Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: AVL Trees | |
Author: Tobias Nipkow and Cornelia Pusch, | |
converted to Isar by Gerwin Klein | |
contributions by Achim Brucker, Burkhart Wolff and Jan Smaus | |
Maintainer: Gerwin Klein <gerwin.klein at nicta.com.au> | |
see the file Changelog for a list of changes | |
*) | |
section \<open>AVL Trees in 2 Stages\<close> | |
theory AVL2 | |
imports Main | |
begin | |
text \<open> | |
This development of AVL trees leads to the same implementation | |
as the monolithic one (in theorey AVL) but via an intermediate | |
abstraction: AVL trees where the height is recomputed rather than | |
stored in the tree. This two-stage devlopment is longer than the | |
monolithic one but each individual step is simpler. It should really | |
be viewed as a blueprint for the development of data structures where | |
some of the fields contain redundant information (for efficiency | |
reasons). | |
\<close> | |
subsection \<open>Step 1: Pure binary and AVL trees\<close> | |
text \<open> | |
The basic formulation of AVL trees builds on pure binary trees | |
and recomputes all height information whenever it is required. This | |
simplifies the correctness proofs. | |
\<close> | |
datatype (set_of: 'a) tree\<^sub>0 = ET\<^sub>0 | MKT\<^sub>0 'a "'a tree\<^sub>0" "'a tree\<^sub>0" | |
subsubsection \<open>Auxiliary functions\<close> | |
primrec height :: "'a tree\<^sub>0 \<Rightarrow> nat" where | |
"height ET\<^sub>0 = 0" | |
| "height (MKT\<^sub>0 n l r) = 1 + max (height l) (height r)" | |
primrec is_ord :: "('a::preorder) tree\<^sub>0 \<Rightarrow> bool" where | |
"is_ord ET\<^sub>0 = True" | |
| "is_ord (MKT\<^sub>0 n l r) = | |
((\<forall>n'\<in> set_of l. n' < n) \<and> (\<forall>n'\<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)" | |
primrec is_bal :: "'a tree\<^sub>0 \<Rightarrow> bool" where | |
"is_bal ET\<^sub>0 = True" | |
| "is_bal (MKT\<^sub>0 n l r) = | |
((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and> | |
is_bal l \<and> is_bal r)" | |
subsubsection \<open>AVL interface and simple implementation\<close> | |
primrec is_in\<^sub>0 :: "('a::preorder) \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> bool" where | |
"is_in\<^sub>0 k ET\<^sub>0 = False" | |
| "is_in\<^sub>0 k (MKT\<^sub>0 n l r) = (if k = n then True else | |
if k<n then (is_in\<^sub>0 k l) | |
else (is_in\<^sub>0 k r))" | |
primrec l_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where | |
"l_bal\<^sub>0 n (MKT\<^sub>0 ln ll lr) r = | |
(if height ll < height lr | |
then case lr of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close> | |
| MKT\<^sub>0 lrn lrl lrr \<Rightarrow> MKT\<^sub>0 lrn (MKT\<^sub>0 ln ll lrl) (MKT\<^sub>0 n lrr r) | |
else MKT\<^sub>0 ln ll (MKT\<^sub>0 n lr r))" | |
primrec r_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where | |
"r_bal\<^sub>0 n l (MKT\<^sub>0 rn rl rr) = | |
(if height rl > height rr | |
then case rl of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close> | |
| MKT\<^sub>0 rln rll rlr \<Rightarrow> MKT\<^sub>0 rln (MKT\<^sub>0 n l rll) (MKT\<^sub>0 rn rlr rr) | |
else MKT\<^sub>0 rn (MKT\<^sub>0 n l rl) rr)" | |
primrec insrt\<^sub>0 :: "'a::preorder \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where | |
"insrt\<^sub>0 x ET\<^sub>0 = MKT\<^sub>0 x ET\<^sub>0 ET\<^sub>0" | |
| "insrt\<^sub>0 x (MKT\<^sub>0 n l r) = | |
(if x=n | |
then MKT\<^sub>0 n l r | |
else if x<n | |
then let l' = insrt\<^sub>0 x l | |
in if height l' = 2+height r | |
then l_bal\<^sub>0 n l' r | |
else MKT\<^sub>0 n l' r | |
else let r' = insrt\<^sub>0 x r | |
in if height r' = 2+height l | |
then r_bal\<^sub>0 n l r' | |
else MKT\<^sub>0 n l r')" | |
subsubsection \<open>Insertion maintains AVL balance\<close> | |
lemma height_l_bal: | |
"height l = height r + 2 | |
\<Longrightarrow> height (l_bal\<^sub>0 n l r) = height r + 2 \<or> | |
height (l_bal\<^sub>0 n l r) = height r + 3" | |
by (cases l) (auto split: tree\<^sub>0.split if_split_asm) | |
lemma height_r_bal: | |
"height r = height l + 2 | |
\<Longrightarrow> height (r_bal\<^sub>0 n l r) = height l + 2 \<or> | |
height (r_bal\<^sub>0 n l r) = height l + 3" | |
by (cases r) (auto split: tree\<^sub>0.split if_split_asm) | |
lemma height_insrt: | |
"is_bal t | |
\<Longrightarrow> height (insrt\<^sub>0 x t) = height t \<or> height (insrt\<^sub>0 x t) = height t + 1" | |
proof (induct t) | |
case ET\<^sub>0 show ?case by simp | |
next | |
case (MKT\<^sub>0 n t1 t2) then show ?case proof (cases "x < n") | |
case True show ?thesis | |
proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2") | |
case True with height_l_bal [of _ _ n] | |
have "height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = | |
height t2 + 2 \<or> height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = height t2 + 3" by simp | |
with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto | |
next | |
case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto | |
qed | |
next | |
case False show ?thesis | |
proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2") | |
case True with height_r_bal [of _ _ n] | |
have "height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 2 \<or> | |
height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 3" by simp | |
with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto | |
next | |
case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto | |
qed | |
qed | |
qed | |
lemma is_bal_l_bal: | |
"is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height l = height r + 2 \<Longrightarrow> is_bal (l_bal\<^sub>0 n l r)" | |
by (cases l) (auto, auto split: tree\<^sub>0.split) \<comment> \<open>separating the two auto's is just for speed\<close> | |
lemma is_bal_r_bal: | |
"is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height r = height l + 2 \<Longrightarrow> is_bal (r_bal\<^sub>0 n l r)" | |
by (cases r) (auto, auto split: tree\<^sub>0.split) \<comment> \<open>separating the two auto's is just for speed\<close> | |
theorem is_bal_insrt: | |
"is_bal t \<Longrightarrow> is_bal(insrt\<^sub>0 x t)" | |
proof (induct t) | |
case ET\<^sub>0 show ?case by simp | |
next | |
case (MKT\<^sub>0 n t1 t2) show ?case proof (cases "x < n") | |
case True show ?thesis | |
proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2") | |
case True with \<open>x < n\<close> MKT\<^sub>0 show ?thesis | |
by (simp add: is_bal_l_bal) | |
next | |
case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis | |
using height_insrt [of t1 x] by auto | |
qed | |
next | |
case False show ?thesis | |
proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2") | |
case True with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis | |
by (simp add: is_bal_r_bal) | |
next | |
case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis | |
using height_insrt [of t2 x] by auto | |
qed | |
qed | |
qed | |
subsubsection \<open>Correctness of insertion\<close> | |
lemma set_of_l_bal: "height l = height r + 2 \<Longrightarrow> | |
set_of (l_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)" | |
by (cases l) (auto split: tree\<^sub>0.splits) | |
lemma set_of_r_bal: "height r = height l + 2 \<Longrightarrow> | |
set_of (r_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)" | |
by (cases r) (auto split: tree\<^sub>0.splits) | |
theorem set_of_insrt: | |
"set_of (insrt\<^sub>0 x t) = insert x (set_of t)" | |
by (induct t) (auto simp add:set_of_l_bal set_of_r_bal Let_def) | |
subsubsection \<open>Correctness of lookup\<close> | |
theorem is_in_correct: "is_ord t \<Longrightarrow> is_in\<^sub>0 k t = (k : set_of t)" | |
by (induct t) (auto simp add: less_le_not_le) | |
subsubsection \<open>Insertion maintains order\<close> | |
lemma is_ord_l_bal: | |
"is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height l = Suc (Suc (height r)) \<Longrightarrow> | |
is_ord (l_bal\<^sub>0 x l r)" | |
by (cases l) (auto split: tree\<^sub>0.splits intro: order_less_trans) | |
lemma is_ord_r_bal: | |
"is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height r = height l + 2 \<Longrightarrow> | |
is_ord (r_bal\<^sub>0 x l r)" | |
by (cases r) (auto split:tree\<^sub>0.splits intro: order_less_trans) | |
text \<open>If the order is linear, @{const insrt\<^sub>0} maintains the order:\<close> | |
theorem is_ord_insrt: | |
"is_ord t \<Longrightarrow> is_ord (insrt\<^sub>0 (x::'a::linorder) t)" | |
by (induct t) (simp_all add:is_ord_l_bal is_ord_r_bal set_of_insrt | |
linorder_not_less order_neq_le_trans Let_def) | |
subsection \<open>Step 2: Binary and AVL trees with height information\<close> | |
datatype 'a tree = ET | MKT 'a "'a tree" "'a tree" nat | |
subsubsection \<open>Auxiliary functions\<close> | |
primrec erase :: "'a tree \<Rightarrow> 'a tree\<^sub>0" where | |
"erase ET = ET\<^sub>0" | |
| "erase (MKT x l r h) = MKT\<^sub>0 x (erase l) (erase r)" | |
primrec hinv :: "'a tree \<Rightarrow> bool" where | |
"hinv ET \<longleftrightarrow> True" | |
| "hinv (MKT x l r h) \<longleftrightarrow> h = 1 + max (height (erase l)) (height (erase r)) | |
\<and> hinv l \<and> hinv r" | |
definition avl :: "'a tree \<Rightarrow> bool" where | |
"avl t \<longleftrightarrow> is_bal (erase t) \<and> hinv t" | |
subsubsection \<open>AVL interface and efficient implementation\<close> | |
primrec is_in :: "('a::preorder) \<Rightarrow> 'a tree \<Rightarrow> bool" where | |
"is_in k ET \<longleftrightarrow> False" | |
| "is_in k (MKT n l r h) \<longleftrightarrow> (if k = n then True else | |
if k < n then (is_in k l) | |
else (is_in k r))" | |
primrec ht :: "'a tree \<Rightarrow> nat" where | |
"ht ET = 0" | |
| "ht (MKT x l r h) = h" | |
definition mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)" | |
primrec l_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"l_bal n (MKT ln ll lr h) r = | |
(if ht ll < ht lr | |
then case lr of ET \<Rightarrow> ET \<comment> \<open>impossible\<close> | |
| MKT lrn lrl lrr lrh \<Rightarrow> | |
mkt lrn (mkt ln ll lrl) (mkt n lrr r) | |
else mkt ln ll (mkt n lr r))" | |
primrec r_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"r_bal n l (MKT rn rl rr h) = | |
(if ht rl > ht rr | |
then case rl of ET \<Rightarrow> ET \<comment> \<open>impossible\<close> | |
| MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr) | |
else mkt rn (mkt n l rl) rr)" | |
primrec insrt :: "'a::preorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"insrt x ET = MKT x ET ET 1" | |
| "insrt x (MKT n l r h) = | |
(if x=n | |
then MKT n l r h | |
else if x<n | |
then let l' = insrt x l; hl' = ht l'; hr = ht r | |
in if hl' = 2+hr then l_bal n l' r | |
else MKT n l' r (1 + max hl' hr) | |
else let r' = insrt x r; hl = ht l; hr' = ht r' | |
in if hr' = 2+hl then r_bal n l r' | |
else MKT n l r' (1 + max hl hr'))" | |
subsubsection \<open>Correctness proof\<close> | |
text\<open>The auxiliary functions are implemented correctly:\<close> | |
lemma height_hinv: "hinv t \<Longrightarrow> ht t = height (erase t)" | |
by (induct t) simp_all | |
lemma erase_mkt: "erase (mkt n l r) = MKT\<^sub>0 n (erase l) (erase r)" | |
by (simp add: mkt_def) | |
lemma erase_l_bal: | |
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height (erase l) = height(erase r) + 2 \<Longrightarrow> | |
erase (l_bal n l r) = l_bal\<^sub>0 n (erase l) (erase r)" | |
by (cases l) (simp_all add: height_hinv erase_mkt split: tree.split) | |
lemma erase_r_bal: | |
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow> | |
erase (r_bal n l r) = r_bal\<^sub>0 n (erase l) (erase r)" | |
by (cases r) (simp_all add: height_hinv erase_mkt split: tree.split) | |
text \<open>Function @{const insrt} maintains the invariant:\<close> | |
lemma hinv_mkt: "hinv l \<Longrightarrow> hinv r \<Longrightarrow> hinv (mkt x l r)" | |
by (simp add: height_hinv mkt_def) | |
lemma hinv_l_bal: | |
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase l) = height(erase r) + 2 \<Longrightarrow> | |
hinv (l_bal n l r)" | |
by (cases l) (auto simp add: hinv_mkt split: tree.splits) | |
lemma hinv_r_bal: | |
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow> | |
hinv (r_bal n l r)" | |
by (cases r) (auto simp add: hinv_mkt split: tree.splits) | |
theorem hinv_insrt: "hinv t \<Longrightarrow> hinv (insrt x t)" | |
by (induct t) (simp_all add: Let_def height_hinv hinv_l_bal hinv_r_bal) | |
text\<open>Function @{const insrt} implements @{const insrt\<^sub>0}:\<close> | |
lemma erase_insrt: "hinv t \<Longrightarrow> erase (insrt x t) = insrt\<^sub>0 x (erase t)" | |
by (induct t) (simp_all add: Let_def hinv_insrt height_hinv erase_l_bal erase_r_bal) | |
text\<open>Function @{const insrt} meets its spec:\<close> | |
corollary "avl t \<Longrightarrow> set_of (erase (insrt x t)) = insert x (set_of (erase t))" | |
by (simp add: avl_def erase_insrt set_of_insrt) | |
text\<open>Function @{const insrt} preserves the invariants:\<close> | |
corollary "avl t \<Longrightarrow> avl (insrt x t)" | |
by (simp add: hinv_insrt avl_def erase_insrt is_bal_insrt) | |
corollary | |
"avl t \<Longrightarrow> is_ord (erase t) \<Longrightarrow> is_ord (erase (insrt (x::'a::linorder) t))" | |
by (simp add: avl_def erase_insrt is_ord_insrt) | |
text\<open>Function @{const is_in} implements @{const is_in}:\<close> | |
theorem is_in: "is_in x t = is_in\<^sub>0 x (erase t)" | |
by (induct t) simp_all | |
text\<open>Function @{const is_in} meets its spec:\<close> | |
corollary "is_ord (erase t) \<Longrightarrow> is_in x t \<longleftrightarrow> x \<in> set_of (erase t)" | |
by (simp add:is_in is_in_correct) | |
end | |