task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #AutoHotkey | AutoHotkey | Fib := NStepSequence(1, 2, 2, 20)
Loop, 21 {
i := A_Index - 1
, Out .= i ":`t", n := ""
Loop, % Fib.MaxIndex() {
x := Fib.MaxIndex() + 1 - A_Index
if (Fib[x] <= i)
n .= 1, i -= Fib[x]
else
n .= 0
}
Out .= (n ? LTrim(n, "0") : 0) "`n"
}
MsgBox, % Out
NStepSequence(v1, v2, n, k) {
a := [v1, v2]
Loop, % k - 2 {
a[j := A_Index + 2] := 0
Loop, % j < n + 2 ? j - 1 : n
a[j] += a[j - A_Index]
}
return, a
} |
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #B | B | main()
{
auto doors[100]; /* != 0 means open */
auto pass, door;
door = 0;
while( door<100 ) doors[door++] = 0;
pass = 0;
while( pass<100 )
{
door = pass;
while( door<100 )
{
doors[door] = !doors[door];
door =+ pass+1;
}
++pass;
}
door = 0;
while( door<100 )
{
printf("door #%d is %s.*n", door+1, doors[door] ? "open" : "closed");
++door;
}
return(0);
} |
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #Dao | Dao | # use [] to create numeric arrays of int, float, double or complex types:
a = [ 1, 2, 3 ] # a vector
b = [ 1, 2; 3, 4 ] # a 2X2 matrix
# use {} to create normal arrays of any types:
c = { 1, 2, 'abc' }
d = a[1]
e = b[0,1] # first row, second column
f = c[1] |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Lua | Lua |
--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs.
complex = setmetatable({
__add = function(u, v) return complex(u.real + v.real, u.imag + v.imag) end,
__sub = function(u, v) return complex(u.real - v.real, u.imag - v.imag) end,
__mul = function(u, v) return complex(u.real * v.real - u.imag * v.imag, u.real * v.imag + u.imag * v.real) end,
__div = function(u, v) return u * complex(v.real / v.norm, -v.imag / v.norm) end,
__unm = function(u) return complex(-u.real, -u.imag) end,
__concat = function(u, v)
if type(u) == "table" then return u.real .. " + " .. u.imag .. "i" .. v
elseif type(u) == "string" or type(u) == "number" then return u .. v.real .. " + " .. v.imag .. "i"
end end,
__index = function(u, index)
local operations = {
norm = function(u) return u.real ^ 2 + u.imag ^ 2 end,
conj = function(u) return complex(u.real, -u.imag) end,
}
return operations[index] and operations[index](u)
end,
__newindex = function() error() end
}, {
__call = function(z, realpart, imagpart) return setmetatable({real = realpart, imag = imagpart}, complex) end
} )
local i, j = complex(2, 3), complex(1, 1)
print(i .. " + " .. j .. " = " .. (i+j))
print(i .. " - " .. j .. " = " .. (i-j))
print(i .. " * " .. j .. " = " .. (i*j))
print(i .. " / " .. j .. " = " .. (i/j))
print("|" .. i .. "| = " .. math.sqrt(i.norm))
print(i .. "* = " .. i.conj)
|
http://rosettacode.org/wiki/Arithmetic/Rational | Arithmetic/Rational | Task
Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language.
Example
Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number).
Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠').
Define standard coercion operators for casting int to frac etc.
If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.).
Finally test the operators:
Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors.
Related task
Perfect Numbers
| #Nim | Nim | import math
proc `^`[T](base, exp: T): T =
var (base, exp) = (base, exp)
result = 1
while exp != 0:
if (exp and 1) != 0:
result *= base
exp = exp shr 1
base *= base
proc gcd[T](u, v: T): T =
if v != 0:
gcd(v, u mod v)
else:
u.abs
proc lcm[T](a, b: T): T =
a div gcd(a, b) * b
type Rational* = tuple[num, den: int64]
proc fromInt*(x: SomeInteger): Rational =
result.num = x
result.den = 1
proc frac*(x: var Rational) =
let common = gcd(x.num, x.den)
x.num = x.num div common
x.den = x.den div common
proc `+` *(x, y: Rational): Rational =
let common = lcm(x.den, y.den)
result.num = common div x.den * x.num + common div y.den * y.num
result.den = common
result.frac
proc `+=` *(x: var Rational, y: Rational) =
let common = lcm(x.den, y.den)
x.num = common div x.den * x.num + common div y.den * y.num
x.den = common
x.frac
proc `-` *(x: Rational): Rational =
result.num = -x.num
result.den = x.den
proc `-` *(x, y: Rational): Rational =
x + -y
proc `-=` *(x: var Rational, y: Rational) =
x += -y
proc `*` *(x, y: Rational): Rational =
result.num = x.num * y.num
result.den = x.den * y.den
result.frac
proc `*=` *(x: var Rational, y: Rational) =
x.num *= y.num
x.den *= y.den
x.frac
proc reciprocal*(x: Rational): Rational =
result.num = x.den
result.den = x.num
proc `div`*(x, y: Rational): Rational =
x * y.reciprocal
proc toFloat*(x: Rational): float =
x.num.float / x.den.float
proc toInt*(x: Rational): int64 =
x.num div x.den
proc cmp*(x, y: Rational): int =
cmp x.toFloat, y.toFloat
proc `<` *(x, y: Rational): bool =
x.toFloat < y.toFloat
proc `<=` *(x, y: Rational): bool =
x.toFloat <= y.toFloat
proc abs*(x: Rational): Rational =
result.num = abs x.num
result.den = abs x.den
for candidate in 2'i64 .. <((2'i64)^19):
var sum: Rational = (1'i64, candidate)
for factor in 2'i64 .. pow(candidate.float, 0.5).int64:
if candidate mod factor == 0:
sum += (1'i64, factor) + (1'i64, candidate div factor)
if sum.den == 1:
echo "Sum of recipr. factors of ",candidate," = ",sum.num," exactly ",
if sum.num == 1: "perfect!" else: "" |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #PicoLisp | PicoLisp | (scl 80)
(de agm (A G)
(do 7
(prog1 (/ (+ A G) 2)
(setq G (sqrt A G) A @) ) ) )
(round
(agm 1.0 (*/ 1.0 1.0 (sqrt 2.0 1.0)))
70 ) |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #PL.2FI | PL/I |
arithmetic_geometric_mean: /* 31 August 2012 */
procedure options (main);
declare (a, g, t) float (18);
a = 1; g = 1/sqrt(2.0q0);
put skip list ('The arithmetic-geometric mean of ' || a || ' and ' || g || ':');
do until (abs(a-g) < 1e-15*a);
t = (a + g)/2; g = sqrt(a*g);
a = t;
put skip data (a, g);
end;
put skip list ('The result is:', a);
end arithmetic_geometric_mean;
|
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #C.2B.2B | C++ | #include <iostream>
#include <cmath>
#include <complex>
int main()
{
std::cout << "0 ^ 0 = " << std::pow(0,0) << std::endl;
std::cout << "0+0i ^ 0+0i = " <<
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
} |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Cach.C3.A9_ObjectScript | Caché ObjectScript | ZEROPOW
// default behavior is incorrect:
set (x,y) = 0
w !,"0 to the 0th power (wrong): "_(x**y) ; will output 0
// if one or both of the values is a double, this works
set (x,y) = $DOUBLE(0)
w !,"0 to the 0th power (right): "_(x**y)
quit |
http://rosettacode.org/wiki/Arithmetic_evaluation | Arithmetic evaluation | Create a program which parses and evaluates arithmetic expressions.
Requirements
An abstract-syntax tree (AST) for the expression must be created from parsing the input.
The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
The expression will be a string or list of symbols like "(1+3)*7".
The four symbols + - * / must be supported as binary operators with conventional precedence rules.
Precedence-control parentheses must also be supported.
Note
For those who don't remember, mathematical precedence is as follows:
Parentheses
Multiplication/Division (left to right)
Addition/Subtraction (left to right)
C.f
24 game Player.
Parsing/RPN calculator algorithm.
Parsing/RPN to infix conversion.
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | (*parsing:*)
parse[string_] :=
Module[{e},
StringCases[string,
"+" | "-" | "*" | "/" | "(" | ")" |
DigitCharacter ..] //. {a_String?DigitQ :>
e[ToExpression@a], {x___, PatternSequence["(", a_e, ")"],
y___} :> {x, a,
y}, {x :
PatternSequence[] |
PatternSequence[___, "(" | "+" | "-" | "*" | "/"],
PatternSequence[op : "+" | "-", a_e], y___} :> {x, e[op, a],
y}, {x :
PatternSequence[] | PatternSequence[___, "(" | "+" | "-"],
PatternSequence[a_e, op : "*" | "/", b_e], y___} :> {x,
e[op, a, b],
y}, {x :
PatternSequence[] | PatternSequence[___, "(" | "+" | "-"],
PatternSequence[a_e, b_e], y___} :> {x, e["*", a, b],
y}, {x : PatternSequence[] | PatternSequence[___, "("],
PatternSequence[a_e, op : "+" | "-", b_e],
y : PatternSequence[] |
PatternSequence[")" | "+" | "-", ___]} :> {x, e[op, a, b],
y}} //. {e -> List, {a_Integer} :> a, {a_List} :> a}]
(*evaluation*)
evaluate[a_Integer] := a;
evaluate[{"+", a_}] := evaluate[a];
evaluate[{"-", a_}] := -evaluate[a];
evaluate[{"+", a_, b_}] := evaluate[a] + evaluate[b];
evaluate[{"-", a_, b_}] := evaluate[a] - evaluate[b];
evaluate[{"*", a_, b_}] := evaluate[a]*evaluate[b];
evaluate[{"/", a_, b_}] := evaluate[a]/evaluate[b];
evaluate[string_String] := evaluate[parse[string]] |
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #AppleScript | AppleScript | -- Params:
-- List of lists (rows) of "pixel" values.
-- Record indicating the values representing black and white.
on ZhangSuen(matrix, {black:black, white:white})
script o
property matrix : missing value
property changePixels : missing value
on A(neighbours) -- Count transitions from white to black.
set sum to 0
repeat with i from 1 to 8
if ((neighbours's item i is white) and (neighbours's item (i mod 8 + 1) is black)) then set sum to sum + 1
end repeat
return sum
end A
on B(neighbours) -- Count neighbouring black pixels.
set sum to 0
repeat with p in neighbours
if (p's contents is black) then set sum to sum + 1
end repeat
return sum
end B
end script
set o's matrix to matrix
set rowCount to (count o's matrix)
set columnCount to (count o's matrix's beginning) -- Assumed to be the same for every row.
repeat until (o's changePixels is {})
repeat with step from 1 to 2
set o's changePixels to {}
repeat with r from 2 to (rowCount - 1)
repeat with c from 2 to (columnCount - 1)
if (o's matrix's item r's item c is black) then
tell (a reference to o's matrix) to ¬
set neighbours to {item (r - 1)'s item c, item (r - 1)'s item (c + 1), ¬
item r's item (c + 1), item (r + 1)'s item (c + 1), item (r + 1)'s item c, ¬
item (r + 1)'s item (c - 1), item r's item (c - 1), item (r - 1)'s item (c - 1)}
set blackCount to o's B(neighbours)
if ((blackCount > 1) and (blackCount < 7) and (o's A(neighbours) is 1)) then
set {P2, x, P4, x, P6, x, P8} to neighbours
if (step is 1) then
set toChange to ((P4 is white) or (P6 is white) or ((P2 is white) and (P8 is white)))
else
set toChange to ((P2 is white) or (P8 is white) or ((P4 is white) and (P6 is white)))
end if
if (toChange) then set end of o's changePixels to {r, c}
end if
end if
end repeat
end repeat
if (o's changePixels is {}) then exit repeat
repeat with pixel in o's changePixels
set {r, c} to pixel
set o's matrix's item r's item c to white
end repeat
end repeat
end repeat
return o's matrix -- or: return matrix -- The input has been edited in place.
end ZhangSuen
on join(lst, delim)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delim
set txt to lst as text
set AppleScript's text item delimiters to astid
return txt
end join
on demo()
set pattern to "00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000"
set matrix to pattern's paragraphs
repeat with thisRow in matrix
set thisRow's contents to thisRow's characters
end repeat
ZhangSuen(matrix, {black:"1", white:"0"})
repeat with thisRow in matrix
set thisRow's contents to join(thisRow, "")
end repeat
return join(matrix, linefeed)
end demo
return demo() |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Scheme | Scheme |
(import (scheme base)
(scheme complex)
(rebottled pstk))
; settings for spiral
(define *resolution* 0.01)
(define *count* 2000)
(define *a* 10)
(define *b* 10)
(define *center*
(let ((size 200)) ; change this to alter size of display
(* size 1+i)))
(define (draw-spiral canvas)
(define (coords theta)
(let ((r (+ *a* (* *b* theta))))
(make-polar r theta)))
;
(do ((i 0 (+ i 1))) ; loop to draw spiral
((= i *count*) )
(let ((c (+ (coords (* i *resolution*)) *center*)))
(canvas 'create 'line
(real-part c) (imag-part c)
(+ 1 (real-part c)) (imag-part c)))))
(let ((tk (tk-start)))
(tk/wm 'title tk "Archimedean Spiral")
(let ((canvas (tk 'create-widget 'canvas)))
(tk/pack canvas)
(canvas 'configure
'height: (* 2 (real-part *center*))
'width: (* 2 (imag-part *center*)))
(draw-spiral canvas))
(tk-event-loop tk))
|
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #AutoIt | AutoIt |
For $i = 0 To 20
ConsoleWrite($i &": "& Zeckendorf($i)&@CRLF)
Next
Func Zeckendorf($int, $Fibarray = "")
If Not IsArray($Fibarray) Then $Fibarray = Fibonacci($int)
Local $ret = ""
For $i = UBound($Fibarray) - 1 To 1 Step -1
If $Fibarray[$i] > $int And $ret = "" Then ContinueLoop ; dont use Leading Zeros
If $Fibarray[$i] > $int Then
$ret &= "0"
Else
If StringRight($ret, 1) <> "1" Then
$ret &= "1"
$int -= $Fibarray[$i]
Else
$ret &= "0"
EndIf
EndIf
Next
If $ret = "" Then $ret = "0"
Return $ret
EndFunc ;==>Zeckendorf
Func Fibonacci($max)
$AList = ObjCreate("System.Collections.ArrayList")
$AList.add("0")
$current = 0
While True
If $current > 1 Then
$count = $AList.Count
$current = $AList.Item($count - 1)
$current = $current + $AList.Item($count - 2)
Else
$current += 1
EndIf
$AList.add($current)
If $current > $max Then ExitLoop
WEnd
$Array = $AList.ToArray
Return $Array
EndFunc ;==>Fibonacci
|
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #BaCon | BaCon |
OPTION BASE 1
DECLARE doors[100]
FOR size = 1 TO 100
FOR pass = 0 TO 100 STEP size
doors[pass] = NOT(doors[pass])
NEXT
NEXT
FOR which = 1 TO 100
IF doors[which] THEN PRINT which
NEXT
|
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #Dart | Dart |
main(){
// Dart uses Lists which dynamically resize by default
final growable = [ 1, 2, 3 ];
// Add to the list using the add method
growable.add(4);
print('growable: $growable');
// You can pass an int to the constructor to create a fixed sized List
final fixed = List(3);
// We must assign each element individually using the Subscript operator
// using .add would through an error
fixed[0] = 'one';
fixed[1] = 'two';
fixed[2] = 'three';
print('fixed: $fixed');
// If we want to create a fixed list all at once we can use the of constructor
// Setting growable to false is what makes it fixed
final fixed2 = List.of( [ 1.5, 2.5, 3.5 ], growable: false);
print('fixed2: $fixed2');
// A potential gotcha involving the subscript operator [] might surprise JavaScripters
// One cannot add new elements to a List using the subscript operator
// We can only assign to existing elements, even if the List is growable
final gotcha = [ 1, 2 ];
// gotcha[2] = 3 would cause an error in Dart, but not in JavaScript
// We must first add the new element using .add
gotcha.add(3);
// Now we can modify the existing elements with the subscript
gotcha[2] = 4;
print('gotcha: $gotcha');
}
|
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Maple | Maple | x := 1+I;
y := Pi+I*1.2; |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | x=1+2I
y=3+4I
x+y => 4 + 6 I
x-y => -2 - 2 I
y x => -5 + 10 I
y/x => 11/5 - (2 I)/5
x^3 => -11 - 2 I
y^4 => -527 - 336 I
x^y => (1 + 2 I)^(3 + 4 I)
N[x^y] => 0.12901 + 0.0339241 I |
http://rosettacode.org/wiki/Arithmetic/Rational | Arithmetic/Rational | Task
Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language.
Example
Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number).
Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠').
Define standard coercion operators for casting int to frac etc.
If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.).
Finally test the operators:
Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors.
Related task
Perfect Numbers
| #Objective-C | Objective-C | #import <Foundation/Foundation.h>
@interface RCRationalNumber : NSObject
{
@private
int numerator;
int denominator;
BOOL autoSimplify;
BOOL withSign;
}
+(instancetype)valueWithNumerator:(int)num andDenominator: (int)den;
+(instancetype)valueWithDouble: (double)fnum;
+(instancetype)valueWithInteger: (int)inum;
+(instancetype)valueWithRational: (RCRationalNumber *)rnum;
-(instancetype)initWithNumerator: (int)num andDenominator: (int)den;
-(instancetype)initWithDouble: (double)fnum precision: (int)prec;
-(instancetype)initWithInteger: (int)inum;
-(instancetype)initWithRational: (RCRationalNumber *)rnum;
-(NSComparisonResult)compare: (RCRationalNumber *)rnum;
-(id)simplify: (BOOL)act;
-(void)setAutoSimplify: (BOOL)v;
-(void)setWithSign: (BOOL)v;
-(BOOL)autoSimplify;
-(BOOL)withSign;
-(NSString *)description;
// ops
-(id)multiply: (RCRationalNumber *)rnum;
-(id)divide: (RCRationalNumber *)rnum;
-(id)add: (RCRationalNumber *)rnum;
-(id)sub: (RCRationalNumber *)rnum;
-(id)abs;
-(id)neg;
-(id)mod: (RCRationalNumber *)rnum;
-(int)sign;
-(BOOL)isNegative;
-(id)reciprocal;
// getter
-(int)numerator;
-(int)denominator;
//setter
-(void)setNumerator: (int)num;
-(void)setDenominator: (int)num;
// defraction
-(double)number;
-(int)integer;
@end |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Potion | Potion | sqrt = (x) :
xi = 1
7 times :
xi = (xi + x / xi) / 2
.
xi
.
agm = (x, y) :
7 times :
a = (x + y) / 2
g = sqrt(x * y)
x = a
y = g
.
x
. |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #PowerShell | PowerShell |
function agm ([Double]$a, [Double]$g) {
[Double]$eps = 1E-15
[Double]$a1 = [Double]$g1 = 0
while([Math]::Abs($a - $g) -gt $eps) {
$a1, $g1 = $a, $g
$a = ($a1 + $g1)/2
$g = [Math]::Sqrt($a1*$g1)
}
[pscustomobject]@{
a = "$a"
g = "$g"
}
}
agm 1 (1/[Math]::Sqrt(2))
|
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Clojure | Clojure | user=> (use 'clojure.math.numeric-tower)
user=> (expt 0 0)
1
; alternative java-interop route:
user=> (Math/pow 0 0)
1.0
|
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #CLU | CLU | start_up = proc ()
zz_int: int := 0 ** 0
zz_real: real := 0.0 ** 0.0
po: stream := stream$primary_output()
stream$putl(po, "integer 0**0: " || int$unparse(zz_int))
stream$putl(po, "real 0**0: " || f_form(zz_real, 1, 1))
end start_up |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #COBOL | COBOL | identification division.
program-id. zero-power-zero-program.
data division.
working-storage section.
77 n pic 9.
procedure division.
compute n = 0**0.
display n upon console.
stop run. |
http://rosettacode.org/wiki/Arithmetic_evaluation | Arithmetic evaluation | Create a program which parses and evaluates arithmetic expressions.
Requirements
An abstract-syntax tree (AST) for the expression must be created from parsing the input.
The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
The expression will be a string or list of symbols like "(1+3)*7".
The four symbols + - * / must be supported as binary operators with conventional precedence rules.
Precedence-control parentheses must also be supported.
Note
For those who don't remember, mathematical precedence is as follows:
Parentheses
Multiplication/Division (left to right)
Addition/Subtraction (left to right)
C.f
24 game Player.
Parsing/RPN calculator algorithm.
Parsing/RPN to infix conversion.
| #MiniScript | MiniScript | Expr = {}
Expr.eval = 0
BinaryExpr = new Expr
BinaryExpr.eval = function()
if self.op == "+" then return self.lhs.eval + self.rhs.eval
if self.op == "-" then return self.lhs.eval - self.rhs.eval
if self.op == "*" then return self.lhs.eval * self.rhs.eval
if self.op == "/" then return self.lhs.eval / self.rhs.eval
end function
binop = function(lhs, op, rhs)
e = new BinaryExpr
e.lhs = lhs
e.op = op
e.rhs = rhs
return e
end function
parseAtom = function(inp)
tok = inp.pull
if tok >= "0" and tok <= "9" then
e = new Expr
e.eval = val(tok)
while inp and inp[0] >= "0" and inp[0] <= "9"
e.eval = e.eval * 10 + val(inp.pull)
end while
else if tok == "(" then
e = parseAddSub(inp)
inp.pull // swallow closing ")"
return e
else
print "Unexpected token: " + tok
exit
end if
return e
end function
parseMultDiv = function(inp)
next = @parseAtom
e = next(inp)
while inp and (inp[0] == "*" or inp[0] == "/")
e = binop(e, inp.pull, next(inp))
end while
return e
end function
parseAddSub = function(inp)
next = @parseMultDiv
e = next(inp)
while inp and (inp[0] == "+" or inp[0] == "-")
e = binop(e, inp.pull, next(inp))
end while
return e
end function
while true
s = input("Enter expression: ").replace(" ","")
if not s then break
inp = split(s, "")
ast = parseAddSub(inp)
print ast.eval
end while
|
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #AutoHotkey | AutoHotkey | FileIn := A_ScriptDir "\Zhang-Suen.txt"
FileOut := A_ScriptDir "\NewFile.txt"
if (!FileExist(FileIn)) {
MsgBox, 48, File Not Found, % "File """ FileIn """ not found."
ExitApp
}
S := {}
N := [2,3,4,5,6,7,8,9,2]
Loop, Read, % FileIn
{
LineNum := A_Index
Loop, Parse, A_LoopReadLine
S[LineNum, A_Index] := A_LoopField
}
Loop {
FlipCount := 0
Loop, 2 {
Noted := [], i := A_Index
for LineNum, Line in S {
for PixNum, Pix in Line {
; (0)
if (Pix = 0 || (P := GetNeighbors(LineNum, PixNum, S)) = 1)
continue
; (1)
BP := 0
for j, Val in P
BP += Val
if (BP < 2 || BP > 6)
continue
; (2)
AP := 0
Loop, 8
if (P[N[A_Index]] = "0" && P[N[A_Index + 1]] = "1")
AP++
if (AP != 1)
continue
; (3 and 4)
if (i = 1) {
if (P[2] + P[4] + P[6] = 3 || P[4] + P[6] + P[8] = 3)
continue
}
else if (P[2] + P[4] + P[8] = 3 || P[2] + P[6] + P[8] = 3)
continue
Noted.Insert([LineNum, PixNum])
FlipCount++
}
}
for j, Coords in Noted
S[Coords[1], Coords[2]] := 0
}
if (!FlipCount)
break
}
for LineNum, Line in S {
for PixNum, Pix in Line
Out .= Pix ? "#" : " "
Out .= "`n"
}
FileAppend, % Out, % FileOut
GetNeighbors(Y, X, S) {
Neighbors := []
if ((Neighbors[8] := S[Y, X - 1]) = "")
return 1
if ((Neighbors[4] := S[Y, X + 1]) = "")
return 1
Loop, 3
if ((Neighbors[A_Index = 1 ? 9 : A_Index] := S[Y - 1, X - 2 + A_Index]) = "")
return 1
Loop, 3
if ((Neighbors[8 - A_Index] := S[Y + 1, X - 2 + A_Index]) = "")
return 1
return Neighbors
} |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Scilab | Scilab | a = 3;
b = 2;
theta = linspace(0,10*%pi,1000);
r = a + b .* theta;
//1. Plot using polar coordinates
scf(1);
polarplot(theta,r);
//2. Plot using rectangular coordinates
//2.1 Convert coordinates using Euler's formula
z = r .* exp(%i .* theta);
x = real(z);
y = imag(z);
scf(2);
plot2d(x,y); |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
include "draw.s7i";
include "keybd.s7i";
const proc: main is func
local
const float: xCenter is 117.0;
const float: yCenter is 139.0;
const float: maxTheta is 10.0 * PI;
const float: delta is 0.01;
const float: a is 1.0;
const float: b is 7.0;
var float: theta is 0.0;
var float: radius is 0.0;
begin
screen(256, 256);
clear(curr_win, black);
KEYBOARD := GRAPH_KEYBOARD;
while theta <= maxTheta do
radius := a + b * theta;
point(round(xCenter + radius * cos(theta)),
round(yCenter - radius * sin(theta)), white);
theta +:= delta;
end while;
DRAW_FLUSH;
ignore(getc(KEYBOARD));
end func; |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Sidef | Sidef | require('Imager')
define π = Num.pi
var (w, h) = (400, 400)
var img = %O<Imager>.new(xsize => w, ysize => h)
for Θ in (0 .. 52*π -> by(0.025)) {
img.setpixel(
x => floor(cos(Θ / π)*Θ + w/2),
y => floor(sin(Θ / π)*Θ + h/2),
color => [255, 0, 0]
)
}
img.write(file => 'Archimedean_spiral.png') |
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #BBC_BASIC | BBC BASIC | FOR n% = 0 TO 20
PRINT n% RIGHT$(" " + FNzeckendorf(n%), 8)
NEXT
PRINT '"Checking numbers up to 10000..."
FOR n% = 21 TO 10000
IF INSTR(FNzeckendorf(n%), "11") STOP
NEXT
PRINT "No Zeckendorf numbers contain consecutive 1's"
END
DEF FNzeckendorf(n%)
LOCAL i%, o$, fib%() : DIM fib%(45)
fib%(0) = 1 : fib%(1) = 1 : i% = 1
REPEAT
i% += 1
fib%(i%) = fib%(i%-1) + fib%(i%-2)
UNTIL fib%(i%) > n%
REPEAT
i% -= 1
IF n% >= fib%(i%) THEN
o$ += "1"
n% -= fib%(i%)
ELSE
o$ += "0"
ENDIF
UNTIL i% = 1
= o$ |
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #Befunge | Befunge | 45*83p0>:::.0`"0"v
v53210p 39+!:,,9+<
>858+37 *66g"7Y":v
>3g`#@_^ v\g39$<
^8:+1,+5_5<>-:0\`|
v:-\g39_^#:<*:p39<
>0\`:!"0"+#^ ,#$_^ |
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #BASIC | BASIC |
100 :
110 REM 100 DOORS PROBLEM
120 :
130 DIM D(100)
140 FOR P = 1 TO 100
150 FOR T = P TO 100 STEP P
160 D(T) = NOT D(T): NEXT T
170 NEXT P
180 FOR I = 1 TO 100
190 IF D(I) THEN PRINT I;" ";
200 NEXT I
|
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #DBL | DBL | ;
; Arrays for DBL version 4 by Dario B.
;
.DEFINE NR,5
RECORD
VNUM1, 5D8 ;array of number
VNUM2, [5]D8 ;array of number
VNUM3, [5,2]D8 ;two-dimensional array of number
VALP1, 5A10 ;array of strings
VALP2, [5]A10 ;array of strings
VALP3, [5,2]A10 ;two-dimensional array of strings
VALP4, [NR]A10 ;array of strings
PROC
;------------------------------------------------------------------
;Valid uses of arrays
VNUM1(1)=12345678
VNUM2(1)=VNUM1(1) ; = 12345678
VNUM2[2]=VNUM1(1) ; = 12345678
VNUM2[3]=VNUM2[1](3:2) ; = 34
VNUM3[1,1]=1
VNUM3[1,2]=2
VNUM3[2,1]=3
VALP1(1)="ABCDEFGHIJ"
VALP2(2)=VALP1(1) ; = "ABCDEFGHIJ"
VALP2[2]=VALP1(1) ; = "ABCDEFGHIJ"
VALP2[3](3:2)=VALP2[1](3:2) ; = " CD "
VALP3[1,1]="ABCDEFGHIJ"
VALP3[1,2]=VALP3[1,1] ;= "ABCDEFGHIJ"
VALP3[2,1](3:2)=VALP3[1,2](3:2) ;= " CD "
VALP4[1]="ABCDEFGHIJ"
;Clear arrays
CLEAR VNUM1(1:5*8),VNUM3(1:5*2*8)
VNUM2(1:5*8)=
CLEAR VALP1(1:5*8),VALP2(1:5*10)
VALP3(1:5*2*10)= |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #MATLAB | MATLAB | >> a = 1+i
a =
1.000000000000000 + 1.000000000000000i
>> b = 3+7i
b =
3.000000000000000 + 7.000000000000000i
>> a+b
ans =
4.000000000000000 + 8.000000000000000i
>> a-b
ans =
-2.000000000000000 - 6.000000000000000i
>> a*b
ans =
-4.000000000000000 +10.000000000000000i
>> a/b
ans =
0.172413793103448 - 0.068965517241379i
>> -a
ans =
-1.000000000000000 - 1.000000000000000i
>> a'
ans =
1.000000000000000 - 1.000000000000000i
>> a^b
ans =
0.000808197112874 - 0.011556516327187i
>> norm(a)
ans =
1.414213562373095 |
http://rosettacode.org/wiki/Arithmetic/Rational | Arithmetic/Rational | Task
Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language.
Example
Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number).
Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠').
Define standard coercion operators for casting int to frac etc.
If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.).
Finally test the operators:
Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors.
Related task
Perfect Numbers
| #OCaml | OCaml | #load "nums.cma";;
open Num;;
for candidate = 2 to 1 lsl 19 do
let sum = ref (num_of_int 1 // num_of_int candidate) in
for factor = 2 to truncate (sqrt (float candidate)) do
if candidate mod factor = 0 then
sum := !sum +/ num_of_int 1 // num_of_int factor
+/ num_of_int 1 // num_of_int (candidate / factor)
done;
if is_integer_num !sum then
Printf.printf "Sum of recipr. factors of %d = %d exactly %s\n%!"
candidate (int_of_num !sum) (if int_of_num !sum = 1 then "perfect!" else "")
done;; |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Prolog | Prolog |
agm(A,G,A) :- abs(A-G) < 1.0e-15, !.
agm(A,G,Res) :- A1 is (A+G)/2.0, G1 is sqrt(A*G),!, agm(A1,G1,Res).
?- agm(1,1/sqrt(2),Res).
Res = 0.8472130847939792.
|
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #PureBasic | PureBasic | Procedure.d AGM(a.d, g.d, ErrLim.d=1e-15)
Protected.d ta=a+1, tg
While ta <> a
ta=a: tg=g
a=(ta+tg)*0.5
g=Sqr(ta*tg)
Wend
ProcedureReturn a
EndProcedure
If OpenConsole()
PrintN(StrD(AGM(1, 1/Sqr(2)), 16))
Input()
CloseConsole()
EndIf |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #ColdFusion | ColdFusion |
<cfset zeroPowerTag = 0^0>
<cfoutput>"#zeroPowerTag#"</cfoutput>
|
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Commodore_BASIC | Commodore BASIC | ready.
print 0↑0
1
ready.
█ |
http://rosettacode.org/wiki/Arithmetic_evaluation | Arithmetic evaluation | Create a program which parses and evaluates arithmetic expressions.
Requirements
An abstract-syntax tree (AST) for the expression must be created from parsing the input.
The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
The expression will be a string or list of symbols like "(1+3)*7".
The four symbols + - * / must be supported as binary operators with conventional precedence rules.
Precedence-control parentheses must also be supported.
Note
For those who don't remember, mathematical precedence is as follows:
Parentheses
Multiplication/Division (left to right)
Addition/Subtraction (left to right)
C.f
24 game Player.
Parsing/RPN calculator algorithm.
Parsing/RPN to infix conversion.
| #Nim | Nim | import strutils
import os
#--
# Lexer
#--
type
TokenKind = enum
tokNumber
tokPlus = "+", tokMinus = "-", tokStar = "*", tokSlash = "/"
tokLPar, tokRPar
tokEnd
Token = object
case kind: TokenKind
of tokNumber: value: float
else: discard
proc lex(input: string): seq[Token] =
# Here we go through the entire input string and collect all the tokens into
# a sequence.
var pos = 0
while pos < input.len:
case input[pos]
of '0'..'9':
# Digits consist of three parts: the integer part, the delimiting decimal
# point, and the decimal part.
var numStr = ""
while pos < input.len and input[pos] in Digits:
numStr.add(input[pos])
inc(pos)
if pos < input.len and input[pos] == '.':
numStr.add('.')
inc(pos)
while pos < input.len and input[pos] in Digits:
numStr.add(input[pos])
inc(pos)
result.add(Token(kind: tokNumber, value: numStr.parseFloat()))
of '+': inc(pos); result.add(Token(kind: tokPlus))
of '-': inc(pos); result.add(Token(kind: tokMinus))
of '*': inc(pos); result.add(Token(kind: tokStar))
of '/': inc(pos); result.add(Token(kind: tokSlash))
of '(': inc(pos); result.add(Token(kind: tokLPar))
of ')': inc(pos); result.add(Token(kind: tokRPar))
of ' ': inc(pos)
else: raise newException(ArithmeticError,
"Unexpected character '" & input[pos] & '\'')
# We append an 'end' token to the end of our token sequence, to mark where the
# sequence ends.
result.add(Token(kind: tokEnd))
#--
# Parser
#--
type
ExprKind = enum
exprNumber
exprBinary
Expr = ref object
case kind: ExprKind
of exprNumber: value: float
of exprBinary:
left, right: Expr
operator: TokenKind
proc `$`(ex: Expr): string =
# This proc returns a lisp representation of the expression.
case ex.kind
of exprNumber: $ex.value
of exprBinary: '(' & $ex.operator & ' ' & $ex.left & ' ' & $ex.right & ')'
var
# The input to the program is provided via command line parameters.
tokens = lex(commandLineParams().join(" "))
pos = 0
# This table stores the precedence level of each infix operator. For tokens
# this does not apply to, the precedence is set to 0.
const Precedence: array[low(TokenKind)..high(TokenKind), int] = [
tokNumber: 0,
tokPlus: 1,
tokMinus: 1,
tokStar: 2,
tokSlash: 2,
tokLPar: 0,
tokRPar: 0,
tokEnd: 0
]
# We use a Pratt parser, so the two primary components are the prefix part, and
# the infix part. We start with a prefix token, and when we're done, we continue
# with an infix token.
proc parse(prec = 0): Expr
proc parseNumber(token: Token): Expr =
result = Expr(kind: exprNumber, value: token.value)
proc parseParen(token: Token): Expr =
result = parse()
if tokens[pos].kind != tokRPar:
raise newException(ArithmeticError, "Unbalanced parenthesis")
inc(pos)
proc parseBinary(left: Expr, token: Token): Expr =
result = Expr(kind: exprBinary, left: left, right: parse(),
operator: token.kind)
proc parsePrefix(token: Token): Expr =
case token.kind
of tokNumber: result = parseNumber(token)
of tokLPar: result = parseParen(token)
else: discard
proc parseInfix(left: Expr, token: Token): Expr =
case token.kind
of tokPlus, tokMinus, tokStar, tokSlash: result = parseBinary(left, token)
else: discard
proc parse(prec = 0): Expr =
# This procedure is the heart of a Pratt parser, it puts the whole expression
# together into one abstract syntax tree, properly dealing with precedence.
var token = tokens[pos]
inc(pos)
result = parsePrefix(token)
while prec < Precedence[tokens[pos].kind]:
token = tokens[pos]
if token.kind == tokEnd:
# When we hit the end token, we're done.
break
inc(pos)
result = parseInfix(result, token)
let ast = parse()
proc `==`(ex: Expr): float =
# This proc recursively evaluates the given expression.
result =
case ex.kind
of exprNumber: ex.value
of exprBinary:
case ex.operator
of tokPlus: ==ex.left + ==ex.right
of tokMinus: ==ex.left - ==ex.right
of tokStar: ==ex.left * ==ex.right
of tokSlash: ==ex.left / ==ex.right
else: 0.0
# In the end, we print out the result.
echo ==ast |
http://rosettacode.org/wiki/Zumkeller_numbers | Zumkeller numbers | Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal.
E.G.
6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6.
10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value.
12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14.
Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0
Task
Write a routine (function, procedure, whatever) to find Zumkeller numbers.
Use the routine to find and display here, on this page, the first 220 Zumkeller numbers.
Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers.
Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5.
See Also
OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions
OEIS:A174865 - Odd Zumkeller numbers
Related Tasks
Abundant odd numbers
Abundant, deficient and perfect number classifications
Proper divisors , Factors of an integer | #11l | 11l | F getDivisors(n)
V divs = [1, n]
V i = 2
L i * i <= n
I n % i == 0
divs [+]= i
V j = n I/ i
I i != j
divs [+]= j
i++
R divs
F isPartSum(divs, sum)
I sum == 0
R 1B
V le = divs.len
I le == 0
R 0B
V last = divs.last
[Int] newDivs
L(i) 0 .< le - 1
newDivs [+]= divs[i]
I last > sum
R isPartSum(newDivs, sum)
E
R isPartSum(newDivs, sum) | isPartSum(newDivs, sum - last)
F isZumkeller(n)
V divs = getDivisors(n)
V s = sum(divs)
I s % 2 == 1
R 0B
I n % 2 == 1
V abundance = s - 2 * n
R abundance > 0 & abundance % 2 == 0
R isPartSum(divs, s I/ 2)
print(‘The first 220 Zumkeller numbers are:’)
V i = 2
V count = 0
L count < 220
I isZumkeller(i)
print(‘#3 ’.format(i), end' ‘’)
count++
I count % 20 == 0
print()
i++
print("\nThe first 40 odd Zumkeller numbers are:")
i = 3
count = 0
L count < 40
I isZumkeller(i)
print(‘#5 ’.format(i), end' ‘’)
count++
I count % 10 == 0
print()
i += 2
print("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:")
i = 3
count = 0
L count < 40
I i % 10 != 5 & isZumkeller(i)
print(‘#7 ’.format(i), end' ‘’)
count++
I count % 8 == 0
print()
i += 2 |
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #C | C | <Rows> <Columns>
<Blank pixel character> <Image Pixel character>
<Image of specified rows and columns made up of the two pixel types specified in the second line.>
|
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #C.2B.2B | C++ | #include <iostream>
#include <string>
#include <sstream>
#include <valarray>
const std::string input {
"................................"
".#########.......########......."
".###...####.....####..####......"
".###....###.....###....###......"
".###...####.....###............."
".#########......###............."
".###.####.......###....###......"
".###..####..###.####..####.###.."
".###...####.###..########..###.."
"................................"
};
const std::string input2 {
".........................................................."
".#################...................#############........"
".##################...............################........"
".###################............##################........"
".########.....#######..........###################........"
"...######.....#######.........#######.......######........"
"...######.....#######........#######......................"
"...#################.........#######......................"
"...################..........#######......................"
"...#################.........#######......................"
"...######.....#######........#######......................"
"...######.....#######........#######......................"
"...######.....#######.........#######.......######........"
".########.....#######..........###################........"
".########.....#######.######....##################.######."
".########.....#######.######......################.######."
".########.....#######.######.........#############.######."
".........................................................."
};
class ZhangSuen;
class Image {
public:
friend class ZhangSuen;
using pixel_t = char;
static const pixel_t BLACK_PIX;
static const pixel_t WHITE_PIX;
Image(unsigned width = 1, unsigned height = 1)
: width_{width}, height_{height}, data_( '\0', width_ * height_)
{}
Image(const Image& i) : width_{ i.width_}, height_{i.height_}, data_{i.data_}
{}
Image(Image&& i) : width_{ i.width_}, height_{i.height_}, data_{std::move(i.data_)}
{}
~Image() = default;
Image& operator=(const Image& i) {
if (this != &i) {
width_ = i.width_;
height_ = i.height_;
data_ = i.data_;
}
return *this;
}
Image& operator=(Image&& i) {
if (this != &i) {
width_ = i.width_;
height_ = i.height_;
data_ = std::move(i.data_);
}
return *this;
}
size_t idx(unsigned x, unsigned y) const noexcept { return y * width_ + x; }
bool operator()(unsigned x, unsigned y) {
return data_[idx(x, y)];
}
friend std::ostream& operator<<(std::ostream& o, const Image& i) {
o << i.width_ << " x " << i.height_ << std::endl;
size_t px = 0;
for(const auto& e : i.data_) {
o << (e?Image::BLACK_PIX:Image::WHITE_PIX);
if (++px % i.width_ == 0)
o << std::endl;
}
return o << std::endl;
}
friend std::istream& operator>>(std::istream& in, Image& img) {
auto it = std::begin(img.data_);
const auto end = std::end(img.data_);
Image::pixel_t tmp;
while(in && it != end) {
in >> tmp;
if (tmp != Image::BLACK_PIX && tmp != Image::WHITE_PIX)
throw "Bad character found in image";
*it = (tmp == Image::BLACK_PIX)?1:0;
++it;
}
return in;
}
unsigned width() const noexcept { return width_; }
unsigned height() const noexcept { return height_; }
struct Neighbours {
// 9 2 3
// 8 1 4
// 7 6 5
Neighbours(const Image& img, unsigned p1_x, unsigned p1_y)
: img_{img}
, p1_{img.idx(p1_x, p1_y)}
, p2_{p1_ - img.width()}
, p3_{p2_ + 1}
, p4_{p1_ + 1}
, p5_{p4_ + img.width()}
, p6_{p5_ - 1}
, p7_{p6_ - 1}
, p8_{p1_ - 1}
, p9_{p2_ - 1}
{}
const Image& img_;
const Image::pixel_t& p1() const noexcept { return img_.data_[p1_]; }
const Image::pixel_t& p2() const noexcept { return img_.data_[p2_]; }
const Image::pixel_t& p3() const noexcept { return img_.data_[p3_]; }
const Image::pixel_t& p4() const noexcept { return img_.data_[p4_]; }
const Image::pixel_t& p5() const noexcept { return img_.data_[p5_]; }
const Image::pixel_t& p6() const noexcept { return img_.data_[p6_]; }
const Image::pixel_t& p7() const noexcept { return img_.data_[p7_]; }
const Image::pixel_t& p8() const noexcept { return img_.data_[p8_]; }
const Image::pixel_t& p9() const noexcept { return img_.data_[p9_]; }
const size_t p1_, p2_, p3_, p4_, p5_, p6_, p7_, p8_, p9_;
};
Neighbours neighbours(unsigned x, unsigned y) const { return Neighbours(*this, x, y); }
private:
unsigned height_ { 0 };
unsigned width_ { 0 };
std::valarray<pixel_t> data_;
};
constexpr const Image::pixel_t Image::BLACK_PIX = '#';
constexpr const Image::pixel_t Image::WHITE_PIX = '.';
class ZhangSuen {
public:
// the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2
unsigned transitions_white_black(const Image::Neighbours& a) const {
unsigned sum = 0;
sum += (a.p9() == 0) && a.p2();
sum += (a.p2() == 0) && a.p3();
sum += (a.p3() == 0) && a.p4();
sum += (a.p8() == 0) && a.p9();
sum += (a.p4() == 0) && a.p5();
sum += (a.p7() == 0) && a.p8();
sum += (a.p6() == 0) && a.p7();
sum += (a.p5() == 0) && a.p6();
return sum;
}
// The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
unsigned black_pixels(const Image::Neighbours& a) const {
unsigned sum = 0;
sum += a.p9();
sum += a.p2();
sum += a.p3();
sum += a.p8();
sum += a.p4();
sum += a.p7();
sum += a.p6();
sum += a.p5();
return sum;
}
const Image& operator()(const Image& img) {
tmp_a_ = img;
size_t changed_pixels = 0;
do {
changed_pixels = 0;
// Step 1
tmp_b_ = tmp_a_;
for(size_t y = 1; y < tmp_a_.height() - 1; ++y) {
for(size_t x = 1; x < tmp_a_.width() - 1; ++x) {
if (tmp_a_.data_[tmp_a_.idx(x, y)]) {
auto n = tmp_a_.neighbours(x, y);
auto bp = black_pixels(n);
if (bp >= 2 && bp <= 6) {
auto tr = transitions_white_black(n);
if ( tr == 1
&& (n.p2() * n.p4() * n.p6() == 0)
&& (n.p4() * n.p6() * n.p8() == 0)
) {
tmp_b_.data_[n.p1_] = 0;
++changed_pixels;
}
}
}
}
}
// Step 2
tmp_a_ = tmp_b_;
for(size_t y = 1; y < tmp_b_.height() - 1; ++y) {
for(size_t x = 1; x < tmp_b_.width() - 1; ++x) {
if (tmp_b_.data_[tmp_b_.idx(x, y)]) {
auto n = tmp_b_.neighbours(x, y);
auto bp = black_pixels(n);
if (bp >= 2 && bp <= 6) {
auto tr = transitions_white_black(n);
if ( tr == 1
&& (n.p2() * n.p4() * n.p8() == 0)
&& (n.p2() * n.p6() * n.p8() == 0)
) {
tmp_a_.data_[n.p1_] = 0;
++changed_pixels;
}
}
}
}
}
} while(changed_pixels > 0);
return tmp_a_;
}
private:
Image tmp_a_;
Image tmp_b_;
};
int main(int argc, char const *argv[])
{
using namespace std;
Image img(32, 10);
istringstream iss{input};
iss >> img;
cout << img;
cout << "ZhangSuen" << endl;
ZhangSuen zs;
Image res = std::move(zs(img));
cout << res << endl;
Image img2(58,18);
istringstream iss2{input2};
iss2 >> img2;
cout << img2;
cout << "ZhangSuen with big image" << endl;
Image res2 = std::move(zs(img2));
cout << res2 << endl;
return 0;
}
|
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Stata | Stata | clear all
scalar h=_pi/40
set obs 400
gen t=_n*h
gen x=(1+t)*cos(t)
gen y=(1+t)*sin(t)
line y x |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Tcl | Tcl | package require Tk
# create widgets
canvas .canvas
frame .controls
ttk::label .legend -text " r = a + b θ "
ttk::label .label_a -text "a ="
ttk::entry .entry_a -textvariable a
ttk::label .label_b -text "a ="
ttk::entry .entry_b -textvariable b
button .button -text "Redraw" -command draw
# layout
grid .canvas .controls -sticky nsew
grid .legend - -sticky ns -in .controls
grid .label_a .entry_a -sticky nsew -in .controls
grid .label_b .entry_b -sticky nsew -in .controls
grid .button - -sticky ns -in .controls
# make the canvas resize with the window
grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1
# spiral parameters:
set a .2
set b .05
proc draw {} {
variable a
variable b
# make sure inputs are valid:
if {![string is double $a] || ![string is double $b]} return
if {$a == 0 || $b == 0} return
set w [winfo width .canvas]
set h [winfo height .canvas]
set r 0
set pi [expr {4*atan(1)}]
set step [expr {$pi / $w}]
for {set t 0} {$r < 2} {set t [expr {$t + $step}]} {
set r [expr {$a + $b * $t}]
set y [expr {sin($t) * $r}]
set x [expr {cos($t) * $r}]
# transform to canvas co-ordinates
set y [expr {entier((1+$y)*$h/2)}]
set x [expr {entier((1+$x)*$w/2)}]
lappend coords $x $y
}
.canvas delete all
set id [.canvas create line $coords -fill red]
}
# draw whenever parameters are changed
# ";#" so extra trace arguments are ignored
trace add variable a write {draw;#}
trace add variable b write {draw;#}
wm protocol . WM_DELETE_WINDOW exit ;# exit when window is closed
update ;# lay out widgets before trying to draw
draw
vwait forever ;# go into event loop until window is closed |
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #C | C | #include <stdio.h>
typedef unsigned long long u64;
#define FIB_INVALID (~(u64)0)
u64 fib[] = {
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,
14930352, 24157817, 39088169, 63245986, 102334155, 165580141,
267914296, 433494437, 701408733, 1134903170, 1836311903,
2971215073ULL, 4807526976ULL, 7778742049ULL, 12586269025ULL,
20365011074ULL, 32951280099ULL, 53316291173ULL, 86267571272ULL,
139583862445ULL, 225851433717ULL, 365435296162ULL, 591286729879ULL,
956722026041ULL, 1548008755920ULL, 2504730781961ULL, 4052739537881ULL,
6557470319842ULL, 10610209857723ULL, 17167680177565ULL,
27777890035288ULL // this 65-th one is for range check
};
u64 fibbinary(u64 n)
{
if (n >= fib[64]) return FIB_INVALID;
u64 ret = 0;
int i;
for (i = 64; i--; )
if (n >= fib[i]) {
ret |= 1ULL << i;
n -= fib[i];
}
return ret;
}
void bprint(u64 n, int width)
{
if (width > 64) width = 64;
u64 b;
for (b = 1ULL << (width - 1); b; b >>= 1)
putchar(b == 1 && !n
? '0'
: b > n ? ' '
: b & n ? '1' : '0');
putchar('\n');
}
int main(void)
{
int i;
for (i = 0; i <= 20; i++)
printf("%2d:", i), bprint(fibbinary(i), 8);
return 0;
} |
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #Batch_File | Batch File |
@echo off
setlocal enableDelayedExpansion
:: 0 = closed
:: 1 = open
:: SET /A treats undefined variable as 0
:: Negation operator ! must be escaped because delayed expansion is enabled
for /l %%p in (1 1 100) do for /l %%d in (%%p %%p 100) do set /a "door%%d=^!door%%d"
for /l %%d in (1 1 100) do if !door%%d!==1 (
echo door %%d is open
) else echo door %%d is closed
|
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #Delphi | Delphi |
procedure TForm1.Button1Click(Sender: TObject);
var
StaticArray: array[1..10] of Integer; // static arrays can start at any index
DynamicArray: array of Integer; // dynamic arrays always start at 0
StaticArrayText,
DynamicArrayText: string;
ixS, ixD: Integer;
begin
// Setting the length of the dynamic array the same as the static one
SetLength(DynamicArray, Length(StaticArray));
// Asking random numbers storing into the static array
for ixS := Low(StaticArray) to High(StaticArray) do
begin
StaticArray[ixS] := StrToInt(
InputBox('Random number',
'Enter a random number for position',
IntToStr(ixS)));
end;
// Storing entered numbers of the static array in reverse order into the dynamic
ixD := High(DynamicArray);
for ixS := Low(StaticArray) to High(StaticArray) do
begin
DynamicArray[ixD] := StaticArray[ixS];
Dec(ixD);
end;
// Concatenating the static and dynamic array into a single string variable
StaticArrayText := '';
for ixS := Low(StaticArray) to High(StaticArray) do
StaticArrayText := StaticArrayText + IntToStr(StaticArray[ixS]);
DynamicArrayText := '';
for ixD := Low(DynamicArray) to High(DynamicArray) do
DynamicArrayText := DynamicArrayText + IntToStr(DynamicArray[ixD]);
end;
// Displaying both arrays (#13#10 = Carriage Return/Line Feed)
ShowMessage(StaticArrayText + #13#10 + DynamicArrayText);
end; |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Maxima | Maxima | z1: 5 + 2 * %i;
2*%i+5
z2: 3 - 7 * %i;
3-7*%i
carg(z1);
atan(2/5)
cabs(z1);
sqrt(29)
rectform(z1 * z2);
29-29*%i
polarform(z1);
sqrt(29)*%e^(%i*atan(2/5))
conjugate(z1);
5-2*%i
z1 + z2;
8-5*%i
z1 - z2;
9*%i+2
z1 * z2;
(3-7*%i)*(2*%i+5)
z1 * z2, rectform;
29-29*%i
z1 / z2;
(2*%i+5)/(3-7*%i)
z1 / z2, rectform;
(41*%i)/58+1/58
realpart(z1);
5
imagpart(z1);
2 |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #.D0.9C.D0.9A-61.2F52 | МК-61/52 | ПA С/П ПB С/П ПC С/П ПD С/П ИПC x^2
ИПD x^2 + П3 ИПA ИПC * ИПB ИПD *
+ ИП3 / П1 ИПB ИПC * ИПA ИПD *
- ИП3 / П2 ИП1 С/П ИПA ИПC * ИПB
ИПD * - П1 ИПB ИПC * ИПA ИПD *
+ П2 ИП1 С/П ИПB ИПD + П2 ИПA ИПC
+ ИП1 С/П ИПB ИПD - П2 ИПA ИПC -
П1 С/П |
http://rosettacode.org/wiki/Arithmetic/Rational | Arithmetic/Rational | Task
Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language.
Example
Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number).
Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠').
Define standard coercion operators for casting int to frac etc.
If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.).
Finally test the operators:
Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors.
Related task
Perfect Numbers
| #Ol | Ol |
(define x 3/7)
(define y 9/11)
(define z -2/5)
; demonstrate builtin functions:
(print "(abs " z ") = " (abs z))
(print "- " z " = " (- z))
(print x " + " y " = " (+ x y))
(print x " - " y " = " (- x y))
(print x " * " y " = " (* x y))
(print x " / " y " = " (/ x y))
(print x " < " y " = " (< x y))
(print x " > " y " = " (> x y))
; introduce new functions:
(define (+:= x) (+ x 1))
(define (-:= x) (- x 1))
(print "+:= " z " = " (+:= z))
(print "-:= " z " = " (-:= z))
; finally, find all perfect numbers less than 2^15:
(lfor-each (lambda (candidate)
(let ((sum (lfold (lambda (sum factor)
(if (= 0 (modulo candidate factor))
(+ sum (/ 1 factor) (/ factor candidate))
sum))
(/ 1 candidate)
(liota 2 1 (+ (isqrt candidate) 1)))))
(if (= 1 (denominator sum))
(print candidate (if (eq? sum 1) ", perfect" "")))))
(liota 2 1 (expt 2 15)))
|
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Python | Python | from math import sqrt
def agm(a0, g0, tolerance=1e-10):
"""
Calculating the arithmetic-geometric mean of two numbers a0, g0.
tolerance the tolerance for the converged
value of the arithmetic-geometric mean
(default value = 1e-10)
"""
an, gn = (a0 + g0) / 2.0, sqrt(a0 * g0)
while abs(an - gn) > tolerance:
an, gn = (an + gn) / 2.0, sqrt(an * gn)
return an
print agm(1, 1 / sqrt(2)) |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Quackery | Quackery | [ $ "bigrat.qky" loadfile ] now!
[ temp put
[ 2over 2over temp share approx=
iff 2drop done
2over 2over v*
temp share vsqrt drop
dip [ dip [ v+ 2 n->v v/ ] ]
again ]
base share temp take ** round ] is agm ( n/d n/d n --> n/d )
1 n->v
2 n->v 125 vsqrt drop 1/v
125 agm
2dup
125 point$ echo$ cr cr
swap say "Num: " echo cr
say "Den: " echo |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Common_Lisp | Common Lisp | > (expt 0 0)
1 |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Crystal | Crystal | puts "Int32: #{0_i32**0_i32}"
puts "Negative Int32: #{-0_i32**-0_i32}"
puts "Float32: #{0_f32**0_f32}"
puts "Negative Float32: #{-0_f32**-0_f32}" |
http://rosettacode.org/wiki/Arithmetic_evaluation | Arithmetic evaluation | Create a program which parses and evaluates arithmetic expressions.
Requirements
An abstract-syntax tree (AST) for the expression must be created from parsing the input.
The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
The expression will be a string or list of symbols like "(1+3)*7".
The four symbols + - * / must be supported as binary operators with conventional precedence rules.
Precedence-control parentheses must also be supported.
Note
For those who don't remember, mathematical precedence is as follows:
Parentheses
Multiplication/Division (left to right)
Addition/Subtraction (left to right)
C.f
24 game Player.
Parsing/RPN calculator algorithm.
Parsing/RPN to infix conversion.
| #OCaml | OCaml | type expression =
| Const of float
| Sum of expression * expression (* e1 + e2 *)
| Diff of expression * expression (* e1 - e2 *)
| Prod of expression * expression (* e1 * e2 *)
| Quot of expression * expression (* e1 / e2 *)
let rec eval = function
| Const c -> c
| Sum (f, g) -> eval f +. eval g
| Diff(f, g) -> eval f -. eval g
| Prod(f, g) -> eval f *. eval g
| Quot(f, g) -> eval f /. eval g
open Genlex
let lexer = make_lexer ["("; ")"; "+"; "-"; "*"; "/"]
let rec parse_expr = parser
[< e1 = parse_mult; e = parse_more_adds e1 >] -> e
and parse_more_adds e1 = parser
[< 'Kwd "+"; e2 = parse_mult; e = parse_more_adds (Sum(e1, e2)) >] -> e
| [< 'Kwd "-"; e2 = parse_mult; e = parse_more_adds (Diff(e1, e2)) >] -> e
| [< >] -> e1
and parse_mult = parser
[< e1 = parse_simple; e = parse_more_mults e1 >] -> e
and parse_more_mults e1 = parser
[< 'Kwd "*"; e2 = parse_simple; e = parse_more_mults (Prod(e1, e2)) >] -> e
| [< 'Kwd "/"; e2 = parse_simple; e = parse_more_mults (Quot(e1, e2)) >] -> e
| [< >] -> e1
and parse_simple = parser
| [< 'Int i >] -> Const(float i)
| [< 'Float f >] -> Const f
| [< 'Kwd "("; e = parse_expr; 'Kwd ")" >] -> e
let parse_expression = parser [< e = parse_expr; _ = Stream.empty >] -> e
let read_expression s = parse_expression(lexer(Stream.of_string s)) |
http://rosettacode.org/wiki/Zumkeller_numbers | Zumkeller numbers | Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal.
E.G.
6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6.
10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value.
12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14.
Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0
Task
Write a routine (function, procedure, whatever) to find Zumkeller numbers.
Use the routine to find and display here, on this page, the first 220 Zumkeller numbers.
Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers.
Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5.
See Also
OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions
OEIS:A174865 - Odd Zumkeller numbers
Related Tasks
Abundant odd numbers
Abundant, deficient and perfect number classifications
Proper divisors , Factors of an integer | #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program zumkellex641.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* REMARK 2 : this program is not optimized.
Not search First 40 odd Zumkeller numbers not divisible by 5 */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ NBDIVISORS, 100
/*******************************************/
/* Structures */
/********************************************/
/* structurea area divisors */
.struct 0
div_ident: // ident
.struct div_ident + 8
div_flag: // value 0, 1 or 2
.struct div_flag + 8
div_fin:
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm: .asciz "Program start \n"
szMessEndPgm: .asciz "Program normal end.\n"
szMessErrorArea: .asciz "\033[31mError : area divisors too small.\n"
szMessError: .asciz "\033[31mError !!!\n"
szCarriageReturn: .asciz "\n"
/* datas message display */
szMessEntete: .asciz "The first 220 Zumkeller numbers are:\n"
sNumber: .space 4*20,' '
.space 12,' ' // for end of conversion
szMessListDivi: .asciz "Divisors list : \n"
szMessListDiviHeap: .asciz "Heap 1 Divisors list : \n"
szMessResult: .ascii " "
sValue: .space 12,' '
.asciz ""
szMessEntete1: .asciz "The first 40 odd Zumkeller numbers are:\n"
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
.align 4
tbDivisors: .skip div_fin * NBDIVISORS // area divisors
sZoneConv: .skip 30
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // program start
ldr x0,qAdrszMessStartPgm // display start message
bl affichageMess
ldr x0,qAdrszMessEntete // display message
bl affichageMess
mov x2,#1 // counter number
mov x3,#0 // counter zumkeller number
mov x4,#0 // counter for line display
1:
mov x0,x2 // number
mov x1,#0 // display flag
bl testZumkeller
cmp x0,#1 // zumkeller ?
bne 3f // no
mov x0,x2
ldr x1,qAdrsZoneConv // and convert ascii string
bl conversion10
ldr x0,qAdrsZoneConv // copy result in display line
ldr x1,qAdrsNumber
lsl x5,x4,#2
add x1,x1,x5
11:
ldrb w5,[x0],1
cbz w5,12f
strb w5,[x1],1
b 11b
12:
add x4,x4,#1
cmp x4,#20
blt 2f
//add x1,x1,#3 // carriage return at end of display line
mov x0,#'\n'
strb w0,[x1]
mov x0,#0
strb w0,[x1,#1] // end of display line
ldr x0,qAdrsNumber // display result message
bl affichageMess
mov x4,#0
2:
add x3,x3,#1 // increment counter
3:
add x2,x2,#1 // increment number
cmp x3,#220 // end ?
blt 1b
/* raz display line */
ldr x0,qAdrsNumber
mov x1,' '
mov x2,0
31:
strb w1,[x0,x2]
add x2,x2,1
cmp x2,4*20
blt 31b
/* odd zumkeller numbers */
ldr x0,qAdrszMessEntete1
bl affichageMess
mov x2,#1
mov x3,#0
mov x4,#0
4:
mov x0,x2 // number
mov x1,#0 // display flag
bl testZumkeller
cmp x0,#1
bne 6f
mov x0,x2
ldr x1,qAdrsZoneConv // and convert ascii string
bl conversion10
ldr x0,qAdrsZoneConv // copy result in display line
ldr x1,qAdrsNumber
lsl x5,x4,#3
add x1,x1,x5
41:
ldrb w5,[x0],1
cbz w5,42f
strb w5,[x1],1
b 41b
42:
add x4,x4,#1
cmp x4,#8
blt 5f
mov x0,#'\n'
strb w0,[x1]
strb wzr,[x1,#1]
ldr x0,qAdrsNumber // display result message
bl affichageMess
mov x4,#0
5:
add x3,x3,#1
6:
add x2,x2,#2
cmp x3,#40
blt 4b
ldr x0,qAdrszMessEndPgm // display end message
bl affichageMess
b 100f
99: // display error message
ldr x0,qAdrszMessError
bl affichageMess
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc 0 // perform system call
qAdrszMessStartPgm: .quad szMessStartPgm
qAdrszMessEndPgm: .quad szMessEndPgm
qAdrszMessError: .quad szMessError
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrszMessResult: .quad szMessResult
qAdrsValue: .quad sValue
qAdrszMessEntete: .quad szMessEntete
qAdrszMessEntete1: .quad szMessEntete1
qAdrsNumber: .quad sNumber
qAdrsZoneConv: .quad sZoneConv
/******************************************************************/
/* test if number is Zumkeller number */
/******************************************************************/
/* x0 contains the number */
/* x1 contains display flag (<>0: display, 0: no display ) */
/* x0 return 1 if Zumkeller number else return 0 */
testZumkeller:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
stp x6,x7,[sp,-16]! // save registers
mov x7,x1 // save flag
ldr x1,qAdrtbDivisors
bl divisors // create area of divisors
cmp x0,#0 // 0 divisors or error ?
ble 98f
mov x5,x0 // number of dividers
mov x6,x1 // number of odd dividers
cmp x7,#1 // display divisors ?
bne 1f
ldr x0,qAdrszMessListDivi // yes
bl affichageMess
mov x0,x5
mov x1,#0
ldr x2,qAdrtbDivisors
bl printHeap
1:
tst x6,#1 // number of odd divisors is odd ?
bne 99f
mov x0,x5
mov x1,#0
ldr x2,qAdrtbDivisors
bl sumDivisors // compute divisors sum
tst x0,#1 // sum is odd ?
bne 99f // yes -> end
lsr x6,x0,#1 // compute sum /2
mov x0,x6 // x0 contains sum / 2
mov x1,#1 // first heap
mov x3,x5 // number divisors
mov x4,#0 // N° element to start
bl searchHeap
cmp x0,#-2
beq 100f // end
cmp x0,#-1
beq 100f // end
cmp x7,#1 // print flag ?
bne 2f
ldr x0,qAdrszMessListDiviHeap
bl affichageMess
mov x0,x5 // yes print divisors of first heap
ldr x2,qAdrtbDivisors
mov x1,#1
bl printHeap
2:
mov x0,#1 // ok
b 100f
98:
mov x0,-1
b 100f
99:
mov x0,#0
b 100f
100:
ldp x6,x7,[sp],16 // restaur 2 registers
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
qAdrtbDivisors: .quad tbDivisors
qAdrszMessListDiviHeap: .quad szMessListDiviHeap
/******************************************************************/
/* search sum divisors = sum / 2 */
/******************************************************************/
/* x0 contains sum to search */
/* x1 contains flag (1 or 2) */
/* x2 contains address of divisors area */
/* x3 contains elements number */
/* x4 contains N° element to start */
/* x0 return -2 end search */
/* x0 return -1 no heap */
/* x0 return 0 Ok */
/* recursive routine */
searchHeap:
stp x3,lr,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
stp x6,x8,[sp,-16]! // save registers
1:
cmp x4,x3 // indice = elements number
beq 99f
lsl x6,x4,#4 // compute element address
add x6,x6,x2
ldr x7,[x6,#div_flag] // flag equal ?
cmp x7,#0
bne 6f
ldr x5,[x6,#div_ident]
cmp x5,x0 // element value = remaining amount
beq 7f // yes
bgt 6f // too large
// too less
mov x8,x0 // save sum
sub x0,x0,x5 // new sum to find
add x4,x4,#1 // next divisors
bl searchHeap // other search
cmp x0,#0 // find -> ok
beq 5f
mov x0,x8 // sum begin
sub x4,x4,#1 // prev divisors
bl razFlags // zero in all flags > current element
4:
add x4,x4,#1 // last divisors
b 1b
5:
str x1,[x6,#div_flag] // flag -> area element flag
b 100f
6:
add x4,x4,#1 // last divisors
b 1b
7:
str x1,[x6,#div_flag] // flag -> area element flag
mov x0,#0 // search ok
b 100f
8:
mov x0,#-1 // end search
b 100f
99:
mov x0,#-2
b 100f
100:
ldp x6,x8,[sp],16 // restaur 2 registers
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x3,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* raz flags */
/******************************************************************/
/* x0 contains sum to search */
/* x1 contains flag (1 or 2) */
/* x2 contains address of divisors area */
/* x3 contains elements number */
/* x4 contains N° element to start */
/* x5 contains current sum */
/* REMARK : NO SAVE REGISTERS x14 x15 x16 AND LR */
razFlags:
mov x14,x4
1:
cmp x14,x3 // indice > nb elements ?
bge 100f // yes -> end
lsl x15,x14,#4
add x15,x15,x2 // compute address element
ldr x16,[x15,#div_flag] // load flag
cmp x1,x16 // equal ?
bne 2f
str xzr,[x15,#div_flag] // yes -> store 0
2:
add x14,x14,#1 // increment indice
b 1b // and loop
100:
ret // return to address lr x30
/******************************************************************/
/* compute sum of divisors */
/******************************************************************/
/* x0 contains elements number */
/* x1 contains flag (0 1 or 2)
/* x2 contains address of divisors area
/* x0 return divisors sum */
/* REMARK : NO SAVE REGISTERS x13 x14 x15 x16 AND LR */
sumDivisors:
mov x13,#0 // indice
mov x16,#0 // sum
1:
lsl x14,x13,#4 // N° element * 16
add x14,x14,x2
ldr x15,[x14,#div_flag] // compare flag
cmp x15,x1
bne 2f
ldr x15,[x14,#div_ident] // load value
add x16,x16,x15 // and add
2:
add x13,x13,#1
cmp x13,x0
blt 1b
mov x0,x16 // return sum
100:
ret // return to address lr x30
/******************************************************************/
/* print heap */
/******************************************************************/
/* x0 contains elements number */
/* x1 contains flag (0 1 or 2) */
/* x2 contains address of divisors area */
printHeap:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
stp x5,x6,[sp,-16]! // save registers
stp x1,x7,[sp,-16]! // save registers
mov x6,x0
mov x5,x1
mov x3,#0 // indice
1:
lsl x1,x3,#4 // N° element * 16
add x1,x1,x2
ldr x4,[x1,#div_flag]
cmp x4,x5
bne 2f
ldr x0,[x1,#div_ident]
ldr x1,qAdrsValue // and convert ascii string
bl conversion10
ldr x0,qAdrszMessResult // display result message
bl affichageMess
2:
add x3,x3,#1
cmp x3,x6
blt 1b
ldr x0,qAdrszCarriageReturn
bl affichageMess
100:
ldp x1,x8,[sp],16 // restaur 2 registers
ldp x5,x6,[sp],16 // restaur 2 registers
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* divisors function */
/******************************************************************/
/* x0 contains the number */
/* x1 contains address of divisors area
/* x0 return divisors number */
/* x1 return counter odd divisors */
/* REMARK : NO SAVE REGISTERS x10 x11 x12 x13 x14 x15 x16 x17 x18 */
divisors:
str lr,[sp,-16]! // save register LR
cmp x0,#1 // = 1 ?
ble 98f
mov x17,x0
mov x18,x1
mov x11,#1 // counter odd divisors
mov x0,#1 // first divisor = 1
str x0,[x18,#div_ident]
mov x0,#0
str x0,[x18,#div_flag]
tst x17,#1 // number is odd ?
cinc x11,x11,ne // count odd divisors
mov x0,x17 // last divisor = N
add x10,x18,#16 // store at next element
str x0,[x10,#div_ident]
mov x0,#0
str x0,[x10,#div_flag]
mov x16,#2 // first divisor
mov x15,#2 // Counter divisors
2: // begin loop
udiv x12,x17,x16
msub x13,x12,x16,x17
cmp x13,#0 // remainder = 0 ?
bne 3f
cmp x12,x16
blt 4f // quot<divisor end
lsl x10,x15,#4 // N° element * 16
add x10,x10,x18 // and add at area begin address
str x12,[x10,#div_ident]
str xzr,[x10,#div_flag]
add x15,x15,#1 // increment counter
cmp x15,#NBDIVISORS // area maxi ?
bge 99f
tst x12,#1
cinc x11,x11,ne // count odd divisors
cmp x12,x16 // quotient = divisor ?
ble 4f
lsl x10,x15,#4 // N° element * 16
add x10,x10,x18 // and add at area begin address
str x16,[x10,#div_ident]
str xzr,[x10,#div_flag]
add x15,x15,#1 // increment counter
cmp x15,#NBDIVISORS // area maxi ?
bge 99f
tst x16,#1
cinc x11,x11,ne // count odd divisors
3:
cmp x12,x16
ble 4f
add x16,x16,#1 // increment divisor
b 2b // and loop
4:
mov x0,x15 // return divisors number
mov x1,x11 // return count odd divisors
b 100f
98:
mov x0,0
b 100f
99: // error
ldr x0,qAdrszMessErrorArea
bl affichageMess
mov x0,-1
100:
ldr lr,[sp],16 // restaur 1 registers
ret // return to address lr x30
qAdrszMessListDivi: .quad szMessListDivi
qAdrszMessErrorArea: .quad szMessErrorArea
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/Zumkeller_numbers | Zumkeller numbers | Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal.
E.G.
6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6.
10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value.
12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14.
Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0
Task
Write a routine (function, procedure, whatever) to find Zumkeller numbers.
Use the routine to find and display here, on this page, the first 220 Zumkeller numbers.
Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers.
Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5.
See Also
OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions
OEIS:A174865 - Odd Zumkeller numbers
Related Tasks
Abundant odd numbers
Abundant, deficient and perfect number classifications
Proper divisors , Factors of an integer | #AppleScript | AppleScript | -- Sum n's proper divisors.
on aliquotSum(n)
if (n < 2) then return 0
set sum to 1
set sqrt to n ^ 0.5
set limit to sqrt div 1
if (limit = sqrt) then
set sum to sum + limit
set limit to limit - 1
end if
repeat with i from 2 to limit
if (n mod i is 0) then set sum to sum + i + n div i
end repeat
return sum
end aliquotSum
-- Return n's proper divisors.
on properDivisors(n)
set output to {}
if (n > 1) then
set sqrt to n ^ 0.5
set limit to sqrt div 1
if (limit = sqrt) then
set end of output to limit
set limit to limit - 1
end if
repeat with i from limit to 2 by -1
if (n mod i is 0) then
set beginning of output to i
set end of output to n div i
end if
end repeat
set beginning of output to 1
end if
return output
end properDivisors
-- Does a subset of the given list of numbers add up to the target value?
on subsetOf:numberList sumsTo:target
script o
property lst : numberList
property someNegatives : false
on ssp(target, i)
repeat while (i > 1)
set n to item i of my lst
set i to i - 1
if ((n = target) or (((n < target) or (someNegatives)) and (ssp(target - n, i)))) then return true
end repeat
return (target = beginning of my lst)
end ssp
end script
-- The search can be more efficient if it's known the list contains no negatives.
repeat with n in o's lst
if (n < 0) then
set o's someNegatives to true
exit repeat
end if
end repeat
return o's ssp(target, count o's lst)
end subsetOf:sumsTo:
-- Is n a Zumkeller number?
on isZumkeller(n)
-- Yes if its aliquot sum is greater than or equal to it, the difference between them is even, and
-- either n is odd or a subset of its proper divisors sums to half the sum of the divisors and it.
-- Using aliquotSum() to get the divisor sum and then calling properDivisors() too if a list's actually
-- needed is generally faster than using properDivisors() in the first place and summing the result.
set sum to aliquotSum(n)
return ((sum ≥ n) and ((sum - n) mod 2 = 0) and ¬
((n mod 2 = 1) or (my subsetOf:(properDivisors(n)) sumsTo:((sum + n) div 2))))
end isZumkeller
-- Task code:
-- Find and return q Zumkeller numbers, starting the search at n and continuing at the
-- given interval, applying the Zumkeller test only to numbers passing the given filter.
on zumkellerNumbers(q, n, interval, filter)
script o
property zumkellers : {}
end script
set counter to 0
repeat until (counter = q)
if ((filter's OK(n)) and (isZumkeller(n))) then
set end of o's zumkellers to n
set counter to counter + 1
end if
set n to n + interval
end repeat
return o's zumkellers
end zumkellerNumbers
on joinText(textList, delimiter)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delimiter
set txt to textList as text
set AppleScript's text item delimiters to astid
return txt
end joinText
on formatForDisplay(resultList, heading, resultsPerLine, separator)
script o
property input : resultList
property output : {heading}
end script
set len to (count o's input)
repeat with i from 1 to len by resultsPerLine
set j to i + resultsPerLine - 1
if (j > len) then set j to len
set end of o's output to joinText(items i thru j of o's input, separator)
end repeat
return joinText(o's output, linefeed)
end formatForDisplay
on doTask(cheating)
set output to {}
script noFilter
on OK(n)
return true
end OK
end script
set header to "1st 220 Zumkeller numbers:"
set end of output to formatForDisplay(zumkellerNumbers(220, 1, 1, noFilter), header, 20, " ")
set header to "1st 40 odd Zumkeller numbers:"
set end of output to formatForDisplay(zumkellerNumbers(40, 1, 2, noFilter), header, 10, " ")
-- Stretch goal:
set header to "1st 40 odd Zumkeller numbers not ending with 5:"
script no5Multiples
on OK(n)
return (n mod 5 > 0)
end OK
end script
if (cheating) then
-- Knowing that the HCF of the first 203 odd Zumkellers not ending with 5
-- is 63, just check 63 and each 126th number thereafter.
-- For the 204th - 907th such numbers, the HCF reduces to 21, so adjust accordingly.
-- (See Horsth's comments on the Talk page.)
set zumkellers to zumkellerNumbers(40, 63, 126, no5Multiples)
else
-- Otherwise check alternate numbers from 1.
set zumkellers to zumkellerNumbers(40, 1, 2, no5Multiples)
end if
set end of output to formatForDisplay(zumkellers, header, 10, " ")
return joinText(output, linefeed & linefeed)
end doTask
local cheating
set cheating to false
doTask(cheating) |
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included) | Arbitrary-precision integers (included) | Using the in-built capabilities of your language, calculate the integer value of:
5
4
3
2
{\displaystyle 5^{4^{3^{2}}}}
Confirm that the first and last twenty digits of the answer are:
62060698786608744707...92256259918212890625
Find and show the number of decimal digits in the answer.
Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead.
Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value.
Related tasks
Long multiplication
Exponentiation order
exponentiation operator
Exponentiation with infix operators in (or operating on) the base
| #11l | 11l | V y = String(BigInt(5) ^ 4 ^ 3 ^ 2)
print(‘5^4^3^2 = #....#. and has #. digits’.format(y[0.<20], y[(len)-20..], y.len)) |
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #D | D | import std.stdio, std.algorithm, std.string, std.functional,
std.typecons, std.typetuple, bitmap;
struct BlackWhite {
ubyte c;
alias c this;
static immutable black = typeof(this)(0),
white = typeof(this)(1);
}
alias Neighbours = BlackWhite[9];
alias Img = Image!BlackWhite;
/// Zhang-Suen thinning algorithm.
Img zhangSuen(Img image1, Img image2) pure nothrow @safe @nogc
in {
assert(image1.image.all!(x => x == Img.black || x == Img.white));
assert(image1.nx == image2.nx && image1.ny == image2.ny);
} out(result) {
assert(result.nx == image1.nx && result.ny == image1.ny);
assert(result.image.all!(x => x == Img.black || x == Img.white));
} body {
/// True if inf <= x <= sup.
static inInterval(T)(in T x, in T inf, in T sup) pure nothrow @safe @nogc {
return x >= inf && x <= sup;
}
/// Return 8-neighbours+1 of point (x,y) of given image, in order.
static void neighbours(in Img I, in size_t x, in size_t y,
out Neighbours n) pure nothrow @safe @nogc {
n = [I[x,y-1], I[x+1,y-1], I[x+1,y], I[x+1,y+1], // P2,P3,P4,P5
I[x,y+1], I[x-1,y+1], I[x-1,y], I[x-1,y-1], // P6,P7,P8,P9
I[x,y-1]];
}
if (image1.nx < 3 || image1.ny < 3) {
image2.image[] = image1.image[];
return image2;
}
immutable static zeroOne = [0, 1]; //**
Neighbours n;
bool hasChanged;
do {
hasChanged = false;
foreach (immutable ab; TypeTuple!(tuple(2, 4), tuple(0, 6))) {
foreach (immutable y; 1 .. image1.ny - 1) {
foreach (immutable x; 1 .. image1.nx - 1) {
neighbours(image1, x, y, n);
if (image1[x, y] && // Cond. 0
(!n[ab[0]] || !n[4] || !n[6]) && // Cond. 4
(!n[0] || !n[2] || !n[ab[1]]) && // Cond. 3
//n[].count([0, 1]) == 1 &&
n[].count(zeroOne) == 1 && // Cond. 2
// n[0 .. 8].sum in iota(2, 7)) {
inInterval(n[0 .. 8].sum, 2, 6)) { // Cond. 1
hasChanged = true;
image2[x, y] = Img.black;
} else
image2[x, y] = image1[x, y];
}
}
image1.swap(image2);
}
} while (hasChanged);
return image1;
}
void main() {
immutable before_txt = "
##..###
##..###
##..###
##..###
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
######.
.......";
immutable small_rc = "
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................";
immutable rc = "
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................";
foreach (immutable txt; [before_txt, small_rc, rc]) {
auto img = Img.fromText(txt);
"From:".writeln;
img.textualShow(/*bl=*/ '.', /*wh=*/ '#');
"\nTo thinned:".writeln;
img.zhangSuen(img.dup).textualShow(/*bl=*/ '.', /*wh=*/ '#');
writeln;
}
} |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #VBA | VBA | Private Sub plot_coordinate_pairs(x As Variant, y As Variant)
Dim chrt As Chart
Set chrt = ActiveSheet.Shapes.AddChart.Chart
With chrt
.ChartType = xlXYScatter
.HasLegend = False
.SeriesCollection.NewSeries
.SeriesCollection.Item(1).XValues = x
.SeriesCollection.Item(1).Values = y
End With
End Sub
Public Sub main()
Dim x(1000) As Single, y(1000) As Single
a = 1
b = 9
For i = 0 To 1000
theta = i * WorksheetFunction.Pi() / 60
r = a + b * theta
x(i) = r * Cos(theta)
y(i) = r * Sin(theta)
Next i
plot_coordinate_pairs x, y
End Sub |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Wren | Wren | import "graphics" for Canvas, Color
import "dome" for Window
class Game {
static init() {
Window.title = "Archimedean Spiral"
__width = 400
__height = 400
Canvas.resize(__width, __height)
Window.resize(__width, __height)
var col = Color.red
spiral(col)
}
static spiral(col) {
var theta = 0
while (theta < 52 * Num.pi) {
var x = ((theta/Num.pi).cos * theta + __width/2).truncate
var y = ((theta/Num.pi).sin * theta + __height/2).truncate
Canvas.pset(x, y, col)
theta = theta + 0.025
}
}
static update() {}
static draw(dt) {}
} |
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #C.23 | C# |
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Zeckendorf
{
class Program
{
private static uint Fibonacci(uint n)
{
if (n < 2)
{
return n;
}
else
{
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
}
private static string Zeckendorf(uint num)
{
IList<uint> fibonacciNumbers = new List<uint>();
uint fibPosition = 2;
uint currentFibonaciNum = Fibonacci(fibPosition);
do
{
fibonacciNumbers.Add(currentFibonaciNum);
currentFibonaciNum = Fibonacci(++fibPosition);
} while (currentFibonaciNum <= num);
uint temp = num;
StringBuilder output = new StringBuilder();
foreach (uint item in fibonacciNumbers.Reverse())
{
if (item <= temp)
{
output.Append("1");
temp -= item;
}
else
{
output.Append("0");
}
}
return output.ToString();
}
static void Main(string[] args)
{
for (uint i = 1; i <= 20; i++)
{
string zeckendorfRepresentation = Zeckendorf(i);
Console.WriteLine(string.Format("{0} : {1}", i, zeckendorfRepresentation));
}
Console.ReadKey();
}
}
}
|
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #BBC_BASIC | BBC BASIC | DIM doors%(100)
FOR pass% = 1 TO 100
FOR door% = pass% TO 100 STEP pass%
doors%(door%) = NOT doors%(door%)
NEXT door%
NEXT pass%
FOR door% = 1 TO 100
IF doors%(door%) PRINT "Door " ; door% " is open"
NEXT door% |
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #Diego | Diego | set_ns(rosettacode);
set_base(0);
// Create a new dynamic array with length zero, variant and/or mixed datatypes
add_array(myEmptyArray);
// Create a new dynamic array with length zero, of integers with no mixed datatypes
add_array({int}, myIntegerArray);
// Create a new fixed-length array with length 5
add_array(myFiveArray)_len(5)_base(0); // The value base '_base(0)' is usually defaulted to zero, depends upon thing.
// Create an array with 2 members (length is 2)
add_ary(myStringArray)_value(Item1,Item2); // '_array' can be shortened to '_ary'
// Assign a value to member [2]
with_ary(myChangeArray)_at(2)_v(5); // '_value' can be shortened to '_v'
// Add a member to an array with the push function (defaulted at end), length increased by one
[myExpandedArray]_push()_v(9); // 'with_ary(...)' can be shortened to '[...]'
[myExpandedArray]_append()_v(9);
// Add a member to an array with the push function (at a location), length increased by one
[myExpandedArray]_pushat(3)_v(8);
// Remove a member to an array with the pop function (defaulted at end), length reduced by one
[myExpandedArray]_pop();
// Remove a member to an array with the pop function (at a location), length reduced by one
[myExpandedArray]_popat(3);
// Swap a member to an array with the swap function
[myExpandedArray]_swapfrom(2)_swapto(6);
[myExpandedArray]_swap(2, 6);
// Rectiline a member in an array
[MyCaterpillarArray]_rectilat(4)_rectilup(2);
[MyCaterpillarArray]_rectilup(4, 2);
[MyCaterpillarArray]_rectilat(5)_rectildown(3);
[MyCaterpillarArray]_rectildown(5, 3);
// Null a member to an array with the pluck function (defaulted at end)
[myExpandedArray]_pluck();
// Null a member to an array with the pluck function (at a location)
[myExpandedArray]_pluckat(3);
// Get size of array
[mySizableArray]_size(); // '_len()' can also be used
[myMultidimensialArray]_size()
// Retrieve an element of an array
[myArray]_at(3);
[myArray]_first(); // Retrieve first element in an array
[myArray]_last(); // Retrieve last element in an array
// More transformations of arrays (like append, union, intersection) are available
// For multi-dimensional array use the 'matrix' object
set_matrixorder(row-major); // set major order as row- or column-major order depends on the thing
set_handrule(right); // set hand-rule, most things will use right hand-rule
// Create a new dynamic two-dimensional array with length zero, variant and/or mixed datatypes
add_matrix(myMatrix)_dim(2);
// Create a new dynamic three-dimensional array with length zero, of integers with no mixed datatypes
add_matrix({int}, my3DEmptyMatrix)_dim(3);
// Convert an array to a matrix by adding a new dimension with length zero, variant and/or mixed datatypes
with_array(MyConvertedArray)_dim(); // Should now use '_matrix' object rather than '_array'
with_array(MyConvertedArray)_dim(3); // Add three dimensions to array, should now use '_matrix' object rather than '_array'
// Create a new fixed-length traditional (2D) matrix with 5 rows and 4 columns
add_matrix(myMatrix)_rows(5)_columns(4);
add_matirx(myMatrix)_subs(5, 4); // check or set major order first
// Create a new fixed-length mutil-dimensional matrix with 5 rows, 4 columns, 6 subscripts, and 8 subscripts
add_matrix(myMatrix)_rows(5)_columns(4)_subs(6)_subs(8);
add_mat(myMatrix)_subs(5, 4, 6, 8); // check or set major order first, '_matrix' can be shortened to 'mat'
// Create a 4 x 4 identiy matrix:
add_mat(myIdentityMatrix)_subs(4, 4)_identity; // ...or...
add_mat(myMorphedMatrix)_subs(4, 4)
with_mat(myMorphedMatrix)_trans(morph)_identity(); // More transformations available
// Assign a value to member [2,4]
with_mat(myMatrix)_row(2)_col(4)_value(5); // ...or...
with_mat(myMatrix)_at(2, 4)_v(5); // check or set major order first
// Add a member(s) to a matrix using push functions is available
// Remove a member(s) from a matrix with the pop functions is available
// Swap a member(s) in a matrix with the swap functions is available
// Rectiline a single member in a three-dimensional matrix
[MyWobbleMatrix]_rectilat()_row(3)_col(3)_sub(3)_rectilto()_row(-1)_col(1)_sub(0); // ...or...
[MyWobbleMatrix]_rectilat(3, 3, 3)_rectilto(-1, 1, 0); // check or set major order first, ...or...
[MyWobbleMatrix]_rectilat(3, 3, 3)_rectilleft(1)_rectilup(1); / check or set hand-rule, ...or...
// Also 'crab', 'elevate', 'slide' and 'pump' movements are available
// Also 'row', 'pitch', and 'yaw' movements are available
// Also, quaternions calculations are available
// Null a member in a matrix using pluck functions is available
// Get size of a matrix
mat(mySizableMatrix)_size(); // will return an array of the size()
[myMultidimensialArray]_len(); // '_len()' can also be used
// Retrieve an element of a matrix
[myMatrix]_at(3, 2);
[myArray]_first()_atsub(2); // Retrieve first element of a row/column/subscript of a matrix
[myArray]_last()_atsub(2); // Retrieve last element of a row/column/subscript of a matrix
[myArray]_origin(); // Retrieve first element in a matrix
[myArray]_end(); // Retrieve last element in a matrix
reset_ns[]; |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Modula-2 | Modula-2 | MODULE complex;
IMPORT InOut;
TYPE Complex = RECORD R, Im : REAL END;
VAR z : ARRAY [0..3] OF Complex;
PROCEDURE ShowComplex (str : ARRAY OF CHAR; p : Complex);
BEGIN
InOut.WriteString (str); InOut.WriteString (" = ");
InOut.WriteReal (p.R, 6, 2);
IF p.Im >= 0.0 THEN InOut.WriteString (" + ") ELSE InOut.WriteString (" - ") END;
InOut.WriteReal (ABS (p.Im), 6, 2); InOut.WriteString (" i ");
InOut.WriteLn; InOut.WriteBf
END ShowComplex;
PROCEDURE AddComplex (x1, x2 : Complex; VAR x3 : Complex);
BEGIN
x3.R := x1.R + x2.R;
x3.Im := x1.Im + x2.Im
END AddComplex;
PROCEDURE SubComplex (x1, x2 : Complex; VAR x3 : Complex);
BEGIN
x3.R := x1.R - x2.R;
x3.Im := x1.Im - x2.Im
END SubComplex;
PROCEDURE MulComplex (x1, x2 : Complex; VAR x3 : Complex);
BEGIN
x3.R := x1.R * x2.R - x1.Im * x2.Im;
x3.Im := x1.R * x2.Im + x1.Im * x2.R
END MulComplex;
PROCEDURE InvComplex (x1 : Complex; VAR x2 : Complex);
BEGIN
x2.R := x1.R / (x1.R * x1.R + x1.Im * x1.Im);
x2.Im := -1.0 * x1.Im / (x1.R * x1.R + x1.Im * x1.Im)
END InvComplex;
PROCEDURE NegComplex (x1 : Complex; VAR x2 : Complex);
BEGIN
x2.R := - x1.R; x2.Im := - x1.Im
END NegComplex;
BEGIN
InOut.WriteString ("Enter two complex numbers : ");
InOut.WriteBf;
InOut.ReadReal (z[0].R); InOut.ReadReal (z[0].Im);
InOut.ReadReal (z[1].R); InOut.ReadReal (z[1].Im);
ShowComplex ("z1", z[0]); ShowComplex ("z2", z[1]);
InOut.WriteLn;
AddComplex (z[0], z[1], z[2]); ShowComplex ("z1 + z2", z[2]);
SubComplex (z[0], z[1], z[2]); ShowComplex ("z1 - z2", z[2]);
MulComplex (z[0], z[1], z[2]); ShowComplex ("z1 * z2", z[2]);
InvComplex (z[0], z[2]); ShowComplex ("1 / z1", z[2]);
NegComplex (z[0], z[2]); ShowComplex (" - z1", z[2]);
InOut.WriteLn
END complex. |
http://rosettacode.org/wiki/Arithmetic/Rational | Arithmetic/Rational | Task
Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language.
Example
Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number).
Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠').
Define standard coercion operators for casting int to frac etc.
If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.).
Finally test the operators:
Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors.
Related task
Perfect Numbers
| #ooRexx | ooRexx |
loop candidate = 6 to 2**19
sum = .fraction~new(1, candidate)
max2 = rxcalcsqrt(candidate)~trunc
loop factor = 2 to max2
if candidate // factor == 0 then do
sum += .fraction~new(1, factor)
sum += .fraction~new(1, candidate / factor)
end
end
if sum == 1 then say candidate "is a perfect number"
end
::class fraction inherit orderable
::method init
expose numerator denominator
use strict arg numerator, denominator = 1
if denominator == 0 then raise syntax 98.900 array("Fraction denominator cannot be zero")
-- if the denominator is negative, make the numerator carry the sign
if denominator < 0 then do
numerator = -numerator
denominator = - denominator
end
-- find the greatest common denominator and reduce to
-- the simplest form
gcd = self~gcd(numerator~abs, denominator~abs)
numerator /= gcd
denominator /= gcd
-- fraction instances are immutable, so these are
-- read only attributes
::attribute numerator GET
::attribute denominator GET
-- calculate the greatest common denominator of a numerator/denominator pair
::method gcd private
use arg x, y
loop while y \= 0
-- check if they divide evenly
temp = x // y
x = y
y = temp
end
return x
-- calculate the least common multiple of a numerator/denominator pair
::method lcm private
use arg x, y
return x / self~gcd(x, y) * y
::method abs
expose numerator denominator
-- the denominator is always forced to be positive
return self~class~new(numerator~abs, denominator)
::method reciprocal
expose numerator denominator
return self~class~new(denominator, numerator)
-- convert a fraction to regular Rexx number
::method toNumber
expose numerator denominator
if numerator == 0 then return 0
return numerator/denominator
::method negative
expose numerator denominator
return self~class~new(-numerator, denominator)
::method add
expose numerator denominator
use strict arg other
-- convert to a fraction if a regular number
if \other~isa(.fraction) then other = self~class~new(other, 1)
multiple = self~lcm(denominator, other~denominator)
newa = numerator * multiple / denominator
newb = other~numerator * multiple / other~denominator
return self~class~new(newa + newb, multiple)
::method subtract
use strict arg other
return self + (-other)
::method times
expose numerator denominator
use strict arg other
-- convert to a fraction if a regular number
if \other~isa(.fraction) then other = self~class~new(other, 1)
return self~class~new(numerator * other~numerator, denominator * other~denominator)
::method divide
use strict arg other
-- convert to a fraction if a regular number
if \other~isa(.fraction) then other = self~class~new(other, 1)
-- and multiply by the reciprocal
return self * other~reciprocal
-- compareTo method used by the orderable interface to implement
-- the operator methods
::method compareTo
expose numerator denominator
-- convert to a fraction if a regular number
if \other~isa(.fraction) then other = self~class~new(other, 1)
return (numerator * other~denominator - denominator * other~numerator)~sign
-- we still override "==" and "\==" because we want to bypass the
-- checks for not being an instance of the class
::method "=="
expose numerator denominator
use strict arg other
-- convert to a fraction if a regular number
if \other~isa(.fraction) then other = self~class~new(other, 1)
-- Note: these are numeric comparisons, so we're using the "="
-- method so those are handled correctly
return numerator = other~numerator & denominator = other~denominator
::method "\=="
use strict arg other
return \self~"\=="(other)
-- some operator overrides -- these only work if the left-hand-side of the
-- subexpression is a quaternion
::method "*"
forward message("TIMES")
::method "/"
forward message("DIVIDE")
::method "-"
-- need to check if this is a prefix minus or a subtract
if arg() == 0 then
forward message("NEGATIVE")
else
forward message("SUBTRACT")
::method "+"
-- need to check if this is a prefix plus or an addition
if arg() == 0 then
return self -- we can return this copy since it is imutable
else
forward message("ADD")
::method string
expose numerator denominator
if denominator == 1 then return numerator
return numerator"/"denominator
-- override hashcode for collection class hash uses
::method hashCode
expose numerator denominator
return numerator~hashcode~bitxor(numerator~hashcode)
::requires rxmath library
|
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #R | R | arithmeticMean <- function(a, b) { (a + b)/2 }
geometricMean <- function(a, b) { sqrt(a * b) }
arithmeticGeometricMean <- function(a, b) {
rel_error <- abs(a - b) / pmax(a, b)
if (all(rel_error < .Machine$double.eps, na.rm=TRUE)) {
agm <- a
return(data.frame(agm, rel_error));
}
Recall(arithmeticMean(a, b), geometricMean(a, b))
}
agm <- arithmeticGeometricMean(1, 1/sqrt(2))
print(format(agm, digits=16)) |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Racket | Racket |
#lang racket
(define (agm a g [ε 1e-15])
(if (<= (- a g) ε)
a
(agm (/ (+ a g) 2) (sqrt (* a g)) ε)))
(agm 1 (/ 1 (sqrt 2)))
|
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #D | D | void main() {
import std.stdio, std.math, std.bigint, std.complex;
writeln("Int: ", 0 ^^ 0);
writeln("Ulong: ", 0UL ^^ 0UL);
writeln("Float: ", 0.0f ^^ 0.0f);
writeln("Double: ", 0.0 ^^ 0.0);
writeln("Real: ", 0.0L ^^ 0.0L);
writeln("pow: ", pow(0, 0));
writeln("BigInt: ", 0.BigInt ^^ 0);
writeln("Complex: ", complex(0.0, 0.0) ^^ 0);
} |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Dc | Dc | 0 0^p
|
http://rosettacode.org/wiki/Arithmetic_evaluation | Arithmetic evaluation | Create a program which parses and evaluates arithmetic expressions.
Requirements
An abstract-syntax tree (AST) for the expression must be created from parsing the input.
The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
The expression will be a string or list of symbols like "(1+3)*7".
The four symbols + - * / must be supported as binary operators with conventional precedence rules.
Precedence-control parentheses must also be supported.
Note
For those who don't remember, mathematical precedence is as follows:
Parentheses
Multiplication/Division (left to right)
Addition/Subtraction (left to right)
C.f
24 game Player.
Parsing/RPN calculator algorithm.
Parsing/RPN to infix conversion.
| #ooRexx | ooRexx |
expressions = .array~of("2+3", "2+3/4", "2*3-4", "2*(3+4)+5/6", "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", "2*-3--4+-.25")
loop input over expressions
expression = createExpression(input)
if expression \= .nil then
say 'Expression "'input'" parses to "'expression~string'" and evaluates to "'expression~evaluate'"'
end
-- create an executable expression from the input, printing out any
-- errors if they are raised.
::routine createExpression
use arg inputString
-- signal on syntax
return .ExpressionParser~parseExpression(inputString)
syntax:
condition = condition('o')
say condition~errorText
say condition~message
return .nil
-- a base class for tree nodes in the tree
-- all nodes return some sort of value. This can be constant,
-- or the result of additional evaluations
::class evaluatornode
-- all evaluation is done here
::method evaluate abstract
-- node for numeric values in the tree
::class constant
::method init
expose value
use arg value
::method evaluate
expose value
return value
::method string
expose value
return value
-- node for a parenthetical group on the tree
::class parens
::method init
expose subexpression
use arg subexpression
::method evaluate
expose subexpression
return subexpression~evaluate
::method string
expose subexpression
return "("subexpression~string")"
-- base class for binary operators
::class binaryoperator
::method init
expose left right
-- the left and right sides are set after the left and right sides have
-- been resolved.
left = .nil
right = .nil
-- base operation
::method evaluate
expose left right
return self~operation(left~evaluate, right~evaluate)
-- the actual operation of the node
::method operation abstract
::method symbol abstract
::method precedence abstract
-- display an operator as a string value
::method string
expose left right
return '('left~string self~symbol right~string')'
::attribute left
::attribute right
::class addoperator subclass binaryoperator
::method operation
use arg left, right
return left + right
::method symbol
return "+"
::method precedence
return 1
::class subtractoperator subclass binaryoperator
::method operation
use arg left, right
return left - right
::method symbol
return "-"
::method precedence
return 1
::class multiplyoperator subclass binaryoperator
::method operation
use arg left, right
return left * right
::method symbol
return "*"
::method precedence
return 2
::class divideoperator subclass binaryoperator
::method operation
use arg left, right
return left / right
::method symbol
return "/"
::method precedence
return 2
-- a class to parse the expression and build an evaluation tree
::class expressionParser
-- create a resolved operand from an operator instance and the top
-- two entries on the operand stack.
::method createNewOperand class
use strict arg operator, operands
-- the operands are a stack, so they are in inverse order current
operator~right = operands~pull
operator~left = operands~pull
-- this goes on the top of the stack now
operands~push(operator)
::method parseExpression class
use strict arg inputString
-- stacks for managing the operands and pending operators
operands = .queue~new
operators = .queue~new
-- this flags what sort of item we expect to find at the current
-- location
afterOperand = .false
loop currentIndex = 1 to inputString~length
char = inputString~subChar(currentIndex)
-- skip over whitespace
if char == ' ' then iterate currentIndex
-- If the last thing we parsed was an operand, then
-- we expect to see either a closing paren or an
-- operator to appear here
if afterOperand then do
if char == ')' then do
loop while \operators~isempty
operator = operators~pull
-- if we find the opening paren, replace the
-- top operand with a paren group wrapper
-- and stop popping items
if operator == '(' then do
operands~push(.parens~new(operands~pull))
leave
end
-- collapse the operator stack a bit
self~createNewOperand(operator, operands)
end
-- done with this character
iterate currentIndex
end
afterOperand = .false
operator = .nil
if char == "+" then operator = .addoperator~new
else if char == "-" then operator = .subtractoperator~new
else if char == "*" then operator = .multiplyoperator~new
else if char == "/" then operator = .divideoperator~new
if operator \= .nil then do
loop while \operators~isEmpty
top = operators~peek
-- start of a paren group stops the popping
if top == '(' then leave
-- or the top operator has a lower precedence
if top~precedence < operator~precedence then leave
-- process this pending one
self~createNewOperand(operators~pull, operands)
end
-- this new operator is now top of the stack
operators~push(operator)
-- and back to the top
iterate currentIndex
end
raise syntax 98.900 array("Invalid expression character" char)
end
-- if we've hit an open paren, add this to the operator stack
-- as a phony operator
if char == '(' then do
operators~push('(')
iterate currentIndex
end
-- not an operator, so we have an operand of some type
afterOperand = .true
startindex = currentIndex
-- allow a leading minus sign on this
if inputString~subchar(currentIndex) == '-' then
currentIndex += 1
-- now scan for the end of numbers
loop while currentIndex <= inputString~length
-- exit for any non-numeric value
if \inputString~matchChar(currentIndex, "0123456789.") then leave
currentIndex += 1
end
-- extract the string value
operand = inputString~substr(startIndex, currentIndex - startIndex)
if \operand~datatype('Number') then
raise syntax 98.900 array("Invalid numeric operand '"operand"'")
-- back this up to the last valid character
currentIndex -= 1
-- add this to the operand stack as a tree element that returns a constant
operands~push(.constant~new(operand))
end
loop while \operators~isEmpty
operator = operators~pull
if operator == '(' then
raise syntax 98.900 array("Missing closing ')' in expression")
self~createNewOperand(operator, operands)
end
-- our entire expression should be the top of the expression tree
expression = operands~pull
if \operands~isEmpty then
raise syntax 98.900 array("Invalid expression")
return expression
|
http://rosettacode.org/wiki/Zeckendorf_arithmetic | Zeckendorf arithmetic | This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation.
The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions.
Addition
Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case.
Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100;
Subtraction
10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg:
abcde
10100 -
1000
_____
100 borrow 1 from a leaves 100
+ 100 add the carry
_____
1001
A larger example:
abcdef
100100 -
1000
______
1*0100 borrow 1 from b
+ 100 add the carry
______
1*1001
Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a:
1001
+ 1000 add the carry
____
10100
Multiplication
Here you teach your computer its zeckendorf tables. eg. 101 * 1001:
a = 1 * 101 = 101
b = 10 * 101 = a + a = 10000
c = 100 * 101 = b + a = 10101
d = 1000 * 101 = c + b = 101010
1001 = d + a therefore 101 * 1001 =
101010
+ 101
______
1000100
Division
Lets try 1000101 divided by 101, so we can use the same table used for multiplication.
1000101 -
101010 subtract d (1000 * 101)
_______
1000 -
101 b and c are too large to subtract, so subtract a
____
1 so 1000101 divided by 101 is d + a (1001) remainder 1
Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
| #11l | 11l | T Zeckendorf
Int dLen
dVal = 0
F (x = ‘0’)
V q = 1
V i = x.len - 1
.dLen = i I/ 2
L i >= 0
.dVal = .dVal + (x[i].code - ‘0’.code) * q
q = q * 2
i = i - 1
F a(n)
V i = n
L
I .dLen < i
.dLen = i
V j = (.dVal >> (i * 2)) [&] 3
I j == 0 | j == 1
R
I j == 2
I (.dVal >> ((i + 1) * 2) [&] 1) != 1
R
.dVal = .dVal + (1 << (i * 2 + 1))
R
I j == 3
V temp = 3 << (i * 2)
temp = temp (+) -1
.dVal = .dVal [&] temp
.b((i + 1) * 2)
i = i + 1
F b(pos)
I pos == 0
.inc()
R
I (.dVal >> pos) [&] 1 == 0
.dVal = .dVal + (1 << pos)
.a(Int(pos / 2))
I pos > 1
.a(Int(pos / 2) - 1)
E
V temp = 1 << pos
temp = temp (+) -1
.dVal = .dVal [&] temp
.b(pos + 1)
.b(pos - (I pos > 1 {2} E 1))
F c(pos)
I (.dVal >> pos) [&] 1 == 1
V temp = 1 << pos
temp = temp (+) -1
.dVal = .dVal [&] temp
R
.c(pos + 1)
I pos > 0
.b(pos - 1)
E
.inc()
F inc() -> N
.dVal = .dVal + 1
.a(0)
F +(rhs)
V copy = (.)
V rhs_dVal = rhs.dVal
V limit = (rhs.dLen + 1) * 2
L(gn) 0 .< limit
I ((rhs_dVal >> gn) [&] 1) == 1
copy.b(gn)
R copy
F -(rhs)
V copy = (.)
V rhs_dVal = rhs.dVal
V limit = (rhs.dLen + 1) * 2
L(gn) 0 .< limit
I (rhs_dVal >> gn) [&] 1 == 1
copy.c(gn)
L (((copy.dVal >> ((copy.dLen * 2) [&] 31)) [&] 3) == 0) | (copy.dLen == 0)
copy.dLen = copy.dLen - 1
R copy
F *(rhs)
V na = copy(rhs)
V nb = copy(rhs)
V nr = Zeckendorf()
V dVal = .dVal
L(i) 0 .< (.dLen + 1) * 2
I ((dVal >> i) [&] 1) > 0
nr = nr + nb
V nt = copy(nb)
nb = nb + na
na = copy(nt)
R nr
F String()
V dig = [‘00’, ‘01’, ‘10’]
V dig1 = [‘’, ‘1’, ‘10’]
I .dVal == 0
R ‘0’
V idx = (.dVal >> ((.dLen * 2) [&] 31)) [&] 3
String sb = dig1[idx]
V i = .dLen - 1
L i >= 0
idx = (.dVal >> (i * 2)) [&] 3
sb ‘’= dig[idx]
i = i - 1
R sb
print(‘Addition:’)
V g = Zeckendorf(‘10’)
g = g + Zeckendorf(‘10’)
print(g)
g = g + Zeckendorf(‘10’)
print(g)
g = g + Zeckendorf(‘1001’)
print(g)
g = g + Zeckendorf(‘1000’)
print(g)
g = g + Zeckendorf(‘10101’)
print(g)
print()
print(‘Subtraction:’)
g = Zeckendorf(‘1000’)
g = g - Zeckendorf(‘101’)
print(g)
g = Zeckendorf(‘10101010’)
g = g - Zeckendorf(‘1010101’)
print(g)
print()
print(‘Multiplication:’)
g = Zeckendorf(‘1001’)
g = g * Zeckendorf(‘101’)
print(g)
g = Zeckendorf(‘101010’)
g = g + Zeckendorf(‘101’)
print(g) |
http://rosettacode.org/wiki/Zumkeller_numbers | Zumkeller numbers | Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal.
E.G.
6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6.
10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value.
12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14.
Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0
Task
Write a routine (function, procedure, whatever) to find Zumkeller numbers.
Use the routine to find and display here, on this page, the first 220 Zumkeller numbers.
Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers.
Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5.
See Also
OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions
OEIS:A174865 - Odd Zumkeller numbers
Related Tasks
Abundant odd numbers
Abundant, deficient and perfect number classifications
Proper divisors , Factors of an integer | #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program zumkeller4.s */
/* new version 10/2020 */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.equ NBDIVISORS, 1000
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm: .asciz "Program start \n"
szMessEndPgm: .asciz "Program normal end.\n"
szMessErrorArea: .asciz "\033[31mError : area divisors too small.\n"
szMessError: .asciz "\033[31mError !!!\n"
szMessErrGen: .asciz "Error end program.\n"
szMessNbPrem: .asciz "This number is prime !!!.\n"
szMessResultFact: .asciz "@ "
szCarriageReturn: .asciz "\n"
/* datas message display */
szMessEntete: .asciz "The first 220 Zumkeller numbers are:\n"
sNumber: .space 4*20,' '
.space 12,' ' @ for end of conversion
szMessListDivi: .asciz "Divisors list : \n"
szMessListDiviHeap: .asciz "Heap 1 Divisors list : \n"
szMessResult: .ascii " "
sValue: .space 12,' '
.asciz ""
szMessEntete1: .asciz "The first 40 odd Zumkeller numbers are:\n"
szMessEntete2: .asciz "First 40 odd Zumkeller numbers not divisible by 5:\n"
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
.align 4
sZoneConv: .skip 24
tbZoneDecom: .skip 8 * NBDIVISORS // facteur 4 octets, nombre 4
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: @ program start
ldr r0,iAdrszMessStartPgm @ display start message
bl affichageMess
ldr r0,iAdrszMessEntete @ display result message
bl affichageMess
mov r2,#1
mov r3,#0
mov r4,#0
1:
mov r0,r2 @ number
bl testZumkeller
cmp r0,#1
bne 3f
mov r0,r2
ldr r1,iAdrsNumber @ and convert ascii string
lsl r5,r4,#2
add r1,r5
bl conversion10
add r4,r4,#1
cmp r4,#20
blt 2f
add r1,r1,#3
mov r0,#'\n'
strb r0,[r1]
mov r0,#0
strb r0,[r1,#1]
ldr r0,iAdrsNumber @ display result message
bl affichageMess
mov r4,#0
2:
add r3,r3,#1
3:
add r2,r2,#1
cmp r3,#220
blt 1b
/* odd zumkeller numbers */
ldr r0,iAdrszMessEntete1
bl affichageMess
mov r2,#1
mov r3,#0
mov r4,#0
4:
mov r0,r2 @ number
bl testZumkeller
cmp r0,#1
bne 6f
mov r0,r2
ldr r1,iAdrsNumber @ and convert ascii string
lsl r5,r4,#3
add r1,r5
bl conversion10
add r4,r4,#1
cmp r4,#8
blt 5f
add r1,r1,#8
mov r0,#'\n'
strb r0,[r1]
mov r0,#0
strb r0,[r1,#1]
ldr r0,iAdrsNumber @ display result message
bl affichageMess
mov r4,#0
5:
add r3,r3,#1
6:
add r2,r2,#2
cmp r3,#40
blt 4b
/* odd zumkeller numbers not multiple5 */
61:
ldr r0,iAdrszMessEntete2
bl affichageMess
mov r3,#0
mov r4,#0
7:
lsr r8,r2,#3 @ divide counter by 5
add r8,r8,r2,lsr #4
add r8,r8,r8,lsr #4
add r8,r8,r8,lsr #8
add r8,r8,r8,lsr #16
add r9,r8,r8,lsl #2 @ multiply result by 5
sub r9,r2,r9
mov r6,#13
mul r9,r6,r9
lsr r9,#6
add r9,r8 @ it is a quotient
add r9,r9,r9,lsl #2 @ multiply by 5
sub r9,r2,r9 @ compute remainder
cmp r9,#0 @ remainder = zero ?
beq 9f
mov r0,r2 @ number
bl testZumkeller
cmp r0,#1
bne 9f
mov r0,r2
ldr r1,iAdrsNumber @ and convert ascii string
lsl r5,r4,#3
add r1,r5
bl conversion10
add r4,r4,#1
cmp r4,#8
blt 8f
add r1,r1,#8
mov r0,#'\n'
strb r0,[r1]
mov r0,#0
strb r0,[r1,#1]
ldr r0,iAdrsNumber @ display result message
bl affichageMess
mov r4,#0
8:
add r3,r3,#1
9:
add r2,r2,#2
cmp r3,#40
blt 7b
ldr r0,iAdrszMessEndPgm @ display end message
bl affichageMess
b 100f
99: @ display error message
ldr r0,iAdrszMessError
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszMessStartPgm: .int szMessStartPgm
iAdrszMessEndPgm: .int szMessEndPgm
iAdrszMessError: .int szMessError
iAdrszCarriageReturn: .int szCarriageReturn
iAdrszMessResult: .int szMessResult
iAdrsValue: .int sValue
iAdrtbZoneDecom: .int tbZoneDecom
iAdrszMessEntete: .int szMessEntete
iAdrszMessEntete1: .int szMessEntete1
iAdrszMessEntete2: .int szMessEntete2
iAdrsNumber: .int sNumber
/******************************************************************/
/* test if number is Zumkeller number */
/******************************************************************/
/* r0 contains the number */
/* r0 return 1 if Zumkeller number else return 0 */
testZumkeller:
push {r1-r6,lr} @ save registers
mov r6,r0 @ save number
ldr r1,iAdrtbZoneDecom
bl decompFact @ create area of divisors
cmp r0,#1 @ no divisors
movle r0,#0
ble 100f
tst r2,#1 @ odd sum ?
movne r0,#0
bne 100f @ yes -> end
tst r1,#1 @ number of odd divisors is odd ?
movne r0,#0
bne 100f @ yes -> end
lsl r5,r6,#1 @ abondant number
cmp r5,r2
movgt r0,#0
bgt 100f @ no -> end
mov r3,r0
mov r4,r2 @ save sum
ldr r0,iAdrtbZoneDecom
mov r1,#0
mov r2,r3
bl shellSort @ sort table
mov r1,r3 @ factors number
ldr r0,iAdrtbZoneDecom
lsr r2,r4,#1 @ sum / 2
bl computePartIter @
100:
pop {r1-r6,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* search factors to sum = entry value */
/******************************************************************/
/* r0 contains address of divisors area */
/* r1 contains elements number */
/* r2 contains divisors sum / 2 */
/* r0 return 1 if ok 0 else */
computePartIter:
push {r1-r7,fp,lr} @ save registers
lsl r7,r1,#3 @ compute size of temp table
sub sp,r7 @ and reserve on stack
mov fp,sp @ frame pointer = stack address = begin table
mov r5,#0 @ stack indice
sub r3,r1,#1
1:
ldr r4,[r0,r3,lsl #2] @ load factor
cmp r4,r2 @ compare value
bgt 2f
beq 90f @ equal -> end ok
cmp r3,#0 @ first item ?
beq 3f
sub r3,#1 @ push indice item in temp table
add r6,fp,r5,lsl #3
str r3,[r6]
str r2,[r6,#4] @ push sum in temp table
add r5,#1
sub r2,r4 @ substract divisors from sum
b 1b
2:
sub r3,#1 @ other divisors
cmp r3,#0 @ first item ?
bge 1b
3: @ first item
cmp r5,#0 @ stack empty ?
moveq r0,#0 @ no sum factors equal to value
beq 100f @ end
sub r5,#1 @ else pop stack
add r6,fp,r5,lsl #3 @ and restaur
ldr r3,[r6] @ indice
ldr r2,[r6,#4] @ and value
b 1b @ and loop
90:
mov r0,#1 @ it is ok
100:
add sp,r7 @ stack alignement
pop {r1-r7,fp,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* factor decomposition */
/******************************************************************/
/* r0 contains number */
/* r1 contains address of divisors area */
/* r0 return divisors items in table */
/* r1 return the number of odd divisors */
/* r2 return the sum of divisors */
decompFact:
push {r3-r8,lr} @ save registers
mov r5,r1
mov r8,r0 @ save number
bl isPrime @ prime ?
cmp r0,#1
beq 98f @ yes is prime
mov r1,#1
str r1,[r5] @ first factor
mov r12,#1 @ divisors sum
mov r11,#1 @ number odd divisors
mov r4,#1 @ indice divisors table
mov r1,#2 @ first divisor
mov r6,#0 @ previous divisor
mov r7,#0 @ number of same divisors
2:
mov r0,r8 @ dividende
bl division @ r1 divisor r2 quotient r3 remainder
cmp r3,#0
bne 5f @ if remainder <> zero -> no divisor
mov r8,r2 @ else quotient -> new dividende
cmp r1,r6 @ same divisor ?
beq 4f @ yes
mov r7,r4 @ number factors in table
mov r9,#0 @ indice
21:
ldr r10,[r5,r9,lsl #2 ] @ load one factor
mul r10,r1,r10 @ multiply
str r10,[r5,r7,lsl #2] @ and store in the table
tst r10,#1 @ divisor odd ?
addne r11,#1
add r12,r10
add r7,r7,#1 @ and increment counter
add r9,r9,#1
cmp r9,r4
blt 21b
mov r4,r7
mov r6,r1 @ new divisor
b 7f
4: @ same divisor
sub r9,r4,#1
mov r7,r4
41:
ldr r10,[r5,r9,lsl #2 ]
cmp r10,r1
subne r9,#1
bne 41b
sub r9,r4,r9
42:
ldr r10,[r5,r9,lsl #2 ]
mul r10,r1,r10
str r10,[r5,r7,lsl #2] @ and store in the table
tst r10,#1 @ divsor odd ?
addne r11,#1
add r12,r10
add r7,r7,#1 @ and increment counter
add r9,r9,#1
cmp r9,r4
blt 42b
mov r4,r7
b 7f @ and loop
/* not divisor -> increment next divisor */
5:
cmp r1,#2 @ if divisor = 2 -> add 1
addeq r1,#1
addne r1,#2 @ else add 2
b 2b
/* divisor -> test if new dividende is prime */
7:
mov r3,r1 @ save divisor
cmp r8,#1 @ dividende = 1 ? -> end
beq 10f
mov r0,r8 @ new dividende is prime ?
mov r1,#0
bl isPrime @ the new dividende is prime ?
cmp r0,#1
bne 10f @ the new dividende is not prime
cmp r8,r6 @ else dividende is same divisor ?
beq 9f @ yes
mov r7,r4 @ number factors in table
mov r9,#0 @ indice
71:
ldr r10,[r5,r9,lsl #2 ] @ load one factor
mul r10,r8,r10 @ multiply
str r10,[r5,r7,lsl #2] @ and store in the table
tst r10,#1 @ divsor odd ?
addne r11,#1
add r12,r10
add r7,r7,#1 @ and increment counter
add r9,r9,#1
cmp r9,r4
blt 71b
mov r4,r7
mov r7,#0
b 11f
9:
sub r9,r4,#1
mov r7,r4
91:
ldr r10,[r5,r9,lsl #2 ]
cmp r10,r8
subne r9,#1
bne 91b
sub r9,r4,r9
92:
ldr r10,[r5,r9,lsl #2 ]
mul r10,r8,r10
str r10,[r5,r7,lsl #2] @ and store in the table
tst r10,#1 @ divisor odd ?
addne r11,#1
add r12,r10
add r7,r7,#1 @ and increment counter
add r9,r9,#1
cmp r9,r4
blt 92b
mov r4,r7
b 11f
10:
mov r1,r3 @ current divisor = new divisor
cmp r1,r8 @ current divisor > new dividende ?
ble 2b @ no -> loop
/* end decomposition */
11:
mov r0,r4 @ return number of table items
mov r2,r12 @ return sum
mov r1,r11 @ return number of odd divisor
mov r3,#0
str r3,[r5,r4,lsl #2] @ store zéro in last table item
b 100f
98:
//ldr r0,iAdrszMessNbPrem
//bl affichageMess
mov r0,#1 @ return code
b 100f
99:
ldr r0,iAdrszMessError
bl affichageMess
mov r0,#-1 @ error code
b 100f
100:
pop {r3-r8,lr} @ restaur registers
bx lr
iAdrszMessNbPrem: .int szMessNbPrem
/***************************************************/
/* check if a number is prime */
/***************************************************/
/* r0 contains the number */
/* r0 return 1 if prime 0 else */
@2147483647
@4294967297
@131071
isPrime:
push {r1-r6,lr} @ save registers
cmp r0,#0
beq 90f
cmp r0,#17
bhi 1f
cmp r0,#3
bls 80f @ for 1,2,3 return prime
cmp r0,#5
beq 80f @ for 5 return prime
cmp r0,#7
beq 80f @ for 7 return prime
cmp r0,#11
beq 80f @ for 11 return prime
cmp r0,#13
beq 80f @ for 13 return prime
cmp r0,#17
beq 80f @ for 17 return prime
1:
tst r0,#1 @ even ?
beq 90f @ yes -> not prime
mov r2,r0 @ save number
sub r1,r0,#1 @ exposant n - 1
mov r0,#3 @ base
bl moduloPuR32 @ compute base power n - 1 modulo n
cmp r0,#1
bne 90f @ if <> 1 -> not prime
mov r0,#5
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#7
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#11
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#13
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#17
bl moduloPuR32
cmp r0,#1
bne 90f
80:
mov r0,#1 @ is prime
b 100f
90:
mov r0,#0 @ no prime
100: @ fin standard de la fonction
pop {r1-r6,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/* */
/********************************************************/
/* r0 nombre */
/* r1 exposant */
/* r2 modulo */
/* r0 return result */
moduloPuR32:
push {r1-r7,lr} @ save registers
cmp r0,#0 @ verif <> zero
beq 100f
cmp r2,#0 @ verif <> zero
beq 100f @ TODO: vérifier les cas d erreur
1:
mov r4,r2 @ save modulo
mov r5,r1 @ save exposant
mov r6,r0 @ save base
mov r3,#1 @ start result
mov r1,#0 @ division de r0,r1 par r2
bl division32R
mov r6,r2 @ base <- remainder
2:
tst r5,#1 @ exposant even or odd
beq 3f
umull r0,r1,r6,r3
mov r2,r4
bl division32R
mov r3,r2 @ result <- remainder
3:
umull r0,r1,r6,r6
mov r2,r4
bl division32R
mov r6,r2 @ base <- remainder
lsr r5,#1 @ left shift 1 bit
cmp r5,#0 @ end ?
bne 2b
mov r0,r3
100: @ fin standard de la fonction
pop {r1-r7,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/***************************************************/
/* division number 64 bits in 2 registers by number 32 bits */
/***************************************************/
/* r0 contains lower part dividende */
/* r1 contains upper part dividende */
/* r2 contains divisor */
/* r0 return lower part quotient */
/* r1 return upper part quotient */
/* r2 return remainder */
division32R:
push {r3-r9,lr} @ save registers
mov r6,#0 @ init upper upper part remainder !!
mov r7,r1 @ init upper part remainder with upper part dividende
mov r8,r0 @ init lower part remainder with lower part dividende
mov r9,#0 @ upper part quotient
mov r4,#0 @ lower part quotient
mov r5,#32 @ bits number
1: @ begin loop
lsl r6,#1 @ shift upper upper part remainder
lsls r7,#1 @ shift upper part remainder
orrcs r6,#1
lsls r8,#1 @ shift lower part remainder
orrcs r7,#1
lsls r4,#1 @ shift lower part quotient
lsl r9,#1 @ shift upper part quotient
orrcs r9,#1
@ divisor sustract upper part remainder
subs r7,r2
sbcs r6,#0 @ and substract carry
bmi 2f @ négative ?
@ positive or equal
orr r4,#1 @ 1 -> right bit quotient
b 3f
2: @ negative
orr r4,#0 @ 0 -> right bit quotient
adds r7,r2 @ and restaur remainder
adc r6,#0
3:
subs r5,#1 @ decrement bit size
bgt 1b @ end ?
mov r0,r4 @ lower part quotient
mov r1,r9 @ upper part quotient
mov r2,r7 @ remainder
100: @ function end
pop {r3-r9,lr} @ restaur registers
bx lr
/***************************************************/
/* shell Sort */
/***************************************************/
/* r0 contains the address of table */
/* r1 contains the first element but not use !! */
/* this routine use first element at index zero !!! */
/* r2 contains the number of element */
shellSort:
push {r0-r7,lr} @save registers
sub r2,#1 @ index last item
mov r1,r2 @ init gap = last item
1: @ start loop 1
lsrs r1,#1 @ gap = gap / 2
beq 100f @ if gap = 0 -> end
mov r3,r1 @ init loop indice 1
2: @ start loop 2
ldr r4,[r0,r3,lsl #2] @ load first value
mov r5,r3 @ init loop indice 2
3: @ start loop 3
cmp r5,r1 @ indice < gap
blt 4f @ yes -> end loop 2
sub r6,r5,r1 @ index = indice - gap
ldr r7,[r0,r6,lsl #2] @ load second value
cmp r4,r7 @ compare values
strlt r7,[r0,r5,lsl #2] @ store if <
sublt r5,r1 @ indice = indice - gap
blt 3b @ and loop
4: @ end loop 3
str r4,[r0,r5,lsl #2] @ store value 1 at indice 2
add r3,#1 @ increment indice 1
cmp r3,r2 @ end ?
ble 2b @ no -> loop 2
b 1b @ yes loop for new gap
100: @ end function
pop {r0-r7,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* display divisors function */
/******************************************************************/
/* r0 contains address of divisors area */
/* r1 contains the number of area items */
displayDivisors:
push {r2-r8,lr} @ save registers
cmp r1,#0
beq 100f
mov r2,r1
mov r3,#0 @ indice
mov r4,r0
1:
add r5,r4,r3,lsl #2
ldr r0,[r5] @ load factor
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
ldr r0,iAdrszMessResultFact
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
bl affichageMess @ display message
add r3,#1 @ other ithem
cmp r3,r2 @ items maxi ?
blt 1b
ldr r0,iAdrszCarriageReturn
bl affichageMess
b 100f
100:
pop {r2-r8,lr} @ restaur registers
bx lr @ return
iAdrszMessResultFact: .int szMessResultFact
iAdrsZoneConv: .int sZoneConv
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
|
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included) | Arbitrary-precision integers (included) | Using the in-built capabilities of your language, calculate the integer value of:
5
4
3
2
{\displaystyle 5^{4^{3^{2}}}}
Confirm that the first and last twenty digits of the answer are:
62060698786608744707...92256259918212890625
Find and show the number of decimal digits in the answer.
Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead.
Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value.
Related tasks
Long multiplication
Exponentiation order
exponentiation operator
Exponentiation with infix operators in (or operating on) the base
| #8th | 8th |
200000 n#
5 4 3 2 bfloat ^ ^ ^
"%.0f" s:strfmt
dup s:len . " digits" . cr
dup 20 s:lsub . "..." . 20 s:rsub . cr
|
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included) | Arbitrary-precision integers (included) | Using the in-built capabilities of your language, calculate the integer value of:
5
4
3
2
{\displaystyle 5^{4^{3^{2}}}}
Confirm that the first and last twenty digits of the answer are:
62060698786608744707...92256259918212890625
Find and show the number of decimal digits in the answer.
Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead.
Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value.
Related tasks
Long multiplication
Exponentiation order
exponentiation operator
Exponentiation with infix operators in (or operating on) the base
| #ACL2 | ACL2 | (in-package "ACL2")
(include-book "arithmetic-3/floor-mod/floor-mod" :dir :system)
(set-print-length 0 state)
(defun arbitrary-precision ()
(declare (xargs :mode :program))
(let* ((x (expt 5 (expt 4 (expt 3 2))))
(s (mv-let (col str)
(fmt1-to-string "~xx"
(list (cons #\x x))
0)
(declare (ignore col))
str)))
(cw "~s0 ... ~x1 (~x2 digits)~%"
(subseq s 0 20)
(mod x (expt 10 20))
(1- (length s))))) |
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #Elena | Elena | import system'collections;
import system'routines;
import extensions;
import extensions'routines;
const string[] image = new string[]{
" ",
" ################# ############# ",
" ################## ################ ",
" ################### ################## ",
" ######## ####### ################### ",
" ###### ####### ####### ###### ",
" ###### ####### ####### ",
" ################# ####### ",
" ################ ####### ",
" ################# ####### ",
" ###### ####### ####### ",
" ###### ####### ####### ",
" ###### ####### ####### ###### ",
" ######## ####### ################### ",
" ######## ####### ###### ################## ###### ",
" ######## ####### ###### ################ ###### ",
" ######## ####### ###### ############# ###### ",
" "};
int[][] nbrs = new int[][]
{
new int[]{0, -1}, new int[]{1, -1}, new int[]{1, 0}, new int[]{1, 1}, new int[]{0, 1},
new int[]{-1, 1}, new int[]{-1, 0}, new int[]{-1, -1}, new int[]{0, -1}
};
int[][][] nbrGroups = new int[][][]
{
new int[][]{new int[]{0, 2, 4}, new int[]{2, 4, 6}},
new int[][]{new int[]{0, 2, 6}, new int[]{0, 4, 6}}
};
extension zhangsuenOp : Matrix<CharValue>
{
proceed(r, c, toWhite, firstStep)
{
if (self[r][c] != $35)
{ ^ false };
int nn := self.numNeighbors(r,c);
if ((nn < 2) || (nn > 6))
{ ^ false };
if(self.numTransitions(r,c) != 1)
{ ^ false };
ifnot (self.atLeastOneIsWhite(r,c,firstStep.iif(0,1)))
{ ^ false };
toWhite.append(new { x = c; y = r; });
^ true
}
numNeighbors(r,c)
{
int count := 0;
for (int i := 0, i < nbrs.Length, i += 1)
{
if (self[r + nbrs[i][1]][c + nbrs[i][0]] == $35)
{ count += 1 }
};
^ count;
}
numTransitions(r,c)
{
int count := 0;
for (int i := 0, i < nbrs.Length, i += 1)
{
if (self[r + nbrs[i][1]][c + nbrs[i][0]] == $32)
{
if (self[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == $35)
{
count := count + 1
}
}
};
^ count
}
atLeastOneIsWhite(r, c, step)
{
int count := 0;
var group := nbrGroups[step];
for(int i := 0, i < 3, i += 1)
{
for(int j := 0, j < group[i].Length, j += 1)
{
var nbr := nbrs[group[i][j]];
if (self[r + nbr[1]][c + nbr[0]] == $32)
{ count := count + 1; ^ true };
^ false
}
};
^ count > 1
}
thinImage()
{
bool firstStep := false;
bool hasChanged := true;
var toWhite := new List();
while (hasChanged || firstStep)
{
hasChanged := false;
firstStep := firstStep.Inverted;
for(int r := 1, r < self.Rows, r += 1)
{
for(int c := 1, c < self.Columns, c += 1)
{
if(self.proceed(r,c,toWhite,firstStep))
{ hasChanged := true }
}
};
toWhite.forEach:(p){ self[p.y][p.x] := $32 };
toWhite.clear()
}
}
print()
{
var it := self.enumerator();
it.forEach:(ch){ console.print(ch," ") };
while (it.next())
{
console.writeLine();
it.forEach:(ch){ console.print(ch," ") }
}
}
}
public program()
{
Matrix<CharValue> grid := class Matrix<CharValue>.load(new
{
int Rows = image.Length;
int Columns = image[0].Length;
at(int i, int j)
= image[i][j];
});
grid.thinImage();
grid.print();
console.readChar()
} |
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #Elixir | Elixir | defmodule ZhangSuen do
@neighbours [{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1}] # 8 neighbours
def thinning(str, black \\ ?#) do
s0 = for {line, i} <- (String.split(str, "\n") |> Enum.with_index),
{c, j} <- (to_char_list(line) |> Enum.with_index),
into: Map.new,
do: {{i,j}, (if c==black, do: 1, else: 0)}
{xrange, yrange} = range(s0)
print(s0, xrange, yrange)
s1 = thinning_loop(s0, xrange, yrange)
print(s1, xrange, yrange)
end
defp thinning_loop(s0, xrange, yrange) do
s1 = step(s0, xrange, yrange, 1) # Step 1
s2 = step(s1, xrange, yrange, 0) # Step 2
if Map.equal?(s0, s2), do: s2, else: thinning_loop(s2, xrange, yrange)
end
defp step(s, xrange, yrange, g) do
for x <- xrange, y <- yrange, into: Map.new, do: {{x,y}, s[{x,y}] - zs(s,x,y,g)}
end
defp zs(s, x, y, g) do
if get(s,x,y) == 0 or # P1
(get(s,x-1,y) + get(s,x,y+1) + get(s,x+g,y-1+g)) == 3 or # P2, P4, P6/P8
(get(s,x-1+g,y+g) + get(s,x+1,y) + get(s,x,y-1)) == 3 do # P4/P2, P6, P8
0
else
next = for {i,j} <- @neighbours, do: get(s, x+i, y+j)
bp1 = Enum.sum(next) # B(P1)
if bp1 in 2..6 do
ap1 = (next++[hd(next)]) |> Enum.chunk(2,1) |> Enum.count(fn [a,b] -> a<b end) # A(P1)
if ap1 == 1, do: 1, else: 0
else
0
end
end
end
defp get(map, x, y), do: Map.get(map, {x,y}, 0)
defp range(map), do: range(Map.keys(map), 0, 0)
defp range([], xmax, ymax), do: {0 .. xmax, 0 .. ymax}
defp range([{x,y} | t], xmax, ymax), do: range(t, max(x,xmax), max(y,ymax))
@display %{0 => " ", 1 => "#"}
defp print(map, xrange, yrange) do
Enum.each(xrange, fn x ->
IO.puts (for y <- yrange, do: @display[map[{x,y}]])
end)
end
end
str = """
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...###############...........#######.......................
...#################.........#######.......................
...######....########........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######..#####....##################.######..
.########.....#######..#####......################.######..
.########.....#######..#####.........#############.######..
...........................................................
"""
ZhangSuen.thinning(str)
str = """
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
"""
ZhangSuen.thinning(str, ?1) |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #XPL0 | XPL0 | real A, B, R, T, X, Y;
[SetVid($12); \set 640x480 graphics
A:= 0.0; B:= 3.0; T:= 0.0;
Move(320, 240); \start at center of screen
repeat R:= A + B*T;
X:= R*Cos(T); Y:= R*Sin(T);
Line(fix(X)+320, 240-fix(Y), 4\red\);
T:= T + 0.03; \increase angle (Theta)
until T >= 314.159; \50 revs
] |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #Yabasic | Yabasic | 5 OPEN WINDOW 320, 200 : WINDOW ORIGIN "CC"
10 LET A=1.5
20 LET B=0.7
30 FOR T=0 TO 30*PI STEP 0.05
40 LET R=A+B*T
50 LINE TO R*COS(T),R*SIN(T)
60 NEXT T |
http://rosettacode.org/wiki/Archimedean_spiral | Archimedean spiral |
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes.
An Archimedean spiral can be described by the equation:
r
=
a
+
b
θ
{\displaystyle \,r=a+b\theta }
with real numbers a and b.
Task
Draw an Archimedean spiral.
| #zkl | zkl | fcn archimedeanSpiral(a,b,circles){
w,h:=640,640; centerX,centerY:=w/2,h/2;
bitmap:=PPM(w+1,h+1,0xFF|FF|FF); // White background
foreach deg in ([0.0 .. 360*circles]){
rad:=deg.toRad();
r:=rad*b + a;
x,y:=r.toRectangular(rad);
bitmap[centerX + x, centerY + y] = 0x00|FF|00; // Green dot
}
bitmap.writeJPGFile("archimedeanSpiral.jpg");
}(0,5,7); |
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #C.2B.2B | C++ |
// For a class N which implements Zeckendorf numbers:
// I define an increment operation ++()
// I define a comparison operation <=(other N)
// Nigel Galloway October 22nd., 2012
#include <iostream>
class N {
private:
int dVal = 0, dLen;
public:
N(char const* x = "0"){
int i = 0, q = 1;
for (; x[i] > 0; i++);
for (dLen = --i/2; i >= 0; i--) {
dVal+=(x[i]-48)*q;
q*=2;
}}
const N& operator++() {
for (int i = 0;;i++) {
if (dLen < i) dLen = i;
switch ((dVal >> (i*2)) & 3) {
case 0: dVal += (1 << (i*2)); return *this;
case 1: dVal += (1 << (i*2)); if (((dVal >> ((i+1)*2)) & 1) != 1) return *this;
case 2: dVal &= ~(3 << (i*2));
}}}
const bool operator<=(const N& other) const {return dVal <= other.dVal;}
friend std::ostream& operator<<(std::ostream&, const N&);
};
N operator "" N(char const* x) {return N(x);}
std::ostream &operator<<(std::ostream &os, const N &G) {
const static std::string dig[] {"00","01","10"}, dig1[] {"","1","10"};
if (G.dVal == 0) return os << "0";
os << dig1[(G.dVal >> (G.dLen*2)) & 3];
for (int i = G.dLen-1; i >= 0; i--) os << dig[(G.dVal >> (i*2)) & 3];
return os;
}
|
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #bc | bc | /* 0 means door is closed, 1 means door is open */
for (i = 0; i < 100; i++) {
for (j = i; j < 100; j += (i + 1)) {
d[j] = 1 - d[j] /* Toggle door */
}
}
"Open doors:
"
for (i = 0; i < 100; i++) {
if (d[i] == 1) (i + 1)
} |
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #Dragon | Dragon | array = newarray(3) //optionally, replace "newarray(5)" with a brackets list of values like "[1, 2, 3]"
array[0] = 42
showln array[2] |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Nanoquery | Nanoquery | import math
class Complex
declare real
declare imag
def Complex()
real = 0.0
imag = 0.0
end
def Complex(r, i)
real = double(r)
imag = double(i)
end
def operator-(b)
return new(Complex, this.real - b.real, this.imag - b.imag)
end
def operator+(b)
return new(Complex, this.real + b.real, this.imag + b.imag)
end
def operator*(b)
// FOIL of (a+bi)(c+di) with i*i = -1
return new(Complex, this.real * b.real - this.imag * b.imag,\
this.real * b.imag + this.imag * b.real)
end
def inv()
// 1/(a+bi) * (a-bi)/(a-bi) = 1/(a+bi) but it's more workable
denom = this.real * this.real + this.imag * this.imag
return new(Complex, real/denom, -imag/denom)
end
def neg()
return new(Complex, -this.real, -this.imag)
end
def conj()
return new(Complex, this.real, -this.imag)
end
def toString()
return this.real + " + " + this.imag + " * i"
end
end
a = new(Complex, math.pi, -5)
b = new(Complex, -1, 2.5)
println a.neg()
println a + b
println a.inv()
println a * b
println a.conj() |
http://rosettacode.org/wiki/Arithmetic/Complex | Arithmetic/Complex | A complex number is a number which can be written as:
a
+
b
×
i
{\displaystyle a+b\times i}
(sometimes shown as:
b
+
a
×
i
{\displaystyle b+a\times i}
where
a
{\displaystyle a}
and
b
{\displaystyle b}
are real numbers, and
i
{\displaystyle i}
is √ -1
Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part", where the imaginary part is the number to be multiplied by
i
{\displaystyle i}
.
Task
Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.)
Print the results for each operation tested.
Optional: Show complex conjugation.
By definition, the complex conjugate of
a
+
b
i
{\displaystyle a+bi}
is
a
−
b
i
{\displaystyle a-bi}
Some languages have complex number libraries available. If your language does, show the operations. If your language does not, also show the definition of this type.
| #Nemerle | Nemerle | using System;
using System.Console;
using System.Numerics;
using System.Numerics.Complex;
module RCComplex
{
PrettyPrint(this c : Complex) : string
{
mutable sign = '+';
when (c.Imaginary < 0) sign = '-';
$"$(c.Real) $sign $(Math.Abs(c.Imaginary))i"
}
Main() : void
{
def complex1 = Complex(1.0, 1.0);
def complex2 = Complex(3.14159, 1.2);
WriteLine(Add(complex1, complex2).PrettyPrint());
WriteLine(Multiply(complex1, complex2).PrettyPrint());
WriteLine(Negate(complex2).PrettyPrint());
WriteLine(Reciprocal(complex2).PrettyPrint());
WriteLine(Conjugate(complex2).PrettyPrint());
}
} |
http://rosettacode.org/wiki/Arithmetic/Rational | Arithmetic/Rational | Task
Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language.
Example
Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number).
Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠').
Define standard coercion operators for casting int to frac etc.
If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.).
Finally test the operators:
Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors.
Related task
Perfect Numbers
| #PARI.2FGP | PARI/GP | for(n=2,1<<19,
s=0;
fordiv(n,d,s+=1/d);
if(s==2,print(n))
) |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Raku | Raku | sub agm( $a is copy, $g is copy ) {
($a, $g) = ($a + $g)/2, sqrt $a * $g until $a ≅ $g;
return $a;
}
say agm 1, 1/sqrt 2; |
http://rosettacode.org/wiki/Arithmetic-geometric_mean | Arithmetic-geometric mean |
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Write a function to compute the arithmetic-geometric mean of two numbers.
The arithmetic-geometric mean of two numbers can be (usefully) denoted as
a
g
m
(
a
,
g
)
{\displaystyle \mathrm {agm} (a,g)}
, and is equal to the limit of the sequence:
a
0
=
a
;
g
0
=
g
{\displaystyle a_{0}=a;\qquad g_{0}=g}
a
n
+
1
=
1
2
(
a
n
+
g
n
)
;
g
n
+
1
=
a
n
g
n
.
{\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}
Since the limit of
a
n
−
g
n
{\displaystyle a_{n}-g_{n}}
tends (rapidly) to zero with iterations, this is an efficient method.
Demonstrate the function by calculating:
a
g
m
(
1
,
1
/
2
)
{\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}
Also see
mathworld.wolfram.com/Arithmetic-Geometric Mean
| #Raven | Raven | define agm use $a, $g, $errlim
# $errlim $g $a "%d %g %d\n" print
$a 1.0 + as $t
repeat $a 1.0 * $g - abs -15 exp10 $a * > while
$a $g + 2 / as $t
$a $g * sqrt as $g
$t as $a
$g $a $t "t: %g a: %g g: %g\n" print
$a
16 1 2 sqrt / 1 agm "agm: %.15g\n" print |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #Delphi | Delphi | print pow 0 0 |
http://rosettacode.org/wiki/Zero_to_the_zero_power | Zero to the zero power | Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0
y = 0
z = x**y
say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
See also
The Wiki entry: Zero to the power of zero.
The Wiki entry: History of differing points of view.
The MathWorld™ entry: exponent laws.
Also, in the above MathWorld™ entry, see formula (9):
x
0
=
1
{\displaystyle x^{0}=1}
.
The OEIS entry: The special case of zero to the zeroth power
| #EasyLang | EasyLang | print pow 0 0 |
http://rosettacode.org/wiki/Arithmetic_evaluation | Arithmetic evaluation | Create a program which parses and evaluates arithmetic expressions.
Requirements
An abstract-syntax tree (AST) for the expression must be created from parsing the input.
The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
The expression will be a string or list of symbols like "(1+3)*7".
The four symbols + - * / must be supported as binary operators with conventional precedence rules.
Precedence-control parentheses must also be supported.
Note
For those who don't remember, mathematical precedence is as follows:
Parentheses
Multiplication/Division (left to right)
Addition/Subtraction (left to right)
C.f
24 game Player.
Parsing/RPN calculator algorithm.
Parsing/RPN to infix conversion.
| #Oz | Oz | declare
fun {Expr X0 ?X}
choice
[L _ R] = {Do [Term &+ Expr] X0 ?X} in add(L R)
[] [L _ R] = {Do [Term &- Expr] X0 ?X} in sub(L R)
[] {Term X0 X}
end
end
fun {Term X0 ?X}
choice
[L _ R] = {Do [Factor &* Term] X0 ?X} in mul(L R)
[] [L _ R] = {Do [Factor &/ Term] X0 ?X} in 'div'(L R)
[] {Factor X0 X}
end
end
fun {Factor X0 ?X}
choice {Parens Expr X0 X}
[] {Number X0 X}
end
end
fun {Number X0 X}
Ds = {Many1 Digit X0 X}
in
num(Ds)
end
fun {Digit X0 ?X}
D|!X = X0
in
D = choice &0 [] &1 [] &2 [] &3 [] &4 [] &5 [] &6 [] &7 [] &8 [] &9 end
end
fun {Many1 Rule X0 ?X}
choice [{Rule X0 X}]
[] X1 in {Rule X0 X1}|{Many1 Rule X1 X}
end
end
fun {Parens Rule X0 ?X}
[_ R _] = {Do [&( Rule &)] X0 X}
in
R
end
fun {Do Rules X0 ?X}
Res#Xn = {FoldL Rules
fun {$ Res#Xi Rule}
if {Char.is Rule} then
!Rule|X2 = Xi
in
(Rule|Res) # X2
elseif {Procedure.is Rule} then
X2 in
({Rule Xi X2}|Res) # X2
end
end
nil#X0}
in
X = Xn
{Reverse Res}
end
%% Returns a singleton list if an AST was found or nil otherwise.
fun {Parse S}
{SearchOne fun {$} {Expr S nil} end}
end
fun {Eval X}
case X of
num(Ds) then {String.toInt Ds}
[] add(L R) then {Eval L} + {Eval R}
[] sub(L R) then {Eval L} - {Eval R}
[] mul(L R) then {Eval L} * {Eval R}
[] 'div'(L R) then {Eval L} div {Eval R}
end
end
[AST] = {Parse "((11+15)*15)*2-(3)*4*1"}
in
{Inspector.configure widgetShowStrings true}
{Inspect AST}
{Inspect {Eval AST}} |
http://rosettacode.org/wiki/Zeckendorf_arithmetic | Zeckendorf arithmetic | This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation.
The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions.
Addition
Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case.
Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100;
Subtraction
10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg:
abcde
10100 -
1000
_____
100 borrow 1 from a leaves 100
+ 100 add the carry
_____
1001
A larger example:
abcdef
100100 -
1000
______
1*0100 borrow 1 from b
+ 100 add the carry
______
1*1001
Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a:
1001
+ 1000 add the carry
____
10100
Multiplication
Here you teach your computer its zeckendorf tables. eg. 101 * 1001:
a = 1 * 101 = 101
b = 10 * 101 = a + a = 10000
c = 100 * 101 = b + a = 10101
d = 1000 * 101 = c + b = 101010
1001 = d + a therefore 101 * 1001 =
101010
+ 101
______
1000100
Division
Lets try 1000101 divided by 101, so we can use the same table used for multiplication.
1000101 -
101010 subtract d (1000 * 101)
_______
1000 -
101 b and c are too large to subtract, so subtract a
____
1 so 1000101 divided by 101 is d + a (1001) remainder 1
Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
| #C | C | #include <stdbool.h>
#include <stdio.h>
#include <string.h>
int inv(int a) {
return a ^ -1;
}
struct Zeckendorf {
int dVal, dLen;
};
void a(struct Zeckendorf *self, int n) {
void b(struct Zeckendorf *, int); // forward declare
int i = n;
while (true) {
if (self->dLen < i) self->dLen = i;
int j = (self->dVal >> (i * 2)) & 3;
switch (j) {
case 0:
case 1:
return;
case 2:
if (((self->dVal >> ((i + 1) * 2)) & 1) != 1) return;
self->dVal += 1 << (i * 2 + 1);
return;
case 3:
self->dVal = self->dVal & inv(3 << (i * 2));
b(self, (i + 1) * 2);
break;
default:
break;
}
i++;
}
}
void b(struct Zeckendorf *self, int pos) {
void increment(struct Zeckendorf *); // forward declare
if (pos == 0) {
increment(self);
return;
}
if (((self->dVal >> pos) & 1) == 0) {
self->dVal += 1 << pos;
a(self, pos / 2);
if (pos > 1) a(self, pos / 2 - 1);
} else {
self->dVal = self->dVal & inv(1 << pos);
b(self, pos + 1);
b(self, pos - (pos > 1 ? 2 : 1));
}
}
void c(struct Zeckendorf *self, int pos) {
if (((self->dVal >> pos) & 1) == 1) {
self->dVal = self->dVal & inv(1 << pos);
return;
}
c(self, pos + 1);
if (pos > 0) {
b(self, pos - 1);
} else {
increment(self);
}
}
struct Zeckendorf makeZeckendorf(char *x) {
struct Zeckendorf z = { 0, 0 };
int i = strlen(x) - 1;
int q = 1;
z.dLen = i / 2;
while (i >= 0) {
z.dVal += (x[i] - '0') * q;
q *= 2;
i--;
}
return z;
}
void increment(struct Zeckendorf *self) {
self->dVal++;
a(self, 0);
}
void addAssign(struct Zeckendorf *self, struct Zeckendorf rhs) {
int gn;
for (gn = 0; gn < (rhs.dLen + 1) * 2; gn++) {
if (((rhs.dVal >> gn) & 1) == 1) {
b(self, gn);
}
}
}
void subAssign(struct Zeckendorf *self, struct Zeckendorf rhs) {
int gn;
for (gn = 0; gn < (rhs.dLen + 1) * 2; gn++) {
if (((rhs.dVal >> gn) & 1) == 1) {
c(self, gn);
}
}
while ((((self->dVal >> self->dLen * 2) & 3) == 0) || (self->dLen == 0)) {
self->dLen--;
}
}
void mulAssign(struct Zeckendorf *self, struct Zeckendorf rhs) {
struct Zeckendorf na = rhs;
struct Zeckendorf nb = rhs;
struct Zeckendorf nr = makeZeckendorf("0");
struct Zeckendorf nt;
int i;
for (i = 0; i < (self->dLen + 1) * 2; i++) {
if (((self->dVal >> i) & 1) > 0) addAssign(&nr, nb);
nt = nb;
addAssign(&nb, na);
na = nt;
}
*self = nr;
}
void printZeckendorf(struct Zeckendorf z) {
static const char *const dig[3] = { "00", "01", "10" };
static const char *const dig1[3] = { "", "1", "10" };
if (z.dVal == 0) {
printf("0");
return;
} else {
int idx = (z.dVal >> (z.dLen * 2)) & 3;
int i;
printf(dig1[idx]);
for (i = z.dLen - 1; i >= 0; i--) {
idx = (z.dVal >> (i * 2)) & 3;
printf(dig[idx]);
}
}
}
int main() {
struct Zeckendorf g;
printf("Addition:\n");
g = makeZeckendorf("10");
addAssign(&g, makeZeckendorf("10"));
printZeckendorf(g);
printf("\n");
addAssign(&g, makeZeckendorf("10"));
printZeckendorf(g);
printf("\n");
addAssign(&g, makeZeckendorf("1001"));
printZeckendorf(g);
printf("\n");
addAssign(&g, makeZeckendorf("1000"));
printZeckendorf(g);
printf("\n");
addAssign(&g, makeZeckendorf("10101"));
printZeckendorf(g);
printf("\n\n");
printf("Subtraction:\n");
g = makeZeckendorf("1000");
subAssign(&g, makeZeckendorf("101"));
printZeckendorf(g);
printf("\n");
g = makeZeckendorf("10101010");
subAssign(&g, makeZeckendorf("1010101"));
printZeckendorf(g);
printf("\n\n");
printf("Multiplication:\n");
g = makeZeckendorf("1001");
mulAssign(&g, makeZeckendorf("101"));
printZeckendorf(g);
printf("\n");
g = makeZeckendorf("101010");
addAssign(&g, makeZeckendorf("101"));
printZeckendorf(g);
printf("\n");
return 0;
} |
http://rosettacode.org/wiki/Zumkeller_numbers | Zumkeller numbers | Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal.
E.G.
6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6.
10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value.
12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14.
Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0
Task
Write a routine (function, procedure, whatever) to find Zumkeller numbers.
Use the routine to find and display here, on this page, the first 220 Zumkeller numbers.
Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers.
Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5.
See Also
OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions
OEIS:A174865 - Odd Zumkeller numbers
Related Tasks
Abundant odd numbers
Abundant, deficient and perfect number classifications
Proper divisors , Factors of an integer | #C.23 | C# | using System;
using System.Collections.Generic;
using System.Linq;
namespace ZumkellerNumbers {
class Program {
static List<int> GetDivisors(int n) {
List<int> divs = new List<int> {
1, n
};
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
int j = n / i;
divs.Add(i);
if (i != j) {
divs.Add(j);
}
}
}
return divs;
}
static bool IsPartSum(List<int> divs, int sum) {
if (sum == 0) {
return true;
}
var le = divs.Count;
if (le == 0) {
return false;
}
var last = divs[le - 1];
List<int> newDivs = new List<int>();
for (int i = 0; i < le - 1; i++) {
newDivs.Add(divs[i]);
}
if (last > sum) {
return IsPartSum(newDivs, sum);
}
return IsPartSum(newDivs, sum) || IsPartSum(newDivs, sum - last);
}
static bool IsZumkeller(int n) {
var divs = GetDivisors(n);
var sum = divs.Sum();
// if sum is odd can't be split into two partitions with equal sums
if (sum % 2 == 1) {
return false;
}
// if n is odd use 'abundant odd number' optimization
if (n % 2 == 1) {
var abundance = sum - 2 * n;
return abundance > 0 && abundance % 2 == 0;
}
// if n and sum are both even check if there's a partition which totals sum / 2
return IsPartSum(divs, sum / 2);
}
static void Main() {
Console.WriteLine("The first 220 Zumkeller numbers are:");
int i = 2;
for (int count = 0; count < 220; i++) {
if (IsZumkeller(i)) {
Console.Write("{0,3} ", i);
count++;
if (count % 20 == 0) {
Console.WriteLine();
}
}
}
Console.WriteLine("\nThe first 40 odd Zumkeller numbers are:");
i = 3;
for (int count = 0; count < 40; i += 2) {
if (IsZumkeller(i)) {
Console.Write("{0,5} ", i);
count++;
if (count % 10 == 0) {
Console.WriteLine();
}
}
}
Console.WriteLine("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:");
i = 3;
for (int count = 0; count < 40; i += 2) {
if (i % 10 != 5 && IsZumkeller(i)) {
Console.Write("{0,7} ", i);
count++;
if (count % 8 == 0) {
Console.WriteLine();
}
}
}
}
}
} |
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included) | Arbitrary-precision integers (included) | Using the in-built capabilities of your language, calculate the integer value of:
5
4
3
2
{\displaystyle 5^{4^{3^{2}}}}
Confirm that the first and last twenty digits of the answer are:
62060698786608744707...92256259918212890625
Find and show the number of decimal digits in the answer.
Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead.
Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value.
Related tasks
Long multiplication
Exponentiation order
exponentiation operator
Exponentiation with infix operators in (or operating on) the base
| #Ada | Ada | with Ada.Text_IO; use Ada.Text_IO;
with GNATCOLL.GMP; use GNATCOLL.GMP;
with GNATCOLL.GMP.Integers; use GNATCOLL.GMP.Integers;
procedure ArbitraryInt is
type stracc is access String;
BigInt : Big_Integer;
len : Natural;
str : stracc;
begin
Set (BigInt, 5);
Raise_To_N (BigInt, Unsigned_Long (4**(3**2)));
str := new String'(Image (BigInt));
len := str'Length;
Put_Line ("Size is:"& Natural'Image (len));
Put_Line (str (1 .. 20) & "....." & str (len - 19 .. len));
end ArbitraryInt; |
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included) | Arbitrary-precision integers (included) | Using the in-built capabilities of your language, calculate the integer value of:
5
4
3
2
{\displaystyle 5^{4^{3^{2}}}}
Confirm that the first and last twenty digits of the answer are:
62060698786608744707...92256259918212890625
Find and show the number of decimal digits in the answer.
Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead.
Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value.
Related tasks
Long multiplication
Exponentiation order
exponentiation operator
Exponentiation with infix operators in (or operating on) the base
| #ALGOL_68 | ALGOL 68 |
BEGIN
COMMENT
The task specifies
"Strictly speaking, this should not be solved by fixed-precision
numeric libraries where the precision has to be manually set to a
large value; although if this is the only recourse then it may be
used with a note explaining that the precision must be set manually
to a large enough value."
Now one should always speak strictly, especially to animals and
small children and, strictly speaking, Algol 68 Genie requires that
a non-default numeric precision for a LONG LONG INT be specified by
"precision=<integral denotation>" either in a source code PRAGMAT
or as a command line argument. However, that specification need
not be made manually. This snippet of code outputs an appropriate
PRAGMAT
printf (($gg(0)xgl$, "PR precision=",
ENTIER (1.0 + log (5) * 4^(3^(2))), "PR"));
and the technique shown in the "Call a foreign-language function"
task used to write, compile and run an Algol 68 program in which
the precision is programmatically determined.
The default stack size on this machine is also inadequate but twice
the default is sufficient. The PRAGMAT below can be machine
generated with
printf (($gg(0)xgl$, "PR stack=", 2 * system stack size, "PR"));
COMMENT
PR precision=183231 PR
PR stack=16777216 PR
INT digits = ENTIER (1.0 + log (5) * 4^(3^(2))), exponent = 4^(3^2);
LONG LONG INT big = LONG LONG 5^exponent;
printf (($gxg(0)l$, " First 20 digits:", big % LONG LONG 10 ^ (digits - 20)));
printf (($gxg(0)l$, " Last 20 digits:", big MOD LONG LONG 10 ^ 20));
printf (($gxg(0)l$, "Number of digits:", digits))
END
|
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #Fortran | Fortran | FOR ALL (i = 2:n - 1) A(i) = (A(i - 1) + A(i) + A(i + 1))/3 |
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm | Zhang-Suen thinning algorithm | This is an algorithm used to thin a black and white i.e. one bit per pixel images.
For example, with an input image of:
################# #############
################## ################
################### ##################
######## ####### ###################
###### ####### ####### ######
###### ####### #######
################# #######
################ #######
################# #######
###### ####### #######
###### ####### #######
###### ####### ####### ######
######## ####### ###################
######## ####### ###### ################## ######
######## ####### ###### ################ ######
######## ####### ###### ############# ######
It produces the thinned output:
# ########## #######
## # #### #
# # ##
# # #
# # #
# # #
############ #
# # #
# # #
# # #
# # #
# ##
# ############
### ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
The algorithm operates on all black pixels P1 that can have eight neighbours.
The neighbours are, in order, arranged as:
P9 P2 P3
P8 P1 P4
P7 P6 P5
Obviously the boundary pixels of the image cannot have the full eight neighbours.
Define
A
(
P
1
)
{\displaystyle A(P1)}
= the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
Define
B
(
P
1
)
{\displaystyle B(P1)}
= The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P6 is white
(4) At least one of P4 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
(0) The pixel is black and has eight neighbours
(1)
2
<=
B
(
P
1
)
<=
6
{\displaystyle 2<=B(P1)<=6}
(2) A(P1) = 1
(3) At least one of P2 and P4 and P8 is white
(4) At least one of P2 and P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
Task
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
Reference
Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza.
"Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
| #FreeBASIC | FreeBASIC | ' version 08-10-2016
' compile with: fbc -s console
Data "00000000000000000000000000000000"
Data "01111111110000000111111110000000"
Data "01110001111000001111001111000000"
Data "01110000111000001110000111000000"
Data "01110001111000001110000000000000"
Data "01111111110000001110000000000000"
Data "01110111100000001110000111000000"
Data "01110011110011101111001111011100"
Data "01110001111011100111111110011100"
Data "00000000000000000000000000000000"
Data "END"
' ------=< MAIN >=------
Dim As UInteger x, y, m, n
Dim As String input_str
Do ' find out how big it is
Read input_str
If input_str = "END" Then Exit Do
If x < Len(input_str) Then x = Len(input_str)
y = y + 1
Loop
m = x -1 : n = y -1
ReDim As UByte old(m, n), new_(m, n)
y = 0
Restore ' restore data pointer
Do ' put data in array
Read input_str
If input_str="END" Then Exit Do
For x = 0 To Len(input_str) -1
old(x,y) = input_str[x] - Asc("0")
' print image
If old(x, y) = 0 Then Print "."; Else Print "#";
Next
Print
y = y + 1
Loop
'corners and sides do not change
For x = 0 To m
new_(x, 0) = old(x, 0)
new_(x, n) = old(x, n)
Next
For y = 0 To n
new_(0, y) = old(0, y)
new_(m, y) = old(m, y)
Next
Dim As UInteger tmp, change, stage = 1
Do
change = 0
For y = 1 To n -1
For x = 1 To m -1
' -1-
If old(x,y) = 0 Then ' first condition, p1 must be black
new_(x,y) = 0
Continue For
End If
' -2-
tmp = old(x, y -1) + old(x +1, y -1)
tmp = tmp + old(x +1, y) + old(x +1, y +1) + old(x, y +1)
tmp = tmp + old(x -1, y +1) + old(x -1, y) + old(x -1, y -1)
If tmp < 2 OrElse tmp > 6 Then ' 2 <= B(p1) <= 6
new_(x, y) = 1
Continue For
End If
' -3-
tmp = 0
If old(x , y ) = 0 And old(x , y -1) = 1 Then tmp += 1 ' p1 > p2
If old(x , y -1) = 0 And old(x +1, y -1) = 1 Then tmp += 1 ' p2 > p3
If old(x +1, y -1) = 0 And old(x +1, y ) = 1 Then tmp += 1 ' p3 > p4
If old(x +1, y ) = 0 And old(x +1, y +1) = 1 Then tmp += 1 ' p4 > p5
If old(x +1, y +1) = 0 And old(x , y +1) = 1 Then tmp += 1 ' p5 > p6
If old(x , y +1) = 0 And old(x -1, y +1) = 1 Then tmp += 1 ' p6 > p7
If old(x -1, y +1) = 0 And old(x -1, y ) = 1 Then tmp += 1 ' p7 > p8
If old(x -1, y ) = 0 And old(x -1, y -1) = 1 Then tmp += 1 ' p8 > p9
If old(x -1, y -1) = 0 And old(x , y -1) = 1 Then tmp += 1 ' p9 > p2
' tmp = 1 ==> A(P1) = 1
If tmp <> 1 Then
new_(x, y) = 1
Continue For
End If
If (stage And 1) = 1 Then
' step 1 -4- -5-
If (old(x, y -1) + old(x +1, y) + old(x, y +1)) = 3 OrElse _
(old(x +1, y) + old(x, y +1) + old(x -1, y)) = 3 Then
new_(x, y) = 1
Continue For
End If
Else
' step 2 -4- -5-
If (old(x, y -1) + old(x +1, y) + old(x -1, y)) = 3 OrElse _
(old(x, y -1) + old(x, y +1) + old(x -1, y)) = 3 Then
new_(x, y) = 1
Continue For
End If
End If
' all condition are met, make p1 white (0)
new_(x, y) = 0
change = 1 ' flag change
Next
Next
' copy new_() into old()
For y = 0 To n
For x = 0 To m
old(x, y) = new_(x, y)
Next
Next
stage += 1
Loop Until change = 0 ' stop when there are no changes made
Print ' print result
Print "End result"
For y = 0 To n
For x = 0 To m
If old(x, y) = 0 Then Print "."; Else Print "#";
Next
Print
Next
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End |
http://rosettacode.org/wiki/Zeckendorf_number_representation | Zeckendorf number representation | Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series.
Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13.
The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100.
10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution.
Task
Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order.
The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task.
Also see
OEIS A014417 for the the sequence of required results.
Brown's Criterion - Numberphile
Related task
Fibonacci sequence
| #Clojure | Clojure | (def fibs (lazy-cat [1 1] (map + fibs (rest fibs))))
(defn z [n]
(if (zero? n)
"0"
(let [ps (->> fibs (take-while #(<= % n)) rest reverse)
fz (fn [[s n] p]
(if (>= n p)
[(conj s 1) (- n p)]
[(conj s 0) n]))]
(->> ps (reduce fz [[] n]) first (apply str)))))
(doseq [n (range 0 21)] (println n (z n))) |
http://rosettacode.org/wiki/100_doors | 100 doors | There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the 100th door.
Task
Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Alternate:
As noted in this page's discussion page, the only doors that remain open are those whose numbers are perfect squares.
Opening only those doors is an optimization that may also be expressed;
however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
| #BCPL | BCPL | get "libhdr"
let start() be
$( let doors = vec 100
// close all doors
for n = 1 to 100 do doors!n := 0
// make 100 passes
for pass = 1 to 100 do
$( let n = pass
while n <= 100 do
$( doors!n := ~doors!n
n := n + pass
$)
$)
// report which doors are open
for n = 1 to 100 do
if doors!n then
writef("Door %N is open.*N", n)
$) |
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #DWScript | DWScript |
// dynamic array, extensible, this a reference type
var d : array of Integer;
d.Add(1); // has various methods to add, delete, etc.
d.Add(2, 3);
// read and write elements by index
item := d[5];
d[6] := item+1;
// static, fixed-size array, arbitrary lower-bound, this is a value type
var s : array [2..4] of Integer;
// inline array constructor, works for both static and dynamic arrays
s := [1, 2, 3];
|