Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: One procedure | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
section "Hoare Logics for 1 Procedure" | |
theory PLang imports Main begin | |
subsection\<open>The language\<close> | |
typedecl state | |
type_synonym bexp = "state \<Rightarrow> bool" | |
datatype com = Do "(state \<Rightarrow> state set)" | |
| Semi com com ("_; _" [60, 60] 10) | |
| Cond bexp com com ("IF _ THEN _ ELSE _" 60) | |
| While bexp com ("WHILE _ DO _" 60) | |
| CALL | |
| Local "(state \<Rightarrow> state)" com "(state \<Rightarrow> state \<Rightarrow> state)" | |
("LOCAL _; _; _" [0,0,60] 60) | |
text\<open>\noindent There is only one parameterless procedure in the program. Hence | |
@{term CALL} does not even need to mention the procedure name. There | |
is no separate syntax for procedure declarations. Instead we declare a HOL | |
constant that represents the body of the one procedure in the program.\<close> | |
consts body :: com | |
text\<open>\noindent | |
As before, command execution is described by transitions | |
\<open>s -c\<rightarrow> t\<close>. The only new rule is the one for @{term CALL} --- | |
it requires no comment:\<close> | |
inductive | |
exec :: "state \<Rightarrow> com \<Rightarrow> state \<Rightarrow> bool" ("_/ -_\<rightarrow>/ _" [50,0,50] 50) | |
where | |
Do: "t \<in> f s \<Longrightarrow> s -Do f\<rightarrow> t" | |
| Semi: "\<lbrakk> s0 -c1\<rightarrow> s1; s1 -c2\<rightarrow> s2 \<rbrakk> | |
\<Longrightarrow> s0 -c1;c2\<rightarrow> s2" | |
| IfTrue: "\<lbrakk> b s; s -c1\<rightarrow> t \<rbrakk> \<Longrightarrow> s -IF b THEN c1 ELSE c2\<rightarrow> t" | |
| IfFalse: "\<lbrakk> \<not>b s; s -c2\<rightarrow> t \<rbrakk> \<Longrightarrow> s -IF b THEN c1 ELSE c2\<rightarrow> t" | |
| WhileFalse: "\<not>b s \<Longrightarrow> s -WHILE b DO c\<rightarrow> s" | |
| WhileTrue: "\<lbrakk> b s; s -c\<rightarrow> t; t -WHILE b DO c\<rightarrow> u \<rbrakk> | |
\<Longrightarrow> s -WHILE b DO c\<rightarrow> u" | |
| "s -body\<rightarrow> t \<Longrightarrow> s -CALL\<rightarrow> t" | |
| Local: "f s -c\<rightarrow> t \<Longrightarrow> s -LOCAL f; c; g\<rightarrow> g s t" | |
lemma [iff]: "(s -Do f\<rightarrow> t) = (t \<in> f s)" | |
by(auto elim: exec.cases intro:exec.intros) | |
lemma [iff]: "(s -c;d\<rightarrow> u) = (\<exists>t. s -c\<rightarrow> t \<and> t -d\<rightarrow> u)" | |
by(auto elim: exec.cases intro:exec.intros) | |
lemma [iff]: "(s -IF b THEN c ELSE d\<rightarrow> t) = | |
(s -if b s then c else d\<rightarrow> t)" | |
apply(rule iffI) | |
apply(auto elim: exec.cases intro:exec.intros) | |
apply(auto intro:exec.intros split:if_split_asm) | |
done | |
lemma unfold_while: | |
"(s -WHILE b DO c\<rightarrow> u) = | |
(s -IF b THEN c;WHILE b DO c ELSE Do(\<lambda>s. {s})\<rightarrow> u)" | |
by(auto elim: exec.cases intro:exec.intros split:if_split_asm) | |
lemma [iff]: "(s -CALL\<rightarrow> t) = (s -body\<rightarrow> t)" | |
by(blast elim: exec.cases intro:exec.intros) | |
lemma [iff]: "(s -LOCAL f; c; g\<rightarrow> u) = (\<exists>t. f s -c\<rightarrow> t \<and> u = g s t)" | |
by(fastforce elim: exec.cases intro:exec.intros) | |
lemma [simp]: "\<not>b s \<Longrightarrow> s -WHILE b DO c\<rightarrow> s" | |
by(fast intro:exec.intros) | |
lemma WhileI: "\<lbrakk>b s; s -c\<rightarrow> t; t -WHILE b DO c\<rightarrow> u\<rbrakk> \<Longrightarrow> s -WHILE b DO c\<rightarrow> u" | |
by(fastforce elim:exec.WhileTrue) | |
(*>*) | |
text\<open>This semantics turns out not to be fine-grained | |
enough. The soundness proof for the Hoare logic below proceeds by | |
induction on the call depth during execution. To make this work we | |
define a second semantics \mbox{\<open>s -c-n\<rightarrow> t\<close>} which expresses that the | |
execution uses at most @{term n} nested procedure invocations, where | |
@{term n} is a natural number. The rules are straightforward: @{term | |
n} is just passed around, except for procedure calls, where it is | |
decremented:\<close> | |
inductive | |
execn :: "state \<Rightarrow> com \<Rightarrow> nat \<Rightarrow> state \<Rightarrow> bool" ("_/ -_-_\<rightarrow>/ _" [50,0,0,50] 50) | |
where | |
"t \<in> f s \<Longrightarrow> s -Do f-n\<rightarrow> t" | |
| "\<lbrakk> s0 -c1-n\<rightarrow> s1; s1 -c2-n\<rightarrow> s2 \<rbrakk> \<Longrightarrow> s0 -c1;c2-n\<rightarrow> s2" | |
| "\<lbrakk> b s; s -c1-n\<rightarrow> t \<rbrakk> \<Longrightarrow> s -IF b THEN c1 ELSE c2-n\<rightarrow> t" | |
| "\<lbrakk> \<not>b s; s -c2-n\<rightarrow> t \<rbrakk> \<Longrightarrow> s -IF b THEN c1 ELSE c2-n\<rightarrow> t" | |
| (*<*)WhileFalse:(*>*)"\<not>b s \<Longrightarrow> s -WHILE b DO c-n\<rightarrow> s" | |
| (*<*)WhileTrue:(*>*)"\<lbrakk>b s; s -c-n\<rightarrow> t; t -WHILE b DO c-n\<rightarrow> u\<rbrakk> \<Longrightarrow> s -WHILE b DO c-n\<rightarrow> u" | |
| "s -body-n\<rightarrow> t \<Longrightarrow> s -CALL-Suc n\<rightarrow> t" | |
| "f s -c-n\<rightarrow> t \<Longrightarrow> s -LOCAL f; c; g-n\<rightarrow> g s t" | |
lemma [iff]: "(s -Do f-n\<rightarrow> t) = (t \<in> f s)" | |
by(auto elim: execn.cases intro:execn.intros) | |
lemma [iff]: "(s -c1;c2-n\<rightarrow> u) = (\<exists>t. s -c1-n\<rightarrow> t \<and> t -c2-n\<rightarrow> u)" | |
by(best elim: execn.cases intro:execn.intros) | |
lemma [iff]: "(s -IF b THEN c ELSE d-n\<rightarrow> t) = | |
(s -if b s then c else d-n\<rightarrow> t)" | |
apply auto | |
apply(blast elim: execn.cases intro:execn.intros)+ | |
done | |
lemma [iff]: "(s -CALL- 0\<rightarrow> t) = False" | |
by(blast elim: execn.cases intro:execn.intros) | |
lemma [iff]: "(s -CALL-Suc n\<rightarrow> t) = (s -body-n\<rightarrow> t)" | |
by(blast elim: execn.cases intro:execn.intros) | |
lemma [iff]: "(s -LOCAL f; c; g-n\<rightarrow> u) = (\<exists>t. f s -c-n\<rightarrow> t \<and> u = g s t)" | |
by(auto elim: execn.cases intro:execn.intros) | |
text\<open>\noindent By induction on @{prop"s -c-m\<rightarrow> t"} we show | |
monotonicity w.r.t.\ the call depth:\<close> | |
lemma exec_mono[rule_format]: "s -c-m\<rightarrow> t \<Longrightarrow> \<forall>n. m \<le> n \<longrightarrow> s -c-n\<rightarrow> t" | |
apply(erule execn.induct) | |
apply(blast) | |
apply(blast) | |
apply(simp) | |
apply(simp) | |
apply(simp add:execn.intros) | |
apply(blast intro:execn.intros) | |
apply(clarify) | |
apply(rename_tac m) | |
apply(case_tac m) | |
apply simp | |
apply simp | |
apply blast | |
done | |
text\<open>\noindent With the help of this lemma we prove the expected | |
relationship between the two semantics:\<close> | |
lemma exec_iff_execn: "(s -c\<rightarrow> t) = (\<exists>n. s -c-n\<rightarrow> t)" | |
apply(rule iffI) | |
apply(erule exec.induct) | |
apply blast | |
apply clarify | |
apply(rename_tac m n) | |
apply(rule_tac x = "max m n" in exI) | |
apply(fastforce intro:exec.intros exec_mono simp add:max_def) | |
apply fastforce | |
apply fastforce | |
apply(blast intro:execn.intros) | |
apply clarify | |
apply(rename_tac m n) | |
apply(rule_tac x = "max m n" in exI) | |
apply(fastforce elim:execn.WhileTrue exec_mono simp add:max_def) | |
apply blast | |
apply blast | |
apply(erule exE, erule execn.induct) | |
apply blast | |
apply blast | |
apply fastforce | |
apply fastforce | |
apply(erule exec.WhileFalse) | |
apply(blast intro: exec.intros) | |
apply blast | |
apply blast | |
done | |
lemma while_lemma[rule_format]: | |
"s -w-n\<rightarrow> t \<Longrightarrow> \<forall>b c. w = WHILE b DO c \<and> P s \<and> | |
(\<forall>s s'. P s \<and> b s \<and> s -c-n\<rightarrow> s' \<longrightarrow> P s') \<longrightarrow> P t \<and> \<not>b t" | |
apply(erule execn.induct) | |
apply clarify+ | |
defer | |
apply clarify+ | |
apply(subgoal_tac "P t") | |
apply blast | |
apply blast | |
done | |
lemma while_rule: | |
"\<lbrakk>s -WHILE b DO c-n\<rightarrow> t; P s; \<And>s s'. \<lbrakk>P s; b s; s -c-n\<rightarrow> s' \<rbrakk> \<Longrightarrow> P s'\<rbrakk> | |
\<Longrightarrow> P t \<and> \<not>b t" | |
apply(drule while_lemma) | |
prefer 2 apply assumption | |
apply blast | |
done | |
end | |