content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def _is_sub_partition(sets, other_sets):
"""
Checks if all the sets in one list are subsets of one set in another list.
Used by get_ranked_trajectory_partitions
Parameters
----------
sets : list of python sets
partition to check
other_sets : list of python sets
partition to check against
Returns
-------
bool
whether all sets are included in other_sets
"""
for set_ in sets:
if not any(map(set_.issubset, other_sets)):
#here if at least one set is not fully included in another set in the other partition
return False
return True | b2a1d60245a8d2eca1f753f998ac1d69c8ff9d08 | 646,120 |
import json
def load_json(filename):
"""Load dictionary from JSON file."""
with open(filename, 'r') as f:
mybooks = json.load(f)
return(mybooks) | 3edd21661886ea783e1e9d9c4f4c65561e35f060 | 646,551 |
import csv
def load_label(filename):
"""
process the .csv label file
Args:
filename: /path/to/file/of/csvlabel/ (csv)
Return:
dirname_label_map: a hashmap {dirname <--> label} (dict: str->list[int])
Example:
{..., INDEX10097: [3, 7] ,}
"""
dirname_label_map = {}
with open(filename,'r') as cfile:
reader = csv.reader(cfile)
for row in reader:
name = row[0]
label = (row[1]).split(';')
int_label = [int(lab) for lab in label]
dirname_label_map[name] = int_label
return dirname_label_map | e932f36a82969f2ac9bb65406d09a20895671a8f | 495,883 |
async def simple_json(req) -> dict:
"""Returns simple json."""
return {
"message": "Hello, world!"
} | df01ded04586c8242ec8cb959557de28b9acef12 | 262,355 |
def id_from_string(hpo_string: str) -> int:
"""
Formats the HPO-type Term-ID into an integer id
Parameters
----------
hpo_string:
HPO term ID.
(e.g.: HP:000001)
Returns
-------
int
Integer representation of provided HPO ID
(e.g.: 1)
"""
idx = hpo_string.split('!')[0].strip()
return int(idx.split(':')[1].strip()) | 17de4c0b651d5f003dec21c29eac21f0b31ae607 | 449,569 |
def transverseWidgets(layout):
"""Get all widgets inside of the given layout and the sub-layouts"""
w_lists = []
for i in range(layout.count()):
item = layout.itemAt(i)
if item.layout():
# if type(item) == QtGui.QLayoutItem:
w_lists.extend(transverseWidgets(item.layout()))
# if type(item) == QtGui.QWidgetItem:
if item.widget():
w = item.widget()
w_lists.append(w)
if w.layout():
w_lists.extend(transverseWidgets(w.layout()))
return w_lists | 57c6d12e901f5248eb3e08b3d6f8e131d4e16a64 | 85,428 |
import re
def rx(pat):
"""Helper to compile regexps with IGNORECASE option set."""
return re.compile(pat, flags=re.IGNORECASE) | 7cae6aeff40dff0242c39c0961aace7cd042a0b6 | 594,134 |
def is_callable(x):
"""Tests if something is callable"""
return callable(x) | 72584deb62ac5e34e69325466236792c5299a51b | 2,064 |
def _find_exon(subexon_table, subexon_id_cluster):
"""Return a list with the 'ExonID's of a particular subexon."""
return subexon_table.loc[subexon_table['SubexonIDCluster'] ==
subexon_id_cluster, 'ExonIDCluster'].unique(
).tolist() | 09a2963d000f9ca31a03fe7ffe79d75c37d0bfde | 198,519 |
def linear(input_value: float) -> float:
"""Simple linear activation function.
Args:
input_value (float): Input value to map.
Returns:
float: Mapped value.
"""
return input_value | 7431612e2836b10c2a1d6433e27d8fec569b2612 | 376,937 |
def test(pre=None, post=None):
"""Decorator to execute tests and print useful information
The method being tested must have an <assert>
pre is a function without arguments to execute before the test starts
post is a function without arguments to execute after the test has finished
"""
def inner(func):
def wrap(*args, **kwargs):
if pre:
pre()
print(func.__name__,":", end="")
try:
func()
print("OK!")
except AssertionError:
print("ASSERTION ERROR!")
except Exception as exc:
print("ERROR!", exc)
if post:
post()
return wrap
return inner | 2e2358244475f4ce64a81ecc924172216aeb9821 | 564,339 |
import re
def parse_error(err):
"""
"Parse" error string (formats) raised by (simple)json:
'%s: line %d column %d (char %d)'
'%s: line %d column %d - line %d column %d (char %d - %d)'
"""
return re.match(r"""^
(?P<msg>.+):\s+
line\ (?P<lineno>\d+)\s+
column\ (?P<colno>\d+)\s+
(?:-\s+
line\ (?P<endlineno>\d+)\s+
column\ (?P<endcolno>\d+)\s+
)?
\(char\ (?P<pos>\d+)(?:\ -\ (?P<end>\d+))?\)
$""", err, re.VERBOSE) | ca00993ce96abe1c64c5564862b47086f1dee300 | 326,376 |
def bar_label_formatter(x, pos):
"""Return tick label for bar chart."""
return int(x) | b1e6d1534d1a5b403d7ca037eb8f445771c26683 | 55,142 |
def party_planner(cookies, people):
"""This function will calculate how many cookies each person will get in the party
and also gives out leftovers
ARGS:
cookies: int, no of cookies is going to be baked
people: int, no of people are attending this party_planner
Returns:
tuple of cookies per person and leftovers"""
leftovers = None
num_each = None
try:
num_each = cookies // people
leftovers = cookies % people
except ZeroDivisionError as e:
print('People cannot be zero. {}'.format(e))
return(num_each, leftovers) | b4d4545710f689f2b048ba4a1637647b80aac451 | 72,866 |
def ode_schnakenberg(t, y, a_prod, b_prod):
"""Derivatives to be called into solve_ivp
This returns an array of derivatives y' = [A', B'], for a given
state [A, B] at a time t. This is based on the classical
Schnakenberg system.
Params:
t [float] - the time at which the derivative is evaluated
y [array] - the current state of the system, in the form [A, B]
"""
return [y[0]**2 * y[1] - y[0] + a_prod, -y[0]**2 * y[1] + b_prod] | a4e403e55a3f8c89efb71a677a93c0b3178325b1 | 261,880 |
def _resolve_subkeys(key, separator='.'):
"""Resolve a potentially nested key.
If the key contains the ``separator`` (e.g. ``.``) then the key will be
split on the first instance of the subkey::
>>> _resolve_subkeys('a.b.c')
('a', 'b.c')
>>> _resolve_subkeys('d|e|f', separator='|')
('d', 'e|f')
If not, the subkey will be :data:`None`::
>>> _resolve_subkeys('foo')
('foo', None)
Args:
key (str): A string that may or may not contain the separator.
separator (str): The namespace separator. Defaults to `.`.
Returns:
Tuple[str, str]: The key and subkey(s).
"""
parts = key.split(separator, 1)
if len(parts) > 1:
return parts
else:
return parts[0], None | f7b749a0645a71048aaa3ffa693540c97772653a | 661,489 |
def lowercase_set(sequence):
""" Create a set from sequence, with all entries converted to lower case.
"""
return set((x.lower() for x in sequence)) | 23f55bd4ad1c9ec19b9d360f87a3b310ad619114 | 662,890 |
def invert_y_and_z_axis(input_matrix_or_vector):
"""Invert the y and z axis of a given matrix or vector.
Many SfM / MVS libraries use coordinate systems that differ from Blender's
coordinate system in the y and the z coordinate. This function inverts the
y and the z coordinates in the corresponding matrix / vector entries, which
is equivalent to a rotation by 180 degree around the x axis.
"""
output_matrix_or_vector = input_matrix_or_vector.copy()
output_matrix_or_vector[1] = -output_matrix_or_vector[1]
output_matrix_or_vector[2] = -output_matrix_or_vector[2]
return output_matrix_or_vector | d220e7b8e6868663a75896826ad559195bd0f994 | 491,493 |
def tabular_tex(
body_df,
footer_df,
notes_tex,
render_options,
custom_index_names,
custom_model_names,
left_decimals,
sig_digits,
show_footer,
):
"""Return estimation table in LaTeX format as string.
Args:
body_df (pandas.DataFrame): the processed dataframe with parameter values and
precision (if applied) as strings.
footer_df (pandas.DataFrame): the processed dataframe with summary statistics as
strings.
notes_tex (str): a string with LaTex code for the notes section
render_options(dict): the pd.to_latex() kwargs to apply if default options
need to be updated.
lef_decimals (int): see main docstring
sig_digits (int): see main docstring
show_footer (bool): see main docstring
Returns:
latex_str (str): the string for LaTex table script.
"""
n_levels = body_df.index.nlevels
n_columns = len(body_df.columns)
# here you add all arguments of df.to_latex for which you want to change the default
default_options = {
"index_names": False,
"escape": False,
"na_rep": "",
"column_format": "l" * n_levels
+ "S[table-format ={}.{}]".format(left_decimals, sig_digits) * n_columns,
"multicolumn_format": "c",
}
if custom_index_names:
default_options.update({"index_names": True})
if render_options:
default_options.update(render_options)
if not default_options["index_names"]:
body_df.index.names = [None] * body_df.index.nlevels
latex_str = body_df.to_latex(**default_options)
if custom_model_names:
temp_str = "\n"
for k in custom_model_names:
max_col = max(custom_model_names[k]) + n_levels + 1
min_col = min(custom_model_names[k]) + n_levels + 1
temp_str += f"\\cmidrule(lr){{{min_col}-{max_col}}}"
temp_str += "\n"
latex_str = (
latex_str.split("\\\\", 1)[0]
+ "\\\\"
+ temp_str
+ latex_str.split("\\\\", 1)[1]
)
latex_str = latex_str.split("\\bottomrule")[0]
if show_footer:
stats_str = footer_df.to_latex(**default_options)
stats_str = (
"\\midrule" + stats_str.split("\\midrule")[1].split("\\bottomrule")[0]
)
latex_str += stats_str
latex_str += notes_tex
latex_str += "\\bottomrule\n\\end{tabular}\n"
if latex_str.startswith("\\begin{table}"):
latex_str += "\n\\end{table}\n"
return latex_str | 5858b6334f33cf68bbd737a15117fec6e16c1c76 | 75,143 |
def _get_opt_first_name(a):
""" Get the first of an action's option names. """
return a.option_strings[0] | bbd5f42ea152ab839156d5a026621b93639e8ba9 | 544,625 |
def get_region(context):
"""
Return the AWS account region for the executing lambda function.
Args:
context: AWS lambda Context Object http://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
Returns:
str : AWS Account Region
"""
return str(context.invoked_function_arn.split(":")[3]) | 220a63aef52d97ec8bd5bc6803b7a33803cdaf2f | 671,349 |
import re
def valid_uuid(possible_uuid):
"""
Checks that a possible UUID4 string is a valid UUID4.
"""
regex = re.compile('^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I)
match = regex.match(possible_uuid)
return bool(match) | d20d764362d82fb05dd6554710e471c56786c074 | 175,077 |
from typing import Dict
from typing import Any
from typing import Optional
def _get_driver_kwargs(
platform_details: Dict[str, Any], variant: Optional[str], _async: bool = False
) -> Dict[str, Any]:
"""
Parent get driver method
Args:
platform_details: dict of details about community platform from scrapli_community library
variant: optional name of variant of community platform
_async: True/False this is for an asyncio transport driver
Returns:
final_platform_kwargs: dict of final driver kwargs
Raises:
N/A
"""
platform_kwargs = platform_details["defaults"]
if variant:
variant_kwargs = platform_details["variants"][variant]
final_platform_kwargs = {**platform_kwargs, **variant_kwargs}
else:
final_platform_kwargs = platform_kwargs
if not _async:
# remove unnecessary asyncio things
final_platform_kwargs.pop("async_on_open")
final_platform_kwargs.pop("async_on_close")
# rename sync_on_(open|close) keys to just "on_open"/"on_close"
final_platform_kwargs["on_open"] = final_platform_kwargs.pop("sync_on_open")
final_platform_kwargs["on_close"] = final_platform_kwargs.pop("sync_on_close")
else:
# remove unnecessary sync things
final_platform_kwargs.pop("sync_on_open")
final_platform_kwargs.pop("sync_on_close")
# rename sync_on_(open|close) keys to just "on_open"/"on_close"
final_platform_kwargs["on_open"] = final_platform_kwargs.pop("async_on_open")
final_platform_kwargs["on_close"] = final_platform_kwargs.pop("async_on_close")
return final_platform_kwargs | 2f29f4290a0b41b9e032976cde5aa70622cf266b | 130,301 |
def delete_node(manager, handle_id):
"""
Deletes the node and all its relationships.
:param manager: Neo4jDBSessionManager
:param handle_id: Unique id
:rtype: bool
"""
q = """
MATCH (n:Node {handle_id: {handle_id}})
OPTIONAL MATCH (n)-[r]-()
DELETE n,r
"""
with manager.session as s:
s.run(q, {'handle_id': handle_id})
return True | 124281e6d0d3c2fa1f6deab05c22c2540e56b603 | 239,723 |
def get_speakers(items):
"""Returns a sorted, unique list of speakers in a given dataset."""
speakers = {e[2] for e in items}
return sorted(speakers) | 451c10463a34f40839bec6cf8b017dfa4018b342 | 610,064 |
def hhmmss_to_sec(hhmmss):
"""Parses a HH:MM:SS-string and returns the corresponding number of seconds after midnight.
Args:
hhmmss (str): HH:MM:SS-string
Returns:
int: number of seconds after midnight.
"""
h, m, s = hhmmss.split(':')
return int(h) * 3600 + int(m) * 60 + int(s) | 5ceb6b1d3ac1809ebb8b54227a7a99f6575d9c19 | 233,832 |
def get_metadata_namespaces(metadata):
"""
Utility function to get all the namespaces from a metadata document and return them as a set()
:param metadata: the metadata document
:type metadata: schema.Edmx
:return: the namespace
"""
metadata_namespaces = set()
for reference in metadata.References:
for include in reference.Includes:
metadata_namespaces.add(include.Namespace)
return metadata_namespaces | 7532e38a50500fe40d4ea0c72b84ef2b5032a3fa | 276,946 |
def p(n, d):
""" Helper to calculate the percentage of n / d,
returning 0 if d == 0.
"""
if d == 0:
return 0.0
return float(n) / d | 2b009b7059af7e2897a9e4d92246f8c0c883e7e1 | 568,844 |
def PowersOf(logbase, count, lower=0, include_zero=True):
"""Returns a list of count powers of logbase (from logbase**lower)."""
if not include_zero:
return [logbase ** i for i in range(lower, count+lower)]
else:
return [0] + [logbase ** i for i in range(lower, count+lower)] | 708e46dbff1b838fdfb0c9ca2c354ccc21bd453d | 285,113 |
def remove_end_same_as_start_transitions(df, start_col, end_col):
"""Remove rows corresponding to transitions where start equals end state.
Millington 2009 used a methodology where if a combination of conditions
didn't result in a transition, this would be represented in the model by
specifying a transition with start and end state being the same, and a
transition time of 0 years.
AgroSuccess will handle 'no transition' rules differently, so these dummy
transitions should be excluded.
"""
def start_different_to_end(row):
if row[start_col] == row[end_col]:
return False
else:
return True
return df[df.apply(start_different_to_end, axis=1)] | f4b3ddca74e204ed22c75a4f635845869ded9988 | 3,243 |
def get_diff(throw, target):
"""
Determines the difference between a throw and a target
E.g. between '111344' and '111144'
Here, the difference is 1, dice to keep is '11144', to remove is '3'
"""
diff = 0
remove = []
keep = []
for i, j in zip(throw, target):
if i != j:
diff += 1
remove.append(i)
else:
keep.append(i)
return diff, ''.join(keep), ''.join(remove) | 6c0dfe395cc7fbfbf5f2e745cde9a61d81b045f8 | 55,518 |
import re
def GetSizeAnnotationToDraw(annotationList):#{{{
"""Get the size of annotation field"""
maxSize = 0
for anno in annotationList:
m1 = re.search("nTM\s*=\s*[0-9]*", anno)
m2 = re.search("group of [0-9]*", anno)
m3 = re.search("[^\s]+", anno)
pos1 = 0
pos2 = 0
pos3 = 0
if m1:
pos1 = m1.end(0)
if m2:
pos2 = m2.end(0)
if m3:
pos3 = m3.end(0)
size = max(pos1,pos2, pos3)
if size > maxSize:
maxSize = size
return maxSize | f45ff9153718c5fedb254fa3716d2d66fc7d60f2 | 67,387 |
def expected(vertices: int, colors: int) -> int:
"""Compute expected colorings with chromatic polynomial."""
return (colors - 1)**vertices + (-1)**vertices * (colors - 1) | 6b1c8fc638b792a0c1ac2c2b59b8ce3973b44d58 | 348,556 |
def _getWordCategory(word, words_category_index):
"""
Retrieves the category of a word
:param word:
:param words_category_index:
:return:
"""
if word in words_category_index:
return words_category_index[word]
else:
return None | f9fd5701d4df5582ced02f51773fdcb158521114 | 587,419 |
def strip_transient(nb):
"""Strip transient values that shouldn't be stored in files.
This should be called in *both* read and write.
"""
nb.metadata.pop('orig_nbformat', None)
nb.metadata.pop('orig_nbformat_minor', None)
nb.metadata.pop('signature', None)
for cell in nb.cells:
cell.metadata.pop('trusted', None)
return nb | 560a06532273c2a983692c17e898351c4a78130b | 73,315 |
def linear_segment(x0, x1, y0, y1, t):
"""Return the linear function interpolating the given points."""
return y0 + (t - x0) / (x1 - x0) * (y1 - y0) | de8bb06a7b294e0f0eb62f471da553a58e65fc49 | 44,109 |
def clsn(obj):
"""Short-hand to get class name. Intended for use in __repr__ and such."""
if isinstance(obj, str):
return obj
else:
return obj.__class__.__name__ | e030359e86cf07db8e6869c219575c74c620de6a | 650,096 |
import json
def parse_entanglement_header(header):
"""
Parse the entanglement header encoded as a JSON string.
Args:
header(str): JSON encoded entanglement header
Returns:
list((path, int)): The deseralized entanglement header
"""
return json.loads(header) | 11f6a7948f7ceacfa2f7780dd6e54759e1b3a41a | 230,325 |
def get_valid_base_urls(order=None):
"""
Return a list of valid base URLs from where the user analysis transform may be downloaded from.
If order is defined, return given item first.
E.g. order=http://atlpan.web.cern.ch/atlpan -> ['http://atlpan.web.cern.ch/atlpan', ...]
NOTE: the URL list may be out of date.
:param order: order (string).
:return: valid base URLs (list).
"""
valid_base_urls = []
_valid_base_urls = ["http://www.usatlas.bnl.gov",
"https://www.usatlas.bnl.gov",
"http://pandaserver.cern.ch",
"http://atlpan.web.cern.ch/atlpan",
"https://atlpan.web.cern.ch/atlpan",
"http://classis01.roma1.infn.it",
"http://atlas-install.roma1.infn.it"]
if order:
valid_base_urls.append(order)
for url in _valid_base_urls:
if url != order:
valid_base_urls.append(url)
else:
valid_base_urls = _valid_base_urls
return valid_base_urls | 8d1bcd1fcd9a7774e19d903a178fabdc69da4b6b | 269,661 |
def perm_conjugate(p, s):
"""
Return the conjugate of the permutation `p` by the permutation `s`.
INPUT:
two permutations of {0,..,n-1} given by lists of values
OUTPUT:
a permutation of {0,..,n-1} given by a list of values
EXAMPLES::
sage: from sage.combinat.constellation import perm_conjugate
sage: perm_conjugate([3,1,2,0], [3,2,0,1])
[0, 3, 2, 1]
"""
q = [None] * len(p)
for i in range(len(p)):
q[s[i]] = s[p[i]]
return q | a30fe25812709db4944cd7e00d21a9c889e15f0a | 441,160 |
import lzma
def compress_lzma(data: bytes) -> bytes:
"""compresses data via lzma (unity specific)
The current static settings may not be the best solution,
but they are the most commonly used values and should therefore be enough for the time being.
:param data: uncompressed data
:type data: bytes
:return: compressed data
:rtype: bytes
"""
ec = lzma.LZMACompressor(
format=lzma.FORMAT_RAW,
filters=[
{"id": lzma.FILTER_LZMA1, "dict_size": 524288, "lc": 3, "lp": 0, "pb": 2, }
],
)
ec.compress(data)
return b"]\x00\x00\x08\x00" + ec.flush() | 06a476a2753be7d591051b9707cf5dbf58556086 | 692,205 |
from typing import Counter
def contains_duplicate(items):
""" Returns True if items contains a duplicate (or more) element """
counter = Counter(items)
for freq in counter.values():
if freq > 1:
return True
return False | 769eb5e52a7e32aa2645917118678de796c9e893 | 134,676 |
import hashlib
def _text_checksum(text):
"""Calculate a digest string unique to the text content"""
return hashlib.sha1(text).hexdigest() | eebdb85139b2b7e9cba8adea3d396458ab6aba3d | 395,664 |
def _xyz_to_uv(x: float, y: float, z: float) -> tuple[float, float]:
"""Convert the color from CIEXYZ coordinates to uv chromaticity coordinates."""
if x == y == 0:
return 0, 0
d = x + 15 * y + 3 * z
return 4 * x / d, 9 * y / d | 70bf86e81fcd298873bd094bdccf0e9856c360b7 | 358,872 |
from typing import OrderedDict
def process_condition(row):
"""
row: a string of the form 'a=b;c=d;...' where each RHS can be converted to float.
Returns: a dictionary derived from row, plus the key 'Device' with value device.
"""
d = OrderedDict()
if "=" not in row:
return d
conditions = row.split(";")
for cond in conditions:
els = cond.split("=")
d[els[0]] = float(els[1])
return d | 7783e5e906eb6f6fd2b0c3e2f2271597b34a822b | 286,866 |
import time
def repeat_execution(fct, every_second=1, stop_after_second=5,
verbose=0, fLOG=None, exc=True):
"""
Runs a function on a regular basis. The function
is not multithreaded, it returns when all execution
are done.
@param fct function to run
@param every_second every second
@param stop_after_second stop after a given time or never if None
@param verbose prints out every execution
@param fLOG logging function
@param exc if False, catch exception,
else does not catch them
@return results of the function if
*stop_after_second* is not None
"""
iter = 0
start = time.monotonic()
end = None if stop_after_second is None else start + stop_after_second
current = start
res = []
while end is None or current < end:
iter += 1
if exc:
r = fct()
if verbose > 0 and fLOG is not None:
fLOG("[repeat_execution] iter={} time={} end={}".format(
iter, current, end))
if stop_after_second is not None:
res.append(r)
else:
try:
r = fct()
if verbose > 0 and fLOG is not None:
fLOG("[repeat_execution] iter={} time={} end={}".format(
iter, current, end))
if stop_after_second is not None:
res.append(r)
except Exception as e:
if verbose > 0 and fLOG is not None:
fLOG("[repeat_execution] iter={} time={} end={} error={}".format(
iter, current, end, str(e)))
while current <= time.monotonic():
current += every_second
while time.monotonic() < current:
time.sleep(every_second / 2)
return res if res else None | 832c95cbb9285a68708dd90e8dbd7b8e7c09a6d1 | 39,418 |
def window_neighborhood(radius=1.0):
"""Window neighborhood kernel function.
Parameters
----------
radius : float (default = 1.0)
radius of the window.
Returns
-------
neighborhood_fun : (d : int) => float in [0,1]
neighborhood function.
"""
def neighborhood_fun(d):
return 1.0 if d <= radius else 0.0
return neighborhood_fun | 7d1c3b3cdf87e75d8304b32fdf3ee2646ffe8f2e | 514,563 |
import math
def long2net(arg):
"""Convert long to netmask"""
if (arg <= 0 or arg >= 0xFFFFFFFF):
raise ValueError("illegal netmask value", hex(arg))
return 32 - int(round(math.log(0xFFFFFFFF - arg, 2))) | 1f17505290c1a48f4cb4b84c39ffedf47614702a | 244,299 |
def mock_get_env_vars(env_vars_exists):
"""Mock the call to os.getenv in get_credentials"""
expecteds = ('partner_id', 'shop_id', 'key', 'sandbox')
credentials = dict().fromkeys(expecteds)
if env_vars_exists:
for expected in expecteds:
credentials.update({expected: 'XXX'})
return credentials | 8cead493f0b26f05fe96511dbf642101393916df | 402,651 |
import re
def normalize_ipv4(ip):
"""
Remove the network mask from the ip address.
e.g. 0.0.0.0/24 -> 0.0.0.0
"""
regex = r'(\d+)[.](\d+)[.](\d+)[.](\d+)[/](\d+)'
if not re.findall(regex, ip):
return ip
p = re.split(regex, ip)
return "%s.%s.%s.%s" % (p[1], p[2], p[3], p[4]) | 97091617bf527b2a125715e04fe47604ad95f4ee | 550,381 |
def get_port_from_usb( first_usb_index, second_usb_index ):
"""
Based on last two USB location index, provide the port number
"""
acroname_port_usb_map = {(4, 4): 0,
(4, 3): 1,
(4, 2): 2,
(4, 1): 3,
(3, 4): 4,
(3, 3): 5,
(3, 2): 6,
(3, 1): 7,
}
return acroname_port_usb_map[(first_usb_index, second_usb_index)] | 37a236ac3a6a16a67f55b123c1c650e8ff0b685c | 125,771 |
def solved(values):
"""Checks if a sudoku puzzle is solved or unsolvable, returns -1 if unsolvable, 1 if solved and 0 if not solved"""
for u in values:
if len(values[u]) < 1:
return -1
elif len(values[u]) > 1:
return 0
return 1 | 9ef2dd1fd07f60e8e36b8bafeb59ff68f8032727 | 536,192 |
def _slugify(text: str) -> str:
"""Turns the given text into a slugified form."""
return text.replace(" ", "-").replace("_", "-") | 78a034e07215e7964ebf1fc66162942d7b4ae85e | 668,870 |
import re
def Language_req(description):
"""Create a function that captures the language requirements from the job description"""
description = description.lower()
matches = re.findall(r"\benglish\sand\sgerman\b|\bgerman\sand\senglish\b\benglisch\sund\sdeutsch\b|\benglish\b|\benglisch\b|\bgerman\b|\bdeutsch\b", description)
for item in matches:
return item | cb6ce14d3cba497f668c701d16c13fdfd78f5dc5 | 8,314 |
def bulk_data(json_string, bulk):
"""
Check if json has bulk data/control messages. The string to check are in
format: ``{key : [strings]}``.
If the key/value is found return True else False
:param dict json_string:
:param dict bulk:
:returns: True if found a control message and False if not.
:rtype: bool
"""
for key, value in bulk.items():
if key in json_string.keys():
for line in value:
if json_string.get(key) == line:
return True
return False | 3b2cf4dde75951b48688bb516475e778eac28ce2 | 540,406 |
def create_perturbable_texels(texels_map, mask_map, initial_value=0., sign_grad=True):
"""
Creates perturbable texels using mask to define perturbable area. Will also initialize
perturbable area to some value. If no mask is specified for texel, we treat the entire
texel as not perturbable. Gradients of these perturbable texels will be masked and
magnitudeless, if sign_grad=True.
Parameters:
texels_map (dict[str -> torch.Tensor[N, C, H, W]]): Dictionaries of texels.
mask_map (dict[str -> torch.Tensor[M, 1, H, W]]): Dictionary of masks.
initial_value (float or torch.Tensor): Initial value to set perturbable area, must be broadcastable to mask.
sign_grad (bool): Whether to remove gradient magnitude for the gradient of perturable texel.
Returns:
dict(str -> torch.Tensor[N, C, H, W]): List of perturbable texels that require gradients.
"""
perturbed_texels_map = {}
for name, texels in texels_map.items():
if name in mask_map:
texels_rgb = texels[:3, :, :]
mask = mask_map[name]
perturbed_texels = texels_rgb*(1 - mask) + initial_value*mask
perturbed_texels.requires_grad_(True)
perturbed_texels.register_hook(lambda grad: grad*mask)
if sign_grad:
perturbed_texels.register_hook(lambda grad: grad.sign())
else:
perturbed_texels = texels
perturbed_texels_map[name] = perturbed_texels
return perturbed_texels_map | 467aca12b8308e362857409e0092a8cbf74b94a2 | 390,590 |
def strMakeComma(categories):
"""
Make comma seperate string i.e: a, b, c
"""
result = ""
for catg in categories:
result += catg["name"] + ", "
if len(result) > 0:
result = result[:len(result) - 2]
return result | fb829e331b494ca373167191f59d787ae1762343 | 496,627 |
import torch
def texture_loss(img_pred, img_gt, mask_gt):
"""
Input:
img_pred, img_gt: B x 3 x H x W
mask_pred, mask_gt: B x H x W
"""
mask_gt = mask_gt.unsqueeze(1)
return torch.nn.L1Loss()(img_pred * mask_gt, img_gt * mask_gt) | 54c9894e63b355829cea374ae96ae959c8612070 | 298,246 |
import re
def get_task_path_and_exc(file_path):
"""Get the task path and exception from the file by using its file path"""
with open(file_path, 'r') as f:
for line in f:
reg = re.search('Task (.*) with id (?:[0-9a-f\-]+) raised '
'exception:', line)
if reg:
task_name = reg.group(1)
return task_name, f.readline().strip() | 30b94c1c0b72055aef83325b2f27f2810586b03e | 619,617 |
import sqlite3
def get_win_rate(num_moves=None, num_trials=None):
"""Get the win rate for a specified configuration of num_moves and num_trials
Args:
num_moves (int, optional): The value for num_moves which printed trials must match. Defaults to None.
num_trials (int, optional): The value for num_trials which printed trials must match. Defaults to None.
Returns:
float: The win rate of all the valid trials
"""
conn = sqlite3.connect("2048_AI_results.db")
cursor = conn.cursor()
if num_moves and num_trials:
cursor.execute("SELECT AVG(did_win) FROM results WHERE num_moves = ? AND num_trials = ?",
(num_moves, num_trials))
else:
cursor.execute("SELECT AVG(did_win) FROM results")
win_rate = round(cursor.fetchone()[0] * 100, 2)
print(f"WIN RATE: {win_rate}%")
conn.close()
return win_rate | 466d2bf1a6c3dd1d737564b0731d3067acdab417 | 125,474 |
def check_incompatible(dict_in, inc_list):
"""
Check any conflicting keys in the dictionary
"""
for incomp in inc_list:
c = 0
for k in dict_in:
if k in incomp:
c += 1
if c > 1:
return incomp
return | 42d596a3dbf69c4d8696eb0ec8ea62a096130c7e | 631,701 |
import math
def PSucLB(sigma,n,d,param):
""" Compute the lower bound given by Theorem 2 in the paper.
param corrersponds to Rmax in the paper.
"""
sigma = sigma**2
return .5 + (d*sigma)/(2*n*param) - math.exp(-param/(2*sigma))*(1+(2*sigma)/param) | d4135229648c11a75b969d3df29baac52536e124 | 150,828 |
def normalize_windows(win_data):
""" Normalize a window
Input: Window Data
Output: Normalized Window
Note: Run from load_data()
Note: Normalization data using n_i = (p_i / p_0) - 1,
denormalization using p_i = p_0(n_i + 1)
"""
norm_data = []
for w in win_data:
norm_win = [((float(p) / float(w[0])) - 1) for p in w]
norm_data.append(norm_win)
return norm_data | 101d142e28a742b7c7814292977eaf3904f8eb91 | 536,392 |
def euclidean_distance_nosqrt(x1, x2):
""" 欧氏距离,不对结果开方
Args:
x1: [B, N] or [N]
x2: same shape as x1
Returns:
[B] vector or scalar
"""
return (x1 - x2).pow(2).sum(-1) | cd9fd3a4e567d7a2923eb4f4f0ef60482be7f2ea | 482,278 |
def fibonacci_loop(n):
"""Calculate the nth Fibonacci number using a loop"""
nn = n - 2 #Already done 1st and second vals
fib = [1, 1]
while nn > 0:
tmp = fib[0]
fib[0] = fib[1]
fib[1] +=tmp
nn -= 1
#If even, return the first val, else, the second
return fib[n%2] | 5356a1a904cc45621a8165065d4733a7961fb518 | 71,795 |
def split(walker, number=2):
"""Split (AKA make multiple clones) of a single walker.
Creates multiple new walkers that have the same state as the given
walker with weight evenly divided between them.
Parameters
----------
walker : object implementing the Walker interface
The walker to split/clone
number : int
The number of clones to make of the walker
(Default value = 2)
Returns
-------
cloned_walkers : list of objects implementing the Walker interface
"""
# calculate the weight of all child walkers split uniformly
split_prob = walker.weight / (number)
# make the clones
clones = []
for i in range(number):
clones.append(type(walker)(walker.state, split_prob))
return clones | 2b6941dd5976b31733bbd93cc60243635f639bce | 558,927 |
def get_layer(model, name):
""" Gets a layer from a model.
# Arguments:
model: A keras model
name: A string, name of a layer in the model
# Returns:
A keras layer
"""
assert name in model.layers
for l in model.layers:
if l.name == name:
return l | b8054684d1822f2186ab5ea612ec0c4a44ffa6e1 | 393,483 |
def constructor_is_method_name(constructor: str) -> bool:
"""Decides wheter given constructor is a method name.
Cipher is not a method name
Cipher.getInstance is a method name
getS is a method name
"""
found_index = constructor.find(".")
method_start_i = found_index + 1
return len(constructor) > method_start_i and constructor[method_start_i].islower() | ee410e1c8df218235fe60ba028dd61bb93cda67b | 110,019 |
def onedim_conversion(length_or_speed: float, mm_per_pixel: float):
"""
:param length_or_speed: in [px] or [px/s]
:param mm_per_pixel: in [mm/px]
:return: length i [mm] or speed in [mm/s]
"""
return length_or_speed * mm_per_pixel | 0eb707b0946fb917a7f93df62819a15b28135170 | 634,235 |
def split_paragraphs(string):
"""
Split `string` into a list of paragraphs.
A paragraph is delimited by empty lines, or lines containing only
whitespace characters.
"""
para_list = []
curr_para = []
for line in string.splitlines(keepends=True):
if line.strip():
curr_para.append(line)
else:
para_list.append(''.join(curr_para))
curr_para = []
if curr_para:
para_list.append(''.join(curr_para))
return para_list | 4e321d263beecf37efe1da34c503da314a97b894 | 113,500 |
import string
def shift_letter(letter: str, amount: int) -> str:
"""Shift a letter forward in the alphabet by a certain amount."""
sv_alfabet = string.ascii_lowercase + "åäö"
new_position = (amount + sv_alfabet.index(letter)) % len(sv_alfabet)
return sv_alfabet[new_position] | f91213198b6bac7dd78ade0340bbb201ea2a5c6d | 379,223 |
def unknown_char(char_name, id_ep):
"""Transforms character name into unknown version."""
if "#unknown#" in char_name:#trick when re-processing already processed files
return char_name
return f"{char_name}#unknown#{id_ep}" | 061683efd275335e58129225fe4bc9dabc044c9b | 694,707 |
def weighted_sum(pdf, col_name):
"""
Return weighted sum of Pandas DataFrame col_name items.
"""
return (pdf[col_name] * pdf['s006']).sum() | e9954ca2ee7e09f58abbf2420da9824a2e079d3a | 603,321 |
def event_url(event):
"""
Returns the URL for a Pyvo event.
"""
return "https://pyvo.cz/{event.series.slug}/{event.slug}/".format(event=event) | 91ed2424748f16aedda40c11a5f6e24eabef71f5 | 386,553 |
def format_counts(counts):
"""Formats the contents of the counts dictionary into a string suitable
for output.
Args:
counts - dictionary containing the attendance statistics
Returns:
string containing the counts formatted for output
"""
fstr = ("Attendance Figures:\n"
" Registrations: {0}\n"
" Total Attendees: {1}\n"
" Registered No Shows: {2}\n"
" Non-registered Attendees: {3}\n")
return fstr.format(counts['registrants']
,counts['attendees']
,counts['reg_no_attend']
,counts['attend_no_reg']) | 9161a38ea65ddf99a4141b6528342ffd9b1cb67b | 99,572 |
def list_of_first_n(v, n):
"""Given an iterator v, return first n elements it produces as a list."""
if not hasattr(v, 'next'):
v = v.__iter__()
w = []
while n > 0:
try:
w.append(v.next())
except StopIteration:
return w
n -= 1
return w | ac98423187b1a45f5c1e5e47b215245ecb30ef6c | 612,768 |
from typing import Dict
def wrap_single_element_in_list(data: Dict, many_element: str):
"""Make a specified field a list if it isn't already a list."""
if not isinstance(data[many_element], list):
data[many_element] = [data[many_element]]
return data | 1c1c2b1ff5e65af37f86c7ee1d4dd7a38ab0faf4 | 122,928 |
def sum_word(word: str) -> str:
"""Sum the ordinal values of a word."""
return str(sum([ord(char) for char in word if char.isalnum()])) | c3ac1c488fb6f1e09a2e5cae8f60d9677bdbadce | 198,701 |
def findpeptide(pep, seq, returnEnd = False):
"""Find pep in seq ignoring gaps but returning a start position that counts gaps
pep must match seq exactly (otherwise you should be using pairwise alignment)
Parameters
----------
pep : str
Peptide to be found in seq.
seq : str
Sequence to be searched.
returnEnd : bool
Flag to return the end position such that:
seq[startPos:endPos] = pep
Returns
-------
startPos : int
Start position (zero-indexed) of pep in seq or -1 if not found"""
ng = seq.replace('-', '')
ngInd = ng.find(pep)
ngCount = 0
pos = 0
"""Count the number of gaps prior to the non-gapped position. Add them to it to get the gapped position"""
while ngCount < ngInd or seq[pos] == '-':
if not seq[pos] == '-':
ngCount += 1
pos += 1
startPos = ngInd + (pos - ngCount)
if returnEnd:
if startPos == -1:
endPos = -1
else:
count = 0
endPos = startPos
while count < len(pep):
if not seq[endPos] == '-':
count += 1
endPos += 1
return startPos, endPos
else:
return startPos | 3af5afa60fd29f28fd5d3d7ebfbd727c60db3948 | 680,968 |
def find (possible):
"""Returns `(key, index)` such that `possible[key] = [ index ]`."""
for name, values in possible.items():
if len(values) == 1:
return name, values[0] | 6fb98eb6baf4756210f0e8fa38783a3498cf3093 | 663,651 |
def is_valid_color(color, threshold):
""" Return True if each component of the given color (r, g, b, a) is
above threshold
"""
if color[0] > threshold and color[1] > threshold and color[2] > threshold:
return True
return False | 3391779e0977225f7340f50a823610b4dd22876b | 49,158 |
def _translate(num_time):
"""Translate number time to str time"""
minutes, remain_time = num_time // 60, num_time % 60
str_minute, str_second = map(str, (round(minutes), round(remain_time, 2)))
str_second = (str_second.split('.')[0].rjust(2, '0'), str_second.split('.')[1].ljust(2, '0'))
str_time = str_minute.rjust(2, '0') + f':{str_second[0]}.{str_second[1]}'
return str_time | af49424d3b9c6dfb660955b604c33e9a31e1c3de | 31,992 |
def trim_bst(root, min, max):
"""Select a range from a binary search tree between ``min`` and ``max``.
Arguments:
root (binary search tree):
The root of a binary search tree. A binary tree is either a 3-tuple
``(data, left, right)`` where ``data`` is the value of the root node
and ``left`` and ``right`` are the left and right subtrees or
``None`` for the empty tree. A binary search tree is a binary tree
whose in-order traversal is sorted.
min:
The minimum value of the trim.
max:
The maximum value of the trim.
Returns:
new_root (binary search tree):
A new binary search tree that is like the input, but only contains
nodes with values between ``min`` and ``max``, inclusive.
"""
if root is None:
return None
(data, left, right) = root
if data < min:
return trim_bst(right, min, max)
elif max < data:
return trim_bst(left, min, max)
else:
new_left = trim_bst(left, min, max)
new_right = trim_bst(right, min, max)
return (data, new_left, new_right) | 47e65cd44cd22ea70214ec5036fc066aa225b074 | 301,800 |
from typing import List
def cast_trailing_nulls(series: List) -> List:
"""
Cast trailing None's in a list series to 0's
"""
for i, x in reversed(list(enumerate(series))):
if x is None:
series[i] = 0
else:
return series
return series | 3a7f7d53dcb7ed9b892b9b423c3650a339af26e2 | 627,957 |
def delete_default_service_account(context, api_names_list):
""" Delete the default service account. """
resource = [
{
'name': '{}-delete-default-sa'.format(context.env['name']),
# https://cloud.google.com/iam/reference/rest/v1/projects.serviceAccounts/delete
'action': 'gcp-types/iam-v1:iam.projects.serviceAccounts.delete',
'metadata':
{
'dependsOn': api_names_list,
'runtimePolicy': ['CREATE']
},
'properties':
{
'name':
'projects/$(ref.{}-project.projectId)/serviceAccounts/$(ref.{}-project.projectNumber)-compute@developer.gserviceaccount.com'.format(context.env['name'], context.env['name']) # pylint: disable=line-too-long
}
}
]
return resource | fcc76629f92cd860dc42d01acb1ca99423c17c95 | 324,362 |
def parse_timedelta_from_api(data_dict, key_root):
"""Returns a dict with the appropriate key for filling a two-part timedelta
field where the fields are named <key_root>_number and <key_root>_units.
Parameters
----------
data_dict: dict
API json response containing a key matching the key_root argument.
key_root: str
The prefix used to identify the timedelta `<input>` elements. This
should match the metadata dictionaries key for accessing the value.
Returns
-------
dict
dict with keys <key_root>_number and <key_root>_units set to the
appropriate values.
Raises
------
TypeError
If the interval length key is set to a non-numeric value or does not
exist.
"""
interval_minutes = data_dict.get(key_root)
# set minutes as default interval_units, as these are returned by the API
interval_units = 'minutes'
if interval_minutes % 1440 == 0:
interval_units = 'days'
interval_value = int(interval_minutes / 1440)
elif interval_minutes % 60 == 0:
interval_units = 'hours'
interval_value = int(interval_minutes / 60)
else:
interval_value = int(interval_minutes)
return {
f'{key_root}_number': interval_value,
f'{key_root}_units': interval_units,
} | 467130e50d3d5d0a224eed83822d352713ef11c2 | 623,095 |
def check_point(point):
"""Validates a 2-d point with an intensity.
Parameters
----------
point : array_like
(x, y, [intensity])
Coordinates of the point to add. If optional `intensity` is not
supplied, it will be set to `None`.
Returns
-------
point : :obj:tuple of :obj:float
The same point converted to floats, assuming no errors were raised.
"""
if len(point) != 2:
intensity = point[-1]
point = point[:-1]
else:
intensity = None
if len(point) != 2:
raise ValueError("Coordinates must be two-dimensional.")
try:
point = tuple([float(p) for p in point]) # Convert everything to floats.
except ValueError:
raise ValueError("Coordinates must be convertible to floats.")
return point + tuple((intensity,)) | c2e56e2fa3fd0750570eb46b24dffbd1c30f9a6b | 264,313 |
from typing import List
import html
import re
def get_links(text: str) -> List[str]:
"""Extract all the links in the given text string
Args:
text (str): The text provided
Returns:
List[str]: List of http links
"""
return [
html.unescape("".join(item).strip("."))
for item in re.findall(r'(http|https)(:\/\/)([^ \'"\s]*)', text)
] | 7cfb541ff2e702b6999f034ef8fb51a4ed6b38f7 | 390,138 |
def parse_punishment(argument):
"""Converts a punishment name to its code"""
punishments = {
"none": 0,
"note": 1,
"warn": 1,
"mute": 2,
"kick": 3,
"ban": 4
}
return punishments[argument.lower()] | 9ca9ad052c5636dd58f1b375296137de8b55712b | 700,136 |
import re
def parse_str(num):
"""
Parse a string that is expected to contain a number.
:param num: str. the number in string.
:return: float or int. Parsed num.
"""
if not isinstance(num, str): # optional - check type
raise TypeError('num should be a str. Got {}.'.format(type(num)))
if re.compile('^\s*\d+\s*$').search(num):
return int(num)
if re.compile('^\s*(\d*\.\d+)|(\d+\.\d*)\s*$').search(num):
return float(num)
raise ValueError('num is not a number. Got {}.'.format(num)) | 42b46e054c24d946536e99e427052e1777f5561e | 294,652 |
def _calculate_configuration(*, bin_dir_path):
"""Calculates a configuration string from `ctx.bin_dir`.
Args:
bin_dir_path: `ctx.bin_dir.path`.
Returns:
A string that represents a configuration.
"""
path_components = bin_dir_path.split("/")
if len(path_components) > 2:
return path_components[1]
return "" | b10ee4abc083a0199302379229796d5c7be3eb6a | 340,585 |
def ask(message):
"""Ask user a question"""
if not message.endswith('?'):
message += ' ?'
message += ' Y/N: '
while True:
inp = input(message).lower()
if inp == 'y':
return True
elif inp == 'n' or inp == '':
return False
else:
print('Invalid character.') | cf79e5a0ccdddd26fd6a52ab2e5c016ed6b69208 | 328,092 |
def swegen_link(variant_obj):
"""Compose link to SweGen Variant Frequency Database."""
url_template = (
"https://swegen-exac.nbis.se/variant/{this[chromosome]}-"
"{this[position]}-{this[reference]}-{this[alternative]}"
)
return url_template.format(this=variant_obj) | d55d177290297306b8367fff386984c4f8ab1bf6 | 205,910 |
import re
def xxd_output_to_bytes(input_cc_file):
"""Converts xxd output C++ source file to bytes (immutable)
Args:
input_cc_file: Full path name to th C++ source file dumped by xxd
Raises:
RuntimeError: If input_cc_file path is invalid.
IOError: If input_cc_file cannot be opened.
Returns:
A bytearray corresponding to the input cc file array.
"""
# Match hex values in the string with comma as separator
pattern = re.compile(r'\W*(0x[0-9a-fA-F,x ]+).*')
model_bytearray = bytearray()
with open(input_cc_file) as file_handle:
for line in file_handle:
values_match = pattern.match(line)
if values_match is None:
continue
# Match in the parentheses (hex array only)
list_text = values_match.group(1)
# Extract hex values (text) from the line
# e.g. 0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c,
values_text = filter(None, list_text.split(','))
# Convert to hex
values = [int(x, base=16) for x in values_text]
model_bytearray.extend(values)
return bytes(model_bytearray) | 644f8e92b1318e38ff4ee7415585ee21588eb9a3 | 375,028 |
def camel_to_snake_case(value: str) -> str:
"""Converts strings in camelCase to snake_case.
:param str value: camalCase value.
:return: snake_case value.
:rtype: str
"""
return "".join(["_" + char.lower() if char.isupper() else char for char in value]).lstrip("_") | 200892fb89e4b4e54ba47afb52d119021dad139a | 314,667 |
def factorial(number):
"""
This recursive function calculates the factorial of a number
In math, the factorial function is
represented by (!) exclamation mark.
Example:
3! = 3 * 2 * 1
= (6) * 1
3! = 6
"""
if not isinstance(number, int):
raise Exception("Enter an integer number to find the factorial")
if number == 1 or number == 0:
return 1
else:
return number * factorial(number - 1) | 797d4e79c132ad9a4644da4504326ebd49479acb | 206,486 |
def get_email(obj):
""" Returns the email address for a user """
return obj.user.email | 30b4ec834e46b31384d79b448fc96417d29fe10d | 545,068 |
def reduce_score_to_chords(score):
"""
Reforms score into a chord-duration list:
[[chord_notes], duration_of_chord]
and returns it
"""
new_score = []
new_chord = [[], 0]
# [ [chord notes], duration of chord ]
for event in score:
new_chord[0].append(event[1]) # Append new note to the chord
if event[0] == 0:
continue # Add new notes to the chord until non-zero duration is hit
new_chord[1] = event[0] # This is the duration of chord
new_score.append(new_chord) # Append chord to the list
new_chord = [[], 0] # Reset the chord
return new_score | cbc363b4f7318bf1cf7823281ace8da61fac2195 | 676,537 |
def fscr_score(ftr_t_1, ftr_t, n):
"""Feature Selection Change Rate
The percentage of selected features that changed with respect to the previous time window
:param ftr_t_1: selected features in t-1
:param ftr_t: selected features in t (current time window)
:param n: number of selected features
:return: fscr
:rtype: float
"""
c = len(set(ftr_t_1).difference(set(ftr_t)))
fscr = c/n
return fscr | f7598633d4082a416d4a9676292b7f26d2f36ea9 | 66,976 |
import json
import yaml
def loadModel(catalog_path, schema_path):
"""Loads the dbt catalog and schema. The schema selected is the one that will be used to generate the ERD diagram.
Args:
catalog_path (Path): Path to dbt catalog
schema_path (Path): Path to dbt schema
Returns:
dict, dict: Return schema and catalog dicts.
"""
with open(catalog_path) as f:
catalog = json.load(f)
with open(schema_path, 'r') as f:
schema = yaml.safe_load(f)
return catalog, schema | 00e9f60d47ef7846673121eeaea02fa6f2f9625a | 164,915 |