|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The corpus of plant-disease relation consists of plants and diseases and their relation to PubMed abstract. |
|
The corpus consists of about 2400 plant and disease entities and 300 annotated relations from 179 abstracts. |
|
|
|
The big-bio and source version of this script are made by merging the 2 provided annotations on locations they intersected. |
|
Both annotations (1, 2) are provided as separate source schemas. |
|
""" |
|
from collections import defaultdict |
|
from pathlib import Path |
|
from typing import Dict, Iterator, Optional, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{kim2019corpus, |
|
title={A corpus of plant--disease relations in the biomedical domain}, |
|
author={Kim, Baeksoo and Choi, Wonjun and Lee, Hyunju}, |
|
journal={PLoS One}, |
|
volume={14}, |
|
number={8}, |
|
pages={e0221582}, |
|
year={2019}, |
|
publisher={Public Library of Science San Francisco, CA USA} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "pdr" |
|
_DISPLAYNAME = "PDR" |
|
|
|
_DESCRIPTION = """ |
|
The corpus of plant-disease relation consists of plants and diseases and their relation to PubMed abstract. |
|
The corpus consists of about 2400 plant and disease entities and 300 annotated relations from 179 abstracts. |
|
""" |
|
|
|
_HOMEPAGE = "http://gcancer.org/pdr/" |
|
_LICENSE = 'License information unavailable' |
|
_URLS = {_DATASETNAME: "http://gcancer.org/pdr/Plant-Disease_Corpus.tar.gz"} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
|
|
Tasks.EVENT_EXTRACTION, |
|
Tasks.COREFERENCE_RESOLUTION, |
|
] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class PDRDataset(datasets.GeneratorBasedBuilder): |
|
"""The corpus of plant-disease relation consists of plants and diseases and their relation to PubMed abstract""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="pdr_annotator1_source", |
|
version=SOURCE_VERSION, |
|
description="PDR annotator 1 source schema", |
|
schema="source", |
|
subset_id="pdr_annotator1", |
|
), |
|
BigBioConfig( |
|
name="pdr_annotator2_source", |
|
version=SOURCE_VERSION, |
|
description="PDR annotator 2 source schema", |
|
schema="source", |
|
subset_id="pdr_annotator2", |
|
), |
|
BigBioConfig( |
|
name="pdr_source", |
|
version=SOURCE_VERSION, |
|
description="PDR source schema", |
|
schema="source", |
|
subset_id="pdr", |
|
), |
|
BigBioConfig( |
|
name="pdr_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="PDR BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="pdr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pdr_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
|
|
"trigger": { |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
}, |
|
"arguments": [ |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"coreferences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"entity_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
}, |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
data_dir = data_dir / "Plant-Disease_Corpus" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dir": data_dir}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir: Path) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.schema == "source": |
|
for file in data_dir.iterdir(): |
|
if not str(file).endswith(".txt"): |
|
continue |
|
|
|
if self.config.subset_id == "pdr_annotator1": |
|
|
|
example = parse_brat_file(file, [".ann"]) |
|
example = brat_parse_to_bigbio_kb(example) |
|
|
|
elif self.config.subset_id == "pdr_annotator2": |
|
|
|
example = parse_brat_file(file, [".ann2"]) |
|
example = brat_parse_to_bigbio_kb(example) |
|
|
|
elif self.config.subset_id == "pdr": |
|
|
|
annotator1 = parse_brat_file(file, [".ann"]) |
|
annotator1 = brat_parse_to_bigbio_kb(annotator1) |
|
|
|
annotator2 = parse_brat_file(file, [".ann2"]) |
|
annotator2 = brat_parse_to_bigbio_kb(annotator2) |
|
|
|
example = self._merge_annotations_by_intersection( |
|
file, annotator1, annotator2 |
|
) |
|
|
|
example["text"] = example["passages"][0]["text"][0] |
|
example.pop("id", None) |
|
example.pop("passages", None) |
|
|
|
yield example["document_id"], example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for file in data_dir.iterdir(): |
|
if not str(file).endswith(".txt"): |
|
continue |
|
|
|
annotator1 = parse_brat_file(file, [".ann"]) |
|
annotator1 = brat_parse_to_bigbio_kb(annotator1) |
|
|
|
annotator2 = parse_brat_file(file, [".ann2"]) |
|
annotator2 = brat_parse_to_bigbio_kb(annotator2) |
|
|
|
merged_annotation = self._merge_annotations_by_intersection( |
|
file, annotator1, annotator2 |
|
) |
|
merged_annotation["id"] = merged_annotation["document_id"] |
|
|
|
yield merged_annotation["id"], merged_annotation |
|
|
|
def _merge_annotations_by_intersection( |
|
self, file: Path, example_ann1: Dict, example_ann2: Dict |
|
) -> Dict: |
|
""" |
|
Merges the two given examples by only keeping annotations on which both annotators agree. |
|
""" |
|
id_prefix = str(file.stem) + "_" |
|
|
|
|
|
a1_entity_to_merged_entity = {} |
|
a2_entity_to_merged_entity = {} |
|
merged_entities = [] |
|
|
|
|
|
entity_id = 1 |
|
for entity1 in example_ann1["entities"]: |
|
for entity2 in example_ann2["entities"]: |
|
if ( |
|
self._overlaps(entity1, entity2) |
|
and entity1["type"] == entity2["type"] |
|
): |
|
text_entity1 = "".join(entity1["text"]) |
|
text_entity2 = "".join(entity2["text"]) |
|
|
|
longer_entity = ( |
|
entity1 if len(text_entity1) > len(text_entity2) else entity2 |
|
) |
|
merged_entity_id = id_prefix + f"E{entity_id}" |
|
entity_id += 1 |
|
|
|
merged_entity = longer_entity.copy() |
|
merged_entity["id"] = merged_entity_id |
|
merged_entity["normalized"] = [] |
|
merged_entities.append(merged_entity) |
|
|
|
a1_entity_to_merged_entity[entity1["id"]] = merged_entity_id |
|
a2_entity_to_merged_entity[entity2["id"]] = merged_entity_id |
|
break |
|
|
|
|
|
relations_ann1 = self._map_relations(example_ann1, a1_entity_to_merged_entity) |
|
relations_ann2 = self._map_relations(example_ann2, a2_entity_to_merged_entity) |
|
relations = [] |
|
relation_id = 1 |
|
|
|
for rel_type, relations_1 in relations_ann1.items(): |
|
relations_2 = relations_ann2[rel_type] |
|
|
|
for relation_pair_1 in relations_1: |
|
for relation_pair_2 in relations_2: |
|
if relation_pair_1 == relation_pair_2: |
|
relations.append( |
|
{ |
|
"id": id_prefix + f"R{relation_id}", |
|
"type": rel_type, |
|
"arg1_id": relation_pair_1[0], |
|
"arg2_id": relation_pair_1[1], |
|
"normalized": [], |
|
} |
|
) |
|
relation_id += 1 |
|
break |
|
|
|
|
|
events_ann1 = self._map_events(example_ann1, a1_entity_to_merged_entity) |
|
events_ann2 = self._map_events(example_ann2, a2_entity_to_merged_entity) |
|
events = [] |
|
event_id = 1 |
|
|
|
for event_type, events_1 in events_ann1.items(): |
|
events_2 = events_ann2[event_type] |
|
|
|
for (trigger1, theme1, cause1) in events_1: |
|
for (trigger2, theme2, cause2) in events_2: |
|
if ( |
|
theme1 == theme2 |
|
and cause1 == cause2 |
|
and self._overlaps(trigger1, trigger2) |
|
): |
|
trigger1_text = "".join(trigger1["text"]) |
|
trigger2_text = "".join(trigger2["text"]) |
|
|
|
longer_trigger = ( |
|
trigger1 |
|
if len(trigger1_text) >= len(trigger2_text) |
|
else trigger2 |
|
) |
|
events.append( |
|
{ |
|
"id": id_prefix + f"T{event_id}", |
|
"type": event_type, |
|
"trigger": longer_trigger, |
|
"arguments": [ |
|
{"role": "Theme", "ref_id": theme1}, |
|
{"role": "Cause", "ref_id": cause1}, |
|
], |
|
} |
|
) |
|
event_id += 1 |
|
break |
|
|
|
|
|
coferences_ann1 = self._map_coreferences( |
|
example_ann1, a1_entity_to_merged_entity |
|
) |
|
coferences_ann2 = self._map_coreferences( |
|
example_ann2, a2_entity_to_merged_entity |
|
) |
|
coreferences = [] |
|
coreference_id = 1 |
|
|
|
for _, entity_ids1 in coferences_ann1.items(): |
|
for _, entity_ids2 in coferences_ann2.items(): |
|
if entity_ids1.intersection(entity_ids2) == entity_ids1.union( |
|
entity_ids2 |
|
): |
|
coreferences.append( |
|
{ |
|
"id": id_prefix + f"CO{coreference_id}", |
|
"entity_ids": list(entity_ids1), |
|
} |
|
) |
|
coreference_id += 1 |
|
|
|
merged_example = example_ann1.copy() |
|
merged_example["entities"] = merged_entities |
|
merged_example["relations"] = relations |
|
merged_example["events"] = events |
|
merged_example["coreferences"] = coreferences |
|
|
|
return merged_example |
|
|
|
def _map_relations(self, example: Dict, entity_id_mapping: Dict) -> Dict: |
|
""" |
|
Maps the all relations of the given example to their merged entity identifiers |
|
(if existent) |
|
""" |
|
relation_map = defaultdict(list) |
|
|
|
for relation in example["relations"]: |
|
arg1_id = relation["arg1_id"] |
|
arg2_id = relation["arg2_id"] |
|
|
|
|
|
if arg1_id not in entity_id_mapping or arg2_id not in entity_id_mapping: |
|
continue |
|
|
|
com_arg1_id = entity_id_mapping[arg1_id] |
|
com_arg2_id = entity_id_mapping[arg2_id] |
|
|
|
relation_map[relation["type"]].append((com_arg1_id, com_arg2_id)) |
|
|
|
return relation_map |
|
|
|
def _map_events(self, example: Dict, entity_id_mapping: Dict) -> Dict: |
|
""" |
|
Maps the all events of the given example to their merged entity identifiers |
|
(if existent) |
|
""" |
|
event_map = defaultdict(list) |
|
|
|
for event in example["events"]: |
|
theme_id = self._get_event_argument(event, "Theme") |
|
cause_id = self._get_event_argument(event, "Cause") |
|
|
|
if theme_id not in entity_id_mapping or cause_id not in entity_id_mapping: |
|
continue |
|
|
|
common_theme_id = entity_id_mapping[theme_id] |
|
common_cause_id = entity_id_mapping[cause_id] |
|
|
|
event_map[event["type"]].append( |
|
(event["trigger"], common_theme_id, common_cause_id) |
|
) |
|
|
|
return event_map |
|
|
|
def _map_coreferences(self, annotation: Dict, entity_mapping: Dict) -> Dict: |
|
""" |
|
Maps the all coreferences of the given example to their merged entity identifiers |
|
(if existent) |
|
""" |
|
id_to_corefs = defaultdict(set) |
|
for coreference in annotation["coreferences"]: |
|
entity_ids = set( |
|
[ |
|
entity_mapping[id] |
|
for id in coreference["entity_ids"] |
|
if id in entity_mapping |
|
] |
|
) |
|
|
|
|
|
if len(entity_ids) > 1: |
|
id_to_corefs[coreference["id"]] = entity_ids |
|
|
|
return id_to_corefs |
|
|
|
def _overlaps(self, annotation1: Dict, annotation2: Dict) -> bool: |
|
""" |
|
Checks whether the offsets of the two given annotations overlap. |
|
""" |
|
for (start1, end1) in annotation1["offsets"]: |
|
for (start2, end2) in annotation2["offsets"]: |
|
if (start2 <= start1 <= end2) or (start2 <= end1 <= end2): |
|
return True |
|
|
|
return False |
|
|
|
def _get_event_argument(self, event: Dict, role: str) -> Optional[str]: |
|
""" |
|
Returns the argument with the given role from the given event annotation. |
|
""" |
|
for argument in event["arguments"]: |
|
if argument["role"] == role: |
|
return argument["ref_id"] |
|
|
|
return None |
|
|