task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Nim
Nim
  import complex var a: Complex = (1.0,1.0) var b: Complex = (3.1415,1.2)   echo("a  : " & $a) echo("b  : " & $b) echo("a + b: " & $(a + b)) echo("a * b: " & $(a * b)) echo("1/a  : " & $(1/a)) echo("-a  : " & $(-a))    
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Oberon-2
Oberon-2
  MODULE Complex; IMPORT Files,Out; TYPE Complex* = POINTER TO ComplexDesc; ComplexDesc = RECORD r-,i-: REAL; END;   PROCEDURE (CONST x: Complex) Add*(CONST y: Complex): Complex; BEGIN RETURN New(x.r + y.r,x.i + y.i) END Add;   PROCEDURE (CONST x: Complex) Sub*(CONST y: Complex): Complex; BEGIN RETURN New(x.r - y.r,x.i - y.i) END Sub;   PROCEDURE (CONST x: Complex) Mul*(CONST y: Complex): Complex; BEGIN RETURN New(x.r*y.r - x.i*y.i,x.r*y.i + x.i*y.r) END Mul;   PROCEDURE (CONST x: Complex) Div*(CONST y: Complex): Complex; VAR d: REAL; BEGIN d := y.r * y.r + y.i * y.i; RETURN New((x.r*y.r + x.i*y.i)/d,(x.i*y.r - x.r*y.i)/d) END Div;   (* Reciprocal *) PROCEDURE (CONST x: Complex) Rec*(): Complex; VAR d: REAL; BEGIN d := x.r * x.r + y.i * y.i; RETURN New(x.r/d,(-1.0 * x.i)/d); END Rec;   (* Conjugate *) PROCEDURE (x: Complex) Con*(): Complex; BEGIN RETURN New(x.r, (-1.0) * x.i); END Con;   PROCEDURE (x: Complex) Out(out : Files.File); BEGIN Files.WriteString(out,"("); Files.WriteReal(out,x.r); Files.WriteString(out,","); Files.WriteReal(out,x.i); Files.WriteString(out,"i)") END Out;   PROCEDURE New(x,y: REAL): Complex; VAR r: Complex; BEGIN NEW(r);r.r := x;r.i := y; RETURN r END New;   VAR r,x,y: Complex; BEGIN x := New(1.5,3); y := New(1.0,1.0);   Out.String("x: ");x.Out(Files.stdout);Out.Ln; Out.String("y: ");y.Out(Files.stdout);Out.Ln; r := x.Add(y); Out.String("x + y: ");r.Out(Files.stdout);Out.Ln; r := x.Sub(y); Out.String("x - y: ");r.Out(Files.stdout);Out.Ln; r := x.Mul(y); Out.String("x * y: ");r.Out(Files.stdout);Out.Ln; r := x.Div(y); Out.String("x / y: ");r.Out(Files.stdout);Out.Ln; r := y.Rec(); Out.String("1 / y: ");r.Out(Files.stdout);Out.Ln; r := x.Con(); Out.String("x': ");r.Out(Files.stdout);Out.Ln;   END Complex.  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Perl
Perl
use bigrat;   foreach my $candidate (2 .. 2**19) { my $sum = 1 / $candidate; foreach my $factor (2 .. sqrt($candidate)+1) { if ($candidate % $factor == 0) { $sum += 1 / $factor + 1 / ($candidate / $factor); } } if ($sum->denominator() == 1) { print "Sum of recipr. factors of $candidate = $sum exactly ", ($sum == 1 ? "perfect!" : ""), "\n"; } }
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Relation
Relation
  function agm(x,y) set a = x set g = y while abs(a - g) > 0.00000000001 set an = (a + g)/2 set gn = sqrt(a * g) set a = an set g = gn set i = i + 1 end while set result = g end function   set x = 1 set y = 1/sqrt(2) echo (x + y)/2 echo sqrt(x+y) echo agm(x,y)  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#REXX
REXX
/*REXX program calculates the AGM (arithmetic─geometric mean) of two (real) numbers. */ parse arg a b digs . /*obtain optional numbers from the C.L.*/ if digs=='' | digs=="," then digs= 120 /*No DIGS specified? Then use default.*/ numeric digits digs /*REXX will use lots of decimal digits.*/ if a=='' | a=="," then a= 1 /*No A specified? Then use the default*/ if b=='' | b=="," then b= 1 / sqrt(2) /* " B " " " " " */ call AGM a,b /*invoke the AGM function. */ say '1st # =' a /*display the A value. */ say '2nd # =' b /* " " B " */ say ' AGM =' agm(a, b) /* " " AGM " */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ agm: procedure: parse arg x,y; if x=y then return x /*is this an equality case?*/ if y=0 then return 0 /*is Y equal to zero ? */ if x=0 then return y/2 /* " X " " " */ d= digits() /*obtain the current decimal digits. */ numeric digits d + 5 /*add 5 more digs to ensure convergence*/ tiny= '1e-' || (digits() - 1) /*construct a pretty tiny REXX number. */ ox= x + 1 /*ensure that the old X ¬= new X. */ do while ox\=x & abs(ox)>tiny /*compute until the old X ≡ new X. */ ox= x; oy= y /*save the old value of X and Y. */ x= (ox + oy) * .5 /*compute " new " " X. */ y= sqrt(ox * oy) /* " " " " " Y. */ end /*while*/   numeric digits d /*restore the original decimal digits. */ return x / 1 /*normalize X to new " " */ /*──────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h=d+6 numeric digits; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g *.5'e'_ % 2 do j=0 while h>9; m.j=h; h=h % 2 + 1; end /*j*/ do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/; return g
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#EchoLisp
EchoLisp
  ;; trying the 16 combinations ;; all return the integer 1   (lib 'bigint) (define zeroes '(integer: 0 inexact=float: 0.000 complex: 0+0i bignum: #0)) (for* ((z1 zeroes) (z2 zeroes)) (write (expt z1 z2))) → 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Eiffel
Eiffel
print (0^0)
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Pascal
Pascal
sub ev # Evaluates an arithmetic expression like "(1+3)*7" and returns # its value. {my $exp = shift; # Delete all meaningless characters. (Scientific notation, # infinity, and not-a-number aren't supported.) $exp =~ tr {0-9.+-/*()} {}cd; return ev_ast(astize($exp));}   {my $balanced_paren_regex; $balanced_paren_regex = qr {\( ( [^()]+ | (??{$balanced_paren_regex}) )+ \)}x; # ??{ ... } interpolates lazily (only when necessary), # permitting recursion to arbitrary depths.   sub astize # Constructs an abstract syntax tree by recursively # transforming textual arithmetic expressions into array # references of the form [operator, left oprand, right oprand]. {my $exp = shift; # If $exp is just a number, return it as-is. $exp =~ /[^0-9.]/ or return $exp; # If parentheses surround the entire expression, get rid of # them. $exp = substr($exp, 1, -1) while $exp =~ /\A($balanced_paren_regex)\z/; # Replace stuff in parentheses with placeholders. my @paren_contents; $exp =~ s {($balanced_paren_regex)} {push(@paren_contents, $1); "[p$#paren_contents]"}eg; # Scan for operators in order of increasing precedence, # preferring the rightmost. $exp =~ m{(.+) ([+-]) (.+)}x or $exp =~ m{(.+) ([*/]) (.+)}x or # The expression must've been malformed somehow. # (Note that unary minus isn't supported.) die "Eh?: [$exp]\n"; my ($op, $lo, $ro) = ($2, $1, $3); # Restore the parenthetical expressions. s {\[p(\d+)\]} {($paren_contents[$1])}eg foreach $lo, $ro; # And recurse. return [$op, astize($lo), astize($ro)];}}   {my %ops = ('+' => sub {$_[0] + $_[1]}, '-' => sub {$_[0] - $_[1]}, '*' => sub {$_[0] * $_[1]}, '/' => sub {$_[0] / $_[1]});   sub ev_ast # Evaluates an abstract syntax tree of the form returned by # &astize. {my $ast = shift; # If $ast is just a number, return it as-is. ref $ast or return $ast; # Otherwise, recurse. my ($op, @operands) = @$ast; $_ = ev_ast($_) foreach @operands; return $ops{$op}->(@operands);}}
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#C.23
C#
using System; using System.Text;   namespace ZeckendorfArithmetic { class Zeckendorf : IComparable<Zeckendorf> { private static readonly string[] dig = { "00", "01", "10" }; private static readonly string[] dig1 = { "", "1", "10" };   private int dVal = 0; private int dLen = 0;   public Zeckendorf() : this("0") { // empty }   public Zeckendorf(string x) { int q = 1; int i = x.Length - 1; dLen = i / 2; while (i >= 0) { dVal += (x[i] - '0') * q; q *= 2; i--; } }   private void A(int n) { int i = n; while (true) { if (dLen < i) dLen = i; int j = (dVal >> (i * 2)) & 3; switch (j) { case 0: case 1: return; case 2: if (((dVal >> ((i + 1) * 2)) & 1) != 1) return; dVal += 1 << (i * 2 + 1); return; case 3: int temp = 3 << (i * 2); temp ^= -1; dVal = dVal & temp; B((i + 1) * 2); break; } i++; } }   private void B(int pos) { if (pos == 0) { Inc(); return; } if (((dVal >> pos) & 1) == 0) { dVal += 1 << pos; A(pos / 2); if (pos > 1) A(pos / 2 - 1); } else { int temp = 1 << pos; temp ^= -1; dVal = dVal & temp; B(pos + 1); B(pos - (pos > 1 ? 2 : 1)); } }   private void C(int pos) { if (((dVal >> pos) & 1) == 1) { int temp = 1 << pos; temp ^= -1; dVal = dVal & temp; return; } C(pos + 1); if (pos > 0) { B(pos - 1); } else { Inc(); } }   public Zeckendorf Inc() { dVal++; A(0); return this; }   public Zeckendorf Copy() { Zeckendorf z = new Zeckendorf { dVal = dVal, dLen = dLen }; return z; }   public void PlusAssign(Zeckendorf other) { for (int gn = 0; gn < (other.dLen + 1) * 2; gn++) { if (((other.dVal >> gn) & 1) == 1) { B(gn); } } }   public void MinusAssign(Zeckendorf other) { for (int gn = 0; gn < (other.dLen + 1) * 2; gn++) { if (((other.dVal >> gn) & 1) == 1) { C(gn); } } while ((((dVal >> dLen * 2) & 3) == 0) || (dLen == 0)) { dLen--; } }   public void TimesAssign(Zeckendorf other) { Zeckendorf na = other.Copy(); Zeckendorf nb = other.Copy(); Zeckendorf nt; Zeckendorf nr = new Zeckendorf(); for (int i = 0; i < (dLen + 1) * 2; i++) { if (((dVal >> i) & 1) > 0) { nr.PlusAssign(nb); } nt = nb.Copy(); nb.PlusAssign(na); na = nt.Copy(); } dVal = nr.dVal; dLen = nr.dLen; }   public int CompareTo(Zeckendorf other) { return dVal.CompareTo(other.dVal); }   public override string ToString() { if (dVal == 0) { return "0"; }   int idx = (dVal >> (dLen * 2)) & 3; StringBuilder sb = new StringBuilder(dig1[idx]); for (int i = dLen - 1; i >= 0; i--) { idx = (dVal >> (i * 2)) & 3; sb.Append(dig[idx]); } return sb.ToString(); } }   class Program { static void Main(string[] args) { Console.WriteLine("Addition:"); Zeckendorf g = new Zeckendorf("10"); g.PlusAssign(new Zeckendorf("10")); Console.WriteLine(g); g.PlusAssign(new Zeckendorf("10")); Console.WriteLine(g); g.PlusAssign(new Zeckendorf("1001")); Console.WriteLine(g); g.PlusAssign(new Zeckendorf("1000")); Console.WriteLine(g); g.PlusAssign(new Zeckendorf("10101")); Console.WriteLine(g); Console.WriteLine();   Console.WriteLine("Subtraction:"); g = new Zeckendorf("1000"); g.MinusAssign(new Zeckendorf("101")); Console.WriteLine(g); g = new Zeckendorf("10101010"); g.MinusAssign(new Zeckendorf("1010101")); Console.WriteLine(g); Console.WriteLine();   Console.WriteLine("Multiplication:"); g = new Zeckendorf("1001"); g.TimesAssign(new Zeckendorf("101")); Console.WriteLine(g); g = new Zeckendorf("101010"); g.PlusAssign(new Zeckendorf("101")); Console.WriteLine(g); } } }
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#C.2B.2B
C++
#include <iostream> #include <cmath> #include <vector> #include <algorithm> #include <iomanip> #include <numeric>   using namespace std;   // Returns n in binary right justified with length passed and padded with zeroes const uint* binary(uint n, uint length);   // Returns the sum of the binary ordered subset of rank r. // Adapted from Sympy implementation. uint sum_subset_unrank_bin(const vector<uint>& d, uint r);   vector<uint> factors(uint x);   bool isPrime(uint number);   bool isZum(uint n);   ostream& operator<<(ostream& os, const vector<uint>& zumz) { for (uint i = 0; i < zumz.size(); i++) { if (i % 10 == 0) os << endl; os << setw(10) << zumz[i] << ' '; } return os; }   int main() { cout << "First 220 Zumkeller numbers:" << endl; vector<uint> zumz; for (uint n = 2; zumz.size() < 220; n++) if (isZum(n)) zumz.push_back(n); cout << zumz << endl << endl;   cout << "First 40 odd Zumkeller numbers:" << endl; vector<uint> zumz2; for (uint n = 2; zumz2.size() < 40; n++) if (n % 2 && isZum(n)) zumz2.push_back(n); cout << zumz2 << endl << endl;   cout << "First 40 odd Zumkeller numbers not ending in 5:" << endl; vector<uint> zumz3; for (uint n = 2; zumz3.size() < 40; n++) if (n % 2 && (n % 10) != 5 && isZum(n)) zumz3.push_back(n); cout << zumz3 << endl << endl;   return 0; }   // Returns n in binary right justified with length passed and padded with zeroes const uint* binary(uint n, uint length) { uint* bin = new uint[length]; // array to hold result fill(bin, bin + length, 0); // fill with zeroes // convert n to binary and store right justified in bin for (uint i = 0; n > 0; i++) { uint rem = n % 2; n /= 2; if (rem) bin[length - 1 - i] = 1; }   return bin; }   // Returns the sum of the binary ordered subset of rank r. // Adapted from Sympy implementation. uint sum_subset_unrank_bin(const vector<uint>& d, uint r) { vector<uint> subset; // convert r to binary array of same size as d const uint* bits = binary(r, d.size() - 1);   // get binary ordered subset for (uint i = 0; i < d.size() - 1; i++) if (bits[i]) subset.push_back(d[i]);   delete[] bits;   return accumulate(subset.begin(), subset.end(), 0u); }   vector<uint> factors(uint x) { vector<uint> result; // this will loop from 1 to int(sqrt(x)) for (uint i = 1; i * i <= x; i++) { // Check if i divides x without leaving a remainder if (x % i == 0) { result.push_back(i);   if (x / i != i) result.push_back(x / i); } }   // return the sorted factors of x sort(result.begin(), result.end()); return result; }   bool isPrime(uint number) { if (number < 2) return false; if (number == 2) return true; if (number % 2 == 0) return false; for (uint i = 3; i * i <= number; i += 2) if (number % i == 0) return false;   return true; }   bool isZum(uint n) { // if prime it ain't no zum if (isPrime(n)) return false;   // get sum of divisors const auto d = factors(n); uint s = accumulate(d.begin(), d.end(), 0u);   // if sum is odd or sum < 2*n it ain't no zum if (s % 2 || s < 2 * n) return false;   // if we get here and n is odd or n has at least 24 divisors it's a zum! // Valid for even n < 99504. To test n beyond this bound, comment out this condition. // And wait all day. Thanks to User:Horsth for taking the time to find this bound! if (n % 2 || d.size() >= 24) return true;   if (!(s % 2) && d[d.size() - 1] <= s / 2) for (uint x = 2; (uint) log2(x) < (d.size() - 1); x++) // using log2 prevents overflow if (sum_subset_unrank_bin(d, x) == s / 2) return true; // congratulations it's a zum num!!   // if we get here it ain't no zum return false; }
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Alore
Alore
def Main() var len as Int var result as Str result = Str(5**4**3**2) len = result.length() Print(len) Print(result[:20]) Print(result[len-20:]) end
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Arturo
Arturo
num: to :string 5^4^3^2   print [first.n: 20 num ".." last.n: 20 num "=>" size num "digits"]
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Go
Go
package main   import ( "bytes" "fmt" "strings" )   var in = ` 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000`   func main() { b := wbFromString(in, '1') b.zhangSuen() fmt.Println(b) }   const ( white = 0 black = 1 )   type wbArray [][]byte // elements are white or black.   // parameter blk is character to read as black. otherwise kinda rigid, // expects ascii, leading newline, no trailing newline, // takes color from low bit of character. func wbFromString(s string, blk byte) wbArray { lines := strings.Split(s, "\n")[1:] b := make(wbArray, len(lines)) for i, sl := range lines { bl := make([]byte, len(sl)) for j := 0; j < len(sl); j++ { bl[j] = sl[j] & 1 } b[i] = bl } return b }   // rigid again, hard coded to output space for white, # for black, // no leading or trailing newline. var sym = [2]byte{ white: ' ', black: '#', }   func (b wbArray) String() string { b2 := bytes.Join(b, []byte{'\n'}) for i, b1 := range b2 { if b1 > 1 { continue } b2[i] = sym[b1] } return string(b2) }   // neighbor offsets var nb = [...][2]int{ 2: {-1, 0}, // p2 offsets 3: {-1, 1}, // ... 4: {0, 1}, 5: {1, 1}, 6: {1, 0}, 7: {1, -1}, 8: {0, -1}, 9: {-1, -1}, // p9 offsets }   func (b wbArray) reset(en []int) (rs bool) { var r, c int var p [10]byte   readP := func() { for nx := 1; nx <= 9; nx++ { n := nb[nx] p[nx] = b[r+n[0]][c+n[1]] } }   shiftRead := func() { n := nb[3] p[9], p[2], p[3] = p[2], p[3], b[r+n[0]][c+n[1]] n = nb[4] p[8], p[1], p[4] = p[1], p[4], b[r+n[0]][c+n[1]] n = nb[5] p[7], p[6], p[5] = p[6], p[5], b[r+n[0]][c+n[1]] }   // returns "A", count of white->black transitions in circuit of neighbors // of an interior pixel b[r][c] countA := func() (ct byte) { bit := p[9] for nx := 2; nx <= 9; nx++ { last := bit bit = p[nx] if last == white { ct += bit } } return ct }   // returns "B", count of black pixels neighboring interior pixel b[r][c]. countB := func() (ct byte) { for nx := 2; nx <= 9; nx++ { ct += p[nx] } return ct }   lastRow := len(b) - 1 lastCol := len(b[0]) - 1   mark := make([][]bool, lastRow) for r = range mark { mark[r] = make([]bool, lastCol) }   for r = 1; r < lastRow; r++ { c = 1 readP() for { // column loop m := false // test for failure of any of the five conditions, if !(p[1] == black) { goto markDone } if b1 := countB(); !(2 <= b1 && b1 <= 6) { goto markDone } if !(countA() == 1) { goto markDone } { e1, e2 := p[en[1]], p[en[2]] if !(p[en[0]]&e1&e2 == 0) { goto markDone } if !(e1&e2&p[en[3]] == 0) { goto markDone } } // no conditions failed, mark this pixel for reset m = true rs = true // and mark that image changes markDone: mark[r][c] = m c++ if c == lastCol { break } shiftRead() } } if rs { for r = 1; r < lastRow; r++ { for c = 1; c < lastCol; c++ { if mark[r][c] { b[r][c] = white } } } } return rs }   var step1 = []int{2, 4, 6, 8} var step2 = []int{4, 2, 8, 6}   func (b wbArray) zhangSuen() { for { rs1 := b.reset(step1) rs2 := b.reset(step2) if !rs1 && !rs2 { break } } }
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#CLU
CLU
% Get list of distinct Fibonacci numbers up to N fibonacci = proc (n: int) returns (array[int]) list: array[int] := array[int]$[] a: int := 1 b: int := 2 while a <= n do array[int]$addh(list,a) a, b := b, a+b end return(list) end fibonacci   % Find the Zeckendorf representation of N zeckendorf = proc (n: int) returns (string) signals (negative) if n<0 then signal negative end if n=0 then return("0") end   fibs: array[int] := fibonacci(n) result: array[char] := array[char]$[]   while ~array[int]$empty(fibs) do fib: int := array[int]$remh(fibs) if fib <= n then n := n - fib array[char]$addh(result,'1') else array[char]$addh(result,'0') end end return(string$ac2s(result)) end zeckendorf   % Print the Zeckendorf representations of 0 to 20 start_up = proc () po: stream := stream$primary_output() for i: int in int$from_to(0,20) do stream$putright(po, int$unparse(i), 2) stream$puts(po, ": ") stream$putl(po, zeckendorf(i)) end end start_up
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Befunge
Befunge
>"d">:00p1-:>:::9%\9/9+g2%!\:9v $.v_^#!$::$_^#`"c":+g00p+9/9\%< ::<_@#`$:\*:+55:+1p27g1g+9/9\%9  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Dyalect
Dyalect
//Dyalect supports dynamic arrays var empty = [] var xs = [1, 2, 3]   //Add elements to an array empty.Add(0) empty.AddRange(xs)   //Access array elements var x = xs[2] xs[2] = x * x
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#OCaml
OCaml
open Complex   let print_complex z = Printf.printf "%f + %f i\n" z.re z.im   let () = let a = { re = 1.0; im = 1.0 } and b = { re = 3.14159; im = 1.25 } in print_complex (add a b); print_complex (mul a b); print_complex (inv a); print_complex (neg a); print_complex (conj a)
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Phix
Phix
with javascript_semantics without warning -- (several unused routines in this code) constant NUM = 1, DEN = 2 type frac(object r) return sequence(r) and length(r)=2 and integer(r[NUM]) and integer(r[DEN]) end type function normalise(object n, atom d=0) if sequence(n) then {n,d} = n end if if d<0 then n = -n d = -d end if atom g = gcd(n,d) return {n/g,d/g} end function function frac_new(integer n, d=1) return normalise(n,d) end function function frac_abs(frac r) return {abs(r[NUM]),r[DEN]} end function function frac_inv(frac r) return reverse(r) end function function frac_add(frac a, b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bd+bn*ad, ad*bd) end function function frac_sub(frac a, b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bd-bn*ad, ad*bd) end function function frac_mul(frac a, b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bn, ad*bd) end function function frac_div(frac a, b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bd, ad*bn) end function function frac_eq(frac a, b) return a==b end function function frac_ne(frac a, b) return a!=b end function function frac_lt(frac a, b) return frac_sub(a,b)[NUM]<0 end function function frac_gt(frac a, b) return frac_sub(a,b)[NUM]>0 end function function frac_le(frac a, b) return frac_sub(a,b)[NUM]<=0 end function function frac_ge(frac a, b) return frac_sub(a,b)[NUM]>=0 end function function is_perfect(integer num) frac total = frac_new(0) sequence f = factors(num,1) for i=1 to length(f) do total = frac_add(total,frac_new(1,f[i])) end for return frac_eq(total,frac_new(2)) end function procedure get_perfect_numbers() atom t0 = time() integer lim = power(2,iff(platform()=JS?13:19)) for i=2 to lim do if is_perfect(i) then printf(1,"perfect: %d\n",i) end if end for printf(1,"elapsed: %3.2f seconds\n",time()-t0) integer pn5 = power(2,12)*(power(2,13)-1) -- 5th perfect number if is_perfect(pn5) then printf(1,"perfect: %d\n",pn5) end if end procedure get_perfect_numbers()
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Ring
Ring
  decimals(9) see agm(1, 1/sqrt(2)) + nl see agm(1,1/pow(2,0.5)) + nl   func agm agm,g while agm an = (agm + g)/2 gn = sqrt(agm*g) if fabs(agm-g) <= fabs(an-gn) exit ok agm = an g = gn end return gn  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Ruby
Ruby
# The flt package (http://flt.rubyforge.org/) is useful for high-precision floating-point math. # It lets us control 'context' of numbers, individually or collectively -- including precision # (which adjusts the context's value of epsilon accordingly).   require 'flt' include Flt   BinNum.Context.precision = 512 # default 53 (bits)   def agm(a,g) new_a = BinNum a new_g = BinNum g while new_a - new_g > new_a.class.Context.epsilon do old_g = new_g new_g = (new_a * new_g).sqrt new_a = (old_g + new_a) * 0.5 end new_g end   puts agm(1, 1 / BinNum(2).sqrt)
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Elena
Elena
import extensions;   public program() { console.printLine("0^0 is ",0.power:0) }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Elixir
Elixir
  :math.pow(0,0)  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Perl
Perl
sub ev # Evaluates an arithmetic expression like "(1+3)*7" and returns # its value. {my $exp = shift; # Delete all meaningless characters. (Scientific notation, # infinity, and not-a-number aren't supported.) $exp =~ tr {0-9.+-/*()} {}cd; return ev_ast(astize($exp));}   {my $balanced_paren_regex; $balanced_paren_regex = qr {\( ( [^()]+ | (??{$balanced_paren_regex}) )+ \)}x; # ??{ ... } interpolates lazily (only when necessary), # permitting recursion to arbitrary depths.   sub astize # Constructs an abstract syntax tree by recursively # transforming textual arithmetic expressions into array # references of the form [operator, left oprand, right oprand]. {my $exp = shift; # If $exp is just a number, return it as-is. $exp =~ /[^0-9.]/ or return $exp; # If parentheses surround the entire expression, get rid of # them. $exp = substr($exp, 1, -1) while $exp =~ /\A($balanced_paren_regex)\z/; # Replace stuff in parentheses with placeholders. my @paren_contents; $exp =~ s {($balanced_paren_regex)} {push(@paren_contents, $1); "[p$#paren_contents]"}eg; # Scan for operators in order of increasing precedence, # preferring the rightmost. $exp =~ m{(.+) ([+-]) (.+)}x or $exp =~ m{(.+) ([*/]) (.+)}x or # The expression must've been malformed somehow. # (Note that unary minus isn't supported.) die "Eh?: [$exp]\n"; my ($op, $lo, $ro) = ($2, $1, $3); # Restore the parenthetical expressions. s {\[p(\d+)\]} {($paren_contents[$1])}eg foreach $lo, $ro; # And recurse. return [$op, astize($lo), astize($ro)];}}   {my %ops = ('+' => sub {$_[0] + $_[1]}, '-' => sub {$_[0] - $_[1]}, '*' => sub {$_[0] * $_[1]}, '/' => sub {$_[0] / $_[1]});   sub ev_ast # Evaluates an abstract syntax tree of the form returned by # &astize. {my $ast = shift; # If $ast is just a number, return it as-is. ref $ast or return $ast; # Otherwise, recurse. my ($op, @operands) = @$ast; $_ = ev_ast($_) foreach @operands; return $ops{$op}->(@operands);}}
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#C.2B.2B
C++
// For a class N which implements Zeckendorf numbers: // I define an increment operation ++() // I define a comparison operation <=(other N) // I define an addition operation +=(other N) // I define a subtraction operation -=(other N) // Nigel Galloway October 28th., 2012 #include <iostream> enum class zd {N00,N01,N10,N11}; class N { private: int dVal = 0, dLen; void _a(int i) { for (;; i++) { if (dLen < i) dLen = i; switch ((zd)((dVal >> (i*2)) & 3)) { case zd::N00: case zd::N01: return; case zd::N10: if (((dVal >> ((i+1)*2)) & 1) != 1) return; dVal += (1 << (i*2+1)); return; case zd::N11: dVal &= ~(3 << (i*2)); _b((i+1)*2); }}} void _b(int pos) { if (pos == 0) {++*this; return;} if (((dVal >> pos) & 1) == 0) { dVal += 1 << pos; _a(pos/2); if (pos > 1) _a((pos/2)-1); } else { dVal &= ~(1 << pos); _b(pos + 1); _b(pos - ((pos > 1)? 2:1)); }} void _c(int pos) { if (((dVal >> pos) & 1) == 1) {dVal &= ~(1 << pos); return;} _c(pos + 1); if (pos > 0) _b(pos - 1); else ++*this; return; } public: N(char const* x = "0") { int i = 0, q = 1; for (; x[i] > 0; i++); for (dLen = --i/2; i >= 0; i--) {dVal+=(x[i]-48)*q; q*=2; }} const N& operator++() {dVal += 1; _a(0); return *this;} const N& operator+=(const N& other) { for (int GN = 0; GN < (other.dLen + 1) * 2; GN++) if ((other.dVal >> GN) & 1 == 1) _b(GN); return *this; } const N& operator-=(const N& other) { for (int GN = 0; GN < (other.dLen + 1) * 2; GN++) if ((other.dVal >> GN) & 1 == 1) _c(GN); for (;((dVal >> dLen*2) & 3) == 0 or dLen == 0; dLen--); return *this; } const N& operator*=(const N& other) { N Na = other, Nb = other, Nt, Nr; for (int i = 0; i <= (dLen + 1) * 2; i++) { if (((dVal >> i) & 1) > 0) Nr += Nb; Nt = Nb; Nb += Na; Na = Nt; } return *this = Nr; } const bool operator<=(const N& other) const {return dVal <= other.dVal;} friend std::ostream& operator<<(std::ostream&, const N&); }; N operator "" N(char const* x) {return N(x);} std::ostream &operator<<(std::ostream &os, const N &G) { const static std::string dig[] {"00","01","10"}, dig1[] {"","1","10"}; if (G.dVal == 0) return os << "0"; os << dig1[(G.dVal >> (G.dLen*2)) & 3]; for (int i = G.dLen-1; i >= 0; i--) os << dig[(G.dVal >> (i*2)) & 3]; return os; }  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#D
D
import std.algorithm; import std.stdio;   int[] getDivisors(int n) { auto divs = [1, n]; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { divs ~= i;   int j = n / i; if (i != j) { divs ~= j; } } } return divs; }   bool isPartSum(int[] divs, int sum) { if (sum == 0) { return true; } auto le = divs.length; if (le == 0) { return false; } auto last = divs[$ - 1]; int[] newDivs; for (int i = 0; i < le - 1; i++) { newDivs ~= divs[i]; } if (last > sum) { return isPartSum(newDivs, sum); } else { return isPartSum(newDivs, sum) || isPartSum(newDivs, sum - last); } }   bool isZumkeller(int n) { auto divs = getDivisors(n); auto sum = divs.sum(); // if sum is odd can't be split into two partitions with equal sums if (sum % 2 == 1) { return false; } // if n is odd use 'abundant odd number' optimization if (n % 2 == 1) { auto abundance = sum - 2 * n; return abundance > 0 && abundance % 2 == 0; } // if n and sum are both even check if there's a partition which totals sum / 2 return isPartSum(divs, sum / 2); }   void main() { writeln("The first 220 Zumkeller numbers are:"); int i = 2; for (int count = 0; count < 220; i++) { if (isZumkeller(i)) { writef("%3d ", i); count++; if (count % 20 == 0) { writeln; } } }   writeln("\nThe first 40 odd Zumkeller numbers are:"); i = 3; for (int count = 0; count < 40; i += 2) { if (isZumkeller(i)) { writef("%5d ", i); count++; if (count % 10 == 0) { writeln; } } }   writeln("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:"); i = 3; for (int count = 0; count < 40; i += 2) { if (i % 10 != 5 && isZumkeller(i)) { writef("%7d ", i); count++; if (count % 8 == 0) { writeln; } } } }
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#bc
bc
/* 5432.bc */   y = 5 ^ 4 ^ 3 ^ 2 c = length(y) " First 20 digits: "; y / (10 ^ (c - 20)) " Last 20 digits: "; y % (10 ^ 20) "Number of digits: "; c quit
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Bracmat
Bracmat
{?} @(5^4^3^2:?first [20 ? [-21 ?last [?length)&str$(!first "..." !last "\nlength " !length) {!} 62060698786608744707...92256259918212890625 length 183231 S 2,46 sec
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Groovy
Groovy
def zhangSuen(text) { def image = text.split('\n').collect { line -> line.collect { it == '#' ? 1 : 0} } def p2, p3, p4, p5, p6, p7, p8, p9 def step1 = { (p2 * p4 * p6 == 0) && (p4 * p6 * p8 == 0) } def step2 = { (p2 * p4 * p8 == 0) && (p2 * p6 * p8 == 0) } def reduce = { step -> def toWhite = [] image.eachWithIndex{ line, y -> line.eachWithIndex{ pixel, x -> if (!pixel) return (p2, p3, p4, p5, p6, p7, p8, p9) = [image[y-1][x], image[y-1][x+1], image[y][x+1], image[y+1][x+1], image[y+1][x], image[y+1][x-1], image[y][x-1], image[y-1][x-1]] def a = [[p2,p3],[p3,p4],[p4,p5],[p5,p6],[p6,p7],[p7,p8],[p8,p9],[p9,p2]].collect { a1, a2 -> (a1 == 0 && a2 ==1) ? 1 : 0 }.sum() def b = [p2, p3, p4, p5, p6, p7, p8, p9].sum() if (a != 1 || b < 2 || b > 6) return   if (step.call()) toWhite << [y,x] } } toWhite.each { y, x -> image[y][x] = 0 } !toWhite.isEmpty() }   while (reduce(step1) | reduce(step2)); image.collect { line -> line.collect { it ? '#' : '.' }.join('') }.join('\n') }
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Common_Lisp
Common Lisp
(defun zeckendorf (n) "returns zeckendorf integer of n (see OEIS A003714)" (let ((fib '(2 1))) ;; extend Fibonacci sequence long enough (loop while (<= (car fib) n) do (push (+ (car fib) (cadr fib)) fib)) (loop with r = 0 for f in fib do (setf r (* 2 r)) (when (>= n f) (setf n (- n f)) (incf r)) finally (return r))))   ;;; task requirement (loop for i from 0 to 20 do (format t "~2D: ~2R~%" i (zeckendorf i)))
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Blade
Blade
var doors = [false] * 100 for i in 0..100 { iter var j = i; j < 100; j += i + 1 { doors[j] = !doors[j] } var state = doors[i] ? 'open' : 'closed' echo 'Door ${i + 1} is ${state}' }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#D.C3.A9j.C3.A0_Vu
Déjà Vu
#create a new list local :l []   #add something to it push-to l "Hi"   #add something else to it push-to l "Boo"   #the list could also have been built up this way: local :l2 [ "Hi" "Boo" ]   #this prints 2 !print len l   #this prints Hi !print get-from l 0   #this prints Boo !print pop-from l  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Octave
Octave
z1 = 1.5 + 3i; z2 = 1.5 + 1.5i; disp(z1 + z2); % 3.0 + 4.5i disp(z1 - z2); % 0.0 + 1.5i disp(z1 * z2); % -2.25 + 6.75i disp(z1 / z2); % 1.5 + 0.5i disp(-z1); % -1.5 - 3i disp(z1'); % 1.5 - 3i disp(abs(z1)); % 3.3541 = sqrt(z1*z1') disp(z1 ^ z2); % -1.10248 - 0.38306i disp( exp(z1) ); % -4.43684 + 0.63246i disp( imag(z1) ); % 3 disp( real(z2) ); % 1.5 %...
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#PicoLisp
PicoLisp
(load "@lib/frac.l")   (for (N 2 (> (** 2 19) N) (inc N)) (let (Sum (frac 1 N) Lim (sqrt N)) (for (F 2 (>= Lim F) (inc F)) (when (=0 (% N F)) (setq Sum (f+ Sum (f+ (frac 1 F) (frac 1 (/ N F))) ) ) ) ) (when (= 1 (cdr Sum)) (prinl "Perfect " N ", sum is " (car Sum) (and (= 1 (car Sum)) ": perfect") ) ) ) )
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Run_BASIC
Run BASIC
print agm(1, 1/sqr(2)) print agm(1,1/2^.5) print using("#.############################",agm(1, 1/sqr(2)))   function agm(agm,g) while agm an = (agm + g)/2 gn = sqr(agm*g) if abs(agm-g) <= abs(an-gn) then exit while agm = an g = gn wend end function
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Rust
Rust
// Accepts two command line arguments // cargo run --name agm arg1 arg2   fn main () { let mut args = std::env::args();   let x = args.nth(1).expect("First argument not specified.").parse::<f32>().unwrap(); let y = args.next().expect("Second argument not specified.").parse::<f32>().unwrap();   let result = agm(x,y); println!("The arithmetic-geometric mean is {}", result); }   fn agm (x: f32, y: f32) -> f32 { let e: f32 = 0.000001; let mut a = x; let mut g = y; let mut a1: f32; let mut g1: f32;   if a * g < 0f32 { panic!("The arithmetric-geometric mean is undefined for numbers less than zero!"); } else { loop { a1 = (a + g) / 2.; g1 = (a * g).sqrt(); a = a1; g = g1; if (a - g).abs() < e { return a; } } } }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Emacs_Lisp
Emacs Lisp
(expt 0 0)
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#ERRE
ERRE
  ..... PRINT(0^0) .....  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#F.23
F#
> let z = 0.**0.;; val z : float = 1.0
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#11l
11l
F zigzag(n) F compare(xy) V (x, y) = xy R (x + y, I (x + y) % 2 {-y} E y) V xs = 0 .< n R Dict(enumerate(sorted((multiloop(xs, xs, (x, y) -> (x, y))), key' compare)), (n, index) -> (index, n))   F printzz(myarray) V n = Int(myarray.len ^ 0.5 + 0.5) V xs = 0 .< n print((xs.map(y -> @xs.map(x -> ‘#3’.format(@@myarray[(x, @y)])).join(‘’))).join("\n"))   printzz(zigzag(6))
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Phix
Phix
-- demo\rosetta\Arithmetic_evaluation.exw with javascript_semantics sequence opstack = {} -- atom elements are literals, -- sequence elements are subexpressions -- on completion length(opstack) should be 1 object token constant op_p_p = 1 -- 1: expressions stored as op,p1,p2 -- p_op_p -- 0: expressions stored as p1,op,p2 -- p_p_op -- -1: expressions stored as p1,p2,op object op = 0 -- 0 if none, else "+", "-", "*", "/", "^", "%", or "u-" string s -- the expression being parsed integer ch integer sidx procedure err(string msg) printf(1,"%s\n%s^ %s\n\nPressEnter...",{s,repeat(' ',sidx-1),msg}) {} = wait_key() abort(0) end procedure procedure nxtch(object msg="eof") sidx += 1 if sidx>length(s) then if string(msg) then err(msg) end if ch = -1 else ch = s[sidx] end if end procedure procedure skipspaces() while find(ch,{' ','\t','\r','\n'})!=0 do nxtch(0) end while end procedure procedure get_token() atom n, fraction integer dec skipspaces() if ch=-1 then token = "eof" return end if if ch>='0' and ch<='9' then n = ch-'0' while 1 do nxtch(0) if ch<'0' or ch>'9' then exit end if n = n*10+ch-'0' end while if ch='.' then dec = 1 fraction = 0 while 1 do nxtch(0) if ch<'0' or ch>'9' then exit end if fraction = fraction*10 + ch-'0' dec *= 10 end while n += fraction/dec end if -- if find(ch,"eE") then -- you get the idea -- end if token = n return end if if find(ch,"+-/*()^%")=0 then err("syntax error") end if token = s[sidx..sidx] nxtch(0) return end procedure procedure Match(string t) if token!=t then err(t&" expected") end if get_token() end procedure procedure PopFactor() object p1, p2 = opstack[$] if op="u-" then p1 = 0 else opstack = opstack[1..$-1] p1 = opstack[$] end if if op_p_p=1 then opstack[$] = {op,p1,p2} -- op_p_p elsif op_p_p=0 then opstack[$] = {p1,op,p2} -- p_op_p else -- -1 opstack[$] = {p1,p2,op} -- p_p_op end if op = 0 end procedure procedure PushFactor(atom t) if op!=0 then PopFactor() end if opstack = append(opstack,t) end procedure procedure PushOp(string t) if op!=0 then PopFactor() end if op = t end procedure forward procedure Expr(integer p) procedure Factor() if atom(token) then PushFactor(token) if ch!=-1 then get_token() end if elsif token="+" then -- (ignore) nxtch() Factor() elsif token="-" then get_token() -- Factor() Expr(3) -- makes "-3^2" yield -9 (ie -(3^2)) not 9 (ie (-3)^2). if op!=0 then PopFactor() end if if integer(opstack[$]) then opstack[$] = -opstack[$] else PushOp("u-") end if elsif token="(" then get_token() Expr(0) Match(")") else err("syntax error") end if end procedure constant {operators, precedence, associativity} = columnize({{"^",3,0}, {"%",2,1}, {"*",2,1}, {"/",2,1}, {"+",1,1}, {"-",1,1}, $}) procedure Expr(integer p) -- -- Parse an expression, using precedence climbing. -- -- p is the precedence level we should parse to, eg/ie -- 4: Factor only (may as well just call Factor) -- 3: "" and ^ -- 2: "" and *,/,% -- 1: "" and +,- -- 0: full expression (effectively the same as 1) -- obviously, parentheses override any setting of p. -- integer k, thisp Factor() while 1 do k = find(token,operators) -- *,/,+,- if k=0 then exit end if thisp = precedence[k] if thisp<p then exit end if get_token() Expr(thisp+associativity[k]) PushOp(operators[k]) end while end procedure function evaluate(object s) object lhs, rhs string op if atom(s) then return s end if if op_p_p=1 then -- op_p_p {op,lhs,rhs} = s elsif op_p_p=0 then -- p_op_p {lhs,op,rhs} = s else -- -1 -- p_p_op {lhs,rhs,op} = s end if if sequence(lhs) then lhs = evaluate(lhs) end if if sequence(rhs) then rhs = evaluate(rhs) end if if op="+" then return lhs+rhs elsif op="-" then return lhs-rhs elsif op="*" then return lhs*rhs elsif op="/" then return lhs/rhs elsif op="^" then return power(lhs,rhs) elsif op="%" then return remainder(lhs,rhs) elsif op="u-" then return -rhs else ?9/0 end if end function s = "3+4+5+6*7/1*5^2^3" -- 16406262 sidx = 0 nxtch() get_token() Expr(0) if op!=0 then PopFactor() end if if length(opstack)!=1 then err("some error") end if printf(1,"expression: \"%s\"\n",{s}) puts(1,"AST (flat): ") ?opstack[1] puts(1,"AST (tree):\n") ppEx(opstack[1],{pp_Nest,9999}) puts(1,"result: ") ?evaluate(opstack[1]) {} = wait_key()
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#D
D
import std.stdio;   int inv(int a) { return a ^ -1; }   class Zeckendorf { private int dVal; private int dLen;   private void a(int n) { auto i = n; while (true) { if (dLen < i) dLen = i; auto j = (dVal >> (i * 2)) & 3; switch(j) { case 0: case 1: return; case 2: if (((dVal >> ((i + 1) * 2)) & 1) != 1) return; dVal += 1 << (i * 2 + 1); return; case 3: dVal = dVal & (3 << (i * 2)).inv(); b((i + 1) * 2); break; default: assert(false); } i++; } }   private void b(int pos) { if (pos == 0) { this++; return; } if (((dVal >> pos) & 1) == 0) { dVal += 1 << pos; a(pos / 2); if (pos > 1) a(pos / 2 - 1); } else { dVal = dVal & (1 << pos).inv(); b(pos + 1); b(pos - (pos > 1 ? 2 : 1)); } }   private void c(int pos) { if (((dVal >> pos) & 1) == 1) { dVal = dVal & (1 << pos).inv(); return; } c(pos + 1); if (pos > 0) { b(pos - 1); } else { ++this; } }   this(string x = "0") { int q = 1; int i = x.length - 1; dLen = i / 2; while (i >= 0) { dVal += (x[i] - '0') * q; q *= 2; i--; } }   auto opUnary(string op : "++")() { dVal += 1; a(0); return this; }   void opOpAssign(string op : "+")(Zeckendorf rhs) { foreach (gn; 0..(rhs.dLen + 1) * 2) { if (((rhs.dVal >> gn) & 1) == 1) { b(gn); } } }   void opOpAssign(string op : "-")(Zeckendorf rhs) { foreach (gn; 0..(rhs.dLen + 1) * 2) { if (((rhs.dVal >> gn) & 1) == 1) { c(gn); } } while ((((dVal >> dLen * 2) & 3) == 0) || (dLen == 0)) { dLen--; } }   void opOpAssign(string op : "*")(Zeckendorf rhs) { auto na = rhs.dup; auto nb = rhs.dup; Zeckendorf nt; auto nr = "0".Z; foreach (i; 0..(dLen + 1) * 2) { if (((dVal >> i) & 1) > 0) nr += nb; nt = nb.dup; nb += na; na = nt.dup; } dVal = nr.dVal; dLen = nr.dLen; }   void toString(scope void delegate(const(char)[]) sink) const { if (dVal == 0) { sink("0"); return; } sink(dig1[(dVal >> (dLen * 2)) & 3]); foreach_reverse (i; 0..dLen) { sink(dig[(dVal >> (i * 2)) & 3]); } }   Zeckendorf dup() { auto z = "0".Z; z.dVal = dVal; z.dLen = dLen; return z; }   enum dig = ["00", "01", "10"]; enum dig1 = ["", "1", "10"]; }   auto Z(string val) { return new Zeckendorf(val); }   void main() { writeln("Addition:"); auto g = "10".Z; g += "10".Z; writeln(g); g += "10".Z; writeln(g); g += "1001".Z; writeln(g); g += "1000".Z; writeln(g); g += "10101".Z; writeln(g); writeln();   writeln("Subtraction:"); g = "1000".Z; g -= "101".Z; writeln(g); g = "10101010".Z; g -= "1010101".Z; writeln(g); writeln();   writeln("Multiplication:"); g = "1001".Z; g *= "101".Z; writeln(g); g = "101010".Z; g += "101".Z; writeln(g); }
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#F.23
F#
  // Zumkeller numbers: Nigel Galloway. May 16th., 2021 let rec fG n g=match g with h::_ when h>=n->h=n |h::t->fG n t || fG(n-h) t |_->false let fN g=function n when n&&&1=1->false |n->let e=n/2-g in match compare e 0 with 0->true |1->let l=[1..e]|>List.filter(fun n->g%n=0) match compare(l|>List.sum) e with 1->fG e l |0->true |_->false |_->false Seq.initInfinite((+)1)|>Seq.map(fun n->(n,sod n))|>Seq.filter(fun(n,g)->fN n g)|>Seq.take 220|>Seq.iter(fun(n,_)->printf "%d " n); printfn "\n" Seq.initInfinite((*)2>>(+)1)|>Seq.map(fun n->(n,sod n))|>Seq.filter(fun(n,g)->fN n g)|>Seq.take 40|>Seq.iter(fun(n,_)->printf "%d " n); printfn "\n" Seq.initInfinite((*)2>>(+)1)|>Seq.filter(fun n->n%10<>5)|>Seq.map(fun n->(n,sod n))|>Seq.filter(fun(n,g)->fN n g)|>Seq.take 40|>Seq.iter(fun(n,_)->printf "%d " n); printfn "\n"  
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#C
C
#include <gmp.h> #include <stdio.h> #include <string.h>   int main() { mpz_t a; mpz_init_set_ui(a, 5); mpz_pow_ui(a, a, 1 << 18); /* 2**18 == 4**9 */   int len = mpz_sizeinbase(a, 10); printf("GMP says size is: %d\n", len);   /* because GMP may report size 1 too big; see doc */ char *s = mpz_get_str(0, 10, a); printf("size really is %d\n", len = strlen(s)); printf("Digits: %.20s...%s\n", s, s + len - 20);   // free(s); /* we could, but we won't. we are exiting anyway */ return 0; }
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#C.23
C#
using System; using System.Diagnostics; using System.Linq; using System.Numerics;   static class Program { static void Main() { BigInteger n = BigInteger.Pow(5, (int)BigInteger.Pow(4, (int)BigInteger.Pow(3, 2))); string result = n.ToString();   Debug.Assert(result.Length == 183231); Debug.Assert(result.StartsWith("62060698786608744707")); Debug.Assert(result.EndsWith("92256259918212890625"));   Console.WriteLine("n = 5^4^3^2"); Console.WriteLine("n = {0}...{1}", result.Substring(0, 20), result.Substring(result.Length - 20, 20) );   Console.WriteLine("n digits = {0}", result.Length); } }
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Haskell
Haskell
import Data.Array import qualified Data.List as List   data BW = Black | White deriving (Eq, Show)   type Index = (Int, Int) type BWArray = Array Index BW   toBW :: Char -> BW toBW '0' = White toBW '1' = Black toBW ' ' = White toBW '#' = Black toBW _ = error "toBW: illegal char"   toBWArray :: [String] -> BWArray toBWArray strings = arr where height = length strings width = minimum $ map length strings arr = listArray ((0, 0), (width - 1, height - 1)) . map toBW . concat . List.transpose $ map (take width) strings   toChar :: BW -> Char toChar White = ' ' toChar Black = '#'   chunksOf :: Int -> [a] -> [[a]] chunksOf _ [] = [] chunksOf n xs = take n xs : (chunksOf n $ drop n xs)   showBWArray :: BWArray -> String showBWArray arr = List.intercalate "\n" . List.transpose . chunksOf (height + 1) . map toChar $ elems arr where (_, (_, height)) = bounds arr   add :: Num a => (a, a) -> (a, a) -> (a, a) add (a, b) (x, y) = (a + x, b + y)   within :: Ord a => ((a, a), (a, a)) -> (a, a) -> Bool within ((a, b), (c, d)) (x, y) = a <= x && x <= c && b <= y && y <= d   p2, p3, p4, p5, p6, p7, p8, p9 :: Index p2 = ( 0, -1) p3 = ( 1, -1) p4 = ( 1, 0) p5 = ( 1, 1) p6 = ( 0, 1) p7 = (-1, 1) p8 = (-1, 0) p9 = (-1, -1)   ixamap :: Ix i => ((i, a) -> b) -> Array i a -> Array i b ixamap f a = listArray (bounds a) $ map f $ assocs a   thin :: BWArray -> BWArray thin arr = if pass2 == arr then pass2 else thin pass2 where (low, high) = bounds arr lowB = low `add` (1, 1) highB = high `add` (-1, -1) isInner = within (lowB, highB) offs p = map (add p) [p2, p3, p4, p5, p6, p7, p8, p9] trans c (a, b) = if a == White && b == Black then c + 1 else c zipshift xs = zip xs (drop 1 xs ++ xs) transitions a = (== (1 :: Int)) . foldl trans 0 . zipshift . map (a !) . offs within2to6 n = 2 <= n && n <= 6 blacks a p = within2to6 . length . filter ((== Black) . (a !)) $ offs p oneWhite xs a p = any ((== White) . (a !) . add p) xs oneRight = oneWhite [p2, p4, p6] oneDown = oneWhite [p4, p6, p8] oneUp = oneWhite [p2, p4, p8] oneLeft = oneWhite [p2, p6, p8] precond a p = (a ! p == Black) && isInner p && blacks a p && transitions a p stage1 a p = precond a p && oneRight a p && oneDown a p stage2 a p = precond a p && oneUp a p && oneLeft a p stager f (p, d) = if f p then White else d pass1 = ixamap (stager $ stage1 arr) arr pass2 = ixamap (stager $ stage2 pass1) pass1   sampleExA :: [String] sampleExA = ["00000000000000000000000000000000" ,"01111111110000000111111110000000" ,"01110001111000001111001111000000" ,"01110000111000001110000111000000" ,"01110001111000001110000000000000" ,"01111111110000001110000000000000" ,"01110111100000001110000111000000" ,"01110011110011101111001111011100" ,"01110001111011100111111110011100" ,"00000000000000000000000000000000"]   sampleExB :: [String] sampleExB = [" " ," ################# ############# " ," ################## ################ " ," ################### ################## " ," ######## ####### ################### " ," ###### ####### ####### ###### " ," ###### ####### ####### " ," ################# ####### " ," ################ ####### " ," ################# ####### " ," ###### ####### ####### " ," ###### ####### ####### " ," ###### ####### ####### ###### " ," ######## ####### ################### " ," ######## ####### ###### ################## ###### " ," ######## ####### ###### ################ ###### " ," ######## ####### ###### ############# ###### " ," "]   main :: IO () main = mapM_ (putStrLn . showBWArray . thin . toBWArray) [sampleExA, sampleExB]
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Cowgol
Cowgol
include "cowgol.coh";   sub zeckendorf(n: uint32, buf: [uint8]): (r: [uint8]) is var fibs: uint32[] := { 0,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597, 2584,4181,6765,10946,17711,28657,46368,75025,121393, 196418,317811,514229,832040,1346269,2178309,3524578, 5702887,9227465,14930352,24157817,39088169,63245986, 102334155,165580141,267914296,433494437,701408733, 1134903170,1836311903,2971215073 }; r := buf; if n == 0 then [r] := '0'; [@next r] := 0; return; end if;   var fib: [uint32] := &fibs[1]; while n >= [fib] loop fib := @next fib; end loop; fib := @prev fib;   while [fib] != 0 loop if [fib] <= n then n := n - [fib]; [buf] := '1'; else [buf] := '0'; end if; fib := @prev fib; buf := @next buf; end loop; [buf] := 0; end sub;   var i: uint32 := 0; while i <= 20 loop print_i32(i); print(": "); print(zeckendorf(i, LOMEM)); print_nl(); i := i + 1; end loop;
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#BlitzMax
BlitzMax
Graphics 640,480 i=1 While ((i*i)<=100) a$=i*i DrawText a$,10,20*i Print i*i i=i+1 Wend Flip WaitKey
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#E
E
? def empty := [] # value: []   ? def numbers := [1,2,3,4,5] # value: [1, 2, 3, 4, 5]   ? numbers.with(6) # value: [1, 2, 3, 4, 5, 6]   ? numbers + [4,3,2,1] # value: [1, 2, 3, 4, 5, 4, 3, 2, 1]
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Oforth
Oforth
Object Class new: Complex(re, im)   Complex method: re @re ; Complex method: im @im ;   Complex method: initialize  := im := re ; Complex method: << '(' <<c @re << ',' <<c @im << ')' <<c  ;   0 1 Complex new const: I   Complex method: ==(c -- b ) c re @re == c im @im == and ;   Complex method: norm -- f @re sq @im sq + sqrt ;   Complex method: conj -- c @re @im neg Complex new ;   Complex method: +(c -- d ) c re @re + c im @im + Complex new ;   Complex method: -(c -- d ) c re @re - c im @im - Complex new ;   Complex method: *(c -- d) c re @re * c im @im * - c re @im * @re c im * + Complex new ;   Complex method: inv | n | @re sq @im sq + >float ->n @re n / @im neg n / Complex new ;   Complex method: /( c -- d ) c self inv * ;   Integer method: >complex self 0 Complex new ; Float method: >complex self 0 Complex new ;
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Ol
Ol
  (define A 0+1i) ; manually entered numbers (define B 1+0i)   (print (+ A B)) ; <== 1+i   (print (- A B)) ; <== -1+i   (print (* A B)) ; <== 0+i   (print (/ A B)) ; <== 0+i     (define C (complex 2/7 -3)) ; functional way   (print "real part of " C " is " (car C)) ; <== real part of 2/7-3i is 2/7   (print "imaginary part of " C " is " (cdr C)) ; <== imaginary part of 2/7-3i is -3  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#PL.2FI
PL/I
*process source attributes xref or(!); arat: Proc Options(main); /*-------------------------------------------------------------------- * Rational Arithmetic * (Mis)use the Complex data type to represent fractions * real(x) is used as numerator * imag(x) is used as denominator * Output: * a=-3/7 b=9/2 * a*b=-27/14 * a+b=57/14 * a-b=-69/14 * a/b=-2/21 * -3/7<9/2 * 9/2>-3/7 * -3/7=-3/7 * 26.01.2015 handle 0/0 *-------------------------------------------------------------------*/ Dcl (abs,imag,mod,real,sign,trim) Builtin; Dcl sysprint Print; Dcl (candidate,max2,factor) Dec Fixed(15); Dcl sum complex Dec Fixed(15); Dcl one complex Dec Fixed(15);   one=mk_fr(1,1); Put Edit('First solve the task at hand')(Skip,a); Do candidate = 2 to 10000; sum = mk_fr(1, candidate); max2 = sqrt(candidate); Do factor = 2 to max2; If mod(candidate,factor)=0 Then Do; sum=fr_add(sum,mk_fr(1,factor)); sum=fr_add(sum,mk_fr(1,candidate/factor)); End; End; If fr_cmp(sum,one)='=' Then Do; Put Edit(candidate,' is a perfect number')(Skip,f(7),a); Do factor = 2 to candidate-1; If mod(candidate,factor)=0 Then Put Edit(factor)(f(5)); End; End; End;   Put Edit('','Then try a few things')(Skip,a); Dcl a Complex Dec Fixed(15); Dcl b Complex Dec Fixed(15); Dcl p Complex Dec Fixed(15); Dcl s Complex Dec Fixed(15); Dcl d Complex Dec Fixed(15); Dcl q Complex Dec Fixed(15); Dcl zero Complex Dec Fixed(15); zero=mk_fr(0,1); Put Edit('zero=',fr_rep(zero))(Skip,2(a)); a=mk_fr(0,0); Put Edit('a=',fr_rep(a))(Skip,2(a)); /*-------------------------------------------------------------------- a=mk_fr(-3333,0); Put Edit('a=',fr_rep(a))(Skip,2(a)); => Request mk_fr(-3333,0) Denominator must not be 0 IBM0280I ONCODE=0009 The ERROR condition was raised by a SIGNAL statement. At offset +00000276 in procedure with entry FT *-------------------------------------------------------------------*/ a=mk_fr(0,3333); Put Edit('a=',fr_rep(a))(Skip,2(a)); Put Edit('-3,7')(Skip,a); a=mk_fr(-3,7); b=mk_fr(9,2); p=fr_mult(a,b); s=fr_add(a,b); d=fr_sub(a,b); q=fr_div(a,b); r=fr_div(b,a); Put Edit('a=',fr_rep(a))(Skip,2(a)); Put Edit('b=',fr_rep(b))(Skip,2(a)); Put Edit('a*b=',fr_rep(p))(Skip,2(a)); Put Edit('a+b=',fr_rep(s))(Skip,2(a)); Put Edit('a-b=',fr_rep(d))(Skip,2(a)); Put Edit('a/b=',fr_rep(q))(Skip,2(a)); Put Edit('b/a=',fr_rep(r))(Skip,2(a)); Put Edit(fr_rep(a),fr_cmp(a,b),fr_rep(b))(Skip,3(a)); Put Edit(fr_rep(b),fr_cmp(b,a),fr_rep(a))(Skip,3(a)); Put Edit(fr_rep(a),fr_cmp(a,a),fr_rep(a))(Skip,3(a));   mk_fr: Proc(n,d) Recursive Returns(Dec Fixed(15) Complex); /*-------------------------------------------------------------------- * make a Complex number * normalize and cancel *-------------------------------------------------------------------*/ Dcl (n,d) Dec Fixed(15); Dcl (na,da) Dec Fixed(15); Dcl res Dec Fixed(15) Complex; Dcl x Dec Fixed(15); na=abs(n); da=abs(d); Select; When(n=0) Do; real(res)=0; imag(res)=1; End; When(d=0) Do; Put Edit('Request mk_fr('!!n_rep(n)!!','!!n_rep(d)!!')') (Skip,a); Put Edit('Denominator must not be 0')(Skip,a); Signal error; End; Otherwise Do; x=gcd(na,da); real(res)=sign(n)*sign(d)*na/x; imag(res)=da/x; End; End; Return(res); End;   fr_add: Proc(a,b) Returns(Dec Fixed(15) Complex); /*-------------------------------------------------------------------- * add 'fractions' a and b *-------------------------------------------------------------------*/ Dcl (a,b,res) Dec Fixed(15) Complex; Dcl (an,ad,bn,bd) Dec Fixed(15); Dcl (rd,rn) Dec Fixed(15); Dcl x Dec Fixed(15); an=real(a); ad=imag(a); bn=real(b); bd=imag(b); rd=ad*bd; rn=an*bd+bn*ad; x=gcd(rd,rn); real(res)=rn/x; imag(res)=rd/x; Return(res); End;   fr_sub: Proc(a,b) Returns(Dec Fixed(15) Complex); /*-------------------------------------------------------------------- * subtract 'fraction' b from a *-------------------------------------------------------------------*/ Dcl (a,b) Dec Fixed(15) Complex; Dcl b2 Dec Fixed(15) Complex; real(b2)=-real(b); imag(b2)=imag(b); Return(fr_add(a,b2)); End;   fr_mult: Proc(a,b) Returns(Dec Fixed(15) Complex); /*-------------------------------------------------------------------- * multiply 'fractions' a and b *-------------------------------------------------------------------*/ Dcl (a,b,res) Dec Fixed(15) Complex; real(res)=real(a)*real(b); imag(res)=imag(a)*imag(b); Return(res); End;   fr_div: Proc(a,b) Returns(Dec Fixed(15) Complex); /*-------------------------------------------------------------------- * divide 'fraction' a by b *-------------------------------------------------------------------*/ Dcl (a,b) Dec Fixed(15) Complex; Dcl b2 Dec Fixed(15) Complex; real(b2)=imag(b); imag(b2)=real(b); If real(a)=0 & real(b)=0 Then Return(mk_fr(1,1)); Return(fr_mult(a,b2)); End;   fr_cmp: Proc(a,b) Returns(char(1)); /*-------------------------------------------------------------------- * compare 'fractions' a and b *-------------------------------------------------------------------*/ Dcl (a,b) Dec Fixed(15) Complex; Dcl (an,ad,bn,bd) Dec Fixed(15); Dcl (a2,b2) Dec Fixed(15); Dcl (rd) Dec Fixed(15); Dcl res Char(1); an=real(a); ad=imag(a); If ad=0 Then Do; Put Edit('ad=',ad,'candidate=',candidate)(Skip,a,f(10)); Signal Error; End; bn=real(b); bd=imag(b); rd=ad*bd; a2=abs(an*bd)*sign(an)*sign(ad); b2=abs(bn*ad)*sign(bn)*sign(bd); Select; When(a2<b2) res='<'; When(a2>b2) res='>'; Otherwise Do; res='='; End; End; Return(res); End;   fr_rep: Proc(f) Returns(char(15) Var); /*-------------------------------------------------------------------- * Return the representation of 'fraction' f *-------------------------------------------------------------------*/ Dcl f Dec Fixed(15) Complex; Dcl res Char(15) Var; Dcl (n,d) Pic'(14)Z9'; Dcl x Dec Fixed(15); Dcl s Dec Fixed(15); n=abs(real(f)); d=abs(imag(f)); x=gcd(n,d); s=sign(real(f))*sign(imag(f)); res=trim(n/x)!!'/'!!trim(d/x); If s<0 Then res='-'!!res; Return(res); End;   n_rep: Proc(x) Returns(char(15) Var); /*-------------------------------------------------------------------- * Return the representation of x *-------------------------------------------------------------------*/ Dcl x Dec Fixed(15); Dcl res Char(15) Var; Put String(res) List(x); res=trim(res); Return(res); End;   gcd: Proc(a,b) Returns(Dec Fixed(15)) Recursive; /*-------------------------------------------------------------------- * Compute the greatest common divisor *-------------------------------------------------------------------*/ Dcl (a,b) Dec Fixed(15) Nonassignable; If b=0 then Return (abs(a)); Return(gcd(abs(b),mod(abs(a),abs(b)))); End gcd;   lcm: Proc(a,b) Returns(Dec Fixed(15)); /*-------------------------------------------------------------------- * Compute the least common multiple *-------------------------------------------------------------------*/ Dcl (a,b) Dec Fixed(15) Nonassignable; if a=0 ! b=0 then Return (0); Return(abs(a*b)/gcd(a,b)); End lcm;   End;
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Scala
Scala
  def agm(a: Double, g: Double, eps: Double): Double = { if (math.abs(a - g) < eps) (a + g) / 2 else agm((a + g) / 2, math.sqrt(a * g), eps) }   agm(1, math.sqrt(2)/2, 1e-15)  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Scheme
Scheme
  (define agm (case-lambda ((a0 g0) ; call again with default value for tolerance (agm a0 g0 1e-8)) ((a0 g0 tolerance) ; called with three arguments (do ((a a0 (* (+ a g) 1/2)) (g g0 (sqrt (* a g)))) ((< (abs (- a g)) tolerance) a)))))   (display (agm 1 (/ 1 (sqrt 2)))) (newline)  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Factor
Factor
USING: math.functions.private ; ! ^complex 0 0 ^ C{ 0 0 } C{ 0 0 } ^complex
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Falcon
Falcon
  /* created by Aykayayciti Earl Lamont Montgomery April 9th, 2018 */   x = 0 y = 0 z = x**y > "z=", z    
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#360_Assembly
360 Assembly
* Zig-zag matrix 15/08/2015 ZIGZAGMA CSECT USING ZIGZAGMA,R12 set base register LR R12,R15 establish addressability LA R9,N n : matrix size LA R6,1 i=1 LA R7,1 j=1 LR R11,R9 n MR R10,R9 *n BCTR R11,0 R11=n**2-1 SR R8,R8 k=0 LOOPK CR R8,R11 do k=0 to n**2-1 BH ELOOPK k>limit LR R1,R6 i BCTR R1,0 -1 MR R0,R9 *n LR R2,R7 j BCTR R2,0 -1 AR R1,R2 (i-1)*n+(j-1) SLA R1,1 index=((i-1)*n+j-1)*2 STH R8,T(R1) t(i,j)=k LR R2,R6 i AR R2,R7 i+j LA R1,2 2 SRDA R2,32 shift right r1 to r2 DR R2,R1 (i+j)/2 LTR R2,R2 if mod(i+j,2)=0 BNZ ELSEMOD CR R7,R9 if j<n BNL ELSE1 LA R7,1(R7) j=j+1 B EIF1 ELSE1 LA R6,2(R6) i=i+2 EIF1 CH R6,=H'1' if i>1 BNH NOT1 BCTR R6,0 i=i-1 NOT1 B NOT2 ELSEMOD CR R6,R9 if i<n BNL ELSE2 LA R6,1(R6) i=i+1 B EIF2 ELSE2 LA R7,2(R7) j=j+2 EIF2 CH R7,=H'1' if j>1 BNH NOT2 BCTR R7,0 j=j-1 NOT2 LA R8,1(R8) k=k+1 B LOOPK ELOOPK LA R6,1 end k; i=1 LOOPI CR R6,R9 do i=1 to n BH ELOOPI i>n LA R10,0 ibuf=0 buffer index MVC BUFFER,=CL80' ' LA R7,1 j=1 LOOPJ CR R7,R9 do j=1 to n BH ELOOPJ j>n LR R1,R6 i BCTR R1,0 -1 MR R0,R9 *n LR R2,R7 j BCTR R2,0 -1 AR R1,R2 (i-1)*n+(j-1) SLA R1,1 index=((i-1)*n+j-1)*2 LH R2,T(R1) t(i,j) LA R3,BUFFER AR R3,R10 XDECO R2,XDEC edit t(i,j) length=12 MVC 0(4,R3),XDEC+8 move in buffer length=4 LA R10,4(R10) ibuf=ibuf+1 LA R7,1(R7) j=j+1 B LOOPJ ELOOPJ XPRNT BUFFER,80 end j LA R6,1(R6) i=i+1 B LOOPI ELOOPI XR R15,R15 end i; return_code=0 BR R14 return to caller N EQU 5 matrix size BUFFER DS CL80 XDEC DS CL12 T DS (N*N)H t(n,n) matrix YREGS END ZIGZAGMA
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#11l
11l
T YellowstoneGenerator min_ = 1 n_ = 0 n1_ = 0 n2_ = 0 Set[Int] sequence_   F next() .n2_ = .n1_ .n1_ = .n_ I .n_ < 3 .n_++ E .n_ = .min_ L !(.n_ !C .sequence_ & gcd(.n1_, .n_) == 1 & gcd(.n2_, .n_) > 1) .n_++ .sequence_.add(.n_) L I .min_ !C .sequence_ L.break .sequence_.remove(.min_) .min_++ R .n_   print(‘First 30 Yellowstone numbers:’) V ygen = YellowstoneGenerator() print(ygen.next(), end' ‘’) L(i) 1 .< 30 print(‘ ’ygen.next(), end' ‘’) print()
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Picat
Picat
main => print("Enter an expression: "), Str = read_line(), Exp = parse_term(Str), Res is Exp, printf("Result = %w\n", Res).  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#PicoLisp
PicoLisp
(de ast (Str) (let *L (str Str "") (aggregate) ) )   (de aggregate () (let X (product) (while (member (car *L) '("+" "-")) (setq X (list (intern (pop '*L)) X (product))) ) X ) )   (de product () (let X (term) (while (member (car *L) '("*" "/")) (setq X (list (intern (pop '*L)) X (term))) ) X ) )   (de term () (let X (pop '*L) (cond ((num? X) X) ((= "+" X) (term)) ((= "-" X) (list '- (term))) ((= "(" X) (prog1 (aggregate) (pop '*L)))) ) )
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Elena
Elena
import extensions;   const dig = new string[]{"00","01","10"}; const dig1 = new string[]{"","1","10"};   sealed struct ZeckendorfNumber { int dVal; int dLen;   clone() = ZeckendorfNumber.newInternal(dVal,dLen);   cast n(string s) { int i := s.Length - 1; int q := 1;   dLen := i / 2; dVal := 0;   while (i >= 0) { dVal += ((intConvertor.convert(s[i]) - 48) * q); q *= 2;   i -= 1 } }   internal readContent(ref int val, ref int len) { val := dVal; len := dLen; }   private a(int n) { int i := n;   while (true) { if (dLen < i) { dLen := i };   int v := (dVal $shr (i * 2)) && 3; v => 0 { ^ self } 1 { ^ self } 2 { ifnot ((dVal $shr ((i + 1) * 2)).allMask:1) { ^ self };   dVal += (1 $shl (i*2 + 1));   ^ self } 3 { int tmp := 3 $shl (i * 2); tmp := tmp.xor(-1); dVal := dVal && tmp;   self.b((i+1)*2) };   i += 1 } }   inc() { dVal += 1; self.a(0) }   private b(int pos) { if (pos == 0) { ^ self.inc() };   ifnot((dVal $shr pos).allMask:1) { dVal += (1 $shl pos); self.a(pos / 2); if (pos > 1) { self.a((pos / 2) - 1) } } else { dVal := dVal && (1 $shl pos).Inverted; self.b(pos + 1); int arg := pos - ((pos > 1) ? 2 : 1); self.b(/*pos - ((pos > 1) ? 2 : 1)*/arg) } }   private c(int pos) { if ((dVal $shr pos).allMask:1) { int tmp := 1 $shl pos; tmp := tmp.xor(-1);   dVal := dVal && tmp;   ^ self };   self.c(pos + 1);   if (pos > 0) { self.b(pos - 1) } else { self.inc() } }   internal constructor sum(ZeckendorfNumber n, ZeckendorfNumber m) { int mVal := 0; int mLen := 0;   n.readContent(ref dVal, ref dLen); m.readContent(ref mVal, ref mLen);   for(int GN := 0, GN < (mLen + 1) * 2, GN += 1) { if ((mVal $shr GN).allMask:1) { self.b(GN) } } }   internal constructor difference(ZeckendorfNumber n, ZeckendorfNumber m) { int mVal := 0; int mLen := 0;   n.readContent(ref dVal, ref dLen); m.readContent(ref mVal, ref mLen);   for(int GN := 0, GN < (mLen + 1) * 2, GN += 1) { if ((mVal $shr GN).allMask:1) { self.c(GN) } };   while (((dVal $shr (dLen*2)) && 3) == 0 || dLen == 0) { dLen -= 1 } }   internal constructor product(ZeckendorfNumber n, ZeckendorfNumber m) { n.readContent(ref dVal, ref dLen);   ZeckendorfNumber Na := m; ZeckendorfNumber Nb := m; ZeckendorfNumber Nr := 0n; ZeckendorfNumber Nt := 0n;   for(int i := 0, i < (dLen + 1) * 2, i += 1) { if (((dVal $shr i) && 1) > 0) { Nr += Nb }; Nt := Nb; Nb += Na; Na := Nt };   Nr.readContent(ref dVal, ref dLen); }   internal constructor newInternal(int v, int l) { dVal := v; dLen := l }   string toPrintable() { if (dVal == 0) { ^ "0" };   string s := dig1[(dVal $shr (dLen * 2)) && 3]; int i := dLen - 1; while (i >= 0) { s := s + dig[(dVal $shr (i * 2)) && 3];   i-=1 };   ^ s }   add(ZeckendorfNumber n) = ZeckendorfNumber.sum(self, n);   subtract(ZeckendorfNumber n) = ZeckendorfNumber.difference(self, n);   multiply(ZeckendorfNumber n) = ZeckendorfNumber.product(self, n); }   public program() { console.printLine("Addition:"); var n := 10n;   n += 10n; console.printLine(n); n += 10n; console.printLine(n); n += 1001n; console.printLine(n); n += 1000n; console.printLine(n); n += 10101n; console.printLine(n);   console.printLine("Subtraction:"); n := 1000n; n -= 101n; console.printLine(n); n := 10101010n; n -= 1010101n; console.printLine(n);   console.printLine("Multiplication:"); n := 1001n; n *= 101n; console.printLine(n); n := 101010n; n += 101n; console.printLine(n) }
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Go
Go
package main   import ( "fmt" "strings" )   var ( dig = [3]string{"00", "01", "10"} dig1 = [3]string{"", "1", "10"} )   type Zeckendorf struct{ dVal, dLen int }   func NewZeck(x string) *Zeckendorf { z := new(Zeckendorf) if x == "" { x = "0" } q := 1 i := len(x) - 1 z.dLen = i / 2 for ; i >= 0; i-- { z.dVal += int(x[i]-'0') * q q *= 2 } return z }   func (z *Zeckendorf) a(i int) { for ; ; i++ { if z.dLen < i { z.dLen = i } j := (z.dVal >> uint(i*2)) & 3 switch j { case 0, 1: return case 2: if ((z.dVal >> (uint(i+1) * 2)) & 1) != 1 { return } z.dVal += 1 << uint(i*2+1) return case 3: z.dVal &= ^(3 << uint(i*2)) z.b((i + 1) * 2) } } }   func (z *Zeckendorf) b(pos int) { if pos == 0 { z.Inc() return } if ((z.dVal >> uint(pos)) & 1) == 0 { z.dVal += 1 << uint(pos) z.a(pos / 2) if pos > 1 { z.a(pos/2 - 1) } } else { z.dVal &= ^(1 << uint(pos)) z.b(pos + 1) temp := 1 if pos > 1 { temp = 2 } z.b(pos - temp) } }   func (z *Zeckendorf) c(pos int) { if ((z.dVal >> uint(pos)) & 1) == 1 { z.dVal &= ^(1 << uint(pos)) return } z.c(pos + 1) if pos > 0 { z.b(pos - 1) } else { z.Inc() } }   func (z *Zeckendorf) Inc() { z.dVal++ z.a(0) }   func (z1 *Zeckendorf) PlusAssign(z2 *Zeckendorf) { for gn := 0; gn < (z2.dLen+1)*2; gn++ { if ((z2.dVal >> uint(gn)) & 1) == 1 { z1.b(gn) } } }   func (z1 *Zeckendorf) MinusAssign(z2 *Zeckendorf) { for gn := 0; gn < (z2.dLen+1)*2; gn++ { if ((z2.dVal >> uint(gn)) & 1) == 1 { z1.c(gn) } }   for z1.dLen > 0 && ((z1.dVal>>uint(z1.dLen*2))&3) == 0 { z1.dLen-- } }   func (z1 *Zeckendorf) TimesAssign(z2 *Zeckendorf) { na := z2.Copy() nb := z2.Copy() nr := new(Zeckendorf) for i := 0; i <= (z1.dLen+1)*2; i++ { if ((z1.dVal >> uint(i)) & 1) > 0 { nr.PlusAssign(nb) } nt := nb.Copy() nb.PlusAssign(na) na = nt.Copy() } z1.dVal = nr.dVal z1.dLen = nr.dLen }   func (z *Zeckendorf) Copy() *Zeckendorf { return &Zeckendorf{z.dVal, z.dLen} }   func (z1 *Zeckendorf) Compare(z2 *Zeckendorf) int { switch { case z1.dVal < z2.dVal: return -1 case z1.dVal > z2.dVal: return 1 default: return 0 } }   func (z *Zeckendorf) String() string { if z.dVal == 0 { return "0" } var sb strings.Builder sb.WriteString(dig1[(z.dVal>>uint(z.dLen*2))&3]) for i := z.dLen - 1; i >= 0; i-- { sb.WriteString(dig[(z.dVal>>uint(i*2))&3]) } return sb.String() }   func main() { fmt.Println("Addition:") g := NewZeck("10") g.PlusAssign(NewZeck("10")) fmt.Println(g) g.PlusAssign(NewZeck("10")) fmt.Println(g) g.PlusAssign(NewZeck("1001")) fmt.Println(g) g.PlusAssign(NewZeck("1000")) fmt.Println(g) g.PlusAssign(NewZeck("10101")) fmt.Println(g)   fmt.Println("\nSubtraction:") g = NewZeck("1000") g.MinusAssign(NewZeck("101")) fmt.Println(g) g = NewZeck("10101010") g.MinusAssign(NewZeck("1010101")) fmt.Println(g)   fmt.Println("\nMultiplication:") g = NewZeck("1001") g.TimesAssign(NewZeck("101")) fmt.Println(g) g = NewZeck("101010") g.PlusAssign(NewZeck("101")) fmt.Println(g) }
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Factor
Factor
USING: combinators grouping io kernel lists lists.lazy math math.primes.factors memoize prettyprint sequences ;   MEMO: psum? ( seq n -- ? ) { { [ dup zero? ] [ 2drop t ] } { [ over length zero? ] [ 2drop f ] } { [ over last over > ] [ [ but-last ] dip psum? ] } [ [ [ but-last ] dip psum? ] [ over last - [ but-last ] dip psum? ] 2bi or ] } cond ;   : zumkeller? ( n -- ? ) dup divisors dup sum { { [ dup odd? ] [ 3drop f ] } { [ pick odd? ] [ nip swap 2 * - [ 0 > ] [ even? ] bi and ] } [ nipd 2/ psum? ] } cond ;   : zumkellers ( -- list ) 1 lfrom [ zumkeller? ] lfilter ;   : odd-zumkellers ( -- list ) 1 [ 2 + ] lfrom-by [ zumkeller? ] lfilter ;   : odd-zumkellers-no-5 ( -- list ) odd-zumkellers [ 5 mod zero? not ] lfilter ;   : show ( count list row-len -- ) [ ltake list>array ] dip group simple-table. nl ;   "First 220 Zumkeller numbers:" print 220 zumkellers 20 show   "First 40 odd Zumkeller numbers:" print 40 odd-zumkellers 10 show   "First 40 odd Zumkeller numbers not ending with 5:" print 40 odd-zumkellers-no-5 8 show
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Go
Go
package main   import "fmt"   func getDivisors(n int) []int { divs := []int{1, n} for i := 2; i*i <= n; i++ { if n%i == 0 { j := n / i divs = append(divs, i) if i != j { divs = append(divs, j) } } } return divs }   func sum(divs []int) int { sum := 0 for _, div := range divs { sum += div } return sum }   func isPartSum(divs []int, sum int) bool { if sum == 0 { return true } le := len(divs) if le == 0 { return false } last := divs[le-1] divs = divs[0 : le-1] if last > sum { return isPartSum(divs, sum) } return isPartSum(divs, sum) || isPartSum(divs, sum-last) }   func isZumkeller(n int) bool { divs := getDivisors(n) sum := sum(divs) // if sum is odd can't be split into two partitions with equal sums if sum%2 == 1 { return false } // if n is odd use 'abundant odd number' optimization if n%2 == 1 { abundance := sum - 2*n return abundance > 0 && abundance%2 == 0 } // if n and sum are both even check if there's a partition which totals sum / 2 return isPartSum(divs, sum/2) }   func main() { fmt.Println("The first 220 Zumkeller numbers are:") for i, count := 2, 0; count < 220; i++ { if isZumkeller(i) { fmt.Printf("%3d ", i) count++ if count%20 == 0 { fmt.Println() } } } fmt.Println("\nThe first 40 odd Zumkeller numbers are:") for i, count := 3, 0; count < 40; i += 2 { if isZumkeller(i) { fmt.Printf("%5d ", i) count++ if count%10 == 0 { fmt.Println() } } } fmt.Println("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:") for i, count := 3, 0; count < 40; i += 2 { if (i % 10 != 5) && isZumkeller(i) { fmt.Printf("%7d ", i) count++ if count%8 == 0 { fmt.Println() } } } fmt.Println() }
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#C.2B.2B
C++
#include <iostream> #include <boost/multiprecision/gmp.hpp> #include <string>   namespace mp = boost::multiprecision;   int main(int argc, char const *argv[]) { // We could just use (1 << 18) instead of tmpres, but let's point out one // pecularity with gmp and hence boost::multiprecision: they won't accept // a second mpz_int with pow(). Therefore, if we stick to multiprecision // pow we need to convert_to<uint64_t>(). uint64_t tmpres = mp::pow(mp::mpz_int(4) , mp::pow(mp::mpz_int(3) , 2).convert_to<uint64_t>() ).convert_to<uint64_t>(); mp::mpz_int res = mp::pow(mp::mpz_int(5), tmpres); std::string s = res.str(); std::cout << s.substr(0, 20) << "..." << s.substr(s.length() - 20, 20) << std::endl; return 0; }  
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Ceylon
Ceylon
import ceylon.whole { wholeNumber, two }   shared void run() {   value five = wholeNumber(5); value four = wholeNumber(4); value three = wholeNumber(3);   value bigNumber = five ^ four ^ three ^ two;   value firstTwenty = "62060698786608744707"; value lastTwenty = "92256259918212890625"; value bigString = bigNumber.string;   "The number must start with ``firstTwenty`` and end with ``lastTwenty``" assert(bigString.startsWith(firstTwenty), bigString.endsWith(lastTwenty));   value bigSize = bigString.size; print("The first twenty digits are ``bigString[...19]``"); print("The last twenty digits are ``bigString[(bigSize - 20)...]``"); print("The number of digits in 5^4^3^2 is ``bigSize``"); }
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#J
J
isBlackPx=: '1'&=;._2 NB. boolean array of black pixels toImage=: [: , LF ,.~ '01' {~ ] NB. convert to original representation frameImg=: 0 ,. 0 , >:@$ {. ] NB. adds border of 0's to image   neighbrs=: 1 :'(1 1 ,: 3 3)&(u;._3)' NB. applies verb u to neighbourhoods   Bdry=: 1 2 5 8 7 6 3 0 1 NB. map pixel index to neighbour order getPx=: { , NB. get desired pixels from neighbourhood Ap1=: [: +/ 2 </\ Bdry&getPx NB. count 0->1 transitions Bp1=: [: +/ [: }. Bdry&getPx NB. count black neighbours   c11=: (2&<: *. <:&6)@Bp1 NB. step 1, condition 1 c12=: 1 = Ap1 NB. ... c13=: 0 e. 1 5 7&getPx c14=: 0 e. 5 7 3&getPx c23=: 0 e. 1 5 3&getPx NB. step2, condition 3 c24=: 0 e. 1 7 3&getPx   cond1=: c11 *. c12 *. c13 *. c14 NB. step1 conditions cond2=: c11 *. c12 *. c23 *. c24 NB. step2 conditions whiten=: [ * -.@:*. NB. make black pixels white step1=: whiten frameImg@(cond1 neighbrs) step2=: whiten frameImg@(cond2 neighbrs)   zhangSuen=: [: toImage [: step2@step1^:_ isBlackPx
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Crystal
Crystal
def zeckendorf(n) return 0 if n.zero? fib = [1, 2] while fib[-1] < n; fib << fib[-2] + fib[-1] end digit = "" fib.reverse_each do |f| if f <= n digit, n = digit + "1", n - f else digit += "0" end end digit.to_i end   (0..20).each { |i| puts "%3d: %8d" % [i, zeckendorf(i)] }
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#BlooP
BlooP
  DEFINE PROCEDURE ''DIVIDE'' [A,B]: BLOCK 0: BEGIN IF A < B, THEN: QUIT BLOCK 0; CELL(0) <= 1; OUTPUT <= 1; LOOP AT MOST A TIMES: BLOCK 2: BEGIN IF OUTPUT * B = A, THEN: QUIT BLOCK 0; OUTPUT <= OUTPUT + 1; IF OUTPUT * B > A, THEN: BLOCK 3: BEGIN OUTPUT <= CELL(0); QUIT BLOCK 0; BLOCK 3: END; CELL(0) <= OUTPUT; BLOCK 2: END; BLOCK 0: END.   DEFINE PROCEDURE ''MINUS'' [A,B]: BLOCK 0: BEGIN IF A < B, THEN: QUIT BLOCK 0; LOOP AT MOST A TIMES: BLOCK 1: BEGIN IF OUTPUT + B = A, THEN: QUIT BLOCK 0; OUTPUT <= OUTPUT + 1; BLOCK 1: END; BLOCK 0: END.   DEFINE PROCEDURE ''MODULUS'' [A,B]: BLOCK 0: BEGIN CELL(0) <= DIVIDE[A,B]; OUTPUT <= MINUS[A,CELL(0) * B]; BLOCK 0: END.       DEFINE PROCEDURE ''TOGGLE'' [DOOR]: BLOCK 0: BEGIN IF DOOR = 1, THEN: QUIT BLOCK 0; OUTPUT <= 1; BLOCK 0: END.   DEFINE PROCEDURE ''NUMBERS'' [DOOR, COUNT]: BLOCK 0: BEGIN CELL(0) <= 1; /*each number*/ OUTPUT <= 0; /*current door state*/   LOOP COUNT TIMES: BLOCK 1: BEGIN   IF MODULUS[DOOR, CELL(0)] = 0, THEN: OUTPUT <= TOGGLE[OUTPUT];   CELL(0) <= CELL(0) + 1;   BLOCK 1: END;   BLOCK 0: END.   DEFINE PROCEDURE ''DOORS'' [COUNT]: BLOCK 0: BEGIN   CELL(0) <= 1; /*each door*/ LOOP COUNT TIMES: BLOCK 1: BEGIN   CELL(1) <= NUMBERS[CELL(0), COUNT]; /*iterate over the states of this door to get its final state*/ IF CELL(1) = 1, THEN: /*door state = open*/ PRINT[CELL(0), ' '];   CELL(0) <= CELL(0) + 1;   BLOCK 1: END; BLOCK 0: END.   DOORS[100];  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#EasyLang
EasyLang
len f[] 3 for i range len f[] f[i] = i . f[] &= 3 for i range len f[] print f[i] .
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#ooRexx
ooRexx
c1 = .complex~new(1, 2) c2 = .complex~new(3, 4) r = 7   say "c1 =" c1 say "c2 =" c2 say "r =" r say "-c1 =" (-c1) say "c1 + r =" c1 + r say "c1 + c2 =" c1 + c2 say "c1 - r =" c1 - r say "c1 - c2 =" c1 - c2 say "c1 * r =" c1 * r say "c1 * c2 =" c1 * c2 say "inv(c1) =" c1~inv say "conj(c1) =" c1~conjugate say "c1 / r =" c1 / r say "c1 / c2 =" c1 / c2 say "c1 == c1 =" (c1 == c1) say "c1 == c2 =" (c1 == c2)     ::class complex ::method init expose r i use strict arg r, i = 0   -- complex instances are immutable, so these are -- read only attributes ::attribute r GET ::attribute i GET   ::method negative expose r i return self~class~new(-r, -i)   ::method add expose r i use strict arg other if other~isa(.complex) then return self~class~new(r + other~r, i + other~i) else return self~class~new(r + other, i)   ::method subtract expose r i use strict arg other if other~isa(.complex) then return self~class~new(r - other~r, i - other~i) else return self~class~new(r - other, i)   ::method times expose r i use strict arg other if other~isa(.complex) then return self~class~new(r * other~r - i * other~i, r * other~i + i * other~r) else return self~class~new(r * other, i * other)   ::method inv expose r i denom = r * r + i * i return self~class~new(r/denom,-i/denom)   ::method conjugate expose r i return self~class~new(r, -i)   ::method divide use strict arg other -- this is easier if everything is a complex number if \other~isA(.complex) then other = .complex~new(other) -- division is multiplication with the inversion return self * other~inv   ::method "==" expose r i use strict arg other   if \other~isa(.complex) then return .false -- Note: these are numeric comparisons, so we're using the "=" -- method so those are handled correctly return r = other~r & i = other~i   ::method "\==" use strict arg other return \self~"\=="(other)   ::method "=" -- this is equivalent of "==" forward message("==")   ::method "\=" -- this is equivalent of "\==" forward message("\==")   ::method "<>" -- this is equivalent of "\==" forward message("\==")   ::method "><" -- this is equivalent of "\==" forward message("\==")   -- some operator overrides -- these only work if the left-hand-side of the -- subexpression is a quaternion ::method "*" forward message("TIMES")   ::method "/" forward message("DIVIDE")   ::method "-" -- need to check if this is a prefix minus or a subtract if arg() == 0 then forward message("NEGATIVE") else forward message("SUBTRACT")   ::method "+" -- need to check if this is a prefix plus or an addition if arg() == 0 then return self -- we can return this copy since it is immutable else forward message("ADD")   ::method string expose r i return r self~formatnumber(i)"i"   ::method formatnumber private use arg value if value > 0 then return "+" value else return "-" value~abs   -- override hashcode for collection class hash uses ::method hashCode expose r i return r~hashcode~bitxor(i~hashcode)
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Prolog
Prolog
  divisor(N, Div) :- Max is floor(sqrt(N)), between(1, Max, D), divmod(N, D, _, 0), (Div = D; Div is N div D, Div =\= D).   divisors(N, Divs) :- setof(M, divisor(N, M), Divs).   recip(A, B) :- B is 1 rdiv A.   sumrecip(N, A) :- divisors(N, [1 | Ds]), maplist(recip, Ds, As), sum_list(As, A).   perfect(X) :- sumrecip(X, 1).   main :- Limit is 1 << 19, forall( (between(1, Limit, N), perfect(N)), (format("~w~n", [N]))), halt.   ?- main.  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Seed7
Seed7
$ include "seed7_05.s7i"; include "float.s7i"; include "math.s7i";   const func float: agm (in var float: a, in var float: g) is func result var float: agm is 0.0; local const float: iota is 1.0E-7; var float: a1 is 0.0; var float: g1 is 0.0; begin if a * g < 0.0 then raise RANGE_ERROR; else while abs(a - g) > iota do a1 := (a + g) / 2.0; g1 := sqrt(a * g); a := a1; g := g1; end while; agm := a; end if; end func;   const proc: main is func begin writeln(agm(1.0, 2.0) digits 6); writeln(agm(1.0, 1.0 / sqrt(2.0)) digits 6); end func;
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#SequenceL
SequenceL
import <Utilities/Math.sl>;   agm(a, g) := let iota := 1.0e-15; arithmeticMean := 0.5 * (a + g); geometricMean := sqrt(a * g); in a when abs(a-g) < iota else agm(arithmeticMean, geometricMean);   main := agm(1.0, 1.0 / sqrt(2));
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Fermat
Fermat
0^0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Forth
Forth
0e 0e f** f.
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#Action.21
Action!
DEFINE MAX_SIZE="10" DEFINE MAX_MATRIX_SIZE="100"   INT FUNC Index(BYTE size,x,y) RETURN (x+y*size)   PROC PrintMatrix(BYTE ARRAY a BYTE size) BYTE i,j,v   FOR j=0 TO size-1 DO FOR i=0 TO size-1 DO v=a(Index(size,i,j)) IF v<10 THEN Print(" ") ELSE Print(" ") FI PrintB(v) OD PutE() OD RETURN   PROC FillMatrix(BYTE ARRAY a BYTE size) BYTE start,end INT dir,i,j   start=0 end=size*size-1 i=0 j=0 dir=1   DO a(Index(size,i,j))=start a(Index(size,size-1-i,size-1-j))=end start==+1 end==-1 i==+dir j==-dir IF i<0 THEN i==+1 dir=-dir ELSEIF j<0 THEN j==+1 dir=-dir FI UNTIL start>=end OD   IF start=end THEN a(Index(size,i,j))=start FI RETURN   PROC Test(BYTE size) BYTE ARRAY mat(MAX_MATRIX_SIZE)   PrintF("Matrix size: %B%E",size) FillMatrix(mat,size) PrintMatrix(mat,size) PutE() RETURN   PROC Main() Test(5) Test(6) RETURN
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Action.21
Action!
BYTE FUNC Gcd(BYTE a,b) BYTE tmp   IF a<b THEN tmp=a a=b b=tmp FI   WHILE b#0 DO tmp=a MOD b a=b b=tmp OD RETURN (a)   BYTE FUNC Contains(BYTE ARRAY a BYTE len,value) BYTE i   FOR i=0 TO len-1 DO IF a(i)=value THEN RETURN (1) FI OD RETURN (0)   PROC Generate(BYTE ARRAY seq BYTE count) BYTE i,x   seq(0)=1 seq(1)=2 seq(2)=3 FOR i=3 TO COUNT-1 DO x=1 DO IF Contains(seq,i,x)=0 AND Gcd(x,seq(i-1))=1 AND Gcd(x,seq(i-2))>1 THEN EXIT FI x==+1 OD seq(i)=x OD RETURN   PROC Main() DEFINE COUNT="30" BYTE ARRAY seq(COUNT) BYTE i   Generate(seq,COUNT) PrintF("First %B Yellowstone numbers:%E",COUNT) FOR i=0 TO COUNT-1 DO PrintB(seq(i)) Put(32) OD RETURN
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Ada
Ada
with Ada.Text_IO; with Ada.Containers.Ordered_Sets;   procedure Yellowstone_Sequence is   generic -- Allow more than one generator, but must be instantiated package Yellowstones is function Next return Integer; function GCD (Left, Right : Integer) return Integer; end Yellowstones;   package body Yellowstones is package Sequences is new Ada.Containers.Ordered_Sets (Integer);   -- Internal package state N_0 : Integer := 0; N_1 : Integer := 0; N_2 : Integer := 0; Seq : Sequences.Set; Min : Integer := 1;   function GCD (Left, Right : Integer) return Integer is (if Right = 0 then Left else GCD (Right, Left mod Right));   function Next return Integer is begin N_2 := N_1; N_1 := N_0; if N_0 < 3 then N_0 := N_0 + 1; else N_0 := Min; while not (not Seq.Contains (N_0) and then GCD (N_1, N_0) = 1 and then GCD (N_2, N_0) > 1) loop N_0 := N_0 + 1; end loop; end if; Seq.Insert (N_0); while Seq.Contains (Min) loop Seq.Delete (Min); Min := Min + 1; end loop; return N_0; end Next;   end Yellowstones;   procedure First_30 is package Yellowstone is new Yellowstones; -- New generator instance use Ada.Text_IO; begin Put_Line ("First 30 Yellowstone numbers:"); for A in 1 .. 30 loop Put (Yellowstone.Next'Image); Put (" "); end loop; New_Line; end First_30;   begin First_30; end Yellowstone_Sequence;
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Pop11
Pop11
/* Scanner routines */ /* Uncomment the following to parse data from standard input   vars itemrep; incharitem(charin) -> itemrep;   */   ;;; Current symbol vars sym;   define get_sym(); itemrep() -> sym; enddefine;   define expect(x); lvars x; if x /= sym then printf(x, 'Error, expected %p\n'); mishap(sym, 1, 'Example parser error'); endif; get_sym(); enddefine;   lconstant res_list = [( ) + * ];   lconstant reserved = newproperty( maplist(res_list, procedure(x); [^x ^(true)]; endprocedure), 20, false, "perm");   /* Parser for arithmetic expressions */ /* expr: term | expr "+" term | expr "-" term  ; */   define do_expr() -> result; lvars result = do_term(), op; while sym = "+" or sym = "-" do sym -> op; get_sym(); [^op ^result ^(do_term())] -> result; endwhile; enddefine;   /* term: factor | term "*" factor | term "/" factor  ; */   define do_term() -> result; lvars result = do_factor(), op; while sym = "*" or sym = "/" do sym -> op; get_sym(); [^op ^result ^(do_factor())] -> result; endwhile; enddefine;   /* factor: word | constant | "(" expr ")"  ; */   define do_factor() -> result; if sym = "(" then get_sym(); do_expr() -> result; expect(")"); elseif isinteger(sym) or isbiginteger(sym) then sym -> result; get_sym(); else if reserved(sym) then printf(sym, 'unexpected symbol %p\n'); mishap(sym, 1, 'Example parser syntax error'); endif; sym -> result; get_sym(); endif; enddefine;   /* Expression evaluator, returns false on error (currently only division by 0 */   define arith_eval(expr); lvars op, arg1, arg2; if not(expr) then return(expr); endif; if isinteger(expr) or isbiginteger(expr) then return(expr); endif; expr(1) -> op; arith_eval(expr(2)) -> arg1; arith_eval(expr(3)) -> arg2; if not(arg1) or not(arg2) then return(false); endif; if op = "+" then return(arg1 + arg2); elseif op = "-" then return(arg1 - arg2); elseif op = "*" then return(arg1 * arg2); elseif op = "/" then if arg2 = 0 then return(false); else return(arg1 div arg2); endif; else printf('Internal error\n'); return(false); endif; enddefine;   /* Given list, create item repeater. Input list is stored in a closure are traversed when new item is requested. */   define listitemrep(lst); procedure(); lvars item; if lst = [] then termin; else front(lst) -> item; back(lst) -> lst; item; endif; endprocedure; enddefine;   /* Initialise scanner */   listitemrep([(3 + 50) * 7 - 100 / 10]) -> itemrep;   get_sym();   ;;; Test it arith_eval(do_expr()) =>
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Prolog
Prolog
% Lexer numeric(X) :- 48 =< X, X =< 57. not_numeric(X) :- 48 > X ; X > 57.   lex1([], []). lex1([40|Xs], ['('|Ys]) :- lex1(Xs, Ys). lex1([41|Xs], [')'|Ys]) :- lex1(Xs, Ys). lex1([43|Xs], ['+'|Ys]) :- lex1(Xs, Ys). lex1([45|Xs], ['-'|Ys]) :- lex1(Xs, Ys). lex1([42|Xs], ['*'|Ys]) :- lex1(Xs, Ys). lex1([47|Xs], ['/'|Ys]) :- lex1(Xs, Ys). lex1([X|Xs], [N|Ys]) :- numeric(X), N is X - 48, lex1(Xs, Ys).   lex2([], []). lex2([X], [X]). lex2([Xa,Xb|Xs], [Xa|Ys]) :- atom(Xa), lex2([Xb|Xs], Ys). lex2([Xa,Xb|Xs], [Xa|Ys]) :- number(Xa), atom(Xb), lex2([Xb|Xs], Ys). lex2([Xa,Xb|Xs], [Y|Ys]) :- number(Xa), number(Xb), N is Xa * 10 + Xb, lex2([N|Xs], [Y|Ys]).   % Parser oper(1, *, X, Y, X * Y). oper(1, /, X, Y, X / Y). oper(2, +, X, Y, X + Y). oper(2, -, X, Y, X - Y).   num(D) --> [D], {number(D)}.   expr(0, Z) --> num(Z). expr(0, Z) --> {Z = (X)}, ['('], expr(2, X), [')'].   expr(N, Z) --> {succ(N0, N)}, {oper(N, Op, X, Y, Z)}, expr(N0, X), [Op], expr(N, Y). expr(N, Z) --> {succ(N0, N)}, expr(N0, Z).   parse(Tokens, Expr) :- expr(2, Expr, Tokens, []).     % Evaluator evaluate(E, E) :- number(E). evaluate(A + B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae + Be. evaluate(A - B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae - Be. evaluate(A * B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae * Be. evaluate(A / B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae / Be.   % Solution calculator(String, Value) :- string_codes(String, Codes), lex1(Codes, Tokens1), lex2(Tokens1, Tokens2), parse(Tokens2, Expression), evaluate(Expression, Value).   % Example use % calculator("(3+50)*7-9", X).
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Haskell
Haskell
{-# LANGUAGE LambdaCase #-} import Data.List (find, mapAccumL) import Control.Arrow (first, second)   -- Generalized Fibonacci series defined for any Num instance, and for Zeckendorf numbers as well. -- Used to build Zeckendorf tables. fibs :: Num a => a -> a -> [a] fibs a b = res where res = a : b : zipWith (+) res (tail res)   data Fib = Fib { sign :: Int, digits :: [Int]}   -- smart constructor mkFib s ds = case dropWhile (==0) ds of [] -> 0 ds -> Fib s (reverse ds)   -- Textual representation instance Show Fib where show (Fib s ds) = sig s ++ foldMap show (reverse ds) where sig = \case { -1 -> "-"; s -> "" }   -- Equivalence relation instance Eq Fib where Fib sa a == Fib sb b = sa == sb && a == b   -- Order relation instance Ord Fib where a `compare` b = sign a `compare` sign b <> case find (/= 0) $ alignWith (-) (digits a) (digits b) of Nothing -> EQ Just 1 -> if sign a > 0 then GT else LT Just (-1) -> if sign a > 0 then LT else GT   -- Arithmetic instance Num Fib where negate (Fib s ds) = Fib (negate s) ds abs (Fib s ds) = Fib 1 ds signum (Fib s _) = fromIntegral s   fromInteger n = case compare n 0 of LT -> negate $ fromInteger (- n) EQ -> Fib 0 [0] GT -> Fib 1 . reverse . fst $ divModFib n 1   0 + a = a a + 0 = a a + b = case (sign a, sign b) of ( 1, 1) -> res (-1, 1) -> b - (-a) ( 1,-1) -> a - (-b) (-1,-1) -> - ((- a) + (- b)) where res = mkFib 1 . process $ 0:0:c c = alignWith (+) (digits a) (digits b) -- use cellular automata process = runRight 3 r2 . runLeftR 3 r2 . runRightR 4 r1   0 - a = -a a - 0 = a a - b = case (sign a, sign b) of ( 1, 1) -> res (-1, 1) -> - ((-a) + b) ( 1,-1) -> a + (-b) (-1,-1) -> - ((-a) - (-b)) where res = case find (/= 0) c of Just 1 -> mkFib 1 . process $ c Just (-1) -> - (b - a) Nothing -> 0 c = alignWith (-) (digits a) (digits b) -- use cellular automata process = runRight 3 r2 . runLeftR 3 r2 . runRightR 4 r1 . runRight 3 r3   0 * a = 0 a * 0 = 0 1 * a = a a * 1 = a a * b = case (sign a, sign b) of (1, 1) -> res (-1, 1) -> - ((-a) * b) ( 1,-1) -> - (a * (-b)) (-1,-1) -> ((-a) * (-b)) where -- use Zeckendorf table table = fibs a (a + a) res = sum $ onlyOnes $ zip (digits b) table onlyOnes = map snd . filter ((==1) . fst)   -- Enumeration instance Enum Fib where toEnum = fromInteger . fromIntegral fromEnum = fromIntegral . toInteger   instance Real Fib where toRational = fromInteger . toInteger   -- Integral division instance Integral Fib where toInteger (Fib s ds) = signum (fromIntegral s) * res where res = sum (zipWith (*) (fibs 1 2) (fromIntegral <$> ds))   quotRem 0 _ = (0, 0) quotRem a 0 = error "divide by zero" quotRem a b = case (sign a, sign b) of (1, 1) -> first (mkFib 1) $ divModFib a b (-1, 1) -> second negate . first negate $ quotRem (-a) b ( 1,-1) -> first negate $ quotRem a (-b) (-1,-1) -> second negate $ quotRem (-a) (-b)   ------------------------------------------------------------ -- helper funtions   -- general division using Zeckendorf table divModFib :: (Ord a, Num c, Num a) => a -> a -> ([c], a) divModFib a b = (q, r) where (r, q) = mapAccumL f a $ reverse $ takeWhile (<= a) table table = fibs b (b+b) f n x = if n < x then (n, 0) else (n - x, 1)   -- application of rewriting rules -- runs window from left to right runRight n f = go where go [] = [] go lst = let (w, r) = splitAt n lst (h: t) = f w in h : go (t ++ r)   -- runs window from left to right and reverses the result runRightR n f = go [] where go res [] = res go res lst = let (w, r) = splitAt n lst (h: t) = f w in go (h : res) (t ++ r)   -- runs reversed window and reverses the result runLeftR n f = runRightR n (reverse . f . reverse)   -- rewriting rules from [C. Ahlbach et. all] r1 = \case [0,3,0] -> [1,1,1] [0,2,0] -> [1,0,1] [0,1,2] -> [1,0,1] [0,2,1] -> [1,1,0] [x,0,2] -> [x,1,0] [x,0,3] -> [x,1,1] [0,1,2,0] -> [1,0,1,0] [0,2,0,x] -> [1,0,0,x+1] [0,3,0,x] -> [1,1,0,x+1] [0,2,1,x] -> [1,1,0,x ] [0,1,2,x] -> [1,0,1,x ] l -> l   r2 = \case [0,1,1] -> [1,0,0] l -> l   r3 = \case [1,-1] -> [0,1] [2,-1] -> [1,1] [1, 0, 0] -> [0,1,1] [1,-1, 0] -> [0,0,1] [1,-1, 1] -> [0,0,2] [1, 0,-1] -> [0,1,0] [2, 0, 0] -> [1,1,1] [2,-1, 0] -> [1,0,1] [2,-1, 1] -> [1,0,2] [2, 0,-1] -> [1,1,0] l -> l   alignWith :: (Int -> Int -> a) -> [Int] -> [Int] -> [a] alignWith f a b = go [] a b where go res as [] = ((`f` 0) <$> reverse as) ++ res go res [] bs = ((0 `f`) <$> reverse bs) ++ res go res (a:as) (b:bs) = go (f a b : res) as bs
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Haskell
Haskell
import Data.List (group, sort) import Data.List.Split (chunksOf) import Data.Numbers.Primes (primeFactors)   -------------------- ZUMKELLER NUMBERS -------------------   isZumkeller :: Int -> Bool isZumkeller n = let ds = divisors n m = sum ds in ( even m && let half = div m 2 in elem half ds || ( all (half >=) ds && summable half ds ) )   summable :: Int -> [Int] -> Bool summable _ [] = False summable x xs@(h : t) = elem x xs || summable (x - h) t || summable x t   divisors :: Int -> [Int] divisors x = sort ( foldr ( flip ((<*>) . fmap (*)) . scanl (*) 1 ) [1] (group (primeFactors x)) )   --------------------------- TEST ------------------------- main :: IO () main = mapM_ ( \(s, n, xs) -> putStrLn $ s <> ( '\n' : tabulated 10 (take n (filter isZumkeller xs)) ) ) [ ("First 220 Zumkeller numbers:", 220, [1 ..]), ("First 40 odd Zumkeller numbers:", 40, [1, 3 ..]) ]   ------------------------- DISPLAY ------------------------ tabulated :: Show a => Int -> [a] -> String tabulated nCols = go where go xs = let ts = show <$> xs w = succ (maximum (length <$> ts)) in unlines ( concat <$> chunksOf nCols (justifyRight w ' ' <$> ts) )   justifyRight :: Int -> Char -> String -> String justifyRight n c = (drop . length) <*> (replicate n c <>)
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Clojure
Clojure
(defn exp [n k] (reduce * (repeat k n)))   (def big (->> 2 (exp 3) (exp 4) (exp 5))) (def sbig (str big))   (assert (= "62060698786608744707" (.substring sbig 0 20))) (assert (= "92256259918212890625" (.substring sbig (- (count sbig) 20)))) (println (count sbig) "digits")   (println (str (.substring sbig 0 20) ".." (.substring sbig (- (count sbig) 20))) (str "(" (count sbig) " digits)"))
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#CLU
CLU
start_up = proc ()  % Get bigint versions of 5, 4, 3 and 2 five: bigint := bigint$i2bi(5) four: bigint := bigint$i2bi(4) three: bigint := bigint$i2bi(3) two: bigint := bigint$i2bi(2)    % Calculate 5**4**3**2 huge_no: bigint := five ** four ** three ** two    % Turn answer into string huge_str: string := bigint$unparse(huge_no)    % Scan for first digit (the string will have some leading whitespace) i: int := 1 while huge_str[i] = ' ' do i := i + 1 end   po: stream := stream$primary_output() stream$putl(po, "First 20 digits: " || string$substr(huge_str, i, 20)) stream$putl(po, "Last 20 digits: " || string$substr(huge_str, string$size(huge_str)-19, 20)) stream$putl(po, "Amount of digits: " || int$unparse(string$size(huge_str) - i + 1)) end start_up
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Java
Java
import java.awt.Point; import java.util.*;   public class ZhangSuen {   final static String[] image = { " ", " ################# ############# ", " ################## ################ ", " ################### ################## ", " ######## ####### ################### ", " ###### ####### ####### ###### ", " ###### ####### ####### ", " ################# ####### ", " ################ ####### ", " ################# ####### ", " ###### ####### ####### ", " ###### ####### ####### ", " ###### ####### ####### ###### ", " ######## ####### ################### ", " ######## ####### ###### ################## ###### ", " ######## ####### ###### ################ ###### ", " ######## ####### ###### ############# ###### ", " "};   final static int[][] nbrs = {{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}};   final static int[][][] nbrGroups = {{{0, 2, 4}, {2, 4, 6}}, {{0, 2, 6}, {0, 4, 6}}};   static List<Point> toWhite = new ArrayList<>(); static char[][] grid;   public static void main(String[] args) { grid = new char[image.length][]; for (int r = 0; r < image.length; r++) grid[r] = image[r].toCharArray();   thinImage(); }   static void thinImage() { boolean firstStep = false; boolean hasChanged;   do { hasChanged = false; firstStep = !firstStep;   for (int r = 1; r < grid.length - 1; r++) { for (int c = 1; c < grid[0].length - 1; c++) {   if (grid[r][c] != '#') continue;   int nn = numNeighbors(r, c); if (nn < 2 || nn > 6) continue;   if (numTransitions(r, c) != 1) continue;   if (!atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) continue;   toWhite.add(new Point(c, r)); hasChanged = true; } }   for (Point p : toWhite) grid[p.y][p.x] = ' '; toWhite.clear();   } while (firstStep || hasChanged);   printResult(); }   static int numNeighbors(int r, int c) { int count = 0; for (int i = 0; i < nbrs.length - 1; i++) if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == '#') count++; return count; }   static int numTransitions(int r, int c) { int count = 0; for (int i = 0; i < nbrs.length - 1; i++) if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == ' ') { if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == '#') count++; } return count; }   static boolean atLeastOneIsWhite(int r, int c, int step) { int count = 0; int[][] group = nbrGroups[step]; for (int i = 0; i < 2; i++) for (int j = 0; j < group[i].length; j++) { int[] nbr = nbrs[group[i][j]]; if (grid[r + nbr[1]][c + nbr[0]] == ' ') { count++; break; } } return count > 1; }   static void printResult() { for (char[] row : grid) System.out.println(row); } }
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#D
D
import std.stdio, std.range, std.algorithm, std.functional;   void main() { size_t .max .iota .filter!q{ !(a & (a >> 1)) } .take(21) .binaryReverseArgs!writefln("%(%b\n%)"); }
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Bracmat
Bracmat
( 100doors-tbl = door step . tbl$(doors.101) { Create an array. Indexing is 0-based. Add one extra for addressing element nr. 100 } & 0:?step & whl ' ( 1+!step:~>100:?step { ~> means 'not greater than', i.e. 'less than or equal' } & 0:?door & whl ' ( !step+!door:~>100:?door & 1+-1*!(!door$doors):?doors { <number>$<variable> sets the current index, which stays the same until explicitly changed. } ) ) & 0:?door & whl ' ( 1+!door:~>100:?door & out $ ( door  !door is ( !(!door$doors):1&open | closed ) ) ) & tbl$(doors.0) { clean up the array } )
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#EGL
EGL
  array int[10]; //optionally, add a braced list of values. E.g. array int[10]{1, 2, 3}; array[1] = 42; SysLib.writeStdout(array[1]);  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#OxygenBasic
OxygenBasic
  'COMPLEX OPERATIONS '=================   type tcomplex double x,y   class Complex '============   has tcomplex static sys i,pp static tcomplex accum[32]   def operands tcomplex*a,*b @a=@accum+i if pp then @b=@a+sizeof accum pp=0 else @b=@this end if end def   method "load"() operands a.x=b.x a.y=b.y end method   method "push"() i+=sizeof accum end method   method "pop"() pp=1 i-=sizeof accum end method   method "="() operands b.x=a.x b.y=a.y end method   method "+"() operands a.x+=b.x a.y+=b.y end method   method "-"() operands a.x-=b.x a.y-=b.y end method   method "*"() operands double d d=a.x a.x = a.x * b.x - a.y * b.y a.y = a.y * b.x + d * b.y end method   method "/"() operands double d,v v=1/(b.x * b.x + b.y * b.y) d=a.x a.x = (a.x * b.x + a.y * b.y) * v a.y = (a.y * b.x - d * b.y) * v end method   method power(double n) operands 'Using DeMoivre theorem double r,an,mg r = hypot(b.x,b.y) mg = r^n if b.x=0 then ay=.5*pi if b.y<0 then ay=-ay else an = atan(b.y,b.x) end if an *= n a.x = mg * cos(an) a.y = mg * sin(an) end method   method show() as string return str(x,14) ", " str(y,14) end method   end class   '#recordof complexop   '==== 'TEST '====   complex z1,z2,z3,z4,z5   'ENTER VALUES   z1 <= 0, 0 z2 <= 2, 1 z3 <= -2, 1 z4 <= 2, 4 z5 <= 1, 1   'EVALUATE COMPLEX EXPRESSIONS   z1 = z2 * z3 print "Z1 = "+z1.show 'RESULT -5.0, 0   z1 = z3+(z2.power(2)) print "Z1 = "+z1.show 'RESULT 1.0, 5.0     z1 = z5/z4 print "Z1 = "+z1.show 'RESULT 0.3, 0.1   z1 = z5/z1 print "Z1 = "+z1.show 'RESULT 2.0, 4.0   z1 = z2/z4 print "Z1 = "+z1.show 'RESULT -0.4, -0.3   z1 = z1*z4 print "Z1 = "+z1.show 'RESULT 2.0, 1.0  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#PARI.2FGP
PARI/GP
add(a,b)=a+b; mult(a,b)=a*b; neg(a)=-a; inv(a)=1/a;
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Python
Python
from fractions import Fraction   for candidate in range(2, 2**19): sum = Fraction(1, candidate) for factor in range(2, int(candidate**0.5)+1): if candidate % factor == 0: sum += Fraction(1, factor) + Fraction(1, candidate // factor) if sum.denominator == 1: print("Sum of recipr. factors of %d = %d exactly %s" % (candidate, int(sum), "perfect!" if sum == 1 else ""))
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Sidef
Sidef
func agm(a, g) { loop { var (a1, g1) = ((a+g)/2, sqrt(a*g)) [a1,g1] == [a,g] && return a (a, g) = (a1, g1) } }   say agm(1, 1/sqrt(2))
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Sinclair_ZX81_BASIC
Sinclair ZX81 BASIC
10 LET A=1 20 LET G=1/SQR 2 30 GOSUB 100 40 PRINT AGM 50 STOP 100 LET A0=A 110 LET A=(A+G)/2 120 LET G=SQR (A0*G) 130 IF ABS(A-G)>.00000001 THEN GOTO 100 140 LET AGM=A 150 RETURN
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Fortran
Fortran
  program zero double precision :: i, j double complex :: z1, z2 i = 0.0D0 j = 0.0D0 z1 = (0.0D0,0.0D0) z2 = (0.0D0,0.0D0) write(*,*) 'When integers are used, we have 0^0 = ', 0**0 write(*,*) 'When double precision numbers are used, we have 0.0^0.0 = ', i**j write(*,*) 'When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ', z1**z2 end program  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Print "0 ^ 0 ="; 0 ^ 0 Sleep
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#ActionScript
ActionScript
  package { public class ZigZagMatrix extends Array {   private var height:uint; private var width:uint; public var mtx:Array = [];   public function ZigZagMatrix(size:uint) { this.height = size; this.width = size;   this.mtx = []; for (var i:uint = 0; i < size; i++) { this.mtx[i] = []; } i = 1; var j:uint = 1; for (var e:uint = 0; e < size*size; e++) { this.mtx[i-1][j-1] = e; if ((i + j) % 2 == 0) { // Even stripes if (j < size) j ++; else i += 2; if (i > 1) i --; } else { // Odd stripes if (i < size) i ++; else j += 2; if (j > 1) j --; } } } } }  
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#ALGOL_68
ALGOL 68
BEGIN # find members of the yellowstone sequence: starting from 1, 2, 3 the # # subsequent members are the lowest number coprime to the previous one # # and not coprime to the one before that, that haven't appeared in the # # sequence yet # # iterative Greatest Common Divisor routine, returns the gcd of m and n # PROC gcd = ( INT m, n )INT: BEGIN INT a := ABS m, b := ABS n; WHILE b /= 0 DO INT new a = b; b := a MOD b; a := new a OD; a END # gcd # ; # returns an array of the Yellowstone seuence up to n # OP YELLOWSTONE = ( INT n )[]INT: BEGIN [ 1 : n ]INT result; IF n > 0 THEN result[ 1 ] := 1; IF n > 1 THEN result[ 2 ] := 2; IF n > 2 THEN result[ 3 ] := 3; # guess the maximum element will be n, if it is larger, used will be enlarged # REF[]BOOL used := HEAP[ 1 : n ]BOOL; used[ 1 ] := used[ 2 ] := used[ 3 ] := TRUE; FOR i FROM 4 TO UPB used DO used[ i ] := FALSE OD; FOR i FROM 4 TO UPB result DO INT p1 = result[ i - 1 ]; INT p2 = result[ i - 2 ]; BOOL found := FALSE; FOR j WHILE NOT found DO IF j > UPB used THEN # not enough elements in used - enlarge it # REF[]BOOL new used := HEAP[ 1 : 2 * UPB used ]BOOL; new used[ 1 : UPB used ] := used; FOR k FROM UPB used + 1 TO UPB new used DO new used[ k ] := FALSE OD; used := new used FI; IF NOT used[ j ] THEN IF found := gcd( j, p1 ) = 1 AND gcd( j, p2 ) /= 1 THEN result[ i ] := j; used[ j ] := TRUE FI FI OD OD FI FI FI; result END # YELLOWSTONE # ; []INT ys = YELLOWSTONE 30; FOR i TO UPB ys DO print( ( " ", whole( ys[ i ], 0 ) ) ) OD END
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Python
Python
import operator   class AstNode(object): def __init__( self, opr, left, right ): self.opr = opr self.l = left self.r = right   def eval(self): return self.opr(self.l.eval(), self.r.eval())   class LeafNode(object): def __init__( self, valStrg ): self.v = int(valStrg)   def eval(self): return self.v   class Yaccer(object): def __init__(self): self.operstak = [] self.nodestak =[] self.__dict__.update(self.state1)   def v1( self, valStrg ): # Value String self.nodestak.append( LeafNode(valStrg)) self.__dict__.update(self.state2) #print 'push', valStrg   def o2( self, operchar ): # Operator character or open paren in state1 def openParen(a,b): return 0 # function should not be called   opDict= { '+': ( operator.add, 2, 2 ), '-': (operator.sub, 2, 2 ), '*': (operator.mul, 3, 3 ), '/': (operator.div, 3, 3 ), '^': ( pow, 4, 5 ), # right associative exponentiation for grins '(': ( openParen, 0, 8 ) } operPrecidence = opDict[operchar][2] self.redeuce(operPrecidence)   self.operstak.append(opDict[operchar]) self.__dict__.update(self.state1) # print 'pushop', operchar   def syntaxErr(self, char ): # Open Parenthesis print 'parse error - near operator "%s"' %char   def pc2( self,operchar ): # Close Parenthesis # reduce node until matching open paren found self.redeuce( 1 ) if len(self.operstak)>0: self.operstak.pop() # pop off open parenthesis else: print 'Error - no open parenthesis matches close parens.' self.__dict__.update(self.state2)   def end(self): self.redeuce(0) return self.nodestak.pop()   def redeuce(self, precidence): while len(self.operstak)>0: tailOper = self.operstak[-1] if tailOper[1] < precidence: break   tailOper = self.operstak.pop() vrgt = self.nodestak.pop() vlft= self.nodestak.pop() self.nodestak.append( AstNode(tailOper[0], vlft, vrgt)) # print 'reduce'   state1 = { 'v': v1, 'o':syntaxErr, 'po':o2, 'pc':syntaxErr } state2 = { 'v': syntaxErr, 'o':o2, 'po':syntaxErr, 'pc':pc2 }     def Lex( exprssn, p ): bgn = None cp = -1 for c in exprssn: cp += 1 if c in '+-/*^()': # throw in exponentiation (^)for grins if bgn is not None: p.v(p, exprssn[bgn:cp]) bgn = None if c=='(': p.po(p, c) elif c==')':p.pc(p, c) else: p.o(p, c) elif c in ' \t': if bgn is not None: p.v(p, exprssn[bgn:cp]) bgn = None elif c in '0123456789': if bgn is None: bgn = cp else: print 'Invalid character in expression' if bgn is not None: p.v(p, exprssn[bgn:cp]) bgn = None   if bgn is not None: p.v(p, exprssn[bgn:cp+1]) bgn = None return p.end()     expr = raw_input("Expression:") astTree = Lex( expr, Yaccer()) print expr, '=',astTree.eval()
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Java
Java
import java.util.List;   public class Zeckendorf implements Comparable<Zeckendorf> { private static List<String> dig = List.of("00", "01", "10"); private static List<String> dig1 = List.of("", "1", "10");   private String x; private int dVal = 0; private int dLen = 0;   public Zeckendorf() { this("0"); }   public Zeckendorf(String x) { this.x = x;   int q = 1; int i = x.length() - 1; dLen = i / 2; while (i >= 0) { dVal += (x.charAt(i) - '0') * q; q *= 2; i--; } }   private void a(int n) { int i = n; while (true) { if (dLen < i) dLen = i; int j = (dVal >> (i * 2)) & 3; switch (j) { case 0: case 1: return; case 2: if (((dVal >> ((i + 1) * 2)) & 1) != 1) return; dVal += 1 << (i * 2 + 1); return; case 3: int temp = 3 << (i * 2); temp ^= -1; dVal = dVal & temp; b((i + 1) * 2); break; } i++; } }   private void b(int pos) { if (pos == 0) { Zeckendorf thiz = this; thiz.inc(); return; } if (((dVal >> pos) & 1) == 0) { dVal += 1 << pos; a(pos / 2); if (pos > 1) a(pos / 2 - 1); } else { int temp = 1 << pos; temp ^= -1; dVal = dVal & temp; b(pos + 1); b(pos - (pos > 1 ? 2 : 1)); } }   private void c(int pos) { if (((dVal >> pos) & 1) == 1) { int temp = 1 << pos; temp ^= -1; dVal = dVal & temp; return; } c(pos + 1); if (pos > 0) { b(pos - 1); } else { Zeckendorf thiz = this; thiz.inc(); } }   public Zeckendorf inc() { dVal++; a(0); return this; }   public void plusAssign(Zeckendorf other) { for (int gn = 0; gn < (other.dLen + 1) * 2; gn++) { if (((other.dVal >> gn) & 1) == 1) { b(gn); } } }   public void minusAssign(Zeckendorf other) { for (int gn = 0; gn < (other.dLen + 1) * 2; gn++) { if (((other.dVal >> gn) & 1) == 1) { c(gn); } } while ((((dVal >> dLen * 2) & 3) == 0) || (dLen == 0)) { dLen--; } }   public void timesAssign(Zeckendorf other) { Zeckendorf na = other.copy(); Zeckendorf nb = other.copy(); Zeckendorf nt; Zeckendorf nr = new Zeckendorf(); for (int i = 0; i < (dLen + 1) * 2; i++) { if (((dVal >> i) & 1) > 0) { nr.plusAssign(nb); } nt = nb.copy(); nb.plusAssign(na); na = nt.copy(); } dVal = nr.dVal; dLen = nr.dLen; }   private Zeckendorf copy() { Zeckendorf z = new Zeckendorf(); z.dVal = dVal; z.dLen = dLen; return z; }   @Override public int compareTo(Zeckendorf other) { return ((Integer) dVal).compareTo(other.dVal); }   @Override public String toString() { if (dVal == 0) { return "0"; }   int idx = (dVal >> (dLen * 2)) & 3; StringBuilder stringBuilder = new StringBuilder(dig1.get(idx)); for (int i = dLen - 1; i >= 0; i--) { idx = (dVal >> (i * 2)) & 3; stringBuilder.append(dig.get(idx)); } return stringBuilder.toString(); }   public static void main(String[] args) { System.out.println("Addition:"); Zeckendorf g = new Zeckendorf("10"); g.plusAssign(new Zeckendorf("10")); System.out.println(g); g.plusAssign(new Zeckendorf("10")); System.out.println(g); g.plusAssign(new Zeckendorf("1001")); System.out.println(g); g.plusAssign(new Zeckendorf("1000")); System.out.println(g); g.plusAssign(new Zeckendorf("10101")); System.out.println(g);   System.out.println("\nSubtraction:"); g = new Zeckendorf("1000"); g.minusAssign(new Zeckendorf("101")); System.out.println(g); g = new Zeckendorf("10101010"); g.minusAssign(new Zeckendorf("1010101")); System.out.println(g);   System.out.println("\nMultiplication:"); g = new Zeckendorf("1001"); g.timesAssign(new Zeckendorf("101")); System.out.println(g); g = new Zeckendorf("101010"); g.plusAssign(new Zeckendorf("101")); System.out.println(g); } }
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Java
Java
  import java.util.ArrayList; import java.util.Collections; import java.util.List;   public class ZumkellerNumbers {   public static void main(String[] args) { int n = 1; System.out.printf("First 220 Zumkeller numbers:%n"); for ( int count = 1 ; count <= 220 ; n += 1 ) { if ( isZumkeller(n) ) { System.out.printf("%3d ", n); if ( count % 20 == 0 ) { System.out.printf("%n"); } count++; } }   n = 1; System.out.printf("%nFirst 40 odd Zumkeller numbers:%n"); for ( int count = 1 ; count <= 40 ; n += 2 ) { if ( isZumkeller(n) ) { System.out.printf("%6d", n); if ( count % 10 == 0 ) { System.out.printf("%n"); } count++; } }   n = 1; System.out.printf("%nFirst 40 odd Zumkeller numbers that do not end in a 5:%n"); for ( int count = 1 ; count <= 40 ; n += 2 ) { if ( n % 5 != 0 && isZumkeller(n) ) { System.out.printf("%8d", n); if ( count % 10 == 0 ) { System.out.printf("%n"); } count++; } }   }   private static boolean isZumkeller(int n) { // numbers congruent to 6 or 12 modulo 18 are Zumkeller numbers if ( n % 18 == 6 || n % 18 == 12 ) { return true; }   List<Integer> divisors = getDivisors(n); int divisorSum = divisors.stream().mapToInt(i -> i.intValue()).sum();   // divisor sum cannot be odd if ( divisorSum % 2 == 1 ) { return false; }   // numbers where n is odd and the abundance is even are Zumkeller numbers int abundance = divisorSum - 2 * n; if ( n % 2 == 1 && abundance > 0 && abundance % 2 == 0 ) { return true; }   Collections.sort(divisors); int j = divisors.size() - 1; int sum = divisorSum/2;   // Largest divisor larger than sum - then cannot partition and not Zumkeller number if ( divisors.get(j) > sum ) { return false; }   return canPartition(j, divisors, sum, new int[2]); }   private static boolean canPartition(int j, List<Integer> divisors, int sum, int[] buckets) { if ( j < 0 ) { return true; } for ( int i = 0 ; i < 2 ; i++ ) { if ( buckets[i] + divisors.get(j) <= sum ) { buckets[i] += divisors.get(j); if ( canPartition(j-1, divisors, sum, buckets) ) { return true; } buckets[i] -= divisors.get(j); } if( buckets[i] == 0 ) { break; } } return false; }   private static final List<Integer> getDivisors(int number) { List<Integer> divisors = new ArrayList<Integer>(); long sqrt = (long) Math.sqrt(number); for ( int i = 1 ; i <= sqrt ; i++ ) { if ( number % i == 0 ) { divisors.add(i); int div = number / i; if ( div != i ) { divisors.add(div); } } } return divisors; }   }