Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Inductive definition of Hoare logic for total correctness | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
theory HoareTotal imports Hoare Termi begin | |
subsection\<open>Hoare logic for total correctness\<close> | |
text\<open> | |
Now that we have termination, we can define | |
total validity, \<open>\<Turnstile>\<^sub>t\<close>, as partial validity and guaranteed termination:\<close> | |
definition | |
hoare_tvalid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where | |
"\<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q} \<and> (\<forall>s. P s \<longrightarrow> c\<down>s)" | |
text\<open>Proveability of Hoare triples in the proof system for total | |
correctness is written \<open>\<turnstile>\<^sub>t {P}c{Q}\<close> and defined | |
inductively. The rules for \<open>\<turnstile>\<^sub>t\<close> differ from those for | |
\<open>\<turnstile>\<close> only in the one place where nontermination can arise: the | |
@{term While}-rule.\<close> | |
inductive | |
thoare :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>\<^sub>t ({(1_)}/ (_)/ {(1_)})" 50) | |
where | |
Do: "\<turnstile>\<^sub>t {\<lambda>s. (\<forall>t \<in> f s. P t) \<and> f s \<noteq> {}} Do f {P}" | |
| Semi: "\<lbrakk> \<turnstile>\<^sub>t {P}c{Q}; \<turnstile>\<^sub>t {Q}d{R} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P} c;d {R}" | |
| If: "\<lbrakk> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> b s}c{Q}; \<turnstile>\<^sub>t {\<lambda>s. P s \<and> ~b s}d{Q} \<rbrakk> \<Longrightarrow> | |
\<turnstile>\<^sub>t {P} IF b THEN c ELSE d {Q}" | |
| While: | |
"\<lbrakk>wf r; \<forall>s'. \<turnstile>\<^sub>t {\<lambda>s. P s \<and> b s \<and> s' = s} c {\<lambda>s. P s \<and> (s,s') \<in> r}\<rbrakk> | |
\<Longrightarrow> \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>s. P s \<and> \<not>b s}" | |
| Conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> | |
\<turnstile>\<^sub>t {P'}c{Q'}" | |
| Local: "(!!s. P s \<Longrightarrow> P' s (f s)) \<Longrightarrow> \<forall>p. \<turnstile>\<^sub>t {P' p} c {Q o (g p)} \<Longrightarrow> | |
\<turnstile>\<^sub>t {P} LOCAL f;c;g {Q}" | |
text\<open>\noindent The@{term While}- rule is like the one for partial | |
correctness but it requires additionally that with every execution of | |
the loop body a wellfounded relation (@{prop"wf r"}) on the state | |
space decreases. | |
The soundness theorem\<close> | |
(* Tried to use this lemma to simplify the soundness proof. | |
But "\<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> (!s. P s \<longrightarrow> c\<down>s)" is not provable because too weak | |
lemma total_implies_partial: "\<turnstile>\<^sub>t {P} c {Q} \<Longrightarrow> \<turnstile> {P} c {Q}" | |
apply(erule thoare.induct) | |
apply(rule hoare.intros) | |
apply (clarify) apply assumption | |
apply(rule hoare.intros) | |
apply blast | |
apply(blast intro:hoare.intros) | |
apply(blast intro:hoare.intros) | |
defer | |
apply(blast intro:hoare.intros) | |
apply(blast intro:hoare.intros) | |
apply(rule hoare.intros) | |
apply(rule hoare_relative_complete) | |
apply(unfold hoare_valid_def) | |
apply(clarify) | |
apply(erule allE, erule conjE) | |
apply(drule hoare_sound) | |
apply(unfold hoare_valid_def) | |
apply(blast) | |
done | |
*) | |
theorem "\<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>t {P}c{Q}" | |
apply(unfold hoare_tvalid_def hoare_valid_def) | |
apply(erule thoare.induct) | |
apply blast | |
apply blast | |
apply clarsimp | |
defer | |
apply blast | |
apply(rule conjI) | |
apply clarify | |
apply(erule allE) | |
apply clarify | |
apply(erule allE, erule allE, erule impE, erule asm_rl) | |
apply simp | |
apply(erule mp) | |
apply(simp) | |
apply blast | |
apply(rule conjI) | |
apply(rule allI) | |
apply(erule wf_induct) | |
apply clarify | |
apply(drule unfold_while[THEN iffD1]) | |
apply (simp split: if_split_asm) | |
apply blast | |
apply(rule allI) | |
apply(erule wf_induct) | |
apply clarify | |
apply(case_tac "b x") | |
apply (blast intro: termi.WhileTrue) | |
apply (erule termi.WhileFalse) | |
done | |
(*>*) | |
text\<open>\noindent In the @{term While}-case we perform a | |
local proof by wellfounded induction over the given relation @{term r}. | |
The completeness proof proceeds along the same lines as the one for partial | |
correctness. First we have to strengthen our notion of weakest precondition | |
to take termination into account:\<close> | |
definition | |
wpt :: "com \<Rightarrow> assn \<Rightarrow> assn" ("wp\<^sub>t") where | |
"wp\<^sub>t c Q = (\<lambda>s. wp c Q s \<and> c\<down>s)" | |
lemmas wp_defs = wp_def wpt_def | |
lemma [simp]: "wp\<^sub>t (Do f) Q = (\<lambda>s. (\<forall>t \<in> f s. Q t) \<and> f s \<noteq> {})" | |
by(simp add: wpt_def) | |
lemma [simp]: "wp\<^sub>t (c\<^sub>1;c\<^sub>2) R = wp\<^sub>t c\<^sub>1 (wp\<^sub>t c\<^sub>2 R)" | |
apply(unfold wp_defs) | |
apply(rule ext) | |
apply blast | |
done | |
lemma [simp]: | |
"wp\<^sub>t (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q = (\<lambda>s. wp\<^sub>t (if b s then c\<^sub>1 else c\<^sub>2) Q s)" | |
apply(unfold wp_defs) | |
apply(rule ext) | |
apply auto | |
done | |
lemma [simp]: "wp\<^sub>t (LOCAL f;c;g) Q = (\<lambda>s. wp\<^sub>t c (Q o (g s)) (f s))" | |
apply(unfold wp_defs) | |
apply(rule ext) | |
apply auto | |
done | |
lemma strengthen_pre: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P'}c{Q}" | |
by(erule thoare.Conseq, assumption, blast) | |
lemma weaken_post: "\<lbrakk> \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q'}" | |
apply(rule thoare.Conseq) | |
apply(fast, assumption, assumption) | |
done | |
inductive_cases [elim!]: "WHILE b DO c \<down> s" | |
lemma wp_is_pre[rule_format]: "\<turnstile>\<^sub>t {wp\<^sub>t c Q} c {Q}" | |
apply (induct c arbitrary: Q) | |
apply simp_all | |
apply(blast intro:thoare.Do thoare.Conseq) | |
apply(blast intro:thoare.Semi thoare.Conseq) | |
apply(blast intro:thoare.If thoare.Conseq) | |
defer | |
apply(fastforce intro!: thoare.Local) | |
apply(rename_tac b c Q) | |
apply(rule weaken_post) | |
apply(rule_tac b=b and c=c in thoare.While) | |
apply(rule_tac b=b and c=c in wf_termi) | |
defer | |
apply (simp add:wp_defs unfold_while) | |
apply(rule allI) | |
apply(rule strengthen_pre) | |
prefer 2 | |
apply fast | |
apply(clarsimp simp add: wp_defs) | |
apply(blast intro:exec.intros) | |
done | |
text\<open>\noindent The @{term While}-case is interesting because we now have to furnish a | |
suitable wellfounded relation. Of course the execution of the loop | |
body directly yields the required relation. | |
The actual completeness theorem follows directly, in the same manner | |
as for partial correctness.\<close> | |
theorem "\<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q}" | |
apply (rule strengthen_pre[OF _ wp_is_pre]) | |
apply(unfold hoare_tvalid_def hoare_valid_def wp_defs) | |
apply blast | |
done | |
end | |