Datasets:

ArXiv:
License:
File size: 9,576 Bytes
c4aaaa2
b3a0adc
9948645
40491dd
c4aaaa2
40491dd
c4aaaa2
 
40491dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4aaaa2
9f185dc
9948645
b3a0adc
22152b8
c4aaaa2
 
 
40491dd
9948645
 
 
 
c4aaaa2
 
 
 
9948645
 
 
 
 
 
 
 
 
 
 
b3a0adc
 
 
 
 
 
 
 
 
c4aaaa2
 
40491dd
c4aaaa2
9948645
 
 
 
 
c4aaaa2
9948645
c4aaaa2
b3a0adc
 
 
 
 
 
 
 
 
7c21e35
b3a0adc
 
7c21e35
22152b8
 
7e878ad
 
c4aaaa2
 
 
40491dd
 
 
 
f2af518
40491dd
 
 
 
 
9948645
22152b8
 
7c21e35
22152b8
40491dd
 
c4aaaa2
 
 
 
2d6056b
 
b3a0adc
 
 
7c21e35
40491dd
9948645
40491dd
 
9948645
 
 
 
 
40491dd
 
9948645
2d6056b
 
7c21e35
 
40491dd
 
 
9948645
 
 
2d6056b
 
 
7c21e35
 
9948645
 
 
 
40491dd
c4aaaa2
22152b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a0adc
 
 
c4aaaa2
b3a0adc
 
c4aaaa2
9948645
 
 
 
7c21e35
 
b3a0adc
9948645
 
9f185dc
 
 
 
 
 
7c21e35
 
 
9948645
 
2d6056b
9948645
b3a0adc
 
 
7c21e35
 
 
 
b3a0adc
 
7c21e35
 
 
22152b8
 
b3a0adc
 
 
22152b8
 
 
f06e4c9
 
22152b8
 
 
f06e4c9
b3a0adc
9948645
 
 
 
 
f2af518
9948645
 
 
 
2d6056b
 
22152b8
 
f06e4c9
22152b8
9948645
 
7e878ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import json
from copy import copy
from functools import lru_cache

import datasets
import pandas as pd

SUPPORTED_LANGUAGES = [
    "sl",
    "ur",
    "sw",
    "uz",
    "vi",
    "sq",
    "ms",
    "km",
    "hy",
    "da",
    "ky",
    "mg",
    "mn",
    "ja",
    "el",
    "it",
    "is",
    "ru",
    "tl",
    "so",
    "pt",
    "uk",
    "sr",
    "sn",
    "ht",
    "bs",
    "my",
    "ar",
    "hr",
    "nl",
    "bn",
    "ne",
    "hi",
    "ka",
    "az",
    "ko",
    "id",
    "fr",
    "es",
    "en",
    "fa",
    "lo",
    "iw",
    "th",
    "tr",
    "zht",
    "zhs",
    "ti",
    "tg",
    "control",
]
SYSTEMS = ["openai", "m3"]
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
LLM_MODES = ["zeroshot", "fewshot"]

ROOT_DIR = "data"


class BordIRlinesConfig(datasets.BuilderConfig):
    def __init__(self, language, n_hits=10, **kwargs):
        super(BordIRlinesConfig, self).__init__(**kwargs)
        self.language = language
        self.n_hits = n_hits
        self.data_root_dir = ROOT_DIR


def load_json(path):
    with open(path, "r", encoding="utf-8") as f:
        return json.load(f)


@lru_cache
def replace_lang_str(path, lang):
    parent = path.rsplit("/", 2)[0]
    return f"{parent}/{lang}/{lang}_docs.json"


def get_label(human_bool, llm_bool, annotation_type):
    if annotation_type == "human":
        return human_bool
    elif annotation_type == "llm":
        return llm_bool
    else:
        return human_bool if human_bool is not None else llm_bool


class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        BordIRlinesConfig(
            name=lang,
            language=lang,
            description=f"{lang.upper()} dataset",
        )
        for lang in SUPPORTED_LANGUAGES
    ]

    def __init__(
        self,
        *args,
        relevance_filter="all",
        annotation_type=None,
        llm_mode="fewshot",
        viewpoint_filter=None,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.relevance_filter = relevance_filter
        assert self.relevance_filter in RELEVANCE_FILTERS
        self.annotation_type = annotation_type
        self.llm_mode = llm_mode
        assert self.llm_mode in LLM_MODES
        self.viewpoint_filter = viewpoint_filter  # Filter for a specific viewpoint

    def _info(self):
        return datasets.DatasetInfo(
            description="IR Dataset for BordIRLines paper.",
            features=datasets.Features(
                {
                    "query_id": datasets.Value("string"),
                    "query": datasets.Value("string"),
                    "query_lang": datasets.Value("string"),
                    "territory": datasets.Value("string"),
                    "rank": datasets.Value("int32"),
                    "score": datasets.Value("float32"),
                    "doc_id": datasets.Value("string"),
                    "doc_text": datasets.Value("string"),
                    "doc_lang": datasets.Value("string"),
                    "viewpoint_human": datasets.Value("string"),
                    "viewpoint_llm": datasets.Value("string"),
                    "relevant_human": datasets.Value("bool"),
                    "relevant_llm": datasets.Value("bool"),
                }
            ),
        )

    def _split_generators(self, dl_manager):
        base_url = self.config.data_root_dir
        queries_path = f"{base_url}/queries.tsv"
        docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
        human_annotations_path = dl_manager.download_and_extract(
            f"{base_url}/human_annotations.tsv"
        )
        llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv")

        lang = self.config.language

        splits = []
        downloaded_data = {}

        for system in SYSTEMS:
            for mode in MODES:
                source = f"{system}.{mode}"
                downloaded_data[source] = dl_manager.download_and_extract(
                    {
                        "hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv",
                        "docs": docs_path,
                        "queries": queries_path,
                        "human_annotations": human_annotations_path,
                        "llm_annotations": llm_annotations_path,
                    }
                )

                split = datasets.SplitGenerator(
                    name=f"{system}.{mode}",
                    gen_kwargs={
                        "hits_path": downloaded_data[source]["hits"],
                        "docs_path": downloaded_data[source]["docs"],
                        "queries_path": downloaded_data[source]["queries"],
                        "human_annotations_path": downloaded_data[source]["human_annotations"],
                        "llm_annotations_path": downloaded_data[source]["llm_annotations"],
                    },
                )
                splits.append(split)

        return splits

    def _skip_viewpoint(self, viewpoint_human, viewpoint_llm, query_entry):
        viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type)
        if viewpoint is None:
            return True

        if self.viewpoint_filter == "Non-controllers":
            controller = query_entry["Controller"]
            if controller == "Unknown":
                return True

            claimants = copy(query_entry["Claimants"])
            claimants.remove(controller)
            return (
                not claimants or viewpoint not in claimants
            )  # skip if not a non-controller viewpoint

        # otherwise, handle the case where we want to filter for a specific viewpoint
        target_viewpoint = (
            query_entry["Controller"]
            if self.viewpoint_filter == "Controller"
            else self.viewpoint_filter
        )

        return target_viewpoint and viewpoint != target_viewpoint

    def _skip_relevance(self, relevant_human, relevant_llm):
        # Filtering logic based on relevance preference
        relevant = get_label(relevant_human, relevant_llm, self.annotation_type)
        target_relevant = {"relevant": True, "non-relevant": False}.get(self.relevance_filter, None)
        return target_relevant is not None and relevant != target_relevant
        # If "all", do not filter anything

    def _generate_examples(
        self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
    ):
        n_hits = self.config.n_hits
        queries_df = pd.read_csv(queries_path, sep="\t").set_index("query_id")
        queries_df["Claimants"] = queries_df["Claimants"].str.split(";").map(set)
        counter = 0

        docs = load_json(docs_path)

        hits = pd.read_csv(hits_path, sep="\t")
        human_annotations = pd.read_csv(human_annotations_path, sep="\t")
        llm_annotations = pd.read_csv(llm_annotations_path, sep="\t")

        if n_hits:
            hits = hits.groupby("query_id").head(n_hits)

        # sort hits by query_id and rank
        hits["query_id_int"] = hits["query_id"].str[1:].astype(int)
        hits = hits.sort_values(by=["query_id_int", "rank"])
        hits = hits.drop(columns=["query_id_int"])

        human_map = human_annotations.set_index(["query_id", "doc_id"]).to_dict(orient="index")
        llm_map = llm_annotations.set_index(["query_id", "doc_id"]).to_dict(orient="index")

        for _, row in hits.iterrows():
            doc_id = row["doc_id"]
            doc_lang = row["doc_lang"]
            query_id = row["query_id"]
            query_entry = queries_df.loc[query_id]
            query_text = query_entry["query_text"]
            query_lang = query_entry["language"]

            # Get Human Data
            human_data = human_map.get((query_id, doc_id), {})

            relevant_human = human_data.get("relevant", None)
            viewpoint_human = human_data.get("territory", None)

            # Get LLM Data
            llm_data = llm_map.get((query_id, doc_id), {})
            relevant_llm = llm_data[f"relevant_{self.llm_mode}"]
            viewpoint_llm = llm_data[f"territory_{self.llm_mode}"]
            # Filtering logic based on viewpoint preference
            viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None

            if self.viewpoint_filter:
                do_skip = self._skip_viewpoint(viewpoint_human, viewpoint_llm, query_entry)
                if do_skip:
                    continue

            if self.relevance_filter != "all":
                do_skip = self._skip_relevance(relevant_human, relevant_llm)
                if do_skip:
                    continue

            yield (
                counter,
                {
                    "query_id": query_id,
                    "query": query_text,
                    "query_lang": query_lang,
                    "territory": row["territory"],
                    "rank": row["rank"],
                    "score": row["score"],
                    "doc_id": doc_id,
                    "doc_text": docs[doc_lang][doc_id],
                    "doc_lang": doc_lang,
                    "viewpoint_human": viewpoint_human,
                    "viewpoint_llm": viewpoint_llm,
                    "relevant_human": relevant_human,
                    "relevant_llm": relevant_llm,
                },
            )
            counter += 1