path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72106185/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') train train.drop('id', axis=1, inplace=True) na_count = pd.Series([train[col].isna().sum() for col in train.columns], index=train.columns, name='NA Count') na_count
code
72106185/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') train train.drop('id', axis=1, inplace=True) na_count = pd.Series([train[col].isna().sum() for col in train.columns], index=train.columns, name='NA Count') na_count y = train['target'] X = train.drop('target', axis=1) X
code
72106185/cell_2
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') print(train.columns) train
code
72106185/cell_8
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') train train.drop('id', axis=1, inplace=True) na_count = pd.Series([train[col].isna().sum() for col in train.columns], index=train.columns, name='NA Count') na_count y = train['target'] X = train.drop('target', axis=1) num_cols = [col for col in X.columns if X[col].dtype in ['int64', 'float64']] cat_cols = [col for col in X.columns if X[col].dtype == 'object' and X[col].nunique() < 10] cardinality = pd.Series([X[col].nunique() for col in cat_cols], index=cat_cols, name='Cardinality') cardinality
code
72106185/cell_16
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') train train.drop('id', axis=1, inplace=True) na_count = pd.Series([train[col].isna().sum() for col in train.columns], index=train.columns, name='NA Count') na_count y = train['target'] X = train.drop('target', axis=1) num_cols = [col for col in X.columns if X[col].dtype in ['int64', 'float64']] cat_cols = [col for col in X.columns if X[col].dtype == 'object' and X[col].nunique() < 10] cardinality = pd.Series([X[col].nunique() for col in cat_cols], index=cat_cols, name='Cardinality') cardinality from sklearn.preprocessing import OneHotEncoder OHE = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OHE.fit_transform(X_train[cat_cols])) OH_cols_valid = pd.DataFrame(OHE.transform(X_valid[cat_cols])) OH_cols_train.index = X_train.index OH_cols_valid.index = X_valid.index num_X_train = X_train.drop(cat_cols, axis=1) num_X_valid = X_valid.drop(cat_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1) test = pd.read_csv('../input/30-days-of-ml/test.csv') test X_testID = test['id'] test.drop('id', axis=1, inplace=True) X_test = test X_test.drop('cat9', axis=1, inplace=True) X_test
code
72106185/cell_14
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') train train.drop('id', axis=1, inplace=True) na_count = pd.Series([train[col].isna().sum() for col in train.columns], index=train.columns, name='NA Count') na_count y = train['target'] X = train.drop('target', axis=1) num_cols = [col for col in X.columns if X[col].dtype in ['int64', 'float64']] cat_cols = [col for col in X.columns if X[col].dtype == 'object' and X[col].nunique() < 10] cardinality = pd.Series([X[col].nunique() for col in cat_cols], index=cat_cols, name='Cardinality') cardinality from sklearn.preprocessing import OneHotEncoder OHE = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OHE.fit_transform(X_train[cat_cols])) OH_cols_valid = pd.DataFrame(OHE.transform(X_valid[cat_cols])) OH_cols_train.index = X_train.index OH_cols_valid.index = X_valid.index num_X_train = X_train.drop(cat_cols, axis=1) num_X_valid = X_valid.drop(cat_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1) test = pd.read_csv('../input/30-days-of-ml/test.csv') test
code
72106185/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') train train.drop('id', axis=1, inplace=True) na_count = pd.Series([train[col].isna().sum() for col in train.columns], index=train.columns, name='NA Count') na_count y = train['target'] X = train.drop('target', axis=1) num_cols = [col for col in X.columns if X[col].dtype in ['int64', 'float64']] cat_cols = [col for col in X.columns if X[col].dtype == 'object' and X[col].nunique() < 10] cardinality = pd.Series([X[col].nunique() for col in cat_cols], index=cat_cols, name='Cardinality') cardinality from sklearn.preprocessing import OneHotEncoder OHE = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OHE.fit_transform(X_train[cat_cols])) OH_cols_valid = pd.DataFrame(OHE.transform(X_valid[cat_cols])) OH_cols_train.index = X_train.index OH_cols_valid.index = X_valid.index num_X_train = X_train.drop(cat_cols, axis=1) num_X_valid = X_valid.drop(cat_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1) OH_X_train
code
2010808/cell_6
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Imputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') y = df['Survived'] columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] df = df[columns] from sklearn.preprocessing import OneHotEncoder df = pd.get_dummies(df) Pclass_1 = df['Pclass'] == 1 Pclass_2 = df['Pclass'] == 2 Pclass_3 = df['Pclass'] == 3 df = df.join(Pclass_1, lsuffix='', rsuffix='_1') df = df.join(Pclass_2, lsuffix='', rsuffix='_2') df = df.join(Pclass_3, lsuffix='', rsuffix='_3') del df['Pclass'] X = df my_pipeline = make_pipeline(Imputer(), LogisticRegression()) my_pipeline.fit(X, y) my_pipeline.score(X, y)
code
2010808/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2010808/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Imputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') y = df['Survived'] columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] df = df[columns] from sklearn.preprocessing import OneHotEncoder df = pd.get_dummies(df) Pclass_1 = df['Pclass'] == 1 Pclass_2 = df['Pclass'] == 2 Pclass_3 = df['Pclass'] == 3 df = df.join(Pclass_1, lsuffix='', rsuffix='_1') df = df.join(Pclass_2, lsuffix='', rsuffix='_2') df = df.join(Pclass_3, lsuffix='', rsuffix='_3') del df['Pclass'] X = df test = pd.read_csv('../input/test.csv') test = test[columns] X_test = pd.get_dummies(test) Pclass_1 = X_test['Pclass'] == 1 Pclass_2 = X_test['Pclass'] == 2 Pclass_3 = X_test['Pclass'] == 3 X_test = X_test.join(Pclass_1, lsuffix='', rsuffix='_1') X_test = X_test.join(Pclass_2, lsuffix='', rsuffix='_2') X_test = X_test.join(Pclass_3, lsuffix='', rsuffix='_3') del X_test['Pclass'] my_pipeline = make_pipeline(Imputer(), LogisticRegression()) my_pipeline.fit(X, y) my_pipeline.score(X, y) df = pd.read_csv('../input/gender_submission.csv') y_test = df.Survived my_pipeline.score(X_test, y_test)
code
2024726/cell_42
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') plt.figure(figsize=(14, 12)) sns.heatmap(train_df.astype(float).corr(), annot=True)
code
2024726/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') plt.figure(figsize=(20, 7)) sns.boxplot('Pclass', 'Fare', data=test_df)
code
2024726/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') print(train_df[train_df['Pclass'] == 1]['Age'].mean()) print(train_df[train_df['Pclass'] == 2]['Age'].mean()) print(train_df[train_df['Pclass'] == 3]['Age'].mean())
code
2024726/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sns.countplot('Survived', hue='Sex', data=train_df) print(train_df[train_df['Sex'] == 'male']['Survived'].value_counts()) print(train_df[train_df['Sex'] == 'male']['Survived'].value_counts(normalize=True)) print(train_df[train_df['Sex'] == 'female']['Survived'].value_counts()) print(train_df[train_df['Sex'] == 'female']['Survived'].value_counts(normalize=True))
code
2024726/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.info()
code
2024726/cell_44
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df train_x.head()
code
2024726/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') def immute_ages(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 38 if Pclass == 2: return 30 else: return 25 else: return Age train_df[pd.isnull(train_df['Embarked'])]
code
2024726/cell_55
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') def includeFamilySize(df): df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 df['isAlone'] = 0 df.loc[df['FamilySize'] == 1, 'isAlone'] = 1 def immute_ages(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 38 if Pclass == 2: return 30 else: return 25 else: return Age train_df[pd.isnull(train_df['Embarked'])] def fare_age_Categ(df): df['CategoricalFare'] = pd.qcut(df['Fare'], 4) df['CategoricalAge'] = pd.cut(df['Age'], 5) retest = pd.read_csv('test.csv') final_df = pd.DataFrame({'PassengerId': retest['PassengerId'], 'Survived': svc_pred_test}) final_df.to_csv('rf.csv', index=False)
code
2024726/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.describe()
code
2024726/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') print(test_df.columns) print(train_df.columns)
code
2024726/cell_48
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df def predict(train_x, train_y, test_df, algo): algo.fit(train_x, train_y) pred_y = algo.predict(test_df) score = algo.score(train_x, train_y) return (pred_y, score) dt_pred_train, score = predict(train_x, train_y, train_x, DecisionTreeClassifier(max_depth=10, min_samples_split=5, random_state=1)) dt_pred_test, score = predict(train_x, train_y, test_x, DecisionTreeClassifier(max_depth=10, min_samples_split=5, random_state=1)) score
code
2024726/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.head()
code
2024726/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.head()
code
2024726/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sns.countplot('Survived', hue='Embarked', data=train_df)
code
2024726/cell_50
[ "text_html_output_1.png" ]
from sklearn.svm import SVC import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df def predict(train_x, train_y, test_df, algo): algo.fit(train_x, train_y) pred_y = algo.predict(test_df) score = algo.score(train_x, train_y) return (pred_y, score) svc_model = SVC() svc_pred_train, score = predict(train_x, train_y, train_x, svc_model) svc_pred_test, score = predict(train_x, train_y, test_x, svc_model) score
code
2024726/cell_52
[ "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df def predict(train_x, train_y, test_df, algo): algo.fit(train_x, train_y) pred_y = algo.predict(test_df) score = algo.score(train_x, train_y) return (pred_y, score) knn_pred_train, score = predict(train_x, train_y, train_x, KNeighborsClassifier()) knn_pred_test, score = predict(train_x, train_y, test_x, KNeighborsClassifier()) score
code
2024726/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.cross_validation import KFold import re as re import warnings warnings.filterwarnings('ignore')
code
2024726/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_df.describe()
code
2024726/cell_45
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df test_x.head()
code
2024726/cell_49
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df def predict(train_x, train_y, test_df, algo): algo.fit(train_x, train_y) pred_y = algo.predict(test_df) score = algo.score(train_x, train_y) return (pred_y, score) rfc = RandomForestClassifier(max_depth=10, min_samples_split=2, n_estimators=600, random_state=1) rt_pred_train, score = predict(train_x, train_y, train_x, rfc) rt_pred_test, score = predict(train_x, train_y, test_x, rfc) score
code
2024726/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') print(train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean()) print(train_df[['isAlone', 'Survived']].groupby(['isAlone'], as_index=False).mean())
code
2024726/cell_51
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df def predict(train_x, train_y, test_df, algo): algo.fit(train_x, train_y) pred_y = algo.predict(test_df) score = algo.score(train_x, train_y) return (pred_y, score) from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001]} grid = GridSearchCV(SVC(), param_grid, refit=True) grid_pred_train, score = predict(train_x, train_y, train_x, grid) grid_pred_test, score = predict(train_x, train_y, test_x, grid) score
code
2024726/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') def includeFamilySize(df): df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 df['isAlone'] = 0 df.loc[df['FamilySize'] == 1, 'isAlone'] = 1 def immute_ages(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 38 if Pclass == 2: return 30 else: return 25 else: return Age train_df[pd.isnull(train_df['Embarked'])] def fare_age_Categ(df): df['CategoricalFare'] = pd.qcut(df['Fare'], 4) df['CategoricalAge'] = pd.cut(df['Age'], 5) print(pd.crosstab(train_df['Title'], train_df['Sex']))
code
2024726/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sns.countplot('Survived', data=train_df) print(train_df['Survived'].value_counts()) print(train_df['Survived'].value_counts(normalize=True))
code
2024726/cell_15
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') print(train_df[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean())
code
2024726/cell_47
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_x = train_df.drop(['Survived'], axis=1) train_y = train_df['Survived'] test_x = test_df def predict(train_x, train_y, test_df, algo): algo.fit(train_x, train_y) pred_y = algo.predict(test_df) score = algo.score(train_x, train_y) return (pred_y, score) lr_pred_train, score = predict(train_x, train_y, train_x, LogisticRegression()) lr_pred_test, score = predict(train_x, train_y, test_x, LogisticRegression()) score
code
2024726/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_df.head()
code
2024726/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') print(train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean())
code
2024726/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') def includeFamilySize(df): df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 df['isAlone'] = 0 df.loc[df['FamilySize'] == 1, 'isAlone'] = 1 def immute_ages(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 38 if Pclass == 2: return 30 else: return 25 else: return Age train_df[pd.isnull(train_df['Embarked'])] def fare_age_Categ(df): df['CategoricalFare'] = pd.qcut(df['Fare'], 4) df['CategoricalAge'] = pd.cut(df['Age'], 5) fare_age_Categ(train_df) fare_age_Categ(test_df) print(train_df[['CategoricalFare', 'Survived']].groupby(['CategoricalFare'], as_index=False).mean()) print(train_df[['CategoricalAge', 'Survived']].groupby(['CategoricalAge'], as_index=False).mean())
code
2024726/cell_14
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') print(train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean())
code
2024726/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_df[test_df['Fare'].isnull()] print(test_df[test_df['Pclass'] == 3]['Fare'].mean()) test_df['Fare'].fillna(12.45, inplace=True)
code
2024726/cell_53
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') def includeFamilySize(df): df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 df['isAlone'] = 0 df.loc[df['FamilySize'] == 1, 'isAlone'] = 1 def immute_ages(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 38 if Pclass == 2: return 30 else: return 25 else: return Age train_df[pd.isnull(train_df['Embarked'])] def fare_age_Categ(df): df['CategoricalFare'] = pd.qcut(df['Fare'], 4) df['CategoricalAge'] = pd.cut(df['Age'], 5) retest = pd.read_csv('test.csv')
code
2024726/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') plt.figure(figsize=(10, 7)) sns.boxplot('Pclass', 'Age', data=train_df)
code
2024726/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sns.countplot('Embarked', hue='Pclass', data=train_df)
code
2024726/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_df.info()
code
88083988/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df1 = df.melt(var_name='columns', value_name='index') unique_values = pd.DataFrame(df1['index'].value_counts()) unique_values.index values = unique_values.head(20) plt.figure(figsize=(18, 6)) plt.title('Frequency barplot') ax = sns.barplot(x=values.index, y=values['index']) plt.xticks(rotation='vertical') ax.bar_label(ax.containers[0]) plt.show()
code
88083988/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df.info()
code
88083988/cell_1
[ "text_plain_output_1.png" ]
!pip install apyori import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
88083988/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df1 = df.melt(var_name='columns', value_name='index') unique_values = pd.DataFrame(df1['index'].value_counts()) unique_values.head(10)
code
88083988/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df1 = df.melt(var_name='columns', value_name='index') unique_values = pd.DataFrame(df1['index'].value_counts()) unique_values.index
code
88083988/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df
code
88083988/cell_14
[ "text_plain_output_1.png" ]
from apyori import apriori import pandas as pd df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df1 = df.melt(var_name='columns', value_name='index') unique_values = pd.DataFrame(df1['index'].value_counts()) transacts = [] for i in range(len(df)): transacts.append([str(df.values[i, j]) for j in range(len(df.columns))]) from apyori import apriori rules = apriori(transactions=transacts, min_support=0.001, min_confidence=0.05, min_lift=1.01, min_length=2, max_length=2) output = list(rules) def inspect(output): lhs = [tuple(result[2][0][0])[0] for result in output] rhs = [tuple(result[2][0][1])[0] for result in output] support = [result[1] for result in output] confidence = [result[2][0][2] for result in output] lift = [result[2][0][3] for result in output] return list(zip(lhs, rhs, support, confidence, lift)) output_DataFrame = pd.DataFrame(inspect(output), columns=['Left_Hand_Side', 'Right_Hand_Side', 'Support', 'Confidence', 'Lift']) output_DataFrame.sort_values(by='Lift', ascending=False).head(20)
code
88083988/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df1 = df.melt(var_name='columns', value_name='index') unique_values = pd.DataFrame(df1['index'].value_counts()) unique_values.index values = unique_values.head(20) plt.figure(figsize = (18,6)) plt.title('Frequency barplot') ax = sns.barplot(x = values.index, y = values['index']) plt.xticks(rotation = 'vertical') ax.bar_label(ax.containers[0]) # for values to be shown plt.show() unique_values.sum()
code
88083988/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/grocery-products-purchase-data/Grocery Products Purchase.csv') df.describe()
code
34150863/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) df.dtypes dataframe = df.iloc[1:216, :-1] dataframe.style.background_gradient(cmap='Reds')
code
34150863/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) time_series.drop('Province/State', axis=1, inplace=True) time_series.head()
code
34150863/cell_4
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import cufflinks as cf from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot init_notebook_mode(connected=True) init_notebook_mode(connected=True) cf.go_offline() import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go import warnings warnings.filterwarnings('ignore')
code
34150863/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) type(df)
code
34150863/cell_19
[ "text_plain_output_1.png" ]
from plotly.subplots import make_subplots import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.express as px import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) time_series.drop('Province/State', axis=1, inplace=True) df.dtypes df['TotalCases'] = df['TotalCases'].fillna(0).astype('int') df['TotalDeaths'] = df['TotalDeaths'].fillna(0).astype('int') df['TotalRecovered'] = df['TotalRecovered'].fillna(0).astype('int') df['ActiveCases'] = df['ActiveCases'].fillna(0).astype('int') df['Serious'] = df['Serious'].fillna(0).astype('int') df['Deaths/1M pop'] = df['Deaths/1M pop'].fillna(0).astype('int') df['TotalTests'] = df['TotalTests'].fillna(0).astype('int') df['Tests/ 1M pop'] = df['Tests/ 1M pop'].fillna(0).astype('int') df['NewCases'] = df['NewCases'].fillna(0) df[['NewCases']] = df[['NewCases']].replace('[\\+,]', '', regex=True).astype(int) df['NewDeaths'] = df['NewDeaths'].fillna(0) df[['NewDeaths']] = df[['NewDeaths']].replace('[\\+,]', '', regex=True).astype(int) df[['Population']] = df[['Population']].fillna(0).astype('int') time_series.fillna(0) time_series.isnull().sum() dataframe = df.iloc[1:216, :-1] dataframe.style.background_gradient(cmap='Reds') group1 = time_series.groupby(['Date', 'Country'])['Confirmed', 'Deaths', 'Recovered'].sum().reset_index() heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Confirmed']), hover_name='Country', projection='natural earth', title='Heatmap', color_continuous_scale=px.colors.sequential.Blues) heat.update(layout_coloraxis_showscale=False) fig_heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Deaths']), hover_name='Country', projection='natural earth', title='Heatmap(Deaths)', color_continuous_scale=px.colors.sequential.Reds) fig_heat.update(layout_coloraxis_showscale=False) fig_z = px.bar(dataframe.sort_values('TotalCases'), x='TotalCases', y='Country', orientation='h', color_discrete_sequence=['#B3611A'], text='TotalCases', title='TotalCases') fig_x = px.bar(dataframe.sort_values('TotalDeaths'), x='TotalDeaths', y='Country', orientation='h', color_discrete_sequence=['#830707'], text='TotalDeaths', title='TotalDeaths') fig_ = px.bar(dataframe.sort_values('TotalRecovered'), x='TotalRecovered', y='Country', orientation='h', color_discrete_sequence=['#073707'], text='TotalRecovered', title='TotalRecovered') fig_p = make_subplots(rows=1, cols=3, subplot_titles=('TotalCases', 'TotalDeaths', 'TotalRecovered')) fig_p.add_trace(fig_z['data'][0], row=1, col=1) fig_p.add_trace(fig_x['data'][0], row=1, col=2) fig_p.add_trace(fig_['data'][0], row=1, col=3) fig_p.update_layout(height=3000, title='Per Country') fig_p.show()
code
34150863/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum()
code
34150863/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) df.dtypes dataframe = df.iloc[1:216, :-1] dataframe.style.background_gradient(cmap='Reds') dataframe.head()
code
34150863/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) df.head()
code
34150863/cell_15
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.express as px import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) time_series.drop('Province/State', axis=1, inplace=True) df.dtypes df['TotalCases'] = df['TotalCases'].fillna(0).astype('int') df['TotalDeaths'] = df['TotalDeaths'].fillna(0).astype('int') df['TotalRecovered'] = df['TotalRecovered'].fillna(0).astype('int') df['ActiveCases'] = df['ActiveCases'].fillna(0).astype('int') df['Serious'] = df['Serious'].fillna(0).astype('int') df['Deaths/1M pop'] = df['Deaths/1M pop'].fillna(0).astype('int') df['TotalTests'] = df['TotalTests'].fillna(0).astype('int') df['Tests/ 1M pop'] = df['Tests/ 1M pop'].fillna(0).astype('int') df['NewCases'] = df['NewCases'].fillna(0) df[['NewCases']] = df[['NewCases']].replace('[\\+,]', '', regex=True).astype(int) df['NewDeaths'] = df['NewDeaths'].fillna(0) df[['NewDeaths']] = df[['NewDeaths']].replace('[\\+,]', '', regex=True).astype(int) df[['Population']] = df[['Population']].fillna(0).astype('int') time_series.fillna(0) time_series.isnull().sum() group1 = time_series.groupby(['Date', 'Country'])['Confirmed', 'Deaths', 'Recovered'].sum().reset_index() heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Confirmed']), hover_name='Country', projection='natural earth', title='Heatmap', color_continuous_scale=px.colors.sequential.Blues) heat.update(layout_coloraxis_showscale=False) heat.show()
code
34150863/cell_3
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34150863/cell_17
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.express as px import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) time_series.drop('Province/State', axis=1, inplace=True) df.dtypes df['TotalCases'] = df['TotalCases'].fillna(0).astype('int') df['TotalDeaths'] = df['TotalDeaths'].fillna(0).astype('int') df['TotalRecovered'] = df['TotalRecovered'].fillna(0).astype('int') df['ActiveCases'] = df['ActiveCases'].fillna(0).astype('int') df['Serious'] = df['Serious'].fillna(0).astype('int') df['Deaths/1M pop'] = df['Deaths/1M pop'].fillna(0).astype('int') df['TotalTests'] = df['TotalTests'].fillna(0).astype('int') df['Tests/ 1M pop'] = df['Tests/ 1M pop'].fillna(0).astype('int') df['NewCases'] = df['NewCases'].fillna(0) df[['NewCases']] = df[['NewCases']].replace('[\\+,]', '', regex=True).astype(int) df['NewDeaths'] = df['NewDeaths'].fillna(0) df[['NewDeaths']] = df[['NewDeaths']].replace('[\\+,]', '', regex=True).astype(int) df[['Population']] = df[['Population']].fillna(0).astype('int') time_series.fillna(0) time_series.isnull().sum() group1 = time_series.groupby(['Date', 'Country'])['Confirmed', 'Deaths', 'Recovered'].sum().reset_index() heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Confirmed']), hover_name='Country', projection='natural earth', title='Heatmap', color_continuous_scale=px.colors.sequential.Blues) heat.update(layout_coloraxis_showscale=False) fig_heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Deaths']), hover_name='Country', projection='natural earth', title='Heatmap(Deaths)', color_continuous_scale=px.colors.sequential.Reds) fig_heat.update(layout_coloraxis_showscale=False) fig_heat.show()
code
34150863/cell_22
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.express as px import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) time_series.drop('Province/State', axis=1, inplace=True) df.dtypes df['TotalCases'] = df['TotalCases'].fillna(0).astype('int') df['TotalDeaths'] = df['TotalDeaths'].fillna(0).astype('int') df['TotalRecovered'] = df['TotalRecovered'].fillna(0).astype('int') df['ActiveCases'] = df['ActiveCases'].fillna(0).astype('int') df['Serious'] = df['Serious'].fillna(0).astype('int') df['Deaths/1M pop'] = df['Deaths/1M pop'].fillna(0).astype('int') df['TotalTests'] = df['TotalTests'].fillna(0).astype('int') df['Tests/ 1M pop'] = df['Tests/ 1M pop'].fillna(0).astype('int') df['NewCases'] = df['NewCases'].fillna(0) df[['NewCases']] = df[['NewCases']].replace('[\\+,]', '', regex=True).astype(int) df['NewDeaths'] = df['NewDeaths'].fillna(0) df[['NewDeaths']] = df[['NewDeaths']].replace('[\\+,]', '', regex=True).astype(int) df[['Population']] = df[['Population']].fillna(0).astype('int') time_series.fillna(0) time_series.isnull().sum() dataframe = df.iloc[1:216, :-1] dataframe.style.background_gradient(cmap='Reds') group1 = time_series.groupby(['Date', 'Country'])['Confirmed', 'Deaths', 'Recovered'].sum().reset_index() heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Confirmed']), hover_name='Country', projection='natural earth', title='Heatmap', color_continuous_scale=px.colors.sequential.Blues) heat.update(layout_coloraxis_showscale=False) fig_heat = px.choropleth(group1, locations='Country', locationmode='country names', color=np.log(group1['Deaths']), hover_name='Country', projection='natural earth', title='Heatmap(Deaths)', color_continuous_scale=px.colors.sequential.Reds) fig_heat.update(layout_coloraxis_showscale=False) fig_z = px.bar(dataframe.sort_values('TotalCases'),x='TotalCases', y='Country',orientation = 'h', color_discrete_sequence=['#B3611A'],text = 'TotalCases',title='TotalCases') fig_x = px.bar(dataframe.sort_values('TotalDeaths'),x='TotalDeaths', y='Country',orientation = 'h', color_discrete_sequence=['#830707'],text = 'TotalDeaths',title = 'TotalDeaths') fig_ = px.bar(dataframe.sort_values('TotalRecovered'),x='TotalRecovered',y='Country',orientation ='h', color_discrete_sequence=['#073707'],text = 'TotalRecovered',title = 'TotalRecovered') fig_p = make_subplots(rows =1,cols =3,subplot_titles=('TotalCases','TotalDeaths','TotalRecovered')) fig_p.add_trace(fig_z['data'][0],row = 1,col =1) fig_p.add_trace(fig_x['data'][0],row = 1,col =2) fig_p.add_trace(fig_['data'][0],row=1,col=3) fig_p.update_layout(height=3000,title ='Per Country') fig_p.show() totalCases = df.iloc[1:21, 0:2] df1 = df[['Country', 'TotalDeaths']] TotalDeaths = df1[1:21] df2 = df[['Country', 'TotalRecovered']] totalrecovered = df2[1:21] data = totalCases.sort_values('TotalCases') data1 = TotalDeaths.sort_values('TotalDeaths') data2 = totalrecovered.sort_values('TotalRecovered') fig1 = px.bar(data, x='TotalCases', y='Country', orientation='h', color_discrete_sequence=['#B3611A'], text='TotalCases') fig2 = px.bar(data1, x='TotalDeaths', y='Country', orientation='h', color_discrete_sequence=['#830707'], text='TotalDeaths') fig3 = px.bar(data2, x='TotalRecovered', y='Country', orientation='h', color_discrete_sequence=['#073707'], text='TotalRecovered') fig = make_subplots(rows=2, cols=3, subplot_titles=('Totalconfirmed', 'Total deaths', 'total Recovered')) fig.add_trace(fig1['data'][0], row=1, col=1) fig.add_trace(fig2['data'][0], row=1, col=2) fig.add_trace(fig3['data'][0], row=1, col=3) fig.update_layout(height=1200, title='Top 20 Countries') fig.show()
code
34150863/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) df.dtypes
code
34150863/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests import requests url = 'https://www.worldometers.info/coronavirus/#countries' header = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest'} r = requests.get(url, headers=header) dfs = pd.read_html(r.text) df = dfs[0] time_series = pd.read_csv('../input/corona-virus-report/covid_19_clean_complete.csv', parse_dates=['Date']) df.isnull().sum() df.rename(columns={'Country,Other': 'Country'}, inplace=True) df.rename(columns={'Serious,Critical': 'Serious'}, inplace=True) df.rename(columns={'Tot Cases/1M pop': 'TotalCases/1M'}, inplace=True) time_series.rename(columns={'Country/Region': 'Country'}, inplace=True) df.drop('#', axis=1, inplace=True) df.dtypes df.head()
code
18116817/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/cumulative.csv') koi_pond = ['koi_pdisposition', 'koi_tce_plnt_num', 'koi_tce_delivname', 'kepler_name'] cols = raw_data.columns for c in cols: if 'err' in c: koi_pond.append(c) data = raw_data.drop(koi_pond, axis=1) data = data.dropna() data.rename(columns={'kepid': 'kepler_id', 'kepoi_name': 'koi_name', 'koi_disposition': 'plnt_disposition', 'koi_score': 'plnt_disp_confidence', 'koi_fpflag_nt': 'flag_nTransitLk', 'koi_fpflag_ss': 'flag_scndEvent', 'koi_fpflag_co': 'flag_centroidOffset', 'koi_fpflag_ec': 'flag_ephMatch', 'koi_period': 'orbital_period', 'koi_time0bk': 'transit_epoch', 'koi_impact': 'impact_parameter', 'koi_duration': 'transit_duration', 'koi_depth': 'transit_depth', 'koi_prad': 'planetary_radius', 'koi_teq': 'equ_temp', 'koi_insol': 'insolation_flux', 'koi_model_snr': 'transit_sigToNoise', 'koi_steff': 'stellar_eff_temp', 'koi_slogg': 'stellar_surf_gravity', 'koi_srad': 'stellar_radius', 'ra': 'right_acension', 'dec': 'declination', 'koi_kepmag': 'kepler_magnitude'}, inplace=True) data.tail()
code
18116817/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/cumulative.csv') koi_pond = ['koi_pdisposition', 'koi_tce_plnt_num', 'koi_tce_delivname', 'kepler_name'] cols = raw_data.columns for c in cols: if 'err' in c: koi_pond.append(c) data = raw_data.drop(koi_pond, axis=1) print('Dropped:\n\n', koi_pond) print(f'\nYour dataset had {raw_data.shape[1]} columns.\nIt now has {data.shape[1]} columns.')
code
18116817/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/cumulative.csv') koi_pond = ['koi_pdisposition', 'koi_tce_plnt_num', 'koi_tce_delivname', 'kepler_name'] cols = raw_data.columns for c in cols: if 'err' in c: koi_pond.append(c) data = raw_data.drop(koi_pond, axis=1) data = data.dropna() print(f'The dataset had {raw_data.shape[0]} rows. It now has {data.shape[0]} rows.\n({raw_data.shape[0] - data.shape[0]} rows were dropped, leaving you with {round(data.shape[0] / raw_data.shape[0] * 100, 2)}% of the original number of entries.)')
code
18116817/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/cumulative.csv') print('Here are all the columns:\n') print(raw_data.columns.tolist())
code
18116817/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/cumulative.csv') koi_pond = ['koi_pdisposition', 'koi_tce_plnt_num', 'koi_tce_delivname', 'kepler_name'] cols = raw_data.columns for c in cols: if 'err' in c: koi_pond.append(c) data = raw_data.drop(koi_pond, axis=1) data = data.dropna() data.rename(columns={'kepid': 'kepler_id', 'kepoi_name': 'koi_name', 'koi_disposition': 'plnt_disposition', 'koi_score': 'plnt_disp_confidence', 'koi_fpflag_nt': 'flag_nTransitLk', 'koi_fpflag_ss': 'flag_scndEvent', 'koi_fpflag_co': 'flag_centroidOffset', 'koi_fpflag_ec': 'flag_ephMatch', 'koi_period': 'orbital_period', 'koi_time0bk': 'transit_epoch', 'koi_impact': 'impact_parameter', 'koi_duration': 'transit_duration', 'koi_depth': 'transit_depth', 'koi_prad': 'planetary_radius', 'koi_teq': 'equ_temp', 'koi_insol': 'insolation_flux', 'koi_model_snr': 'transit_sigToNoise', 'koi_steff': 'stellar_eff_temp', 'koi_slogg': 'stellar_surf_gravity', 'koi_srad': 'stellar_radius', 'ra': 'right_acension', 'dec': 'declination', 'koi_kepmag': 'kepler_magnitude'}, inplace=True) def spectral_classify(temp): if temp > 33000: return 'O' elif temp > 10000: return 'B' elif temp > 7500: return 'A' elif temp > 6000: return 'F' elif temp > 5200: return 'G' elif temp > 3700: return 'K' else: return 'M' spectral_classes = [] for temp in data['stellar_eff_temp'].values: spectral_classes.append(spectral_classify(temp)) data['stellar_spectral_cl'] = spectral_classes print('Spectral classes added to dataset.')
code
18116817/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/cumulative.csv') koi_pond = ['koi_pdisposition', 'koi_tce_plnt_num', 'koi_tce_delivname', 'kepler_name'] cols = raw_data.columns for c in cols: if 'err' in c: koi_pond.append(c) data = raw_data.drop(koi_pond, axis=1) data = data.dropna() data.rename(columns={'kepid': 'kepler_id', 'kepoi_name': 'koi_name', 'koi_disposition': 'plnt_disposition', 'koi_score': 'plnt_disp_confidence', 'koi_fpflag_nt': 'flag_nTransitLk', 'koi_fpflag_ss': 'flag_scndEvent', 'koi_fpflag_co': 'flag_centroidOffset', 'koi_fpflag_ec': 'flag_ephMatch', 'koi_period': 'orbital_period', 'koi_time0bk': 'transit_epoch', 'koi_impact': 'impact_parameter', 'koi_duration': 'transit_duration', 'koi_depth': 'transit_depth', 'koi_prad': 'planetary_radius', 'koi_teq': 'equ_temp', 'koi_insol': 'insolation_flux', 'koi_model_snr': 'transit_sigToNoise', 'koi_steff': 'stellar_eff_temp', 'koi_slogg': 'stellar_surf_gravity', 'koi_srad': 'stellar_radius', 'ra': 'right_acension', 'dec': 'declination', 'koi_kepmag': 'kepler_magnitude'}, inplace=True) print(data.columns.tolist())
code
18116817/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # more plots raw_data = pd.read_csv('../input/cumulative.csv') koi_pond = ['koi_pdisposition', 'koi_tce_plnt_num', 'koi_tce_delivname', 'kepler_name'] cols = raw_data.columns for c in cols: if 'err' in c: koi_pond.append(c) data = raw_data.drop(koi_pond, axis=1) data = data.dropna() data.rename(columns={'kepid': 'kepler_id', 'kepoi_name': 'koi_name', 'koi_disposition': 'plnt_disposition', 'koi_score': 'plnt_disp_confidence', 'koi_fpflag_nt': 'flag_nTransitLk', 'koi_fpflag_ss': 'flag_scndEvent', 'koi_fpflag_co': 'flag_centroidOffset', 'koi_fpflag_ec': 'flag_ephMatch', 'koi_period': 'orbital_period', 'koi_time0bk': 'transit_epoch', 'koi_impact': 'impact_parameter', 'koi_duration': 'transit_duration', 'koi_depth': 'transit_depth', 'koi_prad': 'planetary_radius', 'koi_teq': 'equ_temp', 'koi_insol': 'insolation_flux', 'koi_model_snr': 'transit_sigToNoise', 'koi_steff': 'stellar_eff_temp', 'koi_slogg': 'stellar_surf_gravity', 'koi_srad': 'stellar_radius', 'ra': 'right_acension', 'dec': 'declination', 'koi_kepmag': 'kepler_magnitude'}, inplace=True) star_colors = ['#fc0303', '#fc8403', '#fcf403', '#fffb91', '#ffffff', '#d1f4ff', '#00a1ff'] sns.set_style('dark') sns.lmplot('stellar_radius', 'stellar_surf_gravity', data, fit_reg=False, hue='stellar_spectral_cl', palette=star_colors, markers='*', scatter_kws={'alpha': 0.3, 's': 200})
code
50244427/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f"Dataset has {len(df['city'].dropna().unique())} unique cities.") print("_"*20) print(f"Unique cities count:\n{df['city'].value_counts()}") print("*"*50, end="\n\n") fig, ax = plt.subplots(figsize=(12, 6)) sns.barplot(ax=ax, x=df['city'].value_counts().index[:10], y=df['city'].value_counts().values[:10], capsize=.2,palette="Blues_d") ax.set_title("Unique city count bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Count",fontsize=14) plt.show() city_with_dev = df.groupby(['city']).mean()['city_development_index'].reset_index() city_with_dev = city_with_dev.sort_values(by=['city_development_index'], ascending=False).reset_index(drop=True) fig, ax = plt.subplots(figsize=(16, 6)) sns.barplot(ax=ax, x=city_with_dev['city'][:15], y=city_with_dev['city_development_index'][:15], palette="Blues_d") ax.set_title("Top 15 cities with best development index bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Development Index",fontsize=14) plt.show() print(f"Dataset has {len(df['gender'].dropna().unique())} unique gender's data.") print("_"*20) print(f"Unique Gender counts:\n{df['gender'].value_counts()}") print("*"*50, end="\n\n") total = df.shape[0] total_male = df.query("gender == 'Male'") total_female = df.query("gender == 'Female'") total_other = df.query("gender == 'Other'") male_percent = round(len(total_male)*100/total, 3) female_percent = round(len(total_female)*100/total, 3) other_percent = round(len(total_female)*100/total, 3) labels = 'Male Percentage', 'Female Percentage', 'Other Percentage' sizes = [male_percent, female_percent, other_percent] explode = (0.05, 0.05, 0.05) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title('Gender spread in Data', fontsize=15) plt.savefig("./gender_pie.png") plt.show() total = len(df.query('target == 1.0')) total_male_target = df.query("gender == 'Male' and target == 1.0") total_female_target = df.query("gender == 'Female' and target == 1.0") total_other_target = df.query("gender == 'Other' and target == 1.0") male_target_percent = round(len(total_male_target) * 100 / total, 3) female_target_percent = round(len(total_female_target) * 100 / total, 3) other_target_percent = round(len(total_other_target) * 100 / total, 3) labels = ('Male Percentage', 'Female Percentage', 'Other Percentage') sizes = [male_target_percent, female_target_percent, other_target_percent] explode = (0.1, 0.1, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title('Gender with target = 1.0', fontsize=15) plt.savefig('./gender_target_1_pie.png') plt.show()
code
50244427/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f"Dataset has {len(df['city_development_index'].dropna().unique())} unique city development indices.") print('_' * 20) print(f"Unique City Development Indices:\n{df['city_development_index'].value_counts()}") print('*' * 50, end='\n\n')
code
50244427/cell_4
[ "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) df.head()
code
50244427/cell_2
[ "text_html_output_1.png" ]
import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50244427/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f"Dataset has {len(df['city'].dropna().unique())} unique cities.") print("_"*20) print(f"Unique cities count:\n{df['city'].value_counts()}") print("*"*50, end="\n\n") fig, ax = plt.subplots(figsize=(12, 6)) sns.barplot(ax=ax, x=df['city'].value_counts().index[:10], y=df['city'].value_counts().values[:10], capsize=.2,palette="Blues_d") ax.set_title("Unique city count bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Count",fontsize=14) plt.show() city_with_dev = df.groupby(['city']).mean()['city_development_index'].reset_index() city_with_dev = city_with_dev.sort_values(by=['city_development_index'], ascending=False).reset_index(drop=True) fig, ax = plt.subplots(figsize=(16, 6)) sns.barplot(ax=ax, x=city_with_dev['city'][:15], y=city_with_dev['city_development_index'][:15], palette='Blues_d') ax.set_title('Top 15 cities with best development index bar chart', fontsize=16) ax.set_xlabel('City', fontsize=14) ax.set_ylabel('Development Index', fontsize=14) plt.show()
code
50244427/cell_7
[ "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f'Dataset has {df.shape[0]} rows and {df.shape[1]} columns.') print('*' * 50, end='\n\n') print(f"Dataset has {len(df['enrollee_id'].dropna().unique())} unique user's data.") print('*' * 50, end='\n\n')
code
50244427/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f"Dataset has {len(df['city'].dropna().unique())} unique cities.") print('_' * 20) print(f"Unique cities count:\n{df['city'].value_counts()}") print('*' * 50, end='\n\n') fig, ax = plt.subplots(figsize=(12, 6)) sns.barplot(ax=ax, x=df['city'].value_counts().index[:10], y=df['city'].value_counts().values[:10], capsize=0.2, palette='Blues_d') ax.set_title('Unique city count bar chart', fontsize=16) ax.set_xlabel('City', fontsize=14) ax.set_ylabel('Count', fontsize=14) plt.show()
code
50244427/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f"Dataset has {len(df['city'].dropna().unique())} unique cities.") print("_"*20) print(f"Unique cities count:\n{df['city'].value_counts()}") print("*"*50, end="\n\n") fig, ax = plt.subplots(figsize=(12, 6)) sns.barplot(ax=ax, x=df['city'].value_counts().index[:10], y=df['city'].value_counts().values[:10], capsize=.2,palette="Blues_d") ax.set_title("Unique city count bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Count",fontsize=14) plt.show() city_with_dev = df.groupby(['city']).mean()['city_development_index'].reset_index() city_with_dev = city_with_dev.sort_values(by=['city_development_index'], ascending=False).reset_index(drop=True) fig, ax = plt.subplots(figsize=(16, 6)) sns.barplot(ax=ax, x=city_with_dev['city'][:15], y=city_with_dev['city_development_index'][:15], palette="Blues_d") ax.set_title("Top 15 cities with best development index bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Development Index",fontsize=14) plt.show() print(f"Dataset has {len(df['gender'].dropna().unique())} unique gender's data.") print("_"*20) print(f"Unique Gender counts:\n{df['gender'].value_counts()}") print("*"*50, end="\n\n") total = df.shape[0] total_male = df.query("gender == 'Male'") total_female = df.query("gender == 'Female'") total_other = df.query("gender == 'Other'") male_percent = round(len(total_male)*100/total, 3) female_percent = round(len(total_female)*100/total, 3) other_percent = round(len(total_female)*100/total, 3) labels = 'Male Percentage', 'Female Percentage', 'Other Percentage' sizes = [male_percent, female_percent, other_percent] explode = (0.05, 0.05, 0.05) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title('Gender spread in Data', fontsize=15) plt.savefig("./gender_pie.png") plt.show() total = len(df.query("target == 1.0")) total_male_target = df.query("gender == 'Male' and target == 1.0") total_female_target = df.query("gender == 'Female' and target == 1.0") total_other_target = df.query("gender == 'Other' and target == 1.0") male_target_percent = round(len(total_male_target)*100/total, 3) female_target_percent = round(len(total_female_target)*100/total, 3) other_target_percent = round(len(total_other_target)*100/total, 3) labels = 'Male Percentage', 'Female Percentage', 'Other Percentage' sizes = [male_target_percent, female_target_percent, other_target_percent] explode = (0.1, 0.1, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title('Gender with target = 1.0', fontsize=15) plt.savefig("./gender_target_1_pie.png") plt.show() total = len(df.query('target == 0.0')) total_male_target = df.query("gender == 'Male' and target == 0.0") total_female_target = df.query("gender == 'Female' and target == 0.0") total_other_target = df.query("gender == 'Other' and target == 0.0") male_target_percent = round(len(total_male_target) * 100 / total, 3) female_target_percent = round(len(total_female_target) * 100 / total, 3) other_target_percent = round(len(total_other_target) * 100 / total, 3) labels = ('Male Percentage', 'Female Percentage', 'Other Percentage') sizes = [male_target_percent, female_target_percent, other_target_percent] explode = (0.1, 0.1, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title('Gender with target = 0.0', fontsize=15) plt.savefig('./gender_target_0_pie.png') plt.show()
code
50244427/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) city_with_dev = df.groupby(['city']).mean()['city_development_index'].reset_index() city_with_dev = city_with_dev.sort_values(by=['city_development_index'], ascending=False).reset_index(drop=True) city_with_dev.head()
code
50244427/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) print(f"Dataset has {len(df['city'].dropna().unique())} unique cities.") print("_"*20) print(f"Unique cities count:\n{df['city'].value_counts()}") print("*"*50, end="\n\n") fig, ax = plt.subplots(figsize=(12, 6)) sns.barplot(ax=ax, x=df['city'].value_counts().index[:10], y=df['city'].value_counts().values[:10], capsize=.2,palette="Blues_d") ax.set_title("Unique city count bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Count",fontsize=14) plt.show() city_with_dev = df.groupby(['city']).mean()['city_development_index'].reset_index() city_with_dev = city_with_dev.sort_values(by=['city_development_index'], ascending=False).reset_index(drop=True) fig, ax = plt.subplots(figsize=(16, 6)) sns.barplot(ax=ax, x=city_with_dev['city'][:15], y=city_with_dev['city_development_index'][:15], palette="Blues_d") ax.set_title("Top 15 cities with best development index bar chart",fontsize=16) ax.set_xlabel("City",fontsize=14) ax.set_ylabel("Development Index",fontsize=14) plt.show() print(f"Dataset has {len(df['gender'].dropna().unique())} unique gender's data.") print('_' * 20) print(f"Unique Gender counts:\n{df['gender'].value_counts()}") print('*' * 50, end='\n\n') total = df.shape[0] total_male = df.query("gender == 'Male'") total_female = df.query("gender == 'Female'") total_other = df.query("gender == 'Other'") male_percent = round(len(total_male) * 100 / total, 3) female_percent = round(len(total_female) * 100 / total, 3) other_percent = round(len(total_female) * 100 / total, 3) labels = ('Male Percentage', 'Female Percentage', 'Other Percentage') sizes = [male_percent, female_percent, other_percent] explode = (0.05, 0.05, 0.05) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title('Gender spread in Data', fontsize=15) plt.savefig('./gender_pie.png') plt.show()
code
50244427/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) import os from scipy import stats import matplotlib.pyplot as plt import seaborn as sns TRAIN_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv' TEST_PATH = '/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_test.csv' df = pd.read_csv(TRAIN_PATH) df['relevent_experience'].dropna().unique()
code
18143144/cell_42
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') X_test = test_set.drop(['PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) print(X_test.head()) X_test = X_test.values
code
18143144/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() train_set[['Pclass', 'Survived']].groupby(['Pclass']).mean().sort_values(by='Survived', ascending=False).plot(kind='bar')
code
18143144/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.head()
code
18143144/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) g = sns.FacetGrid(train_set, col='Survived') g.map(plt.hist, 'Age', bins=20) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() grid = sns.FacetGrid(train_set, col='Survived') grid.map(plt.hist, 'Fare') grid = sns.FacetGrid(train_set, row='Embarked', col='Survived', size=2.2, aspect=1.6) grid.map(plt.bar, 'Sex', 'Fare') grid = sns.FacetGrid(train_set, col='Survived', row='Pclass') grid.map(plt.hist, 'Age')
code
18143144/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) g = sns.FacetGrid(train_set, col='Survived') g.map(plt.hist, 'Age', bins=20) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() grid = sns.FacetGrid(train_set, col='Survived') grid.map(plt.hist, 'Fare')
code
18143144/cell_33
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) g = sns.FacetGrid(train_set, col='Survived') g.map(plt.hist, 'Age', bins=20) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() grid = sns.FacetGrid(train_set, col='Survived') grid.map(plt.hist, 'Fare') grid = sns.FacetGrid(train_set, row='Embarked', col='Survived', size=2.2, aspect=1.6) grid.map(plt.bar, 'Sex', 'Fare')
code
18143144/cell_44
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() X_train = train_set.drop(['Survived', 'PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) X_train = X_train.values X_train[:, [1, 5]]
code
18143144/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() g = sns.FacetGrid(train_set, col='Survived') g.map(plt.hist, 'Age', bins=20)
code
18143144/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts()
code
18143144/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() X_train = train_set.drop(['Survived', 'PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) X_train = X_train.values y_train = train_set.drop(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1) print(y_train.head()) y_train = y_train.values
code
18143144/cell_39
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() X_train = train_set.drop(['Survived', 'PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) print(X_train.head()) X_train = X_train.values
code
18143144/cell_48
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() X_train = train_set.drop(['Survived', 'PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) X_train = X_train.values labelEncoder = LabelEncoder() X_train[:, 5] = labelEncoder.fit_transform(X_train[:, 5]) labelEncoder = LabelEncoder() X_train[:, 5] = labelEncoder.fit_transform(X_train[:, 5]) print(X_train)
code
18143144/cell_49
[ "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() X_train = train_set.drop(['Survived', 'PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) X_train = X_train.values y_train = train_set.drop(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1) y_train = y_train.values knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train)
code
18143144/cell_32
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() train_set[['Survived', 'Embarked']].groupby('Embarked').mean().plot(kind='bar')
code