|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
dataset_info: |
|
features: |
|
- name: record |
|
dtype: string |
|
- name: clean_para_index_set_pair |
|
dtype: string |
|
- name: src |
|
dtype: string |
|
- name: dst |
|
dtype: string |
|
- name: src_text |
|
dtype: string |
|
- name: dst_text |
|
dtype: string |
|
- name: src_rate |
|
dtype: float64 |
|
- name: dst_rate |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 8884444751 |
|
num_examples: 15331650 |
|
download_size: 2443622169 |
|
dataset_size: 8884444751 |
|
--- |
|
# 联合国数字图书馆的段落级中-英对齐平行语料 |
|
|
|
用我口胡的方法弄出来的平行语料,统计数据和拿argostranslate直接又跑了一份bleu score的结果已经丢论文里了,论文在写了在写了。应该拿这份去练机翻模型没问题,数据源是人写的。 |
|
|
|
bleu score 这里贴一份吧,懒得转格式了,我不太懂看,可能很差( |
|
|
|
Language & Paragraph Count & Avg Tokens & bleu1 & bleu2 & bleu3 & bleu4 \\ |
|
\midrule |
|
ar & 59754 & 52.71873 & 0.73799 & 0.58027 & 0.48118 & 0.40782 \\ |
|
de & 187 & 69.58824 & 0.62058 & 0.38837 & 0.26155 & 0.18271 \\ |
|
es & 66537 & 50.70776 & 0.74566 & 0.58545 & 0.48445 & 0.41073 \\ |
|
fr & 68765 & 52.13133 & 0.67895 & 0.49830 & 0.39453 & 0.32332 \\ |
|
ru & 65039 & 51.75020 & 0.71578 & 0.54827 & 0.44681 & 0.37495 \\ |
|
zh & 56276 & 53.16430 & 0.64737 & 0.45399 & 0.34408 & 0.27072 \\ |