Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Preliminaries | |
imports "HOL-Analysis.Analysis" | |
begin | |
notation powr (infixr ".^" 80) | |
section \<open>Preliminary Definitions and Lemmas\<close> | |
lemma seq_part_multiple: fixes m n :: nat assumes "m \<noteq> 0" defines "A \<equiv> \<lambda>i::nat. {i*m ..< (i+1)*m}" | |
shows "\<forall>i j. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" and "(\<Union>i<n. A i) = {..< n*m}" | |
proof - | |
{ fix i j :: nat | |
have "i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}" | |
proof (erule contrapos_np) | |
assume "A i \<inter> A j \<noteq> {}" | |
then obtain k where "k \<in> A i \<inter> A j" by blast | |
hence "i*m < (j+1)*m \<and> j*m < (i+1)*m" unfolding A_def by force | |
hence "i < j+1 \<and> j < i+1" using mult_less_cancel2 by blast | |
thus "i = j" by force | |
qed } | |
thus "\<forall>i j. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" by blast | |
next | |
show "(\<Union>i<n. A i) = {..< n*m}" | |
proof | |
show "(\<Union>i<n. A i) \<subseteq> {..< n*m}" | |
proof | |
fix x::nat | |
assume "x \<in> (\<Union>i<n. A i)" | |
then obtain i where i_n: "i < n" and i_x: "x < (i+1)*m" unfolding A_def by force | |
hence "i+1 \<le> n" by linarith | |
hence "x < n*m" by (meson less_le_trans mult_le_cancel2 i_x) | |
thus "x \<in> {..< n*m}" | |
using diff_mult_distrib mult_1 i_n by auto | |
qed | |
next | |
show "{..< n*m} \<subseteq> (\<Union>i<n. A i)" | |
proof | |
fix x::nat | |
let ?i = "x div m" | |
assume "x \<in> {..< n*m}" | |
hence "?i < n" by (simp add: less_mult_imp_div_less) | |
moreover have "?i*m \<le> x \<and> x < (?i+1)*m" | |
using assms div_times_less_eq_dividend dividend_less_div_times by auto | |
ultimately show "x \<in> (\<Union>i<n. A i)" unfolding A_def by force | |
qed | |
qed | |
qed | |
lemma(in field) divide_mult_cancel[simp]: fixes a b assumes "b \<noteq> 0" | |
shows "a / b * b = a" | |
by (simp add: assms) | |
lemma inverse_powr: "(1/a).^b = a.^-b" if "a > 0" for a b :: real | |
by (smt that powr_divide powr_minus_divide powr_one_eq_one) | |
lemma powr_eq_one_iff_gen[simp]: "a.^x = 1 \<longleftrightarrow> x = 0" if "a > 0" "a \<noteq> 1" for a x :: real | |
by (metis powr_eq_0_iff powr_inj powr_zero_eq_one that) | |
lemma powr_less_cancel2: "0 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> x.^a < y.^a \<Longrightarrow> x < y" | |
for a x y ::real | |
proof - | |
assume a_pos: "0 < a" and x_pos: "0 < x" and y_pos: "0 < y" | |
show "x.^a < y.^a \<Longrightarrow> x < y" | |
proof (erule contrapos_pp) | |
assume "\<not> x < y" | |
hence "x \<ge> y" by fastforce | |
hence "x.^a \<ge> y.^a" | |
proof (cases "x = y") | |
case True | |
thus ?thesis by simp | |
next | |
case False | |
hence "x.^a > y.^a" | |
using \<open>x \<ge> y\<close> powr_less_mono2 a_pos y_pos by auto | |
thus ?thesis by auto | |
qed | |
thus "\<not> x.^a < y.^a" by fastforce | |
qed | |
qed | |
lemma geometric_increasing_sum_aux: "(1-r)^2 * (\<Sum>k<n. (k+1)*r^k) = 1 - (n+1)*r^n + n*r^(n+1)" | |
for n::nat and r::real | |
proof (induct n) | |
case 0 | |
thus ?case by simp | |
next | |
case (Suc n) | |
thus ?case | |
by (simp add: distrib_left power2_diff field_simps power2_eq_square) | |
qed | |
lemma geometric_increasing_sum: "(\<Sum>k<n. (k+1)*r^k) = (1 - (n+1)*r^n + n*r^(n+1)) / (1-r)^2" | |
if "r \<noteq> 1" for n::nat and r::real | |
by (subst geometric_increasing_sum_aux[THEN sym], simp add: that) | |
lemma Reals_UNIV[simp]: "\<real> = {x::real. True}" | |
unfolding Reals_def by auto | |
lemma DERIV_fun_powr2: | |
fixes a::real | |
assumes a_pos: "a > 0" | |
and f: "DERIV f x :> r" | |
shows "DERIV (\<lambda>x. a.^(f x)) x :> a.^(f x) * r * ln a" | |
proof - | |
let ?g = "(\<lambda>x. a)" | |
have g: "DERIV ?g x :> 0" by simp | |
have pos: "?g x > 0" by (simp add: a_pos) | |
show ?thesis | |
using DERIV_powr[OF g pos f] a_pos by (auto simp add: field_simps) | |
qed | |
lemma has_real_derivative_powr2: | |
assumes a_pos: "a > 0" | |
shows "((\<lambda>x. a.^x) has_real_derivative a.^x * ln a) (at x)" | |
proof - | |
let ?f = "(\<lambda>x. x::real)" | |
have f: "DERIV ?f x :> 1" by simp | |
thus ?thesis using DERIV_fun_powr2[OF a_pos f] by simp | |
qed | |
lemma has_integral_powr2_from_0: | |
fixes a c :: real | |
assumes a_pos: "a > 0" and a_neq_1: "a \<noteq> 1" and c_nneg: "c \<ge> 0" | |
shows "((\<lambda>x. a.^x) has_integral ((a.^c - 1) / (ln a))) {0..c}" | |
proof - | |
have "((\<lambda>x. a.^x) has_integral ((a.^c)/(ln a) - (a.^0)/(ln a))) {0..c}" | |
proof (rule fundamental_theorem_of_calculus[OF c_nneg]) | |
fix x::real | |
assume "x \<in> {0..c}" | |
show "((\<lambda>y. a.^y / ln a) has_vector_derivative a.^x) (at x within {0..c})" | |
using has_real_derivative_powr2[OF a_pos, of x] | |
apply - | |
apply (drule DERIV_cdivide[where c = "ln a"], simp add: assms) | |
apply (rule has_vector_derivative_within_subset[where S=UNIV and T="{0..c}"], auto) | |
by (rule iffD1[OF has_field_derivative_iff_has_vector_derivative]) | |
qed | |
thus ?thesis | |
using assms powr_zero_eq_one by (simp add: field_simps) | |
qed | |
lemma integrable_on_powr2_from_0: | |
fixes a c :: real | |
assumes a_pos: "a > 0" and a_neq_1: "a \<noteq> 1" and c_nneg: "c \<ge> 0" | |
shows "(\<lambda>x. a.^x) integrable_on {0..c}" | |
using has_integral_powr2_from_0[OF assms] unfolding integrable_on_def by blast | |
lemma integrable_on_powr2_from_0_general: | |
fixes a c :: real | |
assumes a_pos: "a > 0" and c_nneg: "c \<ge> 0" | |
shows "(\<lambda>x. a.^x) integrable_on {0..c}" | |
proof (cases "a = 1") | |
case True | |
thus ?thesis | |
using has_integral_const_real by auto | |
next | |
case False | |
thus ?thesis | |
using has_integral_powr2_from_0 False assms by auto | |
qed | |
lemma has_integral_null_interval: fixes a b :: real and f::"real \<Rightarrow> real" assumes "a \<ge> b" | |
shows "(f has_integral 0) {a..b}" | |
using assms content_real_eq_0 by blast | |
lemma has_integral_interval_reverse: fixes f :: "real \<Rightarrow> real" and a b :: real | |
assumes "a \<le> b" | |
and "continuous_on {a..b} f" | |
shows "((\<lambda>x. f (a+b-x)) has_integral (integral {a..b} f)) {a..b}" | |
proof - | |
let ?g = "\<lambda>x. a + b - x" | |
let ?g' = "\<lambda>x. -1" | |
have g_C0: "continuous_on {a..b} ?g" using continuous_on_op_minus by simp | |
have Dg_g': "\<And>x. x\<in>{a..b} \<Longrightarrow> (?g has_field_derivative ?g' x) (at x within {a..b})" | |
by (auto intro!: derivative_eq_intros) | |
show ?thesis | |
using has_integral_substitution_general | |
[of "{}" a b ?g a b f, simplified, OF assms g_C0 Dg_g', simplified] | |
apply (simp add: has_integral_null_interval[OF assms(1), THEN integral_unique]) | |
by (simp add: has_integral_neg_iff) | |
qed | |
end | |