content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def process_data(data_json, key1, renamed1, key2, renamed2, key3, renamed3,
key4, renamed4, key5, renamed5, key6="", renamed6=""):
"""Converts our list of dictionaries to a dictionary of lists,
while processing some of the data points (e.g. converting number strings
to ints and float, as well as lowercasing strings). Also uses renamed keys
instead of the very long default ones.
"""
val1 = []
val2 = []
val3 = []
val4 = []
val5 = []
val6 = []
for d in data_json:
val1.append(d[key1])
val2.append(float(d[key2]))
val3.append(int(d[key3]))
val4.append(d[key4].lower())
val5.append(d[key5].lower())
if key6 is not "":
val6.append(str(d[key6]) == "true" or str(d[key6]) == "True")
return {renamed1: val1,
renamed2: val2,
renamed3: val3,
renamed4: val4,
renamed5: val5,
renamed6: val6} | 120b13b0d4851ba8c351e7654372f068ed241590 | 236,517 |
def get_run_info_nextseq500( instrument_model, application_version, tree ):
"""
Helper function to get some info about the sequencing runs.
Args:
tree: xml tree
Returns:
dict: basic statistics about run, like date, instrument, number of lanes, flowcell ID, read lengths, etc.
"""
run_stats = {}
setup_node = tree.getroot().find("Setup")
if setup_node is None:
setup_node = tree.getroot()
# Get required tree nodes.
flowcell_node = tree.getroot().find("FlowCellRfidTag")
# Now actually populate various stats
run_stats['flow_cell_id'] = flowcell_node.find('SerialNumber').text
run_stats['date'] = tree.getroot().find('RunStartDate').text
run_stats['instrument'] = tree.getroot().find('InstrumentID').text
run_stats['lanes'] = int(setup_node.find('NumLanes').text)
run_stats['run_id'] = tree.getroot().find('RunID').text
run_stats['r1_length'] = int(setup_node.find('Read1').text)
run_stats['p7_index_length'] = int(setup_node.find('Index1Read').text)
if( setup_node.find('Read1') != None ):
run_stats['r2_length'] = int(setup_node.find('Read2').text)
run_stats['p5_index_length'] = int(setup_node.find('Index2Read').text)
run_stats['paired_end'] = True
else:
run_stats['paired_end'] = False
run_stats['instrument_type'] = instrument_model
run_stats['reverse_complement_i5'] = True
return run_stats | e2ff69ef20282692c43cc08047c971e1a0106b98 | 640,845 |
def asfrozenset(term):
"""Convert to frozenset if it is not already"""
return term if isinstance(term, frozenset) else frozenset(term) | 7f5e946ad245d64bb8979de078bf000df06171ae | 470,526 |
def livetime(match, hits):
"""Calculate the livetime represented by a set of simulation data.
Required argument for MongoSimsDB.
Note that `match.emissionrate` can be given a weight when registered by
`query`, so don't apply any weight here
Args:
match (SimDataMatch): info requested from model and DB response
hits (list): List of all documents retrieved from the DB. These may
be partial docs containing only livetime-relevant info
Returns:
livetime (float): the total summed livetime represented by the hits
"""
nprimaries = sum(doc['nprimaries'] for doc in hits)
#this function shouldn't be called if emissionrate==0, but it might
return nprimaries / match.emissionrate | a608d4671d6ff1e9b0c9ccd1a8cf465f98852c20 | 566,237 |
def translate_error(error, translation_list, format_str=None):
"""Translates error or returns original error if no matches.
Note, an error will be translated if it is a child class of a value in
translation_list. Also, translations earlier in the list take priority.
Args:
error (Exception): Error to translate.
translation_list (list): List of (Exception, Exception) tuples. Translates
errors that are instances of first error type to second. If there is a
hierarchy, error types earlier in list are translated first.
format_str (str|None): An api_lib.util.exceptions.FormattableErrorPayload
format string. Note that any properties that are accessed here are on the
FormattableErrorPayload object, not the object returned from the server.
Returns:
Error (Exception). Translated if match. Else, original error.
"""
for untranslated_error, translated_error in translation_list:
if isinstance(error, untranslated_error):
return translated_error(error, format_str)
return error | 9e717ac8978f11d120fd78aaff86dfc84bb1f56f | 118,558 |
def get_blue_green_from_app(app):
"""
Returns the blue_green object if exists and it's color field if exists
>>> get_blue_green_from_app({})
(None, None)
>>> get_blue_green_from_app({'blue_green': None})
(None, None)
>>> get_blue_green_from_app({'blue_green': {}})
(None, None)
>>> get_blue_green_from_app({'blue_green': {'color': None}})
({'color': None}, None)
>>> get_blue_green_from_app({'blue_green': {'color': ''}})
({'color': ''}, '')
>>> get_blue_green_from_app({'blue_green': {'color': 'blue'}})
({'color': 'blue'}, 'blue')
>>> get_blue_green_from_app({'blue_green': {'color': 'green'}})
({'color': 'green'}, 'green')
"""
if app.get('blue_green'):
return app['blue_green'], app['blue_green'].get('color', None)
return None, None | c24c297f300fd4978aa1fd28245d835ef01ff387 | 683,763 |
def generate_label_asm(label, address):
"""
Return label definition text at a given address.
Format: '{label}: ; {address}'
"""
label_text = '%s: ; %x' % (label, address)
return (address, label_text, address) | 249653b5a37f83601c49c8876ea10027d3118aa1 | 463,551 |
import re
def has_numbers(string):
"""
Check if user's message has a number
:param string: User's message
:return: True/False (boolean)
"""
return bool(re.search(r'\d', string)) | 3ee518d8278513214334709839a106b958ff6797 | 167,208 |
def get_domain(entity_id):
"""Get domain portion of entity id."""
return entity_id.split('.')[0] | 8f94dc85cc6379dd2cd6807d6382d39551549207 | 415,095 |
def nearest_neighbor_interpolation(points):
"""
Input: list of points (x, y).
Returns a function f(x) which returns y value of nearest neighbor for given
x. At the midpoints (when distances to 2 closest points are the same) value
of point with lower x value is returned.
"""
points.sort(key=lambda x: x[0])
def f(x):
if x < points[0][0]:
return points[0][1]
for i in range(1, len(points)):
if points[i][0] < x:
continue
if abs(points[i][0] - x) < abs(points[i-1][0] - x):
return points[i][1]
return points[i-1][1]
return points[-1][1]
return f | 992e385d91a722989aef6c8f962863ddc46d6d25 | 646,768 |
def safe_union_two_by_name(df1, df2):
"""Combine common fields from two dataframes rowwise.
Note we do not use the ``pyspark.sql.DataFrame.unionByName``
function here because we explicitly reorder columns to the
order of ``take``.
Parameters
----------
df1 : pyspark.sql.DataFrame
first dataframe to combine
df2 : pyspark.sql.DataFrame
second dataframe to combine
Returns
-------
out : pyspark.sql.DataFrame
"""
take = [c for c in df1.columns if c in df2.columns]
df1 = df1.select(take)
df2 = df2.select(take)
out = df1.union(df2)
return out | 82a341c995c9158010d1576b2e2c4c6faadfe606 | 665,324 |
import re
def lowercase(s, _sub=re.compile('[A-Z]').sub,
_repl=(lambda m: '.' + m.group(0).lower()), _cache={}):
"""Convert to lowercase with dots.
>>> lowercase('ResCompany')
'res.company'
"""
try:
return _cache[s]
except KeyError:
_cache[s] = s = _sub(_repl, s).lstrip('.')
return s | 9a3c5f5ce49f95fa131313a2e4d06ba7e38105ad | 433,545 |
def fill_big_gaps(array, gap_size):
"""
Insert values into the given sorted list if there is a gap of more than ``gap_size``.
All values in the given array are preserved, even if they are within the ``gap_size`` of one another.
>>> fill_big_gaps([1, 2, 4], gap_size=0.75)
[1, 1.75, 2, 2.75, 3.5, 4]
"""
result = []
if len(array) == 0:
raise ValueError("Input array must be len > 0")
last_value = array[0]
for value in array:
while value - last_value > gap_size + 1e-15:
last_value = last_value + gap_size
result.append(last_value)
result.append(value)
last_value = value
return result | 11ecb164b9e54c75db249ca27cbbdd582ed47945 | 696,201 |
def has_afg_license(instr):
"""Returns True if the first license includes an AFG license"""
return "AFG" in instr.query("LIC:ITEM? 0").strip().split('"')[3].split(",") | 0b9b2d65b7f910d3a4e412f67c76c5333d4f7d7b | 50,403 |
def limit(self, start_or_stop=None, stop=None, step=None):
"""
Create a new table with fewer rows.
See also: Python's builtin :func:`slice`.
:param start_or_stop:
If the only argument, then how many rows to include, otherwise,
the index of the first row to include.
:param stop:
The index of the last row to include.
:param step:
The size of the jump between rows to include. (`step=2` will return
every other row.)
:returns:
A new :class:`.Table`.
"""
if stop or step:
s = slice(start_or_stop, stop, step)
else:
s = slice(start_or_stop)
rows = self._rows[s]
if self._row_names is not None:
row_names = self._row_names[s]
else:
row_names = None
return self._fork(rows, row_names=row_names) | b101ed9eba1b5771b7acbd555ae41c4365cea1d3 | 18,471 |
from typing import Union
from typing import Any
def lastindexof(x: Union[str, list], value: Any) -> int:
"""
For string input, returns the last index of substring in the input string.
For array input, returns the last index of value in the input array.
"""
if isinstance(x, str):
return x.rfind(str(value))
else:
x = list(x)
try:
return len(x) - 1 - x[::-1].index(value)
except ValueError:
return -1 | 0b8b4e1f4f7a795dff9b07db98afe721d049f298 | 447,790 |
import re
def parse_config_mirror_session_no_destination_interface(raw_result):
"""
Parse the 'no destination interface' command raw output.
:param str raw_result: vtysh raw result string.
:rtype: str
:return: the raw string, no parsing
"""
show_re = (
r'Destination interface removed, mirror session \S+ shutdown'
)
re_result = re.match(show_re, raw_result)
assert re_result
return raw_result | 6c900b36a3ac054ed4f265e4985af84e7fe5c6e1 | 255,661 |
import math
def extract_blob(blob, image):
""" Extract the pixels that make up the blob's neighbourhood
:param blob: the blob to extract
:param image: the image to extract the blob from
:returns: extracted square neighbourhood
"""
y, x, r = blob
hs, he = y - math.floor(r), y + math.floor(r)
ws, we = x - math.floor(r), x + math.floor(r)
image_section = image[hs:he, ws:we]
return image_section | 6de6b8a959c81e56dc2bbf7d70460f0852a1622d | 329,155 |
def opinion(simulation):
""" Returns the opinion vector of a simulation. """
return simulation.S | 9bc3e155427bff98a2fb2f8082b7c6540099f6cf | 166,483 |
def create_property_array(df_column, property_mapping, current_value):
"""
Create a query JSON 'properties' array
Creates the properties array necessary for when the property_mapping is defined.
Args:
df_column (Series): A pandas Series to reconcile.
property_mapping (dict): The property-column mapping dictionary.
current_value (str): Current iteration through the input_keys
Returns:
list: A list of dictionaries corresponding to the properties.
"""
prop_mapping_list = []
for key, value in property_mapping.items():
prop_value = (
value.loc[df_column == current_value].to_string(index=False).strip()
)
prop_mapping_list.append({"pid": key, "v": prop_value})
return prop_mapping_list | 2acb56529b5de6d066be406b99958fcd515d9150 | 259,637 |
from typing import Tuple
def parse_chunk(chunk: str) -> Tuple[str, int]:
"""Parse a chunk for rule name and error count.
:param chunk: The chunk of logs to process.
:returns: The rule name and count of errors found.
:raises ValueError: if a rule was not found.
"""
lines = chunk.splitlines()
if not chunk.startswith("Rule"):
raise ValueError('Chunk must start with "Rule"')
chunk_name = lines.pop(0)
count = 0
for line in lines:
if line.startswith("ERROR:"):
count += 1
return chunk_name, count | c37668effa08117a0a0239eff5af335f5319776c | 301,655 |
from datetime import datetime
def alexa_datetime(date, time):
"""Return Alexa date and time strings as a datetime object."""
return datetime.strptime(date + " " + time, "%Y-%m-%d %H:%M") | 92a8cdc51f2058f1656cbae040f5401b049f8490 | 172,397 |
def nest_dict(flat_dict, sep='-'):
"""Return nested dict by splitting the keys on a delimiter.
Flask-wtf returns embedded document fields as a flattened dict, with
embedded document names embedded in the key. Any keys with empty values
will be removed.
For example, a document User may have an embedded document Comment.
Flask-wtf will return this in a form as "user-comment". This function
returns a nested dictionary like d["user"]["comment"].
Args:
flat_dict (dict): Flattened dict of embedded document fields.
sep (str): Seperator between nested keys.
Returns:
dict: Nested dictionary which better represents the embedded documents.
"""
# Start a new dict to hold top level keys and take values for these top level keys
new_dict = {}
hyphen_dict = {}
eds = set()
for k, v in flat_dict.items():
if not v:
pass
elif '-' not in k:
new_dict[k] = v
else:
hyphen_dict[k] = v
eds.add(k.split(sep)[0])
# Create a new nested dict for each embedded document
# And add these dicts to the correct top level key
ed_dict = {}
for ed in eds:
ed_dict = {}
for k, v in hyphen_dict.items():
if ed == k.split(sep)[0]:
ed_dict[k.split(sep)[1]] = v
new_dict[ed] = ed_dict
return new_dict | e8a9a38c06db49e50c1b0a1f0a5216c46bf0df9c | 393,010 |
def is_white_key(note):
"""True if note is represented by a white key"""
key_pattern = [
True,
False,
True,
True,
False,
True,
False,
True,
True,
False,
True,
False,
]
return key_pattern[(note - 21) % len(key_pattern)] | 515ba17c6f6234802c6ccb162e362d00dde62557 | 136,135 |
def get_item_properties(item, fields):
"""Return a tuple containing the item properties.
:param item: a single item resource (e.g. Server, Project, etc)
:param fields: tuple of strings with the desired field names
"""
return tuple([item.get(field, '') for field in fields]) | 23b24f51c5bcc0d5d26d497c967fd4c02c6aa7c1 | 91,054 |
def getByName(list, name):
"""
Return element by a given name.
"""
if list is None or name is None:
return None
for element in list:
if element.get('name') is None:
continue
if element['name'] == name:
return element
return None | 5dae082da8e6620b6ab44eed58f0fb012dce84eb | 101,844 |
def listminus(c1, c2):
"""Return a list of all elements of C1 that are not in C2, but in order."""
s2 = set(c2)
return [entry for entry in c1 if entry not in s2] | fce854870dfee595c89b576d3f6ab8957205d974 | 484,002 |
def duration(duration):
"""Filter that converts a duration in seconds to something like 01:54:01
"""
if duration is None:
return ''
duration = int(duration)
seconds = duration % 60
minutes = (duration // 60) % 60
hours = (duration // 60) // 60
s = '%02d' % (seconds)
m = '%02d' % (minutes)
h = '%02d' % (hours)
output = []
if hours > 0:
output.append(h)
output.append(m)
output.append(s)
return ':'.join(output) | 7cd89654a84c2e3e41d96cb1b13688833ee54387 | 10,122 |
def open_file(filename, mode='r'):
"""
常用文件操作,可在python2和python3间切换.
mode: 'r' or 'w' for read or write
"""
return open(filename, mode, encoding='utf-8', errors='ignore') | 100179e22f140c4e8d25a1ccab94f9ca3831b5f3 | 691,138 |
def passwordExists(user):
"""Checks if the user has created a password for himself, passwords created by PSA are unusable"""
return user.has_usable_password() | 2b6dfbe31f3e9073ced5ebb634537cd101aaa37d | 220,372 |
import torch
def _float_from_bool(a):
"""
Since pytorch only supports matrix multiplication on float,
IoU computations are done using floating point types.
This function binarizes the input (positive to True and
nonpositive to False), and converts from bool to float.
If the data is already a floating-point type, it leaves
it keeps the same type; otherwise it uses float.
"""
if a.dtype == torch.bool:
return a.float()
if a.dtype.is_floating_point:
return a.sign().clamp_(0)
return (a > 0).float() | 3a16532903a44976a9dc036615c4887268096206 | 114,454 |
import math
def convert_state_to_hex(state: str) -> str:
"""
This assumes that state only has "x"s and Us or Ls or Fs or Rs or Bs or Ds
>>> convert_state_to_hex("xxxU")
'1'
>>> convert_state_to_hex("UxUx")
'a'
>>> convert_state_to_hex("UUxUx")
'1a'
"""
state = (
state.replace("x", "0")
.replace("-", "0")
.replace("U", "1")
.replace("L", "1")
.replace("F", "1")
.replace("R", "1")
.replace("B", "1")
.replace("D", "1")
)
hex_width = int(math.ceil(len(state) / 4.0))
hex_state = hex(int(state, 2))[2:]
if hex_state.endswith("L"):
hex_state = hex_state[:-1]
return hex_state.zfill(hex_width) | d722e07ab69c6b46f834eca04c7a8ba75520b145 | 679,457 |
def extract_dims(array, ndim=1):
"""Decrease the dimensionality of ``array`` by extracting ``ndim`` leading singleton dimensions."""
for _ in range(ndim):
assert len(array) == 1, len(array)
array = array[0]
return array | e51661bdce5029ecc58db892b761820c5f6de7e8 | 614,364 |
def _is_optional_field(field) -> bool:
"""Check if the input field is optional.
Args:
field (Field): input Field to check.
Returns:
bool: True if the input field is optional.
"""
# return isinstance(field.type, _GenericAlias) and type(None) in getattr(field.type, "__args__")
return type(None) in getattr(field.type, "__args__") | a0e93747ab0044c5a8456f33e4a223bb2454dc3b | 427,441 |
def real(x):
"""
Takes the real part of a 4D tensor x, where the last axis is interpreted
as the real and imaginary parts.
Parameters
----------
x : tensor_like
Returns
-------
x[..., 0], which is interpreted as the real part of x
"""
return x[..., 0] | 364b4e3ab1f02dd92a5140244e6db5f3a4d80d64 | 363,919 |
def indent(t, indent=0, sep='\n'):
# type: (str, int, str) -> str
"""Indent text."""
return sep.join(' ' * indent + p for p in t.split(sep)) | 95263f43173a6ebc1cc1270f7ac7606484f99fd8 | 546,802 |
import random
def population(distribution, count=2048):
"""
Creates a list of numerical values (no uncertainty) of the specified
length that are representative of the distribution for use in less robust
statistical operations.
:param distribution:
The distribution instance on which to create a population
:param count: The number of numerical values to include in the returned
population list.
:type: int
:return: A list of numerical values that approximate the the measurement
probability distributions distribution
:rtype: list
"""
out = []
x_min = distribution.minimum_boundary(10)
x_max = distribution.maximum_boundary(10)
x = x_min
delta = (x_max - x_min) / 512.0
total = float(len(distribution.measurements))
while x <= x_max:
n = int(round(count * delta * distribution.probability_at(x)))
for i in range(n):
out.append(random.uniform(
x - 0.5 * delta,
x + 0.5 * delta
))
if x == x_max:
break
x = min(x_max, x + delta)
return out | 70d74463b13fb4b9c5eaee03ac3010e5744972a4 | 278,729 |
from typing import Dict
def universal_detection_loss_weights(
loss_segmentation_word: float = 1e0,
loss_inst_dist: float = 1e0,
loss_mask_id: float = 1e-4,
loss_pq: float = 3e0,
loss_para: float = 1e0) -> Dict[str, float]:
"""A function that returns a dict for the weights of loss terms."""
return {
"loss_segmentation_word": loss_segmentation_word,
"loss_inst_dist": loss_inst_dist,
"loss_mask_id": loss_mask_id,
"loss_pq": loss_pq,
"loss_para": loss_para,
} | 89996ea9be93748608ef84e5715b32d90c243d65 | 70,627 |
def averages_video_udea(dates, dlist, axes, names=['Exp1', 'Exp2'],
colors=['black', 'DodgerBlue'], xticks=None,
xlim=None, ylim=[-3, 3], title='',
xlabel=r'Year', ylabel=''):
"""Plot area average time series of variable for UdeA video.
In the video there will be axes with time series of some variable
for two different data sets averaged spatially. This function will
take care of it.
Parameters
----------
dates: pandas.DatetimeIndex
These are the x axis values. Matplotlib will interpret them as
dates and format them as such.
dlist: list of numpy.ndarrays
Only two arrays are supported. These should be time series of
area averages for some variable.
axes: matplotlib.axes.Axes
Generally created using `figure.add_subplot()`. Since this
plot is to be appended to a larger picture, the axes must be
created outside this function and used as input.
names: list of str, optional
Names to be shown in the legend. They must have the same order
as the data in `dlist`. Default is ['Exp1', 'Exp2']. They will
always be converted to upper case.
colors: list of named colors, optional
Colors for each line. They must have the same order as the
data in `dlist`. Default is ['black', 'DodgerBlue']
xticks: list or numpy.ndarray, optional
This controls the tick marks in the x axis. Default is to put
a tick from the second year until the end every 2 years.
xlim: list of datetime objects, optional
Limits in the x axis. The user can choose the limit dates in
this axis. Default is to use the first and last items in
`dates`.
ylim: list of float, optional
Limits in the y axis. Default is [-3, 3].
title: str, optional
Centered title. Default is empty.
xlabel: str, optional
Title in the x axis. Default is 'Year'.
ylabel: str, optional
Title in the y axis. Default is empty.
Returns
-------
matplotlib.axes.Axes with plot attached.
""" # noqa
# get ticks
if xticks is None:
xticks = dates[12::48]
# get xlim
if xlim is None:
xlim = [dates[0], dates[-1]]
# unpack data
av1, av2 = dlist
# points
point1 = av1[-1]
point2 = av2[-1]
# line plot for land
axes.plot(dates, av1, linewidth=1, color=colors[0],
label=names[0].upper())
axes.plot(dates, av2, linewidth=1, color=colors[1],
label=names[1].upper())
axes.plot(dates[-1], point1, 'o', color=colors[0], ms=2)
axes.plot(dates[-1], point2, 'o', color=colors[1], ms=2)
# set lims
axes.set_xlim(xlim)
axes.set_ylim(ylim)
axes.set_xticks(xticks)
# horizonatl lines
axes.axhline(y=0, linestyle='--', alpha=0.5, linewidth=1,
color='black')
# titling
axes.set_title(title)
axes.set_ylabel(ylabel)
axes.set_xlabel(xlabel)
axes.legend(ncol=2)
return axes | 4a47890ff8dfd08294bf41b3cc949e31c4339c6f | 530,034 |
def transpose(list_in):
"""
Shuffle/transpose a given 16 element list from
[ 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15] to
[ 0, 4, 8, 12,
1, 5, 9, 13,
2, 6, 10, 14,
3, 7, 11, 15]
"""
list_out = []
for i in range(4):
for j in range(4):
list_out.append(list_in[i + 4 * j])
return list_out | 27237a93397bc18edd58ab0eb4689060fec1418e | 234,803 |
def fit_params_txt(fit_params, bp_list, out_dir):
"""Generates a text file in the same folder as the detrending plots that lists applied linear fit equations"""
# Create .txt file and copy breakpoint list
text_dir = out_dir + '\\detrending_fit_eqs.txt'
text_file = open(text_dir, 'w+')
bps_form = [i for i in bp_list]
# Write to and save .txt file
for count, params in enumerate(fit_params):
if len(bp_list) != 0:
text_file.write('From %s to %s: %.4f * dist_downstream + %.4f\n' % (bps_form[count], bps_form[count+1], params[0], params[1]))
else:
text_file.write('For full reach: %.4f * dist_downstream + %.4f\n' % (params[0], params[1]))
text_file.close()
return text_dir | 5b0075fd90f25d446bbb1060da23b62221be6260 | 562,586 |
from datetime import datetime
def format_date(date):
"""Function takes a datetime object and stringifies it down to MM/DD/YYYY format"""
try:
start_date = datetime.strftime(date, '%m/%d/%Y')
except (TypeError, ValueError) as e:
start_date = date
pass
return start_date | 52cc6a1535789b010170444436c9e6122f9b29aa | 562,296 |
def _isInt(argstr):
""" Returns True if and only if the given string represents an integer. """
try:
int(argstr, 0) # hex values must have the "0x" prefix for this to work
return True
except (ValueError, TypeError):
return False | 6ec4bfd37b59b28317433fedcd68967193f47b3c | 601,956 |
def coerce_row_to_dict(schema, row):
"""
>>> from datashape import dshape
>>> schema = dshape('{x: int, y: int}')
>>> coerce_row_to_dict(schema, (1, 2)) # doctest: +SKIP
{'x': 1, 'y': 2}
Idempotent
>>> coerce_row_to_dict(schema, {'x': 1, 'y': 2}) # doctest: +SKIP
{'x': 1, 'y': 2}
"""
if isinstance(row, dict):
return row
return dict((name, item) for name, item in zip(schema[0].names, row)) | 89ea04b6b73a8b7218a4cf2a1b584d2db583379c | 64,020 |
def point_window_unitxy(x, y, affine):
""" Given an x, y and a geotransform
Returns
- rasterio window representing 2x2 window whose center points encompass point
- the cartesian x, y coordinates of the point on the unit square
defined by the array center points.
((row1, row2), (col1, col2)), (unitx, unity)
"""
fcol, frow = ~affine * (x, y)
r, c = int(round(frow)), int(round(fcol))
# The new source window for our 2x2 array
new_win = ((r - 1, r + 1), (c - 1, c + 1))
# the new x, y coords on the unit square
unitxy = (0.5 - (c - fcol),
0.5 + (r - frow))
return new_win, unitxy | b7c2122569cf609c508d27ae74d035390c0d1744 | 282,755 |
import requests
def sendRequest(url, type="POST", params=None, headers=None):
"""
Send a request to a URL
### Input:
- `url` (str) | the url to send the request to
- `type` (str) | the type of request (GET or POST)
- `params` (dict) | parameters to be sent with the request
- `headers` (dict) | headers to be sent with the request
### Output:
- `response` (dict) | the JSON response of the request
"""
## Perform a GET request
if type == "GET":
rawResponse = requests.get(url, params=params, headers=headers)
## Perform a POST request
else:
rawResponse = requests.post(url, params=params, headers=headers)
## Convert the response to a json object, if possible
if hasattr(rawResponse, "json"):
response = rawResponse.json()
## Otherwise, get the text response
else:
response = rawResponse.text
return response | 7f450b8eedf6405b237730b9f7d6da5277c41e7b | 14,080 |
def grandchildren_with_tag(child,tagnames):
"""Return children of child that have tag names in
the given set of tag names"""
ret=[]
for grandchild in child.iterchildren():
if grandchild.tag in tagnames:
ret.append(grandchild)
pass
pass
return ret | 1121345abab69f67abde0ee2b6e4629e71034c61 | 691,469 |
def lookup_fxn(x, vals):
"""
Builds a simple function that acts as a lookup table. Useful for
constructing bandwidth and weigth functions from existing values.
Parameters
----------
x : iterable
values to input for the function
vals : iterable
Output values for the function. Must be of the same length as x.
Returns
-------
lf : function
A function that, when input a value in x, outputs the corresponding
value in vals.
"""
# Build dictionary
lookup = {}
for i in range(len(x)):
lookup[str(x[i])] = vals[i]
# Define and return lookup function
def lf(xi):
return lookup[str(xi)]
return lf | 0fbe32d19b84cf80db0f0621a9792f7a1234536d | 336,603 |
def search_ancestor(node, node_type_or_types):
"""
Recursively looks at the parents of a node and checks if the type names
match.
:param node: The node that is looked at.
:param node_type_or_types: A tuple or a string of type names that are
searched for.
"""
if not isinstance(node_type_or_types, (list, tuple)):
node_type_or_types = (node_type_or_types,)
while True:
node = node.parent
if node is None or node.type in node_type_or_types:
return node | 5a40baad702cdb9bf8119b4f0b65fc3b484bc3e6 | 588,667 |
import re
def get_instances_from_report(report_file_path):
"""
Parse StegExpose report and return a list of (class, score).
E.g. [('p', 0.10), ('n', 0.05)]
"""
instances = []
with open(report_file_path, 'r') as report_file:
for line in report_file:
# Filter the lines without images.
if re.match(r'.*\.(png|jpg),', line):
# Get the important data.
pieces = line.split(sep=',')
image_name = pieces[0]
real_class = 'p' if re.match(r'.*_\d+p\.(png|jpg),', line) else 'n'
fusion_score = float(pieces[-1])
# print(real_class, fusion_score, image_name)
instances.append((real_class, fusion_score))
return instances | dc5bbf747aa642456ec3080e2ca93a0f6a3086e1 | 572,160 |
def add_unique(list,elt):
"""Add an element uniquely to a list
"""
# Since we can't use set(), which uses memory addresses as hashes
# for any creation or order-sensitive operation in models
# instead we use lists and rather than foo = set(); foo.add(x)
# we use foo = []; add_unique(foo,x)
if elt not in list:
list.append(elt)
return list | c4353523900aaa00e0bde73335983b1f07b6c302 | 410,304 |
def pick_from_list(items, suffix):
""" Pick an element from list ending with suffix.
If no match is found, return None.
:param items list of items to be searched.
:suffix String suffix defining the match.
"""
match = None
for item in items:
if item.endswith(suffix):
match = item
return match | b081cdba7de72c7864ab0ad3a7b358da267733e8 | 138,305 |
def build_streets_vertices(edges, shapes):
"""
Returns vertices and edges based on the subset of edges.
@param edges indexes
@param shapes streets
@return vertices, edges
*vertices* is a list of points.
*edges* is a list of `tuple(a, b)` where `a`, `b` are
indices refering to the array of vertices
"""
points = []
for i in edges:
p = shapes[i].points
a, b = (p[0][0], p[0][1]), (p[-1][0], p[-1][1])
points.append(a)
points.append(b)
vertices = list(sorted(set(points)))
positions = {p: i for i, p in enumerate(vertices)}
new_edges = []
for i in edges:
points = shapes[i].points
a, b = (points[0][0], points[0][1]), (points[-1][0], points[-1][1])
new_edges.append((positions[a], positions[b]))
return vertices, new_edges | 6a1b5e0365a8e5dd89470476b41502470e490176 | 447,685 |
def isvideotype(x):
"""Is an object a vipy.video class Video, VideoCategory, Scene?"""
return (str(type(x)) in ["<class 'vipy.video.Video'>",
"<class 'vipy.video.VideoCategory'>",
"<class 'vipy.video.Scene'>"]) | c628a8671c8dfa4c03d56a8f2cd00c6f92065741 | 358,177 |
import random
def get_greeting(person):
""" Get a random greeting, greeting *person* """
greetings = ["hello!", "hi", "namaste", "privet", "konichiwa", "nihao!"]
return f"{random.choice(greetings).title()}, {person}." | b917af2dbe5f81c27631125e2e765fa76c5a030c | 575,217 |
def eventCoordinates(event):
""" Get the absolute coordinates of a mouse event.
http://www.quirksmode.org/js/events_properties.html#position
"""
return event.pageX, event.pageY | 7fb5439c221b9a617360c07ead9fe2f4ca3b4c10 | 521,516 |
def kernel_matrix(x, y):
"""
Returns kernel matrix (quadratic kernel, in this case) for input arrays, x
and y: K(x,y) = phi(x).phi(y), which for a quadratic kernel is (x.y)^2
"""
K = (x.dot(y.T))**2
return K | a1e5f666e6af3cde7588c3603a0cf56665643983 | 430,074 |
def recaman(length):
"""
Creates a Recamán's sequence
:param length: The length of the wanted sequence
:return: array containing the sequence
For more information about this sequence: https://en.wikipedia.org/wiki/Recam%C3%A1n%27s_sequence
"""
a = [0]
for n in range(1, length):
candidate = a[-1] - n
if candidate > 0 and candidate not in a:
a.append(candidate)
else:
a.append(a[-1] + n)
return a | 8b9f03a09f18343a40e4466c726be2ff85ee83ea | 464,800 |
def process_hex(hex):
""" Processes hex data into a more usable format. """
# turn a hex section id into a hex category
category = hex['category'].split('_')[2]
hex['category'] = {
'DataListTypes': 'common',
'DataList1' : 'major',
'DataList2' : 'grand'
}[category]
return hex | bcb2bb6bce8578ace58b05b474954ba66c9e2cc1 | 491,302 |
def verbaUtilizada(modelo):
"""
Dados os parametros do problema (armazenados em 'modelo'), calcula a verba utilizada
para distribuir 'totalCont + totalForm' alunos em 'totalTurmAbertas' turmas.
Retorna o valor da verba utilizada.
"""
usoVerba = (modelo.custoAluno*(modelo.xSoma + modelo.ySoma)
+ modelo.custoProf*(modelo.qtdProfPedag + modelo.qtdProfAcd)*modelo.pSoma)
return usoVerba | 39bf1691df146d663a79490f46463cbe09c4052f | 349,555 |
import inspect
import functools
def loggedmethod(method):
"""Decorator for LoggedObject methods, ensuring exceptions logging.
Whenever an exception is raised by a method this function decorates,
its details are logged through the object's `log` method at 'error'
level before it is raised again.
This is useful when unexpected exceptions may be raised in a context
where they will not interrupt execution but need to be notified.
Usage:
>>> class Foo(LoggedObject):
... @loggedmethod
... def bar(self, x):
... if not isinstance(x, str);
... raise TypeError('Expected "x" to be a str.')
... self.log(x)
...
>>> foo = Foo()
>>> foo.bar('Some string.')
<asctime> : Some string.
>>> foo.bar(42)
<asctime> : TypeError at `Foo.bar`: Expected "x" to be a str.
TypeError: Expected "x" to be a str.
"""
if 'self' not in inspect.signature(method).parameters.keys():
raise RuntimeError(
"Attempt at decorating a function with no 'self' argument "
+ "using '@logged_method'."
)
@functools.wraps(method)
def logged_method(self, *args, **kwargs):
"""Wrapped method ensuring exceptions logging before raising."""
try:
return method(self, *args, **kwargs)
except Exception as exception:
method_name = getattr(method, '__qualname__', method.__name__)
msg = "%s at '%s': %s" % (
type(exception).__name__, method_name,
';'.join(map(str, exception.args))
)
self.log(msg=msg, level='error')
raise exception
return logged_method | 1b1cf7bde0e8567d185c2a2db1c0b63daa85904a | 229,594 |
from typing import Callable
from typing import Tuple
def parse_line(line: str, distance_metric: Callable) -> Tuple[str, str, float]:
"""Parse a line of BLAST+6 output.
Parameters
----------
line : str
A blast line in format `-outfmt "6 qacc sacc length qlen slen ident"`
distance_metric : Callable
A function that computes a distance metric from the info in `line`.
Returns
-------
query_accession : str
The query sequence accession.
subject_accession : str
The subject sequence accession.
distance : float
The distance between the sequences.
"""
qacc, sacc, length, qlen, slen, ident = line.split()
return qacc, sacc, distance_metric(int(ident), int(qlen), int(slen)) | 362a9ab44a32197c90e3d7064c11db7e7e0af2b6 | 600,766 |
def lstrip_namespace(s, namespaces):
"""
Remove starting namespace
:param s: input string
:type s: ```AnyStr```
:param namespaces: namespaces to strip
:type namespaces: ```Union[List[str], Tuple[str], Generator[str], Iterator[str]]```
:returns: `.lstrip`ped input (potentially just the original!)
:rtype: ```AnyStr```
"""
for namespace in namespaces:
s = s.lstrip(namespace)
return s | ddb4ef24a1eec4a67772ad7fed29b69c0cfe83ca | 333,095 |
def join_labels(labels, join_symbol="|", threshold=1.e-6):
"""
Join labels with a joining symbol when they are very close
:param labels: a list of length-2 tuples, in the format(position, label)
:param join_symbol: the string to use to join different paths. By default, a pipe
:param threshold: the threshold to decide if two float values are the same and should
be joined
:return: the same list as labels, but with the second value possibly replaced
with strings joined when close enough
"""
if labels:
new_labels = [list(labels[0])]
# modify labels when in overlapping position
j = 0
for i in range(1, len(labels)):
if abs(labels[i][0] - labels[i - 1][0]) < threshold:
new_labels[j][1] += join_symbol + labels[i][1]
else:
new_labels.append(list(labels[i]))
j += 1
else:
new_labels = []
return new_labels | b52b69a23dddec2edb81f022571c9e2f5573a229 | 596,952 |
def _uri(helper):
"""Returns the URL of the kvstore."""
return '/'.join((
helper.context_meta['server_uri'],
'servicesNS',
'nobody',
'Splunk_TA_paloalto',
'storage',
'collections',
'data',
'minemeldfeeds')) | d272afa2e9305a480609c215e653f3e80b1990b7 | 567,651 |
from typing import Optional
import json
def _try_parse_json(json_string: str, ref_val=None) -> Optional[dict]:
"""
Return whether the string can be interpreted as json.
:param json_string: str, string to check for json
:param ref_val: any, not used, interface design requirement
:return None if not parseable, otherwise the parsed json object
"""
parsed = None
try:
parsed = json.loads(json_string)
except (ValueError, TypeError):
pass
return parsed | a609eeefb32d88970ecf039578e8eb8a65ad8108 | 692,545 |
import shutil
def get_archive_name_and_format_for_shutil(path):
"""Returns archive name and format to shutil.make_archive() for the |path|.
e.g., returns ('/path/to/boot-img', 'gztar') if |path| is
'/path/to/boot-img.tar.gz'.
"""
for format_name, format_extensions, _ in shutil.get_unpack_formats():
for extension in format_extensions:
if path.endswith(extension):
return path[:-len(extension)], format_name
raise ValueError(f"Unsupported archive format: '{path}'") | 152d68ea9613d7253f78c37ce85758a2c8bc67f9 | 700,162 |
def absolute_round(number: float) -> int:
""" Rounds the value of number and then produces the absolute value of that result
>>> absolute_round(-2.1)
2
>>> absolute_round(3.4)
3
>>> absolute_round(3.7)
4
>>> absolute_round(-2.9)
3
"""
return abs(round(number)) | 446786ad83dfb42e8643917d1e656b22e750654b | 118,388 |
import random
def roll_die(sides: int) -> int:
"""Rolls a die with given number of sides."""
return random.randint(1, sides) | 35cb7445f46a84e3232b7a24951139c635d912b3 | 245,029 |
from datetime import datetime
def _get_timestamp() -> str:
"""Create a timestamp in the right format."""
return datetime.utcnow().strftime("_%H:%M:%S,%m-%d-%Y") | ab12e853d21b854f8868164c1522b513d271456a | 256,142 |
def parse_title(line):
"""if this is title, return Tuple[level, content],
@type line: str
@return: Optional[Tuple[level, content]]
"""
line = line.strip()
if not line.startswith('#'):
return None
sharp_count = 0
for c in line:
if c == '#':
sharp_count += 1
else:
break
if sharp_count == len(line):
return None
title = line[sharp_count:].strip()
return sharp_count, title | 7c170f417755c878d225b780b8475a379501c19f | 707,815 |
from typing import Tuple
def get_default_optimisation_params(config: dict) -> Tuple[float, int]:
"""Get the default coverage distance (theta) and number of sensors to use when
optimising networks and generating figures.
Parameters
----------
config : dict
Parameters as loaded by utils.get_config
Returns
-------
Tuple[float, int]
Coverage distance (theta) and number of sensors.
"""
theta = config["optimisation"]["theta"]["default"]
n_sensors = config["optimisation"]["n_sensors"]["default"]
return theta, n_sensors | c6dfe41d3d6be1eee2fec2c78413fa03c2033416 | 435,011 |
import hashlib
def _hash_file(fpath, algorithm="sha256", chunk_size=65535):
"""Calculates a file sha256 or md5 hash.
# Example
```python
>>> from keras.data_utils import _hash_file
>>> _hash_file('/path/to/file.zip')
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
```
# Arguments
fpath: path to the file being validated
algorithm: hash algorithm, one of 'auto', 'sha256', or 'md5'.
The default 'auto' detects the hash algorithm in use.
chunk_size: Bytes to read at a time, important for large files.
# Returns
The file hash
"""
if algorithm in ("sha256", "auto"):
hasher = hashlib.sha256()
else:
hasher = hashlib.md5()
with open(fpath, "rb") as fpath_file:
for chunk in iter(lambda: fpath_file.read(chunk_size), b""):
hasher.update(chunk)
return hasher.hexdigest() | abc4874c9284a0e00392cc7668ce9d94e64e94ee | 674,086 |
import torch
def cosine_similarity(x, y=None, eps=1e-8):
"""Calculate cosine similarity between two matrices;
Args:
x: N*p tensor
y: M*p tensor or None; if None, set y = x
This function do not broadcast
Returns:
N*M tensor
"""
w1 = torch.norm(x, p=2, dim=1, keepdim=True)
if y is None:
w2 = w1.squeeze(dim=1)
y = x
else:
w2 = torch.norm(y, p=2, dim=1)
w12 = torch.mm(x, y.t())
return w12 / (w1*w2).clamp(min=eps) | 68faf837293556409899487b47de072d013a1f42 | 674,093 |
def parse_header(field):
"""Parses a single header key and converts it to the way it appears on a HTTP classified_request.
This function is necessary because the headers' keys are provided in the environment variables
not as they appear in a HTTP classified_request.
For example, it converts HTTP_USER_AGENT to User-Agent."""
header_key = field[5:] # Gets rid of the "HTTP_" prefix of the field.
header_list = header_key.split("_")
header_list = [string.capitalize() for string in header_list]
return "-".join(header_list) | 42007140e1eb2922485785e1213eeac859b50348 | 578,196 |
import shutil
def process_java_resources(target, source, env):
"""Copy resource file into .resources dir. """
shutil.copy2(str(source[0]), str(target[0]))
return None | 3ee5194703956d43187a0c4f802c3ee4c132c18a | 40,440 |
def encode_sequence(sequence: str, encoding_scheme: dict):
"""
Encodes a peptide sequence with values provided by the encoding table/scheme.
"""
encoded_sequence = []
for aa in sequence:
try:
value = encoding_scheme.get(aa)
except Exception as e:
msg = f'{e}'
raise KeyError(msg)
encoded_sequence.append(value)
return encoded_sequence | ee4bd552608be084523606ee14a41cbbe29483bf | 417,782 |
def is_component_enabled(env, cls):
""" Determine whether a trac component is enabled.
"""
# We would like to use env.is_enabled(cls) to do this,
# however, trac 0.11 does not have ComponentManager.is_enabled().
# So instead, rely on ComponentManager.__getitem__(), which does
# have the same logic in it.
return env[cls] is not None | 0f946d94706f03d86980f0a05a74d486cd77d4a9 | 533,018 |
import yaml
def read_yaml(file_path):
"""Read a YAML file by the given path.
Args:
file_path (str): The absolute path of the YAML file.
Returns:
dict: The data spec_reader from given YAML file.
"""
with open(file_path, "r") as file_object:
return yaml.safe_load(file_object) | 808bb6c31bd62e3a3be587f500e83e923b967fec | 227,970 |
def _non_string_elements(x):
"""
Simple helper to check that all values of x are string. Returns all non string elements as (position, element).
:param x: Iterable
:return: [(int, !String), ...]
"""
problems = []
for i in range(0, len(x)):
if not isinstance(x[i], str):
problems.append((i, x[i]))
return problems | 974715622949157693084823a52a88973b51d100 | 1,095 |
def change_path_for_metric(path):
"""
Replace the '/' in the metric path by '_' so grafana can correctly use it.
:param path: path of the metric (example: runs/search)
:return: path with '_' instead of '/'
"""
if 'mlflow/' in path:
path = path.split('mlflow/')[-1]
return path.replace('/', '_') | 72c887ddde6f34d30a00c21fa869ea919e554a61 | 510,170 |
def filter_matchable_fields(cite_keys, bib_dbs, desired_fields=["eprint", "doi"]):
"""Select bibtex entries which have certain desired fields.
To look up an entry in a different database, we need a
well-known identifier like a DOI or arXiv identifier. This
function will select those entries which have enough info (by
having desired fields) that we can search for them in another DB.
The return is a mapping from bibkeys to their bib entries, where
the entries have been stripped down to only the desired well-known
identifiers.
Parameters
----------
cite_keys: array of string
Bibtex keys to filter
bib_dbs: array of `bibtexparser.bibdatabase.BibDatabase`
desired_fields: array of string, optional [default: `['eprint', 'doi']`]
Fields whose presence lets us search in another DB.
Returns
-------
key_mapping: dict
For a key `ads_key`, the value is a dict which is a filtered bib
entry. This resulting dict has keys coming from
`desired_fields`. For example, you can access
`key_mapping[ads_key]['doi']`.
"""
key_mapping = {}
for ads_key in cite_keys:
for bib_db in bib_dbs:
if ads_key in bib_db.entries_dict:
entry = bib_db.entries_dict[ads_key]
filtered_entry = {
field: val for field, val in entry.items() if field in desired_fields
}
if len(filtered_entry) > 0:
key_mapping[ads_key] = filtered_entry
return key_mapping | b76ae5131200cf532abf95205dbe888385209d26 | 562,128 |
def csv_to_list(s: str):
"""Parse comma-separated list (and make lowercase)"""
return [x.lower().strip() for x in s.split(',')] | bae07932fa373ce0935131f2c27ab794d880e188 | 516,384 |
def parse_int(sin):
"""A version of int but fail-safe"""
return int(sin) if sin.isdigit() else -99 | 204cbcb01b6df1bbdd09af318fdfe90feb5fe68f | 698,570 |
def FormatDatetime(date, day_only=False):
"""Returns a string representing the given UTC datetime."""
if not date:
return None
if day_only:
return date.strftime('%Y-%m-%d')
return date.strftime('%Y-%m-%d %H:%M:%S UTC') | c278c1d8cb5503bd384e2345da759009eef125a5 | 485,895 |
from typing import Dict
import json
def load_params_file(params_file: str) -> Dict:
"""
Load a JSON file of training parameters.
:param params_file: The input file.
:return: A dictionary of training parameters.
"""
with open(params_file, 'r') as fin:
return json.load(fin) | 0538c795c706f6a4edf1c523b643dc349d1e033e | 95,632 |
from typing import Dict
from typing import Optional
def make_env_shell_str(env: Dict[str, str]) -> Optional[str]:
"""
Transforms env dict to string suitable for use in shell
Returns None for empty dict
"""
env = env or {}
result = []
for k, v in env.items():
value = v
if "$" in v or " " in v:
q = '"'
if q in v:
q = "'"
value = f"{q}{v}{q}"
result.append(f"{k}={value}")
return " ".join(result) or None | 1937f89bef2738d72dd426b687438d25f487771c | 367,212 |
def N_ref_macs(*, theta, mu):
"""
Calculate N0 reference size for a macs command.
Macs has a different meaning for the '-t theta' argument.
Theta is the 'mutation rate per site per 4N generations'.
theta = mu / (4 N)
"""
return theta / (4 * mu) | 93049546c95dde13cd60da75a99d39891b6cf0ca | 383,432 |
def parse_file_to_bucket_and_filename(file_path):
"""Divides file path to bucket name and file name"""
path_parts = file_path.split("//")
if len(path_parts) >= 2:
main_part = path_parts[1]
if "/" in main_part:
divide_index = main_part.index("/")
bucket_name = main_part[:divide_index]
file_name = main_part[divide_index + 1 - len(main_part):]
return bucket_name, file_name
return "", "" | ff252fd051e3236da45b58e58a0b5bb57106def5 | 264,850 |
def _index_spec_params(spec_params):
"""
Makes an index of the spec parameters. It dict-ifies the list of spec params
provided by the SpecManager, and also returns the set of param ids that are
used in groups.
This gets returned as a tuple (indexed params, group param ids)
"""
spec_params_dict = dict()
grouped_parents = dict()
for p in spec_params:
spec_params_dict[p["id"]] = p
# groupify the parameters - identify params that are part of groups, and don't include
# them in the list separately.
children = p.get("parameter_ids")
if children:
for child in children:
grouped_parents[child] = p["id"]
return (spec_params_dict, grouped_parents) | 19aa93b2d34fb448476a2ebe0a2666494eebb70b | 89,913 |
import torch
def cross_entropy_loss(stu_logits, tea_logits, temp=1.): # 使用交叉熵
""" the same as nn.CrossEntropyLoss, but more flexible
Args:
stu_logits: tensor of shape [N, class]
tea_logits: tensor of shape [N, class]
temp: the distillation temperature
Return:
kd_loss: the cross entropy on soft labels
"""
pred = torch.nn.functional.softmax(stu_logits, dim=1)
labels = torch.nn.functional.softmax(tea_logits / temp, dim=1)
kd_loss = (-labels * torch.log(pred)).sum(dim=1).mean()
return kd_loss | a819855533900dcd91c4bfc5278962e506ecaf7f | 218,748 |
import pickle
def load(filename):
""" Loads in a saved instance of the SunXspex class.
Parameters
----------
filename : str
Filename for the pickled fitting class.
Returns
-------
Loaded in fitting class.
"""
with open(filename, 'rb') as f:
loaded = pickle.load(f)
return loaded | 6cc32b68ccb588d66bb072d0a3587dd82bcbe489 | 602,903 |
def get_range(distribution):
""" Returns the range of a distribution """
return max(distribution) - min(distribution) | 56c5ecb14c18a45f123368908d597ef429210dab | 336,556 |
def getPhenotype(chromosome, items):
"""
Given a chromosome, returns a list of items in the bag
:param chromosome:
:param items:
:return: list
"""
return [v for i, v in enumerate(items) if chromosome[i] == 1] | 19b7bc47cba3fdf652dd84d4c5c1932afde6cbde | 108,302 |
def talk_type(talk):
""" Return the pretty name for the type of the talk."""
if talk.admin_type:
typ = talk.get_admin_type_display()
else:
typ = talk.get_type_display()
return typ | 67374d7ffaa9c8298812df4a504845c790042502 | 380,257 |
import string
def get_gis_field(csv_field, gis_field_lookup):
"""return a (max) 10 character representation of csv_field that is unique to the list of analysis fields"""
if csv_field in gis_field_lookup:
return gis_field_lookup[csv_field]
gis_field_set = set(gis_field_lookup.values())
gis_field = csv_field[:10]
chars = iter(string.ascii_uppercase)
while gis_field in gis_field_set:
letters = list(gis_field)
try:
letters[-1] = next(chars)
except StopIteration:
raise Exception('Too many fields for analysis')
gis_field = ''.join(letters)
return gis_field | 8adfc88babc4514c715f63ec8c258268862226b2 | 600,794 |
import uuid
def create_marconi_headers(conf):
"""Returns headers to be used for all Marconi requests."""
headers = {
"User-Agent": conf.headers.user_agent,
"Accept": "application/json",
"X-Project-ID": conf.headers.project_id,
"Client-ID": str(uuid.uuid1()),
}
return headers | 73a4a348b36651f1431865c2b9f197ad78765a61 | 588,494 |
import itertools
def take(iterable, n):
"""Return first n items of the iterable as a list."""
return list(itertools.islice(iterable, n)) | dd8b9681707b6abb0b2974e383d053ec9011af88 | 585,582 |
def build_sub_O2(Graph):
"""
For each white node in Graph, we create a copy of Graph and perform O2 in that node.
Return a list of the graphs obtained.
"""
White = Graph.white()
sub_list = []
for index, n in enumerate(White):
temp_g = Graph.O2(n)
temp_g.labeling(index+1)
sub_list.append(temp_g)
return(sub_list) | 099ce3a5ac3b2dcdf1b1a05421ae8cb0e9a0dc07 | 519,848 |
from typing import List
from typing import Counter
def remove_rare(sentences: List[List[str]]) -> List[List[str]]:
"""
Remove rare words (those that appear at most once) from sentences.
Parameters
----------
sentences:
List of tokenized sentences.
"""
counts: Counter = Counter()
for sentence in sentences:
counts.update(sentence)
return [[word for word in sentence if counts[word] > 1] for sentence in sentences] | 1af60b7bb0393abf99db02abf6f4fea9d9529c15 | 47,572 |