Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14 kB
(* Title: AVL Trees
Author: Tobias Nipkow and Cornelia Pusch,
converted to Isar by Gerwin Klein
contributions by Achim Brucker, Burkhart Wolff and Jan Smaus
Maintainer: Gerwin Klein <gerwin.klein at nicta.com.au>
see the file Changelog for a list of changes
*)
section \<open>AVL Trees in 2 Stages\<close>
theory AVL2
imports Main
begin
text \<open>
This development of AVL trees leads to the same implementation
as the monolithic one (in theorey AVL) but via an intermediate
abstraction: AVL trees where the height is recomputed rather than
stored in the tree. This two-stage devlopment is longer than the
monolithic one but each individual step is simpler. It should really
be viewed as a blueprint for the development of data structures where
some of the fields contain redundant information (for efficiency
reasons).
\<close>
subsection \<open>Step 1: Pure binary and AVL trees\<close>
text \<open>
The basic formulation of AVL trees builds on pure binary trees
and recomputes all height information whenever it is required. This
simplifies the correctness proofs.
\<close>
datatype (set_of: 'a) tree\<^sub>0 = ET\<^sub>0 | MKT\<^sub>0 'a "'a tree\<^sub>0" "'a tree\<^sub>0"
subsubsection \<open>Auxiliary functions\<close>
primrec height :: "'a tree\<^sub>0 \<Rightarrow> nat" where
"height ET\<^sub>0 = 0"
| "height (MKT\<^sub>0 n l r) = 1 + max (height l) (height r)"
primrec is_ord :: "('a::preorder) tree\<^sub>0 \<Rightarrow> bool" where
"is_ord ET\<^sub>0 = True"
| "is_ord (MKT\<^sub>0 n l r) =
((\<forall>n'\<in> set_of l. n' < n) \<and> (\<forall>n'\<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"
primrec is_bal :: "'a tree\<^sub>0 \<Rightarrow> bool" where
"is_bal ET\<^sub>0 = True"
| "is_bal (MKT\<^sub>0 n l r) =
((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and>
is_bal l \<and> is_bal r)"
subsubsection \<open>AVL interface and simple implementation\<close>
primrec is_in\<^sub>0 :: "('a::preorder) \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> bool" where
"is_in\<^sub>0 k ET\<^sub>0 = False"
| "is_in\<^sub>0 k (MKT\<^sub>0 n l r) = (if k = n then True else
if k<n then (is_in\<^sub>0 k l)
else (is_in\<^sub>0 k r))"
primrec l_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
"l_bal\<^sub>0 n (MKT\<^sub>0 ln ll lr) r =
(if height ll < height lr
then case lr of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close>
| MKT\<^sub>0 lrn lrl lrr \<Rightarrow> MKT\<^sub>0 lrn (MKT\<^sub>0 ln ll lrl) (MKT\<^sub>0 n lrr r)
else MKT\<^sub>0 ln ll (MKT\<^sub>0 n lr r))"
primrec r_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
"r_bal\<^sub>0 n l (MKT\<^sub>0 rn rl rr) =
(if height rl > height rr
then case rl of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close>
| MKT\<^sub>0 rln rll rlr \<Rightarrow> MKT\<^sub>0 rln (MKT\<^sub>0 n l rll) (MKT\<^sub>0 rn rlr rr)
else MKT\<^sub>0 rn (MKT\<^sub>0 n l rl) rr)"
primrec insrt\<^sub>0 :: "'a::preorder \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
"insrt\<^sub>0 x ET\<^sub>0 = MKT\<^sub>0 x ET\<^sub>0 ET\<^sub>0"
| "insrt\<^sub>0 x (MKT\<^sub>0 n l r) =
(if x=n
then MKT\<^sub>0 n l r
else if x<n
then let l' = insrt\<^sub>0 x l
in if height l' = 2+height r
then l_bal\<^sub>0 n l' r
else MKT\<^sub>0 n l' r
else let r' = insrt\<^sub>0 x r
in if height r' = 2+height l
then r_bal\<^sub>0 n l r'
else MKT\<^sub>0 n l r')"
subsubsection \<open>Insertion maintains AVL balance\<close>
lemma height_l_bal:
"height l = height r + 2
\<Longrightarrow> height (l_bal\<^sub>0 n l r) = height r + 2 \<or>
height (l_bal\<^sub>0 n l r) = height r + 3"
by (cases l) (auto split: tree\<^sub>0.split if_split_asm)
lemma height_r_bal:
"height r = height l + 2
\<Longrightarrow> height (r_bal\<^sub>0 n l r) = height l + 2 \<or>
height (r_bal\<^sub>0 n l r) = height l + 3"
by (cases r) (auto split: tree\<^sub>0.split if_split_asm)
lemma height_insrt:
"is_bal t
\<Longrightarrow> height (insrt\<^sub>0 x t) = height t \<or> height (insrt\<^sub>0 x t) = height t + 1"
proof (induct t)
case ET\<^sub>0 show ?case by simp
next
case (MKT\<^sub>0 n t1 t2) then show ?case proof (cases "x < n")
case True show ?thesis
proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2")
case True with height_l_bal [of _ _ n]
have "height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) =
height t2 + 2 \<or> height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = height t2 + 3" by simp
with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto
next
case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto
qed
next
case False show ?thesis
proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2")
case True with height_r_bal [of _ _ n]
have "height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 2 \<or>
height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 3" by simp
with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto
next
case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto
qed
qed
qed
lemma is_bal_l_bal:
"is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height l = height r + 2 \<Longrightarrow> is_bal (l_bal\<^sub>0 n l r)"
by (cases l) (auto, auto split: tree\<^sub>0.split) \<comment> \<open>separating the two auto's is just for speed\<close>
lemma is_bal_r_bal:
"is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height r = height l + 2 \<Longrightarrow> is_bal (r_bal\<^sub>0 n l r)"
by (cases r) (auto, auto split: tree\<^sub>0.split) \<comment> \<open>separating the two auto's is just for speed\<close>
theorem is_bal_insrt:
"is_bal t \<Longrightarrow> is_bal(insrt\<^sub>0 x t)"
proof (induct t)
case ET\<^sub>0 show ?case by simp
next
case (MKT\<^sub>0 n t1 t2) show ?case proof (cases "x < n")
case True show ?thesis
proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2")
case True with \<open>x < n\<close> MKT\<^sub>0 show ?thesis
by (simp add: is_bal_l_bal)
next
case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis
using height_insrt [of t1 x] by auto
qed
next
case False show ?thesis
proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2")
case True with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis
by (simp add: is_bal_r_bal)
next
case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis
using height_insrt [of t2 x] by auto
qed
qed
qed
subsubsection \<open>Correctness of insertion\<close>
lemma set_of_l_bal: "height l = height r + 2 \<Longrightarrow>
set_of (l_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)"
by (cases l) (auto split: tree\<^sub>0.splits)
lemma set_of_r_bal: "height r = height l + 2 \<Longrightarrow>
set_of (r_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)"
by (cases r) (auto split: tree\<^sub>0.splits)
theorem set_of_insrt:
"set_of (insrt\<^sub>0 x t) = insert x (set_of t)"
by (induct t) (auto simp add:set_of_l_bal set_of_r_bal Let_def)
subsubsection \<open>Correctness of lookup\<close>
theorem is_in_correct: "is_ord t \<Longrightarrow> is_in\<^sub>0 k t = (k : set_of t)"
by (induct t) (auto simp add: less_le_not_le)
subsubsection \<open>Insertion maintains order\<close>
lemma is_ord_l_bal:
"is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height l = Suc (Suc (height r)) \<Longrightarrow>
is_ord (l_bal\<^sub>0 x l r)"
by (cases l) (auto split: tree\<^sub>0.splits intro: order_less_trans)
lemma is_ord_r_bal:
"is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height r = height l + 2 \<Longrightarrow>
is_ord (r_bal\<^sub>0 x l r)"
by (cases r) (auto split:tree\<^sub>0.splits intro: order_less_trans)
text \<open>If the order is linear, @{const insrt\<^sub>0} maintains the order:\<close>
theorem is_ord_insrt:
"is_ord t \<Longrightarrow> is_ord (insrt\<^sub>0 (x::'a::linorder) t)"
by (induct t) (simp_all add:is_ord_l_bal is_ord_r_bal set_of_insrt
linorder_not_less order_neq_le_trans Let_def)
subsection \<open>Step 2: Binary and AVL trees with height information\<close>
datatype 'a tree = ET | MKT 'a "'a tree" "'a tree" nat
subsubsection \<open>Auxiliary functions\<close>
primrec erase :: "'a tree \<Rightarrow> 'a tree\<^sub>0" where
"erase ET = ET\<^sub>0"
| "erase (MKT x l r h) = MKT\<^sub>0 x (erase l) (erase r)"
primrec hinv :: "'a tree \<Rightarrow> bool" where
"hinv ET \<longleftrightarrow> True"
| "hinv (MKT x l r h) \<longleftrightarrow> h = 1 + max (height (erase l)) (height (erase r))
\<and> hinv l \<and> hinv r"
definition avl :: "'a tree \<Rightarrow> bool" where
"avl t \<longleftrightarrow> is_bal (erase t) \<and> hinv t"
subsubsection \<open>AVL interface and efficient implementation\<close>
primrec is_in :: "('a::preorder) \<Rightarrow> 'a tree \<Rightarrow> bool" where
"is_in k ET \<longleftrightarrow> False"
| "is_in k (MKT n l r h) \<longleftrightarrow> (if k = n then True else
if k < n then (is_in k l)
else (is_in k r))"
primrec ht :: "'a tree \<Rightarrow> nat" where
"ht ET = 0"
| "ht (MKT x l r h) = h"
definition mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"
primrec l_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"l_bal n (MKT ln ll lr h) r =
(if ht ll < ht lr
then case lr of ET \<Rightarrow> ET \<comment> \<open>impossible\<close>
| MKT lrn lrl lrr lrh \<Rightarrow>
mkt lrn (mkt ln ll lrl) (mkt n lrr r)
else mkt ln ll (mkt n lr r))"
primrec r_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"r_bal n l (MKT rn rl rr h) =
(if ht rl > ht rr
then case rl of ET \<Rightarrow> ET \<comment> \<open>impossible\<close>
| MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
else mkt rn (mkt n l rl) rr)"
primrec insrt :: "'a::preorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"insrt x ET = MKT x ET ET 1"
| "insrt x (MKT n l r h) =
(if x=n
then MKT n l r h
else if x<n
then let l' = insrt x l; hl' = ht l'; hr = ht r
in if hl' = 2+hr then l_bal n l' r
else MKT n l' r (1 + max hl' hr)
else let r' = insrt x r; hl = ht l; hr' = ht r'
in if hr' = 2+hl then r_bal n l r'
else MKT n l r' (1 + max hl hr'))"
subsubsection \<open>Correctness proof\<close>
text\<open>The auxiliary functions are implemented correctly:\<close>
lemma height_hinv: "hinv t \<Longrightarrow> ht t = height (erase t)"
by (induct t) simp_all
lemma erase_mkt: "erase (mkt n l r) = MKT\<^sub>0 n (erase l) (erase r)"
by (simp add: mkt_def)
lemma erase_l_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height (erase l) = height(erase r) + 2 \<Longrightarrow>
erase (l_bal n l r) = l_bal\<^sub>0 n (erase l) (erase r)"
by (cases l) (simp_all add: height_hinv erase_mkt split: tree.split)
lemma erase_r_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow>
erase (r_bal n l r) = r_bal\<^sub>0 n (erase l) (erase r)"
by (cases r) (simp_all add: height_hinv erase_mkt split: tree.split)
text \<open>Function @{const insrt} maintains the invariant:\<close>
lemma hinv_mkt: "hinv l \<Longrightarrow> hinv r \<Longrightarrow> hinv (mkt x l r)"
by (simp add: height_hinv mkt_def)
lemma hinv_l_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase l) = height(erase r) + 2 \<Longrightarrow>
hinv (l_bal n l r)"
by (cases l) (auto simp add: hinv_mkt split: tree.splits)
lemma hinv_r_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow>
hinv (r_bal n l r)"
by (cases r) (auto simp add: hinv_mkt split: tree.splits)
theorem hinv_insrt: "hinv t \<Longrightarrow> hinv (insrt x t)"
by (induct t) (simp_all add: Let_def height_hinv hinv_l_bal hinv_r_bal)
text\<open>Function @{const insrt} implements @{const insrt\<^sub>0}:\<close>
lemma erase_insrt: "hinv t \<Longrightarrow> erase (insrt x t) = insrt\<^sub>0 x (erase t)"
by (induct t) (simp_all add: Let_def hinv_insrt height_hinv erase_l_bal erase_r_bal)
text\<open>Function @{const insrt} meets its spec:\<close>
corollary "avl t \<Longrightarrow> set_of (erase (insrt x t)) = insert x (set_of (erase t))"
by (simp add: avl_def erase_insrt set_of_insrt)
text\<open>Function @{const insrt} preserves the invariants:\<close>
corollary "avl t \<Longrightarrow> avl (insrt x t)"
by (simp add: hinv_insrt avl_def erase_insrt is_bal_insrt)
corollary
"avl t \<Longrightarrow> is_ord (erase t) \<Longrightarrow> is_ord (erase (insrt (x::'a::linorder) t))"
by (simp add: avl_def erase_insrt is_ord_insrt)
text\<open>Function @{const is_in} implements @{const is_in}:\<close>
theorem is_in: "is_in x t = is_in\<^sub>0 x (erase t)"
by (induct t) simp_all
text\<open>Function @{const is_in} meets its spec:\<close>
corollary "is_ord (erase t) \<Longrightarrow> is_in x t \<longleftrightarrow> x \<in> set_of (erase t)"
by (simp add:is_in is_in_correct)
end