Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 10,176 Bytes
8e78222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
For 423 sentences, annotations collected by 3 medical experts are available.
To get the final annotations, we perform the majority voting.
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema
"""
import json
from typing import Dict, List, Tuple, Union

import datasets
import numpy as np

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{zlabinger-etal-2020-effective,
    title = "Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports",
    author = {Zlabinger, Markus  and
      Sabou, Marta  and
      Hofst{\"a}tter, Sebastian  and
      Hanbury, Allan},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.findings-emnlp.274",
    doi = "10.18653/v1/2020.findings-emnlp.274",
    pages = "3064--3074",
}
"""

_DATASETNAME = "pico_extraction"
_DISPLAYNAME = "PICO Annotation"


_DESCRIPTION = """\
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
For 423 sentences, annotations collected by 3 medical experts are available.
To get the final annotations, we perform the majority voting.
"""

_HOMEPAGE = "https://github.com/Markus-Zlabinger/pico-annotation"

_LICENSE = 'License information unavailable'

_DATA_PATH = (
    "https://raw.githubusercontent.com/Markus-Zlabinger/pico-annotation/master/data"
)
_URLS = {
    _DATASETNAME: {
        "sentence_file": f"{_DATA_PATH}/sentences.json",
        "annotation_files": {
            "intervention": f"{_DATA_PATH}/annotations/interventions_expert.json",
            "outcome": f"{_DATA_PATH}/annotations/outcomes_expert.json",
            "participant": f"{_DATA_PATH}/annotations/participants_expert.json",
        },
    }
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


def _pico_extraction_data_loader(
    sentence_file: str, annotation_files: Dict[str, str]
) -> Tuple[Dict[str, str], Dict[str, Dict[str, Dict[str, List[int]]]]]:
    """Loads four files with PICO extraction dataset:
    - one json file with sentences
    - three json files with annotations for PIO
    """
    # load sentences
    with open(sentence_file) as fp:
        sentences = json.load(fp)

    # load annotations
    annotation_dict = {}
    for annotation_type, _file in annotation_files.items():
        with open(_file) as fp:
            annotations = json.load(fp)
            annotation_dict[annotation_type] = annotations

    return sentences, annotation_dict


def _get_entities_pico(
    annotation_dict: Dict[str, Dict[str, Dict[str, List[int]]]],
    sentence: str,
    sentence_id: str,
) -> List[Dict[str, Union[int, str]]]:
    """extract entities from sentences using annotation_dict"""

    def _partition(alist, indices):
        return [alist[i:j] for i, j in zip([0] + indices, indices + [None])]

    ents = []
    for annotation_type, annotations in annotation_dict.items():
        # get indices from three annotators by majority voting
        indices = np.where(
            np.round(np.mean(annotations[sentence_id]["annotations"], axis=0)) == 1
        )[0]

        if len(indices) > 0:  # if annotations exist for this sentence
            split_indices = []
            # if there are two annotations of one type in one sentence
            for item_index, item in enumerate(indices):
                if item_index + 1 == len(indices):
                    break
                if indices[item_index] + 1 != indices[item_index + 1]:
                    split_indices.append(item_index + 1)
            multiple_indices = _partition(indices, split_indices)

            for _indices in multiple_indices:

                annotation_text = " ".join([sentence.split()[ind] for ind in _indices])

                char_start = sentence.find(annotation_text)
                char_end = char_start + len(annotation_text)

                ent = {
                    "annotation_text": annotation_text,
                    "annotation_type": annotation_type,
                    "char_start": char_start,
                    "char_end": char_end,
                }

                ents.append(ent)
    return ents


class PicoExtractionDataset(datasets.GeneratorBasedBuilder):
    """PICO Extraction dataset with annotations for
    Participants, Interventions, and Outcomes."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="pico_extraction_source",
            version=SOURCE_VERSION,
            description="pico_extraction source schema",
            schema="source",
            subset_id="pico_extraction",
        ),
        BigBioConfig(
            name="pico_extraction_bigbio_kb",
            version=BIGBIO_VERSION,
            description="pico_extraction BigBio schema",
            schema="bigbio_kb",
            subset_id="pico_extraction",
        ),
    ]

    DEFAULT_CONFIG_NAME = "pico_extraction_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "doc_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "entities": [
                        {
                            "text": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "start": datasets.Value("int64"),
                            "end": datasets.Value("int64"),
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                    "sentence_file": data_dir["sentence_file"],
                    "annotation_files": data_dir["annotation_files"],
                },
            ),
        ]

    def _generate_examples(self, split, sentence_file, annotation_files):
        """Yields examples as (key, example) tuples."""

        sentences, annotation_dict = _pico_extraction_data_loader(
            sentence_file=sentence_file, annotation_files=annotation_files
        )

        if self.config.schema == "source":
            for uid, sentence_tuple in enumerate(sentences.items()):
                sentence_id, sentence = sentence_tuple
                ents = _get_entities_pico(annotation_dict, sentence, sentence_id)

                data = {
                    "doc_id": sentence_id,
                    "text": sentence,
                    "entities": [
                        {
                            "text": ent["annotation_text"],
                            "type": ent["annotation_type"],
                            "start": ent["char_start"],
                            "end": ent["char_end"],
                        }
                        for ent in ents
                    ],
                }
                yield uid, data

        elif self.config.schema == "bigbio_kb":
            uid = 0
            for id_, sentence_tuple in enumerate(sentences.items()):
                if id_ < 2:
                    continue
                sentence_id, sentence = sentence_tuple
                ents = _get_entities_pico(annotation_dict, sentence, sentence_id)

                data = {
                    "id": str(uid),
                    "document_id": sentence_id,
                    "passages": [],
                    "entities": [],
                    "relations": [],
                    "events": [],
                    "coreferences": [],
                }
                uid += 1

                data["passages"] = [
                    {
                        "id": str(uid),
                        "type": "sentence",
                        "text": [sentence],
                        "offsets": [[0, len(sentence)]],
                    }
                ]
                uid += 1

                for ent in ents:
                    entity = {
                        "id": uid,
                        "type": ent["annotation_type"],
                        "text": [ent["annotation_text"]],
                        "offsets": [[ent["char_start"], ent["char_end"]]],
                        "normalized": [],
                    }
                    data["entities"].append(entity)
                    uid += 1

                yield uid, data