content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def str_to_fancyc_comment(text):
""" Return a string as a C formatted comment. """
l_lines = text.splitlines()
outstr = "/* " + l_lines[0] + "\n"
for line in l_lines[1:]:
outstr += " * " + line + "\n"
outstr += " */\n"
return outstr | 3ee7fd146c8390346dfa9580870aef0551124339 | 539,025 |
def _code_range_to_set(code_range):
"""Converts a code range output by _parse_code_ranges to a set."""
characters = set()
for first, last, _ in code_range:
characters.update(range(first, last+1))
return characters | 3cb7c2771bec698241ae4d2ae103e4827493e40d | 617,676 |
def easy_product(a, b):
"""Takes two numbers and returns their product"""
return a * b | 8a455a81a8a6b4a3219874d52b50bb84d2587b89 | 302,801 |
import textwrap
def get_notifiers_provider_config(message, subtitle, title) -> dict:
"""
Return kwargs that will be passed to `notifiers.notify` method.
"""
# different providers have different requirements for the `notify` method
# most seem to take a `message` parameter, but they also have different
# potential formatting requirements for messages.
# use the following provider-specific map for `notify` parameters
provider_config = {
"pushover": {
"message": textwrap.dedent(
f"""
<i>{subtitle}</i>
{message}
"""
),
"title": title,
"html": True,
},
"slack": {"message": message if message else "task complete"},
}
return provider_config | 45d78bdd37925d85eab91aaad430696f23cb4c70 | 691,896 |
import random
import string
def get_random_string(n):
""" Create random string with len `n`
"""
return ''.join(random.choices(string.ascii_letters + string.digits, k=n)) | b1d354d8a7f1a4c3520e865fd87e2f2ca048699e | 619,359 |
def generate_question_with_choices(choices: list[str], message: str) -> list[dict]:
"""Generate a multiple choice single select question with <choices> and <message> and return it
in py-inquirer format
:param choices: choices of the question
:param message: message of the question
"""
return [
{
'type': 'list',
'name': 'options',
'message': message,
'choices': choices
}
] | 1379d4c1ca6dca2e9bae786a9b2937de6cf95ec3 | 118,696 |
def top_hat_width(subband_df, subband_f0, DM):
"""top_hat_width(subband_df, subband_f0, DM)
Returns width of a top-hat pulse to convolve with pulses for dipsersion
broadening. Following Lorimer and Kramer, 2005 (sec 4.1.1 and A2.4)
subband_df : subband bandwidth (MHz)
subband_f0 : subband center frequency (MHz)
DM : dispersion measure (pc/cm^3)
return top_hat_width (milliseconds)
"""
D = 4.148808e3 # sec*MHz^2*pc^-1*cm^3, dispersion const
width_sec = 2*D * DM * (subband_df) / (subband_f0)**3
return width_sec * 1.0e+3 | 5e6d399a3d78952ef6ea7f30101ebc5bddd2bc8a | 57,705 |
def ReadFile(filename):
"""Utility function reads a file and returns its content.
Args:
filename: the file to read.
Returns:
The file content.
"""
with open(filename, "r") as data_file:
return data_file.read() | 7487e5c2e238f8890cdb1582ace984278346434e | 585,396 |
import logging
def exists_handler_with_name(name: str) -> bool:
"""
>>> discard = set_stream_handler()
>>> assert exists_handler_with_name('stream_handler')
>>> discard2 = set_stream_handler_color()
>>> assert exists_handler_with_name('stream_handler_color')
>>> assert not exists_handler_with_name('unknown_handler')
"""
handlers = logging.getLogger().handlers
for handler in handlers:
if hasattr(handler, 'name'):
if handler.name == name:
return True
return False | ab2fc4f6b1a7ae02c74164c7054ad0e4fe24312a | 107,918 |
import re
def _unescape_value(value):
"""Unescape a value."""
def unescape(c):
return {
"\\\\": "\\",
"\\\"": "\"",
"\\n": "\n",
"\\t": "\t",
"\\b": "\b",
}[c.group(0)]
return re.sub(r"(\\.)", unescape, value) | 84a2c4cd39e90b219be3ec68e5e88e1e68def56b | 539,975 |
def repeat(string, n):
"""
Description
----------
Repeat a string 'n' number of times.
Parameters
----------
string : str - string to repeat
n : int - number of times to repeat
Returns
----------
str - string consisting of param string repeated 'n' times
Example
----------
>>> repeat('abc', 3)
-> 'abcabcabc'
"""
if not isinstance(string, str):
raise TypeError("param 'string' must be a string")
if not isinstance(n, int):
raise TypeError("param 'n' must be an integer: 0 <= n <= sys.maxsize")
if n < 0:
raise ValueError("param 'n' must be in range 0 <= n <= sys.maxsize")
n_str = ""
for _ in range(n):
n_str = n_str + string
return n_str | 7edef4df6df14fd7b9087771b000c026e1715689 | 88,675 |
from datetime import datetime
def roundTime(dt=None, roundTo=1):
"""Round a datetime object to any time lapse in seconds
dt : datetime.datetime object, default now.
roundTo : Closest number of seconds to round to, default 15 seconds.
"""
if dt == None : dt = datetime.now()
seconds = dt.replace(second=0,microsecond=0).timestamp()
remainder = seconds % (roundTo * 15)
return seconds - remainder | 1c383917fb4b0aab130f1ecd8e5f05b069f454b9 | 398,579 |
import zipfile
def extract_zipfile(source_zip):
"""
unzips your new zip file into a temporary directory to work in
:param source_zip: a .zip file
:return: None. should create a temp dir in the PWD then put the .zip contents in it
"""
# unzip the .zip
zip_ref = zipfile.ZipFile(source_zip, 'r')
zip_ref.extractall('./temp')
return zip_ref | 13a9426771bb7209cda5344b36ce49cbe66590c2 | 68,626 |
import ipaddress
def getResourceManagerIpv4(args):
"""Retrieve the IPv4 address of the cloudFPGA Resource Manager.
:param args The options passed as arguments to the script.
:return The IP address as an 'ipaddress.IPv4Address'."""
ipResMngrStr = args.mngr_ipv4
while True:
if args.mngr_ipv4 == '':
# Take an IP address from the console
print("Enter the IPv4 address of the cloudFPGA Resource Manager (e.g. 10.12.0.132)")
ipResMngrStr = input()
try:
ipResMngr = ipaddress.ip_address(ipResMngrStr)
except ValueError:
print('[ERROR] Unrecognized IPv4 address.')
else:
return ipResMngr | 5f5baecad256bcfde2e555d229448c68da3580a8 | 514,497 |
import sqlite3
def get_tile(dbfile, z, x, y):
"""Get a specific image tile from an sqlite db."""
con = sqlite3.connect(dbfile)
with con:
cur = con.cursor()
cur.execute('SELECT image FROM tiles where z=? AND x=? AND y=?', (z, x, y))
image = cur.fetchone()[0]
return str(image) | 709e1577ada327c802a34311e193cc19fde1b8e0 | 440,356 |
import requests
from bs4 import BeautifulSoup
def _scraper(url):
"""
Scraper function
:Param url: url to be scraped
:Return: BeautifulSoup object
"""
response = requests.get(url)
assert response.status_code == 200, "url could not be reached"
soup = BeautifulSoup(response.content, "html.parser")
return soup | 77fb20d7f3519587195226ccbf71635021350d29 | 285,165 |
def test_case_is_success(test):
"""Determine if the the test expects a successful parse"""
if "results" not in test:
return True
for result in test["results"]:
if "error" in result:
return False
return True | fee43364a8a11ed42564b07533a2500b69c60894 | 635,677 |
def get_recipients(msg, recipients):
"""Given a parsed message, extract and return recipient list"""
msg_fields = ['From', 'To', 'Cc', 'Bcc', 'Reply-To', 'Sender', 'Subject', 'In-Reply-To', 'Message-ID','References']
for f in msg_fields:
if msg[f] is None:
continue
if f == 'Subject' or f == 'Message-ID' or f == 'References':
recipients[f] = msg[f]
continue
if f == 'Cc':
copies = msg[f]
recipients["Cc"] = copies
else:
recipients[f] = msg[f]
return recipients | e76868e3427e4c578c79b9ac897047a11aaab129 | 224,876 |
import posixpath
import ntpath
def _is_abs(path):
"""
Check if path is absolute on any platform.
:param str path: Path to validate.
:returns bool: True is absolute on any platform, False otherwise.
"""
return posixpath.isabs(path) or ntpath.isabs(path) | 08d13e51c42da51196c1e92d90783ab24b6e9382 | 531,321 |
def match_any(matcher, values):
"""Check if the matcher matches *any* of the supplied values.
:param matcher(regex pattern): compiled regular expression.
:param values(list): list of ``str`` values to match.
:returns: ``True`` if *any* of the ``str`` values matches (fullmatch) the matcher;
otherwise ``False``.
"""
for val in values:
if matcher.fullmatch(val):
return True
return False | cd7c8d9cb0e2adf85a665be22acefc34d8058735 | 304,131 |
def is_valid_scheme(scheme: str) -> bool:
"""Validate a scheme.
Arguments:
scheme: scheme to validate.
Returns:
True if is valid else False.
"""
return scheme.lower() in ("http", "https") | 9fccb1eb57e5fe3b36551cb2f84a10b9db7181b1 | 191,220 |
def stop_server(proc):
"""
Stop server process.
proc: ShellProc
Process of server to stop.
"""
return proc.terminate(timeout=10) | c126ca840b56407f1eea8af943f4602532df13df | 16,318 |
def dget(d, dkey, default=None):
"""Dictionary get: gets the field from nested key
Args:
d (dict, list): Dictionary/list to retrieve field from
dkey (str): Nested key to retrive field from dictionary/list separated
by periods. Example: key1.3.key2, this will be the equivalent of
d['key1'][3]['key2'].
default (optional): Default object to return if value not found.
Defaults to None.
Returns:
Any: field to return from dict or default if not found.
"""
keys = dkey.split('.')
obj = d
for key in keys:
if not obj:
return default
if key.isdigit():
index = int(key)
if isinstance(obj, list) and index < len(obj):
obj = obj[index]
else:
return default
else:
if isinstance(obj, dict) and key in obj:
obj = obj[key]
else:
return default
return obj | 813aaad713f2167fac3b479903b021bc409d0d6c | 97,611 |
def NW(N, tp='U'):
"""function to compute number of edges or number of feasible vertex-pair
Args:
N (int): number of nodes
tp (str, optional): Can be either 'U' for undirected and 'D' for directed graphs. Defaults to 'U'.
Returns:
int: number of edges or number of feasible vertex-pair between N nodes
"""
assert tp=='U' or tp=='D', "Invalid type in NW, it shall be either 'U' or 'D'"
if tp=='U':
return N*(N-1)//2
else:
return N*(N-1) | 5b13eaf1c2d1b50e9ddd7e9e8dec3b999722dd4f | 379,572 |
def interpolate(x1, y1, x2, y2, current_step, total_steps):
"""Interpolates between two 2d points.
Args:
x1, y1, x2, y2: coords representing the two 2d points
current_step, total_steps: ints representing the current progress (example 2, 10 represents 20%)
Returns:
2-float tuple representing a 2d point
"""
dx1, dy1 = (x2 - x1) / total_steps, (y2 - y1) / total_steps
mx1, my1 = x1 + dx1 * current_step, y1 + dy1 * current_step
return mx1, my1 | b61c493b86815c5373c414abc4da3fe78c14ca1d | 561,975 |
import torch
def move_bdim_to_front(x, result_ndim=None):
"""
Returns a tensor with a batch dimension at the front. If a batch
dimension already exists, move it. Otherwise, create a new batch
dimension at the front. If `result_ndim` is not None, ensure that the
resulting tensor has rank equal to `result_ndim`.
"""
x_dim = len(x.shape)
x_bdim = x.bdim
if x_bdim is None:
x = torch.unsqueeze(x, 0)
else:
x = torch.movedim(x, x_bdim, 0)
if result_ndim is None:
return x
diff = result_ndim - x_dim - (x_bdim is None)
for _ in range(diff):
x = torch.unsqueeze(x, 1)
return x | 313a1837b6c3b451cebacaa7815f2631dfa387e5 | 24 |
import unicodedata
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False | ac4eeeeceba447f85cb61d792237c930d9c131f9 | 691,361 |
def recursive_linear_search(array:list,target:int,index:int =0)-> int:
"""
This a python implementation of recursive linear search algorithm. Where we are applying linear search algorithm with recursion.
Parameters : 1>array : First parameter to the function is the array(searching space) (accepts both sorted and unsorted array).
2>target : Second parameter to the function is target which is the element to be search in the array(argument 1).
3>index : Third parameter is default parameater to the function. Default value of it is 0 it is a starting position of our seraching.
Output: This function will return the index (starting form zero) of the target(2nd argument) if found in the giving array (1st argument) else will return -1
Exceptions : TypeError : This exception will be raised when the 1st argument(array) will be any other type rather than list,tuple or string.
ValueError: This exception will be raised when the 1st argument of type string and 2nd argument(target) will be of type non-string.As you cannot search non-str element in str.
Examples :
>>> recursive_linear_search([1,2,3,4,5],5)
4
>>> recursive_linear_search([5,4,3,2,1],3)
2
"""
if type(array) not in (list,tuple,str) : raise TypeError("Invalid input(argument 1) only list,tuple,str allowed")
if type(array)==str and type(target)!=str : raise ValueError("Invalid input(argument 2) cannot search non-str in str")
if index==len(array): return -1
if array[index]==target: return index
return recursive_linear_search(array,target,index+1) | e2cb7331813aa11bef8fd19247ff3667b3f1e9ae | 77,249 |
from typing import Dict
from typing import List
def update_enrollments(
tracked_entity: Dict,
enrollments_with_new_events: List,
) -> List:
"""
Adds new events to current program enrollments and adds new
enrollments. Returns a complete list of enrollments.
"""
current_enrollments = tracked_entity.get("enrollments", [])
enrollments_by_program_id = {e["program"]: e for e in current_enrollments}
for enrol in enrollments_with_new_events:
program_id = enrol["program"]
if program_id in enrollments_by_program_id:
enrollments_by_program_id[program_id]["events"].extend(enrol["events"])
enrollments_by_program_id[program_id]["status"] = enrol["status"]
else:
enrollments_by_program_id[program_id] = enrol
return list(enrollments_by_program_id.values()) | 1d364cc843026e44d4680d0e55e1275ff2433737 | 525,845 |
from datetime import datetime
def timestamp2datetime(unixtime : float):
"""
Convert unix timestamp to datetime
:param unixtime: Unix timestamp to be converted in a datetime
:type unixtime: int
:return: datetime
:rtype: datetime
"""
if unixtime and unixtime > 0:
result = datetime.fromtimestamp(unixtime)
else:
result = None
return result | 3ddca644bf05babbba88cf0cf027930a3fb49ba5 | 254,784 |
def ReadIgnoreFile(infile):
"""Parses a file indicating which communities should be skipped by
RemoveLowComplexityRepeats.
The numbers of communities to skip should be separated by commas
Lines beginning with # will be treated as comments and skipped
(eg providing justification for skipping these communities).
"""
ignore_list=[]
inhandle=open(infile, 'r')
for line in inhandle:
#Skip comments
if line[0]=='#': continue
ignore_list+=line.split(',')
inhandle.close()
return ignore_list | 98b25c8b26c0d4a8c320e66a55628c8e62c996c0 | 533,690 |
def _to_int(x):
"""Converts a completion and error code as it is listed in 32-bit notation
in the VPP-4.3.2 specification to the actual integer value.
"""
if x > 0x7FFFFFFF:
return int(x - 0x100000000)
else:
return int(x) | de155dce733dc93c3112d5bbc10f0dbc20110978 | 77,536 |
import uuid
def _replace_substrings(code, first_char, last_char):
"""Replace the substrings between first_char and last_char
with a unique id.
Return the replaced string and a list of replacement
tuples: (unique_id, original_substring)
"""
substrings = []
level = 0
start = -1
for i in range(len(code)):
if code[i] == first_char:
level += 1
if level == 1:
start = i
if code[i] == last_char:
level -= 1
if level == 0:
substrings.append((start, i + 1))
code_ = code
replacements = []
for substr_index in substrings:
unique_id = '{}"{}"{}'.format(first_char, str(uuid.uuid4()), last_char)
substring = code[substr_index[0]:substr_index[1]]
code_ = code_.replace(substring, unique_id)
replacements.append((unique_id, substring))
return code_, replacements | 4a4b877df5aa6ce889a62f6e3ed9b784e37ad41c | 688,805 |
from typing import Optional
def res_to_q(res: float) -> Optional[float]:
"""
:param res: resonance value
:return: Q factor, or None if res out of range [0, 1)
"""
if not 0.0 <= res < 1.0:
return None
return 1.25 / (1 - res) - 1 | 92e8ee2d0d8636d8d516701e57a5fb8d507765e2 | 526,773 |
def transpose(matlist, K):
"""
Returns the transpose of a matrix
Examples
========
>>> from sympy.matrices.densetools import transpose
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> transpose(a, ZZ)
[[3, 2, 6], [7, 4, 2], [4, 5, 3]]
"""
return [list(a) for a in (zip(*matlist))] | 2f3909e6c7bd0d554520c8d240d7630e0620f3f5 | 646,412 |
def split_number(number, multiplier):
"""Decodes a number into two. The number = high * multiplier + low, and
This method returns the tuple (high, low).
"""
low = int(number % multiplier)
high = int(number / multiplier)
return (high, low) | 48381531bd177055056641cec5eaee9b2af7a28d | 165,162 |
import re
import string
def clean_string(text):
"""
Performs basic string cleaning:
- Clear pdf conversion md strings
- Remove weird symbols
- Reduce redundant white spaces
Parameters
----------
text : list
list of strings to clean
Returns
-------
text : list
list of strings that are cleaned by the above process
"""
# Clear line breaks
md_break = re.compile('(\\n|\\uf0d8|\\uf0b7|\\uf0fc|\\uf020)')
text = re.sub(md_break, ' ', text)
# Clear symbols and numbers
text = re.sub(
re.compile(
'[0-9–°“”�º…' + string.punctuation + ']'),
' ',
text)
# Clear multiple whitespace
text = re.sub(re.compile(r'\s+'), ' ', text)
return text | afa2fea6dbed2a2fc11b8c71203dbdd6188f4c81 | 610,999 |
from typing import List
def add_bcc(cmd: List[int]):
"""Compute BCC (= Block Checking Charactor) and append to command sequence.
Returns:
list of binary data with BCC code.
"""
check: int = 0x00
for b in cmd:
check = check ^ b
cmd.append(check)
return cmd | 6fac48e348cdb2c6fd63f1545a09fa5ea6ddba61 | 666,279 |
def extract_one_string_in_section(section, str_ptr):
"""Extract one string in an ELF section"""
data = section['data']
max_offset = section['size']
offset = str_ptr - section['start']
if offset < 0 or offset >= max_offset:
return None
ret_str = ""
while (offset < max_offset) and (data[offset] != 0):
ret_str += chr(data[offset])
offset += 1
return ret_str | 7f3e95961d1febd0c5edb2a18e0f6f0e3098a539 | 490,849 |
def mean(mylist):
"""
function to take the mean of a list
Parameters
----------
mylist : list
list of numbers to take a mean
Returns
-------
mean_list : float
The mean of the list.
Examples
--------
>>> mean([1,2,3,4,5,6,7])
4.0
"""
if not isinstance(mylist, list):
raise TypeError("Mean: %s is not a list!" % mylist)
return (sum(mylist) / len(mylist)) | 5b3c0796e752c2ac384ea00f97ff14ab7d3e7f2d | 673,052 |
def glob_to_sql(string: str) -> str:
"""Convert glob-like wildcards to SQL wildcards
* becomes %
? becomes _
% becomes \%
\\ remains \\
\* remains \*
\? remains \?
This also adds a leading and trailing %, unless the pattern begins with
^ or ends with $
"""
# What's with the chr(1) and chr(2) nonsense? It's a trick to
# hide \* and \? from the * and ? substitutions. This trick
# depends on the substitutions being done in order. chr(1)
# and chr(2) were picked because I know those characters
# almost certainly won't be in the input string
table = (
(r"\\", chr(1)),
(r"\*", chr(2)),
(r"\?", chr(3)),
(r"%", r"\%"),
(r"?", "_"),
(r"*", "%"),
(chr(1), r"\\"),
(chr(2), r"\*"),
(chr(3), r"\?"),
)
for (a, b) in table:
string = string.replace(a, b)
string = string[1:] if string.startswith("^") else "%" + string
string = string[:-1] if string.endswith("$") else string + "%"
return string | bf3ca7bf522292c17c418ccdf75aca21e4f2bc69 | 70,654 |
from typing import Dict
from typing import Any
from pathlib import Path
import yaml
def load_config(fpath: str) -> Dict[str, Any]:
"""Loads a configuration from a path to a YAML file, allows for inheritance
between files using the ``base_config`` key.
Parameters
----------
path : str
Path to the (YAML) config file
"""
path = Path(fpath)
with open(path) as handle:
config = yaml.load(handle, Loader=yaml.FullLoader)
if 'base_config' in config:
base_config = load_config(path.parent / config['base_config'])
base_config.update(config)
return base_config
else:
return config | 8b3d708f4ec441dc5be661efb5fc243d7d4d57fd | 84,505 |
def colnames_to_yeo_7(colnames: list, order: bool = True) -> list:
"""
takes a list of colnames in the brainnetome format/naming and converts them to yeo_7 regions
Examples:
>>> print(colnames_to_yeo_7(["108_110", "1_2", "200_218", "148_140"]))
>>> print(colnames_to_yeo_7(["108_110", "1_2", "200_218", "148_140"], order=False))
Args:
colnames: list of the brainnetome colnames
order: whether the resulting colnames should be ordered
Returns:
list of yeo_7 converted colnames
"""
lookup = {
1: 6, 2: 4, 3: 7, 4: 6, 5: 7, 6: 7, 7: 3, 8: 3, 9: 2, 10: 2,
11: 7, 12: 6, 13: 7, 14: 7, 15: 4, 16: 6, 17: 6, 18: 6, 19: 6,
20: 6, 21: 6, 22: 6, 23: 7, 24: 6, 25: 3, 26: 3, 27: 5, 28: 6,
29: 6, 30: 3, 31: 6, 32: 6, 33: 7, 34: 7, 35: 7, 36: 6, 37: 4,
38: 4, 39: 4, 40: 4, 41: 7, 42: 7, 43: 7, 44: 7, 45: 5, 46: 6,
47: 5, 48: 5, 49: 5, 50: 5, 51: 7, 52: 7, 53: 2, 54: 2, 55: 3,
56: 3, 57: 2, 58: 2, 59: 2, 60: 2, 61: 4, 62: 4, 63: 3, 64: 3,
65: 4, 66: 2, 67: 2, 68: 2, 69: 5, 70: 5, 71: 2, 72: 2, 73: 2,
74: 2, 75: 2, 76: 2, 77: 5, 78: 5, 79: 7, 80: 7, 81: 7, 82: 6,
83: 7, 84: 7, 85: 3, 86: 3, 87: 7, 88: 7, 89: 5, 90: 5, 91: 3,
92: 3, 93: 5, 94: 5, 95: 7, 96: 5, 97: 3, 98: 3, 99: 6, 100: 6,
101: 5, 102: 5, 103: 5, 104: 5, 105: 1, 106: 1, 107: 3, 108: 1,
109: 5, 110: 5, 111: 5, 112: 1, 113: 1, 114: 1, 115: 5, 116: 5,
117: 5, 118: 5, 119: 1, 120: 1, 121: 7, 122: 7, 123: 4, 124: 4,
125: 3, 126: 3, 127: 3, 128: 3, 129: 3, 130: 3, 131: 2, 132: 2,
133: 3, 134: 3, 135: 1, 136: 1, 137: 6, 138: 6, 139: 3, 140: 3,
141: 7, 142: 6, 143: 3, 144: 7, 145: 2, 146: 2, 147: 6, 148: 6,
149: 2, 150: 3, 151: 1, 152: 1, 153: 7, 154: 7, 155: 2, 156: 2,
157: 2, 158: 2, 159: 3, 160: 2, 161: 2, 162: 2, 163: 2, 164: 2,
165: 0, 166: 6, 167: 4, 168: 4, 169: 4, 170: 4, 171: 2, 172: 2,
173: 4, 174: 4, 175: 7, 176: 7, 177: 0, 178: 0, 179: 7, 180: 4,
181: 7, 182: 1, 183: 4, 184: 4, 185: 4, 186: 4, 187: 7, 188: 7,
189: 1, 190: 1, 191: 1, 192: 1, 193: 1, 194: 1, 195: 1, 196: 1,
197: 1, 198: 1, 199: 1, 200: 1, 201: 3, 202: 1, 203: 1, 204: 1,
205: 1, 206: 1, 207: 1, 208: 1, 209: 1, 210: 1, 211: 0, 212: 0,
213: 0, 214: 0, 215: 0, 216: 0, 217: 0, 218: 0, 219: 0, 220: 0,
221: 0, 222: 0, 223: 0, 224: 0, 225: 0, 226: 0, 227: 0, 228: 0,
229: 0, 230: 0, 231: 0, 232: 0, 233: 0, 234: 0, 235: 0, 236: 0,
237: 0, 238: 0, 239: 0, 240: 0, 241: 0, 242: 0, 243: 0, 244: 0,
245: 0, 246: 0
}
splitted = [[int(j) for j in i.split("_")] for i in colnames]
new_names = [sorted([lookup[i] for i in j]) if order else [lookup[i] for i in j] for j in splitted]
return [str(i[0]) + "_" + str(i[1]) for i in new_names] | eeac8f08c8ff2f9308c9c608fb1c74d5f5bb0387 | 110,693 |
def register(func):
"""Method decorator to register CLI commands."""
func._registered = True
return func | 6cc016eaf99c2cb585fafb0c641e16b145dc8871 | 360,367 |
def add_argument_group (parser, title):
"""Add group only is it doesn't exist yet"""
for group in parser._action_groups:
if group.title == title:
return group
return parser.add_argument_group(title) | e6d5a794004b9478e06b42f4108044e70c7d8e0d | 134,745 |
def change_one(pair, index, new_value):
"""Return new tuple with one element modified."""
new_pair = list(pair)
new_pair[index] = new_value
return tuple(new_pair) | 82f3f29639044bdfdf861cc0c7917cf521ac74aa | 111,375 |
def _off_faces(faces):
"""
Return a string representing the faces in OFF format.
Parameters
----------
faces: numpy array of integers
A 2D array containing 3 vertex indices per face. Dimension is (m, 3) for m faces.
Returns
-------
string
The OFF format string for the faces.
"""
if faces.shape[0] == 0:
return ''
face_reps = ["3 %d %d %d" % (f[0], f[1], f[2]) for f in faces] # vertex count and the 3 vertex indices defining the face, starting at 0
return '\n'.join(face_reps) + '\n' | 5488ed221fabe329be876bf5914591a2fd18f2fc | 582,142 |
import torch
def pad_batch(items, pad_value=0):
"""Pad tensors in list to equal length (in the first dim)
:param items:
:param pad_value:
:return: padded_items, orig_lens
"""
max_len = len(max(items, key=lambda x: len(x)))
zeros = (2*torch.as_tensor(items[0]).ndim -1) * [pad_value]
padded_items = torch.stack([torch.nn.functional.pad(torch.as_tensor(x), pad= zeros + [max_len - len(x)], value=pad_value)
for x in items])
orig_lens = [len(xx) for xx in items]
return padded_items, orig_lens | 481c3c8dcbc3dfa63cfbe7b71d04d0d897980f5a | 289,441 |
def get_sea_attribute_cmd(seaname):
"""
Get pvid, pvid_adapter, and virt_adapters from the configured SEA device.
Also get the state of the SEA.
:param seaname: sea device name
:returns: A VIOS command to get the sea adapter's attributes.
"""
return ("ioscli lsdev -dev %(sea)s -attr pvid,pvid_adapter,virt_adapters;"
"ioscli lsdev -type sea | grep %(sea)s" %
{'sea': seaname}) | 18224e14e45b73ff716f4282aaff3e06c4584866 | 18,867 |
def get_text_ls(filename):
"""Returns text of file as a list of strings"""
with open(filename, 'r') as f_in:
return f_in.readlines() | 5b788f38e683c82648224b7cc1b5875a0f602dce | 11,083 |
def get_commerce_url(root_url: str) -> str:
"""Get the Kamereon base commerce url."""
return f"{root_url}/commerce/v1" | 3e56bfcb13d476a2668d756673bf7c0425404baa | 576,517 |
def get_kernel_rpm_release(rpm):
"""
Get the release of a kernel RPM as an integer.
:param rpm: An instance of an RPM derived model.
"""
return int(rpm.release.split('.')[0]) | c81e78457e70da29a2b2a4e8d13eb65ef4a16a10 | 594,794 |
def _module_name_to_class_name(module_name):
"""Converts the given name of a module containing a tool test settings
class into a class name.
"""
# Settings for some of our tools have to be treated specially because the
# generic conversion below is inadequate.
if module_name == 'idaplugin_test_settings':
return 'IDAPluginTestSettings'
elif module_name == 'r2plugin_test_settings':
return 'R2PluginTestSettings'
elif module_name == 'bin2pat_test_settings':
return 'Bin2PatTestSettings'
# Generic conversion. For example, 'tool_test_settings' is converted to
# 'ToolTestSettings'.
return ''.join(part.title() for part in module_name.split('_')) | f68309c565d9454b9fa1c64cb1ffee102a4a97a3 | 227,042 |
import struct
import binascii
def hex2double(s):
"""Convert Ephemeris Time hex string into double."""
return struct.unpack('d', binascii.unhexlify(s))[0] | 2320ba8352cf880ec61e8d867ac7d648f818ae45 | 670,963 |
def path_to_key(datastore, path):
"""
Translates a file system path to a datastore key. The basename becomes the
key name and the extension becomes the kind.
Examples:
/file.ext -> key(ext, file)
/parent.ext/file.ext -> key(ext, parent, ext, file)
"""
key_parts = []
path_parts = path.strip(u'/').split(u'/')
for n, x in enumerate(path_parts):
name, ext = x.rsplit('.', 1)
key_parts.extend([ext, name])
return datastore.key(*key_parts) | 53b52478f5c451f17498020b2ec316bbb4e8a822 | 253,581 |
import random
def simulate_ip() -> str:
""" Simulates a random IP address
Returns:
A random IP address (str)
"""
return "{}.{}.{}.{}".format(
random.randint(1, 1000),
random.randint(1, 1000),
random.randint(1, 1000),
random.randint(1, 1000)
) | faf424a9025244220f2b4c0b9bffad95243a152b | 117,390 |
import re
def get_offer_total_floors(html_parser, default_value=''):
"""
This method returns the maximal number of floors in the building.
:param html_parser: a BeautifulSoup object
:rtype: string
:return: The maximal floor number
"""
# searching dom for floor data
floor_raw_data = html_parser.find(class_="param_floor_no")
if hasattr(floor_raw_data, 'span'):
floor_data = floor_raw_data.span.text
else:
return default_value
# extracting information about floor
match = re.search(r"\w+\s(?P<total>\d+)", floor_data)
total_floors = default_value
if match:
total_floors = match.groupdict().get("total")
return total_floors | 170e75a04104f6fa1c544788c3d25324edd6b2e8 | 17,185 |
def gcd(first_number: int, second_number: int) -> int:
"""
gcd: Function which finds the GCD of two numbers.
The GCD (Greatest Common Divisor) of two numbers is found by the Steins GCD Algorithm.
Args:
first_number (int): First number
second_number (int): Second number
Returns:
int: Returns the GCD of the two numbers.
"""
# GCD(0, second_number) == second_number; GCD(first_number, 0) == first_number, GCD(0, 0) == 0.
if first_number == 0:
return second_number
if second_number == 0:
return first_number
# Finding K, where K is the greatest power of 2 that divides both first_number and second_number.
k: int = 0
while ((first_number | second_number) & 1) == 0:
first_number = first_number >> 1
second_number = second_number >> 1
k = k + 1
# Dividing first_number by 2 until first_number becomes odd
while (first_number & 1) == 0:
first_number = first_number >> 1
# From here on, 'first_number' is always odd.
while second_number != 0:
# If second_number is even, remove all factor of 2 in second_number
while (second_number & 1) == 0:
second_number = second_number >> 1
# Now first_number and second_number are both odd. Swap if necessary so first_number <= second_number, then set second_number = second_number - first_number (which is even).
if first_number > second_number:
# Swap u and v.
first_number, second_number = second_number, first_number
second_number = second_number - first_number
# restore common factors of 2
return first_number << k | 5475dba0153a9d73e6f339350afe7c811c6e7140 | 340,624 |
def transform(token, operations=None):
"""
Apply transformations to token.
"""
for operation in operations if operations else []:
token = operation(token)
if token is None:
break
return token | a77ee0470c7073162f56d0318043b5901183542c | 282,678 |
def _skip_nop_operations(task, pre=None, post=None):
"""If `task` is a NOP, then skip pre and post
Useful for skipping the 'creating node instance' message in case
no creating is actually going to happen.
"""
if not task or task.is_nop():
return []
if pre is None:
pre = []
if post is None:
post = []
if not isinstance(pre, list):
pre = [pre]
if not isinstance(post, list):
post = [post]
return pre + [task] + post | 9a6f0e27a46c6df22bcc518ff444cf185da4030b | 504,131 |
def as_digits(number, min_digits):
"""
break a positive number into an array of digits
1244 -> [1, 2, 4, 4]
0 -> [0]
-222999 -> [-222999]
"""
n = number
arr = []
while n >= 10:
arr.append(n % 10)
n = round(n) // 10
arr.append(round(n))
if len(arr) < min_digits:
for i in range(min_digits - len(arr)):
arr.append(0)
return list(reversed(arr)) | da5848506d06da3f10ea5497c7b16c07f72bce5c | 187,408 |
def split_grads_by_size(threshold_size, device_grads):
"""Break gradients into two sets according to tensor size.
Args:
threshold_size: int size cutoff for small vs large tensor.
device_grads: List of lists of (gradient, variable) tuples. The outer
list is over devices, the inner list is over individual gradients.
Returns:
small_grads: Subset of device_grads where shape is <= theshold_size
elements.
large_grads: Subset of device_grads where shape is > threshold_size
elements.
"""
small_grads = []
large_grads = []
for dl in device_grads:
small_dl = []
large_dl = []
for (g, v) in dl:
tensor_size = g.get_shape().num_elements()
if tensor_size <= threshold_size:
small_dl.append([g, v])
else:
large_dl.append([g, v])
if small_dl:
small_grads.append(small_dl)
if large_dl:
large_grads.append(large_dl)
return small_grads, large_grads | 2e182650be07b1ce2bfe6cc3ee4b34c9915160f7 | 660,477 |
def is_prime(p):
"""
Returns True if p is a prime
This function uses Fermat's little theorem to quickly remove most
candidates.
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
"""
if p == 2:
return True
elif p <= 1 or p % 2 == 0 or 2**(p-1) % p != 1:
return False
return all(p % n != 0 for n in range(3,int(p ** 0.5 + 1),2)) | 463de539dcc346cf35ad78a1a020782d13acdf93 | 98,578 |
import requests
def get_pypi_package_data(package_name, version=None):
"""
Get package data from pypi by the package name
https://wiki.python.org/moin/PyPIJSON
:param package_name: string
:param version: string
:return: dict
"""
pypi_url = 'https://pypi.org/pypi'
if version:
package_url = '%s/%s/%s/json' % (pypi_url, package_name, version, )
else:
package_url = '%s/%s/json' % (pypi_url, package_name, )
try:
response = requests.get(package_url)
except requests.ConnectionError:
raise RuntimeError('Connection error!')
# Package not available on pypi
if not response.ok:
return None
return response.json() | 955c805b679b6656b5d1b8aead09860723a2a9d3 | 483,703 |
def checkbytes_lt128(file):
"""
Check if all bytes of a file are less than decimal 128.
Returns :
True for an ASCII encoded text file else False.
"""
with open(file, 'rb') as f:
content = f.read()
return all(b<128 for b in content) | d492dce226a55e12fe34cbac8f32b16267062b42 | 125,027 |
def annotation_as_image_size(label):
"""Convert a VOC detection label to the image size.
Args:
label (dict): an image label in the VOC detection format.
Returns:
tuple: width, height of image.
"""
width = int(label['annotation']['size']['width'])
height = int(label['annotation']['size']['height'])
return width, height | 68bc99b67a40ffdd8ca3772189c5be45bd0f775f | 295,291 |
import functools
import warnings
def deprecated(_func=None, *, print_msg=None):
"""
This is a decorator which can be used to mark functions as deprecated.
It will result in a warning being emitted when the function is used.
Args:
print_msg: Information to point user to newest version.
"""
def decorator_deprecated(func):
@functools.wraps(func)
def wrapper_decorator(*args, **kwargs):
with warnings.catch_warnings():
if print_msg is None:
warnings.warn(f"\nFunction deprecated: {func.__name__}",
category=DeprecationWarning, stacklevel=2)
else:
warnings.warn(f"\nFunction deprecated: {func.__name__}"
f"\n{print_msg}",
category=DeprecationWarning, stacklevel=2)
return func(*args, **kwargs)
return wrapper_decorator
if _func is None:
return decorator_deprecated
else:
return decorator_deprecated(_func) | 1d2849a95702f470fb8933b695712839fc71a90f | 587,112 |
def smaller_root(a, b, c):
"""
Returns the smaller root of a quadratic equation with the
given coefficients.
"""
dis = (b **2) - (4 * a * c)
if dis < 0:
return "Error: No real solutions"
else:
s = (-b - (dis ** 0.5)) / (2 * a)
return s | 085905ea3081cb33db98c092a7c7db9589190012 | 164,773 |
from typing import Optional
from typing import Any
def safe_min(*values) -> Optional[Any]:
"""
Find the min value in a list. Ignore None values.
Args:
*values: all values to be compared
Returns:
min value in the list or None
Examples:
>>> safe_min(None, 5, 2, 1, None, 5)
1
>>> safe_min(None, None) is None
True
"""
min_value = None
for value in values:
if value is None:
continue
if min_value is None:
min_value = value
elif value < min_value:
min_value = value
return min_value | 2c38380df97eb84f04bb751df1725d953806220d | 372,806 |
def all_same(items):
"""Returns bool for checking if all items in a list are the same."""
return all(x == items[0] for x in items) | e89945fd1c6151fd50db1ce92c7269642dc5eac6 | 477,577 |
def solucion_a(texto: str) -> str:
"""Devuelve el texto ingresado sin mayúsculas.
:param texto: Texto
:type texto: str
:return: Texto ingresado sin mayúsculas
:rtype: str
"""
resultado = ""
for letra in texto:
if not letra.isupper():
resultado += letra
return resultado | 637c663f00a4cb58a8e061d61e72eba54f48ace5 | 259,653 |
def row_hasindel(r):
"""
Return True if the row has an indel.
Parameters
----------
r : pandas.Series
VCF row.
Returns
-------
bool
True if the row has an indel.
Examples
--------
>>> from fuc import pyvcf
>>> data = {
... 'CHROM': ['chr1', 'chr1', 'chr1', 'chr1'],
... 'POS': [100, 101, 102, 103],
... 'ID': ['.', '.', '.', '.'],
... 'REF': ['G', 'CT', 'A', 'C'],
... 'ALT': ['A', 'C', 'C,AT', 'A'],
... 'QUAL': ['.', '.', '.', '.'],
... 'FILTER': ['.', '.', '.', '.'],
... 'INFO': ['.', '.', '.', '.'],
... 'FORMAT': ['GT', 'GT', 'GT', 'GT'],
... 'Steven': ['0/1', '0/1', '1/2', '0/1'],
... }
>>> vf = pyvcf.VcfFrame.from_dict([], data)
>>> vf.df
CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Steven
0 chr1 100 . G A . . . GT 0/1
1 chr1 101 . CT C . . . GT 0/1
2 chr1 102 . A C,AT . . . GT 1/2
3 chr1 103 . C A . . . GT 0/1
>>> vf.df.apply(pyvcf.row_hasindel, axis=1)
0 False
1 True
2 True
3 False
dtype: bool
"""
ref_has = len(r['REF']) > 1
alt_has = max([len(x) for x in r['ALT'].split(',')]) > 1
return ref_has or alt_has | b79053ae0df480662848b05e146452d29375cdea | 428,516 |
def clip_box(box, shape):
"""
Clip box for given image shape.
Args:
box (array_like[int]): Box for clipping in the next format:
[y_min, x_min, y_max, x_max].
shape (tuple[int]): Shape of image.
Returns:
array_like[int]: Clipped box.
"""
ymin, xmin, ymax, xmax = box
if ymin < 0:
ymin = 0
elif ymin >= shape[0]:
ymin = shape[0] - 1
box[0] = ymin
if xmin < 0:
xmin = 0
elif xmin >= shape[1]:
xmin = shape[1] - 1
box[1] = xmin
if ymax < 0:
ymax = 0
elif ymax >= shape[0]:
ymax = shape[0] - 1
box[2] = ymax
if xmax < 0:
xmax = 0
elif xmax >= shape[1]:
xmax = shape[1] - 1
box[3] = xmax
return box | 7cb329c630dc5eef47e87a8e32dab4d5a97739ae | 670,044 |
from typing import List
def check_padding(padding: List[int], bounds: List[int]):
"""This function checks whether padding is within the limits supported by the NPU"""
if len(padding) != 4 or len(bounds) != 4:
return False
top, left, bottom, right = padding
topb, leftb, bottomb, rightb = bounds
return not (top > topb or left > leftb or bottom > bottomb or right > rightb) | c9f2f2e14ddacc0697c905c7d3cc871c4e7cacb2 | 547,075 |
def uniq(l):
"""Return list without duplication."""
return list(set(l)) | c1fecd07f5e2c1d0ff7f19a2f4356be15b430a7e | 409,212 |
def filter_interval_tensor(sample, interval, data_frequency, apply_indices=[0]):
"""Cut out a specific interval from a sample of EEG-Data.
:param sample: sample consisitng of channel_number * data_points
:type sample: tensor
:param interval: two values specifying the starting and end point in
seconds of the interval to be cut out.
Each sample consists of a 4.5 second EEG-data window.
These 4.5 seconds consist of:
Concentration Interval - 0.5 s
Cue Interval - 0.5 s
Action Interval - 2.5 s
Relac Interval - 1 s
:type interval: list of two floating point numbers
:param data_frequency: specifies the frequency the provided data was
measured at
:type data_frequency: floating point number
:param apply_indices: specifies on what elemtents of sample to apply the
function, defaults to [0]
:type apply_indices: list of integers, optional
:return: cut sample
:rtype: tensor
"""
sample = list(sample)
start_index_interval = int(interval[0] * data_frequency)
end_index_interval = int(interval[1] * data_frequency)
for index in apply_indices:
sample[index] = sample[index][:, start_index_interval:end_index_interval]
return sample | d1221680d32d07bcfe7f47af8797f895b58d030a | 223,031 |
import re
def format_row(row):
"""Formats the row
Args:
row (string): The row of the file.
Returns:
dict: The dictionary containing the following attributes:
- query (string): The query.
- document (string): The document.
- relevance (integer): The relevance label.
"""
splitted_values = re.split(r"\t+", row)
if len(splitted_values) == 3:
rel, query, document = splitted_values
return {
"query": query.strip(),
"document": document.strip(),
"relevance": 1 if int(rel.strip()) > 0 else 0,
}
else:
return None | da779f84f79e2b9feb8cdb47213525605a8d14cc | 124,038 |
def pkg_as_json(pkg):
"""Return a dictionary of information for the package."""
result = {
'name': pkg.name,
'ensure': pkg.evr,
'platform': pkg.arch}
return result | db43d2eadf57f3a27d88d650f562c805fbadb2a2 | 119,979 |
from typing import Mapping
def replace_name_in_key(key, rename: Mapping[str, str]):
"""Given a dask collection's key, replace the collection name with a new one.
Parameters
----------
key: string or tuple
Dask collection's key, which must be either a single string or a tuple whose
first element is a string (commonly referred to as a collection's 'name'),
rename:
Mapping of zero or more names from : to. Extraneous names will be ignored.
Names not found in this mapping won't be replaced.
Examples
--------
>>> replace_name_in_key("foo", {})
'foo'
>>> replace_name_in_key("foo", {"foo": "bar"})
'bar'
>>> replace_name_in_key(("foo-123", 1, 2), {"foo-123": "bar-456"})
('bar-456', 1, 2)
"""
if isinstance(key, tuple) and key and isinstance(key[0], str):
return (rename.get(key[0], key[0]),) + key[1:]
if isinstance(key, str):
return rename.get(key, key)
raise TypeError(f"Expected str or tuple[str, Hashable, ...]; got {key}") | 71f04aa9b6fdca4aa1569cd9d31af5c0126ca90d | 152,422 |
def __sbox_single_byte(byte, sbox):
"""S-Box substitution of a single byte"""
row = byte // 16
col = byte % 16
return sbox[row][col] | 3091bf7da9d6365713f11f8659c56d0c815965ec | 59,717 |
def append_lesson_content(from_lesson, to_lesson):
"""Append lesson properties from the send lesson to the receiving lesson """
to_lesson.objectives = from_lesson.objectives
to_lesson.activity_title = from_lesson.activity
to_lesson.title = from_lesson.title
to_lesson.notes = from_lesson.notes
to_lesson.video = from_lesson.video
to_lesson.activity_listed = from_lesson.activity_listed
return to_lesson | c0fbb8c2f649bf5de2e346ab589ce7080caef60f | 361,200 |
def euclidean(p1: tuple[int, int], p2: tuple[int, int]) -> int:
"""Calculate the distance between two points.
Args:
p1: First point.
p2: Second point.
Returns:
The distance between the two points.
"""
diff_x = p1[0] - p2[0]
diff_y = p1[1] - p2[1]
return (diff_x ** 2 + diff_y ** 2) ** 0.5 | cd78ac92ff6792401a724247739ef6d0db825bb9 | 617,627 |
import math
def Diameter(volume, factor=3/math.pi/4, exp=1/3.0):
"""Converts a volume to a diameter.
d = 2r = 2 * (3/4/pi V)^1/3
"""
return 2 * (factor * volume) ** exp | 9b2d49568e0f2494647152f7e29006d4a770e1ca | 217,422 |
def get_relative_freqs(type2freq):
"""
Calculates the relative frequency (proportion) of each type in a system
Parameters
----------
type2freq: dict
Keys are types of a system and values are frequencies of those types
Returns
-------
type2p: dict
Keys are types and values are relative (normalized) frequencies
"""
n = sum(type2freq.values())
type2p = {t: s / n for t, s in type2freq.items()}
return type2p | 15c33e0ed235543430e9c1925593916135d96615 | 72,084 |
def format_direction(direction):
"""
Examples
--------
>>> format_direction('ra')
'ra'
>>> format_direction('el')
'alat'
>>> format_direction('az')
'alon'
"""
lowerdir = direction.lower()
if lowerdir == 'el':
return 'alat'
elif lowerdir == 'az':
return 'alon'
return direction | d961ff38fd68b19a8a5975cb2fe1a80af09d8c56 | 632,661 |
import warnings
def data_order(iaf, ibf, order, multite=False):
"""
Determine the data format and ordering from ``iaf`` and ``ibf`` options
If ``iaf`` is not specified (None or empty string), TC pairs are specified if the
``order`` parameter is given and contains the ``l`` character. Otherwise differenced
data is assumed.
If neither ``ibf`` nor ``order`` are specified, ``ibf=rpt`` is guessed.
If ``iaf`` is not ``diff`` and ``order`` does not include the ``l` character it is assumed
that the encoded images (e.g. TC pairs) are the fastest varying.
If any parameters had to be guessed (rather than inferred from other information) a
warning is output.
:return: Tuple of: IAF (ASL format, 'tc', 'ct', 'diff', 've', 'vediff', 'hadamard' or 'mp'), ordering (sequence of
2 or three chars, 'l'=labelling images, 'r'=repeats, 't'=TIs/PLDs, 'e'=TEs. The characters
are in order from fastest to slowest varying), Boolean indicating whether the block
format needed to be guessed
"""
if order is not None:
order = order.lower()
if not iaf:
if order is not None and "l" in order:
# Order specified labelling images so guess TC pairs as this is most common
warnings.warn("Data format was not specified - assuming TC pairs")
iaf = "tc"
elif not order:
# No order specified - guess differenced for compatibility with Oxford ASL
warnings.warn("Data format was not specified - assuming differenced")
iaf = "diff"
else:
# Order specified and did not include labelling images so we are entitled
# to assume differenced data without a warning
iaf = "diff"
elif iaf not in ("diff", "tc", "ct", "mp", "ve", "vediff", "hadamard"):
raise ValueError("Unrecognized data format: iaf=%s" % iaf)
ibf_guessed = False
if not order:
if not ibf:
# Guess but defer warning until we have extracted TIs as it doesn't matter
# for single TI data
ibf = "rpt"
ibf_guessed = True
order_map = {
"rpt" : "tr",
"tis" : "rt",
}
order = order_map.get(ibf.lower(), None)
if not order:
raise ValueError("Unrecognized data block format: ibf=%s" % ibf)
if iaf != "diff" and "l" not in order:
order = "l" + order
if multite and "e" not in order:
# TE ordering is optional since most data is single TE. Insert it at the
# start as this seems to make most sense in terms of multi-TE acquisition
order = "e" + order
for char in order:
if char not in ('l', 'r', 't', 'e'):
raise ValueError("Unrecognized character in data ordering: '%s'" % char)
return iaf, order, ibf_guessed | fff663af2c0092271c62ae74e0fe97a5d7e243a3 | 214,371 |
def groupIntersections(intersections: list, key: int) -> dict:
"""
Function to group horizontal or vertical intersections
Groups horizontal or vertical intersections
as a list into a dict by the given key
Parameters:
intersections (list): List of tuples representing
intersection points
key (int): Tuple index to group by
(0 for rows and 1 for columns)
Returns:
dict: Lists of intersections as values grouped by key
"""
groupedIntersections = {}
for intersection in intersections:
keyValue = intersection[key]
if keyValue not in groupedIntersections.keys():
groupedIntersections[keyValue] = []
group = groupedIntersections[keyValue]
group.append(intersection)
return groupedIntersections | 45f33715dc9917eb224376c2bedede1a8c49c48f | 636,256 |
from typing import Tuple
from typing import Dict
from typing import Union
from typing import List
def parse_stan_vars(
names: Tuple[str, ...]
) -> Tuple[Dict[str, Tuple[int, ...]], Dict[str, Tuple[int, ...]]]:
"""
Parses out Stan variable names (i.e., names not ending in `__`)
from list of CSV file column names.
Returns a pair of dicts which map variable names to dimensions and
variable names to columns, respectively, using zero-based column indexing.
Note: assumes: (a) munged varnames and (b) container vars are non-ragged
and dense; no checks size, indices.
"""
if names is None:
raise ValueError('missing argument "names"')
dims_map: Dict[str, Tuple[int, ...]] = {}
cols_map: Dict[str, Tuple[int, ...]] = {}
idxs = []
dims: Union[List[str], List[int]]
for (idx, name) in enumerate(names):
idxs.append(idx)
var, *dims = name.split('[')
if var.endswith('__'):
idxs = []
elif len(dims) == 0:
dims_map[var] = ()
cols_map[var] = tuple(idxs)
idxs = []
else:
if idx < len(names) - 1 and names[idx + 1].split('[')[0] == var:
continue
dims = [int(x) for x in dims[0][:-1].split(',')]
dims_map[var] = tuple(dims)
cols_map[var] = tuple(idxs)
idxs = []
return (dims_map, cols_map) | ba334eb66990d58640d9d978786e89e5555b5d71 | 623,853 |
def split_phylogeny(p, level="s"):
"""
Return either the full or truncated version of a QIIME-formatted taxonomy string.
:type p: str
:param p: A QIIME-formatted taxonomy string: k__Foo; p__Bar; ...
:type level: str
:param level: The different level of identification are kingdom (k), phylum (p),
class (c),order (o), family (f), genus (g) and species (s). If level is
not provided, the default level of identification is species.
:rtype: str
:return: A QIIME-formatted taxonomy string up to the classification given
by param level.
"""
level = level+"__"
result = p.split(level)
return result[0]+level+result[1].split(";")[0] | b61d5cafa1ca7f56c37195c619e8f02f9b925dab | 578,669 |
import random
def split_dataFrames(df, trimmedRUL, splittingRatio):
"""Split the dataframes according to the indicated splitting ratio"""
num_engines = df['Unit Number'].max()
shuffledEngines = list(range(1,num_engines+1))
random.shuffle(shuffledEngines)
i = int(splittingRatio*num_engines)
num_crossVal = i
num_train = num_engines - num_crossVal
crossVal_engines = shuffledEngines[:i]
train_engines = shuffledEngines[i:]
trimmedRUL_train = trimmedRUL[:i]
trimmedRUL_crossVal = trimmedRUL[i:]
df_train = df[df['Unit Number'].isin(train_engines)]
df_crossVal = df[df['Unit Number'].isin(crossVal_engines)]
return (df_train, df_crossVal, num_train, num_crossVal, trimmedRUL_train, trimmedRUL_crossVal) | 1190d9bb55c307daa753956eae88eb4806c52eb8 | 614,136 |
def validate_input(user_input, input_map):
""" Checks user_input for validity and appends any validation errors to
return data.
Input:
- user_input: Dictionary containing the following input keys: values
- amount: float
- prefix: string
- type: string
- base: string
- input_map: Dictionary containing the following valid keys: values
prefix:
- valid_prefix_key: string
type:
- valid_type_key: string
base:
- valid_base_key: string
Output: Validated user_input dictionary with errors list as key errors
"""
# Split out user_input keys
amt_value = user_input['amount']
amt_prefix = user_input['prefix'].lower()
amt_type = user_input['type'].lower()
amt_base = user_input['base'].lower()
# Set up error list to track any input issues
errors = []
# Convert input amount from string to float for use in calculations
try:
amt_value = float(amt_value)
except ValueError:
# Append error string to errors list in user_input
err_str = "'{}' is not a valid value for amount, use numbers only.".format(amt_value)
errors.append(err_str)
# Check user input against valid value lists
valid_prefix = True if amt_prefix in input_map['prefix'] else False
valid_type = True if amt_type in input_map['type'] else False
valid_base = True if amt_base in input_map['base'] else False
if not valid_prefix:
# Append error string to errors list in user_input
err_str = "'{}' is not a valid prefix: ({})".format(
amt_prefix,
', '.join(input_map['prefix']))
errors.append(err_str)
if not valid_type:
# Append error string to errors list in user_input
err_str = "'{}' is not a valid type: ({})".format(
amt_type,
', '.join(input_map['type']))
errors.append(err_str)
if not valid_base:
# Append error string to errors list in user_input
err_str = "'{}' is not a valid base: ({})".format(
amt_base,
', '.join(input_map['base']))
errors.append(err_str)
validated_input = {
'amount': amt_value,
'prefix': amt_prefix,
'type': amt_type,
'base': amt_base,
'errors': errors
}
return validated_input | ddeed40bc2cf8294c4fcb86251411290989030c2 | 422,539 |
import cgi
def check_content_type(content_type, mime_type):
"""Return True if the content type contains the MIME type"""
mt, _ = cgi.parse_header(content_type)
return mime_type == mt | faf22b8c546b6846a690d33fbaa4df5525cfc255 | 589,367 |
def has_tag(filename, tag):
"""Check if a filename has a given tag."""
return f':{tag}' in filename | c6ae18c687a5bfeacfae635af3d858ec8bca0820 | 579,377 |
import re
def find_and_replace(items, updates):
"""
aka find_and_replace
apply all updates in updates list
to all items in items list
updates consist of a list of lists
where the sub lists contain:
(search_string, replace_string)
"""
for u in updates:
search_string = u[0]
replace_string = u[1]
#print search_string
pattern = re.compile(search_string)
for item in items:
if pattern.search(item):
index = items.index(item)
items.remove(item)
#print "ORIGINAL ITEM: %s" % item
item = pattern.sub(replace_string, item)
# not sure if python replace is faster than re.sub:
#journal.replace(pu[0], pu[1])
#print " NEW ITEM: %s" % item
items.insert(index, item)
return items | 57f6f9ed15feb306584fd217d5b062307f2e6aac | 616,783 |
def concat_attrs(*attrs, separator=' '):
"""
Helper function to join string attributes using separator.
"""
return separator.join([attr for attr in attrs if attr]) | 9cd81916c34fc0a04b65c5676bcea4a3eaa06c19 | 404,682 |
from datetime import datetime
def is_date_format_correct(date_string):
"""
Check if date is in format YYYY-MM-DD
Return:
- True if format correct
- False if format wrong
"""
if len(date_string) != 10:
return False
try:
date = datetime.strptime(date_string, "%Y-%m-%d")
except ValueError:
return False
if date > datetime.now():
return False
return True | 414093f4c109b8dda35b310acef50ad2d67ad601 | 518,210 |
def rekey(x, key_map=None):
"""Replace the feature keys according to the mapping in `key_map`.
For example, if the dataset returns examples of the format:
{'foo': 'something', 'bar': 'something else'}
and key_map = {'boo': 'foo', 'spar': 'bar'} then this function will return
examples with the format
{'boo': 'something', 'spar': 'something else'}
If a mapping is to an empty key or None, set the new key to an empty string.
Args:
x: an example to process.
key_map: dictionary mapping new keys to original keys
Returns:
A preprocessed example with the format listed above.
"""
if key_map:
return {
new_key: x[old_key] if old_key else ''
for new_key, old_key in key_map.items()
}
return x | b036a3f28eed2a1226dd4ca78de378cc93022a4f | 538,670 |
def read_from_txt(file_path):
"""read data from txt file
signal content:
% ...
% ...
float; float
...
border content:
int \t int
int \t int
...
Args:
file_path (str): txt file path
Returns:
data (list): signal data(float) or border data(int)
"""
with open(file_path, mode='r', encoding='utf-8') as f:
flag = ""
data = []
lines = f.readlines()
if lines[0].startswith("%"):
del lines[0:5]
if ";" in lines[5]:
# 此时返回信号数据
flag = "signal"
for line in lines:
tar = line.split(";")[1]
data.append(float(tar))
else:
# 此时返回border数据
flag = "border"
for line in lines:
begin, end = line.split("\t")
data.append([int(begin), int(end)])
return data, flag | ac8aeebdbc62ef7fe90dddb4a5b500dbec3de698 | 430,624 |
def area_rhombus(diagonal_1: float, diagonal_2: float) -> float:
"""
Calculate the area of a rhombus.
>>> area_rhombus(10, 20)
100.0
>>> area_rhombus(-1, -2)
Traceback (most recent call last):
...
ValueError: area_rhombus() only accepts non-negative values
>>> area_rhombus(1, -2)
Traceback (most recent call last):
...
ValueError: area_rhombus() only accepts non-negative values
>>> area_rhombus(-1, 2)
Traceback (most recent call last):
...
ValueError: area_rhombus() only accepts non-negative values
"""
if diagonal_1 < 0 or diagonal_2 < 0:
raise ValueError("area_rhombus() only accepts non-negative values")
return 1 / 2 * diagonal_1 * diagonal_2 | 5ed8737df583cda7fe976aa66b92f5d0ef568edd | 417,977 |
def getFirstValid(opts, default):
"""Returns the first valid entry from `opts`, or `default` if none found.
Valid is defined as ``if o`` returns true."""
for o in opts:
if o: return o
return default | 799a6ea4a993f0a112fa38b882566d72a0d223e0 | 6,320 |