|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
import jsonlines |
|
import pandas as pd |
|
from pathlib import Path |
|
from connect_later.split_dataset_into_files import split_augmented_jsonl_dataset |
|
from connect_later.constants import PLASTICC_CLASS_MAPPING, INT_LABELS |
|
|
|
import datasets |
|
import pdb |
|
|
|
RAW_DATA_PATH = "/pscratch/sd/h/helenqu/plasticc/raw" |
|
DATASET_PATH = "/pscratch/sd/h/helenqu/plasticc/train_augmented_dataset" |
|
ORIG_DATASET_PATH = "/pscratch/sd/h/helenqu/plasticc/raw_train_with_labels" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
|
|
|
|
features = datasets.Features( |
|
{ |
|
"objid": datasets.Value("string"), |
|
"times_wv": datasets.Array2D(shape=(300, 2), dtype='float64'), |
|
"target": datasets.Array2D(shape=(300, 2), dtype='float64'), |
|
"label": datasets.ClassLabel( |
|
num_classes=len(PLASTICC_CLASS_MAPPING), |
|
names=[PLASTICC_CLASS_MAPPING[int_label] for int_label in INT_LABELS] |
|
), |
|
"redshift": datasets.Value("float32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dataset_path = Path(DATASET_PATH) |
|
if not (dataset_path / 'train.jsonl').exists(): |
|
print('Splitting dataset into files...') |
|
split_augmented_jsonl_dataset(DATASET_PATH, Path(ORIG_DATASET_PATH) / "plasticc_train_lightcurves.csv.jsonl", "*.jsonl", 0.8) |
|
print(f"int index to label mapping: {INT_LABELS}") |
|
print(f"label to class name mapping: {PLASTICC_CLASS_MAPPING}") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": dataset_path / "train.jsonl", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": dataset_path / "val.jsonl", |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
metadata = pd.read_csv(Path(RAW_DATA_PATH) / 'plasticc_train_metadata.csv.gz') |
|
|
|
with jsonlines.open(filepath) as reader: |
|
for obj in reader: |
|
objid = int(obj['object_id'].split('_')[1]) if type(obj['object_id']) == str else obj['object_id'] |
|
metadata_obj = metadata[metadata['object_id'] == objid] |
|
label = list(INT_LABELS).index(metadata_obj.true_target.values[0]) |
|
redshift = metadata_obj.true_z.values[0] |
|
yield obj['object_id'], { |
|
"objid": obj['object_id'], |
|
"times_wv": obj['times_wv'], |
|
"target": obj['lightcurve'], |
|
"label": label, |
|
"redshift": redshift |
|
} |
|
|