "Maximum number of sentences to use to estimate" "global mean and variance" )) args = parser.parse_args() if args.joint: process_joint(args) else: process(args) if __name__ == "__main__": main()
COCO-LM/fairseq/examples/speech_to_text/prep_mustc_data.py/0
{ "file_path": "COCO-LM/fairseq/examples/speech_to_text/prep_mustc_data.py", "repo_id": "COCO-LM", "token_count": 5033 }
178
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("dummy_masked_lm") class DummyMaskedLMTask(LegacyFairseqTask): @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("--dict-size", default=49995, type=int) parser.add_argument("--dataset-size", default=100000, type=int) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments " "per sample for BERT dataset", ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary # add mask token self.mask_idx = dictionary.add_symbol("<mask>") dictionary.pad_to_multiple_(8) # often faster if divisible by 8 mask_idx = 0 pad_idx = 1 seq = torch.arange(args.tokens_per_sample) + pad_idx + 1 mask = torch.arange(2, args.tokens_per_sample, 7) # ~15% src = seq.clone() src[mask] = mask_idx tgt = torch.full_like(seq, pad_idx) tgt[mask] = seq[mask] self.dummy_src = src self.dummy_tgt = tgt @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary() for i in range(args.dict_size): dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if self.args.batch_size is not None: bsz = self.args.batch_size else: bsz = max(1, self.args.max_tokens // self.args.tokens_per_sample) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.args.tokens_per_sample, dtype=torch.long ), }, "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), "nsentences": bsz, "ntokens": bsz * self.args.tokens_per_sample, }, num_items=self.args.dataset_size, item_size=self.args.tokens_per_sample, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class DummyDataset(FairseqDataset): def __init__(self, batch, num_items, item_size): super().__init__() self.batch = batch self.num_items = num_items self.item_size = item_size def __getitem__(self, index): return index def __len__(self): return self.num_items def collater(self, samples): return self.batch @property def sizes(self): return np.array([self.item_size] * self.num_items) def num_tokens(self, index): return self.item_size def size(self, index): return self.item_size def ordered_indices(self): return np.arange(self.num_items) @property def supports_prefetch(self): return False
COCO-LM/fairseq/fairseq/benchmark/dummy_masked_lm.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/benchmark/dummy_masked_lm.py", "repo_id": "COCO-LM", "token_count": 1793 }
179
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect from typing import Any, Dict, List from fairseq import metrics, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import gen_parser_from_dataclass from torch.nn.modules.loss import _Loss class FairseqCriterion(_Loss): def __init__(self, task): super().__init__() self.task = task self.args = task.args if hasattr(task, "target_dictionary"): tgt_dict = task.target_dictionary self.padding_idx = tgt_dict.pad() if tgt_dict is not None else -100 @classmethod def add_args(cls, parser): """Add criterion-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @classmethod def build_criterion(cls, cfg: FairseqDataclass, task): """Construct a criterion from command-line args.""" # arguments in the __init__. init_args = {} for p in inspect.signature(cls).parameters.values(): if ( p.kind == p.POSITIONAL_ONLY or p.kind == p.VAR_POSITIONAL or p.kind == p.VAR_KEYWORD ): # we haven't implemented inference for these argument types, # but PRs welcome :) raise NotImplementedError("{} not supported".format(p.kind)) assert p.kind in {p.POSITIONAL_OR_KEYWORD, p.KEYWORD_ONLY} if p.name == "task": init_args["task"] = task elif p.name == "cfg": init_args["cfg"] = cfg elif hasattr(cfg, p.name): init_args[p.name] = getattr(cfg, p.name) elif p.default != p.empty: pass # we'll use the default value else: raise NotImplementedError( "Unable to infer Criterion arguments, please implement " "{}.build_criterion".format(cls.__name__) ) return cls(**init_args) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ raise NotImplementedError @staticmethod def aggregate_logging_outputs( logging_outputs: List[Dict[str, Any]] ) -> Dict[str, Any]: """Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "The aggregate_logging_outputs API is deprecated. " "Please use the reduce_metrics API instead." ) raise NotImplementedError @classmethod def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None: """Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "Criterions should implement the reduce_metrics API. " "Falling back to deprecated aggregate_logging_outputs API." ) agg_logging_outputs = cls.aggregate_logging_outputs(logging_outputs) for k, v in agg_logging_outputs.items(): if k in {"nsentences", "ntokens", "sample_size"}: continue metrics.log_scalar(k, v) def context_metrics(self, logging_outputs) -> None: pass @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False class LegacyFairseqCriterion(FairseqCriterion): def __init__(self, args, task): super().__init__(task=task) self.args = args utils.deprecation_warning( "Criterions should take explicit arguments instead of an " "argparse.Namespace object, please update your criterion by " "extending FairseqCriterion instead of LegacyFairseqCriterion." ) @classmethod def build_criterion(cls, args, task): """Construct a criterion from command-line args.""" return cls(args, task)
COCO-LM/fairseq/fairseq/criterions/fairseq_criterion.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/criterions/fairseq_criterion.py", "repo_id": "COCO-LM", "token_count": 1954 }
180
from pathlib import Path from typing import BinaryIO, Optional, Tuple, Union import numpy as np import torch SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"} def _convert_to_mono( waveform: torch.FloatTensor, sample_rate: int ) -> torch.FloatTensor: if waveform.shape[0] > 1: try: import torchaudio.sox_effects as ta_sox except ImportError: raise ImportError( "Please install torchaudio to convert multi-channel audios" ) effects = [['channels', '1']] return ta_sox.apply_effects_tensor(waveform, sample_rate, effects)[0] return waveform def convert_to_mono(waveform: np.ndarray, sample_rate: int) -> np.ndarray: if waveform.shape[0] > 1: _waveform = torch.from_numpy(waveform) return _convert_to_mono(_waveform, sample_rate).numpy() return waveform def get_waveform( path_or_fp: Union[str, BinaryIO], normalization=True, mono=True, frames=-1, start=0, always_2d=True ) -> Tuple[np.ndarray, int]: """Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio. Args: path_or_fp (str or BinaryIO): the path or file-like object normalization (bool): Normalize values to [-1, 1] (Default: True) mono (bool): convert multi-channel audio to mono-channel one frames (int): the number of frames to read. (-1 for reading all) start (int): Where to start reading. A negative value counts from the end. always_2d (bool): always return 2D array even for mono-channel audios Returns: waveform (numpy.ndarray): 1D or 2D waveform (channels x length) sample_rate (float): sample rate """ if isinstance(path_or_fp, str): ext = Path(path_or_fp).suffix if ext not in SF_AUDIO_FILE_EXTENSIONS: raise ValueError(f"Unsupported audio format: {ext}") try: import soundfile as sf except ImportError: raise ImportError( "Please install soundfile to load WAV/FLAC/OGG Vorbis audios" ) waveform, sample_rate = sf.read( path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start ) waveform = waveform.T # T x C -> C x T if mono and waveform.shape[0] > 1: waveform = convert_to_mono(waveform, sample_rate) if not normalization: waveform *= 2 ** 15 # denormalized to 16-bit signed integers if not always_2d: waveform = waveform.squeeze(axis=0) return waveform, sample_rate def _get_kaldi_fbank( waveform: np.ndarray, sample_rate: int, n_bins=80 ) -> Optional[np.ndarray]: """Get mel-filter bank features via PyKaldi.""" try: from kaldi.feat.mel import MelBanksOptions from kaldi.feat.fbank import FbankOptions, Fbank from kaldi.feat.window import FrameExtractionOptions from kaldi.matrix import Vector mel_opts = MelBanksOptions() mel_opts.num_bins = n_bins frame_opts = FrameExtractionOptions() frame_opts.samp_freq = sample_rate opts = FbankOptions() opts.mel_opts = mel_opts opts.frame_opts = frame_opts fbank = Fbank(opts=opts) features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy() return features except ImportError: return None def _get_torchaudio_fbank( waveform: np.ndarray, sample_rate, n_bins=80 ) -> Optional[np.ndarray]: """Get mel-filter bank features via TorchAudio.""" try: import torchaudio.compliance.kaldi as ta_kaldi waveform = torch.from_numpy(waveform) features = ta_kaldi.fbank( waveform, num_mel_bins=n_bins, sample_frequency=sample_rate ) return features.numpy() except ImportError: return None def get_fbank(path_or_fp: Union[str, BinaryIO], n_bins=80) -> np.ndarray: """Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi (faster CPP implementation) to TorchAudio (Python implementation). Note that Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized.""" waveform, sample_rate = get_waveform(path_or_fp, normalization=False) features = _get_kaldi_fbank(waveform, sample_rate, n_bins) if features is None: features = _get_torchaudio_fbank(waveform, sample_rate, n_bins) if features is None: raise ImportError( "Please install pyKaldi or torchaudio to enable " "online filterbank feature extraction" ) return features
COCO-LM/fairseq/fairseq/data/audio/audio_utils.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/audio/audio_utils.py", "repo_id": "COCO-LM", "token_count": 1918 }
181
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import numpy as np import torch from . import FairseqDataset, data_utils def collate( samples, pad_idx, eos_idx, vocab, left_pad_source=False, left_pad_target=False, input_feeding=True, pad_to_length=None, ): assert input_feeding if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx=None, # use eos_idx of each sample instead of vocab.eos() left_pad=left_pad, move_eos_to_beginning=move_eos_to_beginning, pad_to_length=pad_to_length, ) id = torch.LongTensor([s["id"] for s in samples]) src_tokens = merge( "source", left_pad=left_pad_source, pad_to_length=pad_to_length["source"] if pad_to_length is not None else None, ) # sort by descending source length src_lengths = torch.LongTensor([s["source"].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge( "target", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) target = target.index_select(0, sort_order) ntokens = sum(len(s["target"]) for s in samples) if input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( "target", left_pad=left_pad_target, move_eos_to_beginning=True, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) else: ntokens = sum(len(s["source"]) for s in samples) batch = { "id": id, "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, "target": target, "nsentences": samples[0]["source"].size(0), "sort_order": sort_order, } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens return batch class DenoisingDataset(FairseqDataset): """ A wrapper around TokenBlockDataset for BART dataset. Args: dataset (TokenBlockDataset): dataset to wrap sizes (List[int]): sentence lengths vocab (~fairseq.data.Dictionary): vocabulary mask_idx (int): dictionary index used for masked token mask_whole_words: only mask whole words. This should be a byte mask over vocab indices, indicating whether it is the beginning of a word. We will extend any mask to encompass the whole word. shuffle (bool, optional): shuffle the elements before batching. Default: ``True`` seed: Seed for random number generator for reproducibility. args: argparse arguments. """ def __init__( self, dataset, sizes, vocab, mask_idx, mask_whole_words, shuffle, seed, args, eos=None, item_transform_func=None, ): self.dataset = dataset self.sizes = sizes self.vocab = vocab self.shuffle = shuffle self.seed = seed self.mask_idx = mask_idx self.mask_whole_word = mask_whole_words self.mask_ratio = args.mask self.random_ratio = args.mask_random self.insert_ratio = args.insert self.rotate_ratio = args.rotate self.permute_sentence_ratio = args.permute_sentences self.eos = eos if eos is not None else vocab.eos() self.item_transform_func = item_transform_func if args.bpe != "gpt2": self.full_stop_index = self.vocab.eos() else: assert args.bpe == "gpt2" self.full_stop_index = self.vocab.index("13") self.replace_length = args.replace_length if self.replace_length not in [-1, 0, 1]: raise ValueError(f"invalid arg: replace_length={self.replace_length}") if args.mask_length not in ["subword", "word", "span-poisson"]: raise ValueError(f"invalid arg: mask-length={args.mask_length}") if args.mask_length == "subword" and args.replace_length not in [0, 1]: raise ValueError(f"if using subwords, use replace-length=1 or 0") self.mask_span_distribution = None if args.mask_length == "span-poisson": _lambda = args.poisson_lambda lambda_to_the_k = 1 e_to_the_minus_lambda = math.exp(-_lambda) k_factorial = 1 ps = [] for k in range(0, 128): ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial) lambda_to_the_k *= _lambda k_factorial *= k + 1 if ps[-1] < 0.0000001: break ps = torch.FloatTensor(ps) self.mask_span_distribution = torch.distributions.Categorical(ps) self.epoch = 0 @property def can_reuse_epoch_itr_across_epochs(self): return True # only the noise changes, not item sizes def set_epoch(self, epoch, **unused): self.epoch = epoch def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch, index): tokens = self.dataset[index] assert tokens[-1] == self.eos source, target = tokens, tokens.clone() if self.permute_sentence_ratio > 0.0: source = self.permute_sentences(source, self.permute_sentence_ratio) if self.mask_ratio > 0: source = self.add_whole_word_mask(source, self.mask_ratio) if self.insert_ratio > 0: source = self.add_insertion_noise(source, self.insert_ratio) if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio: source = self.add_rolling_noise(source) # there can additional changes to make: if self.item_transform_func is not None: source, target = self.item_transform_func(source, target) assert (source >= 0).all() assert (source[1:-1] >= 1).all() assert (source <= len(self.vocab)).all() assert source[0] == self.vocab.bos() assert source[-1] == self.eos return { "id": index, "source": source, "target": target, } def __len__(self): return len(self.dataset) def permute_sentences(self, source, p=1.0): full_stops = source == self.full_stop_index # Pretend it ends with a full stop so last span is a sentence full_stops[-2] = 1 # Tokens that are full stops, where the previous token is not sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2 result = source.clone() num_sentences = sentence_ends.size(0) num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0) substitutions = torch.randperm(num_sentences)[:num_to_permute] ordering = torch.arange(0, num_sentences) ordering[substitutions] = substitutions[torch.randperm(num_to_permute)] # Ignore <bos> at start index = 1 for i in ordering: sentence = source[(sentence_ends[i - 1] if i > 0 else 1) : sentence_ends[i]] result[index : index + sentence.size(0)] = sentence index += sentence.size(0) return result def word_starts(self, source): if self.mask_whole_word is not None: is_word_start = self.mask_whole_word.gather(0, source) else: is_word_start = torch.ones(source.size()) is_word_start[0] = 0 is_word_start[-1] = 0 return is_word_start def add_whole_word_mask(self, source, p): is_word_start = self.word_starts(source) num_to_mask = int(math.ceil(is_word_start.float().sum() * p)) num_inserts = 0 if num_to_mask == 0: return source if self.mask_span_distribution is not None: lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,)) # Make sure we have enough to mask cum_length = torch.cumsum(lengths, 0) while cum_length[-1] < num_to_mask: lengths = torch.cat( [ lengths, self.mask_span_distribution.sample(sample_shape=(num_to_mask,)), ], dim=0, ) cum_length = torch.cumsum(lengths, 0) # Trim to masking budget i = 0 while cum_length[i] < num_to_mask: i += 1 lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1]) num_to_mask = i + 1 lengths = lengths[:num_to_mask] # Handle 0-length mask (inserts) separately lengths = lengths[lengths > 0] num_inserts = num_to_mask - lengths.size(0) num_to_mask -= num_inserts if num_to_mask == 0: return self.add_insertion_noise(source, num_inserts / source.size(0)) assert (lengths > 0).all() else: lengths = torch.ones((num_to_mask,)).long() assert is_word_start[-1] == 0 word_starts = is_word_start.nonzero(as_tuple=False) indices = word_starts[ torch.randperm(word_starts.size(0))[:num_to_mask] ].squeeze(1) mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio source_length = source.size(0) assert source_length - 1 not in indices to_keep = torch.ones(source_length, dtype=torch.bool) is_word_start[ -1 ] = 255 # acts as a long length, so spans don't go over the end of doc if self.replace_length == 0: to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) if self.mask_span_distribution is not None: assert len(lengths.size()) == 1 assert lengths.size() == indices.size() lengths -= 1 while indices.size(0) > 0: assert lengths.size() == indices.size() lengths -= is_word_start[indices + 1].long() uncompleted = lengths >= 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] lengths = lengths[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) else: # A bit faster when all lengths are 1 while indices.size(0) > 0: uncompleted = is_word_start[indices + 1] == 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) assert source_length - 1 not in indices source = source[to_keep] if num_inserts > 0: source = self.add_insertion_noise(source, num_inserts / source.size(0)) return source def add_permuted_noise(self, tokens, p): num_words = len(tokens) num_to_permute = math.ceil(((num_words * 2) * p) / 2.0) substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1 tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]] return tokens def add_rolling_noise(self, tokens): offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1) tokens = torch.cat( (tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]), dim=0, ) return tokens def add_insertion_noise(self, tokens, p): if p == 0.0: return tokens num_tokens = len(tokens) n = int(math.ceil(num_tokens * p)) noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1 noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool) noise_mask[noise_indices] = 1 result = torch.LongTensor(n + len(tokens)).fill_(-1) num_random = int(math.ceil(n * self.random_ratio)) result[noise_indices[num_random:]] = self.mask_idx result[noise_indices[:num_random]] = torch.randint( low=1, high=len(self.vocab), size=(num_random,) ) result[~noise_mask] = tokens assert (result >= 0).all() return result def collater(self, samples, pad_to_length=None): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch of data """ return collate( samples, self.vocab.pad(), self.eos, self.vocab, pad_to_length=pad_to_length ) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) else: indices = np.arange(len(self)) return indices[np.argsort(self.sizes[indices], kind="mergesort")] def prefetch(self, indices): self.src.prefetch(indices) self.tgt.prefetch(indices) @property def supports_prefetch(self): return ( hasattr(self.src, "supports_prefetch") and self.src.supports_prefetch and hasattr(self.tgt, "supports_prefetch") and self.tgt.supports_prefetch )
COCO-LM/fairseq/fairseq/data/denoising_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/denoising_dataset.py", "repo_id": "COCO-LM", "token_count": 7651 }
182
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from fairseq import file_utils from fairseq.data.encoders import register_bpe from fairseq.dataclass import FairseqDataclass @dataclass class SubwordNMTBPEConfig(FairseqDataclass): bpe_codes: str = field(default="???", metadata={"help": "path to subword NMT BPE"}) bpe_separator: str = field(default="@@", metadata={"help": "BPE separator"}) @register_bpe("subword_nmt", dataclass=SubwordNMTBPEConfig) class SubwordNMTBPE(object): def __init__(self, cfg): if cfg.bpe_codes is None: raise ValueError("--bpe-codes is required for --bpe=subword_nmt") codes = file_utils.cached_path(cfg.bpe_codes) try: from subword_nmt import apply_bpe bpe_parser = apply_bpe.create_parser() bpe_args = bpe_parser.parse_args( [ "--codes", codes, "--separator", cfg.bpe_separator, ] ) self.bpe = apply_bpe.BPE( bpe_args.codes, bpe_args.merges, bpe_args.separator, None, bpe_args.glossaries, ) self.bpe_symbol = bpe_args.separator + " " except ImportError: raise ImportError( "Please install subword_nmt with: pip install subword-nmt" ) def encode(self, x: str) -> str: return self.bpe.process_line(x) def decode(self, x: str) -> str: return (x + " ").replace(self.bpe_symbol, "").rstrip()
COCO-LM/fairseq/fairseq/data/encoders/subword_nmt_bpe.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/encoders/subword_nmt_bpe.py", "repo_id": "COCO-LM", "token_count": 882 }
183
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import FairseqDataset, data_utils def collate(samples, pad_idx, eos_idx): if len(samples) == 0: return {} def merge(key, is_list=False): if is_list: res = [] for i in range(len(samples[0][key])): res.append( data_utils.collate_tokens( [s[key][i] for s in samples], pad_idx, eos_idx, left_pad=False, ) ) return res else: return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad=False, ) src_tokens = merge("source") if samples[0]["target"] is not None: is_target_list = isinstance(samples[0]["target"], list) target = merge("target", is_target_list) else: target = src_tokens return { "id": torch.LongTensor([s["id"] for s in samples]), "nsentences": len(samples), "ntokens": sum(len(s["source"]) for s in samples), "net_input": { "src_tokens": src_tokens, "src_lengths": torch.LongTensor([s["source"].numel() for s in samples]), }, "target": target, } class MonolingualDataset(FairseqDataset): """ A wrapper around torch.utils.data.Dataset for monolingual data. Args: dataset (torch.utils.data.Dataset): dataset to wrap sizes (List[int]): sentence lengths vocab (~fairseq.data.Dictionary): vocabulary shuffle (bool, optional): shuffle the elements before batching (default: True). """ def __init__( self, dataset, sizes, src_vocab, tgt_vocab=None, add_eos_for_other_targets=False, shuffle=False, targets=None, add_bos_token=False, ): self.dataset = dataset self.sizes = np.array(sizes) self.vocab = src_vocab self.tgt_vocab = tgt_vocab or src_vocab self.add_eos_for_other_targets = add_eos_for_other_targets self.shuffle = shuffle self.add_bos_token = add_bos_token assert targets is None or all( t in {"self", "future", "past"} for t in targets ), "targets must be none or one of 'self', 'future', 'past'" if targets is not None and len(targets) == 0: targets = None self.targets = targets def __getitem__(self, index): if self.targets is not None: # *future_target* is the original sentence # *source* is shifted right by 1 (maybe left-padded with eos) # *past_target* is shifted right by 2 (left-padded as needed) # # Left-to-right language models should condition on *source* and # predict *future_target*. # Right-to-left language models should condition on *source* and # predict *past_target*. source, future_target, past_target = self.dataset[index] source, target = self._make_source_target( source, future_target, past_target ) else: source = self.dataset[index] target = None source, target = self._maybe_add_bos(source, target) return {"id": index, "source": source, "target": target} def __len__(self): return len(self.dataset) def _make_source_target(self, source, future_target, past_target): if self.targets is not None: target = [] if ( self.add_eos_for_other_targets and (("self" in self.targets) or ("past" in self.targets)) and source[-1] != self.vocab.eos() ): # append eos at the end of source source = torch.cat([source, source.new([self.vocab.eos()])]) if "future" in self.targets: future_target = torch.cat( [future_target, future_target.new([self.vocab.pad()])] ) if "past" in self.targets: # first token is before the start of sentence which is only used in "none" break mode when # add_eos_for_other_targets is False past_target = torch.cat( [ past_target.new([self.vocab.pad()]), past_target[1:], source[-2, None], ] ) for t in self.targets: if t == "self": target.append(source) elif t == "future": target.append(future_target) elif t == "past": target.append(past_target) else: raise Exception("invalid target " + t) if len(target) == 1: target = target[0] else: target = future_target return source, self._filter_vocab(target) def _maybe_add_bos(self, source, target): if self.add_bos_token: source = torch.cat([source.new([self.vocab.bos()]), source]) if target is not None: target = torch.cat([target.new([self.tgt_vocab.bos()]), target]) return source, target def _filter_vocab(self, target): if len(self.tgt_vocab) != len(self.vocab): def _filter(target): mask = target.ge(len(self.tgt_vocab)) if mask.any(): target[mask] = self.tgt_vocab.unk() return target if isinstance(target, list): return [_filter(t) for t in target] return _filter(target) return target def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch with the following keys: - `id` (LongTensor): example IDs in the original input order - `ntokens` (int): total number of tokens in the batch - `net_input` (dict): the input to the Model, containing keys: - `src_tokens` (LongTensor): a padded 2D Tensor of tokens in the source sentence of shape `(bsz, src_len)`. Padding will appear on the right. - `target` (LongTensor): a padded 2D Tensor of tokens in the target sentence of shape `(bsz, tgt_len)`. Padding will appear on the right. """ return collate(samples, self.vocab.pad(), self.vocab.eos()) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch(indices)
COCO-LM/fairseq/fairseq/data/monolingual_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/monolingual_dataset.py", "repo_id": "COCO-LM", "token_count": 4007 }
184
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class PrependDataset(BaseWrapperDataset): def __init__(self, dataset, prepend_getter, ensure_first_token_is=None): super().__init__(dataset) self.prepend_getter = prepend_getter self.ensure_first_token = ensure_first_token_is def __getitem__(self, idx): item = self.dataset[idx] is_tuple = isinstance(item, tuple) src = item[0] if is_tuple else item assert self.ensure_first_token is None or src[0] == self.ensure_first_token prepend_idx = self.prepend_getter(self.dataset, idx) assert isinstance(prepend_idx, int) src[0] = prepend_idx item = tuple((src,) + item[1:]) if is_tuple else src return item
COCO-LM/fairseq/fairseq/data/prepend_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/prepend_dataset.py", "repo_id": "COCO-LM", "token_count": 387 }
185
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from fairseq.data import FairseqDataset, plasma_utils from fairseq.data.indexed_dataset import best_fitting_int_dtype from typing import Tuple class TokenBlockDataset(FairseqDataset): """Break a Dataset of tokens into blocks. Args: dataset (~torch.utils.data.Dataset): dataset to break into blocks sizes (List[int]): sentence lengths (required for 'complete' and 'eos') block_size (int): maximum block size (ignored in 'eos' break mode) break_mode (str, optional): Mode used for breaking tokens. Values can be one of: - 'none': break tokens into equally sized blocks (up to block_size) - 'complete': break tokens into blocks (up to block_size) such that blocks contains complete sentences, although block_size may be exceeded if some sentences exceed block_size - 'complete_doc': similar to 'complete' mode, but do not cross document boundaries - 'eos': each block contains one sentence (block_size is ignored) include_targets (bool, optional): return next tokens as targets (default: False). document_sep_len (int, optional): document separator size (required for 'complete_doc' break mode). Typically 1 if the sentences have eos and 0 otherwise. """ def __init__( self, dataset, sizes, block_size, pad, eos, break_mode=None, include_targets=False, document_sep_len=1, use_plasma_view=False, split_path=None, plasma_path=None, ): super().__init__() self.dataset = dataset self.pad = pad self.eos = eos self.include_targets = include_targets assert len(dataset) > 0 assert len(dataset) == len(sizes) _sizes, block_to_dataset_index, slice_indices = self._build_slice_indices( sizes, break_mode, document_sep_len, block_size ) # use_plasma_view is slower, disable it self._slice_indices = plasma_utils.PlasmaArray(slice_indices) self._sizes = plasma_utils.PlasmaArray(_sizes) self._block_to_dataset_index = plasma_utils.PlasmaArray( block_to_dataset_index ) @staticmethod def _build_slice_indices( sizes, break_mode, document_sep_len, block_size ) -> Tuple[np.ndarray]: """Use token_block_utils_fast to build arrays for indexing into self.dataset""" try: from fairseq.data.token_block_utils_fast import ( _get_slice_indices_fast, _get_block_to_dataset_index_fast, ) except ImportError: raise ImportError( "Please build Cython components with: `pip install --editable .` " "or `python setup.py build_ext --inplace`" ) if isinstance(sizes, list): sizes = np.array(sizes, dtype=np.int64) else: if torch.is_tensor(sizes): sizes = sizes.numpy() sizes = sizes.astype(np.int64) break_mode = break_mode if break_mode is not None else "none" # For "eos" break-mode, block_size is not required parameters. if break_mode == "eos" and block_size is None: block_size = 0 slice_indices = _get_slice_indices_fast( sizes, str(break_mode), block_size, document_sep_len ) _sizes = slice_indices[:, 1] - slice_indices[:, 0] # build index mapping block indices to the underlying dataset indices if break_mode == "eos": # much faster version for eos break mode block_to_dataset_index = np.stack( [ np.arange(len(sizes)), # starting index in dataset np.zeros( len(sizes), dtype=np.compat.long ), # starting offset within starting index np.arange(len(sizes)), # ending index in dataset ], 1, ) else: block_to_dataset_index = _get_block_to_dataset_index_fast( sizes, slice_indices, ) size_dtype = np.uint16 if block_size < 65535 else np.uint32 num_tokens = slice_indices[-1].max() slice_indices_dtype = best_fitting_int_dtype(num_tokens) slice_indices = slice_indices.astype(slice_indices_dtype) _sizes = _sizes.astype(size_dtype) block_to_dataset_index = block_to_dataset_index.astype(slice_indices_dtype) return _sizes, block_to_dataset_index, slice_indices @property def slice_indices(self): return self._slice_indices.array @property def sizes(self): return self._sizes.array @property def block_to_dataset_index(self): return self._block_to_dataset_index.array def attr(self, attr: str, index: int): start_ds_idx, _, _ = self.block_to_dataset_index[index] return self.dataset.attr(attr, start_ds_idx) def __getitem__(self, index): start_ds_idx, start_offset, end_ds_idx = self.block_to_dataset_index[index] buffer = torch.cat( [self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)] ) slice_s, slice_e = self.slice_indices[index] length = slice_e - slice_s s, e = start_offset, start_offset + length item = buffer[s:e] if self.include_targets: # *target* is the original sentence (=item) # *source* is shifted right by 1 (maybe left-padded with eos) # *past_target* is shifted right by 2 (left-padded as needed) if s == 0: source = torch.cat([item.new([self.eos]), buffer[0 : e - 1]]) past_target = torch.cat( [item.new([self.pad, self.eos]), buffer[0 : e - 2]] ) else: source = buffer[s - 1 : e - 1] if s == 1: past_target = torch.cat([item.new([self.eos]), buffer[0 : e - 2]]) else: past_target = buffer[s - 2 : e - 2] return source, item, past_target return item def __len__(self): return len(self.slice_indices) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch( { ds_idx for index in indices for start_ds_idx, _, end_ds_idx in [self.block_to_dataset_index[index]] for ds_idx in range(start_ds_idx, end_ds_idx + 1) } )
COCO-LM/fairseq/fairseq/data/token_block_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/token_block_dataset.py", "repo_id": "COCO-LM", "token_count": 3345 }
186
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import logging import os import pickle import random import socket import struct import subprocess import warnings from argparse import Namespace from collections import OrderedDict from dataclasses import dataclass from typing import Any, Dict, List, Mapping, Optional import torch import torch.distributed as dist from fairseq.dataclass.configs import DistributedTrainingConfig, FairseqConfig from omegaconf import open_dict try: import torch_xla.core.xla_model as xm except ImportError: xm = None # Flag to indicate if we're using Megatron # NOTE: this is a temporary hack until we move away from Megatron's model parallel init _USE_MEGATRON = False # Whether to use XLA ops (e.g., on TPUs) instead of CUDA ops. _USE_XLA = False logger = logging.getLogger(__name__) def is_master(cfg: DistributedTrainingConfig): return cfg.distributed_rank == 0 def infer_init_method(cfg: DistributedTrainingConfig, force_distributed=False): if cfg.distributed_init_method is not None or cfg.tpu: return num_pipelines_per_node = None if cfg.pipeline_model_parallel: num_pipeline_devices, num_pipelines_per_node = _pipeline_parallel_pre_init(cfg) if all( key in os.environ for key in ["MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK"] ): # support torch.distributed.launch _infer_torch_distributed_launch_init(cfg) elif cfg.distributed_port > 0: # we can determine the init method automatically for Slurm _infer_slurm_init(cfg, num_pipelines_per_node) elif cfg.distributed_world_size > 1 or force_distributed: # fallback for single node with multiple GPUs _infer_single_node_init(cfg) if cfg.pipeline_model_parallel: _pipeline_parallel_post_init(cfg, num_pipeline_devices, num_pipelines_per_node) elif not cfg.distributed_no_spawn: with open_dict(cfg): cfg.distributed_num_procs = min( torch.cuda.device_count(), cfg.distributed_world_size ) def _infer_torch_distributed_launch_init(cfg: DistributedTrainingConfig): cfg.distributed_init_method = "env://" cfg.distributed_world_size = int(os.environ["WORLD_SIZE"]) cfg.distributed_rank = int(os.environ["RANK"]) # processes are created by torch.distributed.launch cfg.distributed_no_spawn = True def _infer_slurm_init(cfg: DistributedTrainingConfig, num_pipelines_per_node): node_list = os.environ.get("SLURM_STEP_NODELIST") if node_list is None: node_list = os.environ.get("SLURM_JOB_NODELIST") if node_list is not None: try: hostnames = subprocess.check_output( ["scontrol", "show", "hostnames", node_list] ) cfg.distributed_init_method = "tcp://{host}:{port}".format( host=hostnames.split()[0].decode("utf-8"), port=cfg.distributed_port, ) nnodes = int(os.environ.get("SLURM_NNODES")) ntasks_per_node = os.environ.get("SLURM_NTASKS_PER_NODE") if ntasks_per_node is not None: ntasks_per_node = int(ntasks_per_node) else: ntasks = int(os.environ.get("SLURM_NTASKS")) nnodes = int(os.environ.get("SLURM_NNODES")) assert ntasks % nnodes == 0 ntasks_per_node = int(ntasks / nnodes) if ntasks_per_node == 1: gpus_per_node = torch.cuda.device_count() node_id = int(os.environ.get("SLURM_NODEID")) cfg.distributed_rank = node_id * gpus_per_node cfg.distributed_world_size = nnodes * gpus_per_node elif cfg.pipeline_model_parallel: assert ntasks_per_node == num_pipelines_per_node, ( "SLURM --ntasks-per-node must match number of pipelines per " "node (={})".format(num_pipelines_per_node) ) cfg.distributed_no_spawn = True # For 4-way MP on nodes with 8 GPUs, ranks will be [0, 1] on # the first node, [1, 2] on the second node, etc. This # matches torch.distributed.launch. node_id = int(os.environ.get("SLURM_NODEID")) local_id = int(os.environ.get("SLURM_LOCALID")) cfg.distributed_rank = node_id * num_pipelines_per_node + local_id # In the above example, device_id will always be in [0, 1], # which also matches torch.distributed.launch. cfg.device_id = local_id # We also want to set distributed_world_size to be the total # number of pipelines across all nodes. cfg.distributed_world_size = nnodes * num_pipelines_per_node else: assert ntasks_per_node == cfg.distributed_world_size // nnodes cfg.distributed_no_spawn = True cfg.distributed_rank = int(os.environ.get("SLURM_PROCID")) cfg.device_id = int(os.environ.get("SLURM_LOCALID")) except subprocess.CalledProcessError as e: # scontrol failed raise e except FileNotFoundError: # Slurm is not installed pass def _infer_single_node_init(cfg: DistributedTrainingConfig): assert ( cfg.distributed_world_size <= torch.cuda.device_count() ), f"world size is {cfg.distributed_world_size} but have {torch.cuda.device_count()} available devices" port = random.randint(10000, 20000) cfg.distributed_init_method = "tcp://localhost:{port}".format(port=port) def _pipeline_parallel_pre_init(cfg: DistributedTrainingConfig): from fairseq import utils balance_exists = ( cfg.pipeline_balance is not None or cfg.pipeline_encoder_balance is not None or cfg.pipeline_decoder_balance is not None ) devices_exist = ( cfg.pipeline_devices is not None or cfg.pipeline_encoder_devices is not None or cfg.pipeline_decoder_devices is not None ) if not balance_exists: raise ValueError( "--pipeline-balance is currently required for pipeline model parallelism" ) if not devices_exist: raise ValueError( "--pipeline-devices is currently required for pipeline model parallelism" ) cfg.pipeline_balance = utils.eval_str_list(cfg.pipeline_balance, type=int) if cfg.pipeline_devices is not None: cfg.pipeline_devices = utils.eval_str_list(cfg.pipeline_devices, type=int) num_pipeline_devices = len(set(cfg.pipeline_devices)) else: cfg.pipeline_encoder_devices = utils.eval_str_list( cfg.pipeline_encoder_devices, type=int ) cfg.pipeline_decoder_devices = utils.eval_str_list( cfg.pipeline_decoder_devices, type=int ) num_pipeline_devices = len( set(cfg.pipeline_encoder_devices + cfg.pipeline_decoder_devices) ) gpus_per_node = torch.cuda.device_count() assert ( gpus_per_node >= num_pipeline_devices and gpus_per_node % num_pipeline_devices == 0 ), ( "the number of unique device IDs in --pipeline-devices must evenly divide " "the number of GPUs per node (multi-node pipelining is not yet supported)" ) num_pipelines_per_node = gpus_per_node // num_pipeline_devices return num_pipeline_devices, num_pipelines_per_node def _pipeline_parallel_post_init( cfg: DistributedTrainingConfig, num_pipeline_devices, num_pipelines_per_node ): if not cfg.distributed_no_spawn: # When distributed_no_spawn is False, we expect distributed_rank and # distributed_world_size to be based on the total number of GPUs, so # we need to correct them to be based on the number of pipelines. assert cfg.distributed_world_size % num_pipeline_devices == 0 cfg.distributed_world_size = ( cfg.distributed_world_size // num_pipeline_devices ) # In the case of 4-way MP on nodes with 8 GPUs, we want # distributed_rank to be the starting GPU index for each pipeline # i.e., 0, 2, ... gpus_per_node = torch.cuda.device_count() assert cfg.distributed_rank % gpus_per_node == 0 assert cfg.distributed_rank % num_pipeline_devices == 0 with open_dict(cfg): cfg.distributed_rank = cfg.distributed_rank // num_pipeline_devices # launch one process per pipeline cfg.distributed_num_procs = num_pipelines_per_node # if we have 4-way MP on a node with 8 GPUs, we want device_ids to be 0 # and 4, indicating the starting device IDs for each pipeline cfg.device_id *= num_pipeline_devices if cfg.device_id > 0: # if there's multiple pipelines on a node (e.g., 4-way MP on an 8 # GPU node), we need to adjust pipeline_devices accordingly logger.debug( "setting CUDA device={} on rank {}".format( cfg.device_id, cfg.distributed_rank ) ) torch.cuda.set_device(cfg.device_id) with open_dict(cfg): cfg.pipeline_devices = [cfg.device_id + d for d in cfg.pipeline_devices] logger.info( "setting pipeline_devices={} on rank {}".format( cfg.pipeline_devices, cfg.distributed_rank ) ) def distributed_init(cfg: FairseqConfig): if isinstance(cfg, Namespace): from fairseq.dataclass.utils import convert_namespace_to_omegaconf cfg = convert_namespace_to_omegaconf(cfg) if not cfg.common.tpu: if torch.distributed.is_available() and torch.distributed.is_initialized(): warnings.warn( "Distributed is already initialized, cannot initialize twice!" ) else: logger.info( "distributed init (rank {}): {}".format( cfg.distributed_training.distributed_rank, cfg.distributed_training.distributed_init_method, ) ) dist.init_process_group( backend=cfg.distributed_training.distributed_backend, init_method=cfg.distributed_training.distributed_init_method, world_size=cfg.distributed_training.distributed_world_size, rank=cfg.distributed_training.distributed_rank, ) logger.info( "initialized host {} as rank {}".format( socket.gethostname(), cfg.distributed_training.distributed_rank, ) ) # perform a dummy all-reduce to initialize the NCCL communicator if torch.cuda.is_available(): dist.all_reduce(torch.zeros(1).cuda()) cfg.distributed_training.distributed_rank = torch.distributed.get_rank() else: assert xm.xrt_world_size() == cfg.distributed_training.distributed_world_size global _USE_XLA _USE_XLA = True cfg.distributed_training.device_id = xm.get_local_ordinal() cfg.distributed_training.distributed_rank = xm.get_ordinal() xm.rendezvous("distributed_init") # wait for all workers if is_master(cfg.distributed_training): logging.getLogger().setLevel(logging.INFO) else: logging.getLogger().setLevel(logging.WARNING) if cfg.common.model_parallel_size > 1: try: from fairseq.model_parallel.megatron.mpu import ( initialize_model_parallel, model_parallel_cuda_manual_seed, ) except ImportError: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) global _USE_MEGATRON _USE_MEGATRON = True initialize_model_parallel(cfg.common.model_parallel_size) model_parallel_cuda_manual_seed(cfg.common.seed) model_part_number = get_model_parallel_rank() cfg.checkpoint.checkpoint_suffix += "-model_part-{0}".format(model_part_number) return cfg.distributed_training.distributed_rank def distributed_main(i, main, cfg: FairseqConfig, kwargs): cfg.distributed_training.device_id = i if torch.cuda.is_available() and not cfg.common.cpu and not cfg.common.tpu: torch.cuda.set_device(cfg.distributed_training.device_id) if cfg.distributed_training.distributed_rank is None: # torch.multiprocessing.spawn cfg.distributed_training.distributed_rank = kwargs.pop("start_rank", 0) + i cfg.distributed_training.distributed_rank = distributed_init(cfg) after_distributed_init_fn = kwargs.pop("after_distributed_init_fn", None) if after_distributed_init_fn: cfg = after_distributed_init_fn(cfg) main(cfg, **kwargs) if torch.distributed.is_initialized(): torch.distributed.barrier(get_global_group()) def call_main(cfg: FairseqConfig, main, **kwargs): if cfg.distributed_training.distributed_init_method is None: infer_init_method(cfg.distributed_training) if cfg.distributed_training.distributed_init_method is not None: # distributed training if not cfg.distributed_training.distributed_no_spawn: start_rank = cfg.distributed_training.distributed_rank cfg.distributed_training.distributed_rank = None # assign automatically kwargs["start_rank"] = start_rank torch.multiprocessing.spawn( fn=distributed_main, args=(main, cfg, kwargs), nprocs=min( torch.cuda.device_count(), cfg.distributed_training.distributed_world_size, ), join=True, ) else: distributed_main(cfg.distributed_training.device_id, main, cfg, kwargs) elif cfg.common.tpu and cfg.distributed_training.distributed_world_size > 1: import torch_xla.distributed.xla_multiprocessing as xmp torch.multiprocessing.set_sharing_strategy("file_system") xmp.spawn( fn=distributed_main, args=(main, cfg, kwargs), # tpu-comment: # 8 devices in one TPU VM, is the max processes to be spawned. # The rest is driven by xm.distributed.xla_dist nprocs=min(cfg.distributed_training.distributed_world_size, 8), ) else: # single GPU main main(cfg, **kwargs) def use_xla(): global _USE_XLA return _USE_XLA def new_groups(grouped_ranks: List[List[int]]): if use_xla(): return ("tpu", grouped_ranks) else: groups = [dist.new_group(g) for g in grouped_ranks] my_group_idx = _find_my_group_index(grouped_ranks) return groups[my_group_idx] def _find_my_group_index(grouped_ranks): my_rank = get_global_rank() for i, group in enumerate(grouped_ranks): if my_rank in group: return i raise RuntimeError def _find_my_group(grouped_ranks): index = _find_my_group_index(grouped_ranks) return grouped_ranks[index] def get_rank(group): if use_xla(): assert group[0] == "tpu" my_group = _find_my_group(group[1]) return my_group.index(get_global_rank()) else: return dist.get_rank(group=group) def get_world_size(group): if use_xla(): assert group[0] == "tpu" my_group = _find_my_group(group[1]) return len(my_group) elif torch.distributed.is_initialized(): return dist.get_world_size(group=group) else: return 1 def get_global_group(): if use_xla(): return new_groups([list(range(get_global_world_size()))]) elif torch.distributed.is_initialized(): if not hasattr(get_global_group, "_global_group"): # ideally we could use torch.distributed.group.WORLD, but it seems # to cause random NCCL hangs in some cases get_global_group._global_group = dist.new_group() return get_global_group._global_group else: return None def get_global_rank(): if use_xla(): return xm.get_ordinal() elif torch.distributed.is_initialized(): return torch.distributed.get_rank() else: return 0 def get_global_world_size(): if use_xla(): return xm.xrt_world_size() elif torch.distributed.is_initialized(): return torch.distributed.get_world_size() else: return 1 def get_data_parallel_group(): """Get the data parallel group the caller rank belongs to.""" global _USE_MEGATRON if _USE_MEGATRON: from fairseq.model_parallel.megatron import mpu return mpu.get_data_parallel_group() else: return get_global_group() def get_data_parallel_rank(): """Return my rank for the data parallel group.""" return get_rank(get_data_parallel_group()) def get_data_parallel_world_size(): """Return world size for the data parallel group.""" return get_world_size(get_data_parallel_group()) def get_model_parallel_group(): global _USE_MEGATRON if _USE_MEGATRON: from fairseq.model_parallel.megatron import mpu return mpu.get_model_parallel_group() else: return None def get_model_parallel_rank(): """Return my rank for the model parallel group.""" return get_rank(get_model_parallel_group()) def get_model_parallel_world_size(): """Return world size for the model parallel group.""" return get_world_size(get_model_parallel_group()) def all_reduce(tensor, group, op="sum"): if use_xla(): assert isinstance(group, tuple) and group[0] == "tpu" tensor = [tensor] # wrap in a list to make xm.all_reduce in-place return xm.all_reduce(op, tensor, groups=group[1])[0] else: if op == "sum": op = dist.ReduceOp.SUM elif op == "max": op = dist.ReduceOp.MAX else: raise NotImplementedError dist.all_reduce(tensor, op=op, group=group) return tensor def broadcast(tensor, src, group): if use_xla(): # XLA doesn't support broadcast, hack it with all_reduce if get_rank(group) != src: tensor.zero_() all_reduce(tensor, group) else: dist.broadcast(tensor, src=src, group=group) def all_to_all(tensor, group): """Perform an all-to-all operation on a 1D Tensor.""" assert tensor.dim() == 1 split_count = get_world_size(group=group) assert tensor.numel() % split_count == 0 if use_xla(): assert isinstance(group, tuple) and group[0] == "tpu" return xm.all_to_all( tensor, split_dimension=0, concat_dimension=0, split_count=split_count, groups=group[1], ) else: output = torch.zeros_like(tensor) dist.all_to_all_single(output, tensor, group=group) return output def all_gather(tensor, group, return_tensor=False): """Perform an all-gather operation.""" if use_xla(): result = xm.all_gather(tensor, groups=group[1]) world_size = get_world_size(group=group) result = result.view(world_size, *tensor.size()) if return_tensor: return result else: return [result[i] for i in range(world_size)] else: world_size = get_world_size(group=group) rank = get_rank(group=group) tensor_list = [ tensor if i == rank else torch.empty_like(tensor) for i in range(world_size) ] dist.all_gather(tensor_list, tensor, group=group) if return_tensor: return torch.stack(tensor_list, dim=0) else: return tensor_list def all_gather_list(data, group=None, max_size=16384): """Gathers arbitrary data from all nodes into a list. Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python data. Note that *data* must be picklable and any CUDA tensors will be moved to CPU and returned on CPU as well. Args: data (Any): data from the local worker to be gathered on other workers group: group of the collective max_size (int, optional): maximum size of the data to be gathered across workers """ from fairseq import utils if group is None: group = get_global_group() rank = get_rank(group=group) world_size = get_world_size(group=group) buffer_size = max_size * world_size if ( not hasattr(all_gather_list, "_buffer") or all_gather_list._buffer.numel() < buffer_size ): all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size) all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory() buffer = all_gather_list._buffer buffer.zero_() cpu_buffer = all_gather_list._cpu_buffer data = utils.move_to_cpu(data) enc = pickle.dumps(data) enc_size = len(enc) header_size = 4 # size of header that contains the length of the encoded data size = header_size + enc_size if size > max_size: raise ValueError( "encoded data size ({}) exceeds max_size ({})".format(size, max_size) ) header = struct.pack(">I", enc_size) cpu_buffer[:size] = torch.ByteTensor(list(header + enc)) start = rank * max_size buffer[start : start + size].copy_(cpu_buffer[:size]) all_reduce(buffer, group=group) buffer = buffer.cpu() try: result = [] for i in range(world_size): out_buffer = buffer[i * max_size : (i + 1) * max_size] (enc_size,) = struct.unpack(">I", bytes(out_buffer[:header_size].tolist())) if enc_size > 0: result.append( pickle.loads( bytes(out_buffer[header_size : header_size + enc_size].tolist()) ) ) return result except pickle.UnpicklingError: raise Exception( "Unable to unpickle data from other workers. all_gather_list requires all " "workers to enter the function together, so this error usually indicates " "that the workers have fallen out of sync somehow. Workers can fall out of " "sync if one of them runs out of memory, or if there are other conditions " "in your training script that can cause one worker to finish an epoch " "while other workers are still iterating over their portions of the data. " "Try rerunning with --ddp-backend=legacy_ddp and see if that helps." ) def all_reduce_dict(data: Mapping[str, Any], device, group) -> Dict[str, Any]: """ AllReduce a dictionary of values across workers. We separately reduce items that are already on the device and items on CPU for better performance. Args: data (Mapping[str, Any]): dictionary of data to all-reduce, but cannot be a nested dictionary device (torch.device): device for the reduction group: group of the collective """ data_keys = list(data.keys()) # We want to separately reduce items that are already on the # device and items on CPU for performance reasons. cpu_data = OrderedDict() device_data = OrderedDict() for k in data_keys: t = data[k] if not torch.is_tensor(t): cpu_data[k] = torch.tensor(t, dtype=torch.double) elif t.device.type != device.type: cpu_data[k] = t.to(dtype=torch.double) else: device_data[k] = t.to(dtype=torch.double) def _all_reduce_dict(data: OrderedDict): if len(data) == 0: return data buf = torch.cat([t.view(-1) for t in data.values()]).to(device=device) all_reduce(buf, group=group) split_buf = torch.split(buf, [t.numel() for t in data.values()]) reduced_data = [t.view_as(orig) for t, orig in zip(split_buf, data.values())] return OrderedDict(zip(data.keys(), reduced_data)) cpu_data = _all_reduce_dict(cpu_data) device_data = _all_reduce_dict(device_data) def get_from_stack(key): if key in cpu_data: return cpu_data[key] elif key in device_data: return device_data[key] raise KeyError return OrderedDict([(key, get_from_stack(key)) for key in data_keys]) def broadcast_tensors( tensors: Optional[List[torch.Tensor]], src_rank: int, group: object, dist_device: Optional[torch.device] = None, ) -> List[torch.Tensor]: """ Broadcasts a list of tensors without other (non-src) ranks needing to know the dtypes/shapes of the tensors. """ if dist_device is None: if torch.distributed.get_backend(group) == "nccl": dist_device = torch.device("cuda") else: dist_device = torch.device("cpu") # share metadata first to simplify transfer is_src_rank = (get_rank(group) == src_rank) if is_src_rank: metadata = [ {"size": t.size(), "dtype": t.dtype, "device": t.device} for t in tensors ] metadata = _broadcast_object_slow(metadata, src_rank, group, dist_device) else: metadata = _broadcast_object_slow(None, src_rank, group, dist_device) out_tensors = [] for i, meta in enumerate(metadata): if is_src_rank: tensor = tensors[i] broadcast(tensors[i].to(dist_device), src=src_rank, group=group) else: tensor = torch.zeros( [meta["size"].numel()], dtype=meta["dtype"], device=dist_device ) broadcast(tensor, src=src_rank, group=group) tensor = tensor.view(meta["size"]).to(meta["device"]) out_tensors.append(tensor) return out_tensors def broadcast_object( obj: Any, src_rank: int, group: object, dist_device: Optional[torch.device] = None, ) -> Any: """Broadcast an arbitrary Python object to other workers.""" if dist_device is None: if torch.distributed.get_backend(group) == "nccl": dist_device = torch.device("cuda") else: dist_device = torch.device("cpu") if get_rank(group) == src_rank: # split the tensors from the non-tensors so we can broadcast them # directly, avoiding unnecessary serialization/deserialization tensors = [] obj = _split_tensors_from_obj(obj, tensors) obj = _broadcast_object_slow(obj, src_rank, group, dist_device) tensors = broadcast_tensors(tensors, src_rank, group, dist_device) else: obj = _broadcast_object_slow(None, src_rank, group, dist_device) tensors = broadcast_tensors(None, src_rank, group, dist_device) return _put_tensors_in_obj(obj, tensors) def _broadcast_object_slow( obj: Any, src_rank: int, group: object, dist_device: torch.device, ) -> Any: if get_rank(group) == src_rank: # Emit data buffer = io.BytesIO() torch.save(obj, buffer) buffer = torch.ByteTensor(buffer.getbuffer()).to(dist_device) length = torch.LongTensor([len(buffer)]).to(dist_device) broadcast(length, src=src_rank, group=group) broadcast(buffer, src=src_rank, group=group) else: # Fetch from the source length = torch.LongTensor([0]).to(dist_device) broadcast(length, src=src_rank, group=group) buffer = torch.ByteTensor(int(length.item())).to(dist_device) broadcast(buffer, src=src_rank, group=group) buffer = io.BytesIO(buffer.cpu().numpy()) obj = torch.load(buffer, map_location="cpu") return obj @dataclass(frozen=True) class _TensorPlaceholder: index: int def _split_tensors_from_obj(obj: Any, tensors: List[torch.Tensor]) -> Any: if torch.is_tensor(obj): placeholder = _TensorPlaceholder(index=len(tensors)) tensors.append(obj) return placeholder elif isinstance(obj, dict): return {k: _split_tensors_from_obj(v, tensors) for k, v in obj.items()} elif isinstance(obj, list): return [_split_tensors_from_obj(v, tensors) for v in obj] elif isinstance(obj, tuple): return tuple(_split_tensors_from_obj(v, tensors) for v in obj) elif isinstance(obj, set): return {_split_tensors_from_obj(v, tensors) for v in obj} else: return obj def _put_tensors_in_obj(obj: Any, tensors: List[torch.Tensor]) -> Any: if isinstance(obj, _TensorPlaceholder): return tensors[obj.index] elif isinstance(obj, dict): return {k: _put_tensors_in_obj(v, tensors) for k, v in obj.items()} elif isinstance(obj, list): return [_put_tensors_in_obj(v, tensors) for v in obj] elif isinstance(obj, tuple): return tuple(_put_tensors_in_obj(v, tensors) for v in obj) elif isinstance(obj, set): return {_put_tensors_in_obj(v, tensors) for v in obj} else: return obj
COCO-LM/fairseq/fairseq/distributed/utils.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/distributed/utils.py", "repo_id": "COCO-LM", "token_count": 13032 }
187
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import options, utils from fairseq.modules import ( AdaptiveSoftmax, LayerNorm, MultiheadAttention, PositionalEmbedding, ) EncoderOut = namedtuple( "TransformerEncoderOut", [ "encoder_out", # T x B x C "encoder_padding_mask", # B x T "encoder_embedding", # B x T x C "encoder_states", # List[T x B x C] ], ) class TransformerEncoderEmbedding(nn.Module): """ Encoder Embedding + Positional Embedding """ def __init__(self, args, embed_tokens): super().__init__() self.dropout = args.dropout self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens if isinstance(embed_tokens, nn.ModuleList): self.padding_idx = embed_tokens[0].padding_idx embed_dim = sum(e.embedding_dim for e in embed_tokens) else: self.padding_idx = embed_tokens.padding_idx embed_dim = embed_tokens.embedding_dim self.embed_scale = math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None def forward(self, input): # embed tokens and positions src_tokens = input[0] prev_output_tokens = input[2] if isinstance(self.embed_tokens, nn.ModuleList): x_embed_list = [] for embed_tokens_part in self.embed_tokens: x_embed_list.append(embed_tokens_part(src_tokens)) embedded = torch.cat(x_embed_list, dim=-1) else: embedded = self.embed_tokens(src_tokens) x = embed = self.embed_scale * embedded if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding: x = self.layernorm_embedding(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) return (x, encoder_padding_mask, prev_output_tokens) class TransformerEncoderLayerNorm(nn.Module): """ Layer norm at the the end of all encoder layers if args.encoder_enormalize_before = True """ def __init__(self, args, embed_dim): super().__init__() if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, input): x = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] if self.layer_norm: x = self.layer_norm(x) # keeping track of the incremental_state is not supported yet return (x, encoder_padding_mask, prev_output_tokens) class TransformerDecoderEmbedding(nn.Module): """ Decoder Embedding + Positional Embedding """ def __init__(self, args, embed_tokens): super().__init__() self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = ( sum(e.embedding_dim for e in embed_tokens) if isinstance(embed_tokens, nn.ModuleList) else embed_tokens.embedding_dim ) embed_dim = args.decoder_embed_dim self.output_embed_dim = args.decoder_output_dim padding_idx = ( embed_tokens[0].padding_idx if isinstance(embed_tokens, nn.ModuleList) else embed_tokens.padding_idx ) self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) def forward(self, input): mt_task = False if isinstance(input, tuple): if len(input) == 3: encoder_out = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] incremental_state = None # Hardcoding to avoid passing of None objects mt_task = True else: # HACK for now, need to fix (TODO sidgoyal) prev_output_tokens = input[0] # discard "src_lengths" encoder_out = None encoder_padding_mask = None incremental_state = None else: prev_output_tokens = input encoder_out = None encoder_padding_mask = None incremental_state = None positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions if isinstance(self.embed_tokens, nn.ModuleList): x_embed_list = [] for embed_tokens_part in self.embed_tokens: x_embed_list.append(embed_tokens_part(prev_output_tokens)) x = self.embed_scale * torch.cat(x_embed_list, dim=-1) else: x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) if mt_task: return (x, encoder_out, encoder_padding_mask) return x class TransformerDecoderOutputLayer(nn.Module): def __init__(self, args, embed_tokens, dictionary): super().__init__() self.share_input_output_embed = args.share_decoder_input_output_embed self.embed_tokens = embed_tokens self.output_embed_dim = args.decoder_output_dim embed_dim = args.decoder_embed_dim self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None if args.adaptive_softmax_cutoff is not None: assert not isinstance(embed_tokens, nn.ModuleList) self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, options.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_tokens = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_( self.embed_tokens, mean=0, std=self.output_embed_dim ** -0.5 ) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, input, apply_final_proj=True): if isinstance(input, tuple): x = input[0] else: x = input if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) if apply_final_proj: x = self.output_layer(x) return x def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: if isinstance(self.embed_tokens, nn.ModuleList): output = None for i, emb in enumerate(self.embed_tokens): sidx = i * emb.embedding_dim eidx = (i + 1) * emb.embedding_dim if output is None: output = F.linear(features[:, :, sidx:eidx], emb.weight) else: output += F.linear(features[:, :, sidx:eidx], emb.weight) return output else: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_tokens) else: return features class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, input): """ Args: input (Tuple): input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` input[1] (ByteTensor/FloatTensor): encoder padding mask - binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. input[2] (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing) Returns: output (Tuple): output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)` output[1] (ByteTensor/FloatTensor): encoder padding mask output[2] (LongTensor): previous decoder outputs """ x = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return (x, encoder_padding_mask, prev_output_tokens) def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( embed_dim=self.embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True, ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def forward(self, input): """ Args: input (Tuple): input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` input[1] (Tensor): encoder output of shape `(batch, src_len, embed_dim)` input[2] (ByteTensor/FloatTensor): encoder padding mask - binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: output (Tuple): output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)` output[1] (ByteTensor/FloatTensor): encoder padding mask output[2] (LongTensor): previous decoder outputs """ # Note: incremental state is not yet supported mt_task = False if isinstance(input, tuple): x = input[0] encoder_out = input[1] encoder_padding_mask = input[2] incremental_state = None mt_task = True else: x = input encoder_out = None encoder_padding_mask = None incremental_state = None if incremental_state is None: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None # TODO: add back prev_self_attn_state, prev_attn_state, # self_attn_padding_mask prev_self_attn_state = None prev_attn_state = None self_attn_padding_mask = None residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if prev_self_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_self_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if mt_task: return (x, encoder_out, encoder_padding_mask) return x def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
COCO-LM/fairseq/fairseq/model_parallel/models/pipeline_parallel_transformer/layers.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/model_parallel/models/pipeline_parallel_transformer/layers.py", "repo_id": "COCO-LM", "token_count": 11018 }
188
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import signal import threading import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from fairseq.distributed import ( DistributedTimeoutWrapper, LegacyDistributedDataParallel, ModuleProxyWrapper, TPUDistributedDataParallel, ) logger = logging.getLogger(__name__) _GOSSIP_DISABLED = False try: import gossip except ImportError: _GOSSIP_DISABLED = True def DistributedFairseqModel(args, model, process_group, device): """ Wrap a *model* to support distributed data parallel training. This is similar to the built-in DistributedDataParallel, but allows additional configuration of the DistributedDataParallel class to use, and also provides easier access to the wrapped model by forwarding requests for missing attributes to the wrapped model. Args: args (argparse.Namespace): fairseq args model (BaseFairseqModel): model to wrap process_group: the c10d process group to be used for distributed data parallel all-reduction. device: device to move model to """ assert isinstance(model, nn.Module) if args.tpu: wrapped_model = TPUDistributedDataParallel( module=model.to(device), process_group=process_group, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend in {"c10d", "pytorch_ddp"}: wrapped_model = DistributedDataParallel( module=model.to(device), device_ids=[args.device_id], output_device=args.device_id, broadcast_buffers=args.broadcast_buffers, bucket_cap_mb=args.bucket_cap_mb, process_group=process_group, find_unused_parameters=args.find_unused_parameters, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend in {"no_c10d", "legacy_ddp"}: wrapped_model = LegacyDistributedDataParallel( module=model.to(device), buffer_size=2 ** 28, process_group=process_group, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend == "slow_mo": if _GOSSIP_DISABLED: raise ImportError( "Cannot find gossip library. Please install from: " "github.com/facebookresearch/stochastic_gradient_push" ) # The values of slowmo_momentum below were obtained by tuning on the # En-De 16 dataset by training the transformer_wmt_en_de_large model if args.slowmo_momentum is None: if args.distributed_world_size <= 16: args.slowmo_momentum = 0.0 elif args.distributed_world_size <= 32: args.slowmo_momentum = 0.2 elif args.distributed_world_size <= 64: args.slowmo_momentum = 0.5 else: args.slowmo_momentum = 0.6 wrapped_model = gossip.GossipDataParallel( module=model.to(device), device_ids=[args.device_id], output_device=args.device_id, broadcast_buffers=args.broadcast_buffers, nprocs_per_node=args.nprocs_per_node, slowmo_momentum=args.slowmo_momentum, localsgd=(args.slowmo_algorithm == "LocalSGD"), localsgd_frequency=args.localsgd_frequency, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend == "fully_sharded": try: from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP except ImportError: raise ImportError( "Cannot find FullyShardedDataParallel. " "Please install fairscale with: pip install fairscale" ) assert isinstance(model, FSDP), "expected model to already be wrapped in FSDP" wrapped_model = model if args.memory_efficient_fp16: wrapped_model = wrapped_model.half() if not args.cpu_offload: wrapped_model = wrapped_model.to(device=device) else: raise ValueError("Unknown --ddp-backend: " + args.ddp_backend) # kill hung distributed jobs after a timeout if getattr(args, "heartbeat_timeout", -1) > 0: wrapped_model = DistributedTimeoutWrapper( wrapped_model, timeout=getattr(args, "heartbeat_timeout", -1) ) return wrapped_model
COCO-LM/fairseq/fairseq/models/distributed_fairseq_model.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/distributed_fairseq_model.py", "repo_id": "COCO-LM", "token_count": 2076 }
189
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from fairseq import utils from fairseq.models import ( FairseqMultiModel, register_model, register_model_architecture, ) from fairseq.models.transformer import ( Embedding, TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture, ) @register_model("multilingual_transformer") class MultilingualTransformerModel(FairseqMultiModel): """Train Transformer models for multiple language pairs simultaneously. Requires `--task multilingual_translation`. We inherit all arguments from TransformerModel and assume that all language pairs use a single Transformer architecture. In addition, we provide several options that are specific to the multilingual setting. Args: --share-encoder-embeddings: share encoder embeddings across all source languages --share-decoder-embeddings: share decoder embeddings across all target languages --share-encoders: share all encoder params (incl. embeddings) across all source languages --share-decoders: share all decoder params (incl. embeddings) across all target languages """ def __init__(self, encoders, decoders): super().__init__(encoders, decoders) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" TransformerModel.add_args(parser) parser.add_argument( "--share-encoder-embeddings", action="store_true", help="share encoder embeddings across languages", ) parser.add_argument( "--share-decoder-embeddings", action="store_true", help="share decoder embeddings across languages", ) parser.add_argument( "--share-encoders", action="store_true", help="share encoders across languages", ) parser.add_argument( "--share-decoders", action="store_true", help="share decoders across languages", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" from fairseq.tasks.multilingual_translation import MultilingualTranslationTask assert isinstance(task, MultilingualTranslationTask) # make sure all arguments are present in older models base_multilingual_architecture(args) if not hasattr(args, "max_source_positions"): args.max_source_positions = 1024 if not hasattr(args, "max_target_positions"): args.max_target_positions = 1024 src_langs = [lang_pair.split("-")[0] for lang_pair in task.model_lang_pairs] tgt_langs = [lang_pair.split("-")[1] for lang_pair in task.model_lang_pairs] if args.share_encoders: args.share_encoder_embeddings = True if args.share_decoders: args.share_decoder_embeddings = True def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb # build shared embeddings (if applicable) shared_encoder_embed_tokens, shared_decoder_embed_tokens = None, None if args.share_all_embeddings: if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings( dicts=task.dicts, langs=task.langs, embed_dim=args.encoder_embed_dim, build_embedding=build_embedding, pretrained_embed_path=args.encoder_embed_path, ) shared_decoder_embed_tokens = shared_encoder_embed_tokens args.share_decoder_input_output_embed = True else: if args.share_encoder_embeddings: shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings( dicts=task.dicts, langs=src_langs, embed_dim=args.encoder_embed_dim, build_embedding=build_embedding, pretrained_embed_path=args.encoder_embed_path, ) if args.share_decoder_embeddings: shared_decoder_embed_tokens = FairseqMultiModel.build_shared_embeddings( dicts=task.dicts, langs=tgt_langs, embed_dim=args.decoder_embed_dim, build_embedding=build_embedding, pretrained_embed_path=args.decoder_embed_path, ) # encoders/decoders for each language lang_encoders, lang_decoders = {}, {} def get_encoder(lang): if lang not in lang_encoders: if shared_encoder_embed_tokens is not None: encoder_embed_tokens = shared_encoder_embed_tokens else: encoder_embed_tokens = build_embedding( task.dicts[lang], args.encoder_embed_dim, args.encoder_embed_path, ) lang_encoders[lang] = cls._get_module_class( True, args, task.dicts[lang], encoder_embed_tokens, src_langs ) return lang_encoders[lang] def get_decoder(lang): if lang not in lang_decoders: if shared_decoder_embed_tokens is not None: decoder_embed_tokens = shared_decoder_embed_tokens else: decoder_embed_tokens = build_embedding( task.dicts[lang], args.decoder_embed_dim, args.decoder_embed_path, ) lang_decoders[lang] = cls._get_module_class( False, args, task.dicts[lang], decoder_embed_tokens, tgt_langs ) return lang_decoders[lang] # shared encoders/decoders (if applicable) shared_encoder, shared_decoder = None, None if args.share_encoders: shared_encoder = get_encoder(src_langs[0]) if args.share_decoders: shared_decoder = get_decoder(tgt_langs[0]) encoders, decoders = OrderedDict(), OrderedDict() for lang_pair, src, tgt in zip(task.model_lang_pairs, src_langs, tgt_langs): encoders[lang_pair] = ( shared_encoder if shared_encoder is not None else get_encoder(src) ) decoders[lang_pair] = ( shared_decoder if shared_decoder is not None else get_decoder(tgt) ) return MultilingualTransformerModel(encoders, decoders) @classmethod def _get_module_class(cls, is_encoder, args, lang_dict, embed_tokens, langs): module_class = TransformerEncoder if is_encoder else TransformerDecoder return module_class(args, lang_dict, embed_tokens) def load_state_dict(self, state_dict, strict=True, model_cfg=None): state_dict_subset = state_dict.copy() for k, _ in state_dict.items(): assert k.startswith("models.") lang_pair = k.split(".")[1] if lang_pair not in self.models: del state_dict_subset[k] super().load_state_dict(state_dict_subset, strict=strict, model_cfg=model_cfg) @register_model_architecture("multilingual_transformer", "multilingual_transformer") def base_multilingual_architecture(args): base_architecture(args) args.share_encoder_embeddings = getattr(args, "share_encoder_embeddings", False) args.share_decoder_embeddings = getattr(args, "share_decoder_embeddings", False) args.share_encoders = getattr(args, "share_encoders", False) args.share_decoders = getattr(args, "share_decoders", False) @register_model_architecture( "multilingual_transformer", "multilingual_transformer_iwslt_de_en" ) def multilingual_transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_multilingual_architecture(args)
COCO-LM/fairseq/fairseq/models/multilingual_transformer.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/multilingual_transformer.py", "repo_id": "COCO-LM", "token_count": 4430 }
190
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ GottBERT: a pure German Language Model """ from fairseq.models import register_model from .hub_interface import RobertaHubInterface from .model import RobertaModel @register_model('gottbert') class GottbertModel(RobertaModel): @classmethod def hub_models(cls): return { 'gottbert-base': 'https://dl.gottbert.de/fairseq/models/gottbert-base.tar.gz', } @classmethod def from_pretrained(cls, model_name_or_path, checkpoint_file='model.pt', data_name_or_path='.', bpe='hf_byte_bpe', bpe_vocab='vocab.json', bpe_merges='merges.txt', bpe_add_prefix_space=False, **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, bpe_vocab=bpe_vocab, bpe_merges=bpe_merges, bpe_add_prefix_space=bpe_add_prefix_space, **kwargs, ) return RobertaHubInterface(x['args'], x['task'], x['models'][0])
COCO-LM/fairseq/fairseq/models/roberta/model_gottbert.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/roberta/model_gottbert.py", "repo_id": "COCO-LM", "token_count": 790 }
191
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import logging import math from typing import Optional, Tuple from omegaconf import II import sys import torch import torch.nn as nn import torch.nn.functional as F from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, GumbelVectorQuantizer, KmeansVectorQuantizer, TransposeLast, ) from fairseq.tasks import FairseqTask from fairseq.utils import buffered_arange logger = logging.getLogger(__name__) AGGREGATOR_CHOICES = ChoiceEnum(["cnn", "gru"]) PROJECT_FEATURES_CHOICES = ChoiceEnum(["none", "same", "new"]) ACTIVATION_CHOICES = ChoiceEnum(["relu", "gelu"]) VQ_TYPE_CHOICES = ChoiceEnum(["none", "gumbel", "kmeans"]) @dataclass class Wav2VecConfig(FairseqDataclass): prediction_steps: int = field( default=12, metadata={"help": "number of steps ahead to predict"} ) sample_distance: Optional[int] = field( default=None, metadata={ "help": "sample distance from target. does not work properly with cross-sampling" }, ) cross_sample_negatives: int = field( default=0, metadata={"help": "num of cross sampled negatives"} ) num_negatives: int = field( default=10, metadata={"help": "num of cross sampled negatives"} ) conv_feature_layers: str = field( default="[(512, 10, 5), (512, 8, 4), (512, 4, 2), (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1), (512, 1, 1)]", metadata={ "help": "convolutional feature extraction layers [(dim, kernel_size, stride), ...]" }, ) conv_aggregator_layers: str = field( default="[(512, 2, 1), (512, 3, 1), (512, 4, 1), (512, 5, 1), (512, 6, 1), (512, 7, 1), (512, 8, 1), (512, 9, 1), (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]", metadata={ "help": "convolutional aggregator layers [(dim, kernel_size, stride), ...]" }, ) dropout: float = field( default=0.0, metadata={"help": "dropout to apply within the model"} ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features"} ) dropout_agg: float = field( default=0.0, metadata={"help": "dropout to apply after aggregation step"} ) aggregator: AGGREGATOR_CHOICES = field( default="cnn", metadata={"help": "type of aggregator to use"} ) gru_dim: int = field(default=512, metadata={"help": "GRU dimensionality"}) no_conv_bias: bool = field( default=False, metadata={"help": "if set, does not learn bias for conv layers"} ) agg_zero_pad: bool = field( default=False, metadata={"help": "if set, zero pads in aggregator instead of repl pad"}, ) skip_connections_feat: bool = field( default=False, metadata={"help": "if set, adds skip connections to the feature extractor"}, ) skip_connections_agg: bool = field( default=True, metadata={"help": "if set, adds skip connections to the aggregator"}, ) residual_scale: float = field( default=0.5, metadata={"help": "scales residual by sqrt(value)"} ) log_compression: bool = field( default=True, metadata={"help": "if set, adds a log compression to feature extractor"}, ) balanced_classes: bool = field( default=False, metadata={"help": "if set, loss is scaled to balance for number of negatives"}, ) project_features: PROJECT_FEATURES_CHOICES = field( default="none", metadata={ "help": "if not none, features are projected using the (same or new) aggregator" }, ) non_affine_group_norm: bool = field( default=False, metadata={"help": "if set, group norm is not affine"} ) offset: str = field( default="auto", metadata={ "help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" }, ) activation: ACTIVATION_CHOICES = field( default="relu", metadata={ "help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" }, ) vq_type: VQ_TYPE_CHOICES = field( default="none", metadata={"help": "which type of quantizer to use"} ) vq_vars: int = field( default=320, metadata={"help": "project to this many vector quantized variables per group"}, ) vq_groups: int = field( default=2, metadata={"help": "number of groups of latent variables"} ) vq_dim: int = field( default=0, metadata={ "help": "uses this dimensionality for quantized vectors. 0 to use model dim // groups" }, ) vq_depth: int = field( default=1, metadata={"help": "number of layers for vq weight projection"} ) combine_groups: bool = field( default=False, metadata={"help": "if set, variables are shared among groups"} ) vq_temp: Tuple[float, float, float] = field( default=(2.0, 0.5, 0.999995), metadata={ "help": "temperature for latent variable sampling with gumbel softmax. should be a tuple of 3 values (start, end, decay)" }, ) vq_gamma: float = field( default=0.25, metadata={"help": "gamma parameter for kmeans style vector quantization"}, ) infonce: bool = II("criterion.infonce") @register_model("wav2vec", dataclass=Wav2VecConfig) class Wav2VecModel(BaseFairseqModel): @classmethod def build_model(cls, cfg: Wav2VecConfig, task: FairseqTask): """Build a new model instance.""" model = Wav2VecModel(cfg) logger.info(model) return model def __init__(self, cfg: Wav2VecConfig): super().__init__() self.prediction_steps = cfg.prediction_steps offset = cfg.offset if cfg.activation == "relu": activation = nn.ReLU() elif cfg.activation == "gelu": activation = nn.GELU() else: raise Exception("unknown activation " + cfg.activation) feature_enc_layers = eval(cfg.conv_feature_layers) self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, log_compression=cfg.log_compression, skip_connections=cfg.skip_connections_feat, residual_scale=cfg.residual_scale, non_affine_group_norm=cfg.non_affine_group_norm, activation=activation, ) embed = feature_enc_layers[-1][0] self.vector_quantizer = None if cfg.vq_type == "gumbel": self.vector_quantizer = GumbelVectorQuantizer( dim=embed, num_vars=cfg.vq_vars, temp=cfg.vq_temp, groups=cfg.vq_groups, combine_groups=cfg.combine_groups, vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, time_first=False, activation=activation, weight_proj_depth=cfg.vq_depth, weight_proj_factor=2, ) elif cfg.vq_type == "kmeans": self.vector_quantizer = KmeansVectorQuantizer( dim=embed, num_vars=cfg.vq_vars, groups=cfg.vq_groups, combine_groups=cfg.combine_groups, vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, time_first=False, gamma=cfg.vq_gamma, ) else: assert ( cfg.vq_type == "none" or cfg.vq_type is None ), "Unknown quantizer type" if cfg.offset == "auto": jin = 0 rin = 0 for _, k, stride in feature_enc_layers: if rin == 0: rin = k rin = rin + (k - 1) * jin if jin == 0: jin = stride else: jin *= stride offset = math.ceil(rin / jin) offset = int(offset) def make_aggregator(): if cfg.aggregator == "cnn": agg_layers = eval(cfg.conv_aggregator_layers) agg_dim = agg_layers[-1][0] feature_aggregator = ConvAggegator( conv_layers=agg_layers, embed=embed, dropout=cfg.dropout, skip_connections=cfg.skip_connections_agg, residual_scale=cfg.residual_scale, non_affine_group_norm=cfg.non_affine_group_norm, conv_bias=not cfg.no_conv_bias, zero_pad=cfg.agg_zero_pad, activation=activation, ) elif cfg.aggregator == "gru": agg_dim = cfg.gru_dim feature_aggregator = nn.Sequential( TransposeLast(), nn.GRU( input_size=embed, hidden_size=agg_dim, num_layers=1, dropout=cfg.dropout, ), TransposeLast(deconstruct_idx=0), ) else: raise Exception("unknown aggregator type " + cfg.aggregator) return feature_aggregator, agg_dim self.feature_aggregator, agg_dim = make_aggregator() self.wav2vec_predictions = Wav2VecPredictionsModel( in_dim=agg_dim, out_dim=embed, prediction_steps=cfg.prediction_steps, n_negatives=cfg.num_negatives, cross_sample_negatives=cfg.cross_sample_negatives, sample_distance=cfg.sample_distance, dropout=cfg.dropout, offset=offset, balanced_classes=cfg.balanced_classes, infonce=cfg.infonce, ) self.dropout_feats = nn.Dropout(p=cfg.dropout_features) self.dropout_agg = nn.Dropout(p=cfg.dropout_agg) if cfg.project_features == "none": self.project_features = None elif cfg.project_features == "same": self.project_features = self.feature_aggregator elif cfg.project_features == "new": self.project_features, _ = make_aggregator() def forward(self, source): result = {} features = self.feature_extractor(source) if self.vector_quantizer: q_res = self.vector_quantizer(features) features = q_res["x"] for k in q_res.keys(): if k != "x": result[k] = q_res[k] x = self.dropout_feats(features) x = self.feature_aggregator(x) x = self.dropout_agg(x) if self.project_features is not None: features = self.project_features(features) x, targets = self.wav2vec_predictions(x, features) result["cpc_logits"] = x result["cpc_targets"] = targets return result def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) def max_positions(self): """Maximum length supported by the model.""" return sys.maxsize def get_logits(self, net_output): logits = net_output["cpc_logits"] return logits def get_targets(self, sample, net_output): t = net_output["cpc_targets"] if isinstance(t, tuple): t = t[0] return t.contiguous() def get_target_weights(self, targets, net_output): targets = net_output["cpc_targets"] if isinstance(targets, tuple) and targets[-1] is not None: return targets[-1] return None def get_extra_losses(self, net_output): loss = None if "prob_perplexity" in net_output: loss = net_output["num_vars"] - net_output["prob_perplexity"] elif "kmeans_loss" in net_output: loss = net_output["kmeans_loss"] return loss def norm_block(is_layer_norm, dim, affine=True): if is_layer_norm: mod = nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=affine), TransposeLast(), ) else: mod = Fp32GroupNorm(1, dim, affine=affine) return mod class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers, dropout, log_compression, skip_connections, residual_scale, non_affine_group_norm, activation, ): super().__init__() def block(n_in, n_out, k, stride): return nn.Sequential( nn.Conv1d(n_in, n_out, k, stride=stride, bias=False), nn.Dropout(p=dropout), norm_block( is_layer_norm=False, dim=n_out, affine=not non_affine_group_norm ), activation, ) in_d = 1 self.conv_layers = nn.ModuleList() for dim, k, stride in conv_layers: self.conv_layers.append(block(in_d, dim, k, stride)) in_d = dim self.log_compression = log_compression self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: residual = x x = conv(x) if self.skip_connections and x.size(1) == residual.size(1): tsz = x.size(2) r_tsz = residual.size(2) residual = residual[..., :: r_tsz // tsz][..., :tsz] x = (x + residual) * self.residual_scale if self.log_compression: x = x.abs() x = x + 1 x = x.log() return x class ZeroPad1d(nn.Module): def __init__(self, pad_left, pad_right): super().__init__() self.pad_left = pad_left self.pad_right = pad_right def forward(self, x): return F.pad(x, (self.pad_left, self.pad_right)) class ConvAggegator(nn.Module): def __init__( self, conv_layers, embed, dropout, skip_connections, residual_scale, non_affine_group_norm, conv_bias, zero_pad, activation, ): super().__init__() def block(n_in, n_out, k, stride): # padding dims only really make sense for stride = 1 ka = k // 2 kb = ka - 1 if k % 2 == 0 else ka pad = ( ZeroPad1d(ka + kb, 0) if zero_pad else nn.ReplicationPad1d((ka + kb, 0)) ) return nn.Sequential( pad, nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias), nn.Dropout(p=dropout), norm_block(False, n_out, affine=not non_affine_group_norm), activation, ) in_d = embed self.conv_layers = nn.ModuleList() self.residual_proj = nn.ModuleList() for dim, k, stride in conv_layers: if in_d != dim and skip_connections: self.residual_proj.append(nn.Conv1d(in_d, dim, 1, bias=False)) else: self.residual_proj.append(None) self.conv_layers.append(block(in_d, dim, k, stride)) in_d = dim self.conv_layers = nn.Sequential(*self.conv_layers) self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): for rproj, conv in zip(self.residual_proj, self.conv_layers): residual = x x = conv(x) if self.skip_connections: if rproj is not None: residual = rproj(residual) x = (x + residual) * self.residual_scale return x class Wav2VecPredictionsModel(nn.Module): def __init__( self, in_dim, out_dim, prediction_steps, n_negatives, cross_sample_negatives, sample_distance, dropout, offset, balanced_classes, infonce, ): super().__init__() self.n_negatives = n_negatives self.cross_sample_negatives = cross_sample_negatives self.sample_distance = sample_distance self.project_to_steps = nn.ConvTranspose2d( in_dim, out_dim, (1, prediction_steps) ) self.dropout = nn.Dropout(p=dropout) self.offset = offset self.balanced_classes = balanced_classes self.infonce = infonce def sample_negatives(self, y): bsz, fsz, tsz = y.shape y = y.transpose(0, 1) # BCT -> CBT y = y.contiguous().view(fsz, -1) # CBT => C(BxT) cross_high = tsz * bsz high = tsz if self.sample_distance is None else min(tsz, self.sample_distance) assert high > 1 neg_idxs = torch.randint(low=0, high=high, size=(bsz, self.n_negatives * tsz)) with torch.no_grad(): if self.n_negatives > 0: tszs = ( buffered_arange(tsz) .unsqueeze(-1) .expand(-1, self.n_negatives) .flatten() ) neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * tsz) ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = ( buffered_arange(tsz) .unsqueeze(-1) .expand(-1, self.cross_sample_negatives) .flatten() ) cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * tsz), ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: for i in range(1, bsz): neg_idxs[i] += i * high else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs = y[..., neg_idxs.view(-1)] negs = negs.view( fsz, bsz, self.n_negatives + self.cross_sample_negatives, tsz ).permute( 2, 1, 0, 3 ) # to NxBxCxT return negs def forward(self, x, y): x = x.unsqueeze(-1) x = self.project_to_steps(x) # BxCxTxS x = self.dropout(x) negatives = self.sample_negatives(y) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) # Copies x B x C x T copies = targets.size(0) bsz, dim, tsz, steps = x.shape steps = min(steps, tsz - self.offset) predictions = x.new( bsz * copies * (tsz - self.offset + 1) * steps - ((steps + 1) * steps // 2) * copies * bsz ) if self.infonce: labels = predictions.new_full( (predictions.shape[0] // copies,), 0, dtype=torch.long ) else: labels = torch.zeros_like(predictions) weights = ( torch.full_like(labels, 1 / self.n_negatives) if self.balanced_classes and not self.infonce else None ) start = end = 0 for i in range(steps): offset = i + self.offset end = start + (tsz - offset) * bsz * copies if self.infonce: predictions[start:end] = torch.einsum( "bct,nbct->tbn", x[..., :-offset, i], targets[..., offset:] ).flatten() else: pos_num = (end - start) // copies predictions[start:end] = torch.einsum( "bct,nbct->nbt", x[..., :-offset, i], targets[..., offset:] ).flatten() labels[start : start + pos_num] = 1.0 if weights is not None: weights[start : start + pos_num] = 1.0 start = end assert end == predictions.numel(), "{} != {}".format(end, predictions.numel()) if self.infonce: predictions = predictions.view(-1, copies) else: if weights is not None: labels = (labels, weights) return predictions, labels
COCO-LM/fairseq/fairseq/models/wav2vec/wav2vec.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/wav2vec/wav2vec.py", "repo_id": "COCO-LM", "token_count": 10600 }
192
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def gen_forward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] blocks = [32, 64, 128, 256] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "dynamicconv_cuda.cuh" std::vector<at::Tensor> dynamicconv_cuda_forward(at::Tensor input, at::Tensor weight, int padding_l) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = weight.size(1); const auto filterSize = weight.size(2); const auto numFiltersInBlock = numFeatures / numHeads; const dim3 blocks(minibatch, numFeatures); auto output = at::zeros_like(input); auto stream = at::cuda::getCurrentCUDAStream(); """ switch = """ switch(filterSize) { """ case_k = """ case {k}: """ main_block = """ if (padding_l == {pad}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "dynamicconv_forward", ([&] {{ dynamicconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), weight.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, output.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl; } break;\n """ end = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl; } return {output}; } """ with open("dynamicconv_cuda_forward.cu", "w") as forward: forward.write(head) forward.write(switch) for k in kernels: b_size = 32 for b in blocks: if b > k: b_size = b break forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=b_size, pad=pad)) forward.write(bad_padding) forward.write(end) def gen_backward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] thresh = [512, 512, 512, 512, 512, 380, 256, 256] min_block = [64, 64, 64, 64, 64, 64, 128, 256] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "dynamicconv_cuda.cuh" std::vector<at::Tensor> dynamicconv_cuda_backward(at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor weight) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = weight.size(1); const auto filterSize = weight.size(2); const auto numFiltersInBlock = numFeatures / numHeads; auto numChunks = 1; auto gradInput = at::zeros_like(input); auto gradWeight = at::zeros_like(weight); auto stream = at::cuda::getCurrentCUDAStream(); dim3 blocks(minibatch, numHeads, numChunks); """ sequence_if = """ if (sequenceLength < {seq}) {{ switch(filterSize) {{ """ case_k = """ case {k}: """ chunks_reset = """ numChunks = int(ceilf(sequenceLength/float({b_size}))); blocks = dim3(minibatch, numHeads, numChunks); """ main_block = """ if (padding_l == {p}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(gradOutput.scalar_type(), "dynamicconv_backward", ([&] {{ dynamicconv_backward_kernel<{k}, {b_size}, {p}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( gradOutput.data<scalar_t>(), input.data<scalar_t>(), weight.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, gradWeight.data<scalar_t>(), gradInput.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl; } break;\n """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl; } """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ last_return = """ } return {gradInput, gradWeight}; } """ with open("dynamicconv_cuda_backward.cu", "w") as backward: backward.write(head) for seq in seqs: backward.write(sequence_if.format(seq=seq)) for k, t, m in zip(kernels, thresh, min_block): backward.write(case_k.format(k=k)) if seq <= t: b_size = seq else: b_size = m backward.write(chunks_reset.format(b_size=b_size)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=b_size, p=p)) backward.write(bad_padding) backward.write(bad_filter) backward.write(con_else) backward.write(final_else) for k, m in zip(kernels, min_block): backward.write(case_k.format(k=k)) backward.write(chunks_reset.format(b_size=m)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=m, p=p)) backward.write(bad_padding) backward.write(bad_filter) backward.write(last_return) if __name__ == "__main__": gen_forward() gen_backward()
COCO-LM/fairseq/fairseq/modules/dynamicconv_layer/cuda_function_gen.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/dynamicconv_layer/cuda_function_gen.py", "repo_id": "COCO-LM", "token_count": 3476 }
193
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class PQConv2d(nn.Module): """ Quantized counterpart of nn.Conv2d module. Stores the centroid, the assignments and the non-quantized biases. The full weight is re-instantiated at each forward pass and autograd automatically computes the gradients with respect to the centroids. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_channels x n_blocks - bias: the non-quantized bias, must be either torch.Tensor or None Remarks: - We refer the reader to the official documentation of the nn.Conv2d module for the other arguments and the behavior of the module. - Performance tests on GPU show that this implementation is 10% slower than the non-quantized nn.Conv2d module for a standard training loop. - During the backward, the gradients are averaged by cluster and not summed. This explains the hook registered to the centroids. """ def __init__( self, centroids, assignments, bias, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode="zeros", ): super(PQConv2d, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.padding_mode = padding_mode # check compatibility if in_channels // groups * np.prod(self.kernel_size) % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % out_channels != 0: raise ValueError("Wrong PQ sizes") if in_channels % groups != 0: raise ValueError("in_channels must be divisible by groups") if out_channels % groups != 0: raise ValueError("out_channels must be divisible by groups") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) if bias is not None: self.bias = nn.Parameter(bias) else: self.register_parameter("bias", None) # register hook for averaging gradients per centroids instead of summing self.centroids.register_hook(lambda x: x / self.counts[:, None]) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.out_channels, self.block_size) .permute(1, 0, 2) .reshape( self.out_channels, self.in_channels // self.groups, *self.kernel_size ) ) def forward(self, x): return F.conv2d( x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def extra_repr(self): s = "{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}" if self.padding != (0,) * len(self.padding): s += ", padding={padding}" if self.dilation != (1,) * len(self.dilation): s += ", dilation={dilation}" if self.groups != 1: s += ", groups={groups}" if self.bias is None: s += ", bias=False" if self.padding_mode != "zeros": s += ", padding_mode={padding_mode}" s += ", n_centroids={n_centroids}, block_size={block_size}" return s.format(**self.__dict__)
COCO-LM/fairseq/fairseq/modules/quantization/pq/modules/qconv.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/quantization/pq/modules/qconv.py", "repo_id": "COCO-LM", "token_count": 1860 }
194
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Optional import torch import torch.onnx.operators from fairseq import utils from torch import Tensor, nn class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx if padding_idx is not None else 0 self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx ) self.onnx_trace = False self.register_buffer("_float_tensor", torch.FloatTensor(1)) self.max_positions = int(1e5) def prepare_for_onnx_export_(self): self.onnx_trace = True @staticmethod def get_embedding( num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None ): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( 1 ) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( num_embeddings, -1 ) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward( self, input, incremental_state: Optional[Any] = None, timestep: Optional[Tensor] = None, positions: Optional[Any] = None, ): """Input is expected to be of size [bsz x seqlen].""" bspair = torch.onnx.operators.shape_as_tensor(input) bsz, seq_len = bspair[0], bspair[1] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len if self.onnx_trace: return ( self.weights.index_select(index=self.padding_idx + pos, dim=0) .unsqueeze(1) .repeat(bsz, 1, 1) ) return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) if self.onnx_trace: flat_embeddings = self.weights.detach().index_select(0, positions.view(-1)) embedding_shape = torch.cat( (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long)) ) embeddings = torch.onnx.operators.reshape_from_tensor_shape( flat_embeddings, embedding_shape ) return embeddings return ( self.weights.index_select(0, positions.view(-1)) .view(bsz, seq_len, -1) .detach() )
COCO-LM/fairseq/fairseq/modules/sinusoidal_positional_embedding.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/sinusoidal_positional_embedding.py", "repo_id": "COCO-LM", "token_count": 1835 }
195
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from collections.abc import Collection from dataclasses import dataclass, field from typing import List import torch import torch.distributed as dist import torch.optim from fairseq.dataclass import FairseqDataclass from fairseq.optim import FairseqOptimizer, register_optimizer from fairseq.optim.fused_adam import get_fused_adam_class from omegaconf import II, DictConfig logger = logging.getLogger(__name__) @dataclass class FairseqAdamConfig(FairseqDataclass): adam_betas: str = field( default="(0.9, 0.999)", metadata={"help": "betas for Adam optimizer"} ) adam_eps: float = field( default=1e-8, metadata={"help": "epsilon for Adam optimizer"} ) weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) use_old_adam: bool = field( default=False, metadata={"help": "Use fairseq.optim.adam.Adam"} ) # TODO common vars below in parent tpu: bool = II("common.tpu") lr: List[float] = II("optimization.lr") @register_optimizer("adam", dataclass=FairseqAdamConfig) class FairseqAdam(FairseqOptimizer): """Adam optimizer for fairseq. Important note: this optimizer corresponds to the "AdamW" variant of Adam in its weight decay behavior. As such, it is most closely analogous to torch.optim.AdamW from PyTorch. """ def __init__(self, cfg: DictConfig, params): super().__init__(cfg) fused_adam_cls = get_fused_adam_class() use_fused_adam = ( not getattr(cfg, "use_old_adam", False) and fused_adam_cls is not None and torch.cuda.is_available() ) if getattr(cfg, "tpu", False): # on TPUs we use the Adam defined here, since it # automatically casts gradients to FP32 self._optimizer = Adam(params, **self.optimizer_config) elif use_fused_adam: logger.info("using FusedAdam") self._optimizer = fused_adam_cls(params, **self.optimizer_config) else: self._optimizer = Adam(params, **self.optimizer_config) @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "betas": eval(self.cfg.adam_betas), "eps": self.cfg.adam_eps, "weight_decay": self.cfg.weight_decay, } def average_params(self): """Reduce Params is only used during BMUF distributed training.""" state_dict = self.optimizer.state_dict() total_gpus = float(dist.get_world_size()) for _, value in state_dict["state"].items(): value["exp_avg"] /= total_gpus value["exp_avg_sq"] /= total_gpus dist.all_reduce(value["exp_avg"], op=dist.ReduceOp.SUM) dist.all_reduce(value["exp_avg_sq"], op=dist.ReduceOp.SUM) class Adam(torch.optim.Optimizer): r"""Implements Adam algorithm. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, ): defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad ) super(Adam, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group.get("amsgrad", False) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) if amsgrad: state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( p_data_fp32 ) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
COCO-LM/fairseq/fairseq/optim/adam.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/optim/adam.py", "repo_id": "COCO-LM", "token_count": 4083 }
196
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class PassThroughScheduleConfig(FairseqDataclass): pass @register_lr_scheduler("pass_through", dataclass=PassThroughScheduleConfig) class PassThroughScheduleSchedule(FairseqLRScheduler): """Delegate lr scheduling to the optimizer.""" def __init__(self, cfg: PassThroughScheduleConfig, optimizer): super().__init__(cfg, optimizer) assert ( hasattr(optimizer, "lr_scheduler") and optimizer.lr_scheduler is not None ), "Pass-through schedule can only be used with optimizers with their own schedulers" def state_dict(self): return self.optimizer.lr_scheduler.state_dict() def load_state_dict(self, state_dict): self.optimizer.lr_scheduler.load_state_dict(state_dict) def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" return self.optimizer.lr_scheduler.step_begin_epoch(epoch) def step_update(self, num_updates): """Update the learning rate after each update.""" return self.optimizer.lr_scheduler.step_update(num_updates)
COCO-LM/fairseq/fairseq/optim/lr_scheduler/pass_through.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/optim/lr_scheduler/pass_through.py", "repo_id": "COCO-LM", "token_count": 507 }
197
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from fairseq.dataclass import FairseqDataclass from fairseq.scoring import BaseScorer, register_scorer from fairseq.scoring.tokenizer import EvaluationTokenizer @dataclass class WerScorerConfig(FairseqDataclass): wer_tokenizer: EvaluationTokenizer.ALL_TOKENIZER_TYPES = field( default="none", metadata={"help": "sacreBLEU tokenizer to use for evaluation"} ) wer_remove_punct: bool = field( default=False, metadata={"help": "remove punctuation"} ) wer_char_level: bool = field( default=False, metadata={"help": "evaluate at character level"} ) wer_lowercase: bool = field(default=False, metadata={"help": "lowercasing"}) @register_scorer("wer", dataclass=WerScorerConfig) class WerScorer(BaseScorer): def __init__(self, cfg): super().__init__(cfg) self.reset() try: import editdistance as ed except ImportError: raise ImportError("Please install editdistance to use WER scorer") self.ed = ed self.tokenizer = EvaluationTokenizer( tokenizer_type=self.cfg.wer_tokenizer, lowercase=self.cfg.wer_lowercase, punctuation_removal=self.cfg.wer_remove_punct, character_tokenization=self.cfg.wer_char_level, ) def reset(self): self.distance = 0 self.ref_length = 0 def add_string(self, ref, pred): ref_items = self.tokenizer.tokenize(ref).split() pred_items = self.tokenizer.tokenize(pred).split() self.distance += self.ed.eval(ref_items, pred_items) self.ref_length += len(ref_items) def result_string(self): return f"WER: {self.score():.2f}" def score(self): return 100.0 * self.distance / self.ref_length if self.ref_length > 0 else 0
COCO-LM/fairseq/fairseq/scoring/wer.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/scoring/wer.py", "repo_id": "COCO-LM", "token_count": 796 }
198
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq import utils from fairseq.data import ( ConcatSentencesDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, OffsetTokensDataset, PrependTokenDataset, RawLabelDataset, RightPadDataset, RollDataset, SortDataset, StripTokenDataset, data_utils, ) from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("sentence_prediction") class SentencePredictionTask(LegacyFairseqTask): """ Sentence (or sentence pair) prediction (classification or regression) task. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", metavar="FILE", help="file prefix for data") parser.add_argument( "--num-classes", type=int, default=-1, help="number of classes or regression targets", ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) parser.add_argument( "--separator-token", type=int, default=None, help="add separator token between inputs", ) parser.add_argument("--regression-target", action="store_true", default=False) parser.add_argument("--no-shuffle", action="store_true", default=False) parser.add_argument( "--shorten-method", default="none", choices=["none", "truncate", "random_crop"], help="if not none, shorten sequences that exceed --tokens-per-sample", ) parser.add_argument( "--shorten-data-split-list", default="", help="comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)', ) parser.add_argument( "--add-prev-output-tokens", action="store_true", default=False, help="add prev_output_tokens to sample, used for encoder-decoder arch", ) def __init__(self, args, data_dictionary, label_dictionary): super().__init__(args) self.dictionary = data_dictionary self._label_dictionary = label_dictionary if not hasattr(args, "max_positions"): self._max_positions = ( args.max_source_positions, args.max_target_positions, ) else: self._max_positions = args.max_positions args.tokens_per_sample = self._max_positions @classmethod def load_dictionary(cls, args, filename, source=True): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert args.num_classes > 0, "Must set --num-classes" # load data dictionary data_dict = cls.load_dictionary( args, os.path.join(args.data, "input0", "dict.txt"), source=True, ) logger.info("[input] dictionary: {} types".format(len(data_dict))) # load label dictionary if not args.regression_target: label_dict = cls.load_dictionary( args, os.path.join(args.data, "label", "dict.txt"), source=False, ) logger.info("[label] dictionary: {} types".format(len(label_dict))) else: label_dict = data_dict return cls(args, data_dict, label_dict) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(key, split): return os.path.join(self.args.data, key, split) def make_dataset(key, dictionary): split_path = get_path(key, split) try: dataset = data_utils.load_indexed_dataset( split_path, dictionary, self.args.dataset_impl, combine=combine, ) except Exception as e: if "StorageException: [404] Path not found" in str(e): logger.warning(f"dataset {e} not found") dataset = None else: raise e return dataset input0 = make_dataset("input0", self.source_dictionary) assert input0 is not None, "could not find dataset: {}".format( get_path("input0", split) ) input1 = make_dataset("input1", self.source_dictionary) if self.args.init_token is not None: input0 = PrependTokenDataset(input0, self.args.init_token) if input1 is None: src_tokens = input0 else: if self.args.separator_token is not None: input1 = PrependTokenDataset(input1, self.args.separator_token) src_tokens = ConcatSentencesDataset(input0, input1) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens)) src_tokens = maybe_shorten_dataset( src_tokens, split, self.args.shorten_data_split_list, self.args.shorten_method, self.max_positions(), self.args.seed, ) dataset = { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_tokens, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_tokens, reduce=False), }, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens, reduce=True), } if self.args.add_prev_output_tokens: prev_tokens_dataset = RightPadDataset( RollDataset(src_tokens, 1), pad_idx=self.dictionary.pad(), ) dataset["net_input"].update( prev_output_tokens=prev_tokens_dataset, ) if not self.args.regression_target: label_dataset = make_dataset("label", self.label_dictionary) if label_dataset is not None: dataset.update( target=OffsetTokensDataset( StripTokenDataset( label_dataset, id_to_strip=self.label_dictionary.eos(), ), offset=-self.label_dictionary.nspecial, ) ) else: label_path = "{0}.label".format(get_path("label", split)) if os.path.exists(label_path): def parse_regression_target(i, line): values = line.split() assert ( len(values) == self.args.num_classes ), f'expected num_classes={self.args.num_classes} regression target values on line {i}, found: "{line}"' return [float(x) for x in values] with open(label_path) as h: dataset.update( target=RawLabelDataset( [ parse_regression_target(i, line.strip()) for i, line in enumerate(h.readlines()) ] ) ) nested_dataset = NestedDictionaryDataset( dataset, sizes=[src_tokens.sizes], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( getattr(args, "classification_head_name", "sentence_classification_head"), num_classes=self.args.num_classes, ) return model def max_positions(self): return self._max_positions @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary @property def label_dictionary(self): return self._label_dictionary
COCO-LM/fairseq/fairseq/tasks/sentence_prediction.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/tasks/sentence_prediction.py", "repo_id": "COCO-LM", "token_count": 4712 }
199
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Evaluate the perplexity of a trained language model. """ import logging import math import os import sys from argparse import Namespace from typing import Iterable, List, Optional import torch import fairseq from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter from fairseq.sequence_scorer import SequenceScorer from omegaconf import DictConfig logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.eval_lm") def eval_lm( models: List[fairseq.models.FairseqModel], source_dictionary: fairseq.data.Dictionary, batch_iterator: Iterable, post_process: Optional[str] = None, output_word_probs: bool = False, output_word_stats: bool = False, target_dictionary: Optional[fairseq.data.Dictionary] = None, softmax_batch: int = False, remove_bos_token: bool = False, device: Optional[torch.device] = None, ): """ Args: models (List[~fairseq.models.FairseqModel]): list of models to evaluate. Models are essentially `nn.Module` instances, but must be compatible with fairseq's `SequenceScorer`. source_dictionary (~fairseq.data.Dictionary): dictionary for applying any relevant post processing or outputing word probs/stats. batch_iterator (Iterable): yield batches of data post_process (Optional[str]): post-process text by removing BPE, letter segmentation, etc. Valid options can be found in fairseq.data.utils.post_process, although not all options are implemented here. output_word_probs (Optional[bool]): output words and their predicted log probabilities output_word_stats (Optional[bool]): output word statistics such as word count and average probability target_dictionary (Optional[~fairseq.data.Dictionary]): output dictionary (defaults to *source_dictionary*) softmax_batch (Optional[bool]): if BxT is more than this, will batch the softmax over vocab to this amount of tokens, in order to fit into GPU memory remove_bos_token (Optional[bool]): if True, confirm that the first token is the beginning-of-sentence symbol (according to the relevant dictionary) and remove it from the output device (Optional[torch.device]): device to use for evaluation (defaults to device of first model parameter) """ if target_dictionary is None: target_dictionary = source_dictionary if device is None: device = next(models[0].parameters()).device gen_timer = StopwatchMeter() scorer = SequenceScorer(target_dictionary, softmax_batch) score_sum = 0.0 count = 0 if post_process is not None: if post_process in {"subword_nmt", "@@ "}: bpe_cont = post_process.rstrip() bpe_toks = { i for i in range(len(source_dictionary)) if source_dictionary[i].endswith(bpe_cont) } else: raise NotImplementedError( "--post-process={post_process} is not implemented" ) bpe_len = len(bpe_cont) else: bpe_toks = None bpe_len = 0 word_stats = dict() for sample in batch_iterator: if "net_input" not in sample: continue sample = utils.move_to_cuda(sample, device=device) gen_timer.start() hypos = scorer.generate(models, sample) gen_timer.stop(sample["ntokens"]) for i, hypos_i in enumerate(hypos): hypo = hypos_i[0] sample_id = sample["id"][i] tokens = hypo["tokens"] tgt_len = tokens.numel() pos_scores = hypo["positional_scores"].float() if remove_bos_token: assert hypo["tokens"][0].item() == target_dictionary.bos() tokens = tokens[1:] pos_scores = pos_scores[1:] skipped_toks = 0 if bpe_toks is not None: for i in range(tgt_len - 1): if tokens[i].item() in bpe_toks: skipped_toks += 1 pos_scores[i + 1] += pos_scores[i] pos_scores[i] = 0 inf_scores = pos_scores.eq(float("inf")) | pos_scores.eq(float("-inf")) if inf_scores.any(): logger.info( "skipping tokens with inf scores:", target_dictionary.string(tokens[inf_scores.nonzero()]), ) pos_scores = pos_scores[(~inf_scores).nonzero()] score_sum += pos_scores.sum().cpu() count += pos_scores.numel() - skipped_toks if output_word_probs or output_word_stats: w = "" word_prob = [] is_bpe = False for i in range(len(tokens)): w_ind = tokens[i].item() w += source_dictionary[w_ind] if bpe_toks is not None and w_ind in bpe_toks: w = w[:-bpe_len] is_bpe = True else: word_prob.append((w, pos_scores[i].item())) next_prob = None ind = i + 1 while ind < len(tokens): if pos_scores[ind].item() != 0: next_prob = pos_scores[ind] break ind += 1 word_stats.setdefault(w, WordStat(w, is_bpe)).add( pos_scores[i].item(), next_prob ) is_bpe = False w = "" if output_word_probs: logger.info( str(int(sample_id)) + " " + ( "\t".join( "{} [{:2f}]".format(x[0], x[1]) for x in word_prob ) ) ) avg_nll_loss = ( -score_sum / count / math.log(2) if count > 0 else 0 ) # convert to base 2 logger.info( "Evaluated {:,} tokens in {:.1f}s ({:.2f} tokens/s)".format( gen_timer.n, gen_timer.sum, 1.0 / gen_timer.avg if gen_timer.avg > 0 else 0 ) ) if output_word_stats: for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True): logger.info(ws) return { "loss": avg_nll_loss, "perplexity": 2 ** avg_nll_loss, } class WordStat(object): def __init__(self, word, is_bpe): self.word = word self.is_bpe = is_bpe self.log_prob = 0 self.next_word_prob = 0 self.count = 0 self.missing_next_words = 0 def add(self, log_prob, next_word_prob): """increments counters for the sum of log probs of current word and next word (given context ending at current word). Since the next word might be at the end of the example, or it might be not counted because it is not an ending subword unit, also keeps track of how many of those we have seen""" if next_word_prob is not None: self.next_word_prob += next_word_prob else: self.missing_next_words += 1 self.log_prob += log_prob self.count += 1 def __str__(self): return "{}\t{}\t{}\t{}\t{}\t{}".format( self.word, self.count, self.log_prob, self.is_bpe, self.next_word_prob, self.count - self.missing_next_words, ) def main(cfg: DictConfig, **unused_kwargs): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) utils.import_user_module(cfg.common) logger.info(cfg) if cfg.eval_lm.context_window > 0: # reduce tokens per sample by the required context window size cfg.task.tokens_per_sample -= cfg.eval_lm.context_window # Initialize the task using the current *cfg* task = tasks.setup_task(cfg.task) # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, model_args, task = checkpoint_utils.load_model_ensemble_and_task( [cfg.common_eval.path], arg_overrides=eval(cfg.common_eval.model_overrides), suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, task=task, ) use_fp16 = cfg.common.fp16 use_cuda = torch.cuda.is_available() and not cfg.common.cpu if use_cuda: torch.cuda.set_device(cfg.distributed_training.device_id) # Optimize ensemble for generation and set the source and dest dicts on the model # (required by scorer) for model in models: if use_fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) assert len(models) > 0 logger.info( "num. model params: {:,}".format(sum(p.numel() for p in models[0].parameters())) ) # Load dataset splits task.load_dataset(cfg.dataset.gen_subset) dataset = task.dataset(cfg.dataset.gen_subset) logger.info( "{} {} {:,} examples".format( cfg.task.data, cfg.dataset.gen_subset, len(dataset) ) ) itr = task.eval_lm_dataloader( dataset=dataset, max_tokens=cfg.dataset.max_tokens or 36000, batch_size=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( *[model.max_positions() for model in models] ), num_shards=max( cfg.dataset.num_shards, cfg.distributed_training.distributed_world_size, ), shard_id=max( cfg.dataset.shard_id, cfg.distributed_training.distributed_rank, ), num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, context_window=cfg.eval_lm.context_window, ) itr = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) results = eval_lm( models=models, source_dictionary=task.source_dictionary, batch_iterator=itr, post_process=cfg.common_eval.post_process, output_word_probs=cfg.eval_lm.output_word_probs, output_word_stats=cfg.eval_lm.output_word_stats, target_dictionary=task.target_dictionary, softmax_batch=cfg.eval_lm.softmax_batch, remove_bos_token=getattr(cfg.task, "add_bos_token", False), ) logger.info( "Loss (base 2): {:.4f}, Perplexity: {:.2f}".format( results["loss"], results["perplexity"] ) ) return results def cli_main(): parser = options.get_eval_lm_parser() args = options.parse_args_and_arch(parser) distributed_utils.call_main(convert_namespace_to_omegaconf(args), main) if __name__ == "__main__": cli_main()
COCO-LM/fairseq/fairseq_cli/eval_lm.py/0
{ "file_path": "COCO-LM/fairseq/fairseq_cli/eval_lm.py", "repo_id": "COCO-LM", "token_count": 5811 }
200
#include <ATen/ATen.h> #include "compat.h" // Forward/backward compatiblity hack around // https://github.com/pytorch/pytorch/commit/3aeb78079bcd68282fe9117088e138b77318e288 // pending more future-proof guidance from upstream. // struct TypeShim // { // const at::Type& payload; // TypeShim(const at::Type& type) : payload(type) {} // // Enable trivial conversion to a const at::Type& for pre-3aeb78 // operator const at::Type&(){ return payload; }; // // Enable dispatch switch statements to take *this directly for post-3aeb78 // //operator at::ScalarType(){ return payload.; }; // }; #define DISPATCH_FLOAT_AND_HALF(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Half: \ { \ using scalar_t_##LEVEL = at::Half; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } #define DISPATCH_FLOAT_AND_BF16(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::BFloat16: \ { \ using scalar_t_##LEVEL = at::BFloat16; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } #define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Half: \ { \ using scalar_t_##LEVEL = at::Half; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::BFloat16: \ { \ using scalar_t_##LEVEL = at::BFloat16; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } #define DISPATCH_FLOAT_HALF_AND_BYTE(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Half: \ { \ using scalar_t_##LEVEL = at::Half; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Byte: \ { \ using scalar_t_##LEVEL = uint8_t; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } #define DISPATCH_DOUBLE_FLOAT_AND_HALF(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Double: \ { \ using scalar_t_##LEVEL = double; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Half: \ { \ using scalar_t_##LEVEL = at::Half; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } #define DISPATCH_DOUBLE_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Double: \ { \ using scalar_t_##LEVEL = double; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Half: \ { \ using scalar_t_##LEVEL = at::Half; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::BFloat16: \ { \ using scalar_t_##LEVEL = at::BFloat16; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } #define DISPATCH_DOUBLE_AND_FLOAT(TYPE, LEVEL, NAME, ...) \ switch(TYPE) \ { \ case at::ScalarType::Double: \ { \ using scalar_t_##LEVEL = double; \ __VA_ARGS__; \ break; \ } \ case at::ScalarType::Float: \ { \ using scalar_t_##LEVEL = float; \ __VA_ARGS__; \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } template<typename T> __device__ __forceinline__ T reduce_block_into_lanes (T *x, T val, int lanes=1, bool share_result=false) // lanes is intended to be <= 32. { int tid = threadIdx.x + threadIdx.y*blockDim.x; int blockSize = blockDim.x*blockDim.y; // blockSize is intended to be a multiple of 32. if(blockSize >= 64) { x[tid] = val; __syncthreads(); } #pragma unroll for(int i = (blockSize >> 1); i >= 64; i >>= 1) { if(tid < i) x[tid] = x[tid] + x[tid+i]; __syncthreads(); } T final; if(tid < 32) { if(blockSize >= 64) final = x[tid] + x[tid+32]; else final = val; // __SYNCWARP(); #pragma unroll for(int i = 16; i >= lanes; i >>= 1) final = final + __shfl_down_sync(0xffffffff, final, i); } if(share_result) { if(tid < lanes) x[tid] = final; // EpilogueOp // Make sure the smem result is visible to all warps. __syncthreads(); } return final; } template<typename T> __device__ __forceinline__ T reduce_block_into_lanes_max_op (T *x, T val, int lanes=1, bool share_result=false) // lanes is intended to be <= 32. { int tid = threadIdx.x + threadIdx.y*blockDim.x; int blockSize = blockDim.x*blockDim.y; // blockSize is intended to be a multiple of 32. if(blockSize >= 64) { x[tid] = val; __syncthreads(); } #pragma unroll for(int i = (blockSize >> 1); i >= 64; i >>= 1) { if(tid < i) x[tid] = fmaxf(fabsf(x[tid]), fabsf(x[tid+i])); __syncthreads(); } T final; if(tid < 32) { if(blockSize >= 64) final = fmaxf(fabsf(x[tid]), fabsf(x[tid+32])); else final = val; // __SYNCWARP(); #pragma unroll for(int i = 16; i >= lanes; i >>= 1) final = fmaxf(fabsf(final), fabsf(__shfl_down_sync(0xffffffff, final, i))); } if(share_result) { if(tid < lanes) x[tid] = final; // EpilogueOp // Make sure the smem result is visible to all warps. __syncthreads(); } return final; }
COCO-LM/fairseq/fused_ops/csrc/type_shim.h/0
{ "file_path": "COCO-LM/fairseq/fused_ops/csrc/type_shim.h", "repo_id": "COCO-LM", "token_count": 3042 }
201
#!/usr/bin/env bash # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # GLUE task name, from ['MNLI', 'QQP', 'QNLI', 'SST-2', 'CoLA', 'RTE', 'MRPC', 'STS-B'] TASK=$1 # Path to pretrained COCO-LM checkpoints PRETRAINED_MODEL_PATH=$2 # Path to processed GLUE dataset (containing binary files) 'path/to/glue_data' GLUE_DATA_DIR=$3 # Output path for results and fine-tuned model OUTPUT_PATH=$4 # Set pretrained model name, from ['cocolm_base', 'cocolm_large'] ARCH=$5 # Set the hyperparameters for the run N_EPOCH=$6 WARMUP_RATIO=$7 BSZ=$8 LR=$9 SEED=${10} if [ "$ARCH" = "cocolm_base" ] then BINS=64 MAX_DIST=128 else BINS=128 MAX_DIST=256 fi BETAS="(0.9,0.98)" CLIP=0.0 WEIGHT_DECAY=0.01 MAX_TOKENS=2200 if [ ! -e $PRETRAINED_MODEL_PATH ]; then echo "Checkpoint ${PRETRAINED_MODEL_PATH} doesn't exist" exit 0 fi TASK_DATA_DIR=$GLUE_DATA_DIR/$TASK-bin OPTION="" METRIC=accuracy N_CLASSES=2 task_type=SMALL if [ "$TASK" = "MNLI" ] then N_CLASSES=3 OPTION="--valid-subset valid,valid1" EPOCH_ITER=12452 task_type=LARGE fi if [ "$TASK" = "QNLI" ] then EPOCH_ITER=3320 task_type=LARGE fi if [ "$TASK" = "QQP" ] then EPOCH_ITER=11392 task_type=LARGE fi if [ "$TASK" = "SST-2" ] then EPOCH_ITER=2105 task_type=LARGE fi if [ "$TASK" = "MRPC" ] then EPOCH_ITER=115 fi if [ "$TASK" = "RTE" ] then EPOCH_ITER=101 fi if [ "$TASK" = "CoLA" ] then METRIC=mcc EPOCH_ITER=268 fi if [ "$TASK" = "STS-B" ] then METRIC=pearson_spearman N_CLASSES=1 OPTION="--regression-target" EPOCH_ITER=180 fi if [ "$task_type" = "LARGE" ] then if [ "$N_EPOCH" = "10" ] then echo 'skip' exit 0 fi if [ "$WARMUP_RATIO" = "10" ] then echo 'skip' exit 0 fi # if [ "$BSZ" = "16" ] # then # echo 'skip' # exit 0 # fi fi EPOCH_ITER=$((EPOCH_ITER*2)) # expand to itr for bsz=16 BSZ_EXPAND=$((BSZ/16)) MAX_TOKENS=$((MAX_TOKENS*BSZ/16)) # expand to itr for bsz=16 EPOCH_ITER=$((EPOCH_ITER/BSZ_EXPAND)) TOTAL_STEPS=$((EPOCH_ITER*N_EPOCH)) WARMUP_STEPS=$((TOTAL_STEPS/WARMUP_RATIO)) VALIDATE_INTERVAL=$((EPOCH_ITER/2)) OUTPUT_PATH=$OUTPUT_PATH/$TASK/$N_EPOCH-$WARMUP_RATIO-$BSZ-$LR-$SEED mkdir -p $OUTPUT_PATH echo $OUTPUT_PATH if [ -e $OUTPUT_PATH/train_log.txt ]; then if grep -q 'done training' $OUTPUT_PATH/train_log.txt && grep -q 'Loaded checkpoint' $OUTPUT_PATH/train_log.txt; then echo "Training log existed" exit 0 fi fi python train.py $TASK_DATA_DIR --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ --restore-file $PRETRAINED_MODEL_PATH \ --max-positions 512 \ --max-sentences $BSZ \ --max-tokens $MAX_TOKENS \ --update-freq 1 \ --task sentence_prediction \ --reset-optimizer --reset-dataloader --reset-meters \ --required-batch-size-multiple 1 \ --init-token 0 --separator-token 2 \ --arch $ARCH \ --criterion sentence_prediction $OPTION \ --num-classes $N_CLASSES \ --dropout 0.1 --attention-dropout 0.1 --pooler-dropout 0.1 \ --weight-decay $WEIGHT_DECAY --optimizer adam --adam-betas "$BETAS" --adam-eps 1e-06 \ --clip-norm $CLIP \ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_STEPS --warmup-updates $WARMUP_STEPS \ --max-update $TOTAL_STEPS --seed $SEED --save-dir $OUTPUT_PATH --no-progress-bar --log-interval 100 --no-epoch-checkpoints --no-last-checkpoints \ --find-unused-parameters --skip-invalid-size-inputs-valid-test --rel-pos 1 --max-rel-pos $MAX_DIST --rel-pos-bins $BINS \ --best-checkpoint-metric $METRIC --maximize-best-checkpoint-metric --validate-interval-updates $VALIDATE_INTERVAL | tee $OUTPUT_PATH/train_log.txt
COCO-LM/fairseq/run_glue.sh/0
{ "file_path": "COCO-LM/fairseq/run_glue.sh", "repo_id": "COCO-LM", "token_count": 1738 }
202
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Split a large file into a train and valid set while respecting document boundaries. Documents should be separated by a single empty line. """ import argparse import random import sys def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("sample_output", help="train output file") parser.add_argument("remainder_output", help="valid output file") parser.add_argument("-k", type=int, help="remainder size") parser.add_argument( "--lines", action="store_true", help="split lines instead of docs" ) args = parser.parse_args() assert args.k is not None sample = [] remainder = [] num_docs = [0] def update_sample(doc): if len(sample) < args.k: sample.append(doc.copy()) else: i = num_docs[0] j = random.randrange(i + 1) if j < args.k: remainder.append(sample[j]) sample[j] = doc.copy() else: remainder.append(doc.copy()) num_docs[0] += 1 doc.clear() with open(args.input, "r", encoding="utf-8") as h: doc = [] for i, line in enumerate(h): if line.strip() == "": # empty line indicates new document update_sample(doc) else: doc.append(line) if args.lines: update_sample(doc) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) if len(doc) > 0: update_sample(doc) print(file=sys.stderr, flush=True) assert len(sample) == args.k with open(args.sample_output, "w", encoding="utf-8") as out: first = True for doc in sample: if not first and not args.lines: out.write("\n") first = False for line in doc: out.write(line) with open(args.remainder_output, "w", encoding="utf-8") as out: first = True for doc in remainder: if not first and not args.lines: out.write("\n") first = False for line in doc: out.write(line) if __name__ == "__main__": main()
COCO-LM/fairseq/scripts/split_train_valid_docs.py/0
{ "file_path": "COCO-LM/fairseq/scripts/split_train_valid_docs.py", "repo_id": "COCO-LM", "token_count": 1183 }
203
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import unittest from typing import Sequence from fairseq.data import LanguagePairDataset, ListDataset, RoundRobinZipDatasets from tests.test_train import mock_dict def lang_pair_dataset(lengths: Sequence[int]) -> LanguagePairDataset: tokens = [[i] * l for i, l in enumerate(lengths)] return LanguagePairDataset(ListDataset(tokens), lengths, mock_dict()) def sample(id: int, length: int): return {"id": id, "source": [id] * length, "target": None} class TestDataset(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_round_robin_zip_datasets(self): long_dataset = lang_pair_dataset([10, 9, 8, 11]) short_dataset = lang_pair_dataset([11, 9]) dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset}) # Dataset is now sorted by sentence length dataset.ordered_indices() assert dataset.longest_dataset is long_dataset self.assertEqual(dict(dataset[0]), {"a": sample(2, 8), "b": sample(1, 9)}) # The item 2 of dataset 'a' is with item (2 % 2 = 0) of dataset 'b' self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(1, 9)}) def test_round_robin_zip_datasets_filtered(self): long_dataset = lang_pair_dataset([10, 20, 8, 11, 1000, 7, 12]) short_dataset = lang_pair_dataset([11, 20, 9, 1000]) dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset}) # Dataset is now sorted by sentence length idx = dataset.ordered_indices() idx, _ = dataset.filter_indices_by_size(idx, {"a": 19, "b": 900}) self.assertEqual(list(idx), [0, 1, 2, 3, 4]) self.assertEqual(dict(dataset[0]), {"a": sample(5, 7), "b": sample(2, 9)}) self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(1, 20)}) self.assertEqual(dict(dataset[4]), {"a": sample(6, 12), "b": sample(0, 11)}) def test_round_robin_zip_datasets_filtered_with_tuple(self): long_dataset = lang_pair_dataset([10, 20, 8, 11, 1000, 7, 12]) short_dataset = lang_pair_dataset([11, 20, 9, 1000]) dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset}) # Dataset is now sorted by sentence length idx = dataset.ordered_indices() idx, _ = dataset.filter_indices_by_size(idx, 19) self.assertEqual(list(idx), [0, 1, 2, 3, 4]) self.assertEqual(dict(dataset[0]), {"a": sample(5, 7), "b": sample(2, 9)}) self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(2, 9)}) self.assertEqual(dict(dataset[4]), {"a": sample(6, 12), "b": sample(2, 9)})
COCO-LM/fairseq/tests/test_dataset.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_dataset.py", "repo_id": "COCO-LM", "token_count": 1257 }
204
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Dict, List import tests.utils as test_utils import torch from fairseq import utils from fairseq.data import ( Dictionary, LanguagePairDataset, TransformEosDataset, data_utils, noising, ) class TestDataNoising(unittest.TestCase): def _get_test_data_with_bpe_cont_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with continuation markers as suffixes to denote non-end of word tokens. This is the standard BPE format used in fairseq's preprocessing. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he@@") vocab.add_symbol("llo") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("y@@") vocab.add_symbol("ou") vocab.add_symbol("n@@") vocab.add_symbol("ew") vocab.add_symbol("or@@") vocab.add_symbol("k") src_tokens = [ ["he@@", "llo", "n@@", "ew", "y@@", "or@@", "k"], ["how", "are", "y@@", "ou"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_bpe_end_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with end-of-word markers as suffixes to denote tokens at the end of a word. This is an alternative to fairseq's standard preprocessing framework and is not generally supported within fairseq. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he") vocab.add_symbol("llo_EOW") vocab.add_symbol("how_EOW") vocab.add_symbol("are_EOW") vocab.add_symbol("y") vocab.add_symbol("ou_EOW") vocab.add_symbol("n") vocab.add_symbol("ew_EOW") vocab.add_symbol("or") vocab.add_symbol("k_EOW") src_tokens = [ ["he", "llo_EOW", "n", "ew_EOW", "y", "or", "k_EOW"], ["how_EOW", "are_EOW", "y", "ou_EOW"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_word_vocab(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: word vocab x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("hello") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("you") vocab.add_symbol("new") vocab.add_symbol("york") src_tokens = [ ["hello", "new", "york", "you"], ["how", "are", "you", "new", "york"], ] x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _convert_src_tokens_to_tensor( self, vocab: Dictionary, src_tokens: List[List[str]], append_eos: bool ): src_len = [len(x) for x in src_tokens] # If we have to append EOS, we include EOS in counting src length if append_eos: src_len = [length + 1 for length in src_len] x = torch.LongTensor(len(src_tokens), max(src_len)).fill_(vocab.pad()) for i in range(len(src_tokens)): for j in range(len(src_tokens[i])): x[i][j] = vocab.index(src_tokens[i][j]) if append_eos: x[i][j + 1] = vocab.eos() x = x.transpose(1, 0) return x, torch.LongTensor(src_len) def assert_eos_at_end(self, x, x_len, eos): """Asserts last token of every sentence in x is EOS """ for i in range(len(x_len)): self.assertEqual( x[x_len[i] - 1][i], eos, ( "Expected eos (token id {eos}) at the end of sentence {i} " "but got {other} instead" ).format(i=i, eos=eos, other=x[i][-1]), ) def assert_word_dropout_correct(self, x, x_noised, x_len, l_noised): # Expect only the first word (2 bpe tokens) of the first example # was dropped out self.assertEqual(x_len[0] - 2, l_noised[0]) for i in range(l_noised[0]): self.assertEqual(x_noised[i][0], x[i + 2][0]) def test_word_dropout_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def assert_word_blanking_correct(self, x, x_noised, x_len, l_noised, unk): # Expect only the first word (2 bpe tokens) of the first example # was blanked out self.assertEqual(x_len[0], l_noised[0]) for i in range(l_noised[0]): if i < 2: self.assertEqual(x_noised[i][0], unk) else: self.assertEqual(x_noised[i][0], x[i][0]) def test_word_blank_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def generate_unchanged_shuffle_map(self, length): return {i: i for i in range(length)} def assert_word_shuffle_matches_expected( self, x, x_len, max_shuffle_distance: int, vocab: Dictionary, expected_shufle_maps: List[Dict[int, int]], expect_eos_at_end: bool, bpe_end_marker=None, ): """ This verifies that with a given x, x_len, max_shuffle_distance, and vocab, we get the expected shuffle result. Args: x: Tensor of shape (T x B) = (sequence_length, batch_size) x_len: Tensor of length B = batch_size max_shuffle_distance: arg to pass to noising expected_shuffle_maps: List[mapping] where mapping is a Dict[old_index, new_index], mapping x's elements from their old positions in x to their new positions in x. expect_eos_at_end: if True, check the output to make sure there is an EOS at the end. bpe_end_marker: str denoting the BPE end token. If this is not None, we set the BPE cont token to None in the noising classes. """ bpe_cont_marker = None if bpe_end_marker is None: bpe_cont_marker = "@@" with data_utils.numpy_seed(1234): word_shuffle = noising.WordShuffle( vocab, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker ) x_noised, l_noised = word_shuffle.noising( x, x_len, max_shuffle_distance=max_shuffle_distance ) # For every example, we have a different expected shuffle map. We check # that each example is shuffled as expected according to each # corresponding shuffle map. for i in range(len(expected_shufle_maps)): shuffle_map = expected_shufle_maps[i] for k, v in shuffle_map.items(): self.assertEqual(x[k][i], x_noised[v][i]) # Shuffling should not affect the length of each example for pre_shuffle_length, post_shuffle_length in zip(x_len, l_noised): self.assertEqual(pre_shuffle_length, post_shuffle_length) if expect_eos_at_end: self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_shuffle_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=True, ) def test_word_shuffle_with_eos_nonbpe(self): """The purpose of this is to test shuffling logic with word vocabs""" vocab, x, x_len = self._get_test_data_with_word_vocab(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ {0: 0, 1: 1, 2: 3, 3: 2}, {0: 0, 1: 2, 2: 1, 3: 3, 4: 4}, ], expect_eos_at_end=True, ) def test_word_shuffle_without_eos(self): """Same result as word shuffle with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, ) def test_word_shuffle_without_eos_with_bpe_end_marker(self): """Same result as word shuffle without eos except using BPE end token""" vocab, x, x_len = self._get_test_data_with_bpe_end_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) def assert_no_eos_at_end(self, x, x_len, eos): """Asserts that the last token of each sentence in x is not EOS """ for i in range(len(x_len)): self.assertNotEqual( x[x_len[i] - 1][i], eos, "Expected no eos (token id {eos}) at the end of sentence {i}.".format( eos=eos, i=i ), ) def test_word_dropout_without_eos(self): """Same result as word dropout with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_blank_without_eos(self): """Same result as word blank with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def _get_noising_dataset_batch( self, src_tokens_no_pad, src_dict, append_eos_to_tgt=False, ): """ Constructs a NoisingDataset and the corresponding ``LanguagePairDataset(NoisingDataset(src), src)``. If *append_eos_to_tgt* is True, wrap the source dataset in :class:`TransformEosDataset` to append EOS to the clean source when using it as the target. """ src_dataset = test_utils.TestDataset(data=src_tokens_no_pad) noising_dataset = noising.NoisingDataset( src_dataset=src_dataset, src_dict=src_dict, seed=1234, max_word_shuffle_distance=3, word_dropout_prob=0.2, word_blanking_prob=0.2, noising_class=noising.UnsupervisedMTNoising, ) tgt = src_dataset language_pair_dataset = LanguagePairDataset( src=noising_dataset, tgt=tgt, src_sizes=None, src_dict=src_dict ) language_pair_dataset = TransformEosDataset( language_pair_dataset, src_dict.eos(), append_eos_to_tgt=append_eos_to_tgt, ) dataloader = torch.utils.data.DataLoader( dataset=language_pair_dataset, batch_size=2, collate_fn=language_pair_dataset.collater, ) denoising_batch_result = next(iter(dataloader)) return denoising_batch_result def test_noising_dataset_with_eos(self): src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=True ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [pad, pad, pad, 6, 8, 9, 7, eos]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_noising_dataset_without_eos(self): """ Similar to test noising dataset with eos except that we have to set *append_eos_to_tgt* to ``True``. """ src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=False ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict, append_eos_to_tgt=True, ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13], [pad, pad, pad, 6, 8, 9, 7]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_noising.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_noising.py", "repo_id": "COCO-LM", "token_count": 10290 }
205
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # The script is largely adapted from the huggingface transformers library import re import os import unicodedata from transformers.tokenization_utils import PreTrainedTokenizer from cocolm.tokenization_utils import Dictionary def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() class SentencepiecePreTokenizer(object): def __init__(self): self.transl_table = dict( [ (ord(x), ord(y)) for x,y in zip( u"‘’´“”—–-", u"'''\"\"---") ] ) def handle_single_quote(self, tokens): line = ' '.join(tokens) line = re.sub(r"' ([smdSMDtT])\b", r"'\1", line) line = re.sub(r"' ll\b", "'ll", line) line = re.sub(r"' re\b", "'re", line) line = re.sub(r"' ve\b", "'ve", line) line = re.sub(r"' LL\b", "'LL ", line) line = re.sub(r"' RE\b", "'RE ", line) line = re.sub(r"' VE\b", "'VE ", line) return line.split() def split_on_cont_punc(self, tokens): new_tokens = [] for token in tokens: if len(token) > 1: last_j = 0 pre_is_punc = _is_punctuation(token[0]) for j, ch in enumerate(token): is_punc = _is_punctuation(ch) if is_punc != pre_is_punc: new_tokens.append(token[last_j: j]) last_j = j pre_is_punc = is_punc if last_j < len(token): new_tokens.append(token[last_j:]) else: new_tokens.append(token) return new_tokens def split_pre_and_post_punc(self, tokens): def pre_punc(token): last_j = 0 for j in range(1, len(token)): if not _is_punctuation(token[j]): last_j = j break return token[:last_j], token[last_j:] def post_punc(token): last_j = len(token) for j in range(len(token) - 2, -1, -1): is_punc = _is_punctuation(token[j]) if not _is_punctuation(token[j]): last_j = j + 1 break return token[:last_j], token[last_j:] new_tokens = [] for token in tokens: if len(token) > 1 and _is_punctuation(token[0]): a, b = pre_punc(token) if a: new_tokens.append(a) if b: if _is_punctuation(b[-1]): c, d = post_punc(b) if c: new_tokens.append(c) if d: new_tokens.append(d) else: new_tokens.append(b) elif len(token) > 1 and _is_punctuation(token[-1]): a, b = post_punc(token) if a: new_tokens.append(a) if b: new_tokens.append(b) else: new_tokens.append(token) return new_tokens def tokenize(self, line): line = line.strip() line = line.replace("``", '"').replace("''", '"') line = line.translate(self.transl_table) tokens = line.split() tokens = self.split_pre_and_post_punc(tokens) tokens = self.handle_single_quote(tokens) return tokens COCOLM_VOCAB_FILES_NAMES = {"vocab_file": "sp.model", "dict_file": "dict.txt"} COCOLM_PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "cocolm-cased": "https://huggingface.co/microsoft/cocolm-base/resolve/main/sp.model", }, "dict_file": { "cocolm-cased": "https://huggingface.co/microsoft/cocolm-base/resolve/main/dict.txt" } } COCOLM_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "cocolm-cased": 512, } class COCOLMTokenizer(PreTrainedTokenizer): vocab_files_names = COCOLM_VOCAB_FILES_NAMES pretrained_vocab_files_map = COCOLM_PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = COCOLM_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, dict_file, **kwargs): super(COCOLMTokenizer, self).__init__(**kwargs) if not os.path.exists(vocab_file): raise EnvironmentError("file {} not found".format(vocab_file)) try: import sentencepiece as spm self.sp = spm.SentencePieceProcessor() self.sp.Load(vocab_file) self.pre_tokenizer = SentencepiecePreTokenizer() self.dictionary = Dictionary.load(dict_file) except ImportError: raise ImportError('Please install sentencepiece with: pip install sentencepiece') self.dictionary.add_symbol('<mask>') @property def cls_token(self): return self.dictionary.alias_mapper[self.dictionary.bos_word] @property def sep_token(self): return self.dictionary.alias_mapper[self.dictionary.eos_word] @property def pad_token(self): return self.dictionary.alias_mapper[self.dictionary.pad_word] @property def unk_token(self): return self.dictionary.alias_mapper[self.dictionary.unk_word] @property def cls_token_id(self): return self.dictionary.bos_index @property def sep_token_id(self): return self.dictionary.eos_index @property def pad_token_id(self): return self.dictionary.pad_index @property def mask_token_id(self): return self.dictionary.index('<mask>') @property def unk_token_id(self): return self.dictionary.unk_index def encode_plus(self, text_a, text_b=None, add_special_tokens=True, max_length=512): tokens_a = self.tokenize(text_a) if text_b is not None: tokens_b = self.tokenize(text_b) _truncate_seq_pair(tokens_a, tokens_b, max_length - 4) else: if len(tokens_a) > max_length-2: tokens_a = tokens_a[:max_length-2] if add_special_tokens: tokens = [self.dictionary.bos_word] + tokens_a + [self.dictionary.eos_word] if text_b is not None: tokens += [self.dictionary.eos_word] + tokens_b + [self.dictionary.eos_word] else: tokens = tokens_a + tokens_b ids = self.convert_tokens_to_ids(tokens) return {"input_ids": ids} def encode(self, x: str, add_special_tokens=False) -> str: tokens = self.tokenize(x) return self.convert_tokens_to_ids(tokens) def decode(self, ids: list) -> str: x = "".join([self._convert_id_to_token(token_id) for token_id in ids]) return x.replace(' ', '').replace('\u2581', ' ').strip() def skip_space(self, tokens): new_tokens = [] for i, token in enumerate(tokens): skip = False # skip single space, to reduce total length if token == '\u2581': if i == len(tokens) - 1 or _is_punctuation(tokens[i + 1][0]): skip = True if not skip: new_tokens.append(token) return new_tokens def tokenize(self, x): x = ' '.join(self.pre_tokenizer.tokenize(x)) tokens = self.sp.EncodeAsPieces(x) tokens = self.skip_space(tokens) return tokens def convert_tokens_to_ids(self, tokens: list): ret = [] if isinstance(tokens, str): return self.dictionary.index(tokens) for token in tokens: ret.append(self.dictionary.index(token)) return ret def _convert_id_to_token(self, index): """ Converts a token (str) in an id using the vocab. """ token = self.dictionary[index] return token def convert_tokens_to_string(self, tokens: list): x = " ".join(tokens) return x.replace(' ', '').replace('\u2581', ' ').strip() def is_beginning_of_word(self, x: str) -> bool: if x in ["<unk>", "<s>", "</s>", "<pad>", "[CLS]", "[PAD]", "[SEP]", "[UNK]"]: # special elements are always considered beginnings # HACK: this logic is already present in fairseq/tasks/masked_lm.py # but these special tokens are also contained in the sentencepiece # vocabulary which causes duplicate special tokens. This hack makes # sure that they are all taken into account. return True return x.startswith("\u2581")
COCO-LM/huggingface/cocolm/tokenization_cocolm.py/0
{ "file_path": "COCO-LM/huggingface/cocolm/tokenization_cocolm.py", "repo_id": "COCO-LM", "token_count": 4756 }
206
# ------------------------------------------ # CSWin Transformer # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # written By Xiaoyi Dong # ------------------------------------------ from torch.utils.data import Dataset import numpy as np import io from PIL import Image import os import json import random def load_img(filepath): img = Image.open(filepath).convert('RGB') return img class McDataset(Dataset): def __init__(self, data_root, file_list, phase = 'train', transform=None): self.transform = transform self.root = os.path.join(data_root, phase) temp_label = json.load(open('./dataset/imagenet_class_index.json', 'r')) self.labels = {} for i in range(1000): self.labels[temp_label[str(i)][0]] = i self.A_paths = [] self.A_labels = [] with open(file_list, 'r') as f: temp_path = f.readlines() for path in temp_path: label = self.labels[path.split('/')[0]] self.A_paths.append(os.path.join(self.root, path.strip())) self.A_labels.append(label) self.num = len(self.A_paths) self.A_size = len(self.A_paths) def __len__(self): return self.num def __getitem__(self, index): try: return self.load_img(index) except: return self.__getitem__(random.randint(0, self.__len__()-1)) def load_img(self, index): A_path = self.A_paths[index % self.A_size] A = load_img(A_path) if self.transform is not None: A = self.transform(A) A_label = self.A_labels[index % self.A_size] return A, A_label
CSWin-Transformer/labeled_memcached_dataset.py/0
{ "file_path": "CSWin-Transformer/labeled_memcached_dataset.py", "repo_id": "CSWin-Transformer", "token_count": 764 }
207
seed_everything: 42 # ---------------------------- TRAINER ------------------------------------------- trainer: default_root_dir: ${oc.env:AMLT_OUTPUT_DIR,/home/tungnd/ClimaX/exps/climate_projection_climax} precision: 16 gpus: null num_nodes: 1 accelerator: gpu strategy: ddp min_epochs: 1 max_epochs: 50 enable_progress_bar: true sync_batchnorm: True enable_checkpointing: True resume_from_checkpoint: null # debugging fast_dev_run: false logger: class_path: pytorch_lightning.loggers.tensorboard.TensorBoardLogger init_args: save_dir: ${trainer.default_root_dir}/logs name: null version: null log_graph: False default_hp_metric: True prefix: "" callbacks: - class_path: pytorch_lightning.callbacks.LearningRateMonitor init_args: logging_interval: "step" - class_path: pytorch_lightning.callbacks.ModelCheckpoint init_args: dirpath: "${trainer.default_root_dir}/checkpoints/" monitor: "val/w_mse" # name of the logged metric which determines when model is improving mode: "min" # "max" means higher metric value is better, can be also "min" save_top_k: 1 # save k best models (determined by above metric) save_last: True # additionaly always save model from last epoch verbose: False filename: "epoch_{epoch:03d}" auto_insert_metric_name: False - class_path: pytorch_lightning.callbacks.EarlyStopping init_args: monitor: "val/w_mse" # name of the logged metric which determines when model is improving mode: "min" # "max" means higher metric value is better, can be also "min" patience: 5 # how many validation epochs of not improving until training stops min_delta: 0. # minimum change in the monitored metric needed to qualify as an improvement - class_path: pytorch_lightning.callbacks.RichModelSummary init_args: max_depth: -1 - class_path: pytorch_lightning.callbacks.RichProgressBar # ---------------------------- MODEL ------------------------------------------- model: lr: 5e-4 beta_1: 0.9 beta_2: 0.999 weight_decay: 1e-5 warmup_epochs: 60 max_epochs: 600 warmup_start_lr: 1e-8 eta_min: 1e-8 pretrained_path: "https://huggingface.co/tungnd/climax/resolve/main/5.625deg.ckpt" net: class_path: climax.climate_projection.arch.ClimaXClimateBench init_args: default_vars: [ 'CO2', 'SO2', 'CH4', 'BC' ] out_vars: "tas" # diurnal_temperature_range, tas, pr, pr90 img_size: [32, 64] time_history: 10 patch_size: 2 embed_dim: 1024 depth: 8 num_heads: 16 mlp_ratio: 4 drop_path: 0.1 drop_rate: 0.1 parallel_patch_embed: False freeze_encoder: True # ---------------------------- DATA ------------------------------------------- data: root_dir: /home/data/datasets/climate-learn/climatebench/5.625deg/ history: 10 list_train_simu: [ 'ssp126', 'ssp370', 'ssp585', 'historical', 'hist-GHG', 'hist-aer' ] list_test_simu: ['ssp245'] variables: [ 'CO2', 'SO2', 'CH4', 'BC' ] out_variables: 'tas' train_ratio: 0.9 batch_size: 1 num_workers: 1 pin_memory: False
ClimaX/configs/climate_projection.yaml/0
{ "file_path": "ClimaX/configs/climate_projection.yaml", "repo_id": "ClimaX", "token_count": 1367 }
208
# Installation Guide ```bash title="clone the repo" git clone https://github.com/microsoft/ClimaX ``` === "`conda`" ```bash title="create and activate env" cd ClimaX conda env create --file docker/environment.yml conda activate climaX ``` ```bash title="install this package" # install so the project is in PYTHONPATH pip install -e . ``` === "`docker`" ```bash title="build docker container" cd docker docker build -t ClimaX . ``` ```bash title="run docker container" cd ClimaX docker run --gpus all -it --rm --user $(id -u):$(id -g) \ -v $(pwd):/code -v /mnt/data:/data --workdir /code -e PYTHONPATH=/code/src \ ClimaX:latest ``` !!! note - `--gpus all -it --rm --user $(id -u):$(id -g)`: enables using all GPUs and runs an interactive session with current user's UID/GUID to avoid `docker` writing files as root. - `-v $(pwd):/code -v /mnt/data:/data --workdir /code`: mounts current directory and data directory (i.e. the cloned git repo) to `/code` and `/data` respectively, and use the `code` directory as the current working directory.
ClimaX/docs/install.md/0
{ "file_path": "ClimaX/docs/install.md", "repo_id": "ClimaX", "token_count": 440 }
209
datadir: /data/CMIP6/AWI-ESM name: v_component_of_wind cmip_name: va era_name: v run: r1i1p1f1 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/AWI-ESM/config_v_component_of_wind.yml/0
{ "file_path": "ClimaX/snakemake_configs/AWI-ESM/config_v_component_of_wind.yml", "repo_id": "ClimaX", "token_count": 67 }
210
datadir: /data/CMIP6/MPI-ESM server_prefix: https://esgf.ceda.ac.uk/thredds/fileServer/esg_cmip6/CMIP6/CMIP name: 10m_u_component_of_wind cmip_name: uas era_name: u10 output_type: 6hrPlevPt run: r1i1p1f1 version: v20190710 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/MPI-ESM/config_10m_u_component_of_wind.yml/0
{ "file_path": "ClimaX/snakemake_configs/MPI-ESM/config_10m_u_component_of_wind.yml", "repo_id": "ClimaX", "token_count": 128 }
211
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from functools import lru_cache import numpy as np import torch import torch.nn as nn from timm.models.vision_transformer import Block, PatchEmbed, trunc_normal_ from climax.utils.pos_embed import ( get_1d_sincos_pos_embed_from_grid, get_2d_sincos_pos_embed, ) from .parallelpatchembed import ParallelVarPatchEmbed class ClimaX(nn.Module): """Implements the ClimaX model as described in the paper, https://arxiv.org/abs/2301.10343 Args: default_vars (list): list of default variables to be used for training img_size (list): image size of the input data patch_size (int): patch size of the input data embed_dim (int): embedding dimension depth (int): number of transformer layers decoder_depth (int): number of decoder layers num_heads (int): number of attention heads mlp_ratio (float): ratio of mlp hidden dimension to embedding dimension drop_path (float): stochastic depth rate drop_rate (float): dropout rate parallel_patch_embed (bool): whether to use parallel patch embedding """ def __init__( self, default_vars, img_size=[32, 64], patch_size=2, embed_dim=1024, depth=8, decoder_depth=2, num_heads=16, mlp_ratio=4.0, drop_path=0.1, drop_rate=0.1, parallel_patch_embed=False, ): super().__init__() # TODO: remove time_history parameter self.img_size = img_size self.patch_size = patch_size self.default_vars = default_vars self.parallel_patch_embed = parallel_patch_embed # variable tokenization: separate embedding layer for each input variable if self.parallel_patch_embed: self.token_embeds = ParallelVarPatchEmbed(len(default_vars), img_size, patch_size, embed_dim) self.num_patches = self.token_embeds.num_patches else: self.token_embeds = nn.ModuleList( [PatchEmbed(img_size, patch_size, 1, embed_dim) for i in range(len(default_vars))] ) self.num_patches = self.token_embeds[0].num_patches # variable embedding to denote which variable each token belongs to # helps in aggregating variables self.var_embed, self.var_map = self.create_var_embedding(embed_dim) # variable aggregation: a learnable query and a single-layer cross attention self.var_query = nn.Parameter(torch.zeros(1, 1, embed_dim), requires_grad=True) self.var_agg = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) # positional embedding and lead time embedding self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim), requires_grad=True) self.lead_time_embed = nn.Linear(1, embed_dim) # -------------------------------------------------------------------------- # ViT backbone self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( embed_dim, num_heads, mlp_ratio, qkv_bias=True, drop_path=dpr[i], norm_layer=nn.LayerNorm, drop=drop_rate, ) for i in range(depth) ] ) self.norm = nn.LayerNorm(embed_dim) # -------------------------------------------------------------------------- # prediction head self.head = nn.ModuleList() for _ in range(decoder_depth): self.head.append(nn.Linear(embed_dim, embed_dim)) self.head.append(nn.GELU()) self.head.append(nn.Linear(embed_dim, len(self.default_vars) * patch_size**2)) self.head = nn.Sequential(*self.head) # -------------------------------------------------------------------------- self.initialize_weights() def initialize_weights(self): # initialize pos_emb and var_emb pos_embed = get_2d_sincos_pos_embed( self.pos_embed.shape[-1], int(self.img_size[0] / self.patch_size), int(self.img_size[1] / self.patch_size), cls_token=False, ) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) var_embed = get_1d_sincos_pos_embed_from_grid(self.var_embed.shape[-1], np.arange(len(self.default_vars))) self.var_embed.data.copy_(torch.from_numpy(var_embed).float().unsqueeze(0)) # token embedding layer if self.parallel_patch_embed: for i in range(len(self.token_embeds.proj_weights)): w = self.token_embeds.proj_weights[i].data trunc_normal_(w.view([w.shape[0], -1]), std=0.02) else: for i in range(len(self.token_embeds)): w = self.token_embeds[i].proj.weight.data trunc_normal_(w.view([w.shape[0], -1]), std=0.02) # initialize nn.Linear and nn.LayerNorm self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def create_var_embedding(self, dim): var_embed = nn.Parameter(torch.zeros(1, len(self.default_vars), dim), requires_grad=True) # TODO: create a mapping from var --> idx var_map = {} idx = 0 for var in self.default_vars: var_map[var] = idx idx += 1 return var_embed, var_map @lru_cache(maxsize=None) def get_var_ids(self, vars, device): ids = np.array([self.var_map[var] for var in vars]) return torch.from_numpy(ids).to(device) def get_var_emb(self, var_emb, vars): ids = self.get_var_ids(vars, var_emb.device) return var_emb[:, ids, :] def unpatchify(self, x: torch.Tensor, h=None, w=None): """ x: (B, L, V * patch_size**2) return imgs: (B, V, H, W) """ p = self.patch_size c = len(self.default_vars) h = self.img_size[0] // p if h is None else h // p w = self.img_size[1] // p if w is None else w // p assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum("nhwpqc->nchpwq", x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def aggregate_variables(self, x: torch.Tensor): """ x: B, V, L, D """ b, _, l, _ = x.shape x = torch.einsum("bvld->blvd", x) x = x.flatten(0, 1) # BxL, V, D var_query = self.var_query.repeat_interleave(x.shape[0], dim=0) x, _ = self.var_agg(var_query, x, x) # BxL, D x = x.squeeze() x = x.unflatten(dim=0, sizes=(b, l)) # B, L, D return x def forward_encoder(self, x: torch.Tensor, lead_times: torch.Tensor, variables): # x: `[B, V, H, W]` shape. if isinstance(variables, list): variables = tuple(variables) # tokenize each variable separately embeds = [] var_ids = self.get_var_ids(variables, x.device) if self.parallel_patch_embed: x = self.token_embeds(x, var_ids) # B, V, L, D else: for i in range(len(var_ids)): id = var_ids[i] embeds.append(self.token_embeds[id](x[:, i : i + 1])) x = torch.stack(embeds, dim=1) # B, V, L, D # add variable embedding var_embed = self.get_var_emb(self.var_embed, variables) x = x + var_embed.unsqueeze(2) # B, V, L, D # variable aggregation x = self.aggregate_variables(x) # B, L, D # add pos embedding x = x + self.pos_embed # add lead time embedding lead_time_emb = self.lead_time_embed(lead_times.unsqueeze(-1)) # B, D lead_time_emb = lead_time_emb.unsqueeze(1) x = x + lead_time_emb # B, L, D x = self.pos_drop(x) # apply Transformer blocks for blk in self.blocks: x = blk(x) x = self.norm(x) return x def forward(self, x, y, lead_times, variables, out_variables, metric, lat): """Forward pass through the model. Args: x: `[B, Vi, H, W]` shape. Input weather/climate variables y: `[B, Vo, H, W]` shape. Target weather/climate variables lead_times: `[B]` shape. Forecasting lead times of each element of the batch. Returns: loss (list): Different metrics. preds (torch.Tensor): `[B, Vo, H, W]` shape. Predicted weather/climate variables. """ out_transformers = self.forward_encoder(x, lead_times, variables) # B, L, D preds = self.head(out_transformers) # B, L, V*p*p preds = self.unpatchify(preds) out_var_ids = self.get_var_ids(tuple(out_variables), preds.device) preds = preds[:, out_var_ids] if metric is None: loss = None else: loss = [m(preds, y, out_variables, lat) for m in metric] return loss, preds def evaluate(self, x, y, lead_times, variables, out_variables, transform, metrics, lat, clim, log_postfix): _, preds = self.forward(x, y, lead_times, variables, out_variables, metric=None, lat=lat) return [m(preds, y, transform, out_variables, lat, clim, log_postfix) for m in metrics]
ClimaX/src/climax/arch.py/0
{ "file_path": "ClimaX/src/climax/arch.py", "repo_id": "ClimaX", "token_count": 4699 }
212
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os from pytorch_lightning.cli import LightningCLI from climax.pretrain.datamodule import MultiSourceDataModule from climax.pretrain.module import PretrainModule def main(): # Initialize Lightning with the model and data modules, and instruct it to parse the config yml cli = LightningCLI( model_class=PretrainModule, datamodule_class=MultiSourceDataModule, seed_everything_default=42, save_config_overwrite=True, run=False, auto_registry=True, parser_kwargs={"parser_mode": "omegaconf", "error_handler": None}, ) os.makedirs(cli.trainer.default_root_dir, exist_ok=True) cli.model.set_lat_lon(*cli.datamodule.get_lat_lon()) # fit() runs the training cli.trainer.fit(cli.model, datamodule=cli.datamodule) if __name__ == "__main__": main()
ClimaX/src/climax/pretrain/train.py/0
{ "file_path": "ClimaX/src/climax/pretrain/train.py", "repo_id": "ClimaX", "token_count": 349 }
213
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import importlib import torch.utils.data from data.base_dataset import BaseDataset def find_dataset_using_name(dataset_name): dataset_filename = "data." + dataset_name + "_dataset" datasetlib = importlib.import_module(dataset_filename) dataset = None target_dataset_name = dataset_name.replace('_', '') + 'dataset' for name, cls in datasetlib.__dict__.items(): if name.lower() == target_dataset_name.lower() \ and issubclass(cls, BaseDataset): dataset = cls if dataset is None: raise ValueError("In %s.py, there should be a subclass of BaseDataset " "with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) return dataset def get_option_setter(dataset_name): dataset_class = find_dataset_using_name(dataset_name) return dataset_class.modify_commandline_options def create_dataloader(opt): dataset = find_dataset_using_name(opt.dataset_mode) instance = dataset() instance.initialize(opt) print("Dataset [%s] of size %d was created" % (type(instance).__name__, len(instance))) dataloader = torch.utils.data.DataLoader( instance, batch_size=opt.batchSize, shuffle=(opt.phase=='train'), num_workers=int(opt.nThreads), drop_last=(opt.phase=='train') ) return dataloader
CoCosNet-v2/data/__init__.py/0
{ "file_path": "CoCosNet-v2/data/__init__.py", "repo_id": "CoCosNet-v2", "token_count": 608 }
214
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function from models.networks.base_network import BaseNetwork from models.networks.architecture import SPADEResnetBlock class SPADEGenerator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.set_defaults(norm_G='spectralspadesyncbatch3x3') return parser def __init__(self, opt): super().__init__() self.opt = opt nf = opt.ngf self.sw, self.sh = self.compute_latent_vector_size(opt) ic = 4*3+opt.label_nc self.fc = nn.Conv2d(ic, 8 * nf, 3, padding=1) self.head_0 = SPADEResnetBlock(8 * nf, 8 * nf, opt) self.G_middle_0 = SPADEResnetBlock(8 * nf, 8 * nf, opt) self.G_middle_1 = SPADEResnetBlock(8 * nf, 8 * nf, opt) self.up_0 = SPADEResnetBlock(8 * nf, 8 * nf, opt) self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt) self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt) self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt) final_nc = nf self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1) self.up = nn.Upsample(scale_factor=2) def compute_latent_vector_size(self, opt): num_up_layers = 5 sw = opt.crop_size // (2**num_up_layers) sh = round(sw / opt.aspect_ratio) return sw, sh def forward(self, input, warp_out=None): seg = torch.cat((F.interpolate(warp_out[0], size=(512, 512)), F.interpolate(warp_out[1], size=(512, 512)), F.interpolate(warp_out[2], size=(512, 512)), warp_out[3], input), dim=1) x = F.interpolate(seg, size=(self.sh, self.sw)) x = self.fc(x) x = self.head_0(x, seg) x = self.up(x) x = self.G_middle_0(x, seg) x = self.G_middle_1(x, seg) x = self.up(x) x = self.up_0(x, seg) x = self.up(x) x = self.up_1(x, seg) x = self.up(x) x = self.up_2(x, seg) x = self.up(x) x = self.up_3(x, seg) x = self.conv_img(F.leaky_relu(x, 2e-1)) x = torch.tanh(x) return x
CoCosNet-v2/models/networks/generator.py/0
{ "file_path": "CoCosNet-v2/models/networks/generator.py", "repo_id": "CoCosNet-v2", "token_count": 1128 }
215
# -*- coding: utf-8 -*- # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import numpy as np from more_itertools import chunked import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument('--test_batch_size', type=int, default=1000) args = parser.parse_args() languages = ['ruby', 'go', 'php', 'python', 'java', 'javascript'] MRR_dict = {} for language in languages: file_dir = './results/{}'.format(language) ranks = [] num_batch = 0 for file in sorted(os.listdir(file_dir)): print(os.path.join(file_dir, file)) with open(os.path.join(file_dir, file), encoding='utf-8') as f: batched_data = chunked(f.readlines(), args.test_batch_size) for batch_idx, batch_data in enumerate(batched_data): num_batch += 1 correct_score = float(batch_data[batch_idx].strip().split('<CODESPLIT>')[-1]) scores = np.array([float(data.strip().split('<CODESPLIT>')[-1]) for data in batch_data]) rank = np.sum(scores >= correct_score) ranks.append(rank) mean_mrr = np.mean(1.0 / np.array(ranks)) print("{} mrr: {}".format(language, mean_mrr)) MRR_dict[language] = mean_mrr for key, val in MRR_dict.items(): print("{} mrr: {}".format(key, val)) if __name__ == "__main__": main()
CodeBERT/CodeBERT/codesearch/mrr.py/0
{ "file_path": "CodeBERT/CodeBERT/codesearch/mrr.py", "repo_id": "CodeBERT", "token_count": 676 }
216
PER_NODE_GPU=8 python -m torch.distributed.launch --nproc_per_node=${PER_NODE_GPU} run.py \ --output_dir ../saved_models/pretrain_codeexecutor_stage_3 \ --data_cache_dir ../saved_models/pretrain_codeexecutor_stage_3 \ --train_data_path /drive/pretrain_codenetmut.json \ --another_train_data_path /drive/pretrain_tutorial.json \ --third_train_data_path /drive/single_line_hard_3_million.json \ --eval_data_path ../data/codenetmut_test.json \ --model_name_or_path ../saved_models/pretrain_codeexecutor_stage_2 \ --block_size 1024 \ --per_gpu_train_batch_size 4 \ --per_gpu_eval_batch_size 8 \ --gradient_accumulation_steps 8 \ --learning_rate 4e-4 \ --node_index=0 \ --gpu_per_node $PER_NODE_GPU \ --weight_decay 0.01 \ --adam_epsilon 1e-6 \ --max_grad_norm 1.0 \ --max_steps 1000000 \ --warmup_steps 10000 \ --save_steps 5000 \ --seed 123
CodeBERT/CodeExecutor/pretrain/run.sh/0
{ "file_path": "CodeBERT/CodeExecutor/pretrain/run.sh", "repo_id": "CodeBERT", "token_count": 398 }
217
# Natural Language Toolkit: Utility functions # # Copyright (C) 2001-2020 NLTK Project # Author: Steven Bird <stevenbird1@gmail.com> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from itertools import chain def pad_sequence( sequence, n, pad_left=False, pad_right=False, left_pad_symbol=None, right_pad_symbol=None, ): """ Returns a padded sequence of items before ngram extraction. >>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>')) ['<s>', 1, 2, 3, 4, 5, '</s>'] >>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>')) ['<s>', 1, 2, 3, 4, 5] >>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>')) [1, 2, 3, 4, 5, '</s>'] :param sequence: the source data to be padded :type sequence: sequence or iter :param n: the degree of the ngrams :type n: int :param pad_left: whether the ngrams should be left-padded :type pad_left: bool :param pad_right: whether the ngrams should be right-padded :type pad_right: bool :param left_pad_symbol: the symbol to use for left padding (default is None) :type left_pad_symbol: any :param right_pad_symbol: the symbol to use for right padding (default is None) :type right_pad_symbol: any :rtype: sequence or iter """ sequence = iter(sequence) if pad_left: sequence = chain((left_pad_symbol,) * (n - 1), sequence) if pad_right: sequence = chain(sequence, (right_pad_symbol,) * (n - 1)) return sequence # add a flag to pad the sequence so we get peripheral ngrams? def ngrams( sequence, n, pad_left=False, pad_right=False, left_pad_symbol=None, right_pad_symbol=None, ): """ Return the ngrams generated from a sequence of items, as an iterator. For example: >>> from nltk.util import ngrams >>> list(ngrams([1,2,3,4,5], 3)) [(1, 2, 3), (2, 3, 4), (3, 4, 5)] Wrap with list for a list version of this function. Set pad_left or pad_right to true in order to get additional ngrams: >>> list(ngrams([1,2,3,4,5], 2, pad_right=True)) [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)] >>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>')) [(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')] >>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>')) [('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)] >>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>')) [('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')] :param sequence: the source data to be converted into ngrams :type sequence: sequence or iter :param n: the degree of the ngrams :type n: int :param pad_left: whether the ngrams should be left-padded :type pad_left: bool :param pad_right: whether the ngrams should be right-padded :type pad_right: bool :param left_pad_symbol: the symbol to use for left padding (default is None) :type left_pad_symbol: any :param right_pad_symbol: the symbol to use for right padding (default is None) :type right_pad_symbol: any :rtype: sequence or iter """ sequence = pad_sequence( sequence, n, pad_left, pad_right, left_pad_symbol, right_pad_symbol ) history = [] while n > 1: # PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator try: next_item = next(sequence) except StopIteration: # no more data, terminate the generator return history.append(next_item) n -= 1 for item in sequence: history.append(item) yield tuple(history) del history[0]
CodeBERT/CodeReviewer/code/evaluator/CodeBLEU/utils.py/0
{ "file_path": "CodeBERT/CodeReviewer/code/evaluator/CodeBLEU/utils.py", "repo_id": "CodeBERT", "token_count": 1699 }
218
# batch size 6 for 16 GB GPU mnt_dir="/home/codereview" MASTER_HOST=localhost && echo MASTER_HOST: ${MASTER_HOST} MASTER_PORT=23333 && echo MASTER_PORT: ${MASTER_PORT} RANK=0 && echo RANK: ${RANK} PER_NODE_GPU=1 && echo PER_NODE_GPU: ${PER_NODE_GPU} WORLD_SIZE=1 && echo WORLD_SIZE: ${WORLD_SIZE} NODES=1 && echo NODES: ${NODES} NCCL_DEBUG=INFO # change break_cnt to truncate the number of examples (useful at debug time maybe) # --break_cnt -1 \ will keep the whole dataset python -m torch.distributed.launch --nproc_per_node ${PER_NODE_GPU} --node_rank=${RANK} --nnodes=${NODES} --master_addr=${MASTER_HOST} --master_port=${MASTER_PORT} ../run_infer_msg.py \ --model_name_or_path microsoft/codereviewer \ --output_dir ../../save/gen \ --load_model_path ../../save/gen/checkpoint \ --output_dir empty \ --eval_file test.jsonl \ --out_file test_out.jsonl \ --max_source_length 512 \ --max_target_length 128 \ --eval_batch_size 12 \ --beam_size 10 \ --gpu_per_node=${PER_NODE_GPU} \ --node_index=${RANK} \ --seed 2233 \ --raw_input \ --break_cnt 20
CodeBERT/CodeReviewer/code/sh/infer-json.sh/0
{ "file_path": "CodeBERT/CodeReviewer/code/sh/infer-json.sh", "repo_id": "CodeBERT", "token_count": 442 }
219
# Code Generation ## Data Download ```bash mkdir dataset cd dataset wget https://github.com/microsoft/CodeXGLUE/raw/main/Text-Code/text-to-code/dataset/concode/train.json wget https://github.com/microsoft/CodeXGLUE/raw/main/Text-Code/text-to-code/dataset/concode/dev.json wget https://github.com/microsoft/CodeXGLUE/raw/main/Text-Code/text-to-code/dataset/concode/test.json cd .. ``` ## Dependency - pip install torch - pip install transformers ## Fine-Tune Setting Here we provide fine-tune settings for code generation, whose results are reported in the paper. ```shell # Training python run.py \ --do_train \ --do_eval \ --model_name_or_path microsoft/unixcoder-base \ --train_filename dataset/train.json \ --dev_filename dataset/dev.json \ --output_dir saved_models \ --max_source_length 350 \ --max_target_length 150 \ --beam_size 3 \ --train_batch_size 32 \ --eval_batch_size 32 \ --learning_rate 5e-5 \ --gradient_accumulation_steps 1 \ --num_train_epochs 30 # Output results python run.py \ --do_test \ --model_name_or_path microsoft/unixcoder-base \ --test_filename dataset/test.json \ --output_dir saved_models \ --max_source_length 350 \ --max_target_length 150 \ --beam_size 3 \ --train_batch_size 32 \ --eval_batch_size 32 \ --learning_rate 5e-5 \ --gradient_accumulation_steps 1 \ --num_train_epochs 30 ``` Prediction results of test set are ```saved_models/predictions.txt```.To obtain the score of test set, you need to send the prediction to codexglue@microsoft.com.
CodeBERT/UniXcoder/downstream-tasks/code-generation/README.md/0
{ "file_path": "CodeBERT/UniXcoder/downstream-tasks/code-generation/README.md", "repo_id": "CodeBERT", "token_count": 553 }
220
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import statistics import numpy as np from collections import defaultdict import logging from typing import List, Union import itertools logging.basicConfig( format="SystemLog: [%(asctime)s][%(name)s][%(levelname)s] - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) def _dictionized_ground_truth_results(ground_truth_exec_results): ground_truth_results_by_task_and_solution = defaultdict(defaultdict) for result in ground_truth_exec_results: ground_truth_results_by_task_and_solution[result['task_id']][result['completion']] = result['passed'] return ground_truth_results_by_task_and_solution def _turn_solution_scores_into_choose_count(sorted_solution_scores, topk): # sorted_solution_scores: list of (solution, score) # if wrapped, sorted_solution_scores is list of ([solutions], score) # return list of (solution, choose_count) wrapped = True if type(sorted_solution_scores[0][0]) == list else False result = [] if wrapped: last_score = sorted_solution_scores[0][1] merged_solutions_and_score = [sorted_solution_scores[0]] for solutions, score in sorted_solution_scores[1:]: if score == last_score: last_solutions = merged_solutions_and_score[-1][0] merged_solutions_and_score[-1] = (last_solutions + solutions, score) else: merged_solutions_and_score.append((solutions, score)) last_score = score for solutions_and_score in merged_solutions_and_score: result.append((solutions_and_score[0], 1)) # choose one from solutions_and_score else: topk_scores = sorted(list(set([i[1] for i in sorted_solution_scores])), reverse=True) for score in topk_scores: solutions = [s[0] for s in sorted_solution_scores if s[1] == score] result.append((solutions, 1)) if len(result) >= topk: return result[:topk] else: intial_choose_count = [1]*len(result) for i in range(topk-len(result)): intial_choose_count[i%len(result)] += 1 for i, choose_count in enumerate(intial_choose_count): result[i] = (result[i][0], choose_count) return result def get_result_of_sorted_solutions(ground_truth_results_list, sorted_solutions_by_task, topks=[1,2,10]): # sorted_solutions_by_task {task_id: [([solutions], score), ...]} def _count_correct(solutions: list, ground_truth_results: dict) -> int: return sum([ground_truth_results[s] for s in solutions]) ground_truth_results = _dictionized_ground_truth_results(ground_truth_results_list) topk_results = dict() for topk in topks: random_pass_at_k_by_task = pass_at_K_by_task(ground_truth_results_list, k=topk) pass_rates = [] for task_id in ground_truth_results.keys(): all_wrong_probability = 1 if task_id in sorted_solutions_by_task and sorted_solutions_by_task[task_id]: solutions_and_probability = _turn_solution_scores_into_choose_count(sorted_solutions_by_task[task_id], topk) for solutions, choose_count in solutions_and_probability: current_wrong_prob = _estimator(len(solutions), _count_correct(solutions, ground_truth_results[task_id]), 1) repeat_current_wrong_prob = pow(current_wrong_prob, choose_count) all_wrong_probability *= repeat_current_wrong_prob pass_rates.append(1-all_wrong_probability) else: pass_rates.append(random_pass_at_k_by_task[task_id]) # the avg rate of all tasks topk_results[f'pass@{topk}'] = round(statistics.mean(pass_rates), 4) logger.info(topk_results) def pass_at_K_by_task(results, k): result_dict = defaultdict(list) for line in results: result_dict[line['task_id']].append(line['passed']) result = dict() for task_id in result_dict.keys(): total = len(result_dict[task_id]) correct = sum(result_dict[task_id]) score = _estimate_pass_at_k(total, [correct], k)[0] result[task_id] = score return result def pass_at_K(results, k = [1, 10, 100]): def _turn_list_into_dict(result_lines): result_dict = defaultdict(list) for line in result_lines: result_dict[line['task_id']].append(line['passed']) return result_dict # Calculate pass@k. total, correct = [], [] for passed in _turn_list_into_dict(results).values(): total.append(len(passed)) correct.append(sum(passed)) total = np.array(total) correct = np.array(correct) ks = k pass_at_k = {f"pass@{k}": round(_estimate_pass_at_k(total, correct, k).mean(), 4) for k in ks if (total >= k).all()} logger.info(pass_at_k) def _estimator(n: int, c: int, k: int) -> float: """ Calculates comb(n - c, k) / comb(n, k). """ if n - c < k: return 0 return np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) def _estimate_pass_at_k( num_samples: Union[int, List[int], np.ndarray], num_correct: Union[List[int], np.ndarray], k: int ) -> np.ndarray: """ Estimates pass@k of each problem and returns them in an array. """ if isinstance(num_samples, int): num_samples_it = itertools.repeat(num_samples, len(num_correct)) else: assert len(num_samples) == len(num_correct) num_samples_it = iter(num_samples) return np.array([1.0 - _estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
CodeT/CodeT/src/evaluation.py/0
{ "file_path": "CodeT/CodeT/src/evaluation.py", "repo_id": "CodeT", "token_count": 2525 }
221
import os import json import random import argparse from tqdm import tqdm import re import utils_io from utils import ( GSM8KCase, TextEntailmentCase, GSM8KExample, TextEntailmentExample, compute_top1_and_recall, post_process_answer_clutrr_mapping, post_process_answer_clutrr_cutoff, ) from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, ) import torch import pdb import logging logger = logging.getLogger(__name__) case_class_map = { "GSM8K": GSM8KCase, "CLUTRR": TextEntailmentCase, "strategyQA": TextEntailmentCase, } example_class_map = { "GSM8K": GSM8KExample, "CLUTRR": TextEntailmentExample, "strategyQA": TextEntailmentExample, } relation_reverse_map = { 'sister': ['brother'], 'son': ['father', 'mother'], 'aunt': ['nephew', 'niece'], 'granddaughter': ['grandfather', 'grandmother'], 'father': ['son', 'daughter'], 'grandfather': ['grandson', 'granddaughter'], 'grandmother': ['grandson', 'granddaughter'], 'mother-in-law': ['son-in-law', 'daughter-in-law'], 'uncle': ['nephew', 'niece'], 'niece': ['uncle', 'aunt'], 'mother': ['son', 'daughter'], 'brother': ['sister'], 'daughter': ['father', 'mother'], 'nephew': ['uncle', 'aunt'], 'grandson': ['grandfather', 'grandmother'], 'son-in-law': ['father-in-law', 'mother-in-law'], 'father-in-law': ['son-in-law', 'daughter-in-law'], 'daughter-in-law': ['father-in-law', 'mother-in-law'], } device = "cuda" if torch.cuda.is_available() else "cpu" # device = "cpu" def main(): parser = argparse.ArgumentParser() parser.add_argument("--generator_result_file", type=str, default=None, help="generator output file in .jsonl format") parser.add_argument("--output_dir", type=str, default=None, help="output dir") parser.add_argument("--random_seed", type=int, default=233, help="random_seed") parser.add_argument("--split", type=str, default="train", help="split (train or test)") parser.add_argument("--dataset_name", type=str, default="GSM8K", help="GSM8K, CLUTRR, strategyQA") parser.add_argument("--text_entailment_model_name", type=str, default="roberta-large-mnli", help="roberta-large-mnli, facebook/bart-large-mnli, etc.") parser.add_argument("--text_entailment_batch_size", type=int, default=512, help="text entailment batch size") args = parser.parse_args() random.seed(args.random_seed) if args.dataset_name != "GSM8K": logger.info("Loading textual entailment models...") model = AutoModelForSequenceClassification.from_pretrained(args.text_entailment_model_name).to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained(args.text_entailment_model_name) else: model = None tokenizer = None # loading data from generator output result file generator_outputs = [json.loads(line) for line in open(utils_io.get_file(args.generator_result_file))] question_to_ground_truth = {} # prompt data make up prompt_data = [] for generator_output in generator_outputs: context = generator_output["context"] samples = generator_output["samples"] for sample in samples: metadata = generator_output["metadata"] prompt_data.append({"context": context, "sample": sample, "metadata": metadata}) prompt_data_dict = {} # some pre-processing about formulas and answers for GSM8K and other datasets for obj in tqdm(prompt_data): question = obj["metadata"]["question"].strip().replace("\n", "") def extract_solution(sample): sample = sample.strip() if '####' in sample: stop = sample.find('\n\n', sample.index('####')) if stop >= 0: sample = sample[:stop] sample = sample.replace('\n\n', '\n') return sample sample = extract_solution(obj["sample"]) sample = sample.strip().replace("\n", "%%") # for sequence labeling ground_truth = obj["metadata"]["ground_truth"].strip().replace("\n\n", "\n").replace("\n", "%%") # for sequence labeling if args.dataset_name == "GSM8K": if "####" not in sample: reg = "<<.+>>[\d\.]+" eqs = re.findall(reg, sample) if len(eqs) > 0: final_answer = eqs[-1].split(">>")[-1].strip() if final_answer and len(final_answer) > 0 and final_answer[-1] == '.': final_answer = final_answer[:-1] if sample[-2:] == "%%": sample = sample + "####" + final_answer else: sample = sample + "%%####" + final_answer elif args.dataset_name == "CLUTRR": pass if "####" not in sample: reg = "the.+?of" eqs = re.findall(reg, sample) if len(eqs) > 0: final_answer = eqs[-1].replace("the ", "").replace(" of", "") if sample[-2:] == "%%": sample = sample + "####" + final_answer else: sample = sample + "%%####" + final_answer if question not in prompt_data_dict: prompt_data_dict[question] = [] sample = sample.replace("\n", "%%") # for sequence labeling ground_truth = ground_truth.replace("\n", "%%") # for sequence labeling question_to_ground_truth[question] = ground_truth prompt_data_dict[question].append(sample) # # code change # if args.dataset_name == "CLUTRR": # if "####" not in sample: # continue # sample_body, sample_answer = sample.split("####")[0].strip(), sample.split("####")[-1].strip() # # pdb.set_trace() # if sample_answer in relation_reverse_map: # for reverse in relation_reverse_map[sample_answer]: # prompt_data_dict[question].append(sample_body + "####" + reverse) # check the least sample num among all the cases min_sample_num_per_case = 99999999 for k in prompt_data_dict: min_sample_num_per_case = min(min_sample_num_per_case, len(prompt_data_dict[k])) # converting data into Case prompt_cases = [] for k in prompt_data_dict: case = case_class_map[args.dataset_name]("", []) case.question = k case.ground_truth = example_class_map[args.dataset_name](question_to_ground_truth[k]) case.entailment_batch_size = args.text_entailment_batch_size for sample_idx, x in enumerate(prompt_data_dict[k]): if sample_idx >= min_sample_num_per_case: break pred = example_class_map[args.dataset_name](x) case.preds.append(pred) prompt_cases.append(case) print(f"Total cases: {len(prompt_cases)}".replace("\n", "\\n")) print(f"Case 0's question: {prompt_cases[0].question}".replace("\n", "\\n")) print(f"Case 0's ground truth: {prompt_cases[0].ground_truth.content}".replace("\n", "\\n")) print(f"Case 0's sample0: {prompt_cases[0].preds[0].content}".replace("\n", "\\n")) # print the random top1 and recall of the data print("*********** Data statistics ***********") res = compute_top1_and_recall(data=prompt_cases) for k in res: print(f"{k}: {res[k]}") print("") if args.dataset_name == "CLUTRR": prompt_cases = post_process_answer_clutrr_cutoff(prompt_cases) # print the random top1 and recall of the data print("*********** Data statistics (after post processing for CLUTRR) ***********") res = compute_top1_and_recall(data=prompt_cases) for k in res: print(f"{k}: {res[k]}") print("") # Step-wise Labeling for j, case in enumerate(tqdm(prompt_cases)): case.do_step_labeling(model=model, tokenizer=tokenizer) # pdb.set_trace() for case_idx, case in enumerate(tqdm(prompt_cases)): case.ground_truth.sequence_labels = example_class_map[args.dataset_name].get_sequence_labels(case.question, case.ground_truth) for pred_idx, pred in enumerate(case.preds): pred.sequence_labels = example_class_map[args.dataset_name].get_sequence_labels(case.question, pred) # pdb.set_trace() # pdb.set_trace() sequence_data = [] for case_idx, case in enumerate(tqdm(prompt_cases)): sequence_data.append(case.ground_truth.sequence_labels) for pred_idx, pred in enumerate(case.preds): sequence_data.append(pred.sequence_labels) # pdb.set_trace() # Train file is shuffled, but test file is not if args.split == "train": random.shuffle(sequence_data) with open(os.path.join(args.output_dir, '{}.txt'.format(args.split)), "w") as f: for i, arr in enumerate(tqdm(sequence_data)): for lhs, rhs in arr: f.write(f"{lhs} {rhs}\n") f.write("\n") if __name__ == '__main__': main()
CodeT/DIVERSE/code/src/verifier_data_prepare.py/0
{ "file_path": "CodeT/DIVERSE/code/src/verifier_data_prepare.py", "repo_id": "CodeT", "token_count": 4067 }
222
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import functools import os from utils import Tools, FilePathBuilder, CodexTokenizer, CodeGenTokenizer, CONSTANTS class PromptBuilder: def __init__(self, query_lines_with_retrieval_results, task_path, log_message, tokenizer): self.query_lines_with_retrieval_results = query_lines_with_retrieval_results self.log_message = log_message if tokenizer == CodexTokenizer: self.tokenizer = CodexTokenizer() self.max_retrieval_length = 2000 # half of the max length of the model elif tokenizer == CodeGenTokenizer: self.tokenizer = CodeGenTokenizer() self.max_retrieval_length = 1000 tasks = Tools.load_jsonl(task_path) self.tasks_by_task_id = {task['metadata']['task_id']: task for task in tasks} self.seperator = '# ' + '-' * 50 self.max_examples = 10 # maximum number of examples to be included in the prompt def _make_a_block(self, retrieved_context): content, sim_score = retrieved_context metadata = content['metadata'] # put the file path in the comment assert metadata[0]['fpath_tuple'][0] == metadata[0]['repo'] f_paths = ['/'.join(x['fpath_tuple'][1:]) for x in metadata] f_paths_str = '\n'.join([f'# {f_path}' for f_path in f_paths]) f_path_comment = f'# the below code fragment can be found in:' # put code lines in the comment content_lines = content['context'].splitlines() content_lines_comment = [f'# {line}' for line in content_lines] # aggregate the comment and the code lines block_str = '\n'.join([f_path_comment, f_paths_str, self.seperator] + content_lines_comment + [self.seperator]) + '\n' tokenized_block = self.tokenizer.tokenize(block_str) token_len = len(tokenized_block) return block_str, token_len def _make_an_extended_block(self, retrieved_context): content, sim_score = retrieved_context metadata = content['metadata'] # put the file path in the comment assert metadata[0]['fpath_tuple'][0] == metadata[0]['repo'] f_paths = ['/'.join(x['fpath_tuple'][1:]) for x in metadata] f_paths_str = '\n'.join([f'# {f_path}' for f_path in f_paths]) f_path_comment = f'# the below code fragment can be found in:' # put code lines in the comment original_code = Tools.read_code(os.path.join(FilePathBuilder.repo_base_dir, *metadata[0]['fpath_tuple'])) code_lines = original_code.splitlines() end_line_no = metadata[0]['end_line_no'] window_size = metadata[0]['window_size'] slice_size = metadata[0]['slice_size'] new_end_line_no = min(end_line_no + window_size // slice_size, len(code_lines)) new_start_line_no = max(0, new_end_line_no - window_size) content_lines = code_lines[new_start_line_no:new_end_line_no] content_lines_comment = [f'# {line}' for line in content_lines] # aggregate the comment and the code lines block_str = '\n'.join([f_path_comment, f_paths_str, self.seperator] + content_lines_comment + [self.seperator]) + '\n' tokenized_block = self.tokenizer.tokenize(block_str) token_len = len(tokenized_block) return block_str, token_len def _build_prompt(self, mode, prompt, top_k_context): prepend_context = "# Here are some relevant code fragments from other files of the repo:\n" prepend_context += self.seperator + '\n' current_token_length = 20 # the length of the head_prompt, same for codex and codegen tokenizer prepend_blocks = [] chosen_context = [] make_block_func = self._make_an_extended_block if mode == CONSTANTS.rg else self._make_a_block for retrieved_context in top_k_context[::-1]: if len(chosen_context) >= self.max_examples: break block_str, token_len = make_block_func(retrieved_context) if current_token_length + token_len < self.max_retrieval_length: prepend_blocks.insert(0, block_str) current_token_length += token_len chosen_context.append(retrieved_context) else: continue prepend_context += ''.join(prepend_blocks) # all the blocks already have a line break at the end return prepend_context + '\n' + prompt, chosen_context def build_2nd_stage_input_file(self, mode): new_prompt_lines = [] for query_line in self.query_lines_with_retrieval_results: task_id = query_line['metadata']['task_id'] task = self.tasks_by_task_id[task_id] old_prompt = task['prompt'] top_k_context = query_line['top_k_context'] new_prompt, chosen_context = self._build_prompt(mode, old_prompt, top_k_context) new_prompt_line = { 'prompt': new_prompt, 'metadata': task['metadata'], } new_prompt_line['metadata']['query_window'] = { 'context': query_line['context'], 'metadata': query_line['metadata'], } new_prompt_line['metadata']['top_k_context'] = [ { 'context': x[0]['context'], 'metadata': x[0]['metadata'], 'sim_score': x[1], } for x in chosen_context ] new_prompt_line['metadata']['window_size'] = query_line['metadata']['window_size'] new_prompt_line['metadata']['slice_size'] = chosen_context[0][0]['metadata'][0]['slice_size'] new_prompt_lines.append(new_prompt_line) print('done! ' + self.log_message) return new_prompt_lines class BuildPromptWrapper: def __init__(self, vectorizer, benchmark, repos, window_size, slice_size, tokenizer): if vectorizer == 'one-gram': self.vector_path_builder = FilePathBuilder.one_gram_vector_path elif vectorizer == 'ada002': self.vector_path_builder = FilePathBuilder.ada002_vector_path self.max_top_k = 20 self.repos = repos self.window_size = window_size self.slice_size = slice_size if benchmark == CONSTANTS.line_benchmark: self.task_path = FilePathBuilder.random_line_completion_benchmark elif benchmark == CONSTANTS.api_benchmark: self.task_path = FilePathBuilder.api_completion_benchmark elif benchmark == CONSTANTS.short_api_benchmark: self.task_path = FilePathBuilder.short_api_completion_benchmark elif benchmark == CONSTANTS.short_line_benchmark: self.task_path = FilePathBuilder.short_random_line_completion_benchmark self.benchmark = benchmark self.tokenizer = tokenizer def _run(self, mode, query_window_path_builder, output_file_path): workers = [] for repo in self.repos: query_window_path = query_window_path_builder(repo, self.window_size) query_line_path = self.vector_path_builder(query_window_path) repo_window_path = FilePathBuilder.repo_windows_path(repo, self.window_size, self.slice_size) repo_embedding_path = self.vector_path_builder(repo_window_path) retrieval_results = FilePathBuilder.retrieval_results_path(query_line_path, repo_embedding_path, self.max_top_k) query_lines_with_retrieval_results = Tools.load_pickle(retrieval_results) log_message = f'repo: {repo}, window: {self.window_size}, slice: {self.slice_size}' worker = PromptBuilder(query_lines_with_retrieval_results, self.task_path, log_message, self.tokenizer) workers.append(worker) lines = [] for worker in workers: lines += worker.build_2nd_stage_input_file(mode) Tools.dump_jsonl(lines, output_file_path) def build_first_search_prompt(self, mode, output_path): query_line_path_temp = functools.partial(FilePathBuilder.search_first_window_path, self.benchmark, mode) self._run(mode, query_line_path_temp, output_path) def build_prediction_prompt(self, mode, prediction_path, output_path): query_line_path_temp = functools.partial(FilePathBuilder.gen_first_window_path, self.benchmark, mode, prediction_path) self._run(mode, query_line_path_temp, output_path)
CodeT/RepoCoder/build_prompt.py/0
{ "file_path": "CodeT/RepoCoder/build_prompt.py", "repo_id": "CodeT", "token_count": 3709 }
223
#!/bin/zsh # # A shell script to clean up the setup of Codex CLI for zsh # set -e CODEX_CLI_PATH="$( cd "$( dirname "$0" )" && cd .. && pwd )" openAIConfigPath="$CODEX_CLI_PATH/src/openaiapirc" zshrcPath="$HOME/.zshrc" # 1. Remove settings in .zshrc sed -i '' '/### Codex CLI setup - start/,/### Codex CLI setup - end/d' $zshrcPath echo "Removed settings in $zshrcPath if present" # 2. Remove opanaiapirc in /.config rm -f $openAIConfigPath echo "Removed $openAIConfigPath" echo "Codex CLI clean up completed. Please open a new zsh to continue."
Codex-CLI/scripts/zsh_cleanup.sh/0
{ "file_path": "Codex-CLI/scripts/zsh_cleanup.sh", "repo_id": "Codex-CLI", "token_count": 212 }
224
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: large_person_group.py Description: Large Person Group section of the Cognitive Face API. """ from . import util def create(large_person_group_id, name=None, user_data=None): """Create a new large person group with specified `large_person_group_id`, `name` and user-provided `user_data`. Args: large_person_group_id: User-provided `large_person_group_id` as a string. The valid characters include numbers, English letters in lower case, '-' and '_'. The maximum length is 64. name: Name of the created large person group, maximum length is 128. user_data: Optional user defined data for the large person group. Length should not exceed 16KB. Returns: An empty response body. """ name = name or large_person_group_id url = 'largepersongroups/{}'.format(large_person_group_id) json = { 'name': name, 'userData': user_data, } return util.request('PUT', url, json=json) def delete(large_person_group_id): """Delete an existing large person group. Persisted face images of all people in the large person group will also be deleted. Args: large_person_group_id: The `large_person_group_id` of the large person group to be deleted. Returns: An empty response body. """ url = 'largepersongroups/{}'.format(large_person_group_id) return util.request('DELETE', url) def get(large_person_group_id): """Retrieve the information of a large person group, including its `name` and `user_data`. Args: large_person_group_id: `large_person_group_id` of the target large person group. Returns: The large person group's information. """ url = 'largepersongroups/{}'.format(large_person_group_id) return util.request('GET', url) def get_status(large_person_group_id): """Retrieve the training status of the large person group (completed or ongoing). Training can be triggered by `large_person_group.train`. The training will process for a while on the server side. Args: large_person_group_id: `large_person_group_id` of the target large person group. Returns: The large person group's training status. """ url = 'largepersongroups/{}/training'.format(large_person_group_id) return util.request('GET', url) def list(start=None, top=None): """List large person groups and their information. Args: start: Optional parameter. List large person groups from the least `large_person_group_id` greater than the "start". It contains no more than 64 characters. Default is empty. top: The number of large person groups to list, ranging in [1, 1000]. Default is 1000. Returns: An array of large person groups and their information (`large_person_group_id`, `name` and `user_data`). """ url = 'largepersongroups' params = { 'start': start, 'top': top, } return util.request('GET', url, params=params) def train(large_person_group_id): """Queue a large person group training task, the training task may not be started immediately. Args: large_person_group_id: Target large person group to be trained. Returns: An empty JSON body. """ url = 'largepersongroups/{}/train'.format(large_person_group_id) return util.request('POST', url) def update(large_person_group_id, name=None, user_data=None): """Update an existing large person group's `name` and `user_data`. The properties which does not appear in request body will not be updated. Args: large_person_group_id: `large_person_group_id` of the large person group to be updated. name: Optional parameter. Large person group display name. The maximum length is 128. user_data: Optional parameter. User-provided data attached to the large person group. The size limit is 16KB. Returns: An empty response body. """ url = 'largepersongroups/{}'.format(large_person_group_id) json = { 'name': name, 'userData': user_data, } return util.request('PATCH', url, json=json)
Cognitive-Face-Python/cognitive_face/large_person_group.py/0
{ "file_path": "Cognitive-Face-Python/cognitive_face/large_person_group.py", "repo_id": "Cognitive-Face-Python", "token_count": 1613 }
225
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: config.sample.py Description: Unittest shared utilities for Python SDK of the Cognitive Face API. """ import time import uuid import cognitive_face as CF from . import config # Base URL of online images. BASE_URL_IMAGE = ('https://raw.githubusercontent.com/' 'Microsoft/Cognitive-Face-Windows/master/Data/') # Notification of wait. MSG_WAIT = 'Wait for {} seconds so as to avoid exceeding free quote.' def wait(): """Wait for some interval to avoid exceeding quote.""" print(MSG_WAIT.format(config.TIME_SLEEP)) time.sleep(config.TIME_SLEEP) class DataStore(object): """Store the needed data for unittests.""" @classmethod def setup_face(cls): """Setup Face related data.""" image = '{}PersonGroup/Family1-Dad/Family1-Dad3.jpg'.format( BASE_URL_IMAGE) res = CF.face.detect(image) print('[face_id] res: {}'.format(res)) cls.face_id = res[0]['faceId'] print('[face_id]: {}'.format(cls.face_id)) wait() image = '{}PersonGroup/Family1-Mom/Family1-Mom3.jpg'.format( BASE_URL_IMAGE) res = CF.face.detect(image) print('[another_face_id] res: {}'.format(res)) cls.another_face_id = res[0]['faceId'] print('[another_face_id]: {}'.format(cls.another_face_id)) wait() image = '{}identification1.jpg'.format(BASE_URL_IMAGE) res = CF.face.detect(image) cls.face_ids = [] print('[face_ids] res: {}'.format(res)) for face in res: cls.face_ids.append(face['faceId']) print('[face_ids]: {}'.format(cls.face_ids)) wait() @classmethod def setup_face_list(cls): """Setup Face List related data.""" cls.face_list_id = str(uuid.uuid1()) res = CF.face_list.create(cls.face_list_id) print('[face_list_id] res: {}'.format(res)) print('[face_list_id]: {}'.format(cls.face_list_id)) wait() cls.face_persisted_face_id = {} for name in ['Dad', 'Daughter', 'Mom', 'Son']: cls.face_persisted_face_id[name] = [] for idx in range(1, 3): image = '{}PersonGroup/Family1-{}/Family1-{}{}.jpg'.format( BASE_URL_IMAGE, name, name, idx) res = CF.face_list.add_face(image, cls.face_list_id) cls.face_persisted_face_id[name].append(res['persistedFaceId']) print('[face_persisted_face_id.{}.{}] res: {}'.format( name, idx, res)) print('[face_persisted_face_id.{}]: {}'.format( name, cls.face_persisted_face_id[name])) wait() @classmethod def setup_person_group(cls): """Setup Person and Person Group related data.""" cls.person_group_id = str(uuid.uuid1()) res = CF.person_group.create(cls.person_group_id) print('[person_group_id] res: {}'.format(res)) print('[person_group_id]: {}'.format(cls.person_group_id)) wait() cls.person_id = {} cls.person_persisted_face_id = {} for name in ['Dad', 'Daughter', 'Mom', 'Son']: res = CF.person.create(cls.person_group_id, name) cls.person_id[name] = res['personId'] print('[person_id.{}] res: {}'.format(name, res)) print('[person_id.{}]: {}'.format(name, cls.person_id[name])) wait() cls.person_persisted_face_id[name] = [] for idx in range(1, 3): image = '{}PersonGroup/Family1-{}/Family1-{}{}.jpg'.format( BASE_URL_IMAGE, name, name, idx) res = CF.person.add_face(image, cls.person_group_id, cls.person_id[name]) cls.person_persisted_face_id[name].append( res['persistedFaceId']) print('[person_persisted_face_id.{}.{}] res: {}'.format( name, idx, res)) print('[person_persisted_face_id.{}]: {}'.format( name, cls.person_persisted_face_id[name])) wait() res = CF.person_group.train(cls.person_group_id) print('[person_group.train]res: {}', res) wait() @classmethod def setup_large_face_list(cls): """Setup Large Face List related data.""" cls.large_face_list_id = str(uuid.uuid1()) res = CF.large_face_list.create(cls.large_face_list_id) print('[large_face_list_id] res: {}'.format(res)) print('[large_face_list_id]: {}'.format(cls.large_face_list_id)) wait() cls.large_face_list_face_id = {} for name in ['Dad', 'Daughter', 'Mom', 'Son']: cls.large_face_list_face_id[name] = [] for idx in range(1, 3): image = '{}PersonGroup/Family1-{}/Family1-{}{}.jpg'.format( BASE_URL_IMAGE, name, name, idx) res = CF.large_face_list_face.add(image, cls.large_face_list_id) cls.large_face_list_face_id[name].append( res['persistedFaceId']) print('[large_face_list_face_id.{}.{}] res: {}'.format( name, idx, res)) print('[large_face_list_face_id.{}]: {}'.format( name, cls.large_face_list_face_id[name])) wait() res = CF.large_face_list.train(cls.large_face_list_id) print('[large_face_list.train]res: {}', res) wait() @classmethod def setup_large_person_group(cls): """Setup Large Person Group related data.""" cls.large_person_group_id = str(uuid.uuid1()) res = CF.large_person_group.create(cls.large_person_group_id) print('[large_person_group_id] res: {}'.format(res)) print('[large_person_group_id]: {}'.format(cls.large_person_group_id)) wait() cls.large_person_group_person_id = {} cls.large_person_group_person_face_id = {} for name in ['Dad', 'Daughter', 'Mom', 'Son']: res = CF.large_person_group_person.create( cls.large_person_group_id, name) cls.large_person_group_person_id[name] = res['personId'] print( '[large_person_group_person_id.{}] res: {}'.format(name, res)) print('[large_person_group_person_id.{}]: {}'.format( name, cls.large_person_group_person_id[name])) wait() cls.large_person_group_person_face_id[name] = [] for idx in range(1, 3): image = '{}PersonGroup/Family1-{}/Family1-{}{}.jpg'.format( BASE_URL_IMAGE, name, name, idx) res = CF.large_person_group_person_face.add( image, cls.large_person_group_id, cls.large_person_group_person_id[name]) cls.large_person_group_person_face_id[name].append( res['persistedFaceId']) print('[large_person_group_person_face_id.{}.{}] res: {}'. format(name, idx, res)) print('[large_person_group_person_face_id.{}]: {}'.format( name, cls.large_person_group_person_face_id[name])) wait() res = CF.large_person_group.train(cls.large_person_group_id) print('[large_person_group.train]res: {}', res) wait()
Cognitive-Face-Python/cognitive_face/tests/util.py/0
{ "file_path": "Cognitive-Face-Python/cognitive_face/tests/util.py", "repo_id": "Cognitive-Face-Python", "token_count": 3869 }
226
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: setup.py Description: Setup script to build and distribute cognitive_face module. """ import io from setuptools import find_packages from setuptools import setup README = 'README.md' def readme(): """Parse README for long_description.""" return io.open(README, encoding='utf-8').read() setup( name='cognitive_face', version='1.5.0', packages=find_packages(exclude=['tests']), install_requires=['requests'], author='Microsoft', description='Python SDK for the Cognitive Face API', long_description=readme(), long_description_content_type='text/markdown', license='MIT', url='https://github.com/Microsoft/Cognitive-Face-Python', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Image Recognition', ], test_suite='nose.collector', tests_require=['nose'])
Cognitive-Face-Python/setup.py/0
{ "file_path": "Cognitive-Face-Python/setup.py", "repo_id": "Cognitive-Face-Python", "token_count": 406 }
227
# Does Deep Learning Learn to Abstract? This is the official repo for the paper *'Does Deep Learning Learn to Abstract? A Systematic Probing Framework'*. This work has been accepted at ICLR 2023. [OpenReview](https://openreview.net/forum?id=QB1dMPEXau5) This repo contains data and main code used in this work. We hope this work can facilitate understanding of the abstraction capability of deep learning model. ## Data ```shell |-- data |-- Com |-- set1 |-- pretrain.json |-- finetune.json |-- test.json |-- pretrain_contrast.json |-- set2 |-- set3 |-- Mod ``` `./data` contains our two probing tasks Com and Mod. Each probing task contain 3 different sets. The difference among sets is that they use different terminals. Our reported results are averaged on 3 sets. Each set contain 4 data files. Each line in the file is one example that has an `input` sequence and `output` sequence. `pretrain.json` is for MainExp pretraning. `pretrain_contrast.json` is for ContrastExp pretraining. `finetune.json` and `test.json` is for finetuning and testing in all three Exps. ## Code We provide the code for T5 models. Code for GPT2 models is on the way. ### Requirements The main dependency is `pytorch` and `transformers`. ```bash pip install -r requirements.txt ``` ### MainExp ```bash sh Com_MainExp_pretrain.sh ``` This will start training the T5-Base model on `./data/Com/set1/pretrain.json`. You can change the subtask, subset, and other hyper-parameters in `Com_MainExp_pretrain.sh` and `t5_run_train.py`. After the training finished, the model will be saved in `/code/t5_code/checkpoint/Com/MainExp_pretrain_set1_seed1/checkpoint-100000/`. ```bash sh Com_MainExp_finetune.sh ``` This will load the pretrained checkpoint and finetune on `./data/Com/set1/finetune.json`. The model will be saved in `./code/t5_code/checkpoint/Com/MainExp_finetune_set1_seed1/checkpoint-100000/`. ```bash sh Com_MainExp_test.sh ``` This will test the finetuned model on `./data/Com/set1/test.json`. The testing results will be logged in `./code/t5_code/checkpoint/Com/MainExp_finetune_set1_seed1/checkpoint-50000_test_beam5.txt` ### ControlExp ```bash sh Com_ControlExp_finetune.sh sh Com_ControlExp_test.sh ``` ### ContrastExp ```bash sh Com_ContrastExp_pretrain.sh sh Com_ContrastExp_finetune.sh sh Com_ContrastExp_test.sh ``` ## Citation ```bibtex @inproceedings{ an2023does, title={Does Deep Learning Learn to Abstract? A Systematic Probing Framework}, author={Shengnan An and Zeqi Lin and Bei Chen and Qiang Fu and Nanning Zheng and Jian-Guang Lou}, booktitle={International Conference on Learning Representations}, year={2023}, url={https://openreview.net/forum?id=QB1dMPEXau5} } ```
ContextualSP/abstraction_probing/README.md/0
{ "file_path": "ContextualSP/abstraction_probing/README.md", "repo_id": "ContextualSP", "token_count": 976 }
228
export CUDA_VISIBLE_DEVICES=4 python t5_run_eval.py \ --model_name_or_path ./checkpoint/Mod/MainExp_finetune_set1_seed1/checkpoint-50000 \ --subtask Mod \ --validation_file test \ --ebatch_size 16 \ --set set1
ContextualSP/abstraction_probing/code/t5_code/Mod_MainExp_test.sh/0
{ "file_path": "ContextualSP/abstraction_probing/code/t5_code/Mod_MainExp_test.sh", "repo_id": "ContextualSP", "token_count": 84 }
229
import numpy as np def update_roberta_keys(state, nlayer=24): for key in state.keys(): if "self_attn.q_proj" in key: return state new_dict = {} for key, val in state.items(): if not "self_attn.in_proj_" in key: new_dict[key] = val for i in range(nlayer): mhaw = "decoder.sentence_encoder.layers.{}.self_attn.in_proj_weight".format(i) mhab = "decoder.sentence_encoder.layers.{}.self_attn.in_proj_bias".format(i) weight = state[mhaw] bais = state[mhab] size = int(weight.size(0) / 3) # query, key, value qw = "decoder.sentence_encoder.layers.{}.self_attn.q_proj.weight".format(i) kw = "decoder.sentence_encoder.layers.{}.self_attn.k_proj.weight".format(i) vw = "decoder.sentence_encoder.layers.{}.self_attn.v_proj.weight".format(i) new_dict[qw] = weight[:size, :] new_dict[kw] = weight[size : size * 2, :] new_dict[vw] = weight[size * 2 :, :] # reconstruct weight rweight = np.concatenate( ( new_dict[qw].cpu().numpy(), new_dict[kw].cpu().numpy(), new_dict[vw].cpu().numpy(), ), axis=0, ) assert np.array_equal(rweight, weight.cpu().numpy()) qb = "decoder.sentence_encoder.layers.{}.self_attn.q_proj.bias".format(i) kb = "decoder.sentence_encoder.layers.{}.self_attn.k_proj.bias".format(i) vb = "decoder.sentence_encoder.layers.{}.self_attn.v_proj.bias".format(i) new_dict[qb] = bais[:size] new_dict[kb] = bais[size : size * 2] new_dict[vb] = bais[size * 2 :] rbais = np.concatenate( ( new_dict[qb].cpu().numpy(), new_dict[kb].cpu().numpy(), new_dict[vb].cpu().numpy(), ), axis=0, ) assert np.array_equal(rbais, bais.cpu().numpy()) return new_dict def patch_name_dict(state): new_state = {} for key, val in state.items(): if key.startswith("decoder.sentence_encoder"): key = "bert.{}".format(key) new_state[key] = val elif key.startswith("classification_heads"): key = "bert.{}".format(key) new_state[key] = val else: new_state[key] = val return new_state
ContextualSP/adaptershare/data_utils/roberta_utils.py/0
{ "file_path": "ContextualSP/adaptershare/data_utils/roberta_utils.py", "repo_id": "ContextualSP", "token_count": 1281 }
230
import os import argparse import random from sys import path path.append(os.getcwd()) from experiments.common_utils import dump_rows from data_utils.task_def import DataFormat from data_utils.log_wrapper import create_logger from experiments.superglue.superglue_utils import * logger = create_logger(__name__, to_disk=True, log_file="superglue_prepro.log") def parse_args(): parser = argparse.ArgumentParser( description="Preprocessing SuperGLUE dataset." ) parser.add_argument("--seed", type=int, default=13) parser.add_argument("--root_dir", type=str, default="data") args = parser.parse_args() return args def main(args): root = args.root_dir assert os.path.exists(root) ###################################### # SuperGLUE tasks ###################################### cb_train_path = os.path.join(root, "CB/train.jsonl") cb_dev_path = os.path.join(root, "CB/val.jsonl") cb_test_path = os.path.join(root, "CB/test.jsonl") boolq_train_path = os.path.join(root, "BoolQ/train.jsonl") boolq_dev_path = os.path.join(root, "BoolQ/val.jsonl") boolq_test_path = os.path.join(root, "BoolQ/test.jsonl") copa_train_path = os.path.join(root, "COPA/train.jsonl") copa_dev_path = os.path.join(root, "COPA/val.jsonl") copa_test_path = os.path.join(root, "COPA/test.jsonl") record_train_path = os.path.join(root, "ReCoRD/train.jsonl") record_dev_path = os.path.join(root, "ReCoRD/val.jsonl") record_test_path = os.path.join(root, "ReCoRD/test.jsonl") wic_train_path = os.path.join(root, "WiC/train.jsonl") wic_dev_path = os.path.join(root, "WiC/val.jsonl") wic_test_path = os.path.join(root, "WiC/test.jsonl") multirc_train_path = os.path.join(root, "MultiRC/train.jsonl") multirc_dev_path = os.path.join(root, "MultiRC/val.jsonl") multirc_test_path = os.path.join(root, "MultiRC/test.jsonl") ###################################### # Loading DATA ###################################### cb_train_data = load_cb(cb_train_path) cb_dev_data = load_cb(cb_dev_path) cb_test_data = load_cb(cb_test_path) logger.info("Loaded {} CB train samples".format(len(cb_train_data))) logger.info("Loaded {} CB dev samples".format(len(cb_dev_data))) logger.info("Loaded {} CB test samples".format(len(cb_test_data))) boolq_train_data = load_boolq(boolq_train_path) boolq_dev_data = load_boolq(boolq_dev_path) boolq_test_data = load_boolq(boolq_test_path) logger.info("Loaded {} BoolQ train samples".format(len(boolq_train_data))) logger.info("Loaded {} BoolQ dev samples".format(len(boolq_dev_data))) logger.info("Loaded {} BoolQ test samples".format(len(boolq_test_data))) copa_train_data = load_copa_mtdnn(copa_train_path) copa_dev_data = load_copa_mtdnn(copa_dev_path) copa_test_data = load_copa_mtdnn(copa_test_path) logger.info("Loaded {} COPA train samples".format(len(copa_train_data))) logger.info("Loaded {} COPA dev samples".format(len(copa_dev_data))) logger.info("Loaded {} COPA test samples".format(len(copa_test_data))) record_train_data = load_record_mtdnn(record_train_path) record_dev_data = load_record_mtdnn(record_dev_path) record_test_data = load_record_mtdnn(record_test_path) logger.info("Loaded {} Record train samples".format(len(record_train_data))) logger.info("Loaded {} Record dev samples".format(len(record_dev_data))) logger.info("Loaded {} Record test samples".format(len(record_test_data))) wic_train_data = load_wic_mtdnn(wic_train_path) wic_dev_data = load_wic_mtdnn(wic_dev_path) wic_test_data = load_wic_mtdnn(wic_test_path) logger.info("Loaded {} WiC train samples".format(len(wic_train_data))) logger.info("Loaded {} WiC dev samples".format(len(wic_dev_data))) logger.info("Loaded {} WiC test samples".format(len(wic_test_data))) multirc_train_data = load_multirc_mtdnn(multirc_train_path) multirc_dev_data = load_multirc_mtdnn(multirc_dev_path) multirc_test_data = load_multirc_mtdnn(multirc_test_path) logger.info("Loaded {} MultiRC train samples".format(len(multirc_train_data))) logger.info("Loaded {} MultiRC dev samples".format(len(multirc_dev_data))) logger.info("Loaded {} MultiRC test samples".format(len(multirc_test_data))) canonical_data_suffix = "canonical_data" canonical_data_root = os.path.join(root, canonical_data_suffix) if not os.path.isdir(canonical_data_root): os.mkdir(canonical_data_root) cb_train_fout = os.path.join(canonical_data_root, "cb_train.tsv") cb_dev_fout = os.path.join(canonical_data_root, "cb_dev.tsv") cb_test_fout = os.path.join(canonical_data_root, "cb_test.tsv") dump_rows(cb_train_data, cb_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(cb_dev_data, cb_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(cb_test_data, cb_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with CB") boolq_train_fout = os.path.join(canonical_data_root, "boolq_train.tsv") boolq_dev_fout = os.path.join(canonical_data_root, "boolq_dev.tsv") boolq_test_fout = os.path.join(canonical_data_root, "boolq_test.tsv") dump_rows(boolq_train_data, boolq_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(boolq_dev_data, boolq_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(boolq_test_data, boolq_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with boolq") copa_train_fout = os.path.join(canonical_data_root, "copa_train.tsv") copa_dev_fout = os.path.join(canonical_data_root, "copa_dev.tsv") copa_test_fout = os.path.join(canonical_data_root, "copa_test.tsv") dump_rows(copa_train_data, copa_train_fout, DataFormat.PremiseAndMultiHypothesis) dump_rows(copa_dev_data, copa_dev_fout, DataFormat.PremiseAndMultiHypothesis) dump_rows(copa_test_data, copa_test_fout, DataFormat.PremiseAndMultiHypothesis) logger.info("done with record") record_train_fout = os.path.join(canonical_data_root, "record_train.tsv") record_dev_fout = os.path.join(canonical_data_root, "record_dev.tsv") record_test_fout = os.path.join(canonical_data_root, "record_test.tsv") dump_rows(record_train_data, record_train_fout, DataFormat.ClozeChoice) dump_rows(record_dev_data, record_dev_fout, DataFormat.ClozeChoice) dump_rows(record_test_data, record_test_fout, DataFormat.ClozeChoice) logger.info("done with record") wic_train_fout = os.path.join(canonical_data_root, "wic_train.tsv") wic_dev_fout = os.path.join(canonical_data_root, "wic_dev.tsv") wic_test_fout = os.path.join(canonical_data_root, "wic_test.tsv") dump_rows(wic_train_data, wic_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(wic_dev_data, wic_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(wic_test_data, wic_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with WiC") multirc_train_fout = os.path.join(canonical_data_root, "multirc_train.tsv") multirc_dev_fout = os.path.join(canonical_data_root, "multirc_dev.tsv") multirc_test_fout = os.path.join(canonical_data_root, "multirc_test.tsv") dump_rows(multirc_train_data, multirc_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(multirc_dev_data, multirc_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(multirc_test_data, multirc_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with MultiRC") if __name__ == "__main__": args = parse_args() main(args)
ContextualSP/adaptershare/experiments/superglue/superglue_prepro.py/0
{ "file_path": "ContextualSP/adaptershare/experiments/superglue/superglue_prepro.py", "repo_id": "ContextualSP", "token_count": 3093 }
231
# coding=utf-8 # Copyright (c) Microsoft. All rights reserved. import shutil import os import subprocess import filecmp import os.path def compare_files(dir1, dir2, common_files, text_mode=False): same_files = [] diff_files = [] for common_file in common_files: path0 = os.path.join(dir1, common_file) path1 = os.path.join(dir2, common_file) open_mode = "r" if text_mode else "rb" s0 = open(path0, open_mode).read() s1 = open(path1, open_mode).read() if s0 == s1: same_files.append(common_file) else: diff_files.append(common_file) return same_files, diff_files def are_dir_trees_equal(dir1, dir2): """ Compare two directories recursively. Files in each directory are assumed to be equal if their names and contents are equal. @param dir1: First directory path @param dir2: Second directory path @return: True if the directory trees are the same and there were no errors while accessing the directories or files, False otherwise. """ dirs_cmp = filecmp.dircmp(dir1, dir2) if len(dirs_cmp.left_only)>0 or len(dirs_cmp.right_only)>0 or \ len(dirs_cmp.funny_files)>0: return False _, diff_files = compare_files(dir1, dir2, dirs_cmp.common_files, text_mode=True) if len(diff_files) > 0: return False for common_dir in dirs_cmp.common_dirs: new_dir1 = os.path.join(dir1, common_dir) new_dir2 = os.path.join(dir2, common_dir) if not are_dir_trees_equal(new_dir1, new_dir2): return False return True def test_prepro(): if os.access("./run_test", os.F_OK): shutil.rmtree("./run_test") os.mkdir("./run_test") shutil.copytree("./tests/sample_data/input", "./run_test/sample_data") result = subprocess.check_output("python experiments/glue/glue_prepro.py --root_dir run_test/sample_data", stderr=subprocess.STDOUT, shell=True) result = subprocess.check_output("python prepro_std.py --model bert-base-uncased --root_dir run_test/sample_data/canonical_data --task_def experiments/glue/glue_task_def.yml", stderr=subprocess.STDOUT, shell=True) assert are_dir_trees_equal("./run_test/sample_data/canonical_data/bert-base-uncased", "./tests/sample_data/output")
ContextualSP/adaptershare/tests/test_prepro.py/0
{ "file_path": "ContextualSP/adaptershare/tests/test_prepro.py", "repo_id": "ContextualSP", "token_count": 960 }
232
from .spider_align import SpiderAlignmentModel from .wtq_align import WTQAlignmentModel from baseline.wtq_s2s.seq2seq import WTQSeq2SeqModel from .model_utils import * from .optmizers import *
ContextualSP/awakening_latent_grounding/models/__init__.py/0
{ "file_path": "ContextualSP/awakening_latent_grounding/models/__init__.py", "repo_id": "ContextualSP", "token_count": 63 }
233
python train.py -model SpiderAlignmentModel -bert bert-large-uncased-whole-word-masking \ -lr 5e-5 -train_bs 6 \ -acc_steps 4 -alw linear_20-30 -num_epochs 30 \ --data_dir data/spider_grounding \ --out_dir checkpoints/model_spider \ --warmup_steps 2000
ContextualSP/awakening_latent_grounding/train_spider_ground.sh/0
{ "file_path": "ContextualSP/awakening_latent_grounding/train_spider_ground.sh", "repo_id": "ContextualSP", "token_count": 111 }
234
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # Author: Qian Liu (SivilTaram) # Original Repo: https://github.com/microsoft/ContextualSP import torch from overrides import overrides from allennlp.modules.matrix_attention.matrix_attention import MatrixAttention @MatrixAttention.register("ele_multiply") class ElementWiseMatrixAttention(MatrixAttention): """ This similarity function simply computes the dot product between each pair of vectors, with an optional scaling to reduce the variance of the output elements. Parameters ---------- scale_output : ``bool``, optional If ``True``, we will scale the output by ``math.sqrt(tensor.size(-1))``, to reduce the variance in the result. """ def __init__(self) -> None: super(ElementWiseMatrixAttention, self).__init__() @overrides def forward(self, tensor_1: torch.Tensor, tensor_2: torch.Tensor) -> torch.Tensor: result = torch.einsum('iaj,ibj->ijab', [tensor_1, tensor_2]) return result
ContextualSP/incomplete_utterance_rewriting/src/similar_functions/element_wise.py/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/src/similar_functions/element_wise.py", "repo_id": "ContextualSP", "token_count": 355 }
235
# coding: utf-8 import re import nltk from src.utils.utils import STOP_WORD_LIST from src.utils.external import complex_rephrase class NLModifier(object): def __init__(self, mode='simple'): self.database = '' self.utterance = '' self.utterance_tokens = [] self.utterance_tokens_no_stopwords = [] self.utterance_pos = [] assert mode.lower() in ('simple', 'rule', 'complex') self.mode = mode.lower() def refresh(self, database, utterance): self.database = database self.utterance = utterance self.utterance_tokens = nltk.word_tokenize(utterance) self.utterance_pos = [_[1] for _ in nltk.pos_tag(self.utterance_tokens)] self.utterance_tokens_no_stopwords = [] for token_idx, token in enumerate(self.utterance_tokens): if token not in STOP_WORD_LIST: self.utterance_tokens_no_stopwords.append((token_idx, token)) def modify(self, token, schema_item): if self.mode == 'simple': self.utterance_tokens = [ori_token if ori_token != token else schema_item.value for ori_token in self.utterance_tokens] elif self.mode == 'rule': if schema_item is None: return column_name, token_type = schema_item.value, schema_item.type assert token_type in ('column_name', 'value') # find spans column_name_tokens = re.split(' |_', column_name) labels = [True for _ in range(len(self.utterance_tokens_no_stopwords))] origin_span_idxs = [] for list_idx, (token_idx, utt_token) in enumerate(self.utterance_tokens_no_stopwords): if utt_token == token: labels[list_idx] = True st, ed = token_idx, token_idx for i in range(list_idx - 1, -1, -1): if self.utterance_tokens_no_stopwords[i][1] in column_name_tokens: labels[i] = True st = self.utterance_tokens_no_stopwords[i][0] else: break for i in range(list_idx + 1, len(self.utterance_tokens_no_stopwords)): if self.utterance_tokens_no_stopwords[i][i] in column_name_tokens: labels[i] = True ed = self.utterance_tokens_no_stopwords[i][0] else: break origin_span_idxs.append((token_idx, st, ed)) assert len(self.utterance_tokens_no_stopwords) == len(labels) self.utterance_tokens_no_stopwords, self.utterance_pos_no_stopwords = \ [self.utterance_tokens_no_stopwords[i] for i in range(len(labels)) if labels[i] is False], \ [self.utterance_pos_no_stopwords[i] for i in range(len(labels)) if labels[i] is False] # adopt replacing rules for token_idx, span_st, span_ed in origin_span_idxs: token_pos = self.utterance_pos[token_idx] if token_pos in ('NN', 'NNS', 'NNP', 'NNPS'): # noun if token_type is 'column_name': self.utterance_tokens = self.utterance_tokens[:span_st] \ + column_name.lower() \ + self.utterance_tokens[span_ed + 1:] elif token_type is 'value': self.utterance_tokens[token_idx] = self.utterance_tokens[token_idx].capitalize() elif token_pos in ('VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'): # verb, not supported pass if token_type is 'column_name': self.utterance_tokens.insert(token_idx + 1, schema_item.value) elif token_type is 'value': self.utterance_tokens.insert(token_idx + 1, schema_item.value) elif token_pos in ('JJ', 'JJR', 'JJS'): # adjective, adjective comparative, adjective superlative assert token_type is 'value' # adj + n -> adj + COLUMN + n self.utterance_tokens.insert(token_idx, column_name) elif token_pos in ('RB', 'RBR', 'RBS'): pass # cannot handle else: raise ValueError('Cannot modify words not in n, v, adj') # remove doubled words new_utterance = [] last_word = '' for word in self.utterance_tokens: if word != last_word: new_utterance.append(word) last_word = word self.utterance_tokens = new_utterance elif self.mode == 'complex': utterance = complex_rephrase(' '.join(self.utterance_tokens), token, schema_item.value) self.utterance_tokens = utterance.split() def get_utterance(self): return ' '.join(self.utterance_tokens)
ContextualSP/interactive_text_to_sql/src/components/nl_modiifer.py/0
{ "file_path": "ContextualSP/interactive_text_to_sql/src/components/nl_modiifer.py", "repo_id": "ContextualSP", "token_count": 2741 }
236
# coding: utf-8 import json from typing import List from src.utils.utils import lemma_token STOP_WORD_LIST = [_.strip() for _ in open('data/common/stop_words.txt', 'r', encoding='utf-8').readlines()] def align_two_sentences_in_token_level(token_list1, token_list2, stop_word_list=[]): token_list1 = [(word, idx) for idx, word in enumerate(token_list1) if word not in stop_word_list] token_list2 = [(word, idx) for idx, word in enumerate(token_list2) if word not in stop_word_list] def find_exact_match_pairs_from_two_sentences(word_list1, word_list2): pairs = [] for word1, idx1 in word_list1: for word2, idx2 in word_list2: if word1 == word2: word_list2.remove((word2, idx2)) pairs.append((word1, idx1, word2, idx2)) return pairs exact_match = find_exact_match_pairs_from_two_sentences(token_list1, token_list2) exact_match_tokens_idx1 = [_[1] for _ in exact_match] exact_match_tokens_idx2 = [_[3] for _ in exact_match] sentence1_lemma = [(lemma_token(word), idx) for word, idx in token_list1 if idx not in exact_match_tokens_idx1] sentence2_lemma = [(lemma_token(word), idx) for word, idx in token_list2 if idx not in exact_match_tokens_idx2] lemma_match = find_exact_match_pairs_from_two_sentences(sentence1_lemma, sentence2_lemma) lemma_match_tokens_idx1 = [_[1] for _ in lemma_match] lemma_match_tokens_idx2 = [_[3] for _ in lemma_match] return exact_match + lemma_match def find_keyword_alignment_by_rule(nl_tokens: List, keyword: str, stop_word_list: List = STOP_WORD_LIST, only_one_match: bool = False, aligned_mark: List[bool] = None): aligned_results = [] position_pairs = set() # step0: eliminate stop words, but keep position info keyword = keyword.split() for stop_word in stop_word_list: if stop_word in keyword: keyword = keyword.remove(stop_word) keyword_lemma = [lemma_token(_) for _ in keyword] informative_token_pairs = [] informative_token_lemma_pairs = [] for pos, token in enumerate(nl_tokens): if token not in stop_word_list: informative_token_pairs.append((token, pos)) informative_token_lemma_pairs.append((lemma_token(token), pos)) if not aligned_mark: aligned_mark = [False for _ in range(len(informative_token_pairs))] # step1: exact match for i in range(len(informative_token_pairs) - len(keyword) + 1): if only_one_match and True in aligned_mark[i: i + len(keyword)]: continue st_position = informative_token_pairs[i][1] ed_position = informative_token_pairs[i + len(keyword) - 1][1] if [_[0] for _ in informative_token_pairs[i: i + len(keyword)]] == keyword \ and (st_position, ed_position) not in position_pairs: aligned_results.append((st_position, ed_position, 'exact', keyword)) position_pairs.add((st_position, ed_position)) if only_one_match: for j in range(i, i + len(keyword)): aligned_mark[j] = True # step2: lemma exactly match for i in range(len(informative_token_lemma_pairs) - len(keyword_lemma) + 1): if only_one_match and True in aligned_mark[i: i + len(keyword_lemma)]: continue st_position = informative_token_lemma_pairs[i][1] ed_position = informative_token_lemma_pairs[i + len(keyword) - 1][1] if [_[0] for _ in informative_token_lemma_pairs[i: i + len(keyword_lemma)]] == keyword_lemma \ and (st_position, ed_position) not in position_pairs: aligned_results.append((st_position, ed_position, 'exact lemma', keyword)) position_pairs.add((st_position, ed_position)) if only_one_match: for j in range(i, i + len(keyword_lemma)): aligned_mark[j] = True def check_in(utterance_span, keyword_tokens): return len(set(utterance_span) & set(keyword_tokens)) == len(utterance_span) and len(keyword_tokens) <= 3 # step3: partial match for i in range(len(informative_token_pairs) - len(keyword) + 1): st_position = informative_token_pairs[i][1] for end_idx in reversed(range(i + 1, len(informative_token_pairs))): if only_one_match and True in aligned_mark[i: end_idx]: continue sub_tokens = [_[0] for _ in informative_token_pairs[i:end_idx]] if not sub_tokens: continue else: ed_position = informative_token_pairs[end_idx - 1][1] if check_in(sub_tokens, keyword): aligned_results.append((st_position, ed_position, 'partial', keyword)) if only_one_match: for j in range(i, end_idx): aligned_mark[j] = True # step4: lemma partial match for i in range(len(informative_token_lemma_pairs) - len(keyword) + 1): for end_idx in reversed(range(i + 1, len(informative_token_lemma_pairs))): if only_one_match and True in aligned_mark[i: end_idx]: continue sub_tokens = [_[0] for _ in informative_token_lemma_pairs[i:end_idx]] if not sub_tokens: continue else: if check_in(sub_tokens, keyword): aligned_results.append((informative_token_lemma_pairs[i][1], informative_token_lemma_pairs[end_idx - 1][1], 'partial lemma', keyword)) if only_one_match: for j in range(i, end_idx): aligned_mark[j] = True return aligned_results, aligned_mark def find_alignment_by_rule(nl_tokens: List, table_names: List, column_names: List, values: List, only_one_match=False): aligned_mark = None # step1: find value match value_matches = [] for value in values: value_match, aligned_mark = \ find_keyword_alignment_by_rule(nl_tokens, value, STOP_WORD_LIST, only_one_match=only_one_match, aligned_mark=aligned_mark) value_matches += value_match # step2: find table match table_matches = [] for table_name in table_names: table_match, aligned_mark = \ find_keyword_alignment_by_rule(nl_tokens, table_name, STOP_WORD_LIST, only_one_match=only_one_match, aligned_mark=aligned_mark) table_matches += table_match # step3 find column match column_matches = [] for column_name in column_names: column_match, aligned_mark = \ find_keyword_alignment_by_rule(nl_tokens, column_name, STOP_WORD_LIST, only_one_match=only_one_match, aligned_mark=aligned_mark) column_matches += column_match alignment_results = {'value': value_matches, 'table': table_matches, 'column': column_matches} return alignment_results def test(): nl_tokens = 'show me the name of all English songs and their singers'.split() table_names = ['singer', 'song'] column_names = ['singer name', 'song name', 'age', 'year'] values = ['English', 'Show time'] ret = find_alignment_by_rule(nl_tokens, table_names, column_names, values, only_one_match=False) print(json.dumps(ret, indent=4)) if __name__ == '__main__': test()
ContextualSP/interactive_text_to_sql/src/utils/link_util.py/0
{ "file_path": "ContextualSP/interactive_text_to_sql/src/utils/link_util.py", "repo_id": "ContextualSP", "token_count": 3558 }
237
import json import sys import copy from itertools import combinations, permutations from random import choice, choices, shuffle import math import argparse from multiprocessing import Pool import multiprocessing from collections import Counter from functools import reduce from math import gcd from random import sample # from corpus_generation.scene_corpus_generation import postpreprocess_scene parser = argparse.ArgumentParser() parser.add_argument("--max_number", type=int, default=100000, help="max number each dataset.") parser.add_argument("--corpus_file", type=str, default='../corpus/pretraining_corpus_tangrams.txt', help="corpus file") args = parser.parse_args() fw = open(args.corpus_file, 'w') def lcm(numbers): return reduce((lambda x, y: int(x * y / gcd(x, y))), numbers) def obtain_action_weight(actions): temp = Counter([item.split()[0] for item in actions]) lcm_value = lcm(temp.values()) temp = {item:int(lcm_value / temp[item]) for item in temp} action_weight = [temp[item.strip().split()[0]] for item in actions] return action_weight def tangrams_shape_to_letter(shape): return chr(int(shape) + 65) def postpreprocess_tangrams(states): states = [item for item in states.split() if item.strip().split(':')[1]!='_'] states = ['{}:{}'.format(str(i+1), tangrams_shape_to_letter(elem)) for i, elem in enumerate([item.split(':')[1] for item in states])] states = ['{}:{}'.format(str(i+1), elem) for i, elem in enumerate([item.split(':')[1] for item in states] + ['_'] * (5-len(states)))] states = ' | '.join(states) return states def random_sampling(candidate_list, n, weights=None): result_list = [] for _ in range(n): result = choices(candidate_list, k=1, weights=weights)[0] result_list.append(result) return result_list def tangrams_letter_to_shape(letter): return str(ord(letter) - 65) def tangrams_executor(slots, actions): content = [item.split(':')[1] for item in slots] content = [item for item in content if item != '_'] for action in actions: splits = action.split() if splits[0] == 'insert': if len(content) >= 5: return 'Failed: sequence is too long.' else: if int(splits[1]) > len(content) + 1: return 'Failed: index greater than sequence length' else: if tangrams_letter_to_shape(splits[2]) in content: return 'Failed: elegram already in the sequence' else: content.insert(int(splits[1])-1, tangrams_letter_to_shape(splits[2])) elif splits[0] == 'remove': if len(content) <= 1: return 'Failed: sequence is too short.' else: if int(splits[1]) > len(content): return 'Failed: index greater than sequence length' else: del content[int(splits[1])-1] slots = ['{}:{}'.format(str(i+1), item) for i, item in enumerate(content)] if len(slots) < 5: slots = ['{}:{}'.format(str(i+1), elem) for i, elem in enumerate([item.split(':')[1] for item in slots] + ['_'] * (5-len(slots)))] return slots def tangrams_state_generator(): all_states = list(set(list(permutations(list(range(5)), 5)))) states = ['{}:{}'.format(str(i+1), item) for i,item in enumerate(random_sampling(all_states, 1)[0])] # states = ' '.join(states) return states def obtain_valid_actions_tangrams(states): action_list = [] states = [item.strip().split(':')[1] for item in states] total_len = len([item for item in states if item != '_']) if total_len < 5: action_list.extend(['insert {} {}'.format(str(i+1), j) for i in range(total_len+1) for j in ['A','B','C','D','E'] if tangrams_letter_to_shape(j) not in states]) if total_len > 1: action_list.extend(['remove {}'.format(str(i+1)) for i in range(total_len)]) return list(set(action_list)) def tangrams_corpus_generation(inputs): total_number, action_number_range = inputs all_states = list(set(list(permutations(list(range(5)), 5)) + list(permutations(list(range(5)), 4)) + list(permutations(list(range(5)), 3)) + list(permutations(list(range(5)), 2)) + list(permutations(list(range(5)), 1)))) all_actions = ['insert {} {}'.format(str(i+1), j) for i in range(5) for j in ['A', 'B', 'C', 'D', 'E']] # all_actions = ['insert {} {}'.format(str(i+1), j) for i in range(5) for j in [0,1,2,3,4]] all_actions += ['remove {}'.format(str(i+1)) for i in range(5)] count = 0 print('Begin generating tangrams corpus.') while True: # prev_states = ['{}:{}'.format(str(i+1), item) for i,item in enumerate(random_sampling(all_states, 1)[0])] prev_states = tangrams_state_generator() if len(prev_states) < 5: prev_states = ['{}:{}'.format(str(i+1), elem) for i, elem in enumerate([item.split(':')[1] for item in prev_states] + ['_'] * (5-len(prev_states)))] states_this_step = prev_states index = 0 action_list = [] step_this_case = choice(action_number_range) while index < step_this_case: all_valid_actions = obtain_valid_actions_tangrams(states_this_step) action_weight = obtain_action_weight(all_valid_actions) action = random_sampling(all_valid_actions, 1, weights=action_weight) states_this_step = tangrams_executor(states_this_step, action) assert isinstance(states_this_step, list) action_list.extend(action) index += 1 curr_states = states_this_step prev_states = postpreprocess_tangrams(' '.join(prev_states)) actions = ' '.join(action_list) curr_states = postpreprocess_tangrams(' '.join(curr_states)) item_row = '\t'.join([actions, prev_states, curr_states]) fw.write(item_row) fw.write('\n') count += 1 if count % 10000 == 0: print('Finish generating {} cases'.format(count)) if count >= total_number: break if __name__ == '__main__': total_number_list = [int(args.max_number * 0.35), int(args.max_number * 0.4), int(args.max_number * 0.15), int(args.max_number * 0.1)] action_number_range_list = [list(range(1,6)), list(range(6,11)), list(range(11,16)), list(range(16,21))] cores = multiprocessing.cpu_count() print("Using {} cores".format(cores)) pool = Pool(cores) for total_number, action_number_range in zip(total_number_list, action_number_range_list): res = pool.map(tangrams_corpus_generation, zip([int(total_number // cores) * cores], [action_number_range]*cores)) # tangrams_corpus_generation(int(args.max_number * 0.35), list(range(1,6))) # tangrams_corpus_generation(int(args.max_number * 0.4), list(range(6,11))) # tangrams_corpus_generation(int(args.max_number * 0.15), list(range(11,16))) # tangrams_corpus_generation(int(args.max_number * 0.1), list(range(16,21)))
ContextualSP/lemon/corpus_generation/tangrams_corpus_generation.py/0
{ "file_path": "ContextualSP/lemon/corpus_generation/tangrams_corpus_generation.py", "repo_id": "ContextualSP", "token_count": 2964 }
238
from abc import ABCMeta, abstractmethod from collections import Mapping import numpy as np from gtd.utils import EqualityMixin class Vocab(object, metaclass=ABCMeta): @abstractmethod def word2index(self, w): pass @abstractmethod def index2word(self, i): pass class SimpleVocab(Vocab, EqualityMixin): """A simple vocabulary object.""" def __init__(self, tokens): """Create a vocab. Args: tokens (list[unicode]): a unique list of unicode tokens If t = tokens[i], this vocab will map token t to the integer i. """ if not isinstance(tokens, list): raise ValueError('tokens must be a list') # build mapping word2index = {} for i, tok in enumerate(tokens): word2index[tok] = i if len(tokens) != len(word2index): raise ValueError('tokens must be unique') self._index2word = list(tokens) # make a copy self._word2index = word2index @property def tokens(self): """Return the full list of tokens sorted by their index.""" return self._index2word def __iter__(self): """Iterate through the full list of tokens.""" return iter(self._index2word) def __len__(self): """Total number of tokens indexed.""" return len(self._index2word) def __contains__(self, w): """Check if a token has been indexed by this vocab.""" return w in self._word2index def word2index(self, w): return self._word2index[w] def index2word(self, i): return self._index2word[i] def words2indices(self, words): return list(map(self.word2index, words)) def indices2words(self, indices): return [self.index2word(i) for i in indices] def save(self, path): """Save SimpleVocab to file path. Args: path (str) """ with open(path, 'w') as f: for word in self._index2word: f.write(word) f.write('\n') @classmethod def load(cls, path): """Load SimpleVocab from file path. Args: path (str) Returns: SimpleVocab """ strip_newline = lambda s: s[:-1] with open(path, 'r') as f: tokens = [strip_newline(line) for line in f] return cls(tokens) class SimpleEmbeddings(Mapping): def __init__(self, array, vocab): """Create embeddings object. Args: array (np.array): has shape (vocab_size, embed_dim) vocab (SimpleVocab): a Vocab object """ assert len(array.shape) == 2 assert array.shape[0] == len(vocab) # entries line up self.array = array self.vocab = vocab def __contains__(self, w): return w in self.vocab def __getitem__(self, w): idx = self.vocab.word2index(w) return np.copy(self.array[idx]) def __iter__(self): return iter(self.vocab) def __len__(self): return len(self.vocab) @property def embed_dim(self): return self.array.shape[1]
ContextualSP/lemon/executor/gtd/ml/vocab.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/ml/vocab.py", "repo_id": "ContextualSP", "token_count": 1448 }
239
import json import logging import time from abc import ABCMeta, abstractmethod from collections import Counter import pytest from gtd.persist import LazyMapping, EagerMapping, TableMapping, ORM, ORMColumn, FileSequence, FileSerializer, SimpleORM, \ ShardedSequence, CustomSerializer, LazyIterator, BatchIterator, SimpleBatchMapping, SequenceSlice from sqlalchemy import MetaData, String, Integer, Table, create_engine, select, Column from sqlalchemy.engine.url import URL from sqlalchemy.exc import OperationalError from sqlalchemy.inspection import inspect class BatchMappingTester(object): pass # TODO # make sure getitem throws KeyError when appropriate class BatchMutableMappingTester(BatchMappingTester): pass # TODO class MetaDataExample(MetaData): def __init__(self): url = URL(drivername='postgresql+psycopg2', username='Kelvin', host='localhost', port=5432, database='test_db') try: engine = create_engine(url) engine.connect() logging.info('Using Postgres test database.') except OperationalError: # postgres test database not available url = 'sqlite:///:memory:' engine = create_engine(url) logging.warn('Using SQLite test database.') super(MetaDataExample, self).__init__(engine) class LazyMappingExample(LazyMapping): def __init__(self, cache): super(LazyMappingExample, self).__init__(cache) self.computes_called = Counter() def compute_batch(self, keys): for key in keys: self.computes_called[key] += 1 return [k * 2 for k in keys] class TestLazyMapping(object): @pytest.fixture def lazy_dict(self): cache = SimpleBatchMapping() return LazyMappingExample(cache) def test_getitem(self, lazy_dict): d = lazy_dict cache = d.cache assert len(cache) == 0 assert d[3] == 6 # check that it entered cache assert cache[3] == 6 # get the same value assert d[3] == 6 # every computation only done once for val in d.computes_called.values(): assert val <= 1 def test_get_batch(self, lazy_dict): def assert_batches(xs, correct): results = lazy_dict.get_batch(xs) results_par = LazyMapping.compute_batch_parallel(lambda k: 2 * k, xs) assert results == correct assert results_par == correct # every computation only done once for val in lazy_dict.computes_called.values(): assert val <= 1 # WARNING: this test could fail because computes_called is a Counter, which may # not be thread-safe. assert_batches([0, 1, 2, 3], [0, 2, 4, 6]) assert_batches([2, 3, 4], [4, 6, 8]) class EagerMappingExample(EagerMapping): def __init__(self, cache): super(EagerMappingExample, self).__init__(cache) def populate(self, cache): cache['a'] = 1 cache['b'] = 2 def test_eager_mapping(): cd = EagerMappingExample({}) assert cd.cache == {'a': 1, 'b': 2} # if cache is already populated, doesn't overwrite it cd2 = EagerMappingExample({'d': 3}) assert cd2.cache == {'d': 3} class ORMTester(object, metaclass=ABCMeta): @pytest.fixture(scope='session') def metadata(self): return MetaDataExample() @abstractmethod def object(self): pass @abstractmethod def orm(self): pass @pytest.yield_fixture def table(self, orm, metadata): metadata.drop_all() # clear the database table_args = [c.unbound_column for c in orm.columns] table = Table('test_table', metadata, *table_args) metadata.create_all() yield table metadata.drop_all() def test_preserve_object(self, orm, object, table, metadata): orm.bind(table) row = orm.to_row(object) for key in row: assert isinstance(key, Column) eng = metadata.bind with eng.begin() as conn: conn.execute(table.insert(values=row)) result = conn.execute(select([table])) new_row = result.first() new_object = orm.from_row(new_row) assert new_object == object class ExampleKeyORM(ORM): def __init__(self): self.name = ORMColumn('name', String) self.age = ORMColumn('age', Integer) columns = [self.name, self.age] super(ExampleKeyORM, self).__init__(columns) def to_row(self, value): name, age = value return {self.name.key: name, self.age.key: age} def from_row(self, row): return row[self.name.key], row[self.age.key] class TestExampleKeyORM(ORMTester): @pytest.fixture def object(self): return ('bob', 4) @pytest.fixture def orm(self): return ExampleKeyORM() class ExampleValORM(ORM): def __init__(self): self.name = ORMColumn('json', String) super(ExampleValORM, self).__init__([self.name]) def to_row(self, value): return {self.name.key: json.dumps(value)} def from_row(self, row): return json.loads(row[self.name.key]) class TestTableMapping: @pytest.fixture(scope='session') def metadata(self): return MetaDataExample() @pytest.yield_fixture def table_dict(self, metadata): metadata.drop_all() key_orm = ExampleKeyORM() val_orm = ExampleValORM() td = TableMapping('test_table', key_orm, val_orm, metadata) td[('ren', 1)] = {'hobby': 'bowling'} td[('bob', 2)] = {'hobby': 'bowling'} yield td metadata.drop_all() def test_contains(self, table_dict): assert ('ren', 1) in table_dict assert ('ren', 2) not in table_dict def test_contains_batch(self, table_dict): # note that there is a duplicate batch = [('ren', 1), ('ren', 2), ('ren', 1), ('bob', 2)] correct = [True, False, True, True] presence = table_dict.contains_batch(batch) assert presence == correct def test_correct_table(self, table_dict): correct_columns = ['name', 'age', 'json'] correct_keys = ['name', 'age'] names = lambda cols: [col.name for col in cols] table = table_dict.table assert names(table.columns) == correct_columns assert names(inspect(table).primary_key.columns) == correct_keys def test_set_batch(self, table_dict): bob_json = {'hobby': 'golf'} james_json = {'hobby': 'tennis'} ren_json = {'hobby': 'bowling'} table_dict.set_batch([(('bob', 2), bob_json), (('james', 3), james_json)]) d = dict(table_dict) assert d == {('bob', 2): bob_json, ('james', 3): james_json, ('ren', 1): ren_json} # note that bob_json was overwritten from bowling to golf def test_getitem(self, table_dict): assert table_dict[('ren', 1)] == {'hobby': 'bowling'} with pytest.raises(KeyError): bob_val = table_dict[('bob', 1)] def test_setitem(self, table_dict): table_dict[('ren', 1)] = {'hobby': 'none'} d = dict(table_dict) assert d == {('ren', 1): {'hobby': 'none'}, ('bob', 2): {'hobby': 'bowling'}, } def test_delitem(self, table_dict): del table_dict[('bob', 2)] assert dict(table_dict) == {('ren', 1): {'hobby': 'bowling'}} with pytest.raises(KeyError): del table_dict[('bob', 1)] def test_iter(self, table_dict): assert set(iter(table_dict)) == {('ren', 1), ('bob', 2)} def test_len(self, table_dict): assert len(table_dict) == 2 # TODO: test iterkeys, iteritems, itervalues class AppendableSequenceTester(object): @abstractmethod def empty_list(self): """An empty list object to be tested.""" pass @abstractmethod def reference_list(self): """A standard Python list containing at least 5 items.""" pass def test_append_getitem(self, empty_list, reference_list): lst = empty_list item = reference_list[0] lst.append(item) assert lst[0] == item def test_extend(self, empty_list, reference_list): lst = empty_list lst.extend(reference_list) for i, item in enumerate(reference_list): assert lst[i] == item assert len(lst) == len(reference_list) def test_len(self, empty_list, reference_list): lst = empty_list item = reference_list[0] lst.append(item) lst.append(item) lst.append(item) lst.append(item) assert len(lst) == 4 def test_iter(self, empty_list, reference_list): lst = empty_list lst.extend(reference_list) for i, item in enumerate(lst): assert item == reference_list[i] def test_slice(self, empty_list, reference_list): lst = empty_list lst.extend(reference_list) assert list(lst[0:2:5]) == reference_list[0:2:5] class FileSerializerExample(FileSerializer): def to_line(self, s): return s def from_line(self, line): return line class FileSerializerTester(object, metaclass=ABCMeta): @abstractmethod def serializer(self): pass @abstractmethod def object(self): pass def test_serializer(self, serializer, object): line = serializer.to_line(object) new_obj = serializer.from_line(line) assert new_obj == object class TestFileSequence(AppendableSequenceTester): @pytest.yield_fixture def empty_list(self, tmpdir): path = tmpdir.join('test_file_list.txt') # whether to use gzip with FileSequence(str(path), FileSerializerExample()) as seq: yield seq @pytest.fixture def reference_list(self): return 'a b c d e f g'.split() def test_json_newline(self, tmpdir): path = str(tmpdir.join('test_json_items.txt')) ser = CustomSerializer(lambda o: json.dumps(o), lambda l: json.loads(l)) fs = FileSequence(path, ser) items = ['hey\nthere', 'two\nobjects serialized'] fs.extend(items) for i, val in enumerate(fs): assert val == items[i] def test_reload(self, empty_list, reference_list): empty_list.extend(reference_list) l = empty_list new_l = FileSequence(l.path, l._ser) assert len(new_l) == len(l) for i1, i2 in zip(new_l, l): assert i1 == i2 class TestShardedSequence(AppendableSequenceTester): @pytest.yield_fixture def empty_list(self, tmpdir): path = str(tmpdir) shard_size = 3 with ShardedSequence(path, shard_size, FileSerializerExample()) as seq: yield seq @pytest.fixture def reference_list(self): return [str(i) for i in range(16)] def test_reload(self, empty_list, reference_list): empty_list.extend(reference_list) # populate the list l = empty_list # reload it new_l = ShardedSequence(l.directory, l.shard_size, FileSerializerExample()) assert len(new_l) == len(l) for i1, i2 in zip(new_l, l): assert i1 == i2 class FileSequenceExample(FileSequence): def __init__(self, path): ser = FileSerializerExample() super(FileSequenceExample, self).__init__(path, ser) class TableMappingExample(TableMapping): def __init__(self, metadata): key_orm = SimpleORM(ORMColumn('key', Integer)) val_orm = SimpleORM(ORMColumn('val', String)) super(TableMappingExample, self).__init__('tabledict_example', key_orm, val_orm, metadata) class TestTableMappingSpeed(object): @pytest.fixture(scope='session') def metadata(self): return MetaDataExample() @pytest.yield_fixture def file_list(self, tmpdir): path = tmpdir.join('test_file_list.txt') with FileSequenceExample(str(path)) as seq: yield seq @pytest.yield_fixture def raw_file(self, tmpdir): p = str(tmpdir.join('raw_file.txt')) with open(p, 'w') as f: yield f @pytest.yield_fixture def table_dict(self, metadata): metadata.drop_all() yield TableMappingExample(metadata) metadata.drop_all() def test_extend(self, raw_file, file_list, table_dict): def time_it(fxn): start = time.time() fxn() stop = time.time() return stop - start # 100 rows of text, each with 500,000 characters vals = ['a' * 500000] * 100 def extend_raw(): for v in vals: raw_file.write(v) raw_file.write('\n') def extend_file(): file_list.extend(vals) def extend_dict(): d = {i: v for i, v in enumerate(vals)} table_dict.update(d) raw_time = time_it(extend_raw) file_time = time_it(extend_file) dict_time = time_it(extend_dict) # just make sure we did the inserts assert len(file_list) == 100 assert len(table_dict) == 100 assert file_time < raw_time * 2 # TableDict should not be more than 20x slower than file # On average, seems to be about 15x slower assert dict_time < file_time * 20 # should take less than two seconds assert dict_time < 2 class LazyIteratorExample(LazyIterator): def __init__(self): cache = [] super(LazyIteratorExample, self).__init__(cache) def compute_batch(self, k): batch = [] for i in range(k): item = self.iterated + i if item == 15: break batch.append(item) return batch class TestLazyIterator(object): @pytest.fixture def iterator(self): return LazyIteratorExample() def test_iter(self, iterator): assert list(iterator) == list(range(15)) def test_next_batch(self, iterator): assert iterator.next_batch(6) == [0, 1, 2, 3, 4, 5] assert iterator.next_batch(2) == [6, 7] assert iterator.next_batch(5) == [8, 9, 10, 11, 12] assert iterator.next_batch(8) == [13, 14] with pytest.raises(StopIteration): iterator.next_batch(1) class ExampleBatchIterator(BatchIterator): def __init__(self, total): self.iterated = 0 self.total = total super(ExampleBatchIterator, self).__init__(default_batch_size=30) def next_batch(self, k): batch = [self.iterated + i for i in range(k)] batch = [b for b in batch if b < self.total] if len(batch) == 0: raise StopIteration self.iterated += len(batch) return batch class TestBatchIterator(object): @pytest.fixture def iterator(self): return ExampleBatchIterator(8) def test_iterator(self, iterator): assert list(iterator) == [0, 1, 2, 3, 4, 5, 6, 7] class TestSequenceSlice(object): @pytest.fixture def seq(self): return list(range(10)) def test_full(self, seq): ss = list(SequenceSlice(seq, slice(2, 8, 3))) assert ss == [2, 5] def test_partial(self, seq): ss = list(SequenceSlice(seq, slice(None, 8, 3))) assert ss == [0, 3, 6] ss = list(SequenceSlice(seq, slice(None, 8, None))) assert ss == [0, 1, 2, 3, 4, 5, 6, 7] ss = list(SequenceSlice(seq, slice(None, None, None))) assert ss == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_negative(self, seq): ss = SequenceSlice(seq, slice(None, 8, 3)) assert ss[-1] == 6 assert ss[-2] == 3 assert ss[-3] == 0 with pytest.raises(IndexError): ss[-4]
ContextualSP/lemon/executor/gtd/tests/test_persist.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/tests/test_persist.py", "repo_id": "ContextualSP", "token_count": 7081 }
240
from abc import ABCMeta, abstractproperty from collections import Sequence import numpy as np from gtd.utils import set_once_attribute class ParseCase(object, metaclass=ABCMeta): """Necessary and sufficient information to make a prediction about the next decision. Attributes that must be assigned upon creation: - context (Context): Context - choices (list[Predicate]): List of possible Predicates Attributes that can be assigned later: - choice_logits (list[float]): Logit score for each choice. Have the same length as self.choices. - choice_log_probs (list[float]): Log of softmaxed score for each choice. Have the same length as self.choices. - decision (Predicate): Predicate that the model decided to predict. Must be a member of self.choices Implied attributes: - denotation (object): Result of the execution on the decided Predicates up to the current self.decision Only defined when self.decision is already assigned - logit (float): Logit of the decision - log_prob (float): Log probability of the decision """ __slots__ = ['_context', '_choices', #'_choice_logits', '_choice_log_probs', '_decision', # For speed, enable the following line instead of the one above ... 'choice_logits', 'choice_log_probs', 'decision', 'pretty_embed', '_logit', '_log_prob', '_denotation'] # And comment out these 3 lines #choice_logits = set_once_attribute('_choice_logits') #choice_log_probs = set_once_attribute('_choice_log_probs') #decision = set_once_attribute('_decision') @property def context(self): """The context (Context object).""" return self._context @property def choices(self): """A list of possible choices (list[Predicate]).""" return self._choices @abstractproperty def _previous_cases(self): """A list of the previous cases (list[ParseCase]).""" pass @property def logit(self): """Logit (score) of the decision on this ParseCase only (float).""" if not hasattr(self, '_logit'): self._logit = self.choice_logits[self.choices.index(self.decision)] return self._logit @abstractproperty def cumulative_logit(self): """Sum of the logits of the decisions up to this ParseCase (float).""" pass @property def log_prob(self): """Log-Probability of the decision on this ParseCase only (float).""" if not hasattr(self, '_log_prob'): self._log_prob = self.choice_log_probs[self.choices.index(self.decision)] return self._log_prob @abstractproperty def cumulative_log_prob(self): """Log-Probability of the decisions up to this ParseCase (float).""" pass @property def previous_decisions(self): """A list of the previous decisions (List[Predicate]).""" return [c.decision for c in self._previous_cases] def __str__(self): return '{{{};utt {}/{};[{}];{} from {} choices}}'.format( '|'.join(' '.join(x.encode('utf-8') for x in u) for u in self.context.utterances)[:20] + '...', self.current_utterance_idx, len(self.context.utterances), ' '.join(pred.name for pred in self.previous_decisions), (self.decision if hasattr(self, 'decision') else None), len(self.choices)) __repr__ = __str__ @property def path(self): """The sequence of ParseCases leading up to and including this one. Returns: ParsePath """ cases = self._previous_cases + [self] return ParsePath(cases) @property def denotation(self): """The denotation of the decisions up to the current decision. If the execution is successful, the denotation is an arbitrary object returned from the executor. Otherwise, the denotation is an Exception. """ try: return self._denotation except AttributeError: y_toks = [self.decision] executor = self.context.executor old_denotation = None for case in reversed(self._previous_cases): if hasattr(case, '_denotation'): old_denotation = case._denotation break else: y_toks.append(case.decision) if isinstance(old_denotation, Exception): self._denotation = old_denotation else: try: self._denotation = executor.execute(y_toks[::-1], old_denotation) except Exception as e: self._denotation = e return self._denotation @property def current_utterance_idx(self): """Index of the utterance we are focusing on, PRIOR to making a decision for this ParseCase.""" previous_cases = self._previous_cases if len(previous_cases) == 0: utterance_idx = 0 # we always start on the first utterance else: previous_case = previous_cases[-1] denotation = previous_case.denotation assert not isinstance(denotation, Exception) utterance_idx = denotation.utterance_idx return utterance_idx @property def current_utterance(self): """The utterance we are focusing on, PRIOR to making a decision for this ParseCase.""" return self.context.utterances[self.current_utterance_idx] @property def next_utterance_idx(self): """Index of the utterance we will focus on next, AFTER making a decision for this ParseCase. Only callable if decision is already set. Return len(context.utterances) if there is no utterance left. """ assert not isinstance(self.denotation, Exception) return self.denotation.utterance_idx @property def next_utterance(self): """The utterance we will focus on next, AFTER making a decision for this ParseCase. Only callable if decision is already set. Return None if there is no utterance left. """ next_utterance_idx = self.next_utterance_idx if next_utterance_idx == len(self.context.utterances): return None return self.context.utterances[next_utterance_idx] @classmethod def initial(cls, context): """Convenience method for creating a new InitialParseCase. Args: context (Context) Returns: InitialParseCase """ choices = context.predicates return InitialParseCase(context, choices) @classmethod def extend(cls, previous_case): """Convenience method for creating a new RecursiveParseCase. Args: previous_case (ParseCase) Returns: RecursiveParseCase """ choices = previous_case.context.predicates return RecursiveParseCase(previous_case, choices) def __hash__(self): return hash((self.context, self.choices, self.decision)) def __eq__(self, other): if type(self) != type(other): return False return (self.context == other.context and self.choices == other.choices and self.decision == other.decision) def valid_continuations(self, path_checker): """Returns all of the valid continuations of this case extending from this path according to the path_checker. A path is valid if it is terminated and finalizable or unterminated and checks out with the path_checker. Args: path_checker (PathChecker) Returns: list[ParsePath]: the continuations """ continuations = [] for choice in self.choices: clone = self.copy_with_decision(choice) denotation = clone.denotation if not isinstance(denotation, Exception): path = clone.path if path.terminated: if path.finalizable: continuations.append(path) elif path_checker(path): continuations.append(path) return continuations class InitialParseCase(ParseCase): """Represents the initial ParseCase.""" __slots__ = [] def __init__(self, context, choices): self._context = context self._choices = choices @property def _previous_cases(self): return [] @property def cumulative_logit(self): return self.logit @property def cumulative_log_prob(self): return self.log_prob def copy_with_decision(self, decision): """Return a copy with a specific decision""" clone = InitialParseCase(self._context, self._choices) clone.choice_logits = self.choice_logits clone.choice_log_probs = self.choice_log_probs clone.decision = decision clone.pretty_embed = self.pretty_embed try: clone._denotation = self._context.executor.execute_predicate(decision) except Exception as e: clone._denotation = e return clone class RecursiveParseCase(ParseCase): """Represents a non-initial ParseCase.""" __slots__ = ['_prev_case', '_cumulative_logit', '_cumulative_log_prob'] def __init__(self, previous_case, choices): """Create a ParseCase from a previous case. Args: previous_case (ParseCase): the previous ParseCase choices (list[Predicate]): a list of possible next decisions """ try: previous_case.decision except AttributeError: raise RuntimeError('Previous ParseCase must already have a decision.') self._prev_case = previous_case self._context = previous_case.context self._choices = choices @property def _previous_cases(self): case = self._prev_case p = [] while True: p.append(case) if isinstance(case, RecursiveParseCase): case = case._prev_case else: break return list(reversed(p)) @property def cumulative_logit(self): if not hasattr(self, '_cumulative_logit'): self._cumulative_logit = self._prev_case.cumulative_logit + self.logit return self._cumulative_logit @property def cumulative_log_prob(self): if not hasattr(self, '_cumulative_log_prob'): self._cumulative_log_prob = self._prev_case.cumulative_log_prob + self.log_prob return self._cumulative_log_prob def copy_with_decision(self, decision): """Return a copy with a specific decision""" clone = RecursiveParseCase(self._prev_case, self._choices) clone.choice_logits = self.choice_logits clone.choice_log_probs = self.choice_log_probs clone.decision = decision clone.pretty_embed = self.pretty_embed try: clone._denotation = self._context.executor.execute_predicate(decision, self._prev_case.denotation) except Exception as e: clone._denotation = e return clone class ParsePath(Sequence): """Represent an entire Sequence of ParseCases.""" __slots__ = ['_cases', '_context', '_finalized_denotation', '_is_zombie'] @classmethod def empty(cls, context): return ParsePath([], context) def __init__(self, cases, context=None): self._cases = cases if not cases: if context is None: raise RuntimeError('Must specify context for an empty ParsePath') self._context = context else: self._context = cases[0].context self._is_zombie = False def __getitem__(self, i): return self._cases[i] def __len__(self): return len(self._cases) def __str__(self): return 'Path' + str(self._cases) __repr__ = __str__ def __hash__(self): return hash((tuple(self._cases), self._context)) def __eq__(self, other): return self._cases == other._cases and self._context == other._context @property def denotation(self): """The intermediate denotation (Denotation object)""" assert self._cases return self._cases[-1].denotation @property def finalized_denotation(self): """The finalized denotation (list[Value]). Only available when the path is terminated.""" if self._is_zombie: return [] # Always incorrect if not hasattr(self, '_finalized_denotation'): assert self.terminated executor = self.context.executor denotation = self.denotation self._finalized_denotation = executor.finalize(denotation) return self._finalized_denotation @property def context(self): """The context (Context object)""" return self._context @property def decisions(self): """The entire sequence of decisions.""" return [case.decision for case in self] @property def score(self): """The overall raw score (total logit) of the path. All cases must already have been scored for this method to work. """ if not self._cases: return 0. return self._cases[-1].cumulative_logit @property def log_prob(self): """The overall log-probability of the path. All cases must already have been scored for this method to work. """ if not self._cases: return 0. return self._cases[-1].cumulative_log_prob @property def locally_normalized_prob(self): """The overall locally normalized probability of the path. All cases must already have been scored for this method to work. """ return np.exp(self.log_prob) @property def terminated(self): """Whether the path is terminated. A path is terminated when all utterances were consumed or the path is a zombie path. """ if not self._cases: return False if self._is_zombie: return True return self.denotation.utterance_idx == len(self.context.utterances) def extend(self): """Create a new ParseCase that would continue from the path. Return: ParseCase """ if not self._cases: return ParseCase.initial(self.context) else: return ParseCase.extend(self._cases[-1]) @property def finalizable(self): """Takes a terminated ParsePath and checks if its denotation can be finalized Args: path (ParsePath): Must be terminated Returns: bool: Whether the denotation can be finalized or not """ assert self.terminated try: self.finalized_denotation return True except ValueError as e: return False def zombie_clone(self): """Make a clone of the path but with is_zombie = True. Used in REINFORCE for giving negative reward to futile paths. """ assert len(self._cases) > 0 path = ParsePath(self._cases) path._is_zombie = True return path class PrettyCaseEmbedding(object): """Visualize how ParseModel embeds a Case.""" def __init__(self, history_hash, stack_hash): """ Args: history_hash (np.ndarray): of shape [history_length] stack_hash (np.ndarray): of shape [max_stack_size] """ self.history_hash = history_hash self.stack_hash = stack_hash def __repr__(self): return 'history: {} stack: {}'.format(self.history_hash, self.stack_hash)
ContextualSP/lemon/executor/strongsup/parse_case.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/parse_case.py", "repo_id": "ContextualSP", "token_count": 6805 }
241