Datasets:
QE4PE Post-task
The goal of the posttask
is to evaluate translators' editing speed and quality after they acquired proficiency with the GroTE interface on a fixed set of additional texts from the same distribution of pretask
and main
, using the no_highlight
modality for all translators to estimate individual baseline speed. Refer to the translators' guidelines for additional details about the task.
Folder Structure
posttask/
├── inputs/
│ ├── eng-ita/
│ │ ├── posttask_eng-ita_doc1_input.txt
│ │ ├── posttask_eng-ita_doc2_input.txt
│ │ └── ... # GroTE input files with tags and ||| source-target separator
│ └── eng-nld/
│ │ ├── posttask_eng-nld_doc1_input.txt
│ │ ├── posttask_eng-nld_doc2_input.txt
│ │ └── ... # GroTE input files with tags and ||| source-target separator
├── outputs/
│ ├── eng-ita/
│ │ ├── logs/
│ │ │ ├── posttask_eng-ita_oracle_t1_logs.csv
│ │ │ └── ... # GroTE logs for every translator (e.g. oracle_t1, uses main task IDs)
│ │ ├── metrics/
│ │ │ ├── posttask_eng-ita_oracle_t1_metrics.csv
│ │ │ └── ... # Metrics for every translator (e.g. oracle_t1, uses main task IDs)
│ │ ├── posttask_eng-ita_doc1_oracle_t1_output.txt
│ │ └── ... # GroTE output files (one edited target per line)
│ └── eng-nld/
│ ├── logs/
│ │ ├── posttask_eng-nld_oracle_t1_logs.csv
│ │ └── ... # GroTE logs for every translator (e.g. oracle_t1, uses main task IDs)
│ ├── metrics/
│ │ ├── posttask_eng-nld_oracle_t1_metrics.csv
│ │ └── ... # Metrics for every translator (e.g. oracle_t1, uses main task IDs)
│ ├── example_eng-nld_doc1_oracle_t1_output.txt
│ └── ... # GroTE output files (one post-edited segment per line)
├── doc_id_map.json # Source and doc name maps
├── posttask_guidelines.pdf # Task guidelines for translators
└── README.md
Important Notes about Data Issues
Translator unsupervised_t1
for the eng-ita
direction could not complete the posttask
, and is hence not present in the data.
Inputs
The posttask
uses eight documents containing between 3-8 contiguous segments from the same wmt23
collection of the main
task that were matching all the main
task requirements, but were not selected for the main collection. doc_id_map.json shows the document assignments from the original collection.
Documents were edited in the no_highlight
setting by all translators to provide a baseline for speed/quality measurements in the main task. Input files for the task have names using the format:
"{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{DOC_ID}}_input.txt"
Outputs
Files in outputs/eng-ita
and outputs/eng-nld
contain post-edited outputs (one per line, matching inputs) using format:
"{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{DOC_ID}}_{{TRANSLATOR_ID}}_output.txt"
Note:
{{TRANSLATOR_ID}}
includes the{{HIGHLIGHT_MODALITY}}
information matching the ID from themain
task. Despite this, all editing forposttask
was performed in theno_highlight
setting.
The contents of outputs/{{TRANSLATION_DIRECTION}}/logs
can be used to analyze editing behavior at a granular scale. Each log file has format:
"{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{TRANSLATOR_ID}}_logs.csv"
Refer to GroTE documentation for more information about the logs.
The contents of outputs/{{TRANSLATION_DIRECTION}}/metrics
contain aggregated metrics for each translator, with name format:
"{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{TRANSLATOR_ID}}_metrics.csv"
Metrics include:
max/min/mean/std of BLEU, chrF, TER and COMET scores computed between the MT or the PE texts and all (other, in case of PE) post-edited variants of the same segment for
{{TRANSLATION_DIRECTION}}
.XCOMET-XXL segment-level QE scores and errors for the MT and PE texts.