Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Size:
10K - 100K
License:
annotations_creators: | |
- crowdsourced | |
language: | |
- en | |
- ar | |
- bn | |
- fi | |
- ja | |
- ko | |
- ru | |
- te | |
language_creators: | |
- crowdsourced | |
license: | |
- mit | |
multilinguality: | |
- multilingual | |
pretty_name: XORQA Reading Comprehension | |
size_categories: | |
- '10K<n<100K' | |
source_datasets: | |
- extended|wikipedia | |
task_categories: | |
- question-answering | |
task_ids: | |
- extractive-qa | |
# Dataset Card for "tydi_xor_rc_yes_no_unanswerable" | |
## Dataset Description | |
- **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa) | |
- **Paper:** [Paper](https://aclanthology.org/2021.naacl-main.46) | |
### Dataset Summary | |
[TyDi QA](https://huggingface.co/datasets/tydiqa) is a question answering dataset covering 11 typologically diverse languages. | |
[XORQA](https://github.com/AkariAsai/XORQA) is an extension of the original TyDi QA dataset to also include unanswerable questions, where context documents are only in English but questions are in 7 languages. | |
This dataset is a simplified version of the [Reading Comprehension data](https://nlp.cs.washington.edu/xorqa/XORQA_site/data/tydi_xor_rc_yes_no_unanswerable.zip) from XORQA. | |
## Dataset Structure | |
The dataset contains a train and a validation set, with 15445 and 3646 examples, respectively. Access them with | |
```py | |
from datasets import load_dataset | |
dataset = load_dataset("coastalcph/tydi_xor_rc_yes_no_unanswerable") | |
train_set = dataset["train"] | |
validation_set = dataset["validation"] | |
``` | |
### Data Instances | |
Description of the dataset columns: | |
| Column name | type | Description | | |
| ----------- | ----------- | ----------- | | |
| lang | str | The language of the data instance | | |
| question | str | The question to answer | | |
| context | str | The context, a Wikipedia paragraph that might or might not contain the answer to the question | | |
| is_impossible | bool | FALSE if the question can be answered given the context, TRUE otherwise | | |
| answer_start | int | The character index in 'context' where the answer starts. If the question is unanswerable, this is -1 | | |
| answer | str | The answer, a span of text from 'context'. If the question is unanswerable given the context, this can be 'yes' or 'no' | | |
## Useful stuff | |
Check out the [datasets ducumentations](https://huggingface.co/docs/datasets/quickstart) to learn how to manipulate and use the dataset. Specifically, you might find the following functions useful: | |
`dataset.filter`, for filtering out data (useful for keeping instances of specific languages, for example). | |
`dataset.map`, for manipulating the dataset. | |
`dataset.to_pandas`, to convert the dataset into a pandas.DataFrame format. | |
``` | |
@inproceedings{xorqa, | |
title = {{XOR} {QA}: Cross-lingual Open-Retrieval Question Answering}, | |
author = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi}, | |
booktitle={NAACL-HLT}, | |
year = {2021} | |
} | |
``` | |
``` | |
@article{tydiqa, | |
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, | |
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki} | |
year = {2020}, | |
journal = {Transactions of the Association for Computational Linguistics} | |
} | |
``` | |