Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: Sebastiaan Joosten | |
René Thiemann | |
Akihisa Yamada | |
License: BSD | |
*) | |
section \<open>Interval Arithmetic\<close> | |
text \<open>We provide basic interval arithmetic operations for real and complex intervals. | |
As application we prove that complex polynomial evaluation is continuous w.r.t. | |
interval arithmetic. To be more precise, if an interval sequence converges to some | |
element $x$, then the interval polynomial evaluation of $f$ tends to $f(x)$.\<close> | |
theory Interval_Arithmetic | |
imports | |
Algebraic_Numbers_Prelim (* for ipoly *) | |
begin | |
text \<open>Intervals\<close> | |
datatype ('a) interval = Interval (lower: 'a) (upper: 'a) | |
hide_const(open) lower upper | |
definition to_interval where "to_interval a \<equiv> Interval a a" | |
abbreviation of_int_interval :: "int \<Rightarrow> 'a :: ring_1 interval" where | |
"of_int_interval x \<equiv> to_interval (of_int x)" | |
subsection \<open>Syntactic Class Instantiations\<close> | |
instantiation interval :: ("zero") zero begin | |
definition zero_interval where "0 \<equiv> Interval 0 0" | |
instance.. | |
end | |
instantiation interval :: (one) one begin | |
definition "1 = Interval 1 1" | |
instance.. | |
end | |
instantiation interval :: (plus) plus begin | |
fun plus_interval where "Interval lx ux + Interval ly uy = Interval (lx + ly) (ux + uy)" | |
instance.. | |
end | |
instantiation interval :: (uminus) uminus begin | |
fun uminus_interval where "- Interval l u = Interval (-u) (-l)" | |
instance.. | |
end | |
instantiation interval :: (minus) minus begin | |
fun minus_interval where "Interval lx ux - Interval ly uy = Interval (lx - uy) (ux - ly)" | |
instance.. | |
end | |
instantiation interval :: ("{ord,times}") times begin | |
fun times_interval where | |
"Interval lx ux * Interval ly uy = | |
(let x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy | |
in Interval (min x1 (min x2 (min x3 x4))) (max x1 (max x2 (max x3 x4))))" | |
instance.. | |
end | |
instantiation interval :: ("{ord,times,inverse}") "inverse" begin | |
fun inverse_interval where | |
"inverse (Interval l u) = Interval (inverse u) (inverse l)" | |
definition divide_interval :: "'a interval \<Rightarrow> _" where | |
"divide_interval X Y = X * (inverse Y)" | |
instance.. | |
end | |
subsection \<open>Class Instantiations\<close> | |
instance interval :: (semigroup_add) semigroup_add | |
proof | |
fix a b c :: "'a interval" | |
show "a + b + c = a + (b + c)" by (cases a, cases b, cases c, auto simp: ac_simps) | |
qed | |
instance interval :: (monoid_add) monoid_add | |
proof | |
fix a :: "'a interval" | |
show "0 + a = a" by (cases a, auto simp: zero_interval_def) | |
show "a + 0 = a" by (cases a, auto simp: zero_interval_def) | |
qed | |
instance interval :: (ab_semigroup_add) ab_semigroup_add | |
proof | |
fix a b :: "'a interval" | |
show "a + b = b + a" by (cases a, cases b, auto simp: ac_simps) | |
qed | |
instance interval :: (comm_monoid_add) comm_monoid_add by (intro_classes, auto) | |
text \<open>Intervals do not form an additive group, but satisfy some properties.\<close> | |
lemma interval_uminus_zero[simp]: | |
shows "-(0 :: 'a :: group_add interval) = 0" | |
by (simp add: zero_interval_def) | |
lemma interval_diff_zero[simp]: | |
fixes a :: "'a :: cancel_comm_monoid_add interval" | |
shows "a - 0 = a" by (cases a, simp add: zero_interval_def) | |
text \<open>Without type invariant, intervals do not form a multiplicative monoid, | |
but satisfy some properties.\<close> | |
instance interval :: ("{linorder,mult_zero}") mult_zero | |
proof | |
fix a :: "'a interval" | |
show "a * 0 = 0" "0 * a = 0" by (atomize(full), cases a, auto simp: zero_interval_def) | |
qed | |
subsection \<open>Membership\<close> | |
fun in_interval :: "'a :: order \<Rightarrow> 'a interval \<Rightarrow> bool" ("(_/ \<in>\<^sub>i _)" [51, 51] 50) where | |
"y \<in>\<^sub>i Interval lx ux = (lx \<le> y \<and> y \<le> ux)" | |
lemma in_interval_to_interval[intro!]: "a \<in>\<^sub>i to_interval a" | |
by (auto simp: to_interval_def) | |
lemma plus_in_interval: | |
fixes x y :: "'a :: ordered_comm_monoid_add" | |
shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x + y \<in>\<^sub>i X + Y" | |
by (cases X, cases Y, auto dest:add_mono) | |
lemma uminus_in_interval: | |
fixes x :: "'a :: ordered_ab_group_add" | |
shows "x \<in>\<^sub>i X \<Longrightarrow> -x \<in>\<^sub>i -X" | |
by (cases X, auto) | |
lemma minus_in_interval: | |
fixes x y :: "'a :: ordered_ab_group_add" | |
shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x - y \<in>\<^sub>i X - Y" | |
by (cases X, cases Y, auto dest:diff_mono) | |
lemma times_in_interval: | |
fixes x y :: "'a :: linordered_ring" | |
assumes "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y" | |
shows "x * y \<in>\<^sub>i X * Y" | |
proof - | |
obtain X1 X2 where X:"Interval X1 X2 = X" by (cases X,auto) | |
obtain Y1 Y2 where Y:"Interval Y1 Y2 = Y" by (cases Y,auto) | |
from assms X Y have assms: "X1 \<le> x" "x \<le> X2" "Y1 \<le> y" "y \<le> Y2" by auto | |
have "(X1 * Y1 \<le> x * y \<or> X1 * Y2 \<le> x * y \<or> X2 * Y1 \<le> x * y \<or> X2 * Y2 \<le> x * y) \<and> | |
(X1 * Y1 \<ge> x * y \<or> X1 * Y2 \<ge> x * y \<or> X2 * Y1 \<ge> x * y \<or> X2 * Y2 \<ge> x * y)" | |
proof (cases x "0::'a" rule: linorder_cases) | |
case x0: less | |
show ?thesis | |
proof (cases "y < 0") | |
case y0: True | |
from y0 x0 assms have "x * y \<le> X1 * y" by (intro mult_right_mono_neg, auto) | |
also from x0 y0 assms have "X1 * y \<le> X1 * Y1" by (intro mult_left_mono_neg, auto) | |
finally have 1: "x * y \<le> X1 * Y1". | |
show ?thesis proof(cases "X2 \<le> 0") | |
case True | |
with assms have "X2 * Y2 \<le> X2 * y" by (auto intro: mult_left_mono_neg) | |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg) | |
finally have "X2 * Y2 \<le> x * y". | |
with 1 show ?thesis by auto | |
next | |
case False | |
with assms have "X2 * Y1 \<le> X2 * y" by (auto intro: mult_left_mono) | |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg) | |
finally have "X2 * Y1 \<le> x * y". | |
with 1 show ?thesis by auto | |
qed | |
next | |
case False | |
then have y0: "y \<ge> 0" by auto | |
from x0 y0 assms have "X1 * Y2 \<le> x * Y2" by (intro mult_right_mono, auto) | |
also from y0 x0 assms have "... \<le> x * y" by (intro mult_left_mono_neg, auto) | |
finally have 1: "X1 * Y2 \<le> x * y". | |
show ?thesis | |
proof(cases "X2 \<le> 0") | |
case X2: True | |
from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono) | |
also from assms X2 have "... \<le> X2 * Y1" by (auto intro: mult_left_mono_neg) | |
finally have "x * y \<le> X2 * Y1". | |
with 1 show ?thesis by auto | |
next | |
case X2: False | |
from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono) | |
also from assms X2 have "... \<le> X2 * Y2" by (auto intro: mult_left_mono) | |
finally have "x * y \<le> X2 * Y2". | |
with 1 show ?thesis by auto | |
qed | |
qed | |
next | |
case [simp]: equal | |
with assms show ?thesis by (cases "Y2 \<le> 0", auto intro:mult_sign_intros) | |
next | |
case x0: greater | |
show ?thesis | |
proof (cases "y < 0") | |
case y0: True | |
from x0 y0 assms have "X2 * Y1 \<le> X2 * y" by (intro mult_left_mono, auto) | |
also from y0 x0 assms have "X2 * y \<le> x * y" by (intro mult_right_mono_neg, auto) | |
finally have 1: "X2 * Y1 \<le> x * y". | |
show ?thesis | |
proof(cases "Y2 \<le> 0") | |
case Y2: True | |
from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono) | |
also from assms Y2 have "... \<le> X1 * Y2" by (auto intro: mult_right_mono_neg) | |
finally have "x * y \<le> X1 * Y2". | |
with 1 show ?thesis by auto | |
next | |
case Y2: False | |
from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono) | |
also from assms Y2 have "... \<le> X2 * Y2" by (auto intro: mult_right_mono) | |
finally have "x * y \<le> X2 * Y2". | |
with 1 show ?thesis by auto | |
qed | |
next | |
case y0: False | |
from x0 y0 assms have "x * y \<le> X2 * y" by (intro mult_right_mono, auto) | |
also from y0 x0 assms have "... \<le> X2 * Y2" by (intro mult_left_mono, auto) | |
finally have 1: "x * y \<le> X2 * Y2". | |
show ?thesis | |
proof(cases "X1 \<le> 0") | |
case True | |
with assms have "X1 * Y2 \<le> X1 * y" by (auto intro: mult_left_mono_neg) | |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono) | |
finally have "X1 * Y2 \<le> x * y". | |
with 1 show ?thesis by auto | |
next | |
case False | |
with assms have "X1 * Y1 \<le> X1 * y" by (auto intro: mult_left_mono) | |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono) | |
finally have "X1 * Y1 \<le> x * y". | |
with 1 show ?thesis by auto | |
qed | |
qed | |
qed | |
hence min:"min (X1 * Y1) (min (X1 * Y2) (min (X2 * Y1) (X2 * Y2))) \<le> x * y" | |
and max:"x * y \<le> max (X1 * Y1) (max (X1 * Y2) (max (X2 * Y1) (X2 * Y2)))" | |
by (auto simp:min_le_iff_disj le_max_iff_disj) | |
show ?thesis using min max X Y by (auto simp: Let_def) | |
qed | |
subsection \<open>Convergence\<close> | |
definition interval_tendsto :: "(nat \<Rightarrow> 'a :: topological_space interval) \<Rightarrow> 'a \<Rightarrow> bool" | |
(infixr "\<longlonglongrightarrow>\<^sub>i" 55) where | |
"(X \<longlonglongrightarrow>\<^sub>i x) \<equiv> ((interval.upper \<circ> X) \<longlonglongrightarrow> x) \<and> ((interval.lower \<circ> X) \<longlonglongrightarrow> x)" | |
lemma interval_tendstoI[intro]: | |
assumes "(interval.upper \<circ> X) \<longlonglongrightarrow> x" and "(interval.lower \<circ> X) \<longlonglongrightarrow> x" | |
shows "X \<longlonglongrightarrow>\<^sub>i x" | |
using assms by (auto simp:interval_tendsto_def) | |
lemma const_interval_tendsto: "(\<lambda>i. to_interval a) \<longlonglongrightarrow>\<^sub>i a" | |
by (auto simp: o_def to_interval_def) | |
lemma interval_tendsto_0: "(\<lambda>i. 0) \<longlonglongrightarrow>\<^sub>i 0" | |
by (auto simp: o_def zero_interval_def) | |
lemma plus_interval_tendsto: | |
fixes x y :: "'a :: topological_monoid_add" | |
assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y" | |
shows "(\<lambda> i. X i + Y i) \<longlonglongrightarrow>\<^sub>i x + y" | |
proof - | |
have *: "X i + Y i = Interval (interval.lower (X i) + interval.lower (Y i)) (interval.upper (X i) + interval.upper (Y i))" for i | |
by (cases "X i"; cases "Y i", auto) | |
from assms show ?thesis unfolding * interval_tendsto_def o_def by (auto intro: tendsto_intros) | |
qed | |
lemma uminus_interval_tendsto: | |
fixes x :: "'a :: topological_group_add" | |
assumes "X \<longlonglongrightarrow>\<^sub>i x" | |
shows "(\<lambda>i. - X i) \<longlonglongrightarrow>\<^sub>i -x" | |
proof- | |
have *: "- X i = Interval (- interval.upper (X i)) (- interval.lower (X i))" for i | |
by (cases "X i", auto) | |
from assms show ?thesis unfolding o_def * interval_tendsto_def by (auto intro: tendsto_intros) | |
qed | |
lemma minus_interval_tendsto: | |
fixes x y :: "'a :: topological_group_add" | |
assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y" | |
shows "(\<lambda> i. X i - Y i) \<longlonglongrightarrow>\<^sub>i x - y" | |
proof - | |
have *: "X i - Y i = Interval (interval.lower (X i) - interval.upper (Y i)) (interval.upper (X i) - interval.lower (Y i))" for i | |
by (cases "X i"; cases "Y i", auto) | |
from assms show ?thesis unfolding o_def * interval_tendsto_def by (auto intro: tendsto_intros) | |
qed | |
lemma times_interval_tendsto: | |
fixes x y :: "'a :: {linorder_topology, real_normed_algebra}" | |
assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y" | |
shows "(\<lambda> i. X i * Y i) \<longlonglongrightarrow>\<^sub>i x * y" | |
proof - | |
have *: "(interval.lower (X i * Y i)) = ( | |
let lx = (interval.lower (X i)); ux = (interval.upper (X i)); | |
ly = (interval.lower (Y i)); uy = (interval.upper (Y i)); | |
x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy in | |
(min x1 (min x2 (min x3 x4))))" "(interval.upper (X i * Y i)) = ( | |
let lx = (interval.lower (X i)); ux = (interval.upper (X i)); | |
ly = (interval.lower (Y i)); uy = (interval.upper (Y i)); | |
x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy in | |
(max x1 (max x2 (max x3 x4))))" for i | |
by (cases "X i"; cases "Y i", auto simp: Let_def)+ | |
have "(\<lambda>i. (interval.lower (X i * Y i))) \<longlonglongrightarrow> min (x * y) (min (x * y) (min (x * y) (x *y)))" | |
using assms unfolding interval_tendsto_def * Let_def o_def | |
by (intro tendsto_min tendsto_intros, auto) | |
moreover | |
have "(\<lambda>i. (interval.upper (X i * Y i))) \<longlonglongrightarrow> max (x * y) (max (x * y) (max (x * y) (x *y)))" | |
using assms unfolding interval_tendsto_def * Let_def o_def | |
by (intro tendsto_max tendsto_intros, auto) | |
ultimately show ?thesis unfolding interval_tendsto_def o_def by auto | |
qed | |
lemma interval_tendsto_neq: | |
fixes a b :: "real" | |
assumes "(\<lambda> i. f i) \<longlonglongrightarrow>\<^sub>i a" and "a \<noteq> b" | |
shows "\<exists> n. \<not> b \<in>\<^sub>i f n" | |
proof - | |
let ?d = "norm (b - a) / 2" | |
from assms have d: "?d > 0" by auto | |
from assms(1)[unfolded interval_tendsto_def] | |
have cvg: "(interval.lower o f) \<longlonglongrightarrow> a" "(interval.upper o f) \<longlonglongrightarrow> a" by auto | |
from LIMSEQ_D[OF cvg(1) d] obtain n1 where | |
n1: "\<And> n. n \<ge> n1 \<Longrightarrow> norm ((interval.lower \<circ> f) n - a) < ?d " by auto | |
from LIMSEQ_D[OF cvg(2) d] obtain n2 where | |
n2: "\<And> n. n \<ge> n2 \<Longrightarrow> norm ((interval.upper \<circ> f) n - a) < ?d " by auto | |
define n where "n = max n1 n2" | |
from n1[of n] n2[of n] have bnd: | |
"norm ((interval.lower \<circ> f) n - a) < ?d" | |
"norm ((interval.upper \<circ> f) n - a) < ?d" | |
unfolding n_def by auto | |
show ?thesis by (rule exI[of _ n], insert bnd, cases "f n", auto,argo) | |
qed | |
subsection \<open>Complex Intervals\<close> | |
datatype complex_interval = Complex_Interval (Re_interval: "real interval") (Im_interval: "real interval") | |
definition in_complex_interval :: "complex \<Rightarrow> complex_interval \<Rightarrow> bool" ("(_/ \<in>\<^sub>c _)" [51, 51] 50) where | |
"y \<in>\<^sub>c x \<equiv> (case x of Complex_Interval r i \<Rightarrow> Re y \<in>\<^sub>i r \<and> Im y \<in>\<^sub>i i)" | |
instantiation complex_interval :: comm_monoid_add begin | |
definition "0 \<equiv> Complex_Interval 0 0" | |
fun plus_complex_interval :: "complex_interval \<Rightarrow> complex_interval \<Rightarrow> complex_interval" where | |
"Complex_Interval rx ix + Complex_Interval ry iy = Complex_Interval (rx + ry) (ix + iy)" | |
instance | |
proof | |
fix a b c :: complex_interval | |
show "a + b + c = a + (b + c)" by (cases a, cases b, cases c, simp add: ac_simps) | |
show "a + b = b + a" by (cases a, cases b, simp add: ac_simps) | |
show "0 + a = a" by (cases a, simp add: ac_simps zero_complex_interval_def) | |
qed | |
end | |
lemma plus_complex_interval: "x \<in>\<^sub>c X \<Longrightarrow> y \<in>\<^sub>c Y \<Longrightarrow> x + y \<in>\<^sub>c X + Y" | |
unfolding in_complex_interval_def using plus_in_interval by (cases X, cases Y, auto) | |
definition of_int_complex_interval :: "int \<Rightarrow> complex_interval" where | |
"of_int_complex_interval x = Complex_Interval (of_int_interval x) 0" | |
lemma of_int_complex_interval_0[simp]: "of_int_complex_interval 0 = 0" | |
by (simp add: of_int_complex_interval_def zero_complex_interval_def to_interval_def zero_interval_def) | |
lemma of_int_complex_interval: "of_int i \<in>\<^sub>c of_int_complex_interval i" | |
unfolding in_complex_interval_def of_int_complex_interval_def | |
by (auto simp: zero_complex_interval_def zero_interval_def) | |
instantiation complex_interval :: mult_zero begin | |
fun times_complex_interval where | |
"Complex_Interval rx ix * Complex_Interval ry iy = | |
Complex_Interval (rx * ry - ix * iy) (rx * iy + ix * ry)" | |
instance | |
proof | |
fix a :: complex_interval | |
show "0 * a = 0" "a * 0 = 0" by (atomize(full), cases a, auto simp: zero_complex_interval_def) | |
qed | |
end | |
instantiation complex_interval :: minus begin | |
fun minus_complex_interval where | |
"Complex_Interval R I - Complex_Interval R' I' = Complex_Interval (R-R') (I-I')" | |
instance.. | |
end | |
lemma times_complex_interval: "x \<in>\<^sub>c X \<Longrightarrow> y \<in>\<^sub>c Y \<Longrightarrow> x * y \<in>\<^sub>c X * Y" | |
unfolding in_complex_interval_def | |
by (cases X, cases Y, auto intro: times_in_interval minus_in_interval plus_in_interval) | |
definition ipoly_complex_interval :: "int poly \<Rightarrow> complex_interval \<Rightarrow> complex_interval" where | |
"ipoly_complex_interval p x = fold_coeffs (\<lambda>a b. of_int_complex_interval a + x * b) p 0" | |
lemma ipoly_complex_interval_0[simp]: | |
"ipoly_complex_interval 0 x = 0" | |
by (auto simp: ipoly_complex_interval_def) | |
lemma ipoly_complex_interval_pCons[simp]: | |
"ipoly_complex_interval (pCons a p) x = of_int_complex_interval a + x * (ipoly_complex_interval p x)" | |
by (cases "p = 0"; cases "a = 0", auto simp: ipoly_complex_interval_def) | |
lemma ipoly_complex_interval: assumes x: "x \<in>\<^sub>c X" | |
shows "ipoly p x \<in>\<^sub>c ipoly_complex_interval p X" | |
proof - | |
define xs where "xs = coeffs p" | |
have 0: "in_complex_interval 0 0" (is "in_complex_interval ?Z ?z") | |
unfolding in_complex_interval_def zero_complex_interval_def zero_interval_def by auto | |
define Z where "Z = ?Z" | |
define z where "z = ?z" | |
from 0 have 0: "in_complex_interval Z z" unfolding Z_def z_def by auto | |
note x = times_complex_interval[OF x] | |
show ?thesis | |
unfolding poly_map_poly_code ipoly_complex_interval_def fold_coeffs_def | |
xs_def[symmetric] Z_def[symmetric] z_def[symmetric] using 0 | |
by (induct xs arbitrary: Z z, auto intro!: plus_complex_interval of_int_complex_interval x) | |
qed | |
definition complex_interval_tendsto (infix "\<longlonglongrightarrow>\<^sub>c" 55) where | |
"C \<longlonglongrightarrow>\<^sub>c c \<equiv> ((Re_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Re c) \<and> ((Im_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Im c)" | |
lemma complex_interval_tendstoI[intro!]: | |
"(Re_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Re c \<Longrightarrow> (Im_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Im c \<Longrightarrow> C \<longlonglongrightarrow>\<^sub>c c" | |
by (simp add: complex_interval_tendsto_def) | |
lemma of_int_complex_interval_tendsto: "(\<lambda>i. of_int_complex_interval n) \<longlonglongrightarrow>\<^sub>c of_int n" | |
by (auto simp: o_def of_int_complex_interval_def intro!:const_interval_tendsto interval_tendsto_0) | |
lemma Im_interval_plus: "Im_interval (A + B) = Im_interval A + Im_interval B" | |
by (cases A; cases B, auto) | |
lemma Re_interval_plus: "Re_interval (A + B) = Re_interval A + Re_interval B" | |
by (cases A; cases B, auto) | |
lemma Im_interval_minus: "Im_interval (A - B) = Im_interval A - Im_interval B" | |
by (cases A; cases B, auto) | |
lemma Re_interval_minus: "Re_interval (A - B) = Re_interval A - Re_interval B" | |
by (cases A; cases B, auto) | |
lemma Re_interval_times: "Re_interval (A * B) = Re_interval A * Re_interval B - Im_interval A * Im_interval B" | |
by (cases A; cases B, auto) | |
lemma Im_interval_times: "Im_interval (A * B) = Re_interval A * Im_interval B + Im_interval A * Re_interval B" | |
by (cases A; cases B, auto) | |
lemma plus_complex_interval_tendsto: | |
"A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i + B i) \<longlonglongrightarrow>\<^sub>c a + b" | |
unfolding complex_interval_tendsto_def | |
by (auto intro!: plus_interval_tendsto simp: o_def Re_interval_plus Im_interval_plus) | |
lemma minus_complex_interval_tendsto: | |
"A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i - B i) \<longlonglongrightarrow>\<^sub>c a - b" | |
unfolding complex_interval_tendsto_def | |
by (auto intro!: minus_interval_tendsto simp: o_def Re_interval_minus Im_interval_minus) | |
lemma times_complex_interval_tendsto: | |
"A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i * B i) \<longlonglongrightarrow>\<^sub>c a * b" | |
unfolding complex_interval_tendsto_def | |
by (auto intro!: minus_interval_tendsto times_interval_tendsto plus_interval_tendsto | |
simp: o_def Re_interval_times Im_interval_times) | |
lemma ipoly_complex_interval_tendsto: | |
assumes "C \<longlonglongrightarrow>\<^sub>c c" | |
shows "(\<lambda>i. ipoly_complex_interval p (C i)) \<longlonglongrightarrow>\<^sub>c ipoly p c" | |
proof(induct p) | |
case 0 | |
show ?case by (auto simp: o_def zero_complex_interval_def zero_interval_def complex_interval_tendsto_def) | |
next | |
case (pCons a p) | |
show ?case | |
apply (unfold ipoly_complex_interval_pCons of_int_hom.map_poly_pCons_hom poly_pCons) | |
apply (intro plus_complex_interval_tendsto times_complex_interval_tendsto assms pCons of_int_complex_interval_tendsto) | |
done | |
qed | |
lemma complex_interval_tendsto_neq: assumes "(\<lambda> i. f i) \<longlonglongrightarrow>\<^sub>c a" | |
and "a \<noteq> b" | |
shows "\<exists> n. \<not> b \<in>\<^sub>c f n" | |
proof - | |
from assms(1)[unfolded complex_interval_tendsto_def o_def] | |
have cvg: "(\<lambda>x. Re_interval (f x)) \<longlonglongrightarrow>\<^sub>i Re a" "(\<lambda>x. Im_interval (f x)) \<longlonglongrightarrow>\<^sub>i Im a" by auto | |
from assms(2) have "Re a \<noteq> Re b \<or> Im a \<noteq> Im b" | |
using complex.expand by blast | |
thus ?thesis | |
proof | |
assume "Re a \<noteq> Re b" | |
from interval_tendsto_neq[OF cvg(1) this] show ?thesis | |
unfolding in_complex_interval_def by (metis (no_types, lifting) complex_interval.case_eq_if) | |
next | |
assume "Im a \<noteq> Im b" | |
from interval_tendsto_neq[OF cvg(2) this] show ?thesis | |
unfolding in_complex_interval_def by (metis (no_types, lifting) complex_interval.case_eq_if) | |
qed | |
qed | |
end | |