path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
18143144/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra np.round(342 * 100 / 891)
code
18143144/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() train_set[['Sex', 'Survived']].groupby(['Sex']).mean()
code
18143144/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.info()
code
18143144/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() train_set[['Sex', 'Survived']].groupby(['Sex']).mean().plot(kind='bar')
code
18143144/cell_35
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) g = sns.FacetGrid(train_set, col='Survived') g.map(plt.hist, 'Age', bins=20) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() grid = sns.FacetGrid(train_set, col='Survived') grid.map(plt.hist, 'Fare') grid = sns.FacetGrid(train_set, row='Embarked', col='Survived', size=2.2, aspect=1.6) grid.map(plt.bar, 'Sex', 'Fare') grid = sns.FacetGrid(train_set, col='Survived', row='Pclass') grid.map(plt.hist, 'Age') grid = sns.FacetGrid(train_set, col='Survived', row='Embarked') grid.map(plt.bar, 'Sex', 'Fare')
code
18143144/cell_31
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() train_set[['Survived', 'Embarked']].groupby('Embarked').mean()
code
18143144/cell_46
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() X_train = train_set.drop(['Survived', 'PassengerId', 'Name', 'Parch', 'Ticket', 'Cabin'], axis=1) X_train = X_train.values labelEncoder = LabelEncoder() X_train[:, 5] = labelEncoder.fit_transform(X_train[:, 5]) print(X_train)
code
18143144/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() train_set[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)
code
18143144/cell_22
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum()
code
18143144/cell_10
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra np.round(342 * 100 / 891) np.round(549 * 100 / 891)
code
18143144/cell_27
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() train_set[['Parch', 'Survived']].groupby(['Parch']).mean().sort_values(by='Survived', ascending=False)
code
18143144/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() np.round(342 * 100 / 891) np.round(549 * 100 / 891) mean = np.round(train_set.Age.mean()) train_set['Age'] = train_set.Age.fillna(mean) train_set.Age.isnull().sum() train_set.head()
code
18143144/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum() train_set.Survived.value_counts() train_set[['Pclass', 'Survived']].groupby(['Pclass']).mean().sort_values(by='Survived', ascending=False)
code
18143144/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().sum()
code
105178941/cell_4
[ "text_plain_output_1.png" ]
first_name = ['adnan', 'afnan', 'affan'] last_name = ['k', 's', 'd'] l = len(first_name) name = [] for i in range(l): x = first_name[i] + last_name[i] name.append(x) first_name = ['adnan', 'afnan'] last_name = ['k', 'd'] l = len(first_name) name = [] for i in range(l): x = first_name[i] + ' ' + last_name[i] name.append(x) print(name)
code
105178941/cell_1
[ "text_plain_output_1.png" ]
first_name = ['adnan', 'afnan', 'affan'] last_name = ['k', 's', 'd'] l = len(first_name) name = [] for i in range(l): x = first_name[i] + last_name[i] name.append(x) print(name)
code
105178941/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
b = [1, 2, 3, 4, 5, 6, 7] num1 = int(input('enter the number to remove in the list')) for i in b: if i == num1: b.remove(i) print(b)
code
73087591/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape)) x_train, x_test, y_train, y_test = train_test_split(train, label, test_size=0.3, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_train = x_train.reshape(-1, 10, 10, 1) x_test = x_test.reshape(-1, 10, 10, 1) print('x_train shape: ', x_train.shape) print('y_train shape: ', y_train.shape) print('x_test shape: ', x_test.shape) print('y_test shape: ', y_test.shape)
code
73087591/cell_20
[ "text_plain_output_1.png" ]
from keras.layers.normalization import BatchNormalization from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow.keras.layers import Conv2D, MaxPooling2D from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.models import Sequential import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape)) x_train, x_test, y_train, y_test = train_test_split(train, label, test_size=0.3, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_train = x_train.reshape(-1, 10, 10, 1) x_test = x_test.reshape(-1, 10, 10, 1) batch_size = 128 epochs = 8 learning_rate = 0.01 activation = 'relu' Fully_connected_layer_nodes = 86 input_shape = (10, 10, 1) img_rows = 10 img_cols = 10 if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) model = Sequential() model.add(Conv2D(8, kernel_size=(1, 1), activation=activation, padding='SAME', input_shape=input_shape)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(1, 1))) model.add(BatchNormalization()) model.add(Conv2D(36, (3, 3), activation=activation, padding='SAME')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(3, 3))) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(Fully_connected_layer_nodes, activation=activation)) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(Fully_connected_layer_nodes, activation=activation)) model.add(BatchNormalization()) model.add(Dense(1, activation='linear')) adam = tensorflow.keras.optimizers.Adam(lr=learning_rate) callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse']) model.summary()
code
73087591/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape))
code
73087591/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape print(f'There are {nRow} rows and {nCol} columns') df.head()
code
73087591/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73087591/cell_18
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape)) x_train, x_test, y_train, y_test = train_test_split(train, label, test_size=0.3, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_train = x_train.reshape(-1, 10, 10, 1) x_test = x_test.reshape(-1, 10, 10, 1) batch_size = 128 epochs = 8 learning_rate = 0.01 activation = 'relu' Fully_connected_layer_nodes = 86 input_shape = (10, 10, 1) img_rows = 10 img_cols = 10 if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) print('x_train shape: ', x_train.shape) print('y_train shape: ', y_train.shape) print('x_test shape: ', x_test.shape) print('y_test shape: ', y_test.shape) print('input_shape: ', input_shape)
code
73087591/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape)) x_train, x_test, y_train, y_test = train_test_split(train, label, test_size=0.3, random_state=42) print('x_train shape: ', x_train.shape) print('y_train shape: ', y_train.shape) print('x_test shape: ', x_test.shape) print('y_test shape: ', y_test.shape)
code
73087591/cell_15
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape)) x_train, x_test, y_train, y_test = train_test_split(train, label, test_size=0.3, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_train = x_train.reshape(-1, 10, 10, 1) x_test = x_test.reshape(-1, 10, 10, 1) fig = plt.figure(figsize=(21, 22)) label_index = y_train[:25].to_list() for i in range(25): plt.subplot(5, 5, 1 + i) plt.title('Image Belongs to the label: ' + ' ' + str(label_index[i]), fontname='Times New Roman', fontweight='bold') plt.imshow(x_train[i, :, :, 0], cmap=plt.get_cmap('gray')) plt.show()
code
73087591/cell_22
[ "image_output_1.png" ]
from keras.layers.normalization import BatchNormalization from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow.keras.layers import Conv2D, MaxPooling2D from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.models import Sequential import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape y = df['Creditability'] X = df.iloc[:, :-1] label = y train = X (print('train shape: ', train.shape), print('label shape: ', label.shape)) x_train, x_test, y_train, y_test = train_test_split(train, label, test_size=0.3, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_train = x_train.reshape(-1, 10, 10, 1) x_test = x_test.reshape(-1, 10, 10, 1) batch_size = 128 epochs = 8 learning_rate = 0.01 activation = 'relu' Fully_connected_layer_nodes = 86 input_shape = (10, 10, 1) img_rows = 10 img_cols = 10 if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) model = Sequential() model.add(Conv2D(8, kernel_size=(1, 1), activation=activation, padding='SAME', input_shape=input_shape)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(1, 1))) model.add(BatchNormalization()) model.add(Conv2D(36, (3, 3), activation=activation, padding='SAME')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(3, 3))) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(Fully_connected_layer_nodes, activation=activation)) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(Fully_connected_layer_nodes, activation=activation)) model.add(BatchNormalization()) model.add(Dense(1, activation='linear')) adam = tensorflow.keras.optimizers.Adam(lr=learning_rate) callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse']) model.summary() history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=[callback], verbose=1, validation_data=(x_test, y_test), shuffle=False) val_loss, val_acc = model.evaluate(x_test, y_test) print('validation loss: ', val_loss) print('<3 ') print('validation accuracy: ', val_acc) print('learn rate: ', learning_rate, 'epochs: ', epochs, 'activation: ', activation, "Fully Connected Layer's Node Number :", Fully_connected_layer_nodes)
code
73087591/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nRowsRead = 1000 df = pd.read_csv('../input/cusersmarildownloadsgermancsv/german.csv', delimiter=';', encoding='ISO-8859-2', nrows=nRowsRead) df.dataframeName = 'german.csv' nRow, nCol = df.shape print('df shape is: ', df.shape) y = df['Creditability'] X = df.iloc[:, :-1] print(type(X), type(y)) print(X.shape, y.shape)
code
1004511/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts.csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag] data = [] for region in pre.team_region.unique(): data.append([]) for _, row in pre[pre.team_region == region].iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == False] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob'])
code
1004511/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts.csv') df.head()
code
1004511/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts.csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag] data = [] for region in pre.team_region.unique(): data.append([]) for _, row in pre[pre.team_region == region].iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == False] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob']) match
code
2040742/cell_13
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape n_pixels = data.shape[1] n_pixels X_train = train[:, :(n_pixels + 1) // 2] X_train
code
2040742/cell_9
[ "image_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces
code
2040742/cell_4
[ "text_plain_output_1.png" ]
from skimage.io import imshow import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape firstImage = images[0] imshow(firstImage)
code
2040742/cell_6
[ "image_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape targets < 30
code
2040742/cell_2
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape
code
2040742/cell_11
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces face_ids = np.random.randint(0, 100, size=n_faces) face_ids test = test[face_ids, :] test.shape
code
2040742/cell_19
[ "text_plain_output_1.png" ]
from skimage.io import imshow from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV from sklearn.neighbors import KNeighborsRegressor import matplotlib.pyplot as plt import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces face_ids = np.random.randint(0, 100, size=n_faces) face_ids test = test[face_ids, :] test.shape n_pixels = data.shape[1] n_pixels X_train = train[:, :(n_pixels + 1) // 2] X_train y_train = train[:, n_pixels // 2:] y_train X_test = test[:, :(n_pixels + 1) // 2] y_test = test[:, n_pixels // 2:] ESTIMATORS = {'Extra trees': ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), 'K-nn': KNeighborsRegressor(), 'Linear regression': LinearRegression(), 'Ridge': RidgeCV(), 'RandomForestRegressor': RandomForestRegressor()} y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) y_test_predict['RandomForestRegressor'].shape image_shape = (64, 64) j = 0 for i in range(n_faces): actual_face = test[i].reshape(image_shape) completed_face = np.hstack((X_test[i], y_test_predict['Ridge'][i])) j = j + 1 y = actual_face.reshape(image_shape) x = completed_face.reshape(image_shape) j = j + 1 x = completed_face.reshape(image_shape) j = 0 for i in range(n_faces): actual_face = test[i].reshape(image_shape) completed_face = np.hstack((X_test[i], y_test_predict['Extra trees'][i])) j = j + 1 y = actual_face.reshape(image_shape) x = completed_face.reshape(image_shape) j = j + 1 x = completed_face.reshape(image_shape) plt.figure(figsize=(2 * n_faces * 2, 5)) j = 0 for i in range(n_faces): actual_face = test[i].reshape(image_shape) completed_face = np.hstack((X_test[i], y_test_predict['Linear regression'][i])) j = j + 1 plt.subplot(4, 5, j) y = actual_face.reshape(image_shape) x = completed_face.reshape(image_shape) imshow(x) j = j + 1 plt.subplot(4, 5, j) x = completed_face.reshape(image_shape) imshow(y) plt.show()
code
2040742/cell_7
[ "image_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape
code
2040742/cell_18
[ "text_plain_output_1.png" ]
from skimage.io import imshow from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV from sklearn.neighbors import KNeighborsRegressor import matplotlib.pyplot as plt import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces face_ids = np.random.randint(0, 100, size=n_faces) face_ids test = test[face_ids, :] test.shape n_pixels = data.shape[1] n_pixels X_train = train[:, :(n_pixels + 1) // 2] X_train y_train = train[:, n_pixels // 2:] y_train X_test = test[:, :(n_pixels + 1) // 2] y_test = test[:, n_pixels // 2:] ESTIMATORS = {'Extra trees': ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), 'K-nn': KNeighborsRegressor(), 'Linear regression': LinearRegression(), 'Ridge': RidgeCV(), 'RandomForestRegressor': RandomForestRegressor()} y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) y_test_predict['RandomForestRegressor'].shape image_shape = (64, 64) j = 0 for i in range(n_faces): actual_face = test[i].reshape(image_shape) completed_face = np.hstack((X_test[i], y_test_predict['Ridge'][i])) j = j + 1 y = actual_face.reshape(image_shape) x = completed_face.reshape(image_shape) j = j + 1 x = completed_face.reshape(image_shape) plt.figure(figsize=(2 * n_faces * 2, 5)) j = 0 for i in range(n_faces): actual_face = test[i].reshape(image_shape) completed_face = np.hstack((X_test[i], y_test_predict['Extra trees'][i])) j = j + 1 plt.subplot(4, 5, j) y = actual_face.reshape(image_shape) x = completed_face.reshape(image_shape) imshow(x) j = j + 1 plt.subplot(4, 5, j) x = completed_face.reshape(image_shape) imshow(y) plt.show()
code
2040742/cell_8
[ "image_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape test = data[targets >= 30] test.shape
code
2040742/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV from sklearn.neighbors import KNeighborsRegressor import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces face_ids = np.random.randint(0, 100, size=n_faces) face_ids test = test[face_ids, :] test.shape n_pixels = data.shape[1] n_pixels X_train = train[:, :(n_pixels + 1) // 2] X_train y_train = train[:, n_pixels // 2:] y_train X_test = test[:, :(n_pixels + 1) // 2] y_test = test[:, n_pixels // 2:] ESTIMATORS = {'Extra trees': ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), 'K-nn': KNeighborsRegressor(), 'Linear regression': LinearRegression(), 'Ridge': RidgeCV(), 'RandomForestRegressor': RandomForestRegressor()} y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) y_test_predict['RandomForestRegressor'].shape
code
2040742/cell_3
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape
code
2040742/cell_17
[ "text_plain_output_1.png" ]
from skimage.io import imshow from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV from sklearn.neighbors import KNeighborsRegressor import matplotlib.pyplot as plt import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces face_ids = np.random.randint(0, 100, size=n_faces) face_ids test = test[face_ids, :] test.shape n_pixels = data.shape[1] n_pixels X_train = train[:, :(n_pixels + 1) // 2] X_train y_train = train[:, n_pixels // 2:] y_train X_test = test[:, :(n_pixels + 1) // 2] y_test = test[:, n_pixels // 2:] ESTIMATORS = {'Extra trees': ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), 'K-nn': KNeighborsRegressor(), 'Linear regression': LinearRegression(), 'Ridge': RidgeCV(), 'RandomForestRegressor': RandomForestRegressor()} y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) y_test_predict['RandomForestRegressor'].shape image_shape = (64, 64) plt.figure(figsize=(2 * n_faces * 2, 5)) j = 0 for i in range(n_faces): actual_face = test[i].reshape(image_shape) completed_face = np.hstack((X_test[i], y_test_predict['Ridge'][i])) j = j + 1 plt.subplot(4, 5, j) y = actual_face.reshape(image_shape) x = completed_face.reshape(image_shape) imshow(x) j = j + 1 plt.subplot(4, 5, j) x = completed_face.reshape(image_shape) imshow(y) plt.show()
code
2040742/cell_14
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape train = data[targets < 30] train.shape n_pixels = data.shape[1] n_pixels y_train = train[:, n_pixels // 2:] y_train
code
2040742/cell_10
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape targets = np.load('../input/olivetti_faces_target.npy') targets.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape test = data[targets >= 30] test.shape n_faces = test.shape[0] // 10 n_faces face_ids = np.random.randint(0, 100, size=n_faces) face_ids
code
2040742/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape n_pixels = data.shape[1] n_pixels
code
2040742/cell_5
[ "text_plain_output_1.png" ]
import numpy as np images = np.load('../input/olivetti_faces.npy') images.shape data = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) data.shape
code
1005671/cell_15
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train) predictions = clf.predict(X_test) from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_test, predictions) print(accuracy)
code
1005671/cell_17
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd dfTrain = pd.read_csv('../input/train.csv') dfTest = pd.read_csv('../input/test.csv') from sklearn.preprocessing import LabelEncoder dfCombined = pd.concat([dfTrain, dfTest]) for feature in list(dfCombined): le = LabelEncoder() le.fit(dfCombined[feature]) if feature in dfTrain: dfTrain[feature] = le.transform(dfTrain[feature]) if feature in dfTest: dfTest[feature] = le.transform(dfTest[feature]) from sklearn.model_selection import train_test_split X = dfTrain.drop(['Survived'], axis=1) y = dfTrain['Survived'] num_test = 0.2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=num_test, random_state=23) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train) predictions = clf.predict(X_test) clf = RandomForestClassifier() clf.fit(X, y) dfTestPredictions = clf.predict(dfTest) results = pd.DataFrame({'PassengerId': dfTest['PassengerId'], 'Survived': dfTestPredictions}) results.to_csv('results.csv', index=False) results.head()
code
1005671/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd dfTrain = pd.read_csv('../input/train.csv') dfTest = pd.read_csv('../input/test.csv') dfTrain.head()
code
89125510/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data[(data['alcohol'] > 12) & (data['quality'] > 7)]
code
89125510/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f, ax = plt.subplots(figsize=(18, 9)) sns.heatmap(data.corr(), annot=True, linewidths=5, fmt='.1f', ax=ax, linecolor='black')
code
89125510/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.head()
code
89125510/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns
code
89125510/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data.plot(kind='scatter', x='citric_acid', y='fixed_acidity', alpha=0.7, color='red')
code
89125510/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89125510/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) data.describe()
code
89125510/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data['evaluation'] = ['Bad' if i < 3 else 'Good' if i < 7 else 'High quality' for i in data.quality] data.loc[:15, ['quality', 'evaluation']]
code
89125510/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data['evaluation'] = ['Bad' if i < 3 else 'Good' if i < 7 else 'High quality' for i in data.quality] data.loc[:15, ['quality', 'evaluation']] data['free_sulfur_dioxide'].value_counts()
code
89125510/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.info()
code
89125510/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data['evaluation'] = ['Bad' if i < 3 else 'Good' if i < 7 else 'High quality' for i in data.quality] data.loc[:15, ['quality', 'evaluation']] quality_list = list(data.quality.unique()) sulfur = [] for i in quality_list: x = data[data.quality == i] sulfur_rate = sum(x.quality) / len(x) sulfur.append(sulfur_rate) dataFrame = pd.DataFrame({'quality_list': quality_list, 'sulfur_ratio': sulfur}) new_index = dataFrame['sulfur_ratio'].sort_values(ascending=False).index.values sorted_data2 = dataFrame.reindex(new_index) plt.figure(figsize=(15, 10)) sns.barplot(x=sorted_data2['quality_list'], y=sorted_data2['sulfur_ratio']) plt.xticks(rotation=90) plt.xlabel('quality') plt.ylabel('sulfur rate') plt.show()
code
89125510/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data.alcohol.plot(kind='hist', bins=50, figsize=(15, 15), color='red')
code
89125510/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns
code
89125510/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr() data.columns data = data.drop(['Id'], axis=1) f,ax=plt.subplots(figsize=(18,9)) sns.heatmap(data.corr(),annot=True,linewidths=5,fmt='.1f',ax=ax,linecolor='black') data.rename(columns={'fixed acidity': 'fixed_acidity', 'volatile acidity': 'volatile_acidity', 'citric acid': 'citric_acid', 'residual sugar': 'residual_sugar', 'free sulfur dioxide': 'free_sulfur_dioxide', 'total sulfur dioxide': 'total_sulfur_dioxide'}, inplace=True) data.columns data.alcohol.plot(kind='line', color='red', label='sulphates', linewidth=1, alpha=0.5, grid=True, linestyle=':') data.quality.plot(color='g', label='quality', linewidth=1, alpha=0.5, grid=True, linestyle='-.') plt.legend(loc='upper right') plt.title('Line Plot') plt.show()
code
89125510/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/wine-quality-dataset/WineQT.csv') data.corr()
code
2041701/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 df_test = pd.read_csv('../input/test.csv') print(df_test.info()) print(df_test.head())
code
2041701/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 print(df_train.head())
code
2041701/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) df_test = pd.read_csv('../input/test.csv') df_test['sex_female'] = df_test['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_test['age_snr'] = df_test['Age'].apply(lambda x: 1 if x >= 50 else 0) df_test['age_mid'] = df_test['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_test['age_jnr'] = df_test['Age'].apply(lambda x: 1 if x <= 10 else 0) df_test['known_age'] = df_test['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_test.loc[df_test['known_age'] == 0, 'age_mid'] = 1 test = df_test.loc[:, ['PassengerId', 'Pclass', 'sex_female', 'age_jnr', 'known_age']] test_std = sc.transform(test) yy_test = lr.predict(test_std) df_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': yy_test}) print(df_submission.head()) df_submission.to_csv('accountant_titanic_01.csv', index=False)
code
2041701/cell_33
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) def classif_func(data_train, label_train, data_valid, label_valid, classif): classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_Kne(data_train, label_train, data_valid, label_valid, k): classif = KNeighborsClassifier(k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) for i in range(1, 30): print(i, classif_Kne(X_train_std, y_train, X_valid_std, y_valid, i))
code
2041701/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') print(df_train.head())
code
2041701/cell_19
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) print((y_valid != y_pred).sum()) print(accuracy_score(y_valid, y_pred))
code
2041701/cell_15
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 train = df_train.drop(['PassengerId', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked', 'Age'], axis=1) fig = plt.subplots(figsize=(20,10)) sns.heatmap(train.astype(float).corr(), annot=True, cmap='plasma') # my daugther favourite's color from sklearn.cross_validation import train_test_split X = df_train.loc[:, ['PassengerId', 'Pclass', 'sex_female', 'age_jnr', 'known_age']] y = df_train['Survived'] X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.3, random_state=0)
code
2041701/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2041701/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) def classif_func(data_train, label_train, data_valid, label_valid, classif): classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_Kne(data_train, label_train, data_valid, label_valid, k): classif = KNeighborsClassifier(k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_SVC(data_train, label_train, data_valid, label_valid, k): classif = SVC(gamma=2, C=k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) for i in range(1, 30): print(i, classif_SVC(X_train_std, y_train, X_valid_std, y_valid, i))
code
2041701/cell_31
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) classif_list = [SVC(kernel='linear', C=0.025), SVC(gamma=2, C=1), KNeighborsClassifier(10), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB()] def classif_func(data_train, label_train, data_valid, label_valid, classif): classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) for classif in classif_list: print(classif, classif_func(X_train_std, y_train, X_valid_std, y_valid, classif))
code
2041701/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 df_test = pd.read_csv('../input/test.csv') df_test['sex_female'] = df_test['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_test['age_snr'] = df_test['Age'].apply(lambda x: 1 if x >= 50 else 0) df_test['age_mid'] = df_test['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_test['age_jnr'] = df_test['Age'].apply(lambda x: 1 if x <= 10 else 0) df_test['known_age'] = df_test['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_test.loc[df_test['known_age'] == 0, 'age_mid'] = 1 print(df_test.head())
code
2041701/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 print(df_train.describe())
code
2041701/cell_37
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) df_test = pd.read_csv('../input/test.csv') df_test['sex_female'] = df_test['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_test['age_snr'] = df_test['Age'].apply(lambda x: 1 if x >= 50 else 0) df_test['age_mid'] = df_test['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_test['age_jnr'] = df_test['Age'].apply(lambda x: 1 if x <= 10 else 0) df_test['known_age'] = df_test['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_test.loc[df_test['known_age'] == 0, 'age_mid'] = 1 test = df_test.loc[:, ['PassengerId', 'Pclass', 'sex_female', 'age_jnr', 'known_age']] test_std = sc.transform(test) yy_test = lr.predict(test_std) df_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': yy_test}) df_submission.to_csv('accountant_titanic_01.csv', index=False) def classif_func(data_train, label_train, data_valid, label_valid, classif): classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_Kne(data_train, label_train, data_valid, label_valid, k): classif = KNeighborsClassifier(k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_SVC(data_train, label_train, data_valid, label_valid, k): classif = SVC(gamma=2, C=k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) classif = KNeighborsClassifier(20) classif.fit(X_train_std, y_train) yy_test = classif.predict(test_std) df_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': yy_test}) df_submission.to_csv('accountant_titanic_02.csv', index=False) classif = SVC(gamma=2, C=3) classif.fit(X_train_std, y_train) yy_test = classif.predict(test_std) df_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': yy_test}) print(df_submission.head()) df_submission.to_csv('accountant_titanic_03.csv', index=False)
code
2041701/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 train = df_train.drop(['PassengerId', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked', 'Age'], axis=1) fig = plt.subplots(figsize=(20, 10)) sns.heatmap(train.astype(float).corr(), annot=True, cmap='plasma')
code
2041701/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') print(df_train.info())
code
2041701/cell_36
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_train['sex_female'] = df_train['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_train['age_snr'] = df_train['Age'].apply(lambda x: 1 if x >= 50 else 0) df_train['age_mid'] = df_train['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_train['age_jnr'] = df_train['Age'].apply(lambda x: 1 if x <= 10 else 0) df_train['known_age'] = df_train['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_train.loc[df_train['known_age'] == 0, 'age_mid'] = 1 from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_valid_std = sc.transform(X_valid) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score lr = LogisticRegression(C=1000.0, random_state=0) lr.fit(X_train_std, y_train) y_pred = lr.predict(X_valid_std) df_test = pd.read_csv('../input/test.csv') df_test['sex_female'] = df_test['Sex'].apply(lambda x: 1 if x == 'female' else 0) df_test['age_snr'] = df_test['Age'].apply(lambda x: 1 if x >= 50 else 0) df_test['age_mid'] = df_test['Age'].apply(lambda x: 1 if x > 10 and x < 50 else 0) df_test['age_jnr'] = df_test['Age'].apply(lambda x: 1 if x <= 10 else 0) df_test['known_age'] = df_test['Age'].apply(lambda x: 0 if pd.isnull(x) else 1) df_test.loc[df_test['known_age'] == 0, 'age_mid'] = 1 test = df_test.loc[:, ['PassengerId', 'Pclass', 'sex_female', 'age_jnr', 'known_age']] test_std = sc.transform(test) yy_test = lr.predict(test_std) df_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': yy_test}) df_submission.to_csv('accountant_titanic_01.csv', index=False) def classif_func(data_train, label_train, data_valid, label_valid, classif): classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_Kne(data_train, label_train, data_valid, label_valid, k): classif = KNeighborsClassifier(k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) def classif_SVC(data_train, label_train, data_valid, label_valid, k): classif = SVC(gamma=2, C=k) classif.fit(data_train, label_train) y_pred = classif.predict(data_valid) return ((label_valid != y_pred).sum(), accuracy_score(label_valid, y_pred)) classif = KNeighborsClassifier(20) classif.fit(X_train_std, y_train) yy_test = classif.predict(test_std) df_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': yy_test}) print(df_submission.head()) df_submission.to_csv('accountant_titanic_02.csv', index=False)
code
90124505/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') sns.set_style('whitegrid') gdp = gdp.query('Year >= 1990') fig,ax = plt.subplots(figsize = (10,7)) rapid_year = [2015,2010,2019] gdp['color_cats'] = ['blue' if x in rapid_year else 'red' for x in gdp['Year']] ax.bar (gdp['Year'],gdp['Vietnam'], color = gdp['color_cats'], alpha = 0.5) ax2 = ax.twinx() ax2.plot( gdp['Year'], gdp['Vietnam GDP PPP']) ax.set_ylabel('GDP - Hundered Billion USD') ax2.set_ylabel('GDP per person - USD') ax.set_title('Vietnam GDP and GDP PPP 1990 - 2019', size =14) fig, ax = plt.subplots(figsize =(10,7)) ax.plot(gdp['Year'], gdp['Indonesia %'], color = 'Blue', alpha = 0.3) ax.plot(gdp['Year'], gdp['Malatsia %'], color = 'Green', alpha = 0.3) ax.plot(gdp['Year'], gdp['Thailand %'], color = 'Gray', alpha = 0.3) ax.plot(gdp['Year'], gdp['Singapore %'], color = 'Yellow', alpha = 0.3) ax.plot(gdp['Year'], gdp['Vietnam %'], color = 'Red') ax.set_xlabel('Year') ax.set_ylabel('GDP Growth %') ax.set_title('Vietnam and some other countries in SEA GDP growth rate', y = 1.1, size = 14) ax.legend(['Indonesia','Malaysia','Thailand','Singapore','Vietnam']) plt.show() X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') fig, ax = plt.subplots(figsize = (10,7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha = 0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom = pg['Urbanpop'], color = 'Green', alpha = 0.4) ax.legend(['Urbanpop','Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions') fig, ax = plt.subplots(figsize=(10, 7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha=0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom=pg['Urbanpop'], color='Gray', alpha=0.4) ax.legend(['Urbanpop', 'Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions') ax2 = ax.twinx() ax2.plot(pg['Year'], pg['Population growth %']) ax2.set_ylabel('% Population Growth') plt.show()
code
90124505/cell_4
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') sns.set_style('whitegrid') gdp = gdp.query('Year >= 1990') fig,ax = plt.subplots(figsize = (10,7)) rapid_year = [2015,2010,2019] gdp['color_cats'] = ['blue' if x in rapid_year else 'red' for x in gdp['Year']] ax.bar (gdp['Year'],gdp['Vietnam'], color = gdp['color_cats'], alpha = 0.5) ax2 = ax.twinx() ax2.plot( gdp['Year'], gdp['Vietnam GDP PPP']) ax.set_ylabel('GDP - Hundered Billion USD') ax2.set_ylabel('GDP per person - USD') ax.set_title('Vietnam GDP and GDP PPP 1990 - 2019', size =14) fig, ax = plt.subplots(figsize=(10, 7)) ax.plot(gdp['Year'], gdp['Indonesia %'], color='Blue', alpha=0.3) ax.plot(gdp['Year'], gdp['Malatsia %'], color='Green', alpha=0.3) ax.plot(gdp['Year'], gdp['Thailand %'], color='Gray', alpha=0.3) ax.plot(gdp['Year'], gdp['Singapore %'], color='Yellow', alpha=0.3) ax.plot(gdp['Year'], gdp['Vietnam %'], color='Red') ax.set_xlabel('Year') ax.set_ylabel('GDP Growth %') ax.set_title('Vietnam and some other countries in SEA GDP growth rate', y=1.1, size=14) ax.legend(['Indonesia', 'Malaysia', 'Thailand', 'Singapore', 'Vietnam']) plt.show()
code
90124505/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') sns.set_style('whitegrid') gdp = gdp.query('Year >= 1990') fig,ax = plt.subplots(figsize = (10,7)) rapid_year = [2015,2010,2019] gdp['color_cats'] = ['blue' if x in rapid_year else 'red' for x in gdp['Year']] ax.bar (gdp['Year'],gdp['Vietnam'], color = gdp['color_cats'], alpha = 0.5) ax2 = ax.twinx() ax2.plot( gdp['Year'], gdp['Vietnam GDP PPP']) ax.set_ylabel('GDP - Hundered Billion USD') ax2.set_ylabel('GDP per person - USD') ax.set_title('Vietnam GDP and GDP PPP 1990 - 2019', size =14) fig, ax = plt.subplots(figsize =(10,7)) ax.plot(gdp['Year'], gdp['Indonesia %'], color = 'Blue', alpha = 0.3) ax.plot(gdp['Year'], gdp['Malatsia %'], color = 'Green', alpha = 0.3) ax.plot(gdp['Year'], gdp['Thailand %'], color = 'Gray', alpha = 0.3) ax.plot(gdp['Year'], gdp['Singapore %'], color = 'Yellow', alpha = 0.3) ax.plot(gdp['Year'], gdp['Vietnam %'], color = 'Red') ax.set_xlabel('Year') ax.set_ylabel('GDP Growth %') ax.set_title('Vietnam and some other countries in SEA GDP growth rate', y = 1.1, size = 14) ax.legend(['Indonesia','Malaysia','Thailand','Singapore','Vietnam']) plt.show() X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') fig, ax = plt.subplots(figsize = (10,7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha = 0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom = pg['Urbanpop'], color = 'Green', alpha = 0.4) ax.legend(['Urbanpop','Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions') fig, ax = plt.subplots(figsize = (10,7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha = 0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom = pg['Urbanpop'], color = 'Gray', alpha = 0.4) ax.legend(['Urbanpop','Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions') ax2 = ax.twinx() ax2.plot(pg['Year'], pg['Population growth %']) ax2.set_ylabel ('% Population Growth') plt.show() pdu = pd.merge(pg, edu, on='Year') pdu1 = pdu.query('Year>=2002') fig, ax = plt.subplots(figsize = (10, 7)) ax.bar(pdu1['Year'], pdu1['6_10yo'], alpha = 0.4) ax.bar(pdu1['Year'], pdu1['Primary'], alpha = 0.4) ax.set_ylabel('Millions people') ax.set_title('Number of 6-10 years old children and Primary students in Vietnam', y = 1.1, size = 14) ax.legend(['6-10 years old','Primary student']) fig, ax = plt.subplots(figsize=(10, 7)) ax.bar(pdu1['Year'], pdu1['6_18yo'], alpha=0.4) ax.bar(pdu1['Year'], pdu1['K-12'], alpha=0.4) ax.set_ylabel('Millions people') ax.set_title('Population in 16 - 18 years old and K-12 students', y=1.1, size=14) ax.legend(['6-18 yo', 'K-12']) plt.show()
code
90124505/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') pop.head()
code
90124505/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') sns.set_style('whitegrid') gdp = gdp.query('Year >= 1990') fig,ax = plt.subplots(figsize = (10,7)) rapid_year = [2015,2010,2019] gdp['color_cats'] = ['blue' if x in rapid_year else 'red' for x in gdp['Year']] ax.bar (gdp['Year'],gdp['Vietnam'], color = gdp['color_cats'], alpha = 0.5) ax2 = ax.twinx() ax2.plot( gdp['Year'], gdp['Vietnam GDP PPP']) ax.set_ylabel('GDP - Hundered Billion USD') ax2.set_ylabel('GDP per person - USD') ax.set_title('Vietnam GDP and GDP PPP 1990 - 2019', size =14) fig, ax = plt.subplots(figsize =(10,7)) ax.plot(gdp['Year'], gdp['Indonesia %'], color = 'Blue', alpha = 0.3) ax.plot(gdp['Year'], gdp['Malatsia %'], color = 'Green', alpha = 0.3) ax.plot(gdp['Year'], gdp['Thailand %'], color = 'Gray', alpha = 0.3) ax.plot(gdp['Year'], gdp['Singapore %'], color = 'Yellow', alpha = 0.3) ax.plot(gdp['Year'], gdp['Vietnam %'], color = 'Red') ax.set_xlabel('Year') ax.set_ylabel('GDP Growth %') ax.set_title('Vietnam and some other countries in SEA GDP growth rate', y = 1.1, size = 14) ax.legend(['Indonesia','Malaysia','Thailand','Singapore','Vietnam']) plt.show() X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') fig, ax = plt.subplots(figsize = (10,7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha = 0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom = pg['Urbanpop'], color = 'Green', alpha = 0.4) ax.legend(['Urbanpop','Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions') fig, ax = plt.subplots(figsize = (10,7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha = 0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom = pg['Urbanpop'], color = 'Gray', alpha = 0.4) ax.legend(['Urbanpop','Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions') ax2 = ax.twinx() ax2.plot(pg['Year'], pg['Population growth %']) ax2.set_ylabel ('% Population Growth') plt.show() pdu = pd.merge(pg, edu, on='Year') pdu1 = pdu.query('Year>=2002') fig, ax = plt.subplots(figsize=(10, 7)) ax.bar(pdu1['Year'], pdu1['6_10yo'], alpha=0.4) ax.bar(pdu1['Year'], pdu1['Primary'], alpha=0.4) ax.set_ylabel('Millions people') ax.set_title('Number of 6-10 years old children and Primary students in Vietnam', y=1.1, size=14) ax.legend(['6-10 years old', 'Primary student'])
code
90124505/cell_7
[ "image_output_1.png" ]
import numpy as np import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape
code
90124505/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') pdu = pd.merge(pg, edu, on='Year') pdu1 = pdu.query('Year>=2002') pdu1.head()
code
90124505/cell_8
[ "image_output_1.png" ]
import numpy as np import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] for i in Y: p = np.sum(X[0][i - 10:i - 5]) k = np.sum(X[0][i - 18:i - 5]) P.append(p) K.append(k) print(P) print(K)
code
90124505/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') edu.head()
code
90124505/cell_3
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') sns.set_style('whitegrid') gdp = gdp.query('Year >= 1990') fig, ax = plt.subplots(figsize=(10, 7)) rapid_year = [2015, 2010, 2019] gdp['color_cats'] = ['blue' if x in rapid_year else 'red' for x in gdp['Year']] ax.bar(gdp['Year'], gdp['Vietnam'], color=gdp['color_cats'], alpha=0.5) ax2 = ax.twinx() ax2.plot(gdp['Year'], gdp['Vietnam GDP PPP']) ax.set_ylabel('GDP - Hundered Billion USD') ax2.set_ylabel('GDP per person - USD') ax.set_title('Vietnam GDP and GDP PPP 1990 - 2019', size=14)
code
90124505/cell_17
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') pdu = pd.merge(pg, edu, on='Year') pdu.head()
code
90124505/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') pg.head()
code
90124505/cell_12
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') sns.set_style('whitegrid') gdp = gdp.query('Year >= 1990') fig,ax = plt.subplots(figsize = (10,7)) rapid_year = [2015,2010,2019] gdp['color_cats'] = ['blue' if x in rapid_year else 'red' for x in gdp['Year']] ax.bar (gdp['Year'],gdp['Vietnam'], color = gdp['color_cats'], alpha = 0.5) ax2 = ax.twinx() ax2.plot( gdp['Year'], gdp['Vietnam GDP PPP']) ax.set_ylabel('GDP - Hundered Billion USD') ax2.set_ylabel('GDP per person - USD') ax.set_title('Vietnam GDP and GDP PPP 1990 - 2019', size =14) fig, ax = plt.subplots(figsize =(10,7)) ax.plot(gdp['Year'], gdp['Indonesia %'], color = 'Blue', alpha = 0.3) ax.plot(gdp['Year'], gdp['Malatsia %'], color = 'Green', alpha = 0.3) ax.plot(gdp['Year'], gdp['Thailand %'], color = 'Gray', alpha = 0.3) ax.plot(gdp['Year'], gdp['Singapore %'], color = 'Yellow', alpha = 0.3) ax.plot(gdp['Year'], gdp['Vietnam %'], color = 'Red') ax.set_xlabel('Year') ax.set_ylabel('GDP Growth %') ax.set_title('Vietnam and some other countries in SEA GDP growth rate', y = 1.1, size = 14) ax.legend(['Indonesia','Malaysia','Thailand','Singapore','Vietnam']) plt.show() X = np.array([pop['Newborn']]) Y = pop.index.tolist() P = [] K = [] pop.shape pg = pop.query('Year >= 1990') fig, ax = plt.subplots(figsize=(10, 7)) ax.bar(pg['Year'], pg['Urbanpop'], alpha=0.4) ax.bar(pg['Year'], pg['Rural Population'], bottom=pg['Urbanpop'], color='Green', alpha=0.4) ax.legend(['Urbanpop', 'Ruralpop']) ax.set_xlabel('Year') ax.set_ylabel('Total population x 100 millions')
code
90124505/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pop = pd.read_csv('../input/vietnam-population-dgp-education-data/pop.csv') edu = pd.read_csv('../input/vietnam-population-dgp-education-data/Vietnamstudent.csv') gdp = pd.read_csv('../input/vietnam-population-dgp-education-data/GDPcompare.csv') pisa = pd.read_csv('../input/vietnam-population-dgp-education-data/Pisa_GDP.csv') pop.head()
code
16150255/cell_9
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # For loading and processing the dataset df_train = pd.read_csv('../input/train.csv') df_train = df_train.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) df_train = pd.concat([df_train, pd.get_dummies(df_train['Embarked'], prefix='Embarked')], axis=1) df_train = df_train.drop('Embarked', axis=1) X_train = df_train.drop('Survived', axis=1).as_matrix() y_train = df_train['Survived'].as_matrix() X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.2)
code
16150255/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # For loading and processing the dataset df_train = pd.read_csv('../input/train.csv') df_train.head(5)
code
16150255/cell_11
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # For loading and processing the dataset df_train = pd.read_csv('../input/train.csv') df_train = df_train.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) df_train = pd.concat([df_train, pd.get_dummies(df_train['Embarked'], prefix='Embarked')], axis=1) df_train = df_train.drop('Embarked', axis=1) X_train = df_train.drop('Survived', axis=1).as_matrix() y_train = df_train['Survived'].as_matrix() X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.2) print(X_train.shape, y_train.shape)
code
16150255/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # For loading and processing the dataset df_train = pd.read_csv('../input/train.csv') df_train = df_train.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) df_train = pd.concat([df_train, pd.get_dummies(df_train['Embarked'], prefix='Embarked')], axis=1) df_train = df_train.drop('Embarked', axis=1) print("Number of missing 'Age' values: {:d}".format(df_train['Age'].isnull().sum())) df_train['Age'] = df_train['Age'].fillna(df_train['Age'].mean())
code
16150255/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # For loading and processing the dataset df_train = pd.read_csv('../input/train.csv') df_train = df_train.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) df_train = pd.concat([df_train, pd.get_dummies(df_train['Embarked'], prefix='Embarked')], axis=1) df_train = df_train.drop('Embarked', axis=1) df_train.head()
code