Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.52 kB
theory Preliminaries
imports "HOL-Analysis.Analysis"
begin
notation powr (infixr ".^" 80)
section \<open>Preliminary Definitions and Lemmas\<close>
lemma seq_part_multiple: fixes m n :: nat assumes "m \<noteq> 0" defines "A \<equiv> \<lambda>i::nat. {i*m ..< (i+1)*m}"
shows "\<forall>i j. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" and "(\<Union>i<n. A i) = {..< n*m}"
proof -
{ fix i j :: nat
have "i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
proof (erule contrapos_np)
assume "A i \<inter> A j \<noteq> {}"
then obtain k where "k \<in> A i \<inter> A j" by blast
hence "i*m < (j+1)*m \<and> j*m < (i+1)*m" unfolding A_def by force
hence "i < j+1 \<and> j < i+1" using mult_less_cancel2 by blast
thus "i = j" by force
qed }
thus "\<forall>i j. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" by blast
next
show "(\<Union>i<n. A i) = {..< n*m}"
proof
show "(\<Union>i<n. A i) \<subseteq> {..< n*m}"
proof
fix x::nat
assume "x \<in> (\<Union>i<n. A i)"
then obtain i where i_n: "i < n" and i_x: "x < (i+1)*m" unfolding A_def by force
hence "i+1 \<le> n" by linarith
hence "x < n*m" by (meson less_le_trans mult_le_cancel2 i_x)
thus "x \<in> {..< n*m}"
using diff_mult_distrib mult_1 i_n by auto
qed
next
show "{..< n*m} \<subseteq> (\<Union>i<n. A i)"
proof
fix x::nat
let ?i = "x div m"
assume "x \<in> {..< n*m}"
hence "?i < n" by (simp add: less_mult_imp_div_less)
moreover have "?i*m \<le> x \<and> x < (?i+1)*m"
using assms div_times_less_eq_dividend dividend_less_div_times by auto
ultimately show "x \<in> (\<Union>i<n. A i)" unfolding A_def by force
qed
qed
qed
lemma(in field) divide_mult_cancel[simp]: fixes a b assumes "b \<noteq> 0"
shows "a / b * b = a"
by (simp add: assms)
lemma inverse_powr: "(1/a).^b = a.^-b" if "a > 0" for a b :: real
by (smt that powr_divide powr_minus_divide powr_one_eq_one)
lemma powr_eq_one_iff_gen[simp]: "a.^x = 1 \<longleftrightarrow> x = 0" if "a > 0" "a \<noteq> 1" for a x :: real
by (metis powr_eq_0_iff powr_inj powr_zero_eq_one that)
lemma powr_less_cancel2: "0 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> x.^a < y.^a \<Longrightarrow> x < y"
for a x y ::real
proof -
assume a_pos: "0 < a" and x_pos: "0 < x" and y_pos: "0 < y"
show "x.^a < y.^a \<Longrightarrow> x < y"
proof (erule contrapos_pp)
assume "\<not> x < y"
hence "x \<ge> y" by fastforce
hence "x.^a \<ge> y.^a"
proof (cases "x = y")
case True
thus ?thesis by simp
next
case False
hence "x.^a > y.^a"
using \<open>x \<ge> y\<close> powr_less_mono2 a_pos y_pos by auto
thus ?thesis by auto
qed
thus "\<not> x.^a < y.^a" by fastforce
qed
qed
lemma geometric_increasing_sum_aux: "(1-r)^2 * (\<Sum>k<n. (k+1)*r^k) = 1 - (n+1)*r^n + n*r^(n+1)"
for n::nat and r::real
proof (induct n)
case 0
thus ?case by simp
next
case (Suc n)
thus ?case
by (simp add: distrib_left power2_diff field_simps power2_eq_square)
qed
lemma geometric_increasing_sum: "(\<Sum>k<n. (k+1)*r^k) = (1 - (n+1)*r^n + n*r^(n+1)) / (1-r)^2"
if "r \<noteq> 1" for n::nat and r::real
by (subst geometric_increasing_sum_aux[THEN sym], simp add: that)
lemma Reals_UNIV[simp]: "\<real> = {x::real. True}"
unfolding Reals_def by auto
lemma DERIV_fun_powr2:
fixes a::real
assumes a_pos: "a > 0"
and f: "DERIV f x :> r"
shows "DERIV (\<lambda>x. a.^(f x)) x :> a.^(f x) * r * ln a"
proof -
let ?g = "(\<lambda>x. a)"
have g: "DERIV ?g x :> 0" by simp
have pos: "?g x > 0" by (simp add: a_pos)
show ?thesis
using DERIV_powr[OF g pos f] a_pos by (auto simp add: field_simps)
qed
lemma has_real_derivative_powr2:
assumes a_pos: "a > 0"
shows "((\<lambda>x. a.^x) has_real_derivative a.^x * ln a) (at x)"
proof -
let ?f = "(\<lambda>x. x::real)"
have f: "DERIV ?f x :> 1" by simp
thus ?thesis using DERIV_fun_powr2[OF a_pos f] by simp
qed
lemma has_integral_powr2_from_0:
fixes a c :: real
assumes a_pos: "a > 0" and a_neq_1: "a \<noteq> 1" and c_nneg: "c \<ge> 0"
shows "((\<lambda>x. a.^x) has_integral ((a.^c - 1) / (ln a))) {0..c}"
proof -
have "((\<lambda>x. a.^x) has_integral ((a.^c)/(ln a) - (a.^0)/(ln a))) {0..c}"
proof (rule fundamental_theorem_of_calculus[OF c_nneg])
fix x::real
assume "x \<in> {0..c}"
show "((\<lambda>y. a.^y / ln a) has_vector_derivative a.^x) (at x within {0..c})"
using has_real_derivative_powr2[OF a_pos, of x]
apply -
apply (drule DERIV_cdivide[where c = "ln a"], simp add: assms)
apply (rule has_vector_derivative_within_subset[where S=UNIV and T="{0..c}"], auto)
by (rule iffD1[OF has_field_derivative_iff_has_vector_derivative])
qed
thus ?thesis
using assms powr_zero_eq_one by (simp add: field_simps)
qed
lemma integrable_on_powr2_from_0:
fixes a c :: real
assumes a_pos: "a > 0" and a_neq_1: "a \<noteq> 1" and c_nneg: "c \<ge> 0"
shows "(\<lambda>x. a.^x) integrable_on {0..c}"
using has_integral_powr2_from_0[OF assms] unfolding integrable_on_def by blast
lemma integrable_on_powr2_from_0_general:
fixes a c :: real
assumes a_pos: "a > 0" and c_nneg: "c \<ge> 0"
shows "(\<lambda>x. a.^x) integrable_on {0..c}"
proof (cases "a = 1")
case True
thus ?thesis
using has_integral_const_real by auto
next
case False
thus ?thesis
using has_integral_powr2_from_0 False assms by auto
qed
lemma has_integral_null_interval: fixes a b :: real and f::"real \<Rightarrow> real" assumes "a \<ge> b"
shows "(f has_integral 0) {a..b}"
using assms content_real_eq_0 by blast
lemma has_integral_interval_reverse: fixes f :: "real \<Rightarrow> real" and a b :: real
assumes "a \<le> b"
and "continuous_on {a..b} f"
shows "((\<lambda>x. f (a+b-x)) has_integral (integral {a..b} f)) {a..b}"
proof -
let ?g = "\<lambda>x. a + b - x"
let ?g' = "\<lambda>x. -1"
have g_C0: "continuous_on {a..b} ?g" using continuous_on_op_minus by simp
have Dg_g': "\<And>x. x\<in>{a..b} \<Longrightarrow> (?g has_field_derivative ?g' x) (at x within {a..b})"
by (auto intro!: derivative_eq_intros)
show ?thesis
using has_integral_substitution_general
[of "{}" a b ?g a b f, simplified, OF assms g_C0 Dg_g', simplified]
apply (simp add: has_integral_null_interval[OF assms(1), THEN integral_unique])
by (simp add: has_integral_neg_iff)
qed
end