Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Inductive definition of termination | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
theory Termi imports Lang begin | |
subsection\<open>Termination\<close> | |
text\<open>Although partial correctness appeals because of its simplicity, | |
in many cases one would like the additional assurance that the command | |
is guaranteed to termiate if started in a state that satisfies the | |
precondition. Even to express this we need to define when a command is | |
guaranteed to terminate. We can do this without modifying our existing | |
semantics by merely adding a second inductively defined judgement | |
\<open>c\<down>s\<close> that expresses guaranteed termination of @{term c} | |
started in state @{term s}:\<close> | |
inductive | |
termi :: "com \<Rightarrow> state \<Rightarrow> bool" (infixl "\<down>" 50) | |
where | |
(*<*)Do[iff]:(*>*) "f s \<noteq> {} \<Longrightarrow> Do f \<down> s" | |
| (*<*)Semi[intro!]:(*>*) "\<lbrakk> c\<^sub>1 \<down> s\<^sub>0; \<forall>s\<^sub>1. s\<^sub>0 -c\<^sub>1\<rightarrow> s\<^sub>1 \<longrightarrow> c\<^sub>2 \<down> s\<^sub>1 \<rbrakk> \<Longrightarrow> (c\<^sub>1;c\<^sub>2) \<down> s\<^sub>0" | |
| (*<*)IfT[intro,simp]:(*>*) "\<lbrakk> b s; c\<^sub>1 \<down> s \<rbrakk> \<Longrightarrow> IF b THEN c\<^sub>1 ELSE c\<^sub>2 \<down> s" | |
| (*<*)IfF[intro,simp]:(*>*) "\<lbrakk> \<not>b s; c\<^sub>2 \<down> s \<rbrakk> \<Longrightarrow> IF b THEN c\<^sub>1 ELSE c\<^sub>2 \<down> s" | |
| (*<*)WhileFalse:(*>*) "\<not>b s \<Longrightarrow> WHILE b DO c \<down> s" | |
| (*<*)WhileTrue:(*>*) "\<lbrakk> b s; c \<down> s; \<forall>t. s -c\<rightarrow> t \<longrightarrow> WHILE b DO c \<down> t \<rbrakk> \<Longrightarrow> WHILE b DO c \<down> s" | |
| (*<*)Local:(*>*) "c \<down> f s \<Longrightarrow> LOCAL f;c;g \<down> s" | |
lemma [iff]: "Do f \<down> s = (f s \<noteq> {})" | |
apply(rule iffI) | |
prefer 2 | |
apply(best intro:termi.intros) | |
apply(erule termi.cases) | |
apply blast+ | |
done | |
lemma [iff]: "((c\<^sub>1;c\<^sub>2) \<down> s\<^sub>0) = (c\<^sub>1 \<down> s\<^sub>0 \<and> (\<forall>s\<^sub>1. s\<^sub>0 -c\<^sub>1\<rightarrow> s\<^sub>1 \<longrightarrow> c\<^sub>2 \<down> s\<^sub>1))" | |
apply(rule iffI) | |
prefer 2 | |
apply(best intro:termi.intros) | |
apply(erule termi.cases) | |
apply blast+ | |
done | |
lemma [iff]: "(IF b THEN c\<^sub>1 ELSE c\<^sub>2 \<down> s) = | |
((if b s then c\<^sub>1 else c\<^sub>2) \<down> s)" | |
apply simp | |
apply(rule conjI) | |
apply(rule impI) | |
apply(rule iffI) | |
prefer 2 | |
apply(blast intro:termi.intros) | |
apply(erule termi.cases) | |
apply blast+ | |
apply(rule impI) | |
apply(rule iffI) | |
prefer 2 | |
apply(blast intro:termi.intros) | |
apply(erule termi.cases) | |
apply blast+ | |
done | |
lemma [iff]: "(LOCAL f;c;g \<down> s) = (c \<down> f s)" | |
by(fast elim: termi.cases intro:termi.intros) | |
lemma termi_while_lemma[rule_format]: | |
"w\<down>fk \<Longrightarrow> | |
(\<forall>k b c. fk = f k \<and> w = WHILE b DO c \<and> (\<forall>i. f i -c\<rightarrow> f(Suc i)) | |
\<longrightarrow> (\<exists>i. \<not>b(f i)))" | |
apply(erule termi.induct) | |
apply simp_all | |
apply blast | |
apply blast | |
done | |
lemma termi_while: | |
"\<lbrakk> (WHILE b DO c) \<down> f k; \<forall>i. f i -c\<rightarrow> f(Suc i) \<rbrakk> \<Longrightarrow> \<exists>i. \<not>b(f i)" | |
by(blast intro:termi_while_lemma) | |
lemma wf_termi: "wf {(t,s). WHILE b DO c \<down> s \<and> b s \<and> s -c\<rightarrow> t}" | |
apply(subst wf_iff_no_infinite_down_chain) | |
apply(rule notI) | |
apply clarsimp | |
apply(insert termi_while) | |
apply blast | |
done | |
end | |