Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
57.7 kB
(*
File: Akra_Bazzi.thy
Author: Manuel Eberl <manuel@pruvisto.org>
The Akra-Bazzi theorem for functions on the naturals.
*)
section \<open>The discrete Akra-Bazzi theorem\<close>
theory Akra_Bazzi
imports
Complex_Main
"HOL-Library.Landau_Symbols"
Akra_Bazzi_Real
begin
lemma ex_mono: "(\<exists>x. P x) \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> (\<exists>x. Q x)" by blast
lemma x_over_ln_mono:
assumes "(e::real) > 0"
assumes "x > exp e"
assumes "x \<le> y"
shows "x / ln x powr e \<le> y / ln y powr e"
proof (rule DERIV_nonneg_imp_mono[of _ _ "\<lambda>x. x / ln x powr e"])
fix t assume t: "t \<in> {x..y}"
from assms(1) have "1 < exp e" by simp
from this and assms(2) have "x > 1" by (rule less_trans)
with t have t': "t > 1" by simp
from \<open>x > exp e\<close> and t have "t > exp e" by simp
with t' have "ln t > ln (exp e)" by (subst ln_less_cancel_iff) simp_all
hence t'': "ln t > e" by simp
show "((\<lambda>x. x / ln x powr e) has_real_derivative
(ln t - e) / ln t powr (e+1)) (at t)" using assms t t' t''
by (force intro!: derivative_eq_intros simp: powr_diff field_simps powr_add)
from t'' show "(ln t - e) / ln t powr (e + 1) \<ge> 0" by (intro divide_nonneg_nonneg) simp_all
qed (simp_all add: assms)
definition akra_bazzi_term :: "nat \<Rightarrow> nat \<Rightarrow> real \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" where
"akra_bazzi_term x\<^sub>0 x\<^sub>1 b t =
(\<exists>e h. e > 0 \<and> (\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e)) \<and>
(\<forall>x\<ge>x\<^sub>1. t x \<ge> x\<^sub>0 \<and> t x < x \<and> b*x + h x = real (t x)))"
lemma akra_bazzi_termI [intro?]:
assumes "e > 0" "(\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e))"
"\<And>x. x \<ge> x\<^sub>1 \<Longrightarrow> t x \<ge> x\<^sub>0" "\<And>x. x \<ge> x\<^sub>1 \<Longrightarrow> t x < x"
"\<And>x. x \<ge> x\<^sub>1 \<Longrightarrow> b*x + h x = real (t x)"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b t"
using assms unfolding akra_bazzi_term_def by blast
lemma akra_bazzi_term_imp_less:
assumes "akra_bazzi_term x\<^sub>0 x\<^sub>1 b t" "x \<ge> x\<^sub>1"
shows "t x < x"
using assms unfolding akra_bazzi_term_def by blast
lemma akra_bazzi_term_imp_less':
assumes "akra_bazzi_term x\<^sub>0 (Suc x\<^sub>1) b t" "x > x\<^sub>1"
shows "t x < x"
using assms unfolding akra_bazzi_term_def by force
locale akra_bazzi_recursion =
fixes x\<^sub>0 x\<^sub>1 k :: nat and as bs :: "real list" and ts :: "(nat \<Rightarrow> nat) list" and f :: "nat \<Rightarrow> real"
assumes k_not_0: "k \<noteq> 0"
and length_as: "length as = k"
and length_bs: "length bs = k"
and length_ts: "length ts = k"
and a_ge_0: "a \<in> set as \<Longrightarrow> a \<ge> 0"
and b_bounds: "b \<in> set bs \<Longrightarrow> b \<in> {0<..<1}"
and ts: "i < length bs \<Longrightarrow> akra_bazzi_term x\<^sub>0 x\<^sub>1 (bs!i) (ts!i)"
begin
sublocale akra_bazzi_params k as bs
using length_as length_bs k_not_0 a_ge_0 b_bounds by unfold_locales
lemma ts_nonempty: "ts \<noteq> []" using length_ts k_not_0 by (cases ts) simp_all
definition e_hs :: "real \<times> (nat \<Rightarrow> real) list" where
"e_hs = (SOME (e,hs).
e > 0 \<and> length hs = k \<and> (\<forall>h\<in>set hs. (\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e))) \<and>
(\<forall>t\<in>set ts. \<forall>x\<ge>x\<^sub>1. t x \<ge> x\<^sub>0 \<and> t x < x) \<and>
(\<forall>i<k. \<forall>x\<ge>x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x))
)"
definition "e = (case e_hs of (e,_) \<Rightarrow> e)"
definition "hs = (case e_hs of (_,hs) \<Rightarrow> hs)"
lemma filterlim_powr_zero_cong:
"filterlim (\<lambda>x. P (x::real) (x powr (0::real))) F at_top = filterlim (\<lambda>x. P x 1) F at_top"
apply (rule filterlim_cong[OF refl refl])
using eventually_gt_at_top[of "0::real"] by eventually_elim simp_all
lemma e_hs_aux:
"0 < e \<and> length hs = k \<and>
(\<forall>h\<in>set hs. (\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1 + e))) \<and>
(\<forall>t\<in>set ts. \<forall>x\<ge>x\<^sub>1. x\<^sub>0 \<le> t x \<and> t x < x) \<and>
(\<forall>i<k. \<forall>x\<ge>x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x))"
proof-
have "Ex (\<lambda>(e,hs). e > 0 \<and> length hs = k \<and>
(\<forall>h\<in>set hs. (\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e))) \<and>
(\<forall>t\<in>set ts. \<forall>x\<ge>x\<^sub>1. t x \<ge> x\<^sub>0 \<and> t x < x) \<and>
(\<forall>i<k. \<forall>x\<ge>x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)))"
proof-
from ts have A: "\<forall>i\<in>{..<k}. akra_bazzi_term x\<^sub>0 x\<^sub>1 (bs!i) (ts!i)" by (auto simp: length_bs)
hence "\<exists>e h. (\<forall>i<k. e i > 0 \<and>
(\<lambda>x. h i x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e i)) \<and>
(\<forall>x\<ge>x\<^sub>1. (ts!i) x \<ge> x\<^sub>0 \<and> (ts!i) x < x) \<and>
(\<forall>i<k. \<forall>x\<ge>x\<^sub>1. (bs!i)*real x + h i x = real ((ts!i) x)))"
unfolding akra_bazzi_term_def
by (subst (asm) bchoice_iff, subst (asm) bchoice_iff) blast
then guess ee :: "_ \<Rightarrow> real" and hh :: "_ \<Rightarrow> nat \<Rightarrow> real"
by (elim exE conjE) note eh = this
define e where "e = Min {ee i |i. i < k}"
define hs where "hs = map hh (upt 0 k)"
have e_pos: "e > 0" unfolding e_def using eh k_not_0 by (subst Min_gr_iff) auto
moreover have "length hs = k" unfolding hs_def by (simp_all add: length_ts)
moreover have hs_growth: "\<forall>h\<in>set hs. (\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e))"
proof
fix h assume "h \<in> set hs"
then obtain i where t: "i < k" "h = hh i" unfolding hs_def by force
hence "(\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+ee i))" using eh by blast
also from t k_not_0 have "e \<le> ee i" unfolding e_def by (subst Min_le_iff) auto
hence "(\<lambda>x::nat. real x / ln (real x) powr (1+ee i)) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e))"
by (intro bigo_real_nat_transfer) auto
finally show "(\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1+e))" .
qed
moreover have "\<forall>t\<in>set ts. (\<forall>x\<ge>x\<^sub>1. t x \<ge> x\<^sub>0 \<and> t x < x)"
proof (rule ballI)
fix t assume "t \<in> set ts"
then obtain i where "i < k" "t = ts!i" using length_ts by (subst (asm) in_set_conv_nth) auto
with eh show "\<forall>x\<ge>x\<^sub>1. t x \<ge> x\<^sub>0 \<and> t x < x" unfolding hs_def by force
qed
moreover have "\<forall>i<k. \<forall>x\<ge>x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)"
proof (rule allI, rule impI)
fix i assume i: "i < k"
with eh show "\<forall>x\<ge>x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)"
using length_ts unfolding hs_def by fastforce
qed
ultimately show ?thesis by blast
qed
from someI_ex[OF this, folded e_hs_def] show ?thesis
unfolding e_def hs_def by (intro conjI) fastforce+
qed
lemma
e_pos: "e > 0" and length_hs: "length hs = k" and
hs_growth: "\<And>h. h \<in> set hs \<Longrightarrow> (\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1 + e))" and
step_ge_x0: "\<And>t x. t \<in> set ts \<Longrightarrow> x \<ge> x\<^sub>1 \<Longrightarrow> x\<^sub>0 \<le> t x" and
step_less: "\<And>t x. t \<in> set ts \<Longrightarrow> x \<ge> x\<^sub>1 \<Longrightarrow> t x < x" and
decomp: "\<And>i x. i < k \<Longrightarrow> x \<ge> x\<^sub>1 \<Longrightarrow> (bs!i)*x + (hs!i) x = real ((ts!i) x)"
by (insert e_hs_aux) simp_all
lemma h_in_hs [intro, simp]: "i < k \<Longrightarrow> hs ! i \<in> set hs"
by (rule nth_mem) (simp add: length_hs)
lemma t_in_ts [intro, simp]: "i < k \<Longrightarrow> ts ! i \<in> set ts"
by (rule nth_mem) (simp add: length_ts)
lemma x0_less_x1: "x\<^sub>0 < x\<^sub>1" and x0_le_x1: "x\<^sub>0 \<le> x\<^sub>1"
proof-
from ts_nonempty have "x\<^sub>0 \<le> hd ts x\<^sub>1" using step_ge_x0[of "hd ts" x\<^sub>1] by simp
also from ts_nonempty have "... < x\<^sub>1" by (intro step_less) simp_all
finally show "x\<^sub>0 < x\<^sub>1" by simp
thus "x\<^sub>0 \<le> x\<^sub>1" by simp
qed
lemma akra_bazzi_induct [consumes 1, case_names base rec]:
assumes "x \<ge> x\<^sub>0"
assumes base: "\<And>x. x \<ge> x\<^sub>0 \<Longrightarrow> x < x\<^sub>1 \<Longrightarrow> P x"
assumes rec: "\<And>x. x \<ge> x\<^sub>1 \<Longrightarrow> (\<And>t. t \<in> set ts \<Longrightarrow> P (t x)) \<Longrightarrow> P x"
shows "P x"
proof (insert assms(1), induction x rule: less_induct)
case (less x)
with assms step_less step_ge_x0 show "P x" by (cases "x < x\<^sub>1") auto
qed
end
locale akra_bazzi_function = akra_bazzi_recursion +
fixes integrable integral
assumes integral: "akra_bazzi_integral integrable integral"
fixes g :: "nat \<Rightarrow> real"
assumes f_nonneg_base: "x \<ge> x\<^sub>0 \<Longrightarrow> x < x\<^sub>1 \<Longrightarrow> f x \<ge> 0"
and f_rec: "x \<ge> x\<^sub>1 \<Longrightarrow> f x = g x + (\<Sum>i<k. as!i * f ((ts!i) x))"
and g_nonneg: "x \<ge> x\<^sub>1 \<Longrightarrow> g x \<ge> 0"
and ex_pos_a: "\<exists>a\<in>set as. a > 0"
begin
lemma ex_pos_a': "\<exists>i<k. as!i > 0"
using ex_pos_a by (auto simp: in_set_conv_nth length_as)
sublocale akra_bazzi_params_nonzero
using length_as length_bs ex_pos_a a_ge_0 b_bounds by unfold_locales
definition g_real :: "real \<Rightarrow> real" where "g_real x = g (nat \<lfloor>x\<rfloor>)"
lemma g_real_real[simp]: "g_real (real x) = g x" unfolding g_real_def by simp
lemma f_nonneg: "x \<ge> x\<^sub>0 \<Longrightarrow> f x \<ge> 0"
proof (induction x rule: akra_bazzi_induct)
case (base x)
with f_nonneg_base show "f x \<ge> 0" by simp
next
case (rec x)
from rec.hyps have "g x \<ge> 0" by (intro g_nonneg) simp
moreover have "(\<Sum>i<k. as!i*f ((ts!i) x)) \<ge> 0" using rec.hyps length_ts length_as
by (intro sum_nonneg ballI mult_nonneg_nonneg[OF a_ge_0 rec.IH]) simp_all
ultimately show "f x \<ge> 0" using rec.hyps by (simp add: f_rec)
qed
definition "hs' = map (\<lambda>h x. h (nat \<lfloor>x::real\<rfloor>)) hs"
lemma length_hs': "length hs' = k" unfolding hs'_def by (simp add: length_hs)
lemma hs'_real: "i < k \<Longrightarrow> (hs'!i) (real x) = (hs!i) x"
unfolding hs'_def by (simp add: length_hs)
lemma h_bound:
obtains hb where "hb > 0" and
"eventually (\<lambda>x. \<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb * x / ln x powr (1 + e)) at_top"
proof-
have "\<forall>h\<in>set hs. \<exists>c>0. eventually (\<lambda>x. \<bar>h x\<bar> \<le> c * real x / ln (real x) powr (1 + e)) at_top"
proof
fix h assume h: "h \<in> set hs"
hence "(\<lambda>x. h x) \<in> O(\<lambda>x. real x / ln (real x) powr (1 + e))" by (rule hs_growth)
thus "\<exists>c>0. eventually (\<lambda>x. \<bar>h x\<bar> \<le> c * x / ln x powr (1 + e)) at_top"
unfolding bigo_def by auto
qed
from bchoice[OF this] obtain hb where hb:
"\<forall>h\<in>set hs. hb h > 0 \<and> eventually (\<lambda>x. \<bar>h x\<bar> \<le> hb h * real x / ln (real x) powr (1 + e)) at_top" by blast
define hb' where "hb' = max 1 (Max {hb h |h. h \<in> set hs})"
have "hb' > 0" unfolding hb'_def by simp
moreover have "\<forall>h\<in>set hs. eventually (\<lambda>x. \<bar>h (nat \<lfloor>x\<rfloor>)\<bar> \<le> hb' * x / ln x powr (1 + e)) at_top"
proof (intro ballI, rule eventually_mp[OF always_eventually eventually_conj], clarify)
fix h assume h: "h \<in> set hs"
with hb have hb_pos: "hb h > 0" by auto
show "eventually (\<lambda>x. x > exp (1 + e) + 1) at_top" by (rule eventually_gt_at_top)
from h hb have e: "eventually (\<lambda>x. \<bar>h (nat \<lfloor>x :: real\<rfloor>)\<bar> \<le>
hb h * real (nat \<lfloor>x\<rfloor>) / ln (real (nat \<lfloor>x\<rfloor>)) powr (1 + e)) at_top"
by (intro eventually_natfloor) blast
show "eventually (\<lambda>x. \<bar>h (nat \<lfloor>x :: real\<rfloor>)\<bar> \<le> hb' * x / ln x powr (1 + e)) at_top"
using e eventually_gt_at_top
proof eventually_elim
fix x :: real assume x: "x > exp (1 + e) + 1"
have x': "x > 0" by (rule le_less_trans[OF _ x]) simp_all
assume "\<bar>h (nat \<lfloor>x\<rfloor>)\<bar> \<le> hb h*real (nat \<lfloor>x\<rfloor>)/ln (real (nat \<lfloor>x\<rfloor>)) powr (1 + e)"
also {
from x have "exp (1 + e) < real (nat \<lfloor>x\<rfloor>)" by linarith
moreover have "x > 0" by (rule le_less_trans[OF _ x]) simp_all
hence "real (nat \<lfloor>x\<rfloor>) \<le> x" by simp
ultimately have "real (nat \<lfloor>x\<rfloor>)/ln (real (nat \<lfloor>x\<rfloor>)) powr (1+e) \<le> x/ln x powr (1+e)"
using e_pos by (intro x_over_ln_mono) simp_all
from hb_pos mult_left_mono[OF this, of "hb h"]
have "hb h * real (nat \<lfloor>x\<rfloor>)/ln (real (nat \<lfloor>x\<rfloor>)) powr (1+e) \<le> hb h * x / ln x powr (1+e)"
by (simp add: algebra_simps)
}
also from h have "hb h \<le> hb'"
unfolding hb'_def f_rec by (intro order.trans[OF Max.coboundedI max.cobounded2]) auto
with x' have "hb h*x/ln x powr (1+e) \<le> hb'*x/ln x powr (1+e)"
by (intro mult_right_mono divide_right_mono) simp_all
finally show "\<bar>h (nat \<lfloor>x\<rfloor>)\<bar> \<le> hb' * x / ln x powr (1 + e)" .
qed
qed
hence "\<forall>h\<in>set hs'. eventually (\<lambda>x. \<bar>h x\<bar> \<le> hb' * x / ln x powr (1 + e)) at_top"
by (auto simp: hs'_def)
hence "eventually (\<lambda>x. \<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb' * x / ln x powr (1 + e)) at_top"
by (intro eventually_ball_finite) simp_all
ultimately show ?thesis by (rule that)
qed
lemma C_bound:
assumes "\<And>b. b \<in> set bs \<Longrightarrow> C < b" "hb > 0"
shows "eventually (\<lambda>x::real. \<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e)) at_top"
proof-
from e_pos have "((\<lambda>x. hb * ln x powr -(1+e)) \<longlongrightarrow> 0) at_top"
by (intro tendsto_mult_right_zero tendsto_neg_powr ln_at_top) simp_all
with assms have "\<forall>b\<in>set bs. eventually (\<lambda>x. \<bar>hb * ln x powr -(1+e)\<bar> < b - C) at_top"
by (force simp: tendsto_iff dist_real_def)
hence "eventually (\<lambda>x. \<forall>b\<in>set bs. \<bar>hb * ln x powr -(1+e)\<bar> < b - C) at_top"
by (intro eventually_ball_finite) simp_all
note A = eventually_conj[OF this eventually_gt_at_top]
show ?thesis using A apply eventually_elim
proof clarify
fix x b :: real assume x: "x > 0" and b: "b \<in> set bs"
assume A: "\<forall>b\<in>set bs. \<bar>hb * ln x powr -(1+e)\<bar> < b - C"
from b A assms have "hb * ln x powr -(1+e) < b - C" by simp
with x have "x * (hb * ln x powr -(1+e)) < x * (b - C)" by (intro mult_strict_left_mono)
thus "C*x \<le> b*x - hb*x / ln x powr (1+e)"
by (subst (asm) powr_minus) (simp_all add: field_simps)
qed
qed
end
locale akra_bazzi_lower = akra_bazzi_function +
fixes g' :: "real \<Rightarrow> real"
assumes f_pos: "eventually (\<lambda>x. f x > 0) at_top"
and g_growth2: "\<exists>C c2. c2 > 0 \<and> C < Min (set bs) \<and>
eventually (\<lambda>x. \<forall>u\<in>{C*x..x}. g' u \<le> c2 * g' x) at_top"
and g'_integrable: "\<exists>a. \<forall>b\<ge>a. integrable (\<lambda>u. g' u / u powr (p + 1)) a b"
and g'_bounded: "eventually (\<lambda>a::real. (\<forall>b>a. \<exists>c. \<forall>x\<in>{a..b}. g' x \<le> c)) at_top"
and g_bigomega: "g \<in> \<Omega>(\<lambda>x. g' (real x))"
and g'_nonneg: "eventually (\<lambda>x. g' x \<ge> 0) at_top"
begin
definition "gc2 \<equiv> SOME gc2. gc2 > 0 \<and> eventually (\<lambda>x. g x \<ge> gc2 * g' (real x)) at_top"
lemma gc2: "gc2 > 0" "eventually (\<lambda>x. g x \<ge> gc2 * g' (real x)) at_top"
proof-
from g_bigomega guess c by (elim landau_omega.bigE) note c = this
from g'_nonneg have "eventually (\<lambda>x::nat. g' (real x) \<ge> 0) at_top" by (rule eventually_nat_real)
with c(2) have "eventually (\<lambda>x. g x \<ge> c * g' (real x)) at_top"
using eventually_ge_at_top[of x\<^sub>1] by eventually_elim (insert g_nonneg, simp_all)
with c(1) have "\<exists>gc2. gc2 > 0 \<and> eventually (\<lambda>x. g x \<ge> gc2 * g' (real x)) at_top" by blast
from someI_ex[OF this] show "gc2 > 0" "eventually (\<lambda>x. g x \<ge> gc2 * g' (real x)) at_top"
unfolding gc2_def by blast+
qed
definition "gx0 \<equiv> max x\<^sub>1 (SOME gx0. \<forall>x\<ge>gx0. g x \<ge> gc2 * g' (real x) \<and> f x > 0 \<and> g' (real x) \<ge> 0)"
definition "gx1 \<equiv> max gx0 (SOME gx1. \<forall>x\<ge>gx1. \<forall>i<k. (ts!i) x \<ge> gx0)"
lemma gx0:
assumes "x \<ge> gx0"
shows "g x \<ge> gc2 * g' (real x)" "f x > 0" "g' (real x) \<ge> 0"
proof-
from eventually_conj[OF gc2(2) eventually_conj[OF f_pos eventually_nat_real[OF g'_nonneg]]]
have "\<exists>gx0. \<forall>x\<ge>gx0. g x \<ge> gc2 * g' (real x) \<and> f x > 0 \<and> g' (real x) \<ge> 0"
by (simp add: eventually_at_top_linorder)
note someI_ex[OF this]
moreover have "x \<ge> (SOME gx0. \<forall>x\<ge>gx0. g x \<ge> gc2 * g' (real x) \<and>f x > 0 \<and> g' (real x) \<ge> 0)"
using assms unfolding gx0_def by simp
ultimately show "g x \<ge> gc2 * g' (real x)" "f x > 0" "g' (real x) \<ge> 0" unfolding gx0_def by blast+
qed
lemma gx1:
assumes "x \<ge> gx1" "i < k"
shows "(ts!i) x \<ge> gx0"
proof-
define mb where "mb = Min (set bs)/2"
from b_bounds bs_nonempty have mb_pos: "mb > 0" unfolding mb_def by simp
from h_bound guess hb . note hb = this
from e_pos have "((\<lambda>x. hb * ln x powr -(1 + e)) \<longlongrightarrow> 0) at_top"
by (intro tendsto_mult_right_zero tendsto_neg_powr ln_at_top) simp_all
moreover note mb_pos
ultimately have "eventually (\<lambda>x. hb * ln x powr -(1 + e) < mb) at_top" using hb(1)
by (subst (asm) tendsto_iff) (simp_all add: dist_real_def)
from eventually_nat_real[OF hb(2)] eventually_nat_real[OF this]
eventually_ge_at_top eventually_ge_at_top
have "eventually (\<lambda>x. \<forall>i<k. (ts!i) x \<ge> gx0) at_top" apply eventually_elim
proof clarify
fix i x :: nat assume A: "hb * ln (real x) powr -(1+e) < mb" and i: "i < k"
assume B: "\<forall>h\<in>set hs'. \<bar>h (real x)\<bar> \<le> hb * real x / ln (real x) powr (1+e)"
with i have B': "\<bar>(hs'!i) (real x)\<bar> \<le> hb * real x / ln (real x) powr (1+e)"
using length_hs'[symmetric] by auto
assume C: "x \<ge> nat \<lceil>gx0/mb\<rceil>"
hence C': "real gx0/mb \<le> real x" by linarith
assume D: "x \<ge> x\<^sub>1"
from mb_pos have "real gx0 = mb * (real gx0/mb)" by simp
also from i bs_nonempty have "mb \<le> bs!i/2" unfolding mb_def by simp
hence "mb * (real gx0/mb) \<le> bs!i/2 * x"
using C' i b_bounds[of "bs!i"] mb_pos by (intro mult_mono) simp_all
also have "... = bs!i*x + -bs!i/2 * x" by simp
also {
have "-(hs!i) x \<le> \<bar>(hs!i) x\<bar>" by simp
also from i B' length_hs have "\<bar>(hs!i) x\<bar> \<le> hb * real x / ln (real x) powr (1+e)"
by (simp add: hs'_def)
also from A have "hb / ln x powr (1+e) \<le> mb"
by (subst (asm) powr_minus) (simp add: field_simps)
hence "hb / ln x powr (1+e) * x \<le> mb * x" by (intro mult_right_mono) simp_all
hence "hb * x / ln x powr (1+e) \<le> mb * x" by simp
also from i have "... \<le> (bs!i/2) * x" unfolding mb_def by (intro mult_right_mono) simp_all
finally have "-bs!i/2 * x \<le> (hs!i) x" by simp
}
also have "bs!i*real x + (hs!i) x = real ((ts!i) x)" using i D decomp by simp
finally show "(ts!i) x \<ge> gx0" by simp
qed
hence "\<exists>gx1. \<forall>x\<ge>gx1. \<forall>i<k. gx0 \<le> (ts!i) x" (is "Ex ?P")
by (simp add: eventually_at_top_linorder)
from someI_ex[OF this] have "?P (SOME x. ?P x)" .
moreover have "\<And>x. x \<ge> gx1 \<Longrightarrow> x \<ge> (SOME x. ?P x)" unfolding gx1_def by simp
ultimately have "?P gx1" by blast
with assms show ?thesis by blast
qed
lemma gx0_ge_x1: "gx0 \<ge> x\<^sub>1" unfolding gx0_def by simp
lemma gx0_le_gx1: "gx0 \<le> gx1" unfolding gx1_def by simp
function f2' :: "nat \<Rightarrow> real" where
"x < gx1 \<Longrightarrow> f2' x = max 0 (f x / gc2)"
| "x \<ge> gx1 \<Longrightarrow> f2' x = g' (real x) + (\<Sum>i<k. as!i*f2' ((ts!i) x))"
using le_less_linear by (blast, simp_all)
termination by (relation "Wellfounded.measure (\<lambda>x. x)")
(insert gx0_le_gx1 gx0_ge_x1, simp_all add: step_less)
lemma f2'_nonneg: "x \<ge> gx0 \<Longrightarrow> f2' x \<ge> 0"
by (induction x rule: f2'.induct)
(auto intro!: add_nonneg_nonneg sum_nonneg gx0 gx1 mult_nonneg_nonneg[OF a_ge_0])
lemma f2'_le_f: "x \<ge> x\<^sub>0 \<Longrightarrow> gc2 * f2' x \<le> f x"
proof (induction rule: f2'.induct)
case (1 x)
with gc2 f_nonneg show ?case by (simp add: max_def field_simps)
next
case prems: (2 x)
with gx0 gx0_le_gx1 have "gc2 * g' (real x) \<le> g x" by force
moreover from step_ge_x0 prems(1) gx0_ge_x1 gx0_le_gx1
have "\<And>i. i < k \<Longrightarrow> x\<^sub>0 \<le> (ts!i) x" by simp
hence "\<And>i. i < k \<Longrightarrow> as!i * (gc2 * f2' ((ts!i) x)) \<le> as!i * f ((ts!i) x)"
using prems(1) by (intro mult_left_mono a_ge_0 prems(2)) auto
hence "gc2 * (\<Sum>i<k. as!i*f2' ((ts!i) x)) \<le> (\<Sum>i<k. as!i*f ((ts!i) x))"
by (subst sum_distrib_left, intro sum_mono) (simp_all add: algebra_simps)
ultimately show ?case using prems(1) gx0_ge_x1 gx0_le_gx1
by (simp_all add: algebra_simps f_rec)
qed
lemma f2'_pos: "eventually (\<lambda>x. f2' x > 0) at_top"
proof (subst eventually_at_top_linorder, intro exI allI impI)
fix x :: nat assume "x \<ge> gx0"
thus "f2' x > 0"
proof (induction x rule: f2'.induct)
case (1 x)
with gc2 gx0(2)[of x] show ?case by (simp add: max_def field_simps)
next
case prems: (2 x)
have "(\<Sum>i<k. as!i*f2' ((ts!i) x)) > 0"
proof (rule sum_pos')
from ex_pos_a' guess i by (elim exE conjE) note i = this
with prems(1) gx0 gx1 have "as!i * f2' ((ts!i) x) > 0"
by (intro mult_pos_pos prems(2)) simp_all
with i show "\<exists>i\<in>{..<k}. as!i * f2' ((ts!i) x) > 0" by blast
next
fix i assume i: "i \<in> {..<k}"
with prems(1) have "f2' ((ts!i) x) > 0" by (intro prems(2) gx1) simp_all
with i show "as!i * f2' ((ts!i) x) \<ge> 0" by (intro mult_nonneg_nonneg[OF a_ge_0]) simp_all
qed simp_all
with prems(1) gx0_le_gx1 show ?case by (auto intro!: add_nonneg_pos gx0)
qed
qed
lemma bigomega_f_aux:
obtains a where "a \<ge> A" "\<forall>a'\<ge>a. a' \<in> \<nat> \<longrightarrow>
f \<in> \<Omega>(\<lambda>x. x powr p *(1 + integral (\<lambda>u. g' u / u powr (p + 1)) a' x))"
proof-
from g'_integrable guess a0 by (elim exE) note a0 = this
from h_bound guess hb . note hb = this
moreover from g_growth2 guess C c2 by (elim conjE exE) note C = this
hence "eventually (\<lambda>x. \<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1 + e)) at_top"
using hb(1) bs_nonempty by (intro C_bound) simp_all
moreover from b_bounds hb(1) e_pos
have "eventually (\<lambda>x. \<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) at_top"
by (rule akra_bazzi_asymptotics)
moreover note g'_bounded C(3) g'_nonneg eventually_natfloor[OF f2'_pos] eventually_natfloor[OF gc2(2)]
ultimately have "eventually (\<lambda>x. (\<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) \<and>
(\<forall>b>x. \<exists>c. \<forall>x\<in>{x..b}. g' x \<le> c) \<and> f2' (nat \<lfloor>x\<rfloor>) > 0 \<and>
(\<forall>u\<in>{C * x..x}. g' u \<le> c2 * g' x) \<and>
g' x \<ge> 0) at_top"
by (intro eventually_conj) (force elim!: eventually_conjE)+
then have "\<exists>X. (\<forall>x\<ge>X. (\<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) \<and>
(\<forall>b>x. \<exists>c. \<forall>x\<in>{x..b}. g' x \<le> c) \<and>
(\<forall>u\<in>{C * x..x}. g' u \<le> c2 * g' x) \<and>
f2' (nat \<lfloor>x\<rfloor>) > 0 \<and> g' x \<ge> 0)"
by (subst (asm) eventually_at_top_linorder) (erule ex_mono, blast)
then guess X by (elim exE conjE) note X = this
define x\<^sub>0'_min where "x\<^sub>0'_min = max A (max X (max a0 (max gx1 (max 1 (real x\<^sub>1 + 1)))))"
{
fix x\<^sub>0' :: real assume x0'_props: "x\<^sub>0' \<ge> x\<^sub>0'_min" "x\<^sub>0' \<in> \<nat>"
hence x0'_ge_x1: "x\<^sub>0' \<ge> real (x\<^sub>1+1)" and x0'_ge_1: "x\<^sub>0' \<ge> 1" and x0'_ge_X: "x\<^sub>0' \<ge> X"
unfolding x\<^sub>0'_min_def by linarith+
hence x0'_pos: "x\<^sub>0' > 0" and x0'_nonneg: "x\<^sub>0' \<ge> 0" by simp_all
have x0': "\<forall>x\<ge>x\<^sub>0'. (\<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb*x/ln x powr (1+e))"
"\<forall>x\<ge>x\<^sub>0'. (\<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e))"
"\<forall>x\<ge>x\<^sub>0'. (\<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x)"
"\<forall>a\<ge>x\<^sub>0'. \<forall>b>a. \<exists>c. \<forall>x\<in>{a..b}. g' x \<le> c"
"\<forall>x\<ge>x\<^sub>0'. \<forall>u\<in>{C * x..x}. g' u \<le> c2 * g' x"
"\<forall>x\<ge>x\<^sub>0'. f2' (nat \<lfloor>x\<rfloor>) > 0" "\<forall>x\<ge>x\<^sub>0'. g' x \<ge> 0"
using X x0'_ge_X by auto
from x0'_props(2) have x0'_int: "real (nat \<lfloor>x\<^sub>0'\<rfloor>) = x\<^sub>0'" by (rule real_natfloor_nat)
from x0'_props have x0'_ge_gx1: "x\<^sub>0' \<ge> gx1" and x0'_ge_a0: "x\<^sub>0' \<ge> a0"
unfolding x\<^sub>0'_min_def by simp_all
with gx0_le_gx1 have f2'_nonneg: "\<And>x. x \<ge> x\<^sub>0' \<Longrightarrow> f2' x \<ge> 0" by (force intro!: f2'_nonneg)
define bm where "bm = Min (set bs)"
define x\<^sub>1' where "x\<^sub>1' = 2 * x\<^sub>0' * inverse bm"
define fb2 where "fb2 = Min {f2' x |x. x \<in> {x\<^sub>0'..x\<^sub>1'}}"
define gb2 where "gb2 = (SOME c. \<forall>x\<in>{x\<^sub>0'..x\<^sub>1'}. g' x \<le> c)"
from b_bounds bs_nonempty have "bm > 0" "bm < 1" unfolding bm_def by auto
hence "1 < 2 * inverse bm" by (simp add: field_simps)
from mult_strict_left_mono[OF this x0'_pos]
have x0'_lt_x1': "x\<^sub>0' < x\<^sub>1'" and x0'_le_x1': "x\<^sub>0' \<le> x\<^sub>1'" unfolding x\<^sub>1'_def by simp_all
from x0_le_x1 x0'_ge_x1 have ge_x0'D: "\<And>x. x\<^sub>0' \<le> real x \<Longrightarrow> x\<^sub>0 \<le> x" by simp
from x0'_ge_x1 x0'_le_x1' have gt_x1'D: "\<And>x. x\<^sub>1' < real x \<Longrightarrow> x\<^sub>1 \<le> x" by simp
have x0'_x1': "\<forall>b\<in>set bs. 2 * x\<^sub>0' * inverse b \<le> x\<^sub>1'"
proof
fix b assume b: "b \<in> set bs"
hence "bm \<le> b" by (simp add: bm_def)
moreover from b bs_nonempty b_bounds have "bm > 0" "b > 0" unfolding bm_def by auto
ultimately have "inverse b \<le> inverse bm" by simp
with x0'_nonneg show "2 * x\<^sub>0' * inverse b \<le> x\<^sub>1'"
unfolding x\<^sub>1'_def by (intro mult_left_mono) simp_all
qed
note f_nonneg' = f_nonneg
have "\<And>x. real x \<ge> x\<^sub>0' \<Longrightarrow> x \<ge> nat \<lfloor>x\<^sub>0'\<rfloor>" "\<And>x. real x \<le> x\<^sub>1' \<Longrightarrow> x \<le> nat \<lceil>x\<^sub>1'\<rceil>" by linarith+
hence "{x |x. real x \<in> {x\<^sub>0'..x\<^sub>1'}} \<subseteq> {x |x. x \<in> {nat \<lfloor>x\<^sub>0'\<rfloor>..nat \<lceil>x\<^sub>1'\<rceil>}}" by auto
hence "finite {x |x::nat. real x \<in> {x\<^sub>0'..x\<^sub>1'}}" by (rule finite_subset) auto
hence fin: "finite {f2' x |x::nat. real x \<in> {x\<^sub>0'..x\<^sub>1'}}" by force
note facts = hs'_real e_pos length_hs' length_as length_bs k_not_0 a_ge_0 p_props x0'_ge_1
f2'_nonneg f_rec[OF gt_x1'D] x0' x0'_int x0'_x1' gc2(1) decomp
from b_bounds x0'_le_x1' x0'_ge_gx1 gx0_le_gx1 x0'_ge_x1
interpret abr: akra_bazzi_nat_to_real as bs hs' k x\<^sub>0' x\<^sub>1' hb e p f2' g'
by (unfold_locales) (auto simp: facts simp del: f2'.simps intro!: f2'.simps(2))
have f'_nat: "\<And>x::nat. abr.f' (real x) = f2' x"
proof-
fix x :: nat show "abr.f' (real (x::nat)) = f2' x"
proof (induction "real x" arbitrary: x rule: abr.f'.induct)
case (2 x)
note x = this(1) and IH = this(2)
from x have "abr.f' (real x) = g' (real x) + (\<Sum>i<k. as!i*abr.f' (bs!i*real x + (hs!i) x))"
by (auto simp: gt_x1'D hs'_real g_real_def intro!: sum.cong)
also have "(\<Sum>i<k. as!i*abr.f' (bs!i*real x + (hs!i) x)) =
(\<Sum>i<k. as!i*f2' ((ts!i) x))"
proof (rule sum.cong, simp, clarify)
fix i assume i: "i < k"
from i x x0'_le_x1' x0'_ge_x1 have *: "bs!i * real x + (hs!i) x = real ((ts!i) x)"
by (intro decomp) simp_all
also from i * have "abr.f' ... = f2' ((ts!i) x)"
by (subst IH[of i]) (simp_all add: hs'_real)
finally show "as!i*abr.f' (bs!i*real x+(hs!i) x) = as!i*f2' ((ts!i) x)" by simp
qed
also have "g' x + ... = f2' x" using x x0'_ge_gx1 x0'_le_x1'
by (intro f2'.simps(2)[symmetric] gt_x1'D) simp_all
finally show ?case .
qed simp
qed
interpret akra_bazzi_integral integrable integral by (rule integral)
interpret akra_bazzi_real_lower as bs hs' k x\<^sub>0' x\<^sub>1' hb e p
integrable integral abr.f' g' C fb2 gb2 c2
proof unfold_locales
fix x assume "x \<ge> x\<^sub>0'" "x \<le> x\<^sub>1'"
thus "abr.f' x \<ge> 0" by (intro abr.f'_base) simp_all
next
fix x assume x:"x \<ge> x\<^sub>0'"
show "integrable (\<lambda>x. g' x / x powr (p + 1)) x\<^sub>0' x"
by (rule integrable_subinterval[of _ a0 x]) (insert a0 x0'_ge_a0 x, auto)
next
fix x assume x: "x \<ge> x\<^sub>0'" "x \<le> x\<^sub>1'"
have "x\<^sub>0' = real (nat \<lfloor>x\<^sub>0'\<rfloor>)" by (simp add: x0'_int)
also from x have "... \<le> real (nat \<lfloor>x\<rfloor>)" by (auto intro!: nat_mono floor_mono)
finally have "x\<^sub>0' \<le> real (nat \<lfloor>x\<rfloor>)" .
moreover have "real (nat \<lfloor>x\<rfloor>) \<le> x\<^sub>1'" using x x0'_ge_1 by linarith
ultimately have "f2' (nat \<lfloor>x\<rfloor>) \<in> {f2' x |x. real x \<in> {x\<^sub>0'..x\<^sub>1'}}" by force
from fin and this have "f2' (nat \<lfloor>x\<rfloor>) \<ge> fb2" unfolding fb2_def by (rule Min_le)
with x show "abr.f' x \<ge> fb2" by simp
next
from x0'_int x0'_le_x1' have "\<exists>x::nat. real x \<ge> x\<^sub>0' \<and> real x \<le> x\<^sub>1'"
by (intro exI[of _ "nat \<lfloor>x\<^sub>0'\<rfloor>"]) simp_all
moreover {
fix x :: nat assume "real x \<ge> x\<^sub>0' \<and> real x \<le> x\<^sub>1'"
with x0'(6) have "f2' (nat \<lfloor>real x\<rfloor>) > 0" by blast
hence "f2' x > 0" by simp
}
ultimately show "fb2 > 0" unfolding fb2_def using fin by (subst Min_gr_iff) auto
next
fix x assume x: "x\<^sub>0' \<le> x" "x \<le> x\<^sub>1'"
with x0'(4) x0'_lt_x1' have "\<exists>c. \<forall>x\<in>{x\<^sub>0'..x\<^sub>1'}. g' x \<le> c" by force
from someI_ex[OF this] x show "g' x \<le> gb2" unfolding gb2_def by simp
qed (insert g_nonneg integral x0'(2) C x0'_le_x1' x0'_ge_x1, simp_all add: facts)
from akra_bazzi_lower guess c5 . note c5 = this
have "eventually (\<lambda>x. \<bar>f x\<bar> \<ge> gc2 * c5 * \<bar>f_approx (real x)\<bar>) at_top"
proof (unfold eventually_at_top_linorder, intro exI allI impI)
fix x :: nat assume "x \<ge> nat \<lceil>x\<^sub>0'\<rceil>"
hence x: "real x \<ge> x\<^sub>0'" by linarith
note c5(1)[OF x]
also have "abr.f' (real x) = f2' x" by (rule f'_nat)
also have "gc2 * ... \<le> f x" using x x0'_ge_x1 x0_le_x1 by (intro f2'_le_f) simp_all
also have "f x = \<bar>f x\<bar>" using x f_nonneg' x0'_ge_x1 x0_le_x1 by simp
finally show "gc2 * c5 * \<bar>f_approx (real x)\<bar> \<le> \<bar>f x\<bar>"
using gc2 f_approx_nonneg[OF x] by (simp add: algebra_simps)
qed
hence "f \<in> \<Omega>(\<lambda>x. f_approx (real x))" using gc2(1) f_nonneg' f_approx_nonneg
by (intro landau_omega.bigI[of "gc2 * c5"] eventually_conj
mult_pos_pos c5 eventually_nat_real) (auto simp: eventually_at_top_linorder)
note this[unfolded f_approx_def]
}
moreover have "x\<^sub>0'_min \<ge> A" unfolding x\<^sub>0'_min_def gx0_ge_x1 by simp
ultimately show ?thesis by (intro that) auto
qed
lemma bigomega_f:
obtains a where "a \<ge> A" "f \<in> \<Omega>(\<lambda>x. x powr p *(1 + integral (\<lambda>u. g' u / u powr (p+1)) a x))"
proof-
from bigomega_f_aux[of A] guess a . note a = this
define a' where "a' = real (max (nat \<lceil>a\<rceil>) 0) + 1"
note a
moreover have "a' \<in> \<nat>" by (auto simp: max_def a'_def)
moreover have *: "a' \<ge> a + 1" unfolding a'_def by linarith
moreover from * and a have "a' \<ge> A" by simp
ultimately show ?thesis by (intro that[of a']) auto
qed
end
locale akra_bazzi_upper = akra_bazzi_function +
fixes g' :: "real \<Rightarrow> real"
assumes g'_integrable: "\<exists>a. \<forall>b\<ge>a. integrable (\<lambda>u. g' u / u powr (p + 1)) a b"
and g_growth1: "\<exists>C c1. c1 > 0 \<and> C < Min (set bs) \<and>
eventually (\<lambda>x. \<forall>u\<in>{C*x..x}. g' u \<ge> c1 * g' x) at_top"
and g_bigo: "g \<in> O(g')"
and g'_nonneg: "eventually (\<lambda>x. g' x \<ge> 0) at_top"
begin
definition "gc1 \<equiv> SOME gc1. gc1 > 0 \<and> eventually (\<lambda>x. g x \<le> gc1 * g' (real x)) at_top"
lemma gc1: "gc1 > 0" "eventually (\<lambda>x. g x \<le> gc1 * g' (real x)) at_top"
proof-
from g_bigo guess c by (elim landau_o.bigE) note c = this
from g'_nonneg have "eventually (\<lambda>x::nat. g' (real x) \<ge> 0) at_top" by (rule eventually_nat_real)
with c(2) have "eventually (\<lambda>x. g x \<le> c * g' (real x)) at_top"
using eventually_ge_at_top[of x\<^sub>1] by eventually_elim (insert g_nonneg, simp_all)
with c(1) have "\<exists>gc1. gc1 > 0 \<and> eventually (\<lambda>x. g x \<le> gc1 * g' (real x)) at_top" by blast
from someI_ex[OF this] show "gc1 > 0" "eventually (\<lambda>x. g x \<le> gc1 * g' (real x)) at_top"
unfolding gc1_def by blast+
qed
definition "gx3 \<equiv> max x\<^sub>1 (SOME gx0. \<forall>x\<ge>gx0. g x \<le> gc1 * g' (real x))"
lemma gx3:
assumes "x \<ge> gx3"
shows "g x \<le> gc1 * g' (real x)"
proof-
from gc1(2) have "\<exists>gx3. \<forall>x\<ge>gx3. g x \<le> gc1 * g' (real x)" by (simp add: eventually_at_top_linorder)
note someI_ex[OF this]
moreover have "x \<ge> (SOME gx0. \<forall>x\<ge>gx0. g x \<le> gc1 * g' (real x))"
using assms unfolding gx3_def by simp
ultimately show "g x \<le> gc1 * g' (real x)" unfolding gx3_def by blast
qed
lemma gx3_ge_x1: "gx3 \<ge> x\<^sub>1" unfolding gx3_def by simp
function f' :: "nat \<Rightarrow> real" where
"x < gx3 \<Longrightarrow> f' x = max 0 (f x / gc1)"
| "x \<ge> gx3 \<Longrightarrow> f' x = g' (real x) + (\<Sum>i<k. as!i*f' ((ts!i) x))"
using le_less_linear by (blast, simp_all)
termination by (relation "Wellfounded.measure (\<lambda>x. x)")
(insert gx3_ge_x1, simp_all add: step_less)
lemma f'_ge_f: "x \<ge> x\<^sub>0 \<Longrightarrow> gc1 * f' x \<ge> f x"
proof (induction rule: f'.induct)
case (1 x)
with gc1 f_nonneg show ?case by (simp add: max_def field_simps)
next
case prems: (2 x)
with gx3 have "gc1 * g' (real x) \<ge> g x" by force
moreover from step_ge_x0 prems(1) gx3_ge_x1
have "\<And>i. i < k \<Longrightarrow> x\<^sub>0 \<le> nat \<lfloor>(ts!i) x\<rfloor>" by (intro le_nat_floor) simp
hence "\<And>i. i < k \<Longrightarrow> as!i * (gc1 * f' ((ts!i) x)) \<ge> as!i * f ((ts!i) x)"
using prems(1) by (intro mult_left_mono a_ge_0 prems(2)) auto
hence "gc1 * (\<Sum>i<k. as!i*f' ((ts!i) x)) \<ge> (\<Sum>i<k. as!i*f ((ts!i) x))"
by (subst sum_distrib_left, intro sum_mono) (simp_all add: algebra_simps)
ultimately show ?case using prems(1) gx3_ge_x1
by (simp_all add: algebra_simps f_rec)
qed
lemma bigo_f_aux:
obtains a where "a \<ge> A" "\<forall>a'\<ge>a. a' \<in> \<nat> \<longrightarrow>
f \<in> O(\<lambda>x. x powr p *(1 + integral (\<lambda>u. g' u / u powr (p + 1)) a' x))"
proof-
from g'_integrable guess a0 by (elim exE) note a0 = this
from h_bound guess hb . note hb = this
moreover from g_growth1 guess C c1 by (elim conjE exE) note C = this
hence "eventually (\<lambda>x. \<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1 + e)) at_top"
using hb(1) bs_nonempty by (intro C_bound) simp_all
moreover from b_bounds hb(1) e_pos
have "eventually (\<lambda>x. \<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) at_top"
by (rule akra_bazzi_asymptotics)
moreover note gc1(2) C(3) g'_nonneg
ultimately have "eventually (\<lambda>x. (\<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) \<and>
(\<forall>u\<in>{C*x..x}. g' u \<ge> c1 * g' x) \<and> g' x \<ge> 0) at_top"
by (intro eventually_conj) (force elim!: eventually_conjE)+
then have "\<exists>X. (\<forall>x\<ge>X. (\<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e)) \<and>
(\<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) \<and>
(\<forall>u\<in>{C*x..x}. g' u \<ge> c1 * g' x) \<and> g' x \<ge> 0)"
by (subst (asm) eventually_at_top_linorder) fast
then guess X by (elim exE conjE) note X = this
define x\<^sub>0'_min where "x\<^sub>0'_min = max A (max X (max 1 (max a0 (max gx3 (real x\<^sub>1 + 1)))))"
{
fix x\<^sub>0' :: real assume x0'_props: "x\<^sub>0' \<ge> x\<^sub>0'_min" "x\<^sub>0' \<in> \<nat>"
hence x0'_ge_x1: "x\<^sub>0' \<ge> real (x\<^sub>1+1)" and x0'_ge_1: "x\<^sub>0' \<ge> 1" and x0'_ge_X: "x\<^sub>0' \<ge> X"
unfolding x\<^sub>0'_min_def by linarith+
hence x0'_pos: "x\<^sub>0' > 0" and x0'_nonneg: "x\<^sub>0' \<ge> 0" by simp_all
have x0': "\<forall>x\<ge>x\<^sub>0'. (\<forall>h\<in>set hs'. \<bar>h x\<bar> \<le> hb*x/ln x powr (1+e))"
"\<forall>x\<ge>x\<^sub>0'. (\<forall>b\<in>set bs. C*x \<le> b*x - hb*x/ln x powr (1+e))"
"\<forall>x\<ge>x\<^sub>0'. (\<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x)"
"\<forall>x\<ge>x\<^sub>0'. \<forall>u\<in>{C*x..x}. g' u \<ge> c1 * g' x" "\<forall>x\<ge>x\<^sub>0'. g' x \<ge> 0"
using X x0'_ge_X by auto
from x0'_props(2) have x0'_int: "real (nat \<lfloor>x\<^sub>0'\<rfloor>) = x\<^sub>0'" by (rule real_natfloor_nat)
from x0'_props have x0'_ge_gx0: "x\<^sub>0' \<ge> gx3" and x0'_ge_a0: "x\<^sub>0' \<ge> a0"
unfolding x\<^sub>0'_min_def by simp_all
hence f'_nonneg: "\<And>x. x \<ge> x\<^sub>0' \<Longrightarrow> f' x \<ge> 0"
using order.trans[OF f_nonneg f'_ge_f] gc1(1) x0'_ge_x1 x0_le_x1
by (simp add: zero_le_mult_iff del: f'.simps)
define bm where "bm = Min (set bs)"
define x\<^sub>1' where "x\<^sub>1' = 2 * x\<^sub>0' * inverse bm"
define fb1 where "fb1 = Max {f' x |x. x \<in> {x\<^sub>0'..x\<^sub>1'}}"
from b_bounds bs_nonempty have "bm > 0" "bm < 1" unfolding bm_def by auto
hence "1 < 2 * inverse bm" by (simp add: field_simps)
from mult_strict_left_mono[OF this x0'_pos]
have x0'_lt_x1': "x\<^sub>0' < x\<^sub>1'" and x0'_le_x1': "x\<^sub>0' \<le> x\<^sub>1'" unfolding x\<^sub>1'_def by simp_all
from x0_le_x1 x0'_ge_x1 have ge_x0'D: "\<And>x. x\<^sub>0' \<le> real x \<Longrightarrow> x\<^sub>0 \<le> x" by simp
from x0'_ge_x1 x0'_le_x1' have gt_x1'D: "\<And>x. x\<^sub>1' < real x \<Longrightarrow> x\<^sub>1 \<le> x" by simp
have x0'_x1': "\<forall>b\<in>set bs. 2 * x\<^sub>0' * inverse b \<le> x\<^sub>1'"
proof
fix b assume b: "b \<in> set bs"
hence "bm \<le> b" by (simp add: bm_def)
moreover from b b_bounds bs_nonempty have "bm > 0" "b > 0" unfolding bm_def by auto
ultimately have "inverse b \<le> inverse bm" by simp
with x0'_nonneg show "2 * x\<^sub>0' * inverse b \<le> x\<^sub>1'"
unfolding x\<^sub>1'_def by (intro mult_left_mono) simp_all
qed
note f_nonneg' = f_nonneg
have "\<And>x. real x \<ge> x\<^sub>0' \<Longrightarrow> x \<ge> nat \<lfloor>x\<^sub>0'\<rfloor>" "\<And>x. real x \<le> x\<^sub>1' \<Longrightarrow> x \<le> nat \<lceil>x\<^sub>1'\<rceil>" by linarith+
hence "{x |x. real x \<in> {x\<^sub>0'..x\<^sub>1'}} \<subseteq> {x |x. x \<in> {nat \<lfloor>x\<^sub>0'\<rfloor>..nat \<lceil>x\<^sub>1'\<rceil>}}" by auto
hence "finite {x |x::nat. real x \<in> {x\<^sub>0'..x\<^sub>1'}}" by (rule finite_subset) auto
hence fin: "finite {f' x |x::nat. real x \<in> {x\<^sub>0'..x\<^sub>1'}}" by force
note facts = hs'_real e_pos length_hs' length_as length_bs k_not_0 a_ge_0 p_props x0'_ge_1
f'_nonneg f_rec[OF gt_x1'D] x0' x0'_int x0'_x1' gc1(1) decomp
from b_bounds x0'_le_x1' x0'_ge_gx0 x0'_ge_x1
interpret abr: akra_bazzi_nat_to_real as bs hs' k x\<^sub>0' x\<^sub>1' hb e p f' g'
by (unfold_locales) (auto simp add: facts simp del: f'.simps intro!: f'.simps(2))
have f'_nat: "\<And>x::nat. abr.f' (real x) = f' x"
proof-
fix x :: nat show "abr.f' (real (x::nat)) = f' x"
proof (induction "real x" arbitrary: x rule: abr.f'.induct)
case (2 x)
note x = this(1) and IH = this(2)
from x have "abr.f' (real x) = g' (real x) + (\<Sum>i<k. as!i*abr.f' (bs!i*real x + (hs!i) x))"
by (auto simp: gt_x1'D hs'_real intro!: sum.cong)
also have "(\<Sum>i<k. as!i*abr.f' (bs!i*real x + (hs!i) x)) = (\<Sum>i<k. as!i*f' ((ts!i) x))"
proof (rule sum.cong, simp, clarify)
fix i assume i: "i < k"
from i x x0'_le_x1' x0'_ge_x1 have *: "bs!i * real x + (hs!i) x = real ((ts!i) x)"
by (intro decomp) simp_all
also from i * have "abr.f' ... = f' ((ts!i) x)"
by (subst IH[of i]) (simp_all add: hs'_real)
finally show "as!i*abr.f' (bs!i*real x+(hs!i) x) = as!i*f' ((ts!i) x)" by simp
qed
also from x have "g' x + ... = f' x" using x0'_le_x1' x0'_ge_gx0 by simp
finally show ?case .
qed simp
qed
interpret akra_bazzi_integral integrable integral by (rule integral)
interpret akra_bazzi_real_upper as bs hs' k x\<^sub>0' x\<^sub>1' hb e p integrable integral abr.f' g' C fb1 c1
proof (unfold_locales)
fix x assume "x \<ge> x\<^sub>0'" "x \<le> x\<^sub>1'"
thus "abr.f' x \<ge> 0" by (intro abr.f'_base) simp_all
next
fix x assume x:"x \<ge> x\<^sub>0'"
show "integrable (\<lambda>x. g' x / x powr (p + 1)) x\<^sub>0' x"
by (rule integrable_subinterval[of _ a0 x]) (insert a0 x0'_ge_a0 x, auto)
next
fix x assume x: "x \<ge> x\<^sub>0'" "x \<le> x\<^sub>1'"
have "x\<^sub>0' = real (nat \<lfloor>x\<^sub>0'\<rfloor>)" by (simp add: x0'_int)
also from x have "... \<le> real (nat \<lfloor>x\<rfloor>)" by (auto intro!: nat_mono floor_mono)
finally have "x\<^sub>0' \<le> real (nat \<lfloor>x\<rfloor>)" .
moreover have "real (nat \<lfloor>x\<rfloor>) \<le> x\<^sub>1'" using x x0'_ge_1 by linarith
ultimately have "f' (nat \<lfloor>x\<rfloor>) \<in> {f' x |x. real x \<in> {x\<^sub>0'..x\<^sub>1'}}" by force
from fin and this have "f' (nat \<lfloor>x\<rfloor>) \<le> fb1" unfolding fb1_def by (rule Max_ge)
with x show "abr.f' x \<le> fb1" by simp
qed (insert x0'(2) x0'_le_x1' x0'_ge_x1 C, simp_all add: facts)
from akra_bazzi_upper guess c6 . note c6 = this
{
fix x :: nat assume "x \<ge> nat \<lceil>x\<^sub>0'\<rceil>"
hence x: "real x \<ge> x\<^sub>0'" by linarith
have "f x \<le> gc1 * f' x" using x x0'_ge_x1 x0_le_x1 by (intro f'_ge_f) simp_all
also have "f' x = abr.f' (real x)" by (simp add: f'_nat)
also note c6(1)[OF x]
also from f_nonneg' x x0'_ge_x1 x0_le_x1 have "f x = \<bar>f x\<bar>" by simp
also from f_approx_nonneg x have "f_approx (real x) = \<bar>f_approx (real x)\<bar>" by simp
finally have "gc1 * c6 * \<bar>f_approx (real x)\<bar> \<ge> \<bar>f x\<bar>" using gc1 by (simp add: algebra_simps)
}
hence "eventually (\<lambda>x. \<bar>f x\<bar> \<le> gc1 * c6 * \<bar>f_approx (real x)\<bar>) at_top"
using eventually_ge_at_top[of "nat \<lceil>x\<^sub>0'\<rceil>"] by (auto elim!: eventually_mono)
hence "f \<in> O(\<lambda>x. f_approx (real x))" using gc1(1) f_nonneg' f_approx_nonneg
by (intro landau_o.bigI[of "gc1 * c6"] eventually_conj
mult_pos_pos c6 eventually_nat_real) (auto simp: eventually_at_top_linorder)
note this[unfolded f_approx_def]
}
moreover have "x\<^sub>0'_min \<ge> A" unfolding x\<^sub>0'_min_def gx3_ge_x1 by simp
ultimately show ?thesis by (intro that) auto
qed
lemma bigo_f:
obtains a where "a > A" "f \<in> O(\<lambda>x. x powr p *(1 + integral (\<lambda>u. g' u / u powr (p + 1)) a x))"
proof-
from bigo_f_aux[of A] guess a . note a = this
define a' where "a' = real (max (nat \<lceil>a\<rceil>) 0) + 1"
note a
moreover have "a' \<in> \<nat>" by (auto simp: max_def a'_def)
moreover have *: "a' \<ge> a + 1" unfolding a'_def by linarith
moreover from * and a have "a' > A" by simp
ultimately show ?thesis by (intro that[of a']) auto
qed
end
locale akra_bazzi = akra_bazzi_function +
fixes g' :: "real \<Rightarrow> real"
assumes f_pos: "eventually (\<lambda>x. f x > 0) at_top"
and g'_nonneg: "eventually (\<lambda>x. g' x \<ge> 0) at_top"
assumes g'_integrable: "\<exists>a. \<forall>b\<ge>a. integrable (\<lambda>u. g' u / u powr (p + 1)) a b"
and g_growth1: "\<exists>C c1. c1 > 0 \<and> C < Min (set bs) \<and>
eventually (\<lambda>x. \<forall>u\<in>{C*x..x}. g' u \<ge> c1 * g' x) at_top"
and g_growth2: "\<exists>C c2. c2 > 0 \<and> C < Min (set bs) \<and>
eventually (\<lambda>x. \<forall>u\<in>{C*x..x}. g' u \<le> c2 * g' x) at_top"
and g_bounded: "eventually (\<lambda>a::real. (\<forall>b>a. \<exists>c. \<forall>x\<in>{a..b}. g' x \<le> c)) at_top"
and g_bigtheta: "g \<in> \<Theta>(g')"
begin
sublocale akra_bazzi_lower using f_pos g_growth2 g_bounded
bigthetaD2[OF g_bigtheta] g'_nonneg g'_integrable by unfold_locales
sublocale akra_bazzi_upper using g_growth1 bigthetaD1[OF g_bigtheta]
g'_nonneg g'_integrable by unfold_locales
lemma bigtheta_f:
obtains a where "a > A" "f \<in> \<Theta>(\<lambda>x. x powr p *(1 + integral (\<lambda>u. g' u / u powr (p + 1)) a x))"
proof-
from bigo_f_aux[of A] guess a . note a = this
moreover from bigomega_f_aux[of A] guess b . note b = this
let ?a = "real (max (max (nat \<lceil>a\<rceil>) (nat \<lceil>b\<rceil>)) 0) + 1"
have "?a \<in> \<nat>" by (auto simp: max_def)
moreover have "?a \<ge> a" "?a \<ge> b" by linarith+
ultimately have "f \<in> \<Theta>(\<lambda>x. x powr p *(1 + integral (\<lambda>u. g' u / u powr (p + 1)) ?a x))"
using a b by (intro bigthetaI) blast+
moreover from a b have "?a > A" by linarith
ultimately show ?thesis by (intro that[of ?a]) simp_all
qed
end
named_theorems akra_bazzi_term_intros "introduction rules for Akra-Bazzi terms"
lemma akra_bazzi_term_floor_add [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 + c" "c < (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x + c\<rfloor>)"
proof (rule akra_bazzi_termI[OF zero_less_one])
fix x assume x: "x \<ge> x\<^sub>1"
from assms x have "real x\<^sub>0 \<le> b * real x\<^sub>1 + c" by simp
also from x assms have "... \<le> b * real x + c" by auto
finally have step_ge_x0: "b * real x + c \<ge> real x\<^sub>0" by simp
thus "nat \<lfloor>b * real x + c\<rfloor> \<ge> x\<^sub>0" by (subst le_nat_iff) (simp_all add: le_floor_iff)
from assms x have "c < (1 - b) * real x\<^sub>1" by simp
also from assms x have "... \<le> (1 - b) * real x" by (intro mult_left_mono) simp_all
finally show "nat \<lfloor>b * real x + c\<rfloor> < x" using assms step_ge_x0
by (subst nat_less_iff) (simp_all add: floor_less_iff algebra_simps)
from step_ge_x0 have "real_of_int \<lfloor>c + b * real x\<rfloor> = real_of_int (nat \<lfloor>c + b * real x\<rfloor>)" by linarith
thus "(b * real x) + (\<lfloor>b * real x + c\<rfloor> - (b * real x)) =
real (nat \<lfloor>b * real x + c\<rfloor>)" by linarith
next
have "(\<lambda>x::nat. real_of_int \<lfloor>b * real x + c\<rfloor> - b * real x) \<in> O(\<lambda>_. \<bar>c\<bar> + 1)"
by (intro landau_o.big_mono always_eventually allI, unfold real_norm_def) linarith
also have "(\<lambda>_::nat. \<bar>c\<bar> + 1) \<in> O(\<lambda>x. real x / ln (real x) powr (1 + 1))" by force
finally show "(\<lambda>x::nat. real_of_int \<lfloor>b * real x + c\<rfloor> - b * real x) \<in>
O(\<lambda>x. real x / ln (real x) powr (1+1))" .
qed
lemma akra_bazzi_term_floor_add' [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 + real c" "real c < (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x\<rfloor> + c)"
proof-
from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x + real c\<rfloor>)"
by (rule akra_bazzi_term_floor_add)
also have "(\<lambda>x. nat \<lfloor>b*real x + real c\<rfloor>) = (\<lambda>x::nat. nat \<lfloor>b*real x\<rfloor> + c)"
proof
fix x :: nat
have "\<lfloor>b * real x + real c\<rfloor> = \<lfloor>b * real x\<rfloor> + int c" by linarith
also from assms have "nat ... = nat \<lfloor>b * real x\<rfloor> + c" by (simp add: nat_add_distrib)
finally show "nat \<lfloor>b * real x + real c\<rfloor> = nat \<lfloor>b * real x\<rfloor> + c" .
qed
finally show ?thesis .
qed
lemma akra_bazzi_term_floor_subtract [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 - c" "0 < c + (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x - c\<rfloor>)"
by (subst diff_conv_add_uminus, rule akra_bazzi_term_floor_add, insert assms) simp_all
lemma akra_bazzi_term_floor_subtract' [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 - real c" "0 < real c + (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x\<rfloor> - c)"
proof-
from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x - real c\<rfloor>)"
by (intro akra_bazzi_term_floor_subtract) simp_all
also have "(\<lambda>x. nat \<lfloor>b*real x - real c\<rfloor>) = (\<lambda>x::nat. nat \<lfloor>b*real x\<rfloor> - c)"
proof
fix x :: nat
have "\<lfloor>b * real x - real c\<rfloor> = \<lfloor>b * real x\<rfloor> - int c" by linarith
also from assms have "nat ... = nat \<lfloor>b * real x\<rfloor> - c" by (simp add: nat_diff_distrib)
finally show "nat \<lfloor>b * real x - real c\<rfloor> = nat \<lfloor>b * real x\<rfloor> - c" .
qed
finally show ?thesis .
qed
lemma akra_bazzi_term_floor [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1" "0 < (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lfloor>b*real x\<rfloor>)"
using assms akra_bazzi_term_floor_add[where c = 0] by simp
lemma akra_bazzi_term_ceiling_add [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 + c" "c + 1 \<le> (1 - b) * x\<^sub>1"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x + c\<rceil>)"
proof (rule akra_bazzi_termI[OF zero_less_one])
fix x assume x: "x \<ge> x\<^sub>1"
have "0 \<le> real x\<^sub>0" by simp
also from assms have "real x\<^sub>0 \<le> b * real x\<^sub>1 + c" by simp
also from assms x have "b * real x\<^sub>1 \<le> b * real x" by (intro mult_left_mono) simp_all
hence "b * real x\<^sub>1 + c \<le> b * real x + c" by simp
also have "b * real x + c \<le> real_of_int \<lceil>b * real x + c\<rceil>" by linarith
finally have bx_nonneg: "real_of_int \<lceil>b * real x + c\<rceil> \<ge> 0" .
have "c + 1 \<le> (1 - b) * x\<^sub>1" by fact
also have "(1 - b) * x\<^sub>1 \<le> (1 - b) * x" using assms x by (intro mult_left_mono) simp_all
finally have "b * real x + c + 1 \<le> real x" using assms by (simp add: algebra_simps)
with bx_nonneg show "nat \<lceil>b * real x + c\<rceil> < x" by (subst nat_less_iff) (simp_all add: ceiling_less_iff)
have "real x\<^sub>0 \<le> b * real x\<^sub>1 + c" by fact
also have "... \<le> real_of_int \<lceil>...\<rceil>" by linarith
also have "x\<^sub>1 \<le> x" by fact
finally show "x\<^sub>0 \<le> nat \<lceil>b * real x + c\<rceil>" using assms by (force simp: ceiling_mono)
show "b * real x + (\<lceil>b * real x + c\<rceil> - b * real x) = real (nat \<lceil>b * real x + c\<rceil>)"
using assms bx_nonneg by simp
next
have "(\<lambda>x::nat. real_of_int \<lceil>b * real x + c\<rceil> - b * real x) \<in> O(\<lambda>_. \<bar>c\<bar> + 1)"
by (intro landau_o.big_mono always_eventually allI, unfold real_norm_def) linarith
also have "(\<lambda>_::nat. \<bar>c\<bar> + 1) \<in> O(\<lambda>x. real x / ln (real x) powr (1 + 1))" by force
finally show "(\<lambda>x::nat. real_of_int \<lceil>b * real x + c\<rceil> - b * real x) \<in>
O(\<lambda>x. real x / ln (real x) powr (1+1))" .
qed
lemma akra_bazzi_term_ceiling_add' [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 + real c" "real c + 1 \<le> (1 - b) * x\<^sub>1"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x\<rceil> + c)"
proof-
from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x + real c\<rceil>)"
by (rule akra_bazzi_term_ceiling_add)
also have "(\<lambda>x. nat \<lceil>b*real x + real c\<rceil>) = (\<lambda>x::nat. nat \<lceil>b*real x\<rceil> + c)"
proof
fix x :: nat
from assms have "0 \<le> b * real x" by simp
also have "b * real x \<le> real_of_int \<lceil>b * real x\<rceil>" by linarith
finally have bx_nonneg: "\<lceil>b * real x\<rceil> \<ge> 0" by simp
have "\<lceil>b * real x + real c\<rceil> = \<lceil>b * real x\<rceil> + int c" by linarith
also from assms bx_nonneg have "nat ... = nat \<lceil>b * real x\<rceil> + c"
by (subst nat_add_distrib) simp_all
finally show "nat \<lceil>b * real x + real c\<rceil> = nat \<lceil>b * real x\<rceil> + c" .
qed
finally show ?thesis .
qed
lemma akra_bazzi_term_ceiling_subtract [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 - c" "1 \<le> c + (1 - b) * x\<^sub>1"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x - c\<rceil>)"
by (subst diff_conv_add_uminus, rule akra_bazzi_term_ceiling_add, insert assms) simp_all
lemma akra_bazzi_term_ceiling_subtract' [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1 - real c" "1 \<le> real c + (1 - b) * x\<^sub>1"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x\<rceil> - c)"
proof-
from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x - real c\<rceil>)"
by (intro akra_bazzi_term_ceiling_subtract) simp_all
also have "(\<lambda>x. nat \<lceil>b*real x - real c\<rceil>) = (\<lambda>x::nat. nat \<lceil>b*real x\<rceil> - c)"
proof
fix x :: nat
from assms have "0 \<le> b * real x" by simp
also have "b * real x \<le> real_of_int \<lceil>b * real x\<rceil>" by linarith
finally have bx_nonneg: "\<lceil>b * real x\<rceil> \<ge> 0" by simp
have "\<lceil>b * real x - real c\<rceil> = \<lceil>b * real x\<rceil> - int c" by linarith
also from assms bx_nonneg have "nat ... = nat \<lceil>b * real x\<rceil> - c" by simp
finally show "nat \<lceil>b * real x - real c\<rceil> = nat \<lceil>b * real x\<rceil> - c" .
qed
finally show ?thesis .
qed
lemma akra_bazzi_term_ceiling [akra_bazzi_term_intros]:
assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \<le> b * real x\<^sub>1" "1 \<le> (1 - b) * x\<^sub>1"
shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\<lambda>x. nat \<lceil>b*real x\<rceil>)"
using assms akra_bazzi_term_ceiling_add[where c = 0] by simp
end