Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, Digital Asset | |
Author: Ognjen Maric, Digital Asset *) | |
theory ADS_Construction imports | |
Merkle_Interface | |
"HOL-Library.Simps_Case_Conv" | |
begin | |
(************************************************************) | |
section \<open> Building blocks for authenticated data structures on datatypes \<close> | |
(************************************************************) | |
(************************************************************) | |
subsection \<open> Building Block: Identity Functor \<close> | |
(************************************************************) | |
text \<open>If nothing is blindable in a type, then the type itself is the hash and the ADS of itself.\<close> | |
abbreviation (input) hash_discrete :: "('a, 'a) hash" where "hash_discrete \<equiv> id" | |
abbreviation (input) blinding_of_discrete :: "'a blinding_of" where | |
"blinding_of_discrete \<equiv> (=)" | |
definition merge_discrete :: "'a merge" where | |
"merge_discrete x y = (if x = y then Some y else None)" | |
lemma blinding_of_discrete_hash: | |
"blinding_of_discrete \<le> vimage2p hash_discrete hash_discrete (=)" | |
by(auto simp add: vimage2p_def) | |
lemma blinding_of_on_discrete [locale_witness]: | |
"blinding_of_on UNIV hash_discrete blinding_of_discrete" | |
by(unfold_locales)(simp_all add: OO_eq eq_onp_def blinding_of_discrete_hash) | |
lemma merge_on_discrete [locale_witness]: | |
"merge_on UNIV hash_discrete blinding_of_discrete merge_discrete" | |
by unfold_locales(auto simp add: merge_discrete_def) | |
lemma merkle_discrete [locale_witness]: | |
"merkle_interface hash_discrete blinding_of_discrete merge_discrete" | |
.. | |
parametric_constant merge_discrete_parametric [transfer_rule]: merge_discrete_def | |
(************************************************************) | |
subsubsection \<open>Example: instantiation for @{typ unit}\<close> | |
(************************************************************) | |
abbreviation (input) hash_unit :: "(unit, unit) hash" where "hash_unit \<equiv> hash_discrete" | |
abbreviation blinding_of_unit :: "unit blinding_of" where | |
"blinding_of_unit \<equiv> blinding_of_discrete" | |
abbreviation merge_unit :: "unit merge" where "merge_unit \<equiv> merge_discrete" | |
lemma blinding_of_unit_hash: | |
"blinding_of_unit \<le> vimage2p hash_unit hash_unit (=)" | |
by(fact blinding_of_discrete_hash) | |
lemma blinding_of_on_unit: | |
"blinding_of_on UNIV hash_unit blinding_of_unit" | |
by(fact blinding_of_on_discrete) | |
lemma merge_on_unit: | |
"merge_on UNIV hash_unit blinding_of_unit merge_unit" | |
by(fact merge_on_discrete) | |
lemma merkle_interface_unit: | |
"merkle_interface hash_unit blinding_of_unit merge_unit" | |
by(intro merkle_interfaceI merge_on_unit) | |
(************************************************************) | |
subsection \<open> Building Block: Blindable Position \<close> | |
(************************************************************) | |
type_synonym 'a blindable = 'a | |
text \<open> The following type represents the hashes of a datatype. We model hashes as being injective, | |
but not surjective; some hashes do not correspond to any values of the original datatypes. We | |
model such values as "garbage" coming from a countable set (here, naturals). \<close> | |
type_synonym garbage = nat | |
datatype 'a\<^sub>h blindable\<^sub>h = Content 'a\<^sub>h | Garbage garbage | |
datatype ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m = Unblinded 'a\<^sub>m | Blinded "'a\<^sub>h blindable\<^sub>h" | |
(************************************************************) | |
subsubsection \<open> Hashes \<close> | |
(************************************************************) | |
primrec hash_blindable' :: "(('a\<^sub>h, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where | |
"hash_blindable' (Unblinded x) = Content x" | |
| "hash_blindable' (Blinded x) = x" | |
definition hash_blindable :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where | |
"hash_blindable h = hash_blindable' \<circ> map_blindable\<^sub>m h id" | |
lemma hash_blindable_simps [simp]: | |
"hash_blindable h (Unblinded x) = Content (h x)" | |
"hash_blindable h (Blinded y) = y" | |
by(simp_all add: hash_blindable_def blindable\<^sub>h.map_id) | |
lemma hash_map_blindable_simp: | |
"hash_blindable f (map_blindable\<^sub>m f' id x) = hash_blindable (f o f') x" | |
by(cases x) (simp_all add: hash_blindable_def blindable\<^sub>h.map_comp) | |
parametric_constant hash_blindable'_parametric [transfer_rule]: hash_blindable'_def | |
parametric_constant hash_blindable_parametric [transfer_rule]: hash_blindable_def | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
context | |
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and bo :: "'a\<^sub>m blinding_of" | |
begin | |
inductive blinding_of_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m blinding_of" where | |
"blinding_of_blindable (Unblinded x) (Unblinded y)" if "bo x y" | |
| "blinding_of_blindable (Blinded x) t" if "hash_blindable h t = x" | |
inductive_simps blinding_of_blindable_simps [simp]: | |
"blinding_of_blindable (Unblinded x) y" | |
"blinding_of_blindable (Blinded x) y" | |
"blinding_of_blindable z (Unblinded x)" | |
"blinding_of_blindable z (Blinded x)" | |
inductive_simps blinding_of_blindable_simps2: | |
"blinding_of_blindable (Unblinded x) (Unblinded y)" | |
"blinding_of_blindable (Unblinded x) (Blinded y')" | |
"blinding_of_blindable (Blinded x') (Unblinded y)" | |
"blinding_of_blindable (Blinded x') (Blinded y')" | |
end | |
lemma blinding_of_blindable_mono: | |
assumes "bo \<le> bo'" | |
shows "blinding_of_blindable h bo \<le> blinding_of_blindable h bo'" | |
apply(rule predicate2I) | |
apply(erule blinding_of_blindable.cases; hypsubst) | |
subgoal by(rule blinding_of_blindable.intros)(rule assms[THEN predicate2D]) | |
subgoal by(rule blinding_of_blindable.intros) simp | |
done | |
lemma blinding_of_blindable_hash: | |
assumes "bo \<le> vimage2p h h (=)" | |
shows "blinding_of_blindable h bo \<le> vimage2p (hash_blindable h) (hash_blindable h) (=)" | |
apply(rule predicate2I vimage2pI)+ | |
apply(erule blinding_of_blindable.cases; hypsubst) | |
subgoal using assms[THEN predicate2D] by(simp add: vimage2p_def) | |
subgoal by simp | |
done | |
lemma blinding_of_on_blindable [locale_witness]: | |
assumes "blinding_of_on A h bo" | |
shows "blinding_of_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo)" | |
(is "blinding_of_on ?A ?h ?bo") | |
proof - | |
interpret blinding_of_on A h bo by fact | |
show ?thesis | |
proof | |
show "?bo \<le> vimage2p ?h ?h (=)" | |
by(rule blinding_of_blindable_hash)(rule hash) | |
show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto simp add: refl) | |
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that | |
by(auto elim!: blinding_of_blindable.cases dest: trans blinding_hash_eq) | |
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that | |
by(auto elim!: blinding_of_blindable.cases dest: antisym) | |
qed | |
qed | |
lemmas blinding_of_blindable [locale_witness] = blinding_of_on_blindable[of UNIV, simplified] | |
case_of_simps blinding_of_blindable_alt_def: blinding_of_blindable_simps2 | |
parametric_constant blinding_of_blindable_parametric [transfer_rule]: blinding_of_blindable_alt_def | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
context | |
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
fixes m :: "'a\<^sub>m merge" | |
begin | |
fun merge_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m merge" where | |
"merge_blindable (Unblinded x) (Unblinded y) = map_option Unblinded (m x y)" | |
| "merge_blindable (Blinded x) (Unblinded y) = (if x = Content (h y) then Some (Unblinded y) else None)" | |
| "merge_blindable (Unblinded y) (Blinded x) = (if x = Content (h y) then Some (Unblinded y) else None)" | |
| "merge_blindable (Blinded t) (Blinded u) = (if t = u then Some (Blinded u) else None)" | |
lemma merge_on_blindable [locale_witness]: | |
assumes "merge_on A h bo m" | |
shows "merge_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo) merge_blindable" | |
(is "merge_on ?A ?h ?bo ?m") | |
proof - | |
interpret merge_on A h bo m by fact | |
show ?thesis | |
proof | |
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" if "?h a = ?h b" "a \<in> ?A" for a b | |
using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: refl dest!: join) | |
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b | |
using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: dest!: undefined) | |
qed | |
qed | |
lemmas merge_blindable [locale_witness] = | |
merge_on_blindable[of UNIV, simplified] | |
end | |
lemma merge_blindable_alt_def: | |
"merge_blindable h m x y = (case (x, y) of | |
(Unblinded x, Unblinded y) \<Rightarrow> map_option Unblinded (m x y) | |
| (Blinded x, Unblinded y) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None) | |
| (Unblinded y, Blinded x) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None) | |
| (Blinded t, Blinded u) \<Rightarrow> (if t = u then Some (Blinded u) else None))" | |
by(simp split: blindable\<^sub>m.split blindable\<^sub>h.split) | |
parametric_constant merge_blindable_parametric [transfer_rule]: merge_blindable_alt_def | |
lemma merge_blindable_cong [fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> set1_blindable\<^sub>m x; b \<in> set1_blindable\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b" | |
shows "merge_blindable h m x y = merge_blindable h m' x y" | |
by(auto simp add: merge_blindable_alt_def split: blindable\<^sub>m.split intro: assms intro!: arg_cong[where f="map_option _"]) | |
(************************************************************) | |
subsubsection \<open> Merkle interface \<close> | |
(************************************************************) | |
lemma merkle_blindable [locale_witness]: | |
assumes "merkle_interface h bo m" | |
shows "merkle_interface (hash_blindable h) (blinding_of_blindable h bo) (merge_blindable h m)" | |
proof - | |
interpret merge_on UNIV h bo m using assms by(simp add: merkle_interface_aux) | |
show ?thesis unfolding merkle_interface_aux .. | |
qed | |
(************************************************************) | |
subsubsection \<open> Non-recursive blindable positions \<close> | |
(************************************************************) | |
text \<open> For a non-recursive data type @{typ 'a}, the type of hashes in @{type blindable\<^sub>m} is fixed | |
to be simply @{typ "'a blindable\<^sub>h"}. We obtain this by instantiating the type variable with the | |
identity building block. \<close> | |
type_synonym 'a nr_blindable = "('a, 'a) blindable\<^sub>m" | |
abbreviation hash_nr_blindable :: "('a nr_blindable, 'a blindable\<^sub>h) hash" where | |
"hash_nr_blindable \<equiv> hash_blindable hash_discrete" | |
abbreviation blinding_of_nr_blindable :: "'a nr_blindable blinding_of" where | |
"blinding_of_nr_blindable \<equiv> blinding_of_blindable hash_discrete blinding_of_discrete" | |
abbreviation merge_nr_blindable :: "'a nr_blindable merge" where | |
"merge_nr_blindable \<equiv> merge_blindable hash_discrete merge_discrete" | |
lemma merge_on_nr_blindable: | |
"merge_on UNIV hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable" | |
.. | |
lemma merkle_nr_blindable: | |
"merkle_interface hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable" | |
.. | |
(************************************************************) | |
subsection \<open> Building block: Sums \<close> | |
(************************************************************) | |
text \<open> We prove that we can lift the ADS construction through sums.\<close> | |
type_synonym ('a\<^sub>h, 'b\<^sub>h) sum\<^sub>h = "'a\<^sub>h + 'b\<^sub>h" | |
type_notation sum\<^sub>h (infixr "+\<^sub>h" 10) | |
type_synonym ('a\<^sub>m, 'b\<^sub>m) sum\<^sub>m = "'a\<^sub>m + 'b\<^sub>m" | |
\<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close> | |
type_notation sum\<^sub>m (infixr "+\<^sub>m" 10) | |
(************************************************************) | |
subsubsection \<open> Hashes \<close> | |
(************************************************************) | |
abbreviation (input) hash_sum' :: "('a\<^sub>h +\<^sub>h 'b\<^sub>h, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash" where | |
"hash_sum' \<equiv> id" | |
abbreviation (input) hash_sum :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash" | |
where "hash_sum \<equiv> map_sum" | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
abbreviation (input) blinding_of_sum :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m) blinding_of" where | |
"blinding_of_sum \<equiv> rel_sum" | |
lemmas blinding_of_sum_mono = sum.rel_mono | |
lemma blinding_of_sum_hash: | |
assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)" | |
shows "blinding_of_sum boa bob \<le> vimage2p (hash_sum rha rhb) (hash_sum rha rhb) (=)" | |
using assms by(auto simp add: vimage2p_def elim!: rel_sum.cases) | |
lemma blinding_of_on_sum [locale_witness]: | |
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob" | |
shows "blinding_of_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob)" | |
(is "blinding_of_on ?A ?h ?bo") | |
proof - | |
interpret a: blinding_of_on A rha boa by fact | |
interpret b: blinding_of_on B rhb bob by fact | |
show ?thesis | |
proof | |
show "?bo x x" if "x \<in> ?A" for x using that by(intro sum.rel_refl_strong)(auto intro: a.refl b.refl) | |
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z | |
using that by(auto elim!: rel_sum.cases dest: a.trans b.trans) | |
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y | |
using that by(auto elim!: rel_sum.cases dest: a.antisym b.antisym) | |
qed(rule blinding_of_sum_hash a.hash b.hash)+ | |
qed | |
lemmas blinding_of_sum [locale_witness] = blinding_of_on_sum[of UNIV _ _ UNIV, simplified] | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
context | |
fixes ma :: "'a\<^sub>m merge" | |
fixes mb :: "'b\<^sub>m merge" | |
begin | |
fun merge_sum :: "('a\<^sub>m +\<^sub>m 'b\<^sub>m) merge" where | |
"merge_sum (Inl x) (Inl y) = map_option Inl (ma x y)" | |
| "merge_sum (Inr x) (Inr y) = map_option Inr (mb x y)" | |
| "merge_sum _ _ = None" | |
lemma merge_on_sum [locale_witness]: | |
assumes "merge_on A rha boa ma" "merge_on B rhb bob mb" | |
shows "merge_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob) merge_sum" | |
(is "merge_on ?A ?h ?bo ?m") | |
proof - | |
interpret a: merge_on A rha boa ma by fact | |
interpret b: merge_on B rhb bob mb by fact | |
show ?thesis | |
proof | |
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" | |
if "?h a = ?h b" "a \<in> ?A" for a b using that | |
by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.join b.join elim!: rel_sum.cases) | |
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that | |
by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.undefined b.undefined) | |
qed | |
qed | |
lemmas merge_sum [locale_witness] = merge_on_sum[where A=UNIV and B=UNIV, simplified] | |
lemma merge_sum_alt_def: | |
"merge_sum x y = (case (x, y) of | |
(Inl x, Inl y) \<Rightarrow> map_option Inl (ma x y) | |
| (Inr x, Inr y) \<Rightarrow> map_option Inr (mb x y) | |
| _ \<Rightarrow> None)" | |
by(simp add: split: sum.split) | |
end | |
lemma merge_sum_cong[fundef_cong]: | |
"\<lbrakk> x = x'; y = y'; | |
\<And>xl yl. \<lbrakk> x = Inl xl; y = Inl yl \<rbrakk> \<Longrightarrow> ma xl yl = ma' xl yl; | |
\<And>xr yr. \<lbrakk> x = Inr xr; y = Inr yr \<rbrakk> \<Longrightarrow> mb xr yr = mb' xr yr \<rbrakk> \<Longrightarrow> | |
merge_sum ma mb x y = merge_sum ma' mb' x' y'" | |
by(cases x; simp_all; cases y; auto) | |
parametric_constant merge_sum_parametric [transfer_rule]: merge_sum_alt_def | |
subsubsection \<open> Merkle interface \<close> | |
lemma merkle_sum [locale_witness]: | |
assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb" | |
shows "merkle_interface (hash_sum rha rhb) (blinding_of_sum boa bob) (merge_sum ma mb)" | |
proof - | |
interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact | |
interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact | |
show ?thesis unfolding merkle_interface_aux[symmetric] .. | |
qed | |
(************************************************************) | |
subsection \<open> Building Block: Products\<close> | |
(************************************************************) | |
text \<open> We prove that we can lift the ADS construction through products.\<close> | |
type_synonym ('a\<^sub>h, 'b\<^sub>h) prod\<^sub>h = "'a\<^sub>h \<times> 'b\<^sub>h" | |
type_notation prod\<^sub>h ("(_ \<times>\<^sub>h/ _)" [21, 20] 20) | |
type_synonym ('a\<^sub>m, 'b\<^sub>m) prod\<^sub>m = "'a\<^sub>m \<times> 'b\<^sub>m" | |
\<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close> | |
type_notation prod\<^sub>m ("(_ \<times>\<^sub>m/ _)" [21, 20] 20) | |
(************************************************************) | |
subsubsection \<open> Hashes \<close> | |
(************************************************************) | |
abbreviation (input) hash_prod' :: "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash" where | |
"hash_prod' \<equiv> id" | |
abbreviation (input) hash_prod :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash" | |
where "hash_prod \<equiv> map_prod" | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
abbreviation (input) blinding_of_prod :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) blinding_of" where | |
"blinding_of_prod \<equiv> rel_prod" | |
lemmas blinding_of_prod_mono = prod.rel_mono | |
lemma blinding_of_prod_hash: | |
assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)" | |
shows "blinding_of_prod boa bob \<le> vimage2p (hash_prod rha rhb) (hash_prod rha rhb) (=)" | |
using assms by(auto simp add: vimage2p_def) | |
lemma blinding_of_on_prod [locale_witness]: | |
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob" | |
shows "blinding_of_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob)" | |
(is "blinding_of_on ?A ?h ?bo") | |
proof - | |
interpret a: blinding_of_on A rha boa by fact | |
interpret b: blinding_of_on B rhb bob by fact | |
show ?thesis | |
proof | |
show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto intro: a.refl b.refl) | |
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that | |
by(auto elim!: rel_prod.cases dest: a.trans b.trans) | |
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that | |
by(auto elim!: rel_prod.cases dest: a.antisym b.antisym) | |
qed(rule blinding_of_prod_hash a.hash b.hash)+ | |
qed | |
lemmas blinding_of_prod [locale_witness] = blinding_of_on_prod[where A=UNIV and B=UNIV, simplified] | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
context | |
fixes ma :: "'a\<^sub>m merge" | |
fixes mb :: "'b\<^sub>m merge" | |
begin | |
fun merge_prod :: "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) merge" where | |
"merge_prod (x, y) (x', y') = Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y'))" | |
lemma merge_on_prod [locale_witness]: | |
assumes "merge_on A rha boa ma" "merge_on B rhb bob mb" | |
shows "merge_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob) merge_prod" | |
(is "merge_on ?A ?h ?bo ?m") | |
proof - | |
interpret a: merge_on A rha boa ma by fact | |
interpret b: merge_on B rhb bob mb by fact | |
show ?thesis | |
proof | |
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" | |
if "?h a = ?h b" "a \<in> ?A" for a b using that | |
by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.join b.join) | |
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that | |
by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.undefined b.undefined) | |
qed | |
qed | |
lemmas merge_prod [locale_witness] = merge_on_prod[where A=UNIV and B=UNIV, simplified] | |
lemma merge_prod_alt_def: | |
"merge_prod = (\<lambda>(x, y) (x', y'). Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y')))" | |
by(simp add: fun_eq_iff) | |
end | |
lemma merge_prod_cong[fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> fsts p1; b \<in> fsts p2 \<rbrakk> \<Longrightarrow> ma a b = ma' a b" | |
and "\<And>a b. \<lbrakk> a \<in> snds p1; b \<in> snds p2 \<rbrakk> \<Longrightarrow> mb a b = mb' a b" | |
shows "merge_prod ma mb p1 p2 = merge_prod ma' mb' p1 p2" | |
using assms by(cases p1; cases p2) auto | |
parametric_constant merge_prod_parametric [transfer_rule]: merge_prod_alt_def | |
(************************************************************) | |
subsubsection \<open> Merkle Interface \<close> | |
(************************************************************) | |
lemma merkle_product [locale_witness]: | |
assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb" | |
shows "merkle_interface (hash_prod rha rhb) (blinding_of_prod boa bob) (merge_prod ma mb)" | |
proof - | |
interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact | |
interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact | |
show ?thesis unfolding merkle_interface_aux[symmetric] .. | |
qed | |
(************************************************************) | |
subsection \<open>Building Block: Lists\<close> | |
(************************************************************) | |
text \<open>The ADS construction on lists is done the easiest through a separate isomorphic datatype | |
that has only a single constructor. We hide this construction in a locale. \<close> | |
locale list_R1 begin | |
type_synonym ('a, 'b) list_F = "unit + 'a \<times> 'b" | |
abbreviation (input) "set_base_F\<^sub>m \<equiv> \<lambda>x. setr x \<bind> fsts" | |
abbreviation (input) "set_rec_F\<^sub>m \<equiv> \<lambda>A. setr A \<bind> snds" | |
abbreviation (input) "map_F \<equiv> \<lambda>fb fr. map_sum id (map_prod fb fr)" | |
datatype 'a list_R1 = list_R1 (unR: "('a, 'a list_R1) list_F") | |
lemma list_R1_const_into_dest: "list_R1 F = l \<longleftrightarrow> F = unR l" | |
by auto | |
declare list_R1.split[split] | |
lemma list_R1_induct[case_names list_R1]: | |
assumes "\<And>F. \<lbrakk> \<And>l'. l' \<in> set_rec_F\<^sub>m F \<Longrightarrow> P l' \<rbrakk> \<Longrightarrow> P (list_R1 F)" | |
shows "P l" | |
apply(rule list_R1.induct) | |
apply(auto intro!: assms) | |
done | |
lemma set_list_R1_eq: | |
"{x. set_base_F\<^sub>m x \<subseteq> A \<and> set_rec_F\<^sub>m x \<subseteq> B} = | |
{x. setl x \<subseteq> UNIV \<and> setr x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B}}" | |
by(auto simp add: bind_UNION) | |
(************************************************************) | |
subsubsection \<open> The Isomorphism \<close> | |
(************************************************************) | |
primrec (transfer) list_R1_to_list :: "'a list_R1 \<Rightarrow> 'a list" where | |
"list_R1_to_list (list_R1 l) = (case map_sum id (map_prod id list_R1_to_list) l of Inl () \<Rightarrow> [] | Inr (x, xs) \<Rightarrow> x # xs)" | |
lemma list_R1_to_list_simps [simp]: | |
"list_R1_to_list (list_R1 (Inl ())) = []" | |
"list_R1_to_list (list_R1 (Inr (x, xs))) = x # list_R1_to_list xs" | |
by(simp_all split: unit.split) | |
declare list_R1_to_list.simps [simp del] | |
primrec (transfer) list_to_list_R1 :: "'a list \<Rightarrow> 'a list_R1" where | |
"list_to_list_R1 [] = list_R1 (Inl ())" | |
| "list_to_list_R1 (x#xs) = list_R1 (Inr (x, list_to_list_R1 xs))" | |
lemma R1_of_list: "list_R1_to_list (list_to_list_R1 x) = x" | |
by(induct x) (auto) | |
lemma list_of_R1: "list_to_list_R1 (list_R1_to_list x) = x" | |
apply(induct x) | |
subgoal for x | |
by(cases x) (auto) | |
done | |
lemma list_R1_def: "type_definition list_to_list_R1 list_R1_to_list UNIV" | |
by(unfold_locales)(auto intro: R1_of_list list_of_R1) | |
setup_lifting list_R1_def | |
lemma map_list_R1_list_to_list_R1: "map_list_R1 f (list_to_list_R1 xs) = list_to_list_R1 (map f xs)" | |
by(induction xs) auto | |
lemma list_R1_map_trans [transfer_rule]: includes lifting_syntax shows | |
"(((=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=)) map_list_R1 map" | |
by(auto 4 3 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def map_list_R1_list_to_list_R1) | |
lemma set_list_R1_list_to_list_R1: "set_list_R1 (list_to_list_R1 xs) = set xs" | |
by(induction xs) auto | |
lemma list_R1_set_trans [transfer_rule]: includes lifting_syntax shows | |
"(pcr_list (=) ===> (=)) set_list_R1 set" | |
by(auto simp add: list.pcr_cr_eq cr_list_def set_list_R1_list_to_list_R1) | |
lemma rel_list_R1_list_to_list_R1: | |
"rel_list_R1 R (list_to_list_R1 xs) (list_to_list_R1 ys) \<longleftrightarrow> list_all2 R xs ys" | |
(is "?lhs \<longleftrightarrow> ?rhs") | |
proof | |
define xs' and ys' where "xs' = list_to_list_R1 xs" and "ys' = list_to_list_R1 ys" | |
assume "rel_list_R1 R xs' ys'" | |
then have "list_all2 R (list_R1_to_list xs') (list_R1_to_list ys')" | |
by induction(auto elim!: rel_sum.cases) | |
thus ?rhs by(simp add: xs'_def ys'_def R1_of_list) | |
next | |
show ?lhs if ?rhs using that by induction auto | |
qed | |
lemma list_R1_rel_trans[transfer_rule]: includes lifting_syntax shows | |
"(((=) ===> (=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=) ===> (=)) rel_list_R1 list_all2" | |
by(auto 4 4 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def rel_list_R1_list_to_list_R1) | |
(************************************************************) | |
subsubsection \<open> Hashes \<close> | |
(************************************************************) | |
type_synonym ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h = "unit +\<^sub>h 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h" | |
type_synonym ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m = "unit +\<^sub>m 'a\<^sub>m \<times>\<^sub>m 'b\<^sub>m" | |
type_synonym 'a\<^sub>h list_R1\<^sub>h = "'a\<^sub>h list_R1" | |
\<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>h, _) list_F\<^sub>h"}. | |
We take a shortcut because they're isomorphic.\<close> | |
type_synonym 'a\<^sub>m list_R1\<^sub>m = "'a\<^sub>m list_R1" | |
\<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>m, _) list_F\<^sub>m"}. | |
We take a shortcut because they're isomorphic.\<close> | |
definition hash_F :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h) hash" where | |
"hash_F h rhL = hash_sum hash_unit (hash_prod h rhL)" | |
abbreviation (input) hash_R1 :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list_R1\<^sub>m, 'a\<^sub>h list_R1\<^sub>h) hash" where | |
"hash_R1 \<equiv> map_list_R1" | |
parametric_constant hash_F_parametric[transfer_rule]: hash_F_def | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
definition blinding_of_F :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m blinding_of" where | |
"blinding_of_F bo bL = blinding_of_sum blinding_of_unit (blinding_of_prod bo bL)" | |
abbreviation (input) blinding_of_R1 :: "'a blinding_of \<Rightarrow> 'a list_R1 blinding_of" where | |
"blinding_of_R1 \<equiv> rel_list_R1" | |
lemma blinding_of_hash_R1: | |
assumes "bo \<le> vimage2p h h (=)" | |
shows "blinding_of_R1 bo \<le> vimage2p (hash_R1 h) (hash_R1 h) (=)" | |
apply(rule predicate2I vimage2pI)+ | |
apply(auto simp add: predicate2D_vimage2p[OF assms] elim!: list_R1.rel_induct rel_sum.cases rel_prod.cases) | |
done | |
lemma blinding_of_on_R1 [locale_witness]: | |
assumes "blinding_of_on A h bo" | |
shows "blinding_of_on {x. set_list_R1 x \<subseteq> A} (hash_R1 h) (blinding_of_R1 bo)" | |
(is "blinding_of_on ?A ?h ?bo") | |
proof - | |
interpret a: blinding_of_on A h bo by fact | |
show ?thesis | |
proof | |
show hash: "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_hash_R1) | |
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that | |
proof(induction x arbitrary: y z) | |
case (list_R1 x y' z') | |
from list_R1.prems have s1: "set_base_F\<^sub>m x \<subseteq> A" by(fastforce) | |
from list_R1.prems have s3: "set_rec_F\<^sub>m x \<bind> set_list_R1 \<subseteq> A" by(fastforce intro: rev_bexI) | |
interpret F: blinding_of_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m x}" | |
"hash_F h (hash_R1 h)" "blinding_of_F bo (blinding_of_R1 bo)" | |
unfolding hash_F_def blinding_of_F_def set_list_R1_eq | |
proof | |
let ?A' = "setr x \<bind> snds" and ?bo' = "rel_list_R1 bo" | |
show "?bo' x x" if "x \<in> ?A'" for x using that list_R1 by(force simp add: eq_onp_def) | |
show "?bo' x z" if "?bo' x y" "?bo' y z" "x \<in> ?A'" for x y z | |
using that list_R1.IH[of _ x y z] list_R1.prems | |
by(force simp add: bind_UNION prod_set_defs) | |
show "x = y" if "?bo' x y" "?bo' y x" "x \<in> ?A'" for x y | |
using that list_R1.IH[of _ x y] list_R1.prems | |
by(force simp add: prod_set_defs) | |
qed(rule hash) | |
show ?case using list_R1.prems | |
apply(intro conjI) | |
subgoal using F.refl[of x] s1 unfolding blinding_of_F_def by(auto intro: list_R1.rel_intros) | |
subgoal using s1 by(auto elim!: list_R1.rel_cases F.trans[unfolded blinding_of_F_def] intro: list_R1.rel_intros) | |
subgoal using s1 by(auto elim!: list_R1.rel_cases dest: F.antisym[unfolded blinding_of_F_def]) | |
done | |
qed | |
then show "x \<in> ?A \<Longrightarrow> ?bo x x" | |
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z" | |
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y" | |
for x y z by blast+ | |
qed | |
qed | |
lemmas blinding_of_R1 [locale_witness] = blinding_of_on_R1[where A=UNIV, simplified] | |
parametric_constant blinding_of_F_parametric[transfer_rule]: blinding_of_F_def | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
definition merge_F :: "'a\<^sub>m merge \<Rightarrow> 'b\<^sub>m merge \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m merge" where | |
"merge_F m mL = merge_sum merge_unit (merge_prod m mL)" | |
lemma merge_F_cong[fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> set_base_F\<^sub>m x; b \<in> set_base_F\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b" | |
and "\<And>a b. \<lbrakk> a \<in> set_rec_F\<^sub>m x; b \<in> set_rec_F\<^sub>m y \<rbrakk> \<Longrightarrow> mL a b = mL' a b" | |
shows "merge_F m mL x y = merge_F m' mL' x y" | |
using assms | |
apply(cases x; cases y) | |
apply(simp_all add: merge_F_def) | |
apply(rule arg_cong[where f="map_option _"]) | |
apply(blast intro: merge_prod_cong) | |
done | |
context | |
fixes m :: "'a\<^sub>m merge" | |
notes setr.simps[simp] | |
begin | |
fun merge_R1 :: "'a\<^sub>m list_R1\<^sub>m merge" where | |
"merge_R1 (list_R1 l1) (list_R1 l2) = map_option list_R1 (merge_F m merge_R1 l1 l2)" | |
end | |
case_of_simps merge_cases [simp]: merge_R1.simps | |
lemma merge_on_R1: | |
assumes "merge_on A h bo m" | |
shows "merge_on {x. set_list_R1 x \<subseteq> A } (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)" | |
(is "merge_on ?A ?h ?bo ?m") | |
proof - | |
interpret a: merge_on A h bo m by fact | |
show ?thesis | |
proof | |
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and> | |
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)" | |
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq | |
proof(induction a arbitrary: b rule: list_R1_induct) | |
case wfInd: (list_R1 l) | |
interpret merge_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m l}" | |
"hash_F h ?h" "blinding_of_F bo ?bo" "merge_F m ?m" | |
unfolding set_list_R1_eq hash_F_def merge_F_def blinding_of_F_def | |
proof | |
fix a | |
assume a: "a \<in> set_rec_F\<^sub>m l" | |
with wfInd.prems have a': "set_list_R1 a \<subseteq> A" | |
by fastforce | |
show "hash_R1 h a = hash_R1 h b | |
\<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> | |
(\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" | |
and "?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None" for b | |
using wfInd.IH[OF a a', rule_format, of b] | |
by(auto dest: sym) | |
qed | |
show ?case using wfInd.prems | |
apply(intro conjI strip) | |
subgoal | |
by(auto 4 4 dest!: join[unfolded hash_F_def] | |
simp add: blinding_of_F_def UN_subset_iff list_R1.rel_sel) | |
subgoal by(auto 4 3 intro!: undefined[simplified hash_F_def]) | |
done | |
qed | |
then show | |
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" | |
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None" | |
if "a \<in> ?A" for a b using that by blast+ | |
qed | |
qed | |
lemmas merge_R1 [locale_witness] = merge_on_R1[where A=UNIV, simplified] | |
lemma merkle_list_R1 [locale_witness]: | |
assumes "merkle_interface h bo m" | |
shows "merkle_interface (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)" | |
proof - | |
interpret merge_on UNIV h bo m using assms by(unfold merkle_interface_aux) | |
show ?thesis unfolding merkle_interface_aux[symmetric] .. | |
qed | |
lemma merge_R1_cong [fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> set_list_R1 x; b \<in> set_list_R1 y \<rbrakk> \<Longrightarrow> m a b = m' a b" | |
shows "merge_R1 m x y = merge_R1 m' x y" | |
using assms | |
apply(induction x y rule: merge_R1.induct) | |
apply(simp del: merge_cases) | |
apply(rule arg_cong[where f="map_option _"]) | |
apply(blast intro: merge_F_cong[unfolded bind_UNION]) | |
done | |
parametric_constant merge_F_parametric[transfer_rule]: merge_F_def | |
lemma merge_R1_parametric [transfer_rule]: | |
includes lifting_syntax | |
notes [simp del] = merge_cases | |
assumes [transfer_rule]: "bi_unique A" | |
shows "((A ===> A ===> rel_option A) ===> rel_list_R1 A ===> rel_list_R1 A ===> rel_option (rel_list_R1 A)) | |
merge_R1 merge_R1" | |
apply(intro rel_funI) | |
subgoal premises prems [transfer_rule] for m1 m2 xs1 xs2 ys1 ys2 using prems(2, 3) | |
apply(induction xs1 ys1 arbitrary: xs2 ys2 rule: merge_R1.induct) | |
apply(elim list_R1.rel_cases rel_sum.cases; clarsimp simp add: option.rel_map merge_F_def merge_discrete_def) | |
apply(elim meta_allE; (erule meta_impE, simp)+) | |
subgoal premises [transfer_rule] by transfer_prover | |
done | |
done | |
end | |
subsubsection \<open> Transferring the Constructions to Lists \<close> | |
type_synonym 'a\<^sub>h list\<^sub>h = "'a\<^sub>h list" | |
type_synonym 'a\<^sub>m list\<^sub>m = "'a\<^sub>m list" | |
context begin | |
interpretation list_R1 . | |
abbreviation (input) hash_list :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list\<^sub>m, 'a\<^sub>h list\<^sub>h) hash" | |
where "hash_list \<equiv> map" | |
abbreviation (input) blinding_of_list :: "'a\<^sub>m blinding_of \<Rightarrow> 'a\<^sub>m list\<^sub>m blinding_of" | |
where "blinding_of_list \<equiv> list_all2" | |
lift_definition merge_list :: "'a\<^sub>m merge \<Rightarrow> 'a\<^sub>m list\<^sub>m merge" is merge_R1 . | |
lemma blinding_of_list_mono: | |
"\<lbrakk> \<And>x y. bo x y \<longrightarrow> bo' x y \<rbrakk> \<Longrightarrow> | |
blinding_of_list bo x y \<longrightarrow> blinding_of_list bo' x y" | |
by (transfer) (blast intro: list_R1.rel_mono_strong) | |
lemmas blinding_of_list_hash = blinding_of_hash_R1[Transfer.transferred] | |
and blinding_of_on_list [locale_witness] = blinding_of_on_R1[Transfer.transferred] | |
and blinding_of_list [locale_witness] = blinding_of_R1[Transfer.transferred] | |
and merge_on_list [locale_witness] = merge_on_R1[Transfer.transferred] | |
and merge_list [locale_witness] = merge_R1[Transfer.transferred] | |
and merge_list_cong = merge_R1_cong[Transfer.transferred] | |
lemma blinding_of_list_mono_pred: | |
"R \<le> R' \<Longrightarrow> blinding_of_list R \<le> blinding_of_list R'" | |
by(transfer) (rule list_R1.rel_mono) | |
lemma blinding_of_list_simp: "blinding_of_list = list_all2" | |
by(transfer) (rule refl) | |
lemma merkle_list [locale_witness]: | |
assumes [locale_witness]: "merkle_interface h bo m" | |
shows "merkle_interface (hash_list h) (blinding_of_list bo) (merge_list m)" | |
by(transfer fixing: h bo m) unfold_locales | |
parametric_constant merge_list_parametric [transfer_rule]: merge_list_def | |
lifting_update list.lifting | |
lifting_forget list.lifting | |
end | |
(************************************************************) | |
subsection \<open>Building block: function space\<close> | |
(************************************************************) | |
text \<open> We prove that we can lift the ADS construction through functions.\<close> | |
type_synonym ('a, 'b\<^sub>h) fun\<^sub>h = "'a \<Rightarrow> 'b\<^sub>h" | |
type_notation fun\<^sub>h (infixr "\<Rightarrow>\<^sub>h" 0) | |
type_synonym ('a, 'b\<^sub>m) fun\<^sub>m = "'a \<Rightarrow> 'b\<^sub>m" | |
type_notation fun\<^sub>m (infixr "\<Rightarrow>\<^sub>m" 0) | |
(************************************************************) | |
subsubsection \<open> Hashes \<close> | |
(************************************************************) | |
text \<open> Only the range is live, the domain is dead like for BNFs. \<close> | |
abbreviation (input) hash_fun' :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>h, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash" where | |
"hash_fun' \<equiv> id" | |
abbreviation (input) hash_fun :: "('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash" | |
where "hash_fun \<equiv> comp" | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
abbreviation (input) blinding_of_fun :: "'b\<^sub>m blinding_of \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m) blinding_of" where | |
"blinding_of_fun \<equiv> rel_fun (=)" | |
lemmas blinding_of_fun_mono = fun.rel_mono | |
lemma blinding_of_fun_hash: | |
assumes "bo \<le> vimage2p rh rh (=)" | |
shows "blinding_of_fun bo \<le> vimage2p (hash_fun rh) (hash_fun rh) (=)" | |
using assms by(auto simp add: vimage2p_def rel_fun_def le_fun_def) | |
lemma blinding_of_on_fun [locale_witness]: | |
assumes "blinding_of_on A rh bo" | |
shows "blinding_of_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo)" | |
(is "blinding_of_on ?A ?h ?bo") | |
proof - | |
interpret a: blinding_of_on A rh bo by fact | |
show ?thesis | |
proof | |
show "?bo x x" if "x \<in> ?A" for x using that by(auto simp add: rel_fun_def intro: a.refl) | |
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that | |
by(auto 4 3 simp add: rel_fun_def intro: a.trans) | |
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that | |
by(fastforce simp add: fun_eq_iff rel_fun_def intro: a.antisym) | |
qed(rule blinding_of_fun_hash a.hash)+ | |
qed | |
lemmas blinding_of_fun [locale_witness] = blinding_of_on_fun[where A=UNIV, simplified] | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
context | |
fixes m :: "'b\<^sub>m merge" | |
begin | |
definition merge_fun :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>m) merge" where | |
"merge_fun f g = (if \<forall>x. m (f x) (g x) \<noteq> None then Some (\<lambda>x. the (m (f x) (g x))) else None)" | |
lemma merge_on_fun [locale_witness]: | |
assumes "merge_on A rh bo m" | |
shows "merge_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo) merge_fun" | |
(is "merge_on ?A ?h ?bo ?m") | |
proof - | |
interpret a: merge_on A rh bo m by fact | |
show ?thesis | |
proof | |
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" | |
if "?h a = ?h b" "a \<in> ?A" for a b | |
using that(1)[THEN fun_cong, unfolded o_apply, THEN a.join, OF that(2)[unfolded mem_Collect_eq, THEN subsetD, OF rangeI]] | |
by atomize(subst (asm) choice_iff; auto simp add: merge_fun_def rel_fun_def) | |
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that | |
by(auto simp add: merge_fun_def fun_eq_iff dest: a.undefined) | |
qed | |
qed | |
lemmas merge_fun [locale_witness] = merge_on_fun[where A=UNIV, simplified] | |
end | |
lemma merge_fun_cong[fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> range f; b \<in> range g \<rbrakk> \<Longrightarrow> m a b = m' a b" | |
shows "merge_fun m f g = merge_fun m' f g" | |
using assms[OF rangeI rangeI] by(clarsimp simp add: merge_fun_def) | |
lemma is_none_alt_def: "Option.is_none x \<longleftrightarrow> (case x of None \<Rightarrow> True | Some _ \<Rightarrow> False)" | |
by(auto simp add: Option.is_none_def split: option.splits) | |
parametric_constant is_none_parametric [transfer_rule]: is_none_alt_def | |
lemma merge_fun_parametric [transfer_rule]: includes lifting_syntax shows | |
"((A ===> B ===> rel_option C) ===> ((=) ===> A) ===> ((=) ===> B) ===> rel_option ((=) ===> C)) | |
merge_fun merge_fun" | |
proof(intro rel_funI) | |
fix m :: "'a merge" and m' :: "'b merge" and f :: "'c \<Rightarrow> 'a" and f' :: "'c \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'a" and g' :: "'c \<Rightarrow> 'b" | |
assume m: "(A ===> B ===> rel_option C) m m'" | |
and f: "((=) ===> A) f f'" and g: "((=) ===> B) g g'" | |
note [transfer_rule] = this | |
have cond [unfolded Option.is_none_def]: "(\<forall>x. \<not> Option.is_none (m (f x) (g x))) \<longleftrightarrow> (\<forall>x. \<not> Option.is_none (m' (f' x) (g' x)))" | |
by transfer_prover | |
moreover | |
have "((=) ===> C) (\<lambda>x. the (m (f x) (g x))) (\<lambda>x. the (m' (f' x) (g' x)))" if *: "\<forall>x. \<not> m (f x) (g x) = None" | |
proof - | |
obtain fg fg' where m: "m (f x) (g x) = Some (fg x)" and m': "m' (f' x) (g' x) = Some (fg' x)" for x | |
using * *[simplified cond] | |
by(simp)(subst (asm) (1 2) choice_iff; clarsimp) | |
have "rel_option C (Some (fg x)) (Some (fg' x))" for x unfolding m[symmetric] m'[symmetric] by transfer_prover | |
then show ?thesis by(simp add: rel_fun_def m m') | |
qed | |
ultimately show "rel_option ((=) ===> C) (merge_fun m f g) (merge_fun m' f' g')" | |
unfolding merge_fun_def by(simp) | |
qed | |
(************************************************************) | |
subsubsection \<open> Merkle Interface \<close> | |
(************************************************************) | |
lemma merkle_fun [locale_witness]: | |
assumes "merkle_interface rh bo m" | |
shows "merkle_interface (hash_fun rh) (blinding_of_fun bo) (merge_fun m)" | |
proof - | |
interpret a: merge_on UNIV rh bo m unfolding merkle_interface_aux[symmetric] by fact | |
show ?thesis unfolding merkle_interface_aux[symmetric] .. | |
qed | |
(************************************************************) | |
subsection \<open>Rose trees\<close> | |
(************************************************************) | |
text \<open> | |
We now define an ADS over rose trees, which is like a arbitrarily branching Merkle tree where each | |
node in the tree can be blinded, including the root. The number of children and the position of a | |
child among its siblings cannot be hidden. The construction allows to plug in further blindable | |
positions in the labels of the nodes. | |
\<close> | |
type_synonym ('a, 'b) rose_tree_F = "'a \<times> 'b list" | |
abbreviation (input) map_rose_tree_F where | |
"map_rose_tree_F f1 f2 \<equiv> map_prod f1 (map f2)" | |
definition map_rose_tree_F_const where | |
"map_rose_tree_F_const f1 f2 \<equiv> map_rose_tree_F f1 f2" | |
datatype 'a rose_tree = Tree "('a, 'a rose_tree) rose_tree_F" | |
type_synonym ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h = "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>h" | |
datatype 'a\<^sub>h rose_tree\<^sub>h = Tree\<^sub>h "('a\<^sub>h, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>h" | |
type_synonym ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m = "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m list\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>m" | |
datatype ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m = Tree\<^sub>m "('a\<^sub>m, 'a\<^sub>h, ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>m" | |
abbreviation (input) map_rose_tree_F\<^sub>m | |
:: "('ma \<Rightarrow> 'a) \<Rightarrow> ('mr \<Rightarrow> 'r) \<Rightarrow> ('ma, 'ha, 'mr, 'hr) rose_tree_F\<^sub>m \<Rightarrow> ('a, 'ha, 'r, 'hr) rose_tree_F\<^sub>m" | |
where | |
"map_rose_tree_F\<^sub>m f g \<equiv> map_blindable\<^sub>m (map_prod f (map g)) id" | |
(************************************************************) | |
subsubsection \<open> Hashes \<close> | |
(************************************************************) | |
abbreviation (input) hash_rt_F' | |
:: "(('a\<^sub>h, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash" | |
where | |
"hash_rt_F' \<equiv> hash_blindable id" | |
definition hash_rt_F\<^sub>m | |
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> | |
(('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash" where | |
"hash_rt_F\<^sub>m h rhm \<equiv> hash_rt_F' o map_rose_tree_F\<^sub>m h rhm" | |
lemma hash_rt_F\<^sub>m_alt_def: "hash_rt_F\<^sub>m h rhm = hash_blindable (map_prod h (map rhm))" | |
by(simp add: hash_rt_F\<^sub>m_def fun_eq_iff hash_map_blindable_simp) | |
primrec (transfer) hash_rt_tree' | |
:: "(('a\<^sub>h, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where | |
"hash_rt_tree' (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F' (map_rose_tree_F\<^sub>m id hash_rt_tree' x))" | |
definition hash_tree | |
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where | |
"hash_tree h = hash_rt_tree' o map_rose_tree\<^sub>m h id" | |
lemma blindable\<^sub>m_map_compositionality: | |
"map_blindable\<^sub>m f g o map_blindable\<^sub>m f' g' = map_blindable\<^sub>m (f o f') (g o g')" | |
by(rule ext) (simp add: blindable\<^sub>m.map_comp) | |
lemma hash_tree_simps [simp]: | |
"hash_tree h (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F\<^sub>m h (hash_tree h) x)" | |
by(simp add: hash_tree_def hash_rt_F\<^sub>m_def | |
map_prod.comp map_sum.comp rose_tree\<^sub>h.map_comp blindable\<^sub>m.map_comp | |
prod.map_id0 rose_tree\<^sub>h.map_id0) | |
parametric_constant hash_rt_F\<^sub>m_parametric [transfer_rule]: hash_rt_F\<^sub>m_alt_def | |
parametric_constant hash_tree_parametric [transfer_rule]: hash_tree_def | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
abbreviation (input) blinding_of_rt_F\<^sub>m | |
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m blinding_of \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m blinding_of | |
\<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m blinding_of" where | |
"blinding_of_rt_F\<^sub>m ha boa hb bob \<equiv> blinding_of_blindable (hash_prod ha (map hb)) | |
(blinding_of_prod boa (blinding_of_list bob))" | |
lemma blinding_of_rt_F\<^sub>m_mono: | |
"\<lbrakk> boa \<le> boa'; bob \<le> bob' \<rbrakk> \<Longrightarrow> blinding_of_rt_F\<^sub>m ha boa hb bob \<le> blinding_of_rt_F\<^sub>m ha boa' hb bob'" | |
by(intro blinding_of_blindable_mono prod.rel_mono list.rel_mono) | |
lemma blinding_of_rt_F\<^sub>m_mono_inductive: | |
assumes "\<And>x y. boa x y \<longrightarrow> boa' x y" "\<And>x y. bob x y \<longrightarrow> bob' x y" | |
shows "blinding_of_rt_F\<^sub>m ha boa hb bob x y \<longrightarrow> blinding_of_rt_F\<^sub>m ha boa' hb bob' x y" | |
apply(rule impI) | |
apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1]) | |
using assms by blast+ | |
context | |
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and bo :: "'a\<^sub>m blinding_of" | |
begin | |
inductive blinding_of_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m blinding_of" where | |
"blinding_of_tree (Tree\<^sub>m t1) (Tree\<^sub>m t2)" | |
if "blinding_of_rt_F\<^sub>m h bo (hash_tree h) blinding_of_tree t1 t2" | |
monos blinding_of_rt_F\<^sub>m_mono_inductive | |
end | |
inductive_simps blinding_of_tree_simps [simp]: | |
"blinding_of_tree h bo (Tree\<^sub>m t1) (Tree\<^sub>m t2)" | |
lemma blinding_of_rt_F\<^sub>m_hash: | |
assumes "boa \<le> vimage2p ha ha (=)" "bob \<le> vimage2p hb hb (=)" | |
shows "blinding_of_rt_F\<^sub>m ha boa hb bob \<le> vimage2p (hash_rt_F\<^sub>m ha hb) (hash_rt_F\<^sub>m ha hb) (=)" | |
apply(rule order_trans) | |
apply(rule blinding_of_blindable_hash) | |
apply(fold relator_eq) | |
apply(unfold vimage2p_map_rel_prod vimage2p_map_list_all2) | |
apply(rule prod.rel_mono assms list.rel_mono)+ | |
apply(simp only: hash_rt_F\<^sub>m_def vimage2p_comp o_apply hash_blindable_def blindable\<^sub>m.map_id0 id_def[symmetric] vimage2p_id id_apply) | |
done | |
lemma blinding_of_tree_hash: | |
assumes "bo \<le> vimage2p h h (=)" | |
shows "blinding_of_tree h bo \<le> vimage2p (hash_tree h) (hash_tree h) (=)" | |
apply(rule predicate2I vimage2pI)+ | |
apply(erule blinding_of_tree.induct) | |
apply(simp) | |
apply(erule blinding_of_rt_F\<^sub>m_hash[OF assms, THEN predicate2D_vimage2p, rotated 1]) | |
apply(blast intro: vimage2pI) | |
done | |
abbreviation (input) set1_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>m) rose_tree_F\<^sub>m \<Rightarrow> 'a\<^sub>m set" where | |
"set1_rt_F\<^sub>m x \<equiv> set1_blindable\<^sub>m x \<bind> fsts" | |
abbreviation (input) set3_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m \<Rightarrow> 'b\<^sub>m set" where | |
"set3_rt_F\<^sub>m x \<equiv> (set1_blindable\<^sub>m x \<bind> snds) \<bind> set" | |
lemma set_rt_F\<^sub>m_eq: | |
"{x. set1_rt_F\<^sub>m x \<subseteq> A \<and> set3_rt_F\<^sub>m x \<subseteq> B} = | |
{x. set1_blindable\<^sub>m x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> {x. set x \<subseteq> B}}}" | |
by force | |
lemma hash_blindable_map: "hash_blindable f \<circ> map_blindable\<^sub>m g id = hash_blindable (f \<circ> g)" | |
by(rule ext) (simp add: hash_blindable_def blindable\<^sub>m.map_comp) | |
lemma blinding_of_on_tree [locale_witness]: | |
assumes "blinding_of_on A h bo" | |
shows "blinding_of_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo)" | |
(is "blinding_of_on ?A ?h ?bo") | |
proof - | |
interpret a: blinding_of_on A h bo by fact | |
show ?thesis | |
proof | |
show "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_tree_hash) | |
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that | |
proof(induction x arbitrary: y z) | |
case (Tree\<^sub>m x) | |
have [locale_witness]: "blinding_of_on (set3_rt_F\<^sub>m x) (hash_tree h) (blinding_of_tree h bo)" | |
apply unfold_locales | |
subgoal by(rule blinding_of_tree_hash)(rule a.hash) | |
subgoal using Tree\<^sub>m.IH Tree\<^sub>m.prems by(fastforce simp add: eq_onp_def) | |
subgoal for x y z using Tree\<^sub>m.IH[of _ _ x y z] Tree\<^sub>m.prems by fastforce | |
subgoal for x y using Tree\<^sub>m.IH[of _ _ x y] Tree\<^sub>m.prems by fastforce | |
done | |
interpret blinding_of_on | |
"{a. set1_rt_F\<^sub>m a \<subseteq> A \<and> set3_rt_F\<^sub>m a \<subseteq> set3_rt_F\<^sub>m x}" | |
"hash_rt_F\<^sub>m h ?h" "blinding_of_rt_F\<^sub>m h bo ?h ?bo" | |
unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def .. | |
from Tree\<^sub>m.prems show ?case | |
apply(intro conjI) | |
subgoal by(fastforce intro!: blinding_of_tree.intros refl[unfolded hash_rt_F\<^sub>m_alt_def]) | |
subgoal by(fastforce elim!: blinding_of_tree.cases trans[unfolded hash_rt_F\<^sub>m_alt_def] | |
intro!: blinding_of_tree.intros) | |
subgoal by(fastforce elim!: blinding_of_tree.cases antisym[unfolded hash_rt_F\<^sub>m_alt_def]) | |
done | |
qed | |
then show "x \<in> ?A \<Longrightarrow> ?bo x x" | |
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z" | |
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y" | |
for x y z by blast+ | |
qed | |
qed | |
lemmas blinding_of_tree [locale_witness] = blinding_of_on_tree[where A=UNIV, simplified] | |
lemma blinding_of_tree_mono: | |
"bo \<le> bo' \<Longrightarrow> blinding_of_tree h bo \<le> blinding_of_tree h bo'" | |
apply(rule predicate2I) | |
apply(erule blinding_of_tree.induct) | |
apply(rule blinding_of_tree.intros) | |
apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1]) | |
apply(blast)+ | |
done | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
definition merge_rt_F\<^sub>m | |
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m merge \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m merge \<Rightarrow> | |
('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m merge" | |
where | |
"merge_rt_F\<^sub>m ha ma hr mr \<equiv> merge_blindable (hash_prod ha (hash_list hr)) (merge_prod ma (merge_list mr))" | |
lemma merge_rt_F\<^sub>m_cong [fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> set1_rt_F\<^sub>m x; b \<in> set1_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> ma a b = ma' a b" | |
and "\<And>a b. \<lbrakk> a \<in> set3_rt_F\<^sub>m x; b \<in> set3_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> mm a b = mm' a b" | |
shows "merge_rt_F\<^sub>m ha ma hm mm x y = merge_rt_F\<^sub>m ha ma' hm mm' x y" | |
using assms | |
apply(cases x; cases y; simp add: merge_rt_F\<^sub>m_def bind_UNION) | |
apply(rule arg_cong[where f="map_option _"]) | |
apply(blast intro: merge_prod_cong merge_list_cong) | |
done | |
lemma in_set1_blindable\<^sub>m_iff: "x \<in> set1_blindable\<^sub>m y \<longleftrightarrow> y = Unblinded x" | |
by(cases y) auto | |
context | |
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and ma :: "'a\<^sub>m merge" | |
notes in_set1_blindable\<^sub>m_iff[simp] | |
begin | |
fun merge_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m merge" where | |
"merge_tree (Tree\<^sub>m x) (Tree\<^sub>m y) = map_option Tree\<^sub>m ( | |
merge_rt_F\<^sub>m h ma (hash_tree h) merge_tree x y)" | |
end | |
lemma merge_on_tree [locale_witness]: | |
assumes "merge_on A h bo m" | |
shows "merge_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)" | |
(is "merge_on ?A ?h ?bo ?m") | |
proof - | |
interpret a: merge_on A h bo m by fact | |
show ?thesis | |
proof | |
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and> | |
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)" | |
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq | |
proof(induction a arbitrary: b rule: rose_tree\<^sub>m.induct) | |
case (Tree\<^sub>m x y) | |
interpret merge_on | |
"{y. set1_rt_F\<^sub>m y \<subseteq> A \<and> set3_rt_F\<^sub>m y \<subseteq> set3_rt_F\<^sub>m x}" | |
"hash_rt_F\<^sub>m h ?h" | |
"blinding_of_rt_F\<^sub>m h bo ?h ?bo" | |
"merge_rt_F\<^sub>m h m ?h ?m" | |
unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def merge_rt_F\<^sub>m_def | |
proof | |
fix a | |
assume a: "a \<in> set3_rt_F\<^sub>m x" | |
with Tree\<^sub>m.prems have a': "set1_rose_tree\<^sub>m a \<subseteq> A" | |
by(force simp add: bind_UNION) | |
from a obtain l and ab where a'': "ab \<in> set1_blindable\<^sub>m x" "l \<in> snds ab" "a \<in> set l" | |
by(clarsimp simp add: bind_UNION) | |
fix b | |
from Tree\<^sub>m.IH[OF a'' a', rule_format, of b] | |
show "hash_tree h a = hash_tree h b | |
\<Longrightarrow> \<exists>ab. merge_tree h m a b = Some ab \<and> blinding_of_tree h bo a ab \<and> blinding_of_tree h bo b ab \<and> | |
(\<forall>u. blinding_of_tree h bo a u \<longrightarrow> blinding_of_tree h bo b u \<longrightarrow> blinding_of_tree h bo ab u)" | |
and "hash_tree h a \<noteq> hash_tree h b \<Longrightarrow> merge_tree h m a b = None" | |
by(auto dest: sym) | |
qed | |
show ?case using Tree\<^sub>m.prems | |
apply(intro conjI strip) | |
subgoal by(cases y)(fastforce dest!: join simp add: blinding_of_tree.simps) | |
subgoal by (cases y) (fastforce dest!: undefined) | |
done | |
qed | |
then show | |
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" | |
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None" | |
if "a \<in> ?A" for a b using that by blast+ | |
qed | |
qed | |
lemmas merge_tree [locale_witness] = merge_on_tree[where A=UNIV, simplified] | |
lemma option_bind_comm: | |
"((x :: 'a option) \<bind> (\<lambda>y. c \<bind> (\<lambda>z. f y z))) = (c \<bind> (\<lambda>y. x \<bind> (\<lambda>z. f z y)))" | |
by(cases x; cases c; auto) | |
parametric_constant merge_rt_F\<^sub>m_parametric [transfer_rule]: merge_rt_F\<^sub>m_def | |
(************************************************************) | |
subsubsection \<open>Merkle interface\<close> | |
(************************************************************) | |
lemma merkle_tree [locale_witness]: | |
assumes "merkle_interface h bo m" | |
shows "merkle_interface (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)" | |
proof - | |
interpret merge_on UNIV h bo m using assms unfolding merkle_interface_aux . | |
show ?thesis unfolding merkle_interface_aux[symmetric] .. | |
qed | |
lemma merge_tree_cong [fundef_cong]: | |
assumes "\<And>a b. \<lbrakk> a \<in> set1_rose_tree\<^sub>m x; b \<in> set1_rose_tree\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b" | |
shows "merge_tree h m x y = merge_tree h m' x y" | |
using assms | |
apply(induction x y rule: merge_tree.induct) | |
apply(simp add: bind_UNION) | |
apply(rule arg_cong[where f="map_option _"]) | |
apply(rule merge_rt_F\<^sub>m_cong; simp add: bind_UNION; blast) | |
done | |
end | |